51
|
Mecca CM, Chao D, Yu G, Feng Y, Segel I, Zhang Z, Rodriguez-Garcia DM, Pawela CP, Hillard CJ, Hogan QH, Pan B. Dynamic Change of Endocannabinoid Signaling in the Medial Prefrontal Cortex Controls the Development of Depression After Neuropathic Pain. J Neurosci 2021; 41:7492-7508. [PMID: 34244365 PMCID: PMC8412994 DOI: 10.1523/jneurosci.3135-20.2021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/30/2021] [Accepted: 07/02/2021] [Indexed: 01/15/2023] Open
Abstract
Many patients with chronic pain conditions suffer from depression. The mechanisms underlying pain-induced depression are still unclear. There are critical links of medial prefrontal cortex (mPFC) synaptic function to depression, with signaling through the endocannabinoid (eCB) system as an important contributor. We hypothesized that afferent noxious inputs after injury compromise activity-dependent eCB signaling in the mPFC, resulting in depression. Depression-like behaviors were tested in male and female rats with traumatic neuropathy [spared nerve injury (SNI)], and neuronal activity in the mPFC was monitored using the immediate early gene c-fos and in vivo electrophysiological recordings. mPFC eCB Concentrations were determined using mass spectrometry, and behavioral and electrophysiological experiments were used to evaluate the role of alterations in eCB signaling in depression after pain. SNI-induced pain induced the development of depression phenotypes in both male and female rats. Pyramidal neurons in mPFC showed increased excitability followed by reduced excitability in the onset and prolonged phases of pain, respectively. Concentrations of the eCBs, 2-arachidonoylglycerol (2-AG) in the mPFC, were elevated initially after SNI, and our results indicate that this resulted in a loss of CB1R function on GABAergic interneurons in the mPFC. These data suggest that excessive release of 2-AG as a result of noxious stimuli triggers use-dependent loss of function of eCB signaling leading to excessive GABA release in the mPFC, with the final result being behavioral depression.SIGNIFICANCE STATEMENT Pain has both somatosensory and affective components, so the complexity of mechanisms underlying chronic pain is best represented by a biopsychosocial model that includes widespread CNS dysfunction. Many patients with chronic pain conditions develop depression. The mechanism by which pain causes depression is unclear. Although manipulation of the eCB signaling system as an avenue for providing analgesia per se has not shown much promise in previous studies. An important limitation of past research has been inadequate consideration of the dynamic nature of the connection between pain and depression as they develop. Here, we show that activity-dependent synthesis of eCBs during the initial onset of persistent pain is the critical link leading to depression when pain is persistent.
Collapse
Affiliation(s)
- Christina M Mecca
- Departments of Anesthesiology
- Cell Biology, Neurobiology, and Anatomy
| | | | | | | | | | | | | | - Christopher P Pawela
- Departments of Anesthesiology
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Cecilia J Hillard
- Pharmacology and Toxicology
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Quinn H Hogan
- Departments of Anesthesiology
- Cell Biology, Neurobiology, and Anatomy
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| | - Bin Pan
- Departments of Anesthesiology
- Cell Biology, Neurobiology, and Anatomy
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin 53226
| |
Collapse
|
52
|
Meade JA, Fowlkes AN, Wood MJ, Kurtz MC, May MM, Toma WB, Warncke UO, Mann J, Mustafa M, Lichtman AH, Damaj MI. Effects of chemotherapy on operant responding for palatable food in male and female mice. Behav Pharmacol 2021; 32:422-434. [PMID: 34050046 PMCID: PMC8266730 DOI: 10.1097/fbp.0000000000000635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Patients treated with cancer chemotherapeutics frequently report chemotherapy-induced peripheral neuropathy (CIPN), changes in mood (depression and anxiety) and functional impairments. Rodent models of CIPN elicit limited alterations in functional behaviors, which pose challenges in developing preclinical models of chemotherapy-induced behavioral depression. The study examined the consequences of chemotherapy-induced mechanical hypersensitivity (paclitaxel: 32 or 64 mg/kg, cumulative; oxaliplatin: 30 mg/kg, cumulative) on behavioral depression, as measured with operant responding for palatable food during periods of food restriction and ad libitum chow, consumption of noncontingently available palatable food in the presence of ad libitum chow, and voluntary wheel running. The study employed two inbred mouse strains (C57BL/6J and Balb/cJ) and examined potential sex differences. All chemotherapeutic regimens caused profound mechanical hypersensitivity for the duration of the observation periods (up to 7 months), but no treatments changed voluntary wheel running or consumption of noncontingent palatable food. The high dose of paclitaxel temporarily reduced operant responding for palatable food in male C57BL/6J mice undergoing food restriction or maintained on ad libitum chow. However, paclitaxel failed to decrease operant responding for palatable food in free-feeding female C57BL/6J mice or Balb/cJ mice of either sex. Moreover, oxaliplatin did not significantly alter operant responding for palatable food in male or female C57BL/6J mice maintained on ad libitum chow. These findings demonstrate a dissociation between chemotherapy-induced mechanical hypersensitivity and behavioral depression. The transient effects of paclitaxel on operant responding in male C57BL/6J mice may represent a fleeting behavioral correlate of chemotherapy-associated pain-like behaviors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Urszula O Warncke
- Department of Pharmacology and Toxicology
- Center for Clinical and Translational Research, School of Medicine
| | - Jared Mann
- Department of Pharmacology and Toxicology
| | | | - Aron H Lichtman
- Department of Pharmacology and Toxicology
- Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, Virginia, USA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology
- Translational Research Initiative for Pain and Neuropathy, Virginia Commonwealth University, Richmond, Virginia, USA
| |
Collapse
|
53
|
The methyl donor S-adenosyl methionine reverses the DNA methylation signature of chronic neuropathic pain in mouse frontal cortex. Pain Rep 2021; 6:e944. [PMID: 34278163 PMCID: PMC8280078 DOI: 10.1097/pr9.0000000000000944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/16/2021] [Accepted: 05/19/2021] [Indexed: 01/10/2023] Open
Abstract
Supplemental Digital Content is Available in the Text. Chronic administration of S-adenosylmethionine reverses neuropathic pain–induced changes in DNA methylation in the mouse frontal cortex. Chronic pain is associated with persistent but reversible structural and functional changes in the prefrontal cortex (PFC). This stable yet malleable plasticity implicates epigenetic mechanisms, including DNA methylation, as a potential mediator of chronic pain–induced cortical pathology. We previously demonstrated that chronic oral administration of the methyl donor S-adenosyl methionine (SAM) attenuates long-term peripheral neuropathic pain and alters global frontal cortical DNA methylation. However, the specific genes and pathways associated with the resolution of chronic pain by SAM remain unexplored.
Collapse
|
54
|
Bi-ancestral depression GWAS in the Million Veteran Program and meta-analysis in >1.2 million individuals highlight new therapeutic directions. Nat Neurosci 2021; 24:954-963. [PMID: 34045744 PMCID: PMC8404304 DOI: 10.1038/s41593-021-00860-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 04/16/2021] [Indexed: 02/08/2023]
Abstract
Major depressive disorder is the most common neuropsychiatric disorder, affecting 11% of veterans. Here we report results of a large meta-analysis of depression using data from the Million Veteran Program, 23andMe, UK Biobank and FinnGen, including individuals of European ancestry (n = 1,154,267; 340,591 cases) and African ancestry (n = 59,600; 25,843 cases). Transcriptome-wide association study analyses revealed significant associations with expression of NEGR1 in the hypothalamus and DRD2 in the nucleus accumbens, among others. We fine-mapped 178 genomic risk loci, and we identified likely pathogenicity in these variants and overlapping gene expression for 17 genes from our transcriptome-wide association study, including TRAF3. Finally, we were able to show substantial replications of our findings in a large independent cohort (n = 1,342,778) provided by 23andMe. This study sheds light on the genetic architecture of depression and provides new insight into the interrelatedness of complex psychiatric traits.
Collapse
|
55
|
Boullon L, Finn DP, Llorente-Berzal Á. Sex Differences in a Rat Model of Peripheral Neuropathic Pain and Associated Levels of Endogenous Cannabinoid Ligands. FRONTIERS IN PAIN RESEARCH 2021; 2:673638. [PMID: 35295501 PMCID: PMC8915733 DOI: 10.3389/fpain.2021.673638] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/10/2021] [Indexed: 11/16/2022] Open
Abstract
Chronic neuropathic pain is a major unmet clinical need affecting 10% of the world population, the majority of whom suffer from co-morbid mood disorders. Sex differences have been reported in pain prevalence, perception and response to analgesics. However, sexual dimorphism in chronic neuropathic pain and the associated neurobiology, are still poorly understood. The lack of efficacy and the adverse effects associated with current pharmacological treatments, further underline the need for new therapeutic targets. The endocannabinoid system (ECS) is a lipid signalling system which regulates a large number of physiological processes, including pain. The aim of this study was to investigate sexual dimorphism in pain-, anxiety- and depression-related behaviours, and concomitant alterations in supraspinal and spinal endocannabinoid levels in the spared nerve injury (SNI) animal model of peripheral neuropathic pain. Sham or SNI surgery was performed in adult male and female Sprague-Dawley rats. Mechanical and cold allodynia was tested weekly using von Frey and acetone drop tests, respectively. Development of depression-related behaviours was analysed using sucrose splash and sucrose preference tests. Locomotor activity and anxiety-related behaviours were assessed with open field and elevated plus maze tests. Levels of endocannabinoid ligands and related N-acylethanolamines in supraspinal regions of the descending inhibitory pain pathway, and spinal cord, were analysed 42 days post-surgery. SNI surgery induced allodynia in rats of both sexes. Female-SNI rats exhibited earlier onset and greater sensitivity to cold and mechanical allodynia than their male counterparts. In male rats, SNI induced a significant reduction of rearing, compared to sham controls. Trends for depressive-like behaviours in females and for anxiety-like behaviours in males were observed after SNI surgery but did not reach statistical significance. No concomitant alterations in levels of endogenous cannabinoid ligands and related N-acylethanolamines were observed in the regions analysed. Our results demonstrate differential development of SNI-induced nociceptive behaviour between male and female rats suggesting important sexually dimorphic modifications in pain pathways. SNI had no effect on depression- or anxiety-related behaviours in animals of either sex, or on levels of endocannabinoid ligands and related N-acylethanolamines across the regions involved in the descending modulation of nociception at the time points investigated.
Collapse
|
56
|
Kimura LF, Novaes LS, Picolo G, Munhoz CD, Cheung CW, Camarini R. How environmental enrichment balances out neuroinflammation in chronic pain and comorbid depression and anxiety disorders. Br J Pharmacol 2021; 179:1640-1660. [PMID: 34076891 DOI: 10.1111/bph.15584] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 04/05/2021] [Accepted: 05/17/2021] [Indexed: 11/30/2022] Open
Abstract
Depression and anxiety commonly occur in chronic pain states and the coexistence of these diseases worsens outcomes for both disorders and may reduce treatment adherence and response. Despite the advances in the knowledge of chronic pain mechanisms, pharmacological treatment is still unsatisfactory. Research based on exposure to environmental enrichment is currently under investigation and seems to offer a promising low-cost strategy with no side effects. In this review, we discuss the role of inflammation as a major biological substrate and aetiological factor of chronic pain and depression/anxiety and report a collection of preclinical evidence of the effects and mechanisms of environmental enrichment. As microglia participates in the development of both conditions, we also discuss microglia as a potential target underlying the beneficial actions of environmental enrichment in chronic pain and comorbid depression/anxiety. We also discuss how alternative interventions under clinical guidelines, such as environmental enrichment, may improve treatment compliance and patient outcomes.
Collapse
Affiliation(s)
- Louise F Kimura
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil
| | - Leonardo S Novaes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, São Paulo, Brazil
| | - Carolina D Munhoz
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Chi W Cheung
- Department of Anesthesiology, University of Hong Kong, Hong Kong
| | - Rosana Camarini
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
57
|
Zhang XH, Feng CC, Pei LJ, Zhang YN, Chen L, Wei XQ, Zhou J, Yong Y, Wang K. Electroacupuncture Attenuates Neuropathic Pain and Comorbid Negative Behavior: The Involvement of the Dopamine System in the Amygdala. Front Neurosci 2021; 15:657507. [PMID: 34025342 PMCID: PMC8137986 DOI: 10.3389/fnins.2021.657507] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/25/2021] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain (NeuP) is an important clinical problem accompanying negative mood symptoms. Neuroinflammation in the amygdala is critically involved in NeuP, and the dopamine (DA) system acts as an important endogenous anti-inflammatory pathway. Electroacupuncture (EA) can improve the clinical outcomes in NeuP, but the underlying mechanisms have not been fully elucidated. This study was designed to assess the effectiveness of EA on pain and pain-related depressive-like and anxiety-like behaviors and explore the role of the DA system in the effects of EA. Male Sprague-Dawley rats were subjected to the chronic constrictive injury (CCI) model to induce NeuP. EA treatment was carried out for 30 min once every other day for 3 weeks. The results showed that CCI caused mechanical hyperalgesia and depressive and anxiety-like behaviors in rats and neuroinflammation in the amygdala, such as an increased protein level of TNFα and IL-1β and activation of astrocytes. EA treatment significantly improved mechanical allodynia and the emotional dysfunction induced by CCI. The effects of EA were accompanied by markedly decreased expression of TNFα, IL-1β, and glial fibrillary acid protein (GFAP) in the amygdala. Moreover, EA treatment reversed CCI-induced down-regulation of DA concentration, tyrosine hydroxylase (TH) expression, and DRD1 and DRD2 receptors. These results suggest that EA-ameliorated NeuP may possibly be associated with the DA system to inhibit the neuroinflammation in the amygdala.
Collapse
Affiliation(s)
- Xue-Hui Zhang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen-Chen Feng
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Jian Pei
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ya-Nan Zhang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Liu Chen
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu-Qiang Wei
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jia Zhou
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yue Yong
- Department of Anesthesiology and Research Institute for Acupuncture Anesthesia, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke Wang
- Acupuncture Anesthesia Clinical Research Institute, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
58
|
Su S, Li M, Wu D, Cao J, Ren X, Tao YX, Zang W. Gene Transcript Alterations in the Spinal Cord, Anterior Cingulate Cortex, and Amygdala in Mice Following Peripheral Nerve Injury. Front Cell Dev Biol 2021; 9:634810. [PMID: 33898422 PMCID: PMC8059771 DOI: 10.3389/fcell.2021.634810] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/05/2021] [Indexed: 12/19/2022] Open
Abstract
Chronic neuropathic pain caused by nerve damage is a most common clinical symptom, often accompanied by anxiety- and depression-like symptoms. Current treatments are very limited at least in part due to incompletely understanding mechanisms underlying this disorder. Changes in gene expression in the dorsal root ganglion (DRG) have been acknowledged to implicate in neuropathic pain genesis, but how peripheral nerve injury alters the gene expression in other pain-associated regions remains elusive. The present study carried out strand-specific next-generation RNA sequencing with a higher sequencing depth and observed the changes in whole transcriptomes in the spinal cord (SC), anterior cingulate cortex (ACC), and amygdala (AMY) following unilateral fourth lumbar spinal nerve ligation (SNL). In addition to providing novel transcriptome profiles of long non-coding RNAs (lncRNAs) and mRNAs, we identified pain- and emotion-related differentially expressed genes (DEGs) and revealed that numbers of these DEGs displayed a high correlation to neuroinflammation and apoptosis. Consistently, functional analyses showed that the most significant enriched biological processes of the upregulated mRNAs were involved in the immune system process, apoptotic process, defense response, inflammation response, and sensory perception of pain across three regions. Moreover, the comparisons of pain-, anxiety-, and depression-related DEGs among three regions present a particular molecular map among the spinal cord and supraspinal structures and indicate the region-dependent and region-independent alterations of gene expression after nerve injury. Our study provides a resource for gene transcript expression patterns in three distinct pain-related regions after peripheral nerve injury. Our findings suggest that neuroinflammation and apoptosis are important pathogenic mechanisms underlying neuropathic pain and that some DEGs might be promising therapeutic targets.
Collapse
Affiliation(s)
- Songxue Su
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Mengqi Li
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China.,Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Di Wu
- Department of Bioinformatics, College of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Jing Cao
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Xiuhua Ren
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, Rutgers New Jersey Medical School, The State University of New Jersey, Newark, NJ, United States
| | - Weidong Zang
- Department of Anatomy, College of Basic Medicine, Zhengzhou University, Zhengzhou, China.,Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, China
| |
Collapse
|
59
|
Guo J, Wang C, Niu X, Zhou F, Li H, Gao W. Effects of resveratrol in the signaling of neuropathic pain involving P2X3 in the dorsal root ganglion of rats. Acta Neurol Belg 2021; 121:365-372. [PMID: 30989502 DOI: 10.1007/s13760-019-01126-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 03/16/2019] [Indexed: 12/18/2022]
Abstract
Neuropathic pain is a major public health problem because it has a considerable impact on life quality of patients. Neuropathic pain caused by a lesion or disease of the somatosensory nervous system, which causes unpleasant and abnormal sensation (dysesthesia), an increased response to painful stimuli (hyperalgesia), and pain in response to a stimulus that does not normally provoke pain (allodynia). P2X receptors from dorsal root ganglion (DRG) play a crucial role in facilitating pain transmission at peripheral and spinal sites. Resveratrol (Res) has neuroprotective effects and improves the pathological and behavioral outcomes of various types of nerve injury. The present study examined the effects of Res on neuropathic pain. Neuropathic pain animal model was created by partial sciatic nerve ligation (pSNL) surgery. We found that consecutive intraperitoneal administration of Res for 21 days reduced the mechanical and thermal nociceptive responses induced by pSNL in a dose-dependent manner. Moreover, Res administration reversed P2X3 expression and phosphorylation of ERK in DRG neurons after peripheral nerve injury. Our results suggested that Res may ameliorate neuropathic pain by suppressing P2X3 up-regulation and ERK phosphorylation in DRG of neuropathic pain rats. Therefore, we concluded that Res has a significant analgesic effect on alleviating neuropathic pain, and thus may serve as a therapeutic approach for neuropathic pain.
Collapse
Affiliation(s)
- Jinhui Guo
- Department of Pharmaceutics, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, 453100, Henan, People's Republic of China.
| | - Chaowei Wang
- Department of Neurology, the First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, People's Republic of China
| | - Xiaolu Niu
- Department of Neurology, the First Affiliated Hospital of Xinxiang Medical University, Weihui, 453100, Henan, People's Republic of China
| | - Fang Zhou
- Department of Pharmaceutics, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, 453100, Henan, People's Republic of China
| | - Huiling Li
- Department of Pharmaceutics, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, 453100, Henan, People's Republic of China
| | - Weifang Gao
- Department of Pharmaceutics, the First Affiliated Hospital of Xinxiang Medical University, No. 88 Jiankang Road, Weihui, 453100, Henan, People's Republic of China
| |
Collapse
|
60
|
Wang X, Jiang Y, Li J, Wang Y, Tian Y, Guo Q, Cheng Z. DUSP1 Promotes Microglial Polarization toward M2 Phenotype in the Medial Prefrontal Cortex of Neuropathic Pain Rats via Inhibition of MAPK Pathway. ACS Chem Neurosci 2021; 12:966-978. [PMID: 33666084 DOI: 10.1021/acschemneuro.0c00567] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Shifting microglial polarization from M1 toward M2 phenotype represents a promising therapeutic strategy for neuropathic pain (NP). Dual-specificity phosphatase-1 (DUSP1) is a key component in regulating anti-inflammatory response. The medial prefrontal cortex (mPFC) is implicated in emotional disorders associated with NP and constitutes a neuroanatomical substrate for exploring mechanisms underlying NP. This study aims to investigate whether DUSP1 regulates microglial M1/M2 polarization in the mPFC in a rat model of NP. Rat model of NP was established by chronic constriction injury (CCI) of the rat sciatic nerve. Lipopolysaccharide (LPS) was used to activate HAPI rat microglial cells as an in vitro inflammatory model. CCI-induced decreased pain threshold, increased cell apoptosis in mPFC, elevated pro-inflammatory M1/M2 microglia ratio, and activated MAPK signaling in the mPFC of rats. Importantly, intra-mPFC injection of DUSP1-expressing lentivirus counteracted these abnormalities. In vitro assay further confirmed that DUSP1 overexpression switched microglial M1 to M2 polarization through inhibition of MAPK signaling activation. DUSP1 switched microglial M1 to M2 polarization in the mPFC and attenuated CCI-induced NP by inhibiting the MAPK signaling.
Collapse
Affiliation(s)
- Ximei Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yuan Jiang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Jingyi Li
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yunjiao Wang
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Ying Tian
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Qulian Guo
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Zhigang Cheng
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
61
|
Effects of inflammatory pain on CB1 receptor in the midbrain periaqueductal gray. Pain Rep 2021; 6:e897. [PMID: 33693301 PMCID: PMC7939232 DOI: 10.1097/pr9.0000000000000897] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/10/2020] [Accepted: 12/25/2020] [Indexed: 11/26/2022] Open
Abstract
Western blot and GTPγS analyses reveal inflammatory pain–induced adaptations in the midbrain periaqueductal gray, which is critically involved in descending pain modulation. Pain upregulates the expression of the CB1 receptor and increases G-protein coupling in the periaqueductal gray. Introduction: The periaqueductal gray (PAG) mediates the antinociceptive properties of analgesics, including opioids and cannabinoids. Administration of either opioids or cannabinoids into the PAG induces antinociception. However, most studies characterizing the antinociceptive properties of cannabinoids in the PAG have been conducted in naive animals. Few studies have reported on the role of CB1 receptors in the PAG during conditions which would prompt the administration of analgesics, namely, during pain states. Objectives: To examine inflammatory pain-induced changes in CB1 receptor expression and function in the midbrain periaqueductal gray. Methods: In this study, we used the Complete Freund Adjuvant model to characterize CB1 receptor expression and G-protein coupling during persistent inflammatory pain. Results: Inflammatory pain induced an upregulation in the expression of synaptic CB1 receptors in the PAG. Despite this pain-induced change in CB1 expression, there was no corresponding upregulation of CB1 mRNA after the induction of inflammatory pain, suggesting a pain-induced recruitment of CB1 receptors to the synaptic sites within PAG neurons or increased coupling efficiency between the receptor and effector systems. Inflammatory pain also enhanced ventrolateral PAG CB1 receptor activity, as there was an increase in CP55,940-stimulated G-protein activation compared with pain-naïve control animals. Conclusion: These findings complement a growing body of evidence which demonstrate pain-induced changes in brain regions that are responsible for both the analgesic and rewarding properties of analgesic pharmacotherapies. Because much of our understanding of the pharmacology of cannabinoids is based on studies which use largely pain-naïve male animals, this work fills in important gaps in the knowledge base by incorporating pain-induced adaptations and cannabinoid pharmacology in females.
Collapse
|
62
|
Costa FV, Rosa LV, Quadros VA, de Abreu MS, Santos ARS, Sneddon LU, Kalueff AV, Rosemberg DB. The use of zebrafish as a non-traditional model organism in translational pain research: the knowns and the unknowns. Curr Neuropharmacol 2021; 20:476-493. [PMID: 33719974 DOI: 10.2174/1570159x19666210311104408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 11/22/2022] Open
Abstract
The ability of the nervous system to detect a wide range of noxious stimuli is crucial to avoid life-threatening injury and to trigger protective behavioral and physiological responses. Pain represents a complex phenomenon, including nociception associated with cognitive and emotional processing. Animal experimental models have been developed to understand the mechanisms involved in pain response, as well as to discover novel pharmacological and non-pharmacological anti-pain therapies. Due to the genetic tractability, similar physiology, low cost, and rich behavioral repertoire, the zebrafish (Danio rerio) has been considered a powerful aquatic model for modeling pain responses. Here, we summarize the molecular machinery of zebrafish to recognize painful stimuli, as well as emphasize how zebrafish-based pain models have been successfully used to understand specific molecular, physiological, and behavioral changes following different algogens and/or noxious stimuli (e.g., acetic acid, formalin, histamine, Complete Freund's Adjuvant, cinnamaldehyde, allyl isothiocyanate, and fin clipping). We also discuss recent advances in zebrafish-based studies and outline the potential advantages and limitations of the existing models to examine the mechanisms underlying pain responses from an evolutionary and translational perspective. Finally, we outline how zebrafish models can represent emergent tools to explore pain behaviors and pain-related mood disorders, as well as to facilitate analgesic therapy screening in translational pain research.
Collapse
Affiliation(s)
- Fabiano V Costa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Luiz V Rosa
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Vanessa A Quadros
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| | - Murilo S de Abreu
- Bioscience Institute, University of Passo Fundo (UPF), Passo Fundo, RS. Brazil
| | - Adair R S Santos
- Laboratory of Neurobiology of Pain and Inflammation, Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Trindade, Florianópolis, SC. Brazil
| | - Lynne U Sneddon
- University of Gothenburg, Department of Biological & Environmental Sciences, Box 461, SE-405 30 Gothenburg. Sweden
| | - Allan V Kalueff
- School of Pharmacy, Southwest University, Chongqing, China; Ural Federal University, Ekaterinburg. Russian Federation
| | - Denis B Rosemberg
- Laboratory of Experimental Neuropsychobiology, Department of Biochemistry and Molecular Biology, Natural and Exact Sciences Center, Federal University of Santa Maria RS. Brazil
| |
Collapse
|
63
|
Song J, Kim YK. Animal models for the study of depressive disorder. CNS Neurosci Ther 2021; 27:633-642. [PMID: 33650178 PMCID: PMC8111503 DOI: 10.1111/cns.13622] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023] Open
Abstract
Depressive disorder is one of the most widespread forms of psychiatric pathology, worldwide. According to a report by the World Health Organization, the number of people with depression, globally, is increasing dramatically with each year. Previous studies have demonstrated that various factors, including genetics and environmental stress, contribute to the risk of depression. As such, it is crucial to develop a detailed understanding of the pathogenesis of depressive disorder and animal studies are essential for identifying the mechanisms and genetic disorders underlying depression. Recently, many researchers have reported on the pathology of depression via various models of depressive disorder. Given that different animal models of depression show differences in terms of patterns of depressive behavior and pathology, the comparison between depressive animal models is necessary for progress in the field of the depression study. However, the various animal models of depression have not been fully compared or evaluated until now. In this paper, we reviewed the pathophysiology of the depressive disorder and its current animal models with the analysis of their transcriptomic profiles. We provide insights for selecting different animal models for the study of depression.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, Korea
| | - Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
64
|
Ramírez-López A, Pastor A, de la Torre R, La Porta C, Ozaita A, Cabañero D, Maldonado R. Role of the endocannabinoid system in a mouse model of Fragile X undergoing neuropathic pain. Eur J Pain 2021; 25:1316-1328. [PMID: 33619843 DOI: 10.1002/ejp.1753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Neuropathic pain is a complex condition characterized by sensory, cognitive and affective symptoms that magnify the perception of pain. The underlying pathogenic mechanisms are largely unknown and there is an urgent need for the development of novel medications. The endocannabinoid system modulates pain perception and drugs targeting the cannabinoid receptor type 2 (CB2) devoid of psychoactive side effects could emerge as novel analgesics. An interesting model to evaluate the mechanisms underlying resistance to pain is the fragile X mental retardation protein knockout mouse (Fmr1KO), a model of fragile X syndrome that exhibits nociceptive deficits and fails to develop neuropathic pain. METHODS A partial sciatic nerve ligation was performed to wild-type (WT) and Fmr1KO mice having (HzCB2 and Fmr1KO-HzCB2, respectively) or not (WT and Fmr1KO mice) a partial deletion of CB2 to investigate the participation of the endocannabinoid system on the pain-resistant phenotype of Fmr1KO mice. RESULTS Nerve injury induced canonical hypersensitivity in WT and HzCB2 mice, whereas this increased pain sensitivity was absent in Fmr1KO mice. Interestingly, Fmr1KO mice partially lacking CB2 lost this protection against neuropathic pain. Similarly, pain-induced depressive-like behaviour was observed in WT, HzCB2 and Fmr1KO-HzCB2 mice, but not in Fmr1KO littermates. Nerve injury evoked different alterations in WT and Fmr1KO mice at spinal and supra-spinal levels that correlated with these nociceptive and emotional alterations. CONCLUSIONS This work shows that CB2 is necessary for the protection against neuropathic pain observed in Fmr1KO mice, raising the interest in targeting this receptor for the treatment of neuropathic pain. SIGNIFICANCE Neuropathic pain is a complex chronic pain condition and current treatments are limited by the lack of efficacy and the incidence of important side effects. Our findings show that the pain-resistant phenotype of Fmr1KO mice against nociceptive and emotional manifestations triggered by persistent nerve damage requires the participation of the cannabinoid receptor CB2, raising the interest in targeting this receptor for neuropathic pain treatment. Additional multidisciplinary studies more closely related to human pain experience should be conducted to explore the potential use of cannabinoids as adequate analgesic tools.
Collapse
Affiliation(s)
- Angela Ramírez-López
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain
| | - Antoni Pastor
- IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| | | | - Carmen La Porta
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain
| | - Andrés Ozaita
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain
| | - David Cabañero
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain
| | - Rafael Maldonado
- Barcelona Biomedical Research Park (PRBB), University Pompeu Fabra, Barcelona, Spain.,IMIM-Hospital del Mar Research Institute, Barcelona, Spain
| |
Collapse
|
65
|
The Distinct Functions of Dopaminergic Receptors on Pain Modulation: A Narrative Review. Neural Plast 2021; 2021:6682275. [PMID: 33688340 PMCID: PMC7920737 DOI: 10.1155/2021/6682275] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/06/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is considered an economic burden on society as it often results in disability, job loss, and early retirement. Opioids are the most common analgesics prescribed for the management of moderate to severe pain. However, chronic exposure to these drugs can result in opioid tolerance and opioid-induced hyperalgesia. On pain modulation strategies, exploiting the multitarget drugs with the ability of the superadditive or synergistic interactions attracts more attention. In the present report, we have reviewed the analgesic effects of different dopamine receptors, particularly D1 and D2 receptors, in different regions of the central nervous system, including the spinal cord, striatum, nucleus accumbens (NAc), and periaqueductal gray (PAG). According to the evidence, these regions are not only involved in pain modulation but also express a high density of DA receptors. The findings can be categorized as follows: (1) D2-like receptors may exert a higher analgesic potency, but D1-like receptors act in different manners across several mechanisms in the mentioned regions; (2) in the spinal cord and striatum, antinociception of DA is mainly mediated by D2-like receptors, while in the NAc and PAG, both D1- and D2-like receptors are involved as analgesic targets; and (3) D2-like receptor agonists can act as adjuvants of μ-opioid receptor agonists to potentiate analgesic effects and provide a better approach to pain relief.
Collapse
|
66
|
Abstract
Integrative medicine is an approach to medical care that embraces all effective therapies including complementary treatments such as acupuncture and hypnosis. There is growing use of complementary therapies in the cancer patient population, making it important that health care providers be aware of both the risks and benefits of treatments that lie outside of the traditional allopathic medicine paradigm. This chapter will explore some of the most common and well-investigated complementary therapies for the treatment and prevention of cancer-related pain. This will include discussions of: acupuncture, dietary supplements, massage, guided imagery and cryotherapy among others. The goal of this is to provide a framework for discussions between medical providers and their patients to ensure safety, discussion of all available treatments, and to facilitate open lines of communication.
Collapse
Affiliation(s)
- Anna Woodbury
- Anesthesiology, Veterans Affairs Medical Center, Emory University School of Medicine, Atlanta Veterans Affairs Healthcare System, 1670 Clairmont Rd, Decatur, GA, 30033, USA.
| | - Bati Myles
- Emergency Medicine Physician, Palliative Care Fellow, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
67
|
Tan CW, Tan HS, Sultana R, Chui A, Chua TE, Chen H, Sng BL. Association of Childbirth Pain with Postnatal Depressive and Anxiety Disorders in Nulliparous Parturients: A Prospective Study. Neuropsychiatr Dis Treat 2021; 17:2625-2636. [PMID: 34413647 PMCID: PMC8370488 DOI: 10.2147/ndt.s321367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/01/2021] [Indexed: 12/11/2022] Open
Abstract
PURPOSE There is limited knowledge on the relationship between postnatal depression and childbirth pain characteristics associated with childbirth. We investigated whether the characteristics of childbirth pain, as assessed by Short-form-McGill Pain Questionnaire-2 (SF-MPQ-2), were associated with postnatal anxiety and depressive disorders. PATIENTS AND METHODS Nulliparous parturients who received labor epidural analgesia (LEA) and delivered in our institution were invited to have a Mini-International Neuropsychiatric Interview (MINI) assessment following their 5-9 weeks post-delivery follow-up phone survey of a larger study. Parturients' demographics, pre-delivery questionnaires on pain and psychological vulnerabilities, LEA data, maternal and neonatal outcomes, postnatal follow-up survey on pain and psychological vulnerabilities, pain and breastfeeding were collected accordingly. The primary outcome was the binary variable (yes/no) of the presence of postnatal depression and/or anxiety disorders based on the post-delivery MINI assessment. RESULTS Among the 107 parturients who participated in the post-delivery MINI assessment, a total of 40 (42.5%) patients were found to have postnatal anxiety and depressive disorders. A greater pre-delivery SF-MPQ-2 neuropathic pain mean subscale score (adjusted odds ratio (OR) 1.32, 95% CI 1.00-1.73, p=0.0482) and greater post-delivery Edinburgh Postnatal Depression Scale (EPDS) at 5-9 weeks post-delivery (adjusted OR 1.30, 95% CI 1.13-1.50, p=0.0002) were independently associated with the presence of postnatal anxiety and/or depressive disorders (receiver operating characteristic (ROC) = 0.7489). CONCLUSION Patients with greater pre-delivery neuropathic pain and higher EPDS scores at 5-9 weeks post-delivery are more likely to have postnatal depression and/or anxiety disorders, suggesting possible associations between pain and psychological vulnerability in the development of postnatal mental disorders.
Collapse
Affiliation(s)
- Chin Wen Tan
- Department of Women's Anesthesia, KK Women's and Children's Hospital, Singapore.,Anesthesiology and Perioperative Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Hon Sen Tan
- Department of Women's Anesthesia, KK Women's and Children's Hospital, Singapore.,Anesthesiology and Perioperative Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Rehena Sultana
- Centre for Quantitative Medicine, Duke-NUS Medical School, Singapore
| | - Anne Chui
- Lee Kong Chian School of Medicine, Singapore
| | - Tze-Ern Chua
- Department of Psychological Medicine, KK Women's and Children's Hospital, Singapore.,Pediatrics Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Helen Chen
- Department of Psychological Medicine, KK Women's and Children's Hospital, Singapore.,Pediatrics Academic Clinical Program, Duke-NUS Medical School, Singapore
| | - Ban Leong Sng
- Department of Women's Anesthesia, KK Women's and Children's Hospital, Singapore.,Anesthesiology and Perioperative Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore
| |
Collapse
|
68
|
Xiao C, Liu D, Du J, Guo Y, Deng Y, Hei Z, Li X. Early molecular alterations in anterior cingulate cortex and hippocampus in a rodent model of neuropathic pain. Brain Res Bull 2021; 166:82-91. [PMID: 33253785 DOI: 10.1016/j.brainresbull.2020.11.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 01/16/2023]
Abstract
Neuropathic pain is clinically associated with the development of mental disorders. However, the early molecular changes possibly related to the late-set depressive consequence of neuropathic pain were obscure so far. In this genome-wide study, we aimed to characterize the molecular mechanisms at the early and late stages of neuropathic pain. The genetic data from anterior cingulate cortex (ACC) tissues of neuropathic pain mice in Gene Expression Omnibus database were analyzed by weighted gene co-expression network analysis. Modules with clinical significance were respectively distinguished for mice at two and eight weeks after operation. The genes that co-expressed in modules from two postoperative time points were obtained, and annotated by gene ontology and pathway enrichment analyses. Moreover, the hub genes were identified from the protein-protein interaction network, and their expression levels were validated by molecular biology experiments. Overall, two modules were respectively found to be associated with the neuropathic pain mice with and without depressive consequence. A total of 20 genes co-expressed in both modules, and MAPK signaling pathway was the most significant pathway for these genes. Furtherly, Dusp1, c-Fos and Gadd45β were identified as the hub genes. At two weeks after sciatic nerve cuffing, Gadd45β was significantly downregulated at both mRNA and protein levels in ACC and hippocampus, while the significant upregulation was only observed in mRNA and protein levels for c-Fos in ACC. This study firstly compared the gene expression profiles between neuropathic pain animals with and without depressive-like behavior, and we suggested the early changes in the activities of MAPK signaling pathway, c-Fos and Gadd45β might be related to late-onset depressive behavior induced by peripheral nerve injury.
Collapse
Affiliation(s)
- Cuicui Xiao
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dezhao Liu
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingyi Du
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yue Guo
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yifan Deng
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ziqing Hei
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiang Li
- Department of Anesthesiology, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
69
|
Chronic pain impact on rodents’ behavioral repertoire. Neurosci Biobehav Rev 2020; 119:101-127. [DOI: 10.1016/j.neubiorev.2020.09.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/14/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
|
70
|
Baeza-Flores GDC, Guzmán-Priego CG, Parra-Flores LI, Murbartián J, Torres-López JE, Granados-Soto V. Metformin: A Prospective Alternative for the Treatment of Chronic Pain. Front Pharmacol 2020; 11:558474. [PMID: 33178015 PMCID: PMC7538784 DOI: 10.3389/fphar.2020.558474] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/02/2020] [Indexed: 12/15/2022] Open
Abstract
Metformin (biguanide) is a drug widely used for the treatment of type 2 diabetes. This drug has been used for 60 years as a highly effective antihyperglycemic agent. The search for the mechanism of action of metformin has produced an enormous amount of research to explain its effects on gluconeogenesis, protein metabolism, fatty acid oxidation, oxidative stress, glucose uptake, autophagy and pain, among others. It was only up the end of the 1990s and beginning of this century that some of its mechanisms were revealed. Metformin induces its beneficial effects in diabetes through the activation of a master switch kinase named AMP-activated protein kinase (AMPK). Two upstream kinases account for the physiological activation of AMPK: liver kinase B1 and calcium/calmodulin-dependent protein kinase kinase 2. Once activated, AMPK inhibits the mechanistic target of rapamycin complex 1 (mTORC1), which in turn avoids the phosphorylation of p70 ribosomal protein S6 kinase 1 and phosphatidylinositol 3-kinase/protein kinase B signaling pathways and reduces cap-dependent translation initiation. Since metformin is a disease-modifying drug in type 2 diabetes, which reduces the mTORC1 signaling to induce its effects on neuronal plasticity, it was proposed that these mechanisms could also explain the antinociceptive effect of this drug in several models of chronic pain. These studies have highlighted the efficacy of this drug in chronic pain, such as that from neuropathy, insulin resistance, diabetic neuropathy, and fibromyalgia-type pain. Mounting evidence indicates that chronic pain may induce anxiety, depression and cognitive impairment in rodents and humans. Interestingly, metformin is able to reverse some of these consequences of pathological pain in rodents. The purpose of this review was to analyze the current evidence about the effects of metformin in chronic pain and three of its comorbidities (anxiety, depression and cognitive impairment).
Collapse
Affiliation(s)
- Guadalupe Del Carmen Baeza-Flores
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Crystell Guadalupe Guzmán-Priego
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Leonor Ivonne Parra-Flores
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico
| | - Janet Murbartián
- Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| | - Jorge Elías Torres-López
- Laboratorio de Mecanismos de Dolor, División Académica de Ciencias de la Salud, Universidad Juárez Autónoma de Tabasco, Villahermosa, Mexico.,Departamento de Anestesiología, Hospital Regional de Alta Especialidad "Dr. Juan Graham Casasús", Villahermosa, Mexico
| | - Vinicio Granados-Soto
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, South Campus, Mexico City, Mexico
| |
Collapse
|
71
|
Sciatic Nerve Ligation Downregulates Mitochondrial Clusterin in the Rat Prefrontal Cortex. Neuroscience 2020; 446:285-293. [PMID: 32798589 DOI: 10.1016/j.neuroscience.2020.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 01/09/2023]
Abstract
The concentration of the multifunctional protein clusterin is reduced in the plasma of subjects with degenerative scoliosis (DS) and carpal tunnel syndrome (CTS) but elevated in the cerebrospinal fluid of neuropathic pain patients successfully treated with spinal cord stimulation. The present work tries to increase the knowledge of pain-associated changes of plasma and brain clusterin by using an animal model of neuropathy. We studied the effects of sciatic nerve ligation on mechanical allodynia (von Frey test), anxiety (elevated plus maze test), plasma clusterin (enzyme-linked immunosorbent assay) and clusterin expression in the nucleus accumbens (NAC) and prefrontal cortex (PFC) of adult male Wistar rats (western blot). The possible modulatory role of high fat (HF) dieting was also studied, bearing in mind that obesity has been also reported to influence nociception, clusterin levels and prefrontal cortex activation. Animals with nerve ligation showed mechanical allodynia, anxiety and a marked downregulation of clusterin in the mitochondrial fraction of the prefrontal cortex. Animals fed on HF also exhibited a slight increase of the sensitivity to mechanical stimuli and anxiety; however, the diet did not potentiate the effects of nerve ligation. The results did not confirm a parallelism between neuropathy, obesity and alterations of plasma levels of clusterin, but strongly suggest that the protein could be involved in the functional reorganization of the prefrontal cortex which has been recently reported in chronic pain conditions.
Collapse
|
72
|
Resilience to Stress and Resilience to Pain: Lessons from Molecular Neurobiology and Genetics. Trends Mol Med 2020; 26:924-935. [PMID: 32976800 DOI: 10.1016/j.molmed.2020.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/18/2020] [Accepted: 03/25/2020] [Indexed: 12/12/2022]
Abstract
What biological factors account for resilience to pain or to behavioral stress? Here, we discuss examples of cellular and molecular mechanisms within disparate parts of the nervous system as contributors to such resilience. In some especially well-studied humans, it is possible to identify particular neuronal cell types in the peripheral nervous system (PNS) and pinpoint specific genes that are major contributors to pain resilience. We also discuss more complex factors that operate within the central nervous system (CNS) to confer resilience to behavioral stress. We propose that genetic and neurobiological substrates for resilience are discoverable and suggest more generally that neurology and psychiatry hold lessons for each other as investigators search for actionable, biological underpinnings of disease.
Collapse
|
73
|
Zhu X, Zhou W, Jin Y, Tang H, Cao P, Mao Y, Xie W, Zhang X, Zhao F, Luo MH, Wang H, Li J, Tao W, Farzinpour Z, Wang L, Li X, Li J, Tang ZQ, Zhou C, Pan ZZ, Zhang Z. A Central Amygdala Input to the Parafascicular Nucleus Controls Comorbid Pain in Depression. Cell Rep 2020; 29:3847-3858.e5. [PMID: 31851918 DOI: 10.1016/j.celrep.2019.11.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/22/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022] Open
Abstract
While comorbid pain in depression (CP) occurs at a high rate worldwide, the neural connections underlying the core symptoms of CP have yet to be elucidated. Here, we define a pathway whereby GABAergic neurons from the central nucleus of the amygdala (GABACeA) project to glutamatergic neurons in the parafascicular nucleus (GluPF). These GluPF neurons relay directly to neurons in the second somatosensory cortex (S2), a well-known area involved in pain signal processing. Enhanced inhibition of the GABACeA→GluPF→S2 pathway is found in mice exhibiting CP symptoms. Reversing this pathway using chemogenetic or optogenetic approaches alleviates CP symptoms. Together, the current study demonstrates the putative importance of the GABACeA→GluPF→S2 pathway in controlling at least some aspects of CP.
Collapse
Affiliation(s)
- Xia Zhu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Wenjie Zhou
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Yan Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Haodi Tang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Peng Cao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Yu Mao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China; Department of Anesthesiology and Department of Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Wen Xie
- Department of Psychology, Anhui Mental Health Center, Hefei 230026, PR China
| | - Xulai Zhang
- Department of Psychology, Anhui Mental Health Center, Hefei 230026, PR China
| | - Fei Zhao
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, PR China
| | - Haitao Wang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Jie Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Wenjuan Tao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China; Department of Anesthesiology and Department of Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Zahra Farzinpour
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Likui Wang
- Department of Anesthesiology and Department of Pain Management, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, PR China
| | - Xiangyao Li
- Key Laboratory of Medical Neurobiology of the Ministry of Health of China, Key Laboratory of Neurobiology of Zhejiang Province, Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Juan Li
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China
| | - Zheng-Quan Tang
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Chenghua Zhou
- Department of Anesthesiology and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Zhizhong Z Pan
- Department of Anesthesiology and Pain Medicine, the University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Zhi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei 230027, PR China.
| |
Collapse
|
74
|
Mosley GE, Wang M, Nasser P, Lai A, Charen DA, Zhang B, Iatridis JC. Males and females exhibit distinct relationships between intervertebral disc degeneration and pain in a rat model. Sci Rep 2020; 10:15120. [PMID: 32934258 PMCID: PMC7492468 DOI: 10.1038/s41598-020-72081-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 08/24/2020] [Indexed: 12/16/2022] Open
Abstract
Back pain is linked to intervertebral disc (IVD) degeneration, but clinical studies show the relationship is complex. This study assessed whether males and females have distinct relationships between IVD degeneration and pain using an in vivo rat model. Forty-eight male and female Sprague-Dawley rats had lumbar IVD puncture or sham surgery. Six weeks after surgery, IVDs were evaluated by radiologic IVD height, histological grading, and biomechanical testing. Pain was assessed by von Frey assay and dorsal root ganglia (DRG) expression of Calca and Tac1 genes. Network analysis visualized which measures of IVD degeneration most related to pain by sex. In both females and males, annular puncture induced structural IVD degeneration, but functional biomechanical properties were similar to sham. Females and males had distinct differences in mechanical allodynia and DRG gene expression, even though sex differences in IVD measurements were limited. Network analysis also differed by sex, with more associations between annular puncture injury and pain in the male network. Sex differences exist in the interactions between IVD degeneration and pain. Limited correlation between measures of pain and IVD degeneration highlights the need to evaluate pain or nociception in IVD degeneration models to better understand nervous system involvement in discogenic pain.
Collapse
Affiliation(s)
- Grace E Mosley
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy, Place, Box 1188, New York, NY, 10029-6574, USA.,Medical Scientist Training Program, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Minghui Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Philip Nasser
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy, Place, Box 1188, New York, NY, 10029-6574, USA
| | - Alon Lai
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy, Place, Box 1188, New York, NY, 10029-6574, USA
| | - Daniel A Charen
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy, Place, Box 1188, New York, NY, 10029-6574, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Mount Sinai Center for Transformative Disease Modeling, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - James C Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, 1 Gustave Levy, Place, Box 1188, New York, NY, 10029-6574, USA.
| |
Collapse
|
75
|
Saffarpour S, Nasirinezhad F. The CA1 hippocampal serotonin alterations involved in anxiety-like behavior induced by sciatic nerve injury in rats. Scand J Pain 2020; 21:135-144. [PMID: 32892185 DOI: 10.1515/sjpain-2020-0037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Several clinical and experimental studies reported the anxiety as one of the neuropathic pain comorbidities; however, the mechanisms involved in this comorbidity are incompletely cleared. The current study investigated the consequence of pain induced by peripheral neuropathy on the serotonin (5-HT) level of the CA1 region of the hippocampus, which is known as a potential reason, for anxiety associated with neuropathic pain. METHODS In this manner, 72 male rats were inconstantly subdivided into three experimental groups as follows: control, sham, and chronic constriction injury (CCI). Neuropathic pain was initiated by the CCI of the sciatic nerve, and then, mechanical allodynia, thermal hyperalgesia, and anxiety-like behavior were evaluated using the von Frey filaments, radiant heat, open field test (OFT), and elevated plus maze (EPM) respectively. To investigate the probable mechanisms, the in vivo extracellular levels of 5-HT were assessed by microdialysis and using reverse-phase high-pressure liquid chromatography (HPLC) in the CA1 region of hippocampus on days 16 and 30 post-CCI. RESULTS Our data suggested that CCI caused anxiety-like behavior in OFT and EPM test. 5-HT concentration in the CA1 region of the hippocampus significantly (F=43.8, p=0.000) reduced in CCI rats, when the pain threshold was minimum. Nevertheless, these alterations reversed while the pain threshold innate increased. CONCLUSIONS Neuropathic pain, initiated by constriction of the sciatic nerve can induce anxiety-like behavior in rats. This effect accompanies the reduction in 5-HT concentration in the CA1 region of the hippocampus. When the pain spontaneously alleviated, 5-HT level increased and anxiety-like behavior relieved.
Collapse
Affiliation(s)
- Sepideh Saffarpour
- Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Farinaz Nasirinezhad
- Physiological Research Center, Department of Physiology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
76
|
Dattilo V, Amato R, Perrotti N, Gennarelli M. The Emerging Role of SGK1 (Serum- and Glucocorticoid-Regulated Kinase 1) in Major Depressive Disorder: Hypothesis and Mechanisms. Front Genet 2020; 11:826. [PMID: 32849818 PMCID: PMC7419621 DOI: 10.3389/fgene.2020.00826] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 07/09/2020] [Indexed: 12/28/2022] Open
Abstract
Major depressive disorder (MDD) is a heterogeneous psychiatric disease characterized by persistent low mood, diminished interests, and impaired cognitive and social functions. The multifactorial etiology of MDD is still largely unknown because of the complex genetic and environmental interactions involved. Therefore, no established mechanism can explain all the aspects of the disease. In this light, an extensive research about the pathophysiology of MDD has been carried out. Several pathogenic hypotheses, such as monoamines deficiency and neurobiological alterations in the stress-responsive system, including the hypothalamic-pituitary-adrenal (HPA) axis and the immune system, have been proposed for MDD. Over time, remarkable studies, mainly on preclinical rodent models, linked the serum- and glucocorticoid-regulated kinase 1 (SGK1) to the main features of MDD. SGK1 is a serine/threonine kinase belonging to the AGK Kinase family. SGK1 is ubiquitously expressed, which plays a pivotal role in the hormonal regulation of several ion channels, carriers, pumps, and transcription factors or regulators. SGK1 expression is modulated by cell stress and hormones, including gluco- and mineralocorticoids. Compelling evidence suggests that increased SGK1 expression or function is related to the pathogenic stress hypothesis of major depression. Therefore, the first part of the present review highlights the putative role of SGK1 as a critical mediator in the dysregulation of the HPA axis, observed under chronic stress conditions, and its controversial role in the neuroinflammation as well. The second part depicts the negative regulation exerted by SGK1 in the expression of both the brain-derived neurotrophic factor (BDNF) and the vascular endothelial growth factor (VEGF), resulting in an anti-neurogenic activity. Finally, the review focuses on the antidepressant-like effects of anti-oxidative nutraceuticals in several preclinical model of depression, resulting from the restoration of the physiological expression and/or activity of SGK1, which leads to an increase in neurogenesis. In summary, the purpose of this review is a systematic analysis of literature depicting SGK1 as molecular junction of the complex mechanisms underlying the MDD in an effort to suggest the kinase as a potential biomarker and strategic target in modern molecular antidepressant therapy.
Collapse
Affiliation(s)
- Vincenzo Dattilo
- Genetic Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Rosario Amato
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Nicola Perrotti
- Department of Health Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy.,Medical Genetics Unit, Mater Domini University Hospital, Catanzaro, Italy
| | - Massimo Gennarelli
- Genetic Unit, IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| |
Collapse
|
77
|
Baba M, Takatsuna H, Matsui N, Ohwada S. Mirogabalin in Japanese Patients with Renal Impairment and Pain Associated with Diabetic Peripheral Neuropathy or Post-Herpetic Neuralgia: A Phase III, Open-Label, 14-Week Study. J Pain Res 2020; 13:1811-1821. [PMID: 32765056 PMCID: PMC7381826 DOI: 10.2147/jpr.s255345] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/23/2020] [Indexed: 01/09/2023] Open
Abstract
Purpose Mirogabalin was recently approved in Japan for the treatment of peripheral neuropathic pain, based on data from clinical trials in diabetic peripheral neuropathic pain (DPNP) and post-herpetic neuralgia (PHN), common clinical conditions which cause intense distress for patients. We characterized the safety and tolerability of mirogabalin in Japanese patients with renal impairment. Patients and Methods This multicenter, open-label study (ClinicalTrials.gov identifier NCT02607280) enrolled renally impaired individuals aged ≥20 years diagnosed with DPNP or PHN, and with an average daily pain score (ADPS) of ≥4 over the 7 days prior to treatment initiation. Mirogabalin dosage was titrated for 2 weeks, followed by a fixed dose for 12 weeks according to degree of renal impairment: 7.5 mg twice daily for moderate impairment and 7.5 mg once daily for severe impairment. The primary endpoint was safety and tolerability of mirogabalin, evaluated via treatment-emergent adverse events (TEAEs). Secondary efficacy endpoints included change in ADPS from baseline to Week 14. Results Overall, 35 patients were enrolled (30 with moderate and 5 with severe renal impairment). Most TEAEs were mild or moderate in severity; the most commonly reported were nasopharyngitis (22.9%) and somnolence (11.4%). Only 4 patients (11.4%) discontinued treatment due to TEAEs. Mirogabalin significantly decreased ADPS from baseline in patients with renal impairment; least squares mean change from baseline at Week 14 was −1.9 (95% confidence interval: −2.8, −1.0). Conclusion Mirogabalin was well tolerated and significantly reduced pain levels when used to treat DPNP/PHN at a fixed dose of 7.5 mg once or twice daily in patients with renal impairment.
Collapse
Affiliation(s)
| | | | - Norimitsu Matsui
- Clinical Development Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Shoichi Ohwada
- Biostatistics and Data Management Department, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| |
Collapse
|
78
|
Sakloth F, Manouras L, Avrampou K, Mitsi V, Serafini RA, Pryce KD, Cogliani V, Berton O, Jarpe M, Zachariou V. HDAC6-selective inhibitors decrease nerve-injury and inflammation-associated mechanical hypersensitivity in mice. Psychopharmacology (Berl) 2020; 237:2139-2149. [PMID: 32388618 PMCID: PMC7470631 DOI: 10.1007/s00213-020-05525-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/13/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND HDAC6 is a class IIB histone deacetylase expressed at many levels of the nociceptive pathway. This study tested the ability of novel and selective HDAC6 inhibitors to alleviate sensory hypersensitivity behaviors in mouse models of peripheral nerve injury and peripheral inflammation. METHODS We utilized the murine spared nerve injury (SNI) model for peripheral nerve injury and the Complete Freund's Adjuvant (CFA) model of peripheral inflammation. We applied the Von Frey assay to monitor mechanical allodynia. RESULTS Using the SNI model, we demonstrate that daily administration of the brain-penetrant HDAC6 inhibitor, ACY-738, abolishes mechanical allodynia in male and in female mice. Importantly, there is no tolerance to the antiallodynic actions of these compounds as they produce a consistent increase in Von Frey thresholds for several weeks. We observed a similar antiallodynic effect when utilizing the HDAC6 inhibitor, ACY-257, which shows limited brain expression when administered systemically. We also demonstrate that ACY-738 and ACY-257 attenuate mechanical allodynia in the CFA model of peripheral inflammation. CONCLUSIONS Overall, our findings suggest that inhibition of HDAC6 provides a promising therapeutic avenue for the alleviation of mechanical allodynia associated with peripheral nerve injury and peripheral inflammation.
Collapse
Affiliation(s)
- Farhana Sakloth
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Lefteris Manouras
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Kleopatra Avrampou
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Vasiliki Mitsi
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Randal A Serafini
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Kerri D Pryce
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Valeria Cogliani
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
| | - Olivier Berton
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA
- Division of Neuroscience & Behavior, National institute on Drug Abuse (NIDA), 6001 Executive Blvd, Rm 4289, Rockville, MD, 20852, USA
| | - Matthew Jarpe
- Regenacy Pharmaceuticals, 303 Wyman St, Suite 300, Waltham, MA, USA
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, Box 10-65, New York, NY, 10029, USA.
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, 1425 Madison Ave, New York, NY, 10029, USA.
| |
Collapse
|
79
|
Yang S, Yu Z, Sun W, Jiang C, Ba X, Zhou Q, Xiong D, Xiao L, Deng Q, Hao Y. The antiviral alkaloid berberine ameliorates neuropathic pain in rats with peripheral nerve injury. Acta Neurol Belg 2020; 120:557-564. [PMID: 30168114 DOI: 10.1007/s13760-018-1006-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 08/13/2018] [Indexed: 01/15/2023]
Abstract
Neuropathic pain is a major public health problem. There is a need to develop safer and more effective analgesia compounds with less side effects. Berberine has been used to treat diarrhea and gastroenteritis due to its anti-microbial, anti-motility and anti-secretory properties. Berberine has also been reported to play an analgesic role in some pathological conditions of pain. However, the analgesic roles of berberine in neuropathic pain are still unclear. Therefore, this study aims to explore the analgesic effects of berberine in neuropathic pain. Partial sciatic nerve ligation (pSNL) was performed to create neuropathic pain model. Paw withdrawal responses to mechanical and thermal stimuli were measured using a set of electronic von Frey apparatus and hot plate, respectively. The time that rats spent licking, flinching and lifting its paw during 5 min following capsaicin application was recorded. mRNA and protein expression levels were examined by quantitative RT-PCR and western blot, respectively. Berberine administration (i.p.) increased both mechanical and thermal pain thresholds in a dose-dependent manner. Moreover, berberine administration reversed the mRNA and protein expression of TRPV1 in dorsal root ganglion neurons after peripheral nerve injury. In addition, berberine significantly inhibited capsaicin-induced pain behaviors. The amelioration of neuropathic pain by berberine may be associated with the down-regulation of TRPV1 in DRG of neuropathic pain rats. This study highlighted the potential of berberine in the treatment of neuropathic pain originated in the peripheral nervous system.
Collapse
Affiliation(s)
- Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Municipal Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Xiyuan Ba
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Qian Zhou
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Donglin Xiong
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Municipal Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital and The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
80
|
Guida F, De Gregorio D, Palazzo E, Ricciardi F, Boccella S, Belardo C, Iannotta M, Infantino R, Formato F, Marabese I, Luongo L, de Novellis V, Maione S. Behavioral, Biochemical and Electrophysiological Changes in Spared Nerve Injury Model of Neuropathic Pain. Int J Mol Sci 2020; 21:ijms21093396. [PMID: 32403385 PMCID: PMC7246983 DOI: 10.3390/ijms21093396] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 01/05/2023] Open
Abstract
Neuropathic pain is a pathological condition induced by a lesion or disease affecting the somatosensory system, with symptoms like allodynia and hyperalgesia. It has a multifaceted pathogenesis as it implicates several molecular signaling pathways involving peripheral and central nervous systems. Affective and cognitive dysfunctions have been reported as comorbidities of neuropathic pain states, supporting the notion that pain and mood disorders share some common pathogenetic mechanisms. The understanding of these pathophysiological mechanisms requires the development of animal models mimicking, as far as possible, clinical neuropathic pain symptoms. Among them, the Spared Nerve Injury (SNI) model has been largely characterized in terms of behavioral and functional alterations. This model is associated with changes in neuronal firing activity at spinal and supraspinal levels, and induces late neuropsychiatric disorders (such as anxious-like and depressive-like behaviors, and cognitive impairments) comparable to an advanced phase of neuropathy. The goal of this review is to summarize current findings in preclinical research, employing the SNI model as a tool for identifying pathophysiological mechanisms of neuropathic pain and testing pharmacological agent.
Collapse
Affiliation(s)
- Francesca Guida
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
- Correspondence: (F.G.); (S.M.)
| | - Danilo De Gregorio
- Neurobiological Psychiatry Unit, Department of Psychiatry, McGill University, Montréal, QC H3A1A1, Canada;
| | - Enza Palazzo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Flavia Ricciardi
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Serena Boccella
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Carmela Belardo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Monica Iannotta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Rosmara Infantino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Federica Formato
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Ida Marabese
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Livio Luongo
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Vito de Novellis
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
| | - Sabatino Maione
- Department of Experimental Medicine, Division of Pharmacology, University of Campania Naples, 80138 Naples, Italy; (E.P.); (F.R.); (S.B.); (C.B.); (M.I.); (R.I.); (F.F.); (I.M.); (L.L.); (V.d.N.)
- Correspondence: (F.G.); (S.M.)
| |
Collapse
|
81
|
Vetrano IG, Nazzi V, Devigili G. Letter: The Presence and Persistence of Unrealistic Expectations in Patients Undergoing Nerve Surgery. Neurosurgery 2020; 86:E469-E470. [PMID: 31833542 DOI: 10.1093/neuros/nyz525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Ignazio G Vetrano
- Department of Neurosurgery Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Italy
| | - Vittoria Nazzi
- Department of Neurosurgery Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Italy
| | - Grazia Devigili
- Neurological Unit 1 Fondazione IRCCS Istituto Neurologico Carlo Besta Milan, Italy
| |
Collapse
|
82
|
Zhou X, Wahane S, Friedl MS, Kluge M, Friedel CC, Avrampou K, Zachariou V, Guo L, Zhang B, He X, Friedel RH, Zou H. Microglia and macrophages promote corralling, wound compaction and recovery after spinal cord injury via Plexin-B2. Nat Neurosci 2020; 23:337-350. [PMID: 32112058 PMCID: PMC7412870 DOI: 10.1038/s41593-020-0597-7] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tissue repair after spinal cord injury requires the mobilization of immune and glial cells to form a protective barrier that seals the wound and facilitates debris clearing, inflammatory containment and matrix compaction. This process involves corralling, wherein phagocytic immune cells become confined to the necrotic core, which is surrounded by an astrocytic border. Here we elucidate a temporally distinct gene signature in injury-activated microglia and macrophages (IAMs) that engages axon guidance pathways. Plexin-B2 is upregulated in IAMs and is required for motor sensory recovery after spinal cord injury. Plexin-B2 deletion in myeloid cells impairs corralling, leading to diffuse tissue damage, inflammatory spillover and hampered axon regeneration. Corralling begins early and requires Plexin-B2 in both microglia and macrophages. Mechanistically, Plexin-B2 promotes microglia motility, steers IAMs away from colliding cells and facilitates matrix compaction. Our data therefore establish Plexin-B2 as an important link that integrates biochemical cues and physical interactions of IAMs with the injury microenvironment during wound healing.
Collapse
Affiliation(s)
- Xiang Zhou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shalaka Wahane
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marie-Sophie Friedl
- Institut für Informatik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Michael Kluge
- Institut für Informatik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Caroline C Friedel
- Institut für Informatik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kleopatra Avrampou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lei Guo
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Department of Genetics and Genomic Sciences, Mount Sinai Center for Transformative Disease Modeling, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xijing He
- Department of Orthopedics, Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Xi'an International Medical Center, Xi'an, China
| | - Roland H Friedel
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Hongyan Zou
- Nash Family Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurosurgery, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
83
|
Brandão AF, Bonet IJM, Pagliusi M, Zanetti GG, Pho N, Tambeli CH, Parada CA, Vieira AS, Sartori CR. Physical Activity Induces Nucleus Accumbens Genes Expression Changes Preventing Chronic Pain Susceptibility Promoted by High-Fat Diet and Sedentary Behavior in Mice. Front Neurosci 2020; 13:1453. [PMID: 32038148 PMCID: PMC6987254 DOI: 10.3389/fnins.2019.01453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/30/2019] [Indexed: 12/14/2022] Open
Abstract
Recent findings from rodent studies suggest that high-fat diet (HFD) increases hyperalgesia independent of obesity status. Furthermore, weight loss interventions such as voluntary physical activity (PA) for adults with obesity or overweight was reported to promote pain reduction in humans with chronic pain. However, regardless of obesity status, it is not known whether HFD intake and sedentary (SED) behavior is underlies chronic pain susceptibility. Moreover, differential gene expression in the nucleus accumbens (NAc) plays a crucial role in chronic pain susceptibility. Thus, the present study used an adapted model of the inflammatory prostaglandin E2 (PGE2)-induced persistent hyperalgesia short-term (PH-ST) protocol for mice, an HFD, and a voluntary PA paradigm to test these hypotheses. Therefore, we performed an analysis of differential gene expression using a transcriptome approach of the NAc. We also applied a gene ontology enrichment tools to identify biological processes associated with chronic pain susceptibility and to investigate the interaction between the factors studied: diet (standard diet vs. HFD), physical activity behavior (SED vs. PA) and PH-ST (PGE vs. saline). Our results demonstrated that HFD intake and sedentary behavior promoted chronic pain susceptibility, which in turn was prevented by voluntary physical activity, even when the animals were fed an HFD. The transcriptome of the NAc found 2,204 differential expression genes and gene ontology enrichment analysis revealed 41 biologic processes implicated in chronic pain susceptibility. Taking these biological processes together, our results suggest that genes related to metabolic and mitochondria stress were up-regulated in the chronic pain susceptibility group (SED-HFD-PGE), whereas genes related to neuroplasticity were up-regulated in the non-chronic pain susceptibility group (PA-HFD-PGE). These findings provide pieces of evidence that HFD intake and sedentary behavior provoked gene expression changes in the NAc related to promotion of chronic pain susceptibility, whereas voluntary physical activity provoked gene expression changes in the NAc related to prevention of chronic pain susceptibility. Finally, our findings confirmed previous literature supporting the crucial role of voluntary physical activity to prevent chronic pain and suggest that low levels of voluntary physical activity would be helpful and highly recommended as a complementary treatment for those with chronic pain.
Collapse
Affiliation(s)
- Arthur Freitas Brandão
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Ivan José Magayewski Bonet
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Marco Pagliusi
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Gabriel Gerardini Zanetti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Nam Pho
- eScience Institute, University of Washington, Seattle, WA, United States
| | - Cláudia Herrera Tambeli
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Carlos Amilcar Parada
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - André Schwambach Vieira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Cesar Renato Sartori
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
84
|
Serafini RA, Pryce KD, Zachariou V. The Mesolimbic Dopamine System in Chronic Pain and Associated Affective Comorbidities. Biol Psychiatry 2020; 87:64-73. [PMID: 31806085 PMCID: PMC6954000 DOI: 10.1016/j.biopsych.2019.10.018] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 10/24/2019] [Accepted: 10/25/2019] [Indexed: 12/18/2022]
Abstract
Chronic pain is a complex neuropsychiatric disorder characterized by sensory, cognitive, and affective symptoms. Over the past 2 decades, researchers have made significant progress toward understanding the impact of mesolimbic dopamine circuitry in acute and chronic pain. These efforts have provided insights into the circuits and intracellular pathways in the brain reward center that are implicated in sensory and affective manifestations of chronic pain. Studies have also identified novel therapeutic targets as well as factors that affect treatment responsiveness. Dysregulation of dopamine function in the brain reward center may further promote comorbid mood disorders and vulnerability to addiction. This review discusses recent clinical and preclinical findings on the neuroanatomical and neurochemical adaptations triggered by prolonged pain states in the brain reward pathway. Furthermore, this discussion highlights evidence of mechanisms underlying comorbidities among pain, depression, and addiction.
Collapse
Affiliation(s)
- Randal A Serafini
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kerri D Pryce
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Venetia Zachariou
- Nash Family Department of Neuroscience, Department of Pharmacological Sciences, and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
85
|
Wang RR, Liu B, Long W. Electroacupuncture alleviates neuropathic pain by modulating Th2 infiltration and inhibiting microglial activation in the spinal cord of rats with spared nerve injury. WORLD JOURNAL OF TRADITIONAL CHINESE MEDICINE 2020. [DOI: 10.4103/wjtcm.wjtcm_40_20] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
86
|
Sun W, Kou D, Yu Z, Yang S, Jiang C, Xiong D, Xiao L, Deng Q, Xie H, Hao Y. A Transcriptomic Analysis of Neuropathic Pain in Rat Dorsal Root Ganglia Following Peripheral Nerve Injury. Neuromolecular Med 2019; 22:250-263. [PMID: 31858405 DOI: 10.1007/s12017-019-08581-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 11/15/2019] [Indexed: 10/25/2022]
Abstract
The aim of this work is to provide a comprehensive and unbiased understanding at the molecular correlates of peripheral nerve injury. In this study, we screened the differentially expressed genes (DEGs) in the DRG from rats using RNA-seq technique. Moreover, the bioinformatics methods were used to figure out the signaling pathways and expression regulation pattern of the DEGs enriched in. In addition, quantitative real-time RT-PCR was carried out to further confirm the expression of DEGs. 414 genes were upregulated, while 184 genes were downregulated in the DRG of rats 7 days after partial sciatic nerve ligation (pSNL) surgery. Moreover, GO and KEGG enrichment analysis suggested that most of the altered genes were involved in inflammatory responses and signaling transduction. In addition, our results state that they shared similar characters in the DRG among four types of neuropathic pain models. Eighteen genes have been altered (17 of them were upregulated) in the DRG of all four types of neuropathic pain models, in which Vgf, Atf3, Cd74, Gal, Jun, Npy, Serpina3n, and Hspb1 have been reported to be involved in neuropathic pain. Quantitative real-time RT-PCR results further confirmed the mRNA expression levels of Vgf, Atf3, Cd74, Gal, Jun, Npy, Serpina3n, and Hspb1 in the DRG of rats with pSNL surgery. The present study suggested that these eight genes may play important roles in neuropathic pain, revealing that these genes might serve as therapeutic targets for neuropathic pain. Moreover, anti-inflammatory therapy might be an effective approach for neuropathic pain treatment and prevention.
Collapse
Affiliation(s)
- Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Dongquan Kou
- Department of Rehabilitation Medicine, Chongqing Public Health Medical Center, Chongqing, 400080, China
| | - Zhijian Yu
- Department of Infectious Diseases and Shenzhen Municipal Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Shaomin Yang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Changyu Jiang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Donglin Xiong
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China
| | - Qiwen Deng
- Department of Infectious Diseases and Shenzhen Municipal Key Laboratory for Endogenous Infection, Shenzhen Nanshan People's Hospital and the 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, 518060, China.
| | - Hengtao Xie
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, China.
| | - Yue Hao
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
87
|
Liang L, Wei J, Tian L, Padma Nagendra BV, Gao F, Zhang J, Xu L, Wang H, Huo FQ. Paclitaxel Induces Sex-biased Behavioral Deficits and Changes in Gene Expression in Mouse Prefrontal Cortex. Neuroscience 2019; 426:168-178. [PMID: 31846751 DOI: 10.1016/j.neuroscience.2019.11.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/27/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
Abstract
Paclitaxel (PTX) is one of the most commonly used chemotherapeutic agents for various cancer diseases. Despite its advantages, PTX also causes behavioral deficits related to nervous-system dysfunction, such as neuropathic pain, depression, anxiety, and cognitive impairments. The prefrontal cortex (PFC) is one of the areas that is susceptible to adverse effects of chemotherapeutic agents. Therefore, the present study was designed to examine sex-biased behavioral deficits and whole-transcriptome changes in gene expression in the PFC of mice treated with vehicle or PTX. In this study, PTX (4 mg/kg) was injected intraperitoneally four times in mice every other day. Three weeks later, both PTX-treated male and female mice developed mechanical pain hypersensitivities, as indicated by increased paw withdrawal responses to 0.16-g von Frey filaments. Additionally, PTX-treated mice exhibited depression-like symptoms, as they exhibited increased immobility times in the forced swim test. PTX also induced cognitive impairment, as demonstrated via results of a novel object recognition (NOR) test and anxiety-like behavior in an elevated plus-maze test in male mice, but not in female mice. RNA sequencing and in-depth gene expression analysis of the PFC in paired vehicle and PTX-treated mice showed that PTX induced 1755 differentially expressed genes in the PFCs of male and female mice. Quantitative real-time RT-PCR verified that some gene expressions in the medial PFC (mPFC) were related to neurotransmission. In conclusion, this study identified a sex-biased effect of PTX on PFC function and gene expression, which provides a foundation for future studies to explore the precise mechanisms of PTX-induced behavioral deficits.
Collapse
Affiliation(s)
- Lingli Liang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Beijing, PR China.
| | - Jianxiong Wei
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Beijing, PR China
| | - Lixia Tian
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Beijing, PR China
| | - Borra V Padma Nagendra
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Beijing, PR China
| | - Feng Gao
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Beijing, PR China
| | - Jun Zhang
- Department of Pain Medicine, Union Medical Center, Nankai University, Tianjin, PR China
| | - Linping Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Beijing, PR China
| | - Haoruo Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Beijing, PR China
| | - Fu-Quan Huo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, PR China; Key Laboratory of Environment and Genes Related to Diseases (Xi'an Jiaotong University), Ministry of Education, Beijing, PR China
| |
Collapse
|
88
|
KC E, Moon HC, Kim S, Kim HK, Won SY, Hyun S, Park YS. Optical Modulation on the Nucleus Accumbens Core in the Alleviation of Neuropathic Pain in Chronic Dorsal Root Ganglion Compression Rat Model. Neuromodulation 2019; 23:167-176. [DOI: 10.1111/ner.13059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/20/2019] [Accepted: 09/10/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Elina KC
- Department of NeuroscienceCollege of Medicine, Chungbuk National University Cheongju South Korea
| | - Hyeong Cheol Moon
- Department of NeuroscienceCollege of Medicine, Chungbuk National University Cheongju South Korea
- Department of NeurosurgeryChungbuk National University Hospital Cheongju South Korea
| | - Soochong Kim
- Laboratory of Veterinary Pathology and Platelets Signaling, College of Veterinary Medicine, Chungbuk National University Cheongju South Korea
| | - Hyong Kyu Kim
- Department of Medicine and MicrobiologyChungbuk National University Cheongju South Korea
| | - So Yoon Won
- Department of Biochemistry and Medical Research CenterChungbuk National University Cheongju South Korea
| | - Sang‐Hwan Hyun
- Laboratory of Veterinary Embryology and Biotechnology, College of Veterinary Medicine, Chungbuk National University Cheongju South Korea
- Institute of Stem Cell & Regenerative Medicine, Chungbuk National University Cheongju South Korea
| | - Young Seok Park
- Department of NeuroscienceCollege of Medicine, Chungbuk National University Cheongju South Korea
- Department of NeurosurgeryChungbuk National University Hospital Cheongju South Korea
| |
Collapse
|
89
|
miR-200a-3p modulates gene expression in comorbid pain and depression: Molecular implication for central sensitization. Brain Behav Immun 2019; 82:230-238. [PMID: 31479730 DOI: 10.1016/j.bbi.2019.08.190] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/18/2019] [Accepted: 08/26/2019] [Indexed: 12/20/2022] Open
Abstract
Chronic pain and depression are often comorbid exhibiting common clinical presentations and biological connections related to central nervous system sensitization. Epigenetic regulation of gene expression in the brain plays a crucial role in response to long-lasting stress and chronic pain, and microRNA imbalance in the prefrontal cortex (PFC) might be involved in central sensitization. Male Sprague Dawley rats were subjected to unpredictable chronic mild stress (UCMS) and spared nerve injury (SNI) to initiate depressive-like behavior and chronic pain behavior, respectively. The next-generation sequencing technique was employed to analyze PFC microRNAs in both the UCMS and SNI models. Rats exposed to either UCMS or SNI exhibited both depressive-like and chronic pain behaviors. Five specific microRNAs (miR-10a-5p, miR-182, miR-200a-3p, miR-200b-3p, and miR-429) were simultaneously down-regulated in the depressive-like and chronic pain models after 4 weeks of short-term stress. Gene ontology revealed that the 4-week period of stress enhanced neurogenesis. Only the miR-200a-3p level was continuously elevated under prolonged stress, suggesting roles of reduced neurogenesis, inflammatory activation, disturbed circadian rhythm, lipid metabolism, and insulin secretion in the co-existence of pain and depression. Thus we conclude that miR-200a-3p might be a specific biomarker of central sensitization in chronic pain and depression.
Collapse
|
90
|
Meng W, Adams MJ, Reel P, Rajendrakumar A, Huang Y, Deary IJ, Palmer CNA, McIntosh AM, Smith BH. Genetic correlations between pain phenotypes and depression and neuroticism. Eur J Hum Genet 2019; 28:358-366. [PMID: 31659249 PMCID: PMC7028719 DOI: 10.1038/s41431-019-0530-2] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/23/2019] [Accepted: 09/27/2019] [Indexed: 12/18/2022] Open
Abstract
Correlations between pain phenotypes and psychiatric traits such as depression and the personality trait of neuroticism are not fully understood. In this study, we estimated the genetic correlations of eight pain phenotypes (defined by the UK Biobank, n = 151,922–226,683) with depressive symptoms, major depressive disorders and neuroticism using the the cross-trait linkage disequilibrium score regression (LDSC) method integrated in the LD Hub. We also used the LDSC software to calculate the genetic correlations among pain phenotypes. All pain phenotypes, except hip pain and knee pain, had significant and positive genetic correlations with depressive symptoms, major depressive disorders and neuroticism. All pain phenotypes were heritable, with pain all over the body showing the highest heritability (h2 = 0.31, standard error = 0.072). Many pain phenotypes had positive and significant genetic correlations with each other indicating shared genetic mechanisms. Our results suggest that pain, neuroticism and depression share partially overlapping genetic risk factors.
Collapse
Affiliation(s)
- Weihua Meng
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF, UK.
| | - Mark J Adams
- Division of Psychiatry, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH10 5HF, UK
| | - Parminder Reel
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF, UK
| | - Aravind Rajendrakumar
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF, UK
| | - Yu Huang
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF, UK
| | - Ian J Deary
- Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Colin N A Palmer
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF, UK
| | - Andrew M McIntosh
- Division of Psychiatry, Edinburgh Medical School, University of Edinburgh, Edinburgh, EH10 5HF, UK.,Centre for Cognitive Ageing and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK
| | - Blair H Smith
- Division of Population Health and Genomics, School of Medicine, University of Dundee, Dundee, DD2 4BF, UK
| |
Collapse
|
91
|
Bibliometric Study of the Comorbidity of Pain and Depression Research. Neural Plast 2019; 2019:1657498. [PMID: 31772566 PMCID: PMC6854239 DOI: 10.1155/2019/1657498] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/27/2019] [Indexed: 12/28/2022] Open
Abstract
Background Comorbid pain and depression occur with high prevalence in clinical observations, and published academic journals about them have been increasing in number over time. However, few studies used the bibliometric method to analyze the general aspects of scientific researches on the comorbidity of pain and depression. The aim of this study is to systematically provide global scientific research in the comorbidity of pain and depression from 1980 to 2018. Methods The published papers were searched between 1980 and 2018 in Web of Science. Publications related to comorbid pain and depression research were included. The language was restricted to English, and no species limitations were specified. Results A total of 2,519 papers met the inclusion criteria in our study. The results revealed that the publications had a significant growth over time in the comorbidity of pain and depression research (P < 0.001) by linear regression analyses. The United States had the largest number of publications and citations and the highest value of H-index. According to subject categories of Web of Science, research areas of the 2,519 papers mainly focused on clinical neurology (28.78%), neurosciences (22.9%), and psychiatry (22.23%). In accordance with types of pain, headache (19.09%) was the most popular topic in the included papers on comorbid pain and depression research. Conclusions The findings provide useful information for pain and depression researchers to detect new areas related to collaborators, cooperative institutions, popular topics, and research frontiers.
Collapse
|
92
|
Farghaly HSM, Elbadr MM, Ahmed MA, Abdelhaffez AS. Effect of single and repeated administration of amitriptyline on neuropathic pain model in rats: Focus on glutamatergic and upstream nitrergic systems. Life Sci 2019; 233:116752. [PMID: 31415770 DOI: 10.1016/j.lfs.2019.116752] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/03/2019] [Accepted: 08/11/2019] [Indexed: 10/26/2022]
Abstract
AIMS Few studies have compared the interaction of single and repeated administration of amitriptyline (amit) with the nitrergic system and glutamatergic system in the experimental model of neuropathic pain. We aimed to evaluate the antinociceptive effect of single and repeated administration of amit and to assess whether glutamate preceded inducible nitric oxide synthase (iNOS) inhibition as a mechanism of the analgesic effect of amit in the neuropathic model of pain. MATERIALS AND METHODS Male Wistar rats were subjected to left sciatic nerve ligation. The effect of single (25 mg kg-1) and repeated (10 mg kg-1 daily for 3 weeks) administration of amit intraperitoneally (i.p.) alone or in combination with aminoguanidine (AG i.p., 100 mg kg-1 for 3 days, a selective iNOS inhibitor) and MK-801 (0.05 mg kg-1 i.p., NMDA antagonist) on resting paw posture and mechanical hyperalgesia were studied. Glutamate level and iNOS protein expression in hippocampus were detected. KEY FINDINGS Single and repeated administration of amit alone or in combination with AG or MK-801 demonstrated a significant decrease in resting pain score and increase in the pain threshold. Both glutamate and nitrite levels decreased in the hippocampi of single and repeated amit + MK-801 groups. Immunohistochemistry showed a marked decrease in iNOS immunoreactivity in rats treated with single and repeated amit + MK-801. SIGNIFICANCE Our results suggest that glutamate-dependent mechanisms are involved in the analgesic responses to amit administration. Importantly, glutamatergic system and its upstream nitrergic system play an important role in the antinociceptive action of amit.
Collapse
Affiliation(s)
- Hanan S M Farghaly
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt.
| | - Mohamed M Elbadr
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | - Marwa A Ahmed
- Pharmacology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| | - Azza S Abdelhaffez
- Physiology Department, Faculty of Medicine, Assiut University, Assiut 71526, Egypt
| |
Collapse
|
93
|
Shenoy PA, Kuo A, Leparc G, Hildebrandt T, Rust W, Nicholson JR, Corradini L, Vetter I, Smith MT. Transcriptomic characterisation of the optimised rat model of Walker 256 breast cancer cell-induced bone pain. Clin Exp Pharmacol Physiol 2019; 46:1201-1215. [PMID: 31429474 DOI: 10.1111/1440-1681.13165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 07/21/2019] [Accepted: 08/13/2019] [Indexed: 12/16/2022]
Abstract
In patients with breast cancer, metastases of cancer cells to the axial skeleton may cause excruciating pain, particularly in the advanced stages. The current drug treatments available to alleviate this debilitating pain condition often lack efficacy and/or produce undesirable side effects. Preclinical animal models of cancer-induced bone pain are key to studying the mechanisms that cause this pain and for the success of drug discovery programs. In a previous study conducted in our laboratory, we validated and characterised the rat model of Walker 256 cell-induced bone pain, which displayed several key resemblances to the human pain condition. However, gene level changes that occur in the pathophysiology of cancer-induced bone pain in this preclinical model are unknown. Hence, in this study, we performed the transcriptomic characterisation of the Walker 256 cell line cultured in vitro to predict the molecular genetic profile of this cell line. We also performed transcriptomic characterisation of the Walker 256 cell-induced bone pain model in rats using the lumbar spinal cord and lumbar dorsal root ganglia tissues. Here we show that the Walker 256 cell line resembles the basal-B molecular subtype of human breast cancer cell lines. We also identify several genes that may underpin the progression of pain hypersensitivities in this condition, however, this needs further confirmatory studies. These transcriptomic insights have the potential to direct future studies aimed at identifying various mechanisms underpinning pain hypersensitivities in this model that may also assist in discovery of novel pain therapeutics for breast cancer-induced bone pain.
Collapse
Affiliation(s)
- Priyank A Shenoy
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Andy Kuo
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - German Leparc
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Tobias Hildebrandt
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Werner Rust
- Target Discovery Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Janet R Nicholson
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Laura Corradini
- Department of CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Irina Vetter
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia.,Faculty of Health and Behavioural Sciences, School of Pharmacy, The University of Queensland, Brisbane, QLD, Australia
| | - Maree T Smith
- Faculty of Medicine, School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
94
|
Coussens NP, Sittampalam GS, Jonson SG, Hall MD, Gorby HE, Tamiz AP, McManus OB, Felder CC, Rasmussen K. The Opioid Crisis and the Future of Addiction and Pain Therapeutics. J Pharmacol Exp Ther 2019; 371:396-408. [PMID: 31481516 DOI: 10.1124/jpet.119.259408] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/29/2019] [Indexed: 12/26/2022] Open
Abstract
Opioid misuse and addiction are a public health crisis resulting in debilitation, deaths, and significant social and economic impact. Curbing this crisis requires collaboration among academic, government, and industrial partners toward the development of effective nonaddictive pain medications, interventions for opioid overdose, and addiction treatments. A 2-day meeting, The Opioid Crisis and the Future of Addiction and Pain Therapeutics: Opportunities, Tools, and Technologies Symposium, was held at the National Institutes of Health (NIH) to address these concerns and to chart a collaborative path forward. The meeting was supported by the NIH Helping to End Addiction Long-TermSM (HEAL) Initiative, an aggressive, trans-agency effort to speed scientific solutions to stem the national opioid crisis. The event was unique in bringing together two research disciplines, addiction and pain, in order to create a forum for crosscommunication and collaboration. The output from the symposium will be considered by the HEAL Initiative; this article summarizes the scientific presentations and key takeaways. Improved understanding of the etiology of acute and chronic pain will enable the discovery of novel targets and regulatable pain circuits for safe and effective therapeutics, as well as relevant biomarkers to ensure adequate testing in clinical trials. Applications of improved technologies including reagents, assays, model systems, and validated probe compounds will likely increase the delivery of testable hypotheses and therapeutics to enable better health outcomes for patients. The symposium goals were achieved by increasing interdisciplinary collaboration to accelerate solutions for this pressing public health challenge and provide a framework for focused efforts within the research community. SIGNIFICANCE STATEMENT: This article summarizes key messages and discussions resulting from a 2-day symposium focused on challenges and opportunities in developing addiction- and pain-related medications. Speakers and attendees came from 40 states in the United States and 15 countries, bringing perspectives from academia, industry, government, and healthcare by researchers, clinicians, regulatory experts, and patient advocates.
Collapse
Affiliation(s)
- Nathan P Coussens
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - G Sitta Sittampalam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Samantha G Jonson
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Matthew D Hall
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Heather E Gorby
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Amir P Tamiz
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Owen B McManus
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Christian C Felder
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| | - Kurt Rasmussen
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland (N.P.C., G.S.S., S.G.J., M.D.H.); Orvos Communications, LLC (H.E.G.); National Institute of Neurologic Disorders and Stroke (A.P.T.) and National Institute on Drug Abuse (K.R.), National Institutes of Health, Bethesda, Maryland; Q-State Biosciences, Cambridge, Massachusetts (O.B.M.); and VP Discovery Research, Karuna Therapeutics, Boston, Massachusetts (C.C.F.)
| |
Collapse
|
95
|
Li H, Wan HQ, Zhao HJ, Luan SX, Zhang CG. Identification of candidate genes and miRNAs associated with neuropathic pain induced by spared nerve injury. Int J Mol Med 2019; 44:1205-1218. [PMID: 31432094 PMCID: PMC6713433 DOI: 10.3892/ijmm.2019.4305] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/22/2019] [Indexed: 12/16/2022] Open
Abstract
Neuropathic pain (NP) is a complex, chronic pain condition caused by injury or dysfunction affecting the somatosensory nervous system. This study aimed to identify crucial genes and miRNAs involved in NP. Microarray data (access number GSE91396) were downloaded from the Gene Expression Omnibus (GEO). Murine RNA-seq samples from three brain regions [nucleus accumbens, (NAc); medial prefrontal cortex, (mPFC) and periaqueductal gray, (PAG)] were compared between the spared nerve injury (SNI) model and a sham surgery. After data normalization, differentially expressed RNAs were screened using the limma package and functional enrichment analysis was performed with Database for Annotation, Visualization and Integrated Discovery. The microRNA (miRNA/miR)-mRNA regulatory network and miRNA-target gene-pathway regulatory network were constructed using Cytoscape software. A total of 2,776 differentially expressed RNAs (219 miRNAs and 2,557 mRNAs) were identified in the SNI model compared with the sham surgery group. A total of two important modules (red and turquoise module) were found to be related to NP using weighed gene co-expression network analysis (WGCNA) for the 2,325 common differentially expressed RNAs in three brain regions. The differentially expressed genes (DEGs) in the miRNA-mRNA regulatory network were significantly enriched in 21 Gene Ontology terms and five pathways. A total of four important DEGs (CXCR2, IL12B, TNFSF8 and GRK1) and five miRNAs (miR-208a-5p, miR-7688-3p, miR-344f-3p, miR-135b-3p and miR-135a-2-3p) were revealed according to the miRNA-target gene-pathway regulatory network to be related to NP. Four important DEGs (CXCR2, IL12B, TNFSF8 and GRK1) and five miRNAs (miR-208a-5p, miR-7688-3p, miR-344f-3p, miR-135b-3p and miR-135a-2-3p) were differentially expressed in SNI, indicating their plausible roles in NP pathogenesis.
Collapse
Affiliation(s)
- He Li
- Department of Pain Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hong-Quan Wan
- Department of Mental Health, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Hai-Jun Zhao
- Department of Pain Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Shu-Xin Luan
- Department of Mental Health, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chun-Guo Zhang
- Department of Pain Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| |
Collapse
|
96
|
Hippocampal PKR/NLRP1 Inflammasome Pathway Is Required for the Depression-Like Behaviors in Rats with Neuropathic Pain. Neuroscience 2019; 412:16-28. [DOI: 10.1016/j.neuroscience.2019.05.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 03/28/2019] [Accepted: 05/13/2019] [Indexed: 01/08/2023]
|
97
|
RGS4 Maintains Chronic Pain Symptoms in Rodent Models. J Neurosci 2019; 39:8291-8304. [PMID: 31308097 DOI: 10.1523/jneurosci.3154-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 05/02/2019] [Accepted: 06/27/2019] [Indexed: 12/26/2022] Open
Abstract
Regulator of G-protein signaling 4 (RGS4) is a potent modulator of G-protein-coupled receptor signal transduction that is expressed throughout the pain matrix. Here, we use genetic mouse models to demonstrate a role of RGS4 in the maintenance of chronic pain states in male and female mice. Using paradigms of peripheral inflammation and nerve injury, we show that the prevention of RGS4 action leads to recovery from mechanical and cold allodynia and increases the motivation for wheel running. Similarly, RGS4KO eliminates the duration of nocifensive behavior in the second phase of the formalin assay. Using the Complete Freud's Adjuvant (CFA) model of hindpaw inflammation we also demonstrate that downregulation of RGS4 in the adult ventral posterolateral thalamic nuclei promotes recovery from mechanical and cold allodynia. RNA sequencing analysis of thalamus (THL) from RGS4WT and RGS4KO mice points to many signal transduction modulators and transcription factors that are uniquely regulated in CFA-treated RGS4WT cohorts. Ingenuity pathway analysis suggests that several components of glutamatergic signaling are differentially affected by CFA treatment between RGS4WT and RGS4KO groups. Notably, Western blot analysis shows increased expression of metabotropic glutamate receptor 2 in THL synaptosomes of RGS4KO mice at time points at which they recover from mechanical allodynia. Overall, our study provides information on a novel intracellular pathway that contributes to the maintenance of chronic pain states and points to RGS4 as a potential therapeutic target.SIGNIFICANCE STATEMENT There is an imminent need for safe and efficient chronic pain medications. Regulator of G-protein signaling 4 (RGS4) is a multifunctional signal transduction protein, widely expressed in the pain matrix. Here, we demonstrate that RGS4 plays a prominent role in the maintenance of chronic pain symptoms in male and female mice. Using genetically modified mice, we show a dynamic role of RGS4 in recovery from symptoms of sensory hypersensitivity deriving from hindpaw inflammation or hindlimb nerve injury. We also demonstrate an important role of RGS4 actions in gene expression patterns induced by chronic pain states in the mouse thalamus. Our findings provide novel insight into mechanisms associated with the maintenance of chronic pain states and demonstrate that interventions in RGS4 activity promote recovery from sensory hypersensitivity symptoms.
Collapse
|
98
|
Zeng P, Huang J, Wu S, Qian C, Chen F, Sun W, Tao W, Liao Y, Zhang J, Yang Z, Zhong S, Zhang Z, Xiao L, Huang B. Characterizing the Structural Pattern Predicting Medication Response in Herpes Zoster Patients Using Multivoxel Pattern Analysis. Front Neurosci 2019; 13:534. [PMID: 31191228 PMCID: PMC6546876 DOI: 10.3389/fnins.2019.00534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 05/08/2019] [Indexed: 12/29/2022] Open
Abstract
Herpes zoster (HZ) can cause a blistering skin rash with severe neuropathic pain. Pharmacotherapy is the most common treatment for HZ patients. However, most patients are usually the elderly or those that are immunocompromised, and thus often suffer from side effects or easily get intractable post-herpetic neuralgia (PHN) if medication fails. It is challenging for clinicians to tailor treatment to patients, due to the lack of prognosis information on the neurological pathogenesis that underlies HZ. In the current study, we aimed at characterizing the brain structural pattern of HZ before treatment with medication that could help predict medication responses. High-resolution structural magnetic resonance imaging (MRI) scans of 14 right-handed HZ patients (aged 61.0 ± 7.0, 8 males) with poor response and 15 (aged 62.6 ± 8.3, 5 males) age- (p = 0.58), gender-matched (p = 0.20) patients responding well, were acquired and analyzed. Multivoxel pattern analysis (MVPA) with a searchlight algorithm and support vector machine (SVM), was applied to identify the spatial pattern of the gray matter (GM) volume, with high predicting accuracy. The predictive regions, with an accuracy higher than 79%, were located within the cerebellum, posterior insular cortex (pIC), middle and orbital frontal lobes (mFC and OFC), anterior and middle cingulum (ACC and MCC), precuneus (PCu) and cuneus. Among these regions, mFC, pIC and MCC displayed significant increases of GM volumes in patients with poor response, compared to those with a good response. The combination of sMRI and MVPA might be a useful tool to explore the neuroanatomical imaging biomarkers of HZ-related pain associated with medication responses.
Collapse
Affiliation(s)
- Ping Zeng
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Clinical Research Center for Neurological Diseases, Shenzhen University, Shenzhen, China
| | - Jiabin Huang
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Songxiong Wu
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Clinical Research Center for Neurological Diseases, Shenzhen University, Shenzhen, China
| | - Chengrui Qian
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Fuyong Chen
- Clinical Research Center for Neurological Diseases, Shenzhen University, Shenzhen, China.,Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Wei Tao
- Clinical Research Center for Neurological Diseases, Shenzhen University, Shenzhen, China.,Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Yuliang Liao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Jianing Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Clinical Research Center for Neurological Diseases, Shenzhen University, Shenzhen, China
| | - Zefan Yang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Clinical Research Center for Neurological Diseases, Shenzhen University, Shenzhen, China
| | - Shaonan Zhong
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Clinical Research Center for Neurological Diseases, Shenzhen University, Shenzhen, China
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Sixth Hospital of Guangdong Medical University, Shenzhen, China
| | - Bingsheng Huang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, China.,Clinical Research Center for Neurological Diseases, Shenzhen University, Shenzhen, China
| |
Collapse
|
99
|
Subanesthetic Dose of Ketamine Improved CFA-induced Inflammatory Pain and Depression-like Behaviors Via Caveolin-1 in Mice. J Neurosurg Anesthesiol 2019; 32:359-366. [DOI: 10.1097/ana.0000000000000610] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
100
|
Barcelon EE, Cho WH, Jun SB, Lee SJ. Brain Microglial Activation in Chronic Pain-Associated Affective Disorder. Front Neurosci 2019; 13:213. [PMID: 30949019 PMCID: PMC6436078 DOI: 10.3389/fnins.2019.00213] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 02/25/2019] [Indexed: 12/23/2022] Open
Abstract
A growing body of evidence from both clinical and animal studies indicates that chronic neuropathic pain is associated with comorbid affective disorders. Spinal cord microglial activation is involved in nerve injury-induced pain hypersensitivity characterizing neuropathic pain. However, there is a lack of thorough assessments of microglial activation in the brain after nerve injury. In the present study, we characterized microglial activation in brain sub-regions of CX3CR1GFP/+ mice after chronic constriction injury (CCI) of the sciatic nerve, including observations at delayed time points when affective brain dysfunctions such as depressive-like behaviors typically develop. Mice manifested chronic mechanical hypersensitivity immediately after CCI and developed depressive-like behaviors 8 weeks post-injury. Concurrently, significant increases of soma size and microglial cell number were observed in the medial prefrontal cortex (mPFC), hippocampus, and amygdala 8 weeks post-injury. Transcripts of CD11b, and TNF-α, genes associated with microglial activation or depressive-like behaviors, are correspondingly upregulated in these brain areas. Our results demonstrate that microglia are activated in specific brain sub-regions after CCI at delayed time points and imply that brain microglial activation plays a role in chronic pain-associated affective disorders.
Collapse
Affiliation(s)
- Ellane Eda Barcelon
- Department of Neuroscience and Physiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Woo-Hyun Cho
- Department of Neuroscience and Physiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| | - Sang Beom Jun
- Department of Brain & Cognitive Sciences, Ewha Womans University, Seoul, South Korea
| | - Sung Joong Lee
- Department of Neuroscience and Physiology and Dental Research Institute, School of Dentistry, Seoul National University, Seoul, South Korea
| |
Collapse
|