51
|
Okhovatian S, Mohammadi MH, Rafatian N, Radisic M. Engineering Models of the Heart Left Ventricle. ACS Biomater Sci Eng 2022; 8:2144-2160. [PMID: 35523206 DOI: 10.1021/acsbiomaterials.1c00636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Despite capturing the imagination of scientists for decades, the goal of creating an artificial heart for transplantation proved to be significantly more challenging than initially anticipated. Toward this goal, recent ground-breaking studies demonstrate the development of functional left ventricular (LV) models. LV models are artificially constructed 3D chambers that are capable of containing liquid within the engineered cavity and exhibit the functionality of native LV including contraction, ejection of fluid, and electrical impulse propagation. Various hydrogels and polymers have been used in manufacturing of LV models, relying on techniques such as electrospinning, bioprinting, casting, and molding. Most studies scaled down the models based on the dimensions of the human or rat ventricle. Initially, neonatal rat cardiomyocytes were the cell type of choice for construction the LV models. Yet, as the stem cell biology field advanced, recent studies focused on the use of cardiomyocytes derived from human induced pluripotent stem cells. In this review, we first describe the physiological characteristics of the human heart, to establish the parameter space for modeling. We then elaborate on current advances in the field and compare recently developed LV models among themselves and with the native human left ventricle. Fabrication methods, cell types, biomaterials, functional properties, and disease modeling capability are some of the major parameters that have distinguished these models. We also highlight some of the current challenges in this field, such as vascularization, cell composition and fidelity, and discuss potential solutions to overcome them.
Collapse
Affiliation(s)
- Sargol Okhovatian
- Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Mohammad Hossein Mohammadi
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Naimeh Rafatian
- Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Milica Radisic
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada.,Institute of Biomaterials Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.,Toronto General Research Institute, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
52
|
Abstract
The successful transplantation of stem cells has the potential to transform regenerative medicine approaches and open promising avenues to repair, replace, and regenerate diseased, damaged, or aged tissues. However, pre-/post-transplantation issues of poor cell survival, retention, cell fate regulation, and insufficient integration with host tissues constitute significant challenges. The success of stem cell transplantation depends upon the coordinated sequence of stem cell renewal, specific lineage differentiation, assembly, and maintenance of long-term function. Advances in biomaterials can improve pre-/post-transplantation outcomes by integrating biophysiochemical cues and emulating tissue microenvironments. This review highlights leading biomaterials-based approaches for enhancing stem cell transplantation.
Collapse
Affiliation(s)
- Bhushan N Kharbikar
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Priya Mohindra
- UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA; UC Berkeley-UCSF Graduate Program in Bioengineering, San Francisco, CA 94158, USA; Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA; School of Engineering, Brown University, Providence, RI, 02912, USA.
| |
Collapse
|
53
|
da Silva IGR, Pantoja BTDS, Almeida GHDR, Carreira ACO, Miglino MA. Bacterial Cellulose and ECM Hydrogels: An Innovative Approach for Cardiovascular Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23073955. [PMID: 35409314 PMCID: PMC8999934 DOI: 10.3390/ijms23073955] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/18/2022] [Accepted: 03/23/2022] [Indexed: 12/11/2022] Open
Abstract
Cardiovascular diseases are considered the leading cause of death in the world, accounting for approximately 85% of sudden death cases. In dogs and cats, sudden cardiac death occurs commonly, despite the scarcity of available pathophysiological and prevalence data. Conventional treatments are not able to treat injured myocardium. Despite advances in cardiac therapy in recent decades, transplantation remains the gold standard treatment for most heart diseases in humans. In veterinary medicine, therapy seeks to control clinical signs, delay the evolution of the disease and provide a better quality of life, although transplantation is the ideal treatment. Both human and veterinary medicine face major challenges regarding the transplantation process, although each area presents different realities. In this context, it is necessary to search for alternative methods that overcome the recovery deficiency of injured myocardial tissue. Application of biomaterials is one of the most innovative treatments for heart regeneration, involving the use of hydrogels from decellularized extracellular matrix, and their association with nanomaterials, such as alginate, chitosan, hyaluronic acid and gelatin. A promising material is bacterial cellulose hydrogel, due to its nanostructure and morphology being similar to collagen. Cellulose provides support and immobilization of cells, which can result in better cell adhesion, growth and proliferation, making it a safe and innovative material for cardiovascular repair.
Collapse
Affiliation(s)
- Izabela Gabriela Rodrigues da Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
| | - Bruna Tássia dos Santos Pantoja
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
| | - Gustavo Henrique Doná Rodrigues Almeida
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
- NUCEL-Cell and Molecular Therapy Center, School of Medicine, Sao Paulo University, Sao Paulo 05508-270, Brazil
| | - Maria Angélica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (I.G.R.d.S.); (B.T.d.S.P.); (G.H.D.R.A.); (A.C.O.C.)
- Correspondence:
| |
Collapse
|
54
|
Wang X, Ansari A, Pierre V, Young K, Kothapalli CR, von Recum HA, Senyo SE. Injectable Extracellular Matrix Microparticles Promote Heart Regeneration in Mice with Post-ischemic Heart Injury. Adv Healthc Mater 2022; 11:e2102265. [PMID: 35118812 PMCID: PMC9035118 DOI: 10.1002/adhm.202102265] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/28/2021] [Indexed: 12/20/2022]
Abstract
Ischemic heart injury causes permanent cardiomyocyte loss and fibrosis impairing cardiac function. Tissue derived biomaterials have shown promise as an injectable treatment for the post-ischemic heart. Specifically, decellularized extracellular matrix (dECM) is a protein rich suspension that forms a therapeutic hydrogel once injected and improves the heart post-injury response in rodents and pig models. Current dECM-derived biomaterials are delivered to the heart as a liquid dECM hydrogel precursor or colloidal suspension, which gels over several minutes. To increase the functionality of the dECM therapy, an injectable solid dECM microparticle formulation derived from heart tissue to control sizing and extend stability in aqueous conditions is developed. When delivered into the infarcted mouse heart, these dECM microparticles protect cardiac function promote vessel density and reduce left ventricular remodeling by sustained delivery of biomolecules. Longer retention, higher stiffness, and slower protein release of dECM microparticles are noted compared to liquid dECM hydrogel precursor. In addition, the dECM microparticle can be developed as a platform for macromolecule delivery. Together, the results suggest that dECM microparticles can be developed as a modular therapy for heart injury.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Ali Ansari
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Valinteshley Pierre
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kathleen Young
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Chandrasekhar R. Kothapalli
- Department of Chemical and Biomedical Engineering, Cleveland State University, Cleveland, Ohio 44115, United States
| | - Horst A. von Recum
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Samuel E. Senyo
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
55
|
Progress in Bioengineering Strategies for Heart Regenerative Medicine. Int J Mol Sci 2022; 23:ijms23073482. [PMID: 35408844 PMCID: PMC8998628 DOI: 10.3390/ijms23073482] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 02/05/2023] Open
Abstract
The human heart has the least regenerative capabilities among tissues and organs, and heart disease continues to be a leading cause of mortality in the industrialized world with insufficient therapeutic options and poor prognosis. Therefore, developing new therapeutic strategies for heart regeneration is a major goal in modern cardiac biology and medicine. Recent advances in stem cell biology and biotechnologies such as human pluripotent stem cells (hPSCs) and cardiac tissue engineering hold great promise for opening novel paths to heart regeneration and repair for heart disease, although these areas are still in their infancy. In this review, we summarize and discuss the recent progress in cardiac tissue engineering strategies, highlighting stem cell engineering and cardiomyocyte maturation, development of novel functional biomaterials and biofabrication tools, and their therapeutic applications involving drug discovery, disease modeling, and regenerative medicine for heart disease.
Collapse
|
56
|
Yu C, Yao F, Li J. Rational design of injectable conducting polymer-based hydrogels for tissue engineering. Acta Biomater 2022; 139:4-21. [PMID: 33894350 DOI: 10.1016/j.actbio.2021.04.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Recently, injectable conducting polymer-based hydrogels (CPHs) have received increasing attention in tissue engineering owing to their controlled conductivity and minimally invasive procedures. Conducting polymers (CPs) are introduced into hydrogels to improve the electrical integration between hydrogels and host tissues and promote the repair of damaged tissues. Furthermore, endowing CPHs with in situ gelation or shear-thinning properties can reduce the injury size and inflammation caused by implanted surgery materials, which approaches the clinical transformation target of conductive biomaterials. Notably, functional CPs, including hydrophilic CP complexes, side-chain modified CPs, and conducting graft polymers, improve the water-dispersible and biocompatible properties of CPs and exhibit significant advantages in fabricating injectable CPHs under physiological conditions. This review discusses the recent progress in designing injectable hydrogels based on functional CPs. Their potential applications in neurological treatment, myocardial repair, and skeletal muscle regeneration are further highlighted. STATEMENT OF SIGNIFICANCE: Conducting polymer-based hydrogels (CPHs) have broad application prospects in the biomedical field. However, the low water dispersibility and processability of conducting polymers (CPs) make them challenging to form injectable CPHs uniformly. For the first time, this review summarizes the functionalization strategies to improve the hydrophilicity and biocompatibility of CPs, which provides unprecedented advantages for designing and fabricating the physical/chemical crosslinked injectable CPHs. Besides, future challenges and prospects for further clinical transformation of injectable CPHs for tissue engineering are presented. This review's content is of great significance for the treatment of electroactive tissues with limited self-regeneration, including neurological treatment, myocardial repair, and skeletal muscle regeneration. Therefore, it is inspiring for the tissue engineering research of biomaterials and medical practitioners.
Collapse
|
57
|
Esmaeili H, Patino-Guerrero A, Hasany M, Ansari MO, Memic A, Dolatshahi-Pirouz A, Nikkhah M. Electroconductive biomaterials for cardiac tissue engineering. Acta Biomater 2022; 139:118-140. [PMID: 34455109 PMCID: PMC8935982 DOI: 10.1016/j.actbio.2021.08.031] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/19/2022]
Abstract
Myocardial infarction (MI) is still the leading cause of mortality worldwide. The success of cell-based therapies and tissue engineering strategies for treatment of injured myocardium have been notably hindered due to the limitations associated with the selection of a proper cell source, lack of engraftment of engineered tissues and biomaterials with the host myocardium, limited vascularity, as well as immaturity of the injected cells. The first-generation approaches in cardiac tissue engineering (cTE) have mainly relied on the use of desired cells (e.g., stem cells) along with non-conductive natural or synthetic biomaterials for in vitro construction and maturation of functional cardiac tissues, followed by testing the efficacy of the engineered tissues in vivo. However, to better recapitulate the native characteristics and conductivity of the cardiac muscle, recent approaches have utilized electroconductive biomaterials or nanomaterial components within engineered cardiac tissues. This review article will cover the recent advancements in the use of electrically conductive biomaterials in cTE. The specific emphasis will be placed on the use of different types of nanomaterials such as gold nanoparticles (GNPs), silicon-derived nanomaterials, carbon-based nanomaterials (CBNs), as well as electroconductive polymers (ECPs) for engineering of functional and electrically conductive cardiac tissues. We will also cover the recent progress in the use of engineered electroconductive tissues for in vivo cardiac regeneration applications. We will discuss the opportunities and challenges of each approach and provide our perspectives on potential avenues for enhanced cTE. STATEMENT OF SIGNIFICANCE: Myocardial infarction (MI) is still the primary cause of death worldwide. Over the past decade, electroconductive biomaterials have increasingly been applied in the field of cardiac tissue engineering. This review article provides the readers with the leading advances in the in vitro applications of electroconductive biomaterials for cTE along with an in-depth discussion of injectable/transplantable electroconductive biomaterials and their delivery methods for in vivo MI treatment. The article also discusses the knowledge gaps in the field and offers possible novel avenues for improved cardiac tissue engineering.
Collapse
Affiliation(s)
- Hamid Esmaeili
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA
| | | | - Masoud Hasany
- Cell Isolation and Transplantation Center, Department of Surgery, Geneva University Hospitals and University of Geneva, Geneva, Switzerland
| | | | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Alireza Dolatshahi-Pirouz
- Department of Health Technology, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark; Department of Health Technology, Technical University of Denmark, Center for Intestinal Absorption and Transport of Biopharmaceuticals, 2800 Kgs, Lyngby, Denmark
| | - Mehdi Nikkhah
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, USA; Biodesign Virginia G. Piper Center for Personalized Diagnostics, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
58
|
Cha GD, Lee WH, Sunwoo SH, Kang D, Kang T, Cho KW, Kim M, Park OK, Jung D, Lee J, Choi SH, Hyeon T, Kim DH. Multifunctional Injectable Hydrogel for In Vivo Diagnostic and Therapeutic Applications. ACS NANO 2022; 16:554-567. [PMID: 35014797 DOI: 10.1021/acsnano.1c07649] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Injectable hydrogels show high potential for in vivo biomedical applications owing to their distinctive mode of administration into the human body. In this study, we propose a material design strategy for developing a multifunctional injectable hydrogel with good adhesiveness, stretchability, and bioresorbability. Its multifunctionality, whereupon multiple reactions occur simultaneously during its injection into the body without requiring energy stimuli and/or additives, was realized through meticulous engineering of bioresorbable precursors based on hydrogel chemistry. The multifunctional injectable hydrogel can be administered through a minimally invasive procedure, form a conformal adhesive interface with the target tissue, dynamically stretch along with the organ motions with minimal mechanical constraints, and be resorbed in vivo after a specific period. Further, the incorporation of functional nanomaterials into the hydrogel allows for various in vivo diagnostic and therapeutic applications, without compromising the original multifunctionality of the hydrogel. These features are verified through theranostic case studies on representative organs, including the skin, liver, heart, and bladder.
Collapse
Affiliation(s)
- Gi Doo Cha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Wang Hee Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dayoung Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taegyu Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ok Kyu Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Dongjun Jung
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Jongha Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Hong Choi
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
59
|
Bejleri D, Robeson MJ, Brown ME, Hunter J, Maxwell JT, Streeter BW, Brazhkina O, Park HJ, Christman KL, Davis ME. In vivo evaluation of bioprinted cardiac patches composed of cardiac-specific extracellular matrix and progenitor cells in a model of pediatric heart failure. Biomater Sci 2022; 10:444-456. [PMID: 34878443 PMCID: PMC8772587 DOI: 10.1039/d1bm01539g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Pediatric patients with congenital heart defects (CHD) often present with heart failure from increased load on the right ventricle (RV) due to both surgical methods to treat CHD and the disease itself. Patients with RV failure often require transplantation, which is limited due to lack of donor availability and rejection. Previous studies investigating the development and in vitro assessment of a bioprinted cardiac patch composed of cardiac extracellular matrix (cECM) and human c-kit + progenitor cells (hCPCs) showed that the construct has promise in treating cardiac dysfunction. The current study investigates in vivo cardiac outcomes of patch implantation in a rat model of RV failure. Patch parameters including cECM-inclusion and hCPC-inclusion are investigated. Assessments include hCPC retention, RV function, and tissue remodeling (vascularization, hypertrophy, and fibrosis). Animal model evaluation shows that both cell-free and neonatal hCPC-laden cECM-gelatin methacrylate (GelMA) patches improve RV function and tissue remodeling compared to other patch groups and controls. Inclusion of cECM is the most influential parameter driving therapeutic improvements, with or without cell inclusion. This study paves the way for clinical translation in treating pediatric heart failure using bioprinted GelMA-cECM and hCPC-GelMA-cECM patches.
Collapse
Affiliation(s)
- Donald Bejleri
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Matthew J Robeson
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Milton E Brown
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Jervaughn Hunter
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 2880 Torrey Pines Scenic Dr, La Jolla, CA, 92037, USA
| | - Joshua T Maxwell
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA, 30322, USA
| | - Benjamin W Streeter
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Olga Brazhkina
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Hyun-Ji Park
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
| | - Karen L Christman
- Department of Bioengineering and Sanford Consortium for Regenerative Medicine, University of California, San Diego, 2880 Torrey Pines Scenic Dr, La Jolla, CA, 92037, USA
| | - Michael E Davis
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, 1760 Haygood Dr, Atlanta, GA, 30322, USA.
- Division of Pediatric Cardiology, Department of Pediatrics, Emory University School of Medicine, 2015 Uppergate Dr, Atlanta, GA, 30322, USA
| |
Collapse
|
60
|
Hunter JD, Johnson TD, Braden RL, Christman KL. Injectable ECM Scaffolds for Cardiac Repair. Methods Mol Biol 2022; 2485:255-268. [PMID: 35618911 DOI: 10.1007/978-1-0716-2261-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Injectable biomaterials have been developed as potential minimally invasive therapies for treating myocardial infarction (MI) and heart failure. Christman et al. first showed that the injection of a biomaterial alone into rat myocardium can improve cardiac function after MI. More recently, hydrogel forms of decellularized extracellular matrix (ECM) materials have shown substantial promise. Here, we present the methods for fabricating an injectable cardiac-specific ECM biomaterial with demonstrated positive outcomes in small and large animal models for cardiac repair as well as initial safety in a Phase I clinical trial. This chapter also covers the methods for the injection of a biomaterial into rat myocardium using a surgical approach through the diaphragm. Although the methods shown here are for injection of an acellular biomaterial, cells or other therapeutics could also be added to the injection for testing other regenerative medicine strategies.
Collapse
Affiliation(s)
- Jervaughn D Hunter
- Sanford Consortium for Regenerative Medicine, Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Todd D Johnson
- Sanford Consortium for Regenerative Medicine, Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Rebecca L Braden
- Sanford Consortium for Regenerative Medicine, Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - Karen L Christman
- Sanford Consortium for Regenerative Medicine, Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
61
|
McLaughlin S, Smyth D, Alarcon EI, Suuronen EJ. Characterization of the Monocyte Response to Biomaterial Therapy for Cardiac Repair. Methods Mol Biol 2022; 2485:279-298. [PMID: 35618913 DOI: 10.1007/978-1-0716-2261-2_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Biomaterials are scaffolds designed to mimic the extracellular matrix and stimulate tissue repair. Biomaterial therapies have shown promise for improving wound healing in cardiac tissue after ischemic injury. An unintentional consequence of biomaterial delivery may be the stimulation of inflammation through recruitment of circulating monocytes into the tissue. Monocytes are a type of leukocyte (white blood cell) that play a critical role in pathogen recognition, phagocytosis of foreign material, and presentation of antigens to initiate an adaptive immune response. An increase in the pro-inflammatory subset of monocytes, marked by Ly6C antigen expression, in response to biomaterials can lead to rapid material degradation, ineffective treatment, and worsening of tissue injury. Flow cytometry is a leading method for screening the recruitment of monocytes to the heart in response to biomaterial injection. Here, we describe the isolation of leukocytes from the heart, blood, and spleen of mice treated with a biomaterial post-myocardial infarction and describe a flow cytometry protocol used to quantify the levels of major leukocyte subtypes, including Ly6C+ inflammatory monocytes.
Collapse
Affiliation(s)
- Sarah McLaughlin
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - David Smyth
- Cardiac Function Laboratory, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Emilio I Alarcon
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Erik J Suuronen
- BioEngineering and Therapeutic Solutions (BEaTS), Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
| |
Collapse
|
62
|
Abstract
Self-assembling peptides (SAPs), which form hydrogels through physical cross-linking of soluble structures, are an intriguing class of materials that have been applied as tissue engineering scaffolds and drug delivery vehicles. For feasible application of these tissue mimetics via minimally invasive delivery, their bulk mechanical properties must be compatible with current delivery strategies. However, injectable SAPs which possess shear-thinning capacity, as well as the ability to reassemble after cessation of shearing can be technically challenging to generate. Many SAPs either clog the high-gauge needle/catheter at high concentration during delivery or are incapable of reassembly following delivery. In this chapter, we provide a detailed protocol for topological control of enzyme-responsive peptide-based hydrogels that enable the user to access both advantages. These materials are formulated as sterically constrained cyclic peptide progelators to temporarily disrupt self-assembly during injection-based delivery, which avoids issues with clogging of needles and catheters as well as nearby vasculature. Proteolytic cleavage by enzymes produced at the target tissue induces progelator linearization and hydrogelation. The scope of this approach is demonstrated by their ability to flow through a catheter without clogging and activated gelation upon exposure to target enzymes.
Collapse
Affiliation(s)
- Andrea S Carlini
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Pharmacology, Northwestern University, Evanston, IL, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute, Northwestern University, Evanston, IL, USA
| | - Mary F Cassidy
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
- Department of Pharmacology, Northwestern University, Evanston, IL, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA
- Simpson Querrey Institute, Northwestern University, Evanston, IL, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Department of Materials Science & Engineering, Northwestern University, Evanston, IL, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA.
- Department of Pharmacology, Northwestern University, Evanston, IL, USA.
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, USA.
- Simpson Querrey Institute, Northwestern University, Evanston, IL, USA.
| |
Collapse
|
63
|
Mei X, Zhu D, Li J, Huang K, Hu S, Li Z, López de Juan Abad B, Cheng K. A fluid-powered refillable origami heart pouch for minimally invasive delivery of cell therapies in rats and pigs. MED (NEW YORK, N.Y.) 2021; 2:1253-1268. [PMID: 34825239 PMCID: PMC8612456 DOI: 10.1016/j.medj.2021.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Cardiac repair after heart injury remains a big challenge and current drug delivery to the heart is suboptimal. Repeated dosing of therapeutics is difficult due to the invasive nature of such procedures. METHODS We developed a fluid-driven heart pouch with a memory-shaped microfabricated lattice structure inspired by origami. The origami structure allowed minimally invasive delivery of the pouch to the heart with two small incisions and can be refilled multiple times with the therapeutic of choice. FINDINGS We tested the pouch's ability to deliver mesenchymal stem cells (MSCs) in a rodent model of acute myocardial infarction and demonstrated the feasibility of minimally invasive delivery in a swine model. The pouch's semi-permeable membrane successfully protected delivered cells from their surroundings, maintaining their viability while releasing paracrine factors to the infarcted site for cardiac repair. CONCLUSIONS In summary, we developed a fluid-driven heart pouch with a memory-shaped microfabricated lattice structure inspired by origami. The origami structure allowed minimally invasive delivery of the pouch to the heart with two small incisions and can be refilled with the therapeutic of choice.
Collapse
Affiliation(s)
- Xuan Mei
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Junlang Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ke Huang
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Shiqi Hu
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhenhua Li
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Blanca López de Juan Abad
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences and Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27695, USA,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA,Lead contact,Corresponding author.
| |
Collapse
|
64
|
Wang X, Pierre V, Senapati S, Park PSH, Senyo SE. Microenvironment Stiffness Amplifies Post-ischemia Heart Regeneration in Response to Exogenous Extracellular Matrix Proteins in Neonatal Mice. Front Cardiovasc Med 2021; 8:773978. [PMID: 34805326 PMCID: PMC8602555 DOI: 10.3389/fcvm.2021.773978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/14/2021] [Indexed: 11/13/2022] Open
Abstract
The cardiogenesis of the fetal heart is absent in juveniles and adults. Cross-transplantation of decellularized extracellular matrix (dECM) can stimulate regeneration in myocardial infarct (MI) models. We have previously shown that dECM and tissue stiffness have cooperative regulation of heart regeneration in transiently regenerative day 1 neonatal mice. To investigate underlying mechanisms of mechano-signaling and dECM, we pharmacologically altered heart stiffness and administered dECM hydrogels in non-regenerative mice after MI. The dECM combined with softening exhibits preserved cardiac function, LV geometry, increased cardiomyocyte mitosis and lowered fibrosis while stiffening further aggravated ischemic damage. Transcriptome analysis identified a protein in cardiomyocytes, CLCA2, confirmed to be upregulated after MI and downregulated by dECM in a mechanosensitive manner. Synthetic knock-down of CLCA2 expression induced mitosis in primary rat cardiomyocytes in the dish. Together, our results indicate that therapeutic efficacy of extracellular molecules for heart regeneration can be modulated by heart microenvironment stiffness in vivo.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Valinteshley Pierre
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| | - Subhadip Senapati
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Paul S.-H. Park
- Department of Ophthalmology and Visual Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Samuel E. Senyo
- Department of Biomedical Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH, United States
| |
Collapse
|
65
|
Zhou Q, Guaiquil VH, Wong M, Escobar A, Ivakhnitskaia E, Yazdanpanah G, Jing H, Sun M, Sarkar J, Luo Y, Rosenblatt MI. Hydrogels derived from acellular porcine corneal stroma enhance corneal wound healing. Acta Biomater 2021; 134:177-189. [PMID: 34400306 PMCID: PMC8542601 DOI: 10.1016/j.actbio.2021.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 07/28/2021] [Accepted: 08/09/2021] [Indexed: 01/27/2023]
Abstract
Acellular cornea derived hydrogels provide significant advantages in preserving native corneal stromal keratocyte cells and endothelial cells. However, for clinical application, hydrogel physical properties need to be improved, and their role in corneal epithelial wound healing requires further investigation. In this study, an acellular porcine corneal stroma (APCS) hydrogel (APCS-gel) was successfully prepared from 20 mg/ml APCS, demonstrated optimal light transmittance and gelation kinetic properties and retained critical corneal ECM of collagens and growth factors. Compared with fibrin gel, the APCS-gel had a higher porosity ratio and faster nutrition diffusion with an accompanying improvement in the proliferation of primary rabbit corneal epithelial cells (RCECs) and stromal cells (RCSCs). These corneal cell types also displayed improved viability and cellular infiltration. Furthermore, the APCS-gel provides significant advantages in the preservation of RCECs stemness and enhancement of corneal wound healing in vitro and in vivo. After 7 days of culture, 3-4 layers of RCECs were formed on the APCS-gel in vitro, while only 1-2 layers were found on the fibrin gel. More corneal stem/progenitor cell phenotypes (K12-, p63+, ABCG2+) and proliferation phenotypes (Ki67+) were detected on the APCS-gel than fibrin gel. Using a corneal epithelial wound healing model, we also found faster reepithelization in corneas that received APCS-gel compared to fibrin gel. Additionally, our APCS-gel demonstrated better physical and biological properties when compared to Tisseel, a clinically used type of fibrin gel. In conclusion, our APCS-gel provided better corneal epithelial and stromal cell biocompatibility to fibrin gels and due to its transparency and faster gelation time could potentially be superior for clinical purposes. STATEMENT OF SIGNIFICANCE: Extracellular matrix (ECM) can be used to provide tissue specific physical microstructure and biochemical cues for tissue regeneration. Here, we produced an ECM hydrogel derived from acellular porcine cornea stroma (APCS-gel) that retained critical biological characteristics of the native tissue and provided significant transparency and fast gelation time. Our data demonstrated that the APCS-gel was superior to clinically used fibrin gel, as the APCS-gel showed high porosity and permeability, better corneal stromal keratocytes infiltration, increased cellular proliferation and retention of corneal epithelial cells stemness. The APCS-gel improved corneal wound healing in vitro and in vivo. This APCS-gel may have clinical utility for corneal diseases, and the more general approach used to make this hydrogel might be used in other tissues.
Collapse
Affiliation(s)
- Qiang Zhou
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL 60612, USA
| | - Victor H Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL 60612, USA
| | - Matthea Wong
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL 60612, USA
| | - Alejandro Escobar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL 60612, USA
| | - Evguenia Ivakhnitskaia
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL 60612, USA
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL 60612, USA
| | - Hongwu Jing
- Department of Obstetrics and Gynecology, University of Illinois at Chicago, IL 60612, USA
| | - Michael Sun
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL 60612, USA
| | - Joy Sarkar
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL 60612, USA
| | - Yuncin Luo
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL 60612, USA
| | - Mark I Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, IL 60612, USA.
| |
Collapse
|
66
|
Zhou R, Yu J, Gu Z, Zhang Y. Microneedle-mediated therapy for cardiovascular diseases. Drug Deliv Transl Res 2021; 12:472-483. [PMID: 34637115 DOI: 10.1007/s13346-021-01073-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2021] [Indexed: 11/30/2022]
Abstract
Cardiovascular diseases remain a leading cause of global disease burden. To date, the limited drug delivery efficacy confines the therapeutic effect in most conventional approaches, such as intramyocardial injections and vascular devices, due to short-term drug release and low retention within the disease sites. As a typical transdermal medical device with a minimally invasive manner and controlled/sustained drug release pattern, microneedles have gained momentum in the field of cardiovascular therapy, from which several cardiovascular diseases have been benefited to the ultimate therapeutic effects. In this concise review, strategies based on the microneedles for the treatments of cardiovascular diseases are introduced, mainly focus on hypertension, atherosclerosis, thrombus, and myocardial diseases. The limitations at the present stage and perspectives of the next-generation microneedles for cardiovascular therapy are also discussed.
Collapse
Affiliation(s)
- Ruyi Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jicheng Yu
- Zenomics Inc., Los Angeles, CA, 90095, USA
| | - Zhen Gu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Department of General Surgery, School of Medicine, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, 310016, China. .,Zhejiang Laboratory of Systems & Precision Medicine, Zhejiang University Medical Center, Hangzhou, 311121, China. .,MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
| | - Yuqi Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China. .,Department of Burns and Wound Center, College of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China.
| |
Collapse
|
67
|
Mulvany E, McMahan S, Xu J, Yazdani N, Willits R, Liao J, Zhang G, Hong Y. In vitro comparison of harvesting site effects on cardiac extracellular matrix hydrogels. J Biomed Mater Res A 2021; 109:1922-1930. [PMID: 33822464 PMCID: PMC9789793 DOI: 10.1002/jbm.a.37184] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 12/26/2022]
Abstract
Cardiac extracellular matrix (cECM) derived hydrogel has been investigated to treat myocardial infarction through animal studies and clinical trials. The tissue harvesting site commonly selects porcine left ventricle (LV) because heart attack majorly takes place in LV. However, little is known about whether the region of cardiac tissue harvesting is critical for downstream applications. In this work, in vitro studies to compare cECM hydrogels derived from adult porcine whole heart (WH), LV, and right ventricle (RV) were performed. The cECM from WH has similar chemical composition compared with cECM from LV and RV. All three types of cECM hydrogels share many similarities in terms of their microstructure, gelation time, and mechanical properties. WH-derived cECM hydrogels have larger variations in storage modulus (G') and complex modulus (G*) compared with the other two types of cECM hydrogels. Both human cardiomyocytes and mesenchymal stem cells could maintain high cell viability on all hydrogels without significant difference. In terms of above results, the cECM hydrogels from WH, LV and RV exhibited similarity in material properties and cell response in vitro. Thus, future fabrication of cECM hydrogels from WH would increase the yield, which would decrease processing time and production cost.
Collapse
Affiliation(s)
- Emily Mulvany
- Department of Biomedical Engineering, The University of Akron, Ohio, OH 44325
| | - Sara McMahan
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019
| | - Jiazhu Xu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019
| | - Narges Yazdani
- Department of Biomedical Engineering, The University of Akron, Ohio, OH 44325
| | - Rebecca Willits
- Department of Biomedical Engineering, The University of Akron, Ohio, OH 44325
| | - Jun Liao
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019
| | - Ge Zhang
- Department of Biomedical Engineering, The University of Akron, Ohio, OH 44325,Corresponding authors: Yi Hong, , Phone: 01-817-272-0562; Ge Zhang, , phone: 01-330-972-5237
| | - Yi Hong
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX 76019,Corresponding authors: Yi Hong, , Phone: 01-817-272-0562; Ge Zhang, , phone: 01-330-972-5237
| |
Collapse
|
68
|
Recent Advances in Cardiac Tissue Engineering for the Management of Myocardium Infarction. Cells 2021; 10:cells10102538. [PMID: 34685518 PMCID: PMC8533887 DOI: 10.3390/cells10102538] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/16/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Myocardium Infarction (MI) is one of the foremost cardiovascular diseases (CVDs) causing death worldwide, and its case numbers are expected to continuously increase in the coming years. Pharmacological interventions have not been at the forefront in ameliorating MI-related morbidity and mortality. Stem cell-based tissue engineering approaches have been extensively explored for their regenerative potential in the infarcted myocardium. Recent studies on microfluidic devices employing stem cells under laboratory set-up have revealed meticulous events pertaining to the pathophysiology of MI occurring at the infarcted site. This discovery also underpins the appropriate conditions in the niche for differentiating stem cells into mature cardiomyocyte-like cells and leads to engineering of the scaffold via mimicking of native cardiac physiological conditions. However, the mode of stem cell-loaded engineered scaffolds delivered to the site of infarction is still a challenging mission, and yet to be translated to the clinical setting. In this review, we have elucidated the various strategies developed using a hydrogel-based system both as encapsulated stem cells and as biocompatible patches loaded with cells and applied at the site of infarction.
Collapse
|
69
|
Correa S, Grosskopf AK, Lopez Hernandez H, Chan D, Yu AC, Stapleton LM, Appel EA. Translational Applications of Hydrogels. Chem Rev 2021; 121:11385-11457. [PMID: 33938724 PMCID: PMC8461619 DOI: 10.1021/acs.chemrev.0c01177] [Citation(s) in RCA: 366] [Impact Index Per Article: 122.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Indexed: 12/17/2022]
Abstract
Advances in hydrogel technology have unlocked unique and valuable capabilities that are being applied to a diverse set of translational applications. Hydrogels perform functions relevant to a range of biomedical purposes-they can deliver drugs or cells, regenerate hard and soft tissues, adhere to wet tissues, prevent bleeding, provide contrast during imaging, protect tissues or organs during radiotherapy, and improve the biocompatibility of medical implants. These capabilities make hydrogels useful for many distinct and pressing diseases and medical conditions and even for less conventional areas such as environmental engineering. In this review, we cover the major capabilities of hydrogels, with a focus on the novel benefits of injectable hydrogels, and how they relate to translational applications in medicine and the environment. We pay close attention to how the development of contemporary hydrogels requires extensive interdisciplinary collaboration to accomplish highly specific and complex biological tasks that range from cancer immunotherapy to tissue engineering to vaccination. We complement our discussion of preclinical and clinical development of hydrogels with mechanical design considerations needed for scaling injectable hydrogel technologies for clinical application. We anticipate that readers will gain a more complete picture of the expansive possibilities for hydrogels to make practical and impactful differences across numerous fields and biomedical applications.
Collapse
Affiliation(s)
- Santiago Correa
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Abigail K. Grosskopf
- Chemical
Engineering, Stanford University, Stanford, California 94305, United States
| | - Hector Lopez Hernandez
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | - Doreen Chan
- Chemistry, Stanford University, Stanford, California 94305, United States
| | - Anthony C. Yu
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
| | | | - Eric A. Appel
- Materials
Science & Engineering, Stanford University, Stanford, California 94305, United States
- Bioengineering, Stanford University, Stanford, California 94305, United States
- Pediatric
Endocrinology, Stanford University School
of Medicine, Stanford, California 94305, United States
- ChEM-H Institute, Stanford
University, Stanford, California 94305, United States
- Woods
Institute for the Environment, Stanford
University, Stanford, California 94305, United States
| |
Collapse
|
70
|
Park Y, Ji ST, Yong U, Das S, Jang WB, Ahn G, Kwon SM, Jang J. 3D bioprinted tissue-specific spheroidal multicellular microarchitectures for advanced cell therapy. Biofabrication 2021; 13. [PMID: 34433153 DOI: 10.1088/1758-5090/ac212e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/25/2021] [Indexed: 01/05/2023]
Abstract
Intercellular interaction is the most crucial factor in promoting cell viability and functionality in an engineered tissue system. Of the various shapes available for cell-laden constructs, spheroidal multicellular microarchitectures (SMMs) have been introduced as building blocks and injectable cell carriers with substantial cell-cell and cell-extracellular matrix (ECM) interactions. Here, we developed a precise and expeditious SMM printing method that can create a tissue-specific microenvironment and thus be potentially useful for cell therapy. This printing strategy is designed to manufacture SMMs fabricated with optimal bioink blended with decellularized ECM and alginate to enhance the functional performance of the encapsulated cells. Experimental results showed that the proposed method allowed for size controllability and mass production of SMMs with high cell viability. Moreover, SMMs co-cultured with endothelial cells promoted lineage-specific maturation and increased functionality compared to monocultured SMMs. Overall, it was concluded that SMMs have the potential for use in cell therapy due to their high cell retention and proliferation rate compared to single-cell injection, particularly for efficient tissue regeneration after myocardial infarction. This study suggests that utilizing microextrusion-based 3D bioprinting technology to encapsulate cells in cell-niche-standardized SMMs can expand the range of possible applications.
Collapse
Affiliation(s)
- Yejin Park
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Republic of Korea
| | - Seung Taek Ji
- Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan, Kyungnam 50612, Republic of Korea
| | - Uijung Yong
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Republic of Korea
| | - Sanskrita Das
- Department of Biomedical Engineering, Emory University, Atlanta, GA 30322, United States of America
| | - Woong Bi Jang
- Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan, Kyungnam 50612, Republic of Korea
| | - Geunseon Ahn
- Research Institute, Sphebio Co., Ltd, Pohang, Kyungbuk 37666, Republic of Korea
| | - Sang-Mo Kwon
- Stem Cell Research Center, Medical Research Institute, Pusan National University School of Medicine, Yangsan, Kyungnam 50612, Republic of Korea
| | - Jinah Jang
- Department of Convergence IT Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Kyungbuk 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Mechanical Engineering, POSTECH, Pohang, Kyungbuk 37673, Republic of Korea
| |
Collapse
|
71
|
Fan Z, Wei Y, Yin Z, Huang H, Liao X, Sun L, Liu B, Liu F. Near-Infrared Light-Triggered Unfolding Microneedle Patch for Minimally Invasive Treatment of Myocardial Ischemia. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40278-40289. [PMID: 34424666 DOI: 10.1021/acsami.1c09658] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is hard to achieve safe, effective, and minimally invasive therapies on myocardial infarction (MI) via conventional treatments. To address this challenge, a vascular endothelial growth factor (VEGF)-loaded and near-infrared (NIR)-triggered self-unfolding graphene oxide (GO)-poly(vinyl alcohol) (PVA) microneedle (MN) patch was designed and fabricated to treat MI through a minimally invasive surgery (MIS). The folded MN patch can be easily placed into the chest cavity through a small cut (4 mm) and quickly recover to its original shape with 10 s of irradiation of NIR light (1.5 W/cm2, beam diameter = 0.5 cm), thanks to its excellent shape memory effect and fast shape recovery ability. Meanwhile, the unfolded MN patch can be readily punctured into the heart and wrap the heart tightly, thanks to its sufficient mechanical strength and adjustable morphological structure, thus ensuring a high fixation strength to withstand the high-frequency pulsation of the heart. In addition, the prepared MN patch has low cytotoxicity and controllable and sustainable release of VEGF. More importantly, the MN patch can effectively promote neovascularization, reduce myocardial fibrosis, and restore cardiac function, which indicates its promising application prospects in MIS.
Collapse
Affiliation(s)
- Zengjie Fan
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Yuan Wei
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Zhengrong Yin
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Haofei Huang
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Xiaozhu Liao
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Luyi Sun
- Polymer Program, Institute of Materials Science and Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Bin Liu
- Key Laboratory of Dental Maxillofacial Reconstruction and Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou 730000, People's Republic of China
- School of Stomatology, Lanzhou University, Lanzhou 730000, People's Republic of China
| | - Fengzhen Liu
- Liaocheng People's Hospital, Medical College of Liaocheng University, Liaocheng 252000, People's Republic of China
| |
Collapse
|
72
|
Cardiac Extracellular Matrix Hydrogel Enriched with Polyethylene Glycol Presents Improved Gelation Time and Increased On-Target Site Retention of Extracellular Vesicles. Int J Mol Sci 2021; 22:ijms22179226. [PMID: 34502146 PMCID: PMC8431142 DOI: 10.3390/ijms22179226] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/19/2021] [Accepted: 08/22/2021] [Indexed: 12/17/2022] Open
Abstract
Stem-cell-derived extracellular vesicles (EVs) have demonstrated multiple beneficial effects in preclinical models of cardiac diseases. However, poor retention at the target site may limit their therapeutic efficacy. Cardiac extracellular matrix hydrogels (cECMH) seem promising as drug-delivery materials and could improve the retention of EVs, but may be limited by their long gelation time and soft mechanical properties. Our objective was to develop and characterize an optimized product combining cECMH, polyethylene glycol (PEG), and EVs (EVs–PEG–cECMH) in an attempt to overcome their individual limitations: long gelation time of the cECMH and poor retention of the EVs. The new combined product presented improved physicochemical properties (60% reduction in half gelation time, p < 0.001, and threefold increase in storage modulus, p < 0.01, vs. cECMH alone), while preserving injectability and biodegradability. It also maintained in vitro bioactivity of its individual components (55% reduction in cellular senescence vs. serum-free medium, p < 0.001, similar to EVs and cECMH alone) and increased on-site retention in vivo (fourfold increase vs. EVs alone, p < 0.05). In conclusion, the combination of EVs–PEG–cECMH is a potential multipronged product with improved gelation time and mechanical properties, increased on-site retention, and maintained bioactivity that, all together, may translate into boosted therapeutic efficacy.
Collapse
|
73
|
Wharton's Jelly Mesenchymal Stromal Cells and Derived Extracellular Vesicles as Post-Myocardial Infarction Therapeutic Toolkit: An Experienced View. Pharmaceutics 2021; 13:pharmaceutics13091336. [PMID: 34575412 PMCID: PMC8471243 DOI: 10.3390/pharmaceutics13091336] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
Outstanding progress has been achieved in developing therapeutic options for reasonably alleviating symptoms and prolonging the lifespan of patients suffering from myocardial infarction (MI). Current treatments, however, only partially address the functional recovery of post-infarcted myocardium, which is in fact the major goal for effective primary care. In this context, we largely investigated novel cell and TE tissue engineering therapeutic approaches for cardiac repair, particularly using multipotent mesenchymal stromal cells (MSC) and natural extracellular matrices, from pre-clinical studies to clinical application. A further step in this field is offered by MSC-derived extracellular vesicles (EV), which are naturally released nanosized lipid bilayer-delimited particles with a key role in cell-to-cell communication. Herein, in this review, we further describe and discuss the rationale, outcomes and challenges of our evidence-based therapy approaches using Wharton's jelly MSC and derived EV in post-MI management.
Collapse
|
74
|
Zhu D, Hou J, Qian M, Jin D, Hao T, Pan Y, Wang H, Wu S, Liu S, Wang F, Wu L, Zhong Y, Yang Z, Che Y, Shen J, Kong D, Yin M, Zhao Q. Nitrate-functionalized patch confers cardioprotection and improves heart repair after myocardial infarction via local nitric oxide delivery. Nat Commun 2021; 12:4501. [PMID: 34301958 PMCID: PMC8302626 DOI: 10.1038/s41467-021-24804-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 07/05/2021] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a short-lived signaling molecule that plays a pivotal role in cardiovascular system. Organic nitrates represent a class of NO-donating drugs for treating coronary artery diseases, acting through the vasodilation of systemic vasculature that often leads to adverse effects. Herein, we design a nitrate-functionalized patch, wherein the nitrate pharmacological functional groups are covalently bound to biodegradable polymers, thus transforming small-molecule drugs into therapeutic biomaterials. When implanted onto the myocardium, the patch releases NO locally through a stepwise biotransformation, and NO generation is remarkably enhanced in infarcted myocardium because of the ischemic microenvironment, which gives rise to mitochondrial-targeted cardioprotection as well as enhanced cardiac repair. The therapeutic efficacy is further confirmed in a clinically relevant porcine model of myocardial infarction. All these results support the translational potential of this functional patch for treating ischemic heart disease by therapeutic mechanisms different from conventional organic nitrate drugs.
Collapse
Affiliation(s)
- Dashuai Zhu
- State key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
- School of Medicine, Nankai University, Tianjin, China
| | - Jingli Hou
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Meng Qian
- State key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Dawei Jin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tian Hao
- State key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Yanjun Pan
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - He Wang
- State key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Shuting Wu
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Liu
- School of Medicine, Nankai University, Tianjin, China
| | - Fei Wang
- State key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Lanping Wu
- Department of Cardiac Ultrasound, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yumin Zhong
- Diagnostic Imaging Center, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhilu Yang
- Key Laboratory of Advanced Technology for Materials of Education Ministry, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yongzhe Che
- School of Medicine, Nankai University, Tianjin, China
| | - Jie Shen
- College of Pharmacy, Nankai University, Tianjin, China
| | - Deling Kong
- State key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China
| | - Meng Yin
- Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Qiang Zhao
- State key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials (Ministry of Education), College of Life Sciences, Nankai University, Tianjin, China.
- Zhengzhou Cardiovascular Hospital and 7th People's Hospital of Zhengzhou, Zhengzhou, Henan Province, China.
| |
Collapse
|
75
|
Roshanbinfar K, Esser TU, Engel FB. Stem Cells and Their Cardiac Derivatives for Cardiac Tissue Engineering and Regenerative Medicine. Antioxid Redox Signal 2021; 35:143-162. [PMID: 32993354 DOI: 10.1089/ars.2020.8193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Significance: Heart failure is among the leading causes of morbidity worldwide with a 5-year mortality rate of ∼50%. Therefore, major efforts are invested to reduce heart damage upon injury or maintain and at best restore heart function. Recent Advances: In clinical trials, acellular constructs succeeded in improving cardiac function by stabilizing the infarcted heart. In addition, strategies utilizing stem-cell-derived cardiomyocytes have been developed to improve heart function postmyocardial infarction in small and large animal models. These strategies range from injection of cell-laden hydrogels to unstructured hydrogel-based and complex biofabricated cardiac patches. Importantly, novel methods have been developed to promote differentiation of stem-cell-derived cardiomyocytes to prevascularized cardiac patches. Critical Issues: Despite substantial progress in vascularization strategies for heart-on-the-chip technologies, little advance has been made in generating vascularized cardiac patches with clinically relevant dimensions. In addition, proper electrical coupling between engineered and host tissue to prevent and/or eliminate arrhythmia remains an unresolved issue. Finally, despite advanced approaches to include hierarchical structures in cardiac tissues, engineered tissues do not generate forces in the range of native adult cardiac tissue. Future Directions: It involves utilizing novel materials and advancing biofabrication strategies to generate prevascularized three-dimensional multicellular constructs of clinical relevant size; inclusion of hierarchical structures, electroconductive materials, and biologically active factors to enhance cardiomyocyte differentiation for optimized force generation and vascularization; optimization of bioreactor strategies for tissue maturation. Antioxid. Redox Signal. 35, 143-162.
Collapse
Affiliation(s)
- Kaveh Roshanbinfar
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tilman U Esser
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Felix B Engel
- Experimental Renal and Cardiovascular Research, Department of Nephropathology, Institute of Pathology, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.,Muscle Research Center Erlangen, MURCE, Erlangen, Germany
| |
Collapse
|
76
|
Contessotto P, Orbanić D, Da Costa M, Jin C, Owens P, Chantepie S, Chinello C, Newell J, Magni F, Papy-Garcia D, Karlsson NG, Kilcoyne M, Dockery P, Rodríguez-Cabello JC, Pandit A. Elastin-like recombinamers-based hydrogel modulates post-ischemic remodeling in a non-transmural myocardial infarction in sheep. Sci Transl Med 2021; 13:13/581/eaaz5380. [PMID: 33597263 DOI: 10.1126/scitranslmed.aaz5380] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/30/2020] [Accepted: 01/27/2021] [Indexed: 01/11/2023]
Abstract
Ischemic heart disease is a leading cause of mortality due to irreversible damage to cardiac muscle. Inspired by the post-ischemic microenvironment, we devised an extracellular matrix (ECM)-mimicking hydrogel using catalyst-free click chemistry covalent bonding between two elastin-like recombinamers (ELRs). The resulting customized hydrogel included functional domains for cell adhesion and protease cleavage sites, sensitive to cleavage by matrix metalloproteases overexpressed after myocardial infarction (MI). The scaffold permitted stromal cell invasion and endothelial cell sprouting in vitro. The incidence of non-transmural infarcts has increased clinically over the past decade, and there is currently no treatment preventing further functional deterioration in the infarcted areas. Here, we have developed a clinically relevant ovine model of non-transmural infarcts induced by multiple suture ligations. Intramyocardial injections of the degradable ELRs-hydrogel led to complete functional recovery of ejection fraction 21 days after the intervention. We observed less fibrosis and more angiogenesis in the ELRs-hydrogel-treated ischemic core region compared to the untreated animals, as validated by the expression, proteomic, glycomic, and histological analyses. These findings were accompanied by enhanced preservation of GATA4+ cardiomyocytes in the border zone of the infarct. We propose that our customized ECM favors cardiomyocyte preservation in the border zone by modulating the ischemic core and a marked functional recovery. The functional benefits obtained by the timely injection of the ELRs-hydrogel in a clinically relevant MI model support the potential utility of this treatment for further clinical translation.
Collapse
Affiliation(s)
- Paolo Contessotto
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland
| | - Doriana Orbanić
- Group for Advanced Materials and Nanobiotechnology (BIOFORGE Lab), CIBER-BBN, University of Valladolid, Valladolid, Spain
| | - Mark Da Costa
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.
| | - Chunsheng Jin
- Department of Medical Biochemistry, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Owens
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - Sandrine Chantepie
- Laboratory Cell Growth, Tissue Repair, and Regeneration (CRRET), EA UPEC 4397/ERL CNRS 9215, University Paris Est, Créteil, France
| | - Clizia Chinello
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - John Newell
- School of Mathematics, Statistics, and Applied Mathematics, National University of Ireland Galway, Galway, Ireland
| | - Fulvio Magni
- Clinical Proteomics and Metabolomics Unit, School of Medicine and Surgery, University of Milano-Bicocca, Vedano al Lambro, Italy
| | - Dulce Papy-Garcia
- Laboratory Cell Growth, Tissue Repair, and Regeneration (CRRET), EA UPEC 4397/ERL CNRS 9215, University Paris Est, Créteil, France
| | - Niclas G Karlsson
- Department of Medical Biochemistry, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michelle Kilcoyne
- Carbohydrate Signalling Group, Microbiology, School of Natural Sciences, National University of Ireland Galway, Galway, Ireland
| | - Peter Dockery
- Centre for Microscopy and Imaging, Anatomy, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | - José C Rodríguez-Cabello
- Group for Advanced Materials and Nanobiotechnology (BIOFORGE Lab), CIBER-BBN, University of Valladolid, Valladolid, Spain
| | - Abhay Pandit
- CÚRAM SFI Research Centre for Medical Devices, National University of Ireland Galway, Galway, Ireland.
| |
Collapse
|
77
|
Tenreiro MF, Louro AF, Alves PM, Serra M. Next generation of heart regenerative therapies: progress and promise of cardiac tissue engineering. NPJ Regen Med 2021; 6:30. [PMID: 34075050 PMCID: PMC8169890 DOI: 10.1038/s41536-021-00140-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/10/2021] [Indexed: 02/04/2023] Open
Abstract
The adult heart is a vital and highly specialized organ of the human body, with limited capability of self-repair and regeneration in case of injury or disease. Engineering biomimetic cardiac tissue to regenerate the heart has been an ambition in the field of tissue engineering, tracing back to the 1990s. Increased understanding of human stem cell biology and advances in process engineering have provided an unlimited source of cells, particularly cardiomyocytes, for the development of functional cardiac muscle, even though pluripotent stem cell-derived cardiomyocytes poorly resemble those of the adult heart. This review outlines key biology-inspired strategies reported to improve cardiomyocyte maturation features and current biofabrication approaches developed to engineer clinically relevant cardiac tissues. It also highlights the potential use of this technology in drug discovery science and disease modeling as well as the current efforts to translate it into effective therapies that improve heart function and promote regeneration.
Collapse
Affiliation(s)
- Miguel F Tenreiro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana F Louro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biologica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal.
| |
Collapse
|
78
|
Elde S, Wang H, Woo YJ. The Expanding Armamentarium of Innovative Bioengineered Strategies to Augment Cardiovascular Repair and Regeneration. Front Bioeng Biotechnol 2021; 9:674172. [PMID: 34141702 PMCID: PMC8205517 DOI: 10.3389/fbioe.2021.674172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 04/13/2021] [Indexed: 11/27/2022] Open
Abstract
Cardiovascular disease remains the leading cause of death worldwide. While clinical trials of cell therapy have demonstrated largely neutral results, recent investigations into the mechanisms of natural myocardial regeneration have demonstrated promising new intersections between molecular, cellular, tissue, biomaterial, and biomechanical engineering solutions. New insight into the crucial role of inflammation in natural regenerative processes may explain why previous efforts have yielded only modest degrees of regeneration. Furthermore, the new understanding of the interdependent relationship of inflammation and myocardial regeneration have catalyzed the emergence of promising new areas of investigation at the intersection of many fields.
Collapse
Affiliation(s)
- Stefan Elde
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Y Joseph Woo
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| |
Collapse
|
79
|
Biotherapeutic-loaded injectable hydrogels as a synergistic strategy to support myocardial repair after myocardial infarction. J Control Release 2021; 335:216-236. [PMID: 34022323 DOI: 10.1016/j.jconrel.2021.05.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/18/2022]
Abstract
Myocardial infarction (MI) has been considered as the leading cause of cardiovascular-related deaths worldwide. Although traditional therapeutic agents including various bioactive species such as growth factors, stem cells, and nucleic acids have demonstrated somewhat usefulness for the restoration of cardiac functions, the therapeutic efficiency remains unsatisfactory most likely due to the off-target-associated side effects and low localized retention of the used therapeutic agents in the infarcted myocardium, which constitutes a substantial barrier for the effective treatment of MI. Injectable hydrogels are regarded as a minimally invasive technology that can overcome the clinical and surgical limitations of traditional stenting by a modulated sol-gel transition and localized transport of a variety of encapsulated cargoes, leading to enhanced therapeutic efficiency and improved patient comfort and compliance. However, the design of injectable hydrogels for myocardial repair and the mechanism of action of bioactive substance-loaded hydrogels for MI repair remain unclear. To elucidate these points, we summarized the recent progresses made on the use of injectable hydrogels for encapsulation of various therapeutic substances for MI treatment with an emphasis on the mechanism of action of hydrogel systems for myocardial repair. Specifically, the pathogenesis of MI and the rational design of injectable hydrogels for myocardial repair were presented. Next, the mechanisms of various biotherapeutic substance-loaded injectable hydrogels for myocardial repair was discussed. Finally, the potential challenges and future prospects for the use of injectable hydrogels for MI treatment were proposed for the purpose of drawing theoretical guidance on the development of novel therapeutic strategies for efficient treatment of MI.
Collapse
|
80
|
Zhang W, Du A, Liu S, Lv M, Chen S. Research progress in decellularized extracellular matrix-derived hydrogels. Regen Ther 2021; 18:88-96. [PMID: 34095366 PMCID: PMC8142036 DOI: 10.1016/j.reth.2021.04.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/21/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Decellularized extracellular matrix (dECM) is widely used in regenerative medicine as a scaffold material due to its unique biological activity and good biocompatibility. Hydrogel is a three-dimensional network structure polymer with high water content and high swelling that can simulate the water environment of human tissues, has good biocompatibility, and can exchange nutrients, oxygen, and waste with cells. At present, hydrogel is the ideal biological material for tissue engineering. In recent years, rapid development of the hydrogel theory and technology and progress in the use of dECM to form hydrogels have attracted considerable attention to dECM hydrogels as an innovative method for tissue engineering and regenerative medicine. This article introduces the classification of hydrogels, and focuses on the history and formation of dECM hydrogels, the source of dECM, the application of dECM hydrogels in tissue engineering and the commercial application of dECM materials.
Collapse
Affiliation(s)
- Wenhui Zhang
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Aoling Du
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Shun Liu
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Mingyue Lv
- Anesthesia Class 1 of Chuanshan College, South China University, Hengyang, Hunan 421001, China
| | - Shenghua Chen
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
81
|
Santos ARMP, Jang Y, Son I, Kim J, Park Y. Recapitulating Cardiac Structure and Function In Vitro from Simple to Complex Engineering. MICROMACHINES 2021; 12:mi12040386. [PMID: 33916254 PMCID: PMC8067203 DOI: 10.3390/mi12040386] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 12/12/2022]
Abstract
Cardiac tissue engineering aims to generate in vivo-like functional tissue for the study of cardiac development, homeostasis, and regeneration. Since the heart is composed of various types of cells and extracellular matrix with a specific microenvironment, the fabrication of cardiac tissue in vitro requires integrating technologies of cardiac cells, biomaterials, fabrication, and computational modeling to model the complexity of heart tissue. Here, we review the recent progress of engineering techniques from simple to complex for fabricating matured cardiac tissue in vitro. Advancements in cardiomyocytes, extracellular matrix, geometry, and computational modeling will be discussed based on a technology perspective and their use for preparation of functional cardiac tissue. Since the heart is a very complex system at multiscale levels, an understanding of each technique and their interactions would be highly beneficial to the development of a fully functional heart in cardiac tissue engineering.
Collapse
Affiliation(s)
| | | | | | - Jongseong Kim
- Correspondence: (J.K.); (Y.P.); Tel.: +82-10-8858-7260 (J.K.); +82-10-4260-6460 (Y.P.)
| | - Yongdoo Park
- Correspondence: (J.K.); (Y.P.); Tel.: +82-10-8858-7260 (J.K.); +82-10-4260-6460 (Y.P.)
| |
Collapse
|
82
|
Carlini AS, Choi W, McCallum NC, Gianneschi NC. pH-Responsive Charge-Conversion Progelator Peptides. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007733. [PMID: 36530181 PMCID: PMC9757809 DOI: 10.1002/adfm.202007733] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 05/18/2023]
Abstract
A simple strategy for generating stimuli-responsive peptide-based hydrogels via charge-conversion of a self-assembling peptide (SAP) is described. These materials are formulated as soluble, polyanionic peptides, containing maleic acid, citraconic acid, or dimethylmaleic acid masking groups on each lysine residue, which do not form assemblies, but instead flow easily through high gauge needles and catheters. Acid-induced mask hydrolysis renews the zwitterionic nature of the peptides with concomitant and rapid self-assembly via β-sheet formation into rehealable hydrogels. The use of different masks enables one to tune pH responsiveness and assembly kinetics. In anticipation of their potential for in vivo hydrogel delivery and use, progelators exhibit hemocompatibility in whole human blood, and their peptide components are shown to be noncytotoxic. Finally, demonstration of stimuli-induced self-assembly for dye sequestration suggests a simple, non-covalent strategy for small molecule encapsulation in a degradable scaffold. In summary, this simple, scalable masking strategy allows for preparation of responsive, dynamic self-assembling biomaterials. This work sets the stage for implementing biodegradable therapeutic hydrogels that assemble in response to physiological, disease-relevant states of acidosis.
Collapse
Affiliation(s)
- Andrea S Carlini
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, USA
| | - Wonmin Choi
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, USA
| | - Naneki C McCallum
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, USA
| | - Nathan C Gianneschi
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Chemistry, International Institute for Nanotechnology, Chemistry of Life Processes Institute, and Simpson Querrey Institute, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, USA
- Department of Materials Science & Engineering, Department of Biomedical Engineering, and Pharmacology, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, USA
| |
Collapse
|
83
|
Mousavi A, Mashayekhan S, Baheiraei N, Pourjavadi A. Biohybrid oxidized alginate/myocardial extracellular matrix injectable hydrogels with improved electromechanical properties for cardiac tissue engineering. Int J Biol Macromol 2021; 180:692-708. [PMID: 33753199 DOI: 10.1016/j.ijbiomac.2021.03.097] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 03/13/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022]
Abstract
Injectable hydrogels which mimic the physicochemical and electromechanical properties of cardiac tissue is advantageous for cardiac tissue engineering. Here, a newly-developed in situ forming double-network hydrogel derived from biological macromolecules (oxidized alginate (OA) and myocardial extracellular matrix (ECM)) with improved mechanical properties and electrical conductivity was optimized. 3-(2-aminoethyl amino) propyltrimethoxysilane (APTMS)-functionalized reduced graphene oxide (Amine-rGO) was added to this system with varied concentrations to promote electromechanical properties of the hydrogel. Alginate was partially oxidized with an oxidation degree of 5% and the resulting OA was cross-linked via calcium ions which was reacted with amine groups of ECM and Amine-rGO through Schiff-base reaction. In situ forming hydrogels composed of 4% w/v OA and 0.8% w/v ECM showed appropriate gelation time and tensile Young's modulus. The electroactive hydrogels showed electrical conductivity in the range of semi-conductors and a suitable biodegradation profile for cardiac tissue engineering. Cytocompatibility analysis was performed by MTT assay against human umbilical vein endothelial cells (HUVECs), and the optimal hydrogel with 25 μg/ml concentration of Amine-rGO showed higher cell viability than that for other samples. The results of this study present the potential of OA/myocardial ECM-based hydrogel incorporated with Amine-rGO to provide a desirable platform for cardiac tissue engineering.
Collapse
Affiliation(s)
- Ali Mousavi
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Shohreh Mashayekhan
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Nafiseh Baheiraei
- Tissue Engineering and Applied Cell Sciences Division, Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Ali Pourjavadi
- Department of Chemistry, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
84
|
Diaz MD, Tran E, Spang M, Wang R, Gaetani R, Luo CG, Braden R, Hill RC, Hansen KC, DeMaria AN, Christman KL. Injectable Myocardial Matrix Hydrogel Mitigates Negative Left Ventricular Remodeling in a Chronic Myocardial Infarction Model. JACC Basic Transl Sci 2021; 6:350-361. [PMID: 33997521 PMCID: PMC8093531 DOI: 10.1016/j.jacbts.2021.01.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 01/04/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Myocardial matrix hydrogel preserves LV volumes and apical wall thickening in a chronic MI model. Myocardial matrix hydrogel trends toward reduced fibrosis. In vivo differential gene expression analysis shows the matrix modulates cardiac muscle contraction, metabolism, fibrosis, and the inflammatory/immune response in a chronic MI model.
A first-in-man clinical study on a myocardial-derived decellularized extracellular matrix hydrogel suggested the potential for efficacy in chronic myocardial infarction (MI) patients. However, little is understood about the mechanism of action in chronic MI. In this study, the authors investigated the efficacy and mechanism by which the myocardial matrix hydrogel can mitigate negative left ventricular (LV) remodeling in a rat chronic MI model. Assessment of cardiac function via magnetic resonance imaging demonstrated preservation of LV volumes and apical wall thickening. Differential gene expression analyses showed the matrix is able to prevent further negative LV remodeling in the chronic MI model through modulation of the immune response, down-regulation of pathways involved in heart failure progression and fibrosis, and up-regulation of genes important for cardiac muscle contraction.
Collapse
Key Words
- CMR, cardiac magnetic resonance
- ECM, extracellular matrix
- EDV, end-diastolic volume
- EF, ejection fraction
- ESV, end-systolic volume
- HF, heart failure
- IHC, immunohistochemistry
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LV, left ventricular
- MI, myocardial infarction
- MS, mass spectrometry
- QconCAT, quantitative concatamer
- biomaterials
- chronic inflammation
- chronic myocardial infarction
- gene expression
Collapse
Affiliation(s)
- Miranda D Diaz
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Elaine Tran
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Martin Spang
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Raymond Wang
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Roberto Gaetani
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA.,Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Colin G Luo
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Rebecca Braden
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| | - Ryan C Hill
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Kirk C Hansen
- Department of Biochemistry and Molecular Genetics, Anschutz Medical Campus, University of Colorado, Aurora, Colorado, USA
| | - Anthony N DeMaria
- Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - Karen L Christman
- Department of Bioengineering, University of California, San Diego, La Jolla, California, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, California, USA
| |
Collapse
|
85
|
Li S, Liang C, Jiang W, Deng J, Gu R, Li W, Tian F, Tang L, Sun H. Tissue-Specific Hydrogels Ameliorate Hepatic Ischemia/Reperfusion Injury in Rats by Regulating Macrophage Polarization via TLR4/NF-κB Signaling. ACS Biomater Sci Eng 2021; 7:1552-1563. [PMID: 33683856 DOI: 10.1021/acsbiomaterials.0c01610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Injectable acellular matrix hydrogels are proven to be potential translational materials to facilitate the repairment in various tissues. However, their potential to repair hepatic ischemia/reperfusion injury (IRI) has not been explored. In this work, we made hepatic acellular matrix (HAM) hydrogels based on the decellularized process and evaluated the biocompatibility and hepatoprotective effects in a rat IRI model. HAM hydrogels supported viability, proliferation, and attachment of hepatocytes in vitro. Treatment with HAM hydrogels significantly attenuated hepatic damage caused by IRI, as evidenced by hepatic biochemistry, histology, and inflammatory responses. Importantly, HAM hydrogels inhibited macrophage M1 (CD68/CCR7) differentiation but promoted M2 (CD68/CD206) differentiation. Additionally, TLR4/NF-κB signaling was found to be involved in the hepatoprotective effect of HAM hydrogels. Collectively, our study reveals that HAM hydrogels ameliorate hepatic IRI by facilitating M2 polarization via TLR4/NF-κB signaling.
Collapse
Affiliation(s)
- Shuai Li
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China.,Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China.,College of Medicine, Southwest Jiaotong University, Chengdu 610083, China
| | - Chengxiao Liang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Wen Jiang
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China.,Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China.,College of Medicine, Southwest Jiaotong University, Chengdu 610083, China
| | - Jie Deng
- College of Medicine, Southwest Jiaotong University, Chengdu 610083, China.,Department of Clinical Pharmacy, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Rui Gu
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Wei Li
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Fuzhou Tian
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Lijun Tang
- Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China
| | - Hongyu Sun
- Laboratory of Basic Medicine, The General Hospital of Western Theater Command, Chengdu 610083, China.,Department of General Surgery & Pancreatic Injury and Repair Key Laboratory of Sichuan Province, The General Hospital of Western Theater Command, Chengdu 610083, China.,College of Medicine, Southwest Jiaotong University, Chengdu 610083, China
| |
Collapse
|
86
|
Minimally invasive delivery of therapeutic agents by hydrogel injection into the pericardial cavity for cardiac repair. Nat Commun 2021; 12:1412. [PMID: 33658506 PMCID: PMC7930285 DOI: 10.1038/s41467-021-21682-7] [Citation(s) in RCA: 147] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiac patches are an effective way to deliver therapeutics to the heart. However, such procedures are normally invasive and difficult to perform. Here, we develop and test a method to utilize the pericardial cavity as a natural "mold" for in situ cardiac patch formation after intrapericardial injection of therapeutics in biocompatible hydrogels. In rodent models of myocardial infarction, we demonstrate that intrapericardial injection is an effective and safe method to deliver hydrogels containing induced pluripotent stem cells-derived cardiac progenitor cells or mesenchymal stem cells-derived exosomes. After injection, the hydrogels form a cardiac patch-like structure in the pericardial cavity, mitigating immune response and increasing the cardiac retention of the therapeutics. With robust cardiovascular repair and stimulation of epicardium-derived cells, the delivered therapeutics mitigate cardiac remodeling and improve cardiac functions post myocardial infarction. Furthermore, we demonstrate the feasibility of minimally-invasive intrapericardial injection in a clinically-relevant porcine model. Collectively, our study establishes intrapericardial injection as a safe and effective method to deliver therapeutic-bearing hydrogels to the heart for cardiac repair.
Collapse
|
87
|
Almeida HV, Tenreiro MF, Louro AF, Abecasis B, Santinha D, Calmeiro T, Fortunato E, Ferreira L, Alves PM, Serra M. Human Extracellular-Matrix Functionalization of 3D hiPSC-Based Cardiac Tissues Improves Cardiomyocyte Maturation. ACS APPLIED BIO MATERIALS 2021; 4:1888-1899. [PMID: 35014458 DOI: 10.1021/acsabm.0c01490] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Human induced pluripotent stem cells (hiPSC) possess significant therapeutic potential due to their high self-renewal capability and potential to differentiate into specialized cells such as cardiomyocytes. However, generated hiPSC-derived cardiomyocytes (hiPSC-CM) are still immature, with phenotypic and functional features resembling the fetal rather than their adult counterparts, which limits their application in cell-based therapies, in vitro cardiac disease modeling, and drug cardiotoxicity screening. Recent discoveries have demonstrated the potential of the extracellular matrix (ECM) as a critical regulator in development, homeostasis, and injury of the cardiac microenvironment. Within this context, this work aimed to assess the impact of human cardiac ECM in the phenotype and maturation features of hiPSC-CM. Human ECM was isolated from myocardium tissue through a physical decellularization approach. The cardiac tissue decellularization process reduced DNA content significantly while maintaining ECM composition in terms of sulfated glycosaminoglycans (s-GAG) and collagen content. These ECM particles were successfully incorporated in three-dimensional (3D) hiPSC-CM aggregates (CM+ECM) with no impact on viability and metabolic activity throughout 20 days in 3D culture conditions. Also, CM+ECM aggregates displayed organized and longer sarcomeres, with improved calcium handling when compared to hiPSC-CM aggregates. This study shows that human cardiac ECM functionalization of hiPSC-based cardiac tissues improves cardiomyocyte maturation. The knowledge generated herein provides essential insights to streamline the application of ECM in the development of hiPSC-based therapies targeting cardiac diseases.
Collapse
Affiliation(s)
- Henrique V Almeida
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Miguel F Tenreiro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Ana F Louro
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Bernardo Abecasis
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Deolinda Santinha
- CNC, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal.,Faculdade de Medicina, Universidade de Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Tomás Calmeiro
- CENIMAT
- i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Elvira Fortunato
- CENIMAT
- i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Lino Ferreira
- CNC, Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal.,Faculdade de Medicina, Universidade de Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
| | - Paula M Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Margarida Serra
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal.,Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
88
|
Esmaeili H, Li C, Fu X, Jung JP. Engineering Extracellular Matrix Proteins to Enhance Cardiac Regeneration After Myocardial Infarction. Front Bioeng Biotechnol 2021; 8:611936. [PMID: 33553118 PMCID: PMC7855456 DOI: 10.3389/fbioe.2020.611936] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/18/2020] [Indexed: 01/09/2023] Open
Abstract
Engineering microenvironments for accelerated myocardial repair is a challenging goal. Cell therapy has evolved over a few decades to engraft therapeutic cells to replenish lost cardiomyocytes in the left ventricle. However, compelling evidence supports that tailoring specific signals to endogenous cells rather than the direct integration of therapeutic cells could be an attractive strategy for better clinical outcomes. Of many possible routes to instruct endogenous cells, we reviewed recent cases that extracellular matrix (ECM) proteins contribute to enhanced cardiomyocyte proliferation from neonates to adults. In addition, the presence of ECM proteins exerts biophysical regulation in tissue, leading to the control of microenvironments and adaptation for enhanced cardiomyocyte proliferation. Finally, we also summarized recent clinical trials exclusively using ECM proteins, further supporting the notion that engineering ECM proteins would be a critical strategy to enhance myocardial repair without taking any risks or complications of applying therapeutic cardiac cells.
Collapse
Affiliation(s)
- Hamid Esmaeili
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, United States
| | - Chaoyang Li
- School of Animal Sciences, Louisiana State University AgCenter, Baton Rouge, LA, United States
| | - Xing Fu
- School of Animal Sciences, Louisiana State University AgCenter, Baton Rouge, LA, United States
| | - Jangwook P Jung
- Department of Biological Engineering, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
89
|
Zbinden A, Layland SL, Urbanczyk M, Carvajal Berrio DA, Marzi J, Zauner M, Hammerschmidt A, Brauchle EM, Sudrow K, Fink S, Templin M, Liebscher S, Klein G, Deb A, Duffy GP, Crooks GM, Eble JA, Mikkola HKA, Nsair A, Seifert M, Schenke‐Layland K. Nidogen-1 Mitigates Ischemia and Promotes Tissue Survival and Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2002500. [PMID: 33643791 PMCID: PMC7887579 DOI: 10.1002/advs.202002500] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/25/2020] [Indexed: 05/15/2023]
Abstract
Ischemia impacts multiple organ systems and is the major cause of morbidity and mortality in the developed world. Ischemia disrupts tissue homeostasis, driving cell death, and damages tissue structure integrity. Strategies to heal organs, like the infarcted heart, or to replace cells, as done in pancreatic islet β-cell transplantations, are often hindered by ischemic conditions. Here, it is discovered that the basement membrane glycoprotein nidogen-1 attenuates the apoptotic effect of hypoxia in cardiomyocytes and pancreatic β-cells via the αvβ3 integrin and beneficially modulates immune responses in vitro. It is shown that nidogen-1 significantly increases heart function and angiogenesis, while reducing fibrosis, in a mouse postmyocardial infarction model. These results demonstrate the protective and regenerative potential of nidogen-1 in ischemic conditions.
Collapse
|
90
|
Xing M, Jiang Y, Bi W, Gao L, Zhou YL, Rao SL, Ma LL, Zhang ZW, Yang HT, Chang J. Strontium ions protect hearts against myocardial ischemia/reperfusion injury. SCIENCE ADVANCES 2021; 7:7/3/eabe0726. [PMID: 33523909 PMCID: PMC7810382 DOI: 10.1126/sciadv.abe0726] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/20/2020] [Indexed: 05/06/2023]
Abstract
Timely restoration of blood supply following myocardial infarction is critical to save the infarcted myocardium, while reperfusion would cause additional damage. Strontium ions have been shown to promote angiogenesis, but it is unknown whether they can save the damaged myocardium. We report that myocardial ischemia/reperfusion (I/R)-induced functional deterioration and scar formation were notably attenuated by injection of strontium ion-containing composite hydrogels into murine infarcted myocardium at 20 minutes of reperfusion following 60 minutes of ischemia. These beneficial effects were accompanied by reduced cardiomyocyte apoptosis and increased angiogenesis. The effects of strontium ions were further confirmed by the enhanced viability of cardiomyocytes and stimulated angiogenesis in vitro. These findings are the first to reveal the cardioprotective effects of strontium ions against I/R injury, which may provide a new therapeutic approach to ischemic heart disease at a lower cost, with higher stability, and with potentially greater safety.
Collapse
Affiliation(s)
- Min Xing
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
| | - Yun Jiang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, CAS, Shanghai 200030, P. R. China
- University of CAS, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Wei Bi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, CAS, Shanghai 200030, P. R. China
- University of CAS, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Long Gao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
| | - Yan-Ling Zhou
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
| | - Sen-Le Rao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, CAS, Shanghai 200030, P. R. China
- University of CAS, 19 Yuquan Road, Beijing 100049, P. R. China
| | - Ling-Ling Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
| | - Zhao-Wenbin Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
| | - Huang-Tian Yang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Laboratory of Molecular Cardiology, Shanghai Institute of Nutrition and Health, CAS, Shanghai 200030, P. R. China.
- University of CAS, 19 Yuquan Road, Beijing 100049, P. R. China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
| | - Jiang Chang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences (CAS), Shanghai 200050, P. R. China.
- Center of Materials Science and Optoelectronics Engineering, University of CAS, Beijing 100049, P. R. China
- Institute for Stem Cell and Regeneration, CAS, Beijing 100101, China
| |
Collapse
|
91
|
Frangogiannis NG, Kovacic JC. Extracellular Matrix in Ischemic Heart Disease, Part 4/4: JACC Focus Seminar. J Am Coll Cardiol 2020; 75:2219-2235. [PMID: 32354387 DOI: 10.1016/j.jacc.2020.03.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/06/2023]
Abstract
Myocardial ischemia and infarction, both in the acute and chronic phases, are associated with cardiomyocyte loss and dramatic changes in the cardiac extracellular matrix (ECM). It has long been appreciated that these changes in the cardiac ECM result in altered mechanical properties of ischemic or infarcted myocardial segments. However, a growing body of evidence now clearly demonstrates that these alterations of the ECM not only affect the structural properties of the ischemic and post-infarct heart, but they also play a crucial and sometimes direct role in mediating a range of biological pathways, including the orchestration of inflammatory and reparative processes, as well as the pathogenesis of adverse remodeling. This final part of a 4-part JACC Focus Seminar reviews the evidence on the role of the ECM in relation to the ischemic and infarcted heart, as well as its contribution to cardiac dysfunction and adverse clinical outcomes.
Collapse
Affiliation(s)
- Nikolaos G Frangogiannis
- Wilf Family Cardiovascular Research Institute, Department of Medicine (Cardiology), Albert Einstein College of Medicine, Bronx, New York.
| | - Jason C Kovacic
- The Zena and Michael A. Wiener Cardiovascular Institute, Icahn School of Medicine at Mount Sinai, New York, New York; Victor Chang Cardiac Research Institute and St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia.
| |
Collapse
|
92
|
Huynh T, Kim JT, Dunlap G, Ahmadi S, Wolchok JC. In vivo testing of an injectable matrix gel for the treatment of shoulder cuff muscle fatty degeneration. J Shoulder Elbow Surg 2020; 29:e478-e490. [PMID: 32713662 PMCID: PMC7669596 DOI: 10.1016/j.jse.2020.03.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 03/02/2020] [Accepted: 03/11/2020] [Indexed: 02/01/2023]
Abstract
INTRODUCTION Extracellular matrix (ECM) gels have shown efficacy for the treatment of damaged tissues, most notably cardiac muscle. We hypothesized that the ECM gel prepared from skeletal muscle could be used as a treatment strategy for fatty shoulder cuff muscle degeneration. METHODS We conducted experiments to (1) evaluate host biocompatibility to ECM gel injection using a rat model and (2) examine the effect of ECM gel injection on muscle recovery after delayed repair of a released supraspinatus (SSP) tendon using a rabbit model. RESULTS The host biocompatibility to the ECM gel was characterized by a transient rise (first 2 weeks only) in several genes associated with macrophage infiltration, matrix deposition, and inflammatory cytokine production. By 8 weeks all genes had returned to baseline levels and no evidence of fibrosis or chronic inflammation was observed from histology. When gel injection was combined with SSP tendon repair, we observed a significant reduction (7%) in SSP muscle atrophy (24 + 3% reduction from uninjured) when compared with treatment with tendon repair only (31 + 7% reduction). Although fatty degeneration was elevated in both treatment groups, fat content trended lower (2%) in response to combined tendon repair and intramuscular ECM injection (4.1 + 2.1%) when compared with tendon repair only (6.1 + 2.9%). Transcriptome analysis revealed adipogenesis and osteoarthritis pathway activation in the repair only group. These key pathways were abrogated in response to treatment using combined repair plus gel. DISCUSSION The findings suggest that ECM injection had a modest but positive effect on muscle mass, fatty degeneration, and key cellular signaling pathways.
Collapse
Affiliation(s)
- Tai Huynh
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - John Taehwan Kim
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Grady Dunlap
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Shahryar Ahmadi
- College of Medicine, Orthopedic Surgery, University of Arkansas for Medical Science, Little Rock, AR, USA
| | - Jeffrey C Wolchok
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA; College of Medicine, Orthopedic Surgery, University of Arkansas for Medical Science, Little Rock, AR, USA.
| |
Collapse
|
93
|
Ozcebe SG, Bahcecioglu G, Yue XS, Zorlutuna P. Effect of cellular and ECM aging on human iPSC-derived cardiomyocyte performance, maturity and senescence. Biomaterials 2020; 268:120554. [PMID: 33296796 DOI: 10.1016/j.biomaterials.2020.120554] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023]
Abstract
Cardiovascular diseases are the leading cause of death worldwide and their occurrence is highly associated with age. However, lack of knowledge in cardiac tissue aging is a major roadblock in devising novel therapies. Here, we studied the effects of cell and cardiac extracellular matrix (ECM) aging on the induced pluripotent stem cell (iPSC)-derived cardiomyocyte cell state, function, as well as response to myocardial infarction (MI)-mimicking stress conditions in vitro. Within 3-weeks, young ECM promoted proliferation and drug responsiveness in young cells, and induced cell cycle re-entry, and protection against stress in the aged cells. Adult ECM improved cardiac function, while aged ECM accelerated the aging phenotype, and impaired cardiac function and stress defense machinery of the cells. In summary, we have gained a comprehensive understanding of cardiac aging and highlighted the importance of cell-ECM interactions. This study is the first to investigate the individual effects of cellular and environmental aging and identify the biochemical changes that occur upon cardiac aging.
Collapse
Affiliation(s)
- S Gulberk Ozcebe
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, 46556, IN, USA
| | - Gokhan Bahcecioglu
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, 46556, IN, USA
| | - Xiaoshan S Yue
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, 46556, IN, USA
| | - Pinar Zorlutuna
- Bioengineering Graduate Program, University of Notre Dame, Notre Dame, 46556, IN, USA; Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, 46556, IN, USA.
| |
Collapse
|
94
|
Pezzana C, Agnely F, Bochot A, Siepmann J, Menasché P. Extracellular Vesicles and Biomaterial Design: New Therapies for Cardiac Repair. Trends Mol Med 2020; 27:231-247. [PMID: 33218944 DOI: 10.1016/j.molmed.2020.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/15/2020] [Accepted: 10/26/2020] [Indexed: 12/19/2022]
Abstract
There is increasing evidence that extracellular vesicles (EVs) mediate the paracrine effects of stem cells. Although EVs have several attractive characteristics, they also raise issues related to delivery. For patients with cardiac disease that require a surgical procedure, direct intramyocardial (IM) administration of EVs is straightforward but its efficacy may be limited by fast wash-out, hence the interest of incorporating EVs into a controlled release polymer to optimize their residence time. For patients without surgical indication, the intravenous (IV) route is attractive because of its lack of invasiveness; however, whole-body distribution limits the fraction of EVs that reach the heart, hence the likely benefits of EV engineering to increase EV homing to the target tissue.
Collapse
Affiliation(s)
- Chloé Pezzana
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 75015 Paris, France.
| | - Florence Agnely
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Amélie Bochot
- Institut Galien Paris-Sud, CNRS UMR 8612, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Juergen Siepmann
- Unité 1008 INSERM, Université de Lille, Centre Hospitalier Universitaire Lille, 59000 Lille, France
| | - Philippe Menasché
- INSERM UMRS 970, Paris Centre de Recherche Cardiovasculaire (PARCC), Université de Paris, 75015 Paris, France; Department of Cardiovascular Surgery, Hôpital Européen Georges Pompidou, 75015 Paris, France.
| |
Collapse
|
95
|
He L, Chen X. Cardiomyocyte Induction and Regeneration for Myocardial Infarction Treatment: Cell Sources and Administration Strategies. Adv Healthc Mater 2020; 9:e2001175. [PMID: 33000909 DOI: 10.1002/adhm.202001175] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/15/2020] [Indexed: 02/06/2023]
Abstract
Occlusion of coronary artery and subsequent damage or death of myocardium can lead to myocardial infarction (MI) and even heart failure-one of the leading causes of deaths world wide. Notably, myocardium has extremely limited regeneration potential due to the loss or death of cardiomyocytes (i.e., the cells of which the myocardium is comprised) upon MI. A variety of stem cells and stem cell-derived cardiovascular cells, in situ cardiac fibroblasts and endogenous proliferative epicardium, have been exploited to provide renewable cellular sources to treat injured myocardium. Also, different strategies, including direct injection of cell suspensions, bioactive molecules, or cell-incorporated biomaterials, and implantation of artificial cardiac scaffolds (e.g., cell sheets and cardiac patches), have been developed to deliver renewable cells and/or bioactive molecules to the MI site for the myocardium regeneration. This article briefly surveys cell sources and delivery strategies, along with biomaterials and their processing techniques, developed for MI treatment. Key issues and challenges, as well as recommendations for future research, are also discussed.
Collapse
Affiliation(s)
- Lihong He
- Department of Cell Biology Medical College of Soochow University Suzhou 215123 China
| | - Xiongbiao Chen
- Department of Mechanical Engineering Division of Biomedical Engineering University of Saskatchewan Saskatoon S7N5A9 Canada
| |
Collapse
|
96
|
Fang J, Koh J, Fang Q, Qiu H, Archang MM, Hasani-Sadrabadi MM, Miwa H, Zhong X, Sievers R, Gao DW, Lee R, Carlo DD, Li S. Injectable Drug-Releasing Microporous Annealed Particle Scaffolds for Treating Myocardial Infarction. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2004307. [PMID: 33708028 PMCID: PMC7942842 DOI: 10.1002/adfm.202004307] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Indexed: 05/24/2023]
Abstract
Intramyocardial injection of hydrogels offers great potential for treating myocardial infarction (MI) in a minimally invasive manner. However, traditional bulk hydrogels generally lack microporous structures to support rapid tissue ingrowth and biochemical signals to prevent fibrotic remodeling toward heart failure. To address such challenges, a novel drug-releasing microporous annealed particle (drugMAP) system is developed by encapsulating hydrophobic drug-loaded nanoparticles into microgel building blocks via microfluidic manufacturing. By modulating nanoparticle hydrophilicity and pregel solution viscosity, drugMAP building blocks are generated with consistent and homogeneous encapsulation of nanoparticles. In addition, the complementary effects of forskolin (F) and Repsox (R) on the functional modulations of cardiomyocytes, fibroblasts, and endothelial cells in vitro are demonstrated. After that, both hydrophobic drugs (F and R) are loaded into drugMAP to generate FR/drugMAP for MI therapy in a rat model. The intramyocardial injection of MAP gel improves left ventricular functions, which are further enhanced by FR/drugMAP treatment with increased angiogenesis and reduced fibrosis and inflammatory response. This drugMAP platform represents a new generation of microgel particles for MI therapy and will have broad applications in regenerative medicine and disease therapy.
Collapse
Affiliation(s)
- Jun Fang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Jaekyung Koh
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Qizhi Fang
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine University of California, San Francisco, CA 94143, USA
| | - Huiliang Qiu
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine University of California, San Francisco, CA 94143, USA
| | - Maani M Archang
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | | | - Hiromi Miwa
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Xintong Zhong
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Richard Sievers
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine University of California, San Francisco, CA 94143, USA
| | - Dong-Wei Gao
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine University of California, San Francisco, CA 94143, USA
| | - Randall Lee
- Department of Medicine, Cardiovascular Research Institute and Institute for Regeneration Medicine University of California, San Francisco, CA 94143, USA
| | - Dino Di Carlo
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
97
|
Jarrell DK, Vanderslice EJ, VeDepo MC, Jacot JG. Engineering Myocardium for Heart Regeneration-Advancements, Considerations, and Future Directions. Front Cardiovasc Med 2020; 7:586261. [PMID: 33195474 PMCID: PMC7588355 DOI: 10.3389/fcvm.2020.586261] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/31/2020] [Indexed: 12/28/2022] Open
Abstract
Heart disease is the leading cause of death in the United States among both adults and infants. In adults, 5-year survival after a heart attack is <60%, and congenital heart defects are the top killer of liveborn infants. Problematically, the regenerative capacity of the heart is extremely limited, even in newborns. Furthermore, suitable donor hearts for transplant cannot meet the demand and require recipients to use immunosuppressants for life. Tissue engineered myocardium has the potential to replace dead or fibrotic heart tissue in adults and could also be used to permanently repair congenital heart defects in infants. In addition, engineering functional myocardium could facilitate the development of a whole bioartificial heart. Here, we review and compare in vitro and in situ myocardial tissue engineering strategies. In the context of this comparison, we consider three challenges that must be addressed in the engineering of myocardial tissue: recapitulation of myocardial architecture, vascularization of the tissue, and modulation of the immune system. In addition to reviewing and analyzing current progress, we recommend specific strategies for the generation of tissue engineered myocardial patches for heart regeneration and repair.
Collapse
Affiliation(s)
- Dillon K Jarrell
- Jacot Laboratory for Pediatric Regenerative Medicine, Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Ethan J Vanderslice
- Jacot Laboratory for Pediatric Regenerative Medicine, Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Mitchell C VeDepo
- Jacot Laboratory for Pediatric Regenerative Medicine, Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jeffrey G Jacot
- Jacot Laboratory for Pediatric Regenerative Medicine, Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, CO, United States.,Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
98
|
Xing H, Lee H, Luo L, Kyriakides TR. Extracellular matrix-derived biomaterials in engineering cell function. Biotechnol Adv 2020; 42:107421. [PMID: 31381963 PMCID: PMC6995418 DOI: 10.1016/j.biotechadv.2019.107421] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 07/12/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
Extracellular matrix (ECM) derived components are emerging sources for the engineering of biomaterials that are capable of inducing desirable cell-specific responses. This review explores the use of biomaterials derived from naturally occurring ECM proteins and their derivatives in approaches that aim to regulate cell function. Biomaterials addressed are grouped into six categories: purified single ECM proteins, combinations of purified ECM proteins, cell-derived ECM, tissue-derived ECM, diseased and modified ECM, and ECM-polymer coupled biomaterials. Purified ECM proteins serve as a material coating for enhanced cell adhesion and biocompatibility. Cell-derived and tissue-derived ECM, generated by cell isolation and decellularization technologies, can capture the native state of the ECM environment and guide cell migration and alignment patterns as well as stem cell differentiation. We focus primarily on recent advances in the fields of soft tissue, cardiac, and dermal repair, and explore the utilization of ECM proteins as biomaterials to engineer cell responses.
Collapse
Affiliation(s)
- Hao Xing
- Department of Biomedical Engineering, Yale University, United States of America
| | - Hudson Lee
- Department of Molecular Biophysics and Biochemistry, Yale University, United States of America
| | - Lijing Luo
- Department of Pathology, Yale University, United States of America
| | - Themis R Kyriakides
- Department of Biomedical Engineering, Yale University, United States of America; Department of Pathology, Yale University, United States of America.
| |
Collapse
|
99
|
Wang X, Senapati S, Akinbote A, Gnanasambandam B, Park PSH, Senyo SE. Microenvironment stiffness requires decellularized cardiac extracellular matrix to promote heart regeneration in the neonatal mouse heart. Acta Biomater 2020; 113:380-392. [PMID: 32590172 PMCID: PMC7428869 DOI: 10.1016/j.actbio.2020.06.032] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 02/08/2023]
Abstract
The transient period of regeneration potential in the postnatal heart suggests molecular changes with maturation influence the cardiac response to damage. We have previously demonstrated that injury and exercise can stimulate cardiomyocyte proliferation in the adult heart suggesting a sensitivity to exogenous signals. Here, we consider whether exogenous fetal ECM and mechanically unloading interstitial matrix can drive regeneration after myocardial infarction (MI) surgery in low-regenerative hearts of day5 mice. Compared to controls, exogenous fetal ECM increases cardiac function and lowers fibrosis at 3 weeks post-injury and this effect can be augmented by softening heart tissue. In vitro experiments support a mechano-sensitivity to exogenous ECM signaling. We tested potential mechanisms and observed that fetal ECM increases nuclear YAP localization which could be enhanced by pharmacological stabilization of the cytoskeleton. Blocking YAP expression lowered fetal ECM effects though not completely. Lastly we observed mechanically unloading heart interstitial matrix increased agrin expression, an extracellular node in the YAP signaling pathway. Collectively, these data support a combined effect of exogenous factors and mechanical activity in altering agrin expression, cytoskeletal remodeling, and YAP signaling in driving cardiomyocyte cell cycle activity and regeneration in postnatal non-regenerative mice. STATEMENT OF SIGNIFICANCE: With the purpose of developing regenerative strategies, we investigate the influence of the local niche on the cardiac injury response. We conclude tissue stiffness, as anticipated in aging or disease, impairs regenerative therapeutics. Most novel, mechanical unloading facilitates enhanced cardiac regeneration only after cells are pushed into a permissive state by fetal biomolecules. Specifically, mechanical unloading appears to increase extracellular agrin expression that amplifies fetal-stimulation of nuclear YAP signaling which correlates with observed increases of cell cycle activity in cardiomyocytes. The results further suggest the cytoskeleton is critical to this interaction between mechanical unloading and independently actived YAP signaling. Using animal models, tissue explants, and cells, this work indicates that local mechanical stimuli can augment proliferating-permissive cardiomyocytes in the natural cardiac niche.
Collapse
Affiliation(s)
- Xinming Wang
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Subhadip Senapati
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University, United States
| | - Akinola Akinbote
- Department of Macromolecular Science & Engineering, Case Western Reserve University, United States
| | - Bhargavee Gnanasambandam
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States
| | - Paul S-H Park
- Department of Ophthalmology & Visual Sciences, Case Western Reserve University, United States
| | - Samuel E Senyo
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106, United States.
| |
Collapse
|
100
|
Kim BS, Das S, Jang J, Cho DW. Decellularized Extracellular Matrix-based Bioinks for Engineering Tissue- and Organ-specific Microenvironments. Chem Rev 2020; 120:10608-10661. [PMID: 32786425 DOI: 10.1021/acs.chemrev.9b00808] [Citation(s) in RCA: 226] [Impact Index Per Article: 56.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Biomaterials-based biofabrication methods have gained much attention in recent years. Among them, 3D cell printing is a pioneering technology to facilitate the recapitulation of unique features of complex human tissues and organs with high process flexibility and versatility. Bioinks, combinations of printable hydrogel and cells, can be utilized to create 3D cell-printed constructs. The bioactive cues of bioinks directly trigger cells to induce tissue morphogenesis. Among the various printable hydrogels, the tissue- and organ-specific decellularized extracellular matrix (dECM) can exert synergistic effects in supporting various cells at any component by facilitating specific physiological properties. In this review, we aim to discuss a new paradigm of dECM-based bioinks able to recapitulate the inherent microenvironmental niche in 3D cell-printed constructs. This review can serve as a toolbox for biomedical engineers who want to understand the beneficial characteristics of the dECM-based bioinks and a basic set of fundamental criteria for printing functional human tissues and organs.
Collapse
Affiliation(s)
- Byoung Soo Kim
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu,, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Sanskrita Das
- Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea
| | - Jinah Jang
- Future IT Innovation Laboratory, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu,, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Creative IT Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,POSTECH-Catholic Biomedical Engineering Institute, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Namgu, Pohang, Kyungbuk 37673, Republic of Korea.,Institute of Convergence Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| |
Collapse
|