51
|
Riedel JH, Turner JE, Panzer U. T helper cell trafficking in autoimmune kidney diseases. Cell Tissue Res 2021; 385:281-292. [PMID: 33598825 PMCID: PMC8523400 DOI: 10.1007/s00441-020-03403-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 12/15/2020] [Indexed: 12/18/2022]
Abstract
CD4+ T cells are key drivers of autoimmune diseases, including crescentic GN. Many effector mechanisms employed by T cells to mediate renal damage and repair, such as local cytokine production, depend on their presence at the site of inflammation. Therefore, the mechanisms regulating the renal CD4+ T cell infiltrate are of central importance. From a conceptual point of view, there are four distinct factors that can regulate the abundance of T cells in the kidney: (1) T cell infiltration, (2) T cell proliferation, (3) T cell death and (4) T cell retention/egress. While a substantial amount of data on the recruitment of T cells to the kidneys in crescentic GN have accumulated over the last decade, the roles of T cell proliferation and death in the kidney in crescentic GN is less well characterized. However, the findings from the data available so far do not indicate a major role of these processes. More importantly, the molecular mechanisms underlying both egress and retention of T cells from/in peripheral tissues, such as the kidney, are unknown. Here, we review the current knowledge of mechanisms and functions of T cell migration in renal autoimmune diseases with a special focus on chemokines and their receptors.
Collapse
Affiliation(s)
- Jan-Hendrik Riedel
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany.,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulf Panzer
- Division of Translational Immunology, III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Martinistr. 52, 20246, Hamburg, Germany. .,III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany. .,Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
52
|
Chen PM, Tsokos GC. T Cell Abnormalities in the Pathogenesis of Systemic Lupus Erythematosus: an Update. Curr Rheumatol Rep 2021; 23:12. [PMID: 33512577 DOI: 10.1007/s11926-020-00978-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2020] [Indexed: 12/01/2022]
Abstract
PURPOSE OF REVIEW Systemic lupus erythematosus is a complex disease with broad spectrum of clinical manifestations. In addition to abnormal B cell responsive leading to autoantibody production, various T cells also play different roles in promoting systemic autoimmunity and end organ damage. We aim to provide a review on recent developments in how abnormalities in different T cells subsets contribute to systemic lupus erythematosus pathogenesis and how they inform the consideration of new promising therapeutics. RECENT FINDINGS Distinct subsets of T cells known as T follicular helper cells enable the production of pathogenic autoantibodies. Detailed understanding of the B cell helping T cell subsets should improve the performance of clinical trials targeting the cognate T:B cell interaction. CD8+ T cells play a role in peripheral tolerance and reversal of its exhausted phenotype could potentially alleviate both systemic autoimmunity and the risk of infection. Research on the abnormal lupus T cell signaling also leads to putative therapeutic targets able to restore interleukin-2 production and suppress the production of the pathogenic IL-17 cytokine. Recently, several studies have focused on dissecting T cell populations located in the damaged organs, aiming to target the pathogenic processes specific to each organ. Numerous T cell subsets play distinct roles in SLE pathogenesis and recent research in understanding abnormal signaling pathways, cellular metabolism, and environmental cues pave the way for the development of novel therapeutics.
Collapse
Affiliation(s)
- Ping-Min Chen
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
53
|
Rovati L, Kaneko N, Pedica F, Monno A, Maehara T, Perugino C, Lanzillotta M, Pecetta S, Stone JH, Doglioni C, Manfredi AA, Pillai S, Della-Torre E. Mer tyrosine kinase (MerTK) as a possible link between resolution of inflammation and tissue fibrosis in IgG4-related disease. Rheumatology (Oxford) 2021; 60:4929-4941. [PMID: 33512463 DOI: 10.1093/rheumatology/keab096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/17/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVES IgG4-related disease (IgG4-RD) is a systemic fibro-inflammatory disorder characterized by a dysregulated resolution of inflammation and wound healing response that might develop after an apoptotic insult induced by cytotoxic T lymphocytes (CTLs). Mer receptor tyrosine kinase (MerTK) and its ligand Protein S (ProS1) have a pivotal role in the resolution of inflammation, being implicated in the clearance of apoptotic cells, quenching of the immune response and development of tissue fibrosis. In the present work we aimed to investigate a possible involvement of the MerTK signalling pathway in the pathogenesis of IgG4-RD and development of tissue fibrosis. METHODS MerTK and ProS1 expression patterns in IgG4-RD lesions were evaluated by immunohistochemistry and immunofluorescence studies. Circulating MerTK+ monocytes, soluble Mer and MerTK ligands were measured in the peripheral blood of IgG4-RD patients and healthy controls by flow cytometry and ELISA, respectively. RESULTS MerTK was highly expressed by macrophages infiltrating IgG4-RD lesions. MerTK+ macrophages were more abundant in IgG4-RD than in Sjögren syndrome and interacted with apoptotic cells and ProS1 expressing T and B lymphocytes. Moreover, they expressed the pro-fibrotic cytokine TGF-β and their numbers declined following rituximab induced disease remission. Circulating MerTK+ monocytes, soluble Mer and MerTK ligands were not increased in the peripheral blood of patients with IgG4-RD. CONCLUSIONS The MerTK-ProS1 axis is activated in IgG4-RD lesions, possibly leading to persistent stimulation of processes involved in the resolution of inflammation and tissue fibrosis.
Collapse
Affiliation(s)
- Lucrezia Rovati
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Naoki Kaneko
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Federica Pedica
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Antonella Monno
- Autoimmunity and Vascular Inflammation Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Takashi Maehara
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Cory Perugino
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Marco Lanzillotta
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simone Pecetta
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - John H Stone
- Division of Rheumatology, Allergy, and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudio Doglioni
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Angelo A Manfredi
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Autoimmunity and Vascular Inflammation Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Shiv Pillai
- Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emanuel Della-Torre
- Università Vita-Salute San Raffaele, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Ragon Institute of MGH, MIT, and Harvard, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.,Unit of Immunology, Rheumatology, Allergy and Rare Diseases (UnIRAR), IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
54
|
Kinloch AJ, Asano Y, Mohsin A, Henry C, Abraham R, Chang A, Labno C, Wilson PC, Clark MR. Machine Learning to Quantify In Situ Humoral Selection in Human Lupus Tubulointerstitial Inflammation. Front Immunol 2020; 11:593177. [PMID: 33329582 PMCID: PMC7731665 DOI: 10.3389/fimmu.2020.593177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 10/27/2020] [Indexed: 11/13/2022] Open
Abstract
In human lupus nephritis, tubulointerstitial inflammation (TII) is associated with in situ expansion of B cells expressing anti-vimentin antibodies (AVAs). The mechanism by which AVAs are selected is unclear. Herein, we demonstrate that AVA somatic hypermutation (SHM) and selection increase affinity for vimentin. Indeed, germline reversion of several antibodies demonstrated that higher affinity AVAs can be selected from both low affinity B cell germline clones and even those that are strongly reactive with other autoantigens. While we demonstrated affinity maturation, enzyme-linked immunosorbent assays (ELISAs) suggested that affinity maturation might be a consequence of increasing polyreactivity or even non-specific binding. Therefore, it was unclear if there was also selection for increased specificity. Subsequent multi-color confocal microscopy studies indicated that while TII AVAs often appeared polyreactive by ELISA, they bound selectively to vimentin fibrils in whole cells or inflamed renal tissue. Using a novel machine learning pipeline (CytoSkaler) to quantify the cellular distribution of antibody staining, we demonstrated that TII AVAs were selected for both enhanced binding and specificity in situ. Furthermore, reversion of single predicted amino acids in antibody variable regions indicated that we could use CytoSkaler to capture both negative and positive selection events. More broadly, our data suggest a new approach to assess and define antibody polyreactivity based on quantifying the distribution of binding to native and contextually relevant antigens.
Collapse
Affiliation(s)
- Andrew J. Kinloch
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology and Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Yuta Asano
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology and Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Azam Mohsin
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology and Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Carole Henry
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology and Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Rebecca Abraham
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology and Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, IL, United States
| | - Christine Labno
- Light Microscopy Core, University of Chicago, Chicago, IL, United States
| | - Patrick C. Wilson
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology and Department of Medicine, University of Chicago, Chicago, IL, United States
| | - Marcus R. Clark
- Gwen Knapp Center for Lupus and Immunology Research, Section of Rheumatology and Department of Medicine, University of Chicago, Chicago, IL, United States
| |
Collapse
|
55
|
Gonzalez-Castro RA, Amoroso-Sanches F, Stokes JE, Graham JK, Carnevale EM. Localisation of phospholipase Cζ1 (PLCZ1) and postacrosomal WW-binding protein (WBP2 N-terminal like) on equine spermatozoa and flow cytometry quantification of PLCZ1 and association with cleavage in vitro. Reprod Fertil Dev 2020; 31:1778-1792. [PMID: 31597592 DOI: 10.1071/rd19217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 09/03/2019] [Indexed: 02/01/2023] Open
Abstract
Oocyte activation is initiated when a fertilising spermatozoon delivers sperm-borne oocyte-activating factor(s) into the oocyte cytoplasm. Candidates for oocyte activation include two proteins, phospholipase Cζ1 (PLCZ1) and postacrosomal WW-binding protein (PAWP; also known as WBP2 N-terminal like (WBP2NL)). We localised PLCZ1 and WBP2NL/PAWP in stallion spermatozoa and investigated the PLCZ1 content and sperm parameters as well as cleavage after intracytoplasmic sperm injection (ICSI). PLCZ1 was identified as 71-kDa protein in the acrosomal and postacrosomal regions, midpiece and principal piece of the tail. Anti-WBP2NL antibody identified two WBP2NL bands (~28 and ~32kDa) in the postacrosomal region, midpiece and principal piece of the tail. PLCZ1 and WBP2NL expression was positively correlated (P=0.04) in sperm heads. Flow cytometry evaluation of PLCZ1 revealed large variations in fluorescence intensity and the percentage of positively labelled spermatozoa among stallions. PLCZ1 expression was significantly higher in viable than non-viable spermatozoa, and DNA fragmentation was negatively correlated with PLCZ1 expression and the percentage of positively labelled spermatozoa (P<0.05). The use of equine sperm populations considered to have high versus low PLCZ1 content resulted in significantly higher cleavage rates after ICSI of bovine and equine oocytes, supporting the importance of PLCZ1 for oocyte activation.
Collapse
Affiliation(s)
- Raul A Gonzalez-Castro
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, 3101 Rampart Rd, Fort Collins, Colorado, 80521, USA
| | - Fabio Amoroso-Sanches
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, 3101 Rampart Rd, Fort Collins, Colorado, 80521, USA
| | - JoAnne E Stokes
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, 3101 Rampart Rd, Fort Collins, Colorado, 80521, USA
| | - James K Graham
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, 3101 Rampart Rd, Fort Collins, Colorado, 80521, USA
| | - Elaine M Carnevale
- Equine Reproduction Laboratory, Department of Biomedical Sciences, Colorado State University, 3101 Rampart Rd, Fort Collins, Colorado, 80521, USA; and Corresponding author.
| |
Collapse
|
56
|
Shared and distinct roles of T peripheral helper and T follicular helper cells in human diseases. Cell Mol Immunol 2020; 18:523-527. [PMID: 32868910 PMCID: PMC8027819 DOI: 10.1038/s41423-020-00529-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 08/04/2020] [Indexed: 12/13/2022] Open
Abstract
The interactions of CD4+ T cells and B cells are fundamental for the generation of protective antibody responses, as well as for the development of harmful autoimmune diseases. Recent studies of human tissues and blood samples have established a new subset of CD4+ B helper T cells named peripheral helper T (Tph) cells. Unlike T follicular helper (Tfh) cells, which interact with B cells within lymphoid organs, Tph cells provide help to B cells within inflamed tissues. Tph cells share many B helper-associated functions with Tfh cells and induce B cell differentiation toward antibody-producing cells. The differentiation mechanism is also partly shared between Tph and Tfh cells in humans, and both Tfh and Tph cells can be found within the same tissues, including cancer tissues. However, Tph cells display features distinct from those of Tfh cells, such as the expression of chemokine receptors associated with Tph cell localization within inflamed tissues and a low Bcl-6/Blimp1 ratio. Unlike that of Tfh cells, current evidence shows that the target of Tph cells is limited to memory B cells. In this review, we first summarize recent findings on human Tph cells and discuss how Tph and Tfh cells play shared and distinct roles in human diseases.
Collapse
|
57
|
Tsokos GC. Autoimmunity and organ damage in systemic lupus erythematosus. Nat Immunol 2020; 21:605-614. [PMID: 32367037 PMCID: PMC8135909 DOI: 10.1038/s41590-020-0677-6] [Citation(s) in RCA: 280] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 03/31/2020] [Indexed: 01/07/2023]
Abstract
Impressive progress has been made over the last several years toward understanding how almost every aspect of the immune system contributes to the expression of systemic autoimmunity. In parallel, studies have shed light on the mechanisms that contribute to organ inflammation and damage. New approaches that address the complicated interaction between genetic variants, epigenetic processes, sex and the environment promise to enlighten the multitude of pathways that lead to what is clinically defined as systemic lupus erythematosus. It is expected that each patient owns a unique 'interactome', which will dictate specific treatment.
Collapse
Affiliation(s)
- George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, USA.
| |
Collapse
|
58
|
Kolovou K, Laskari K, Roumelioti M, Tektonidou MG, Panayiotidis P, Boletis JN, Marinaki S, Sfikakis PP. B-cell oligoclonal expansions in renal tissue of patients with immune-mediated glomerular disease. Clin Immunol 2020; 217:108488. [PMID: 32479988 DOI: 10.1016/j.clim.2020.108488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 05/28/2020] [Accepted: 05/28/2020] [Indexed: 12/15/2022]
Abstract
B-cell clonal expansion has been sporadically described in the blood and/or renal tissue of patients with glomerulonephritides, albeit with unclear pathogenetic role. Herein, using spectratyping analysis, we observed oligoclonal intrarenal B-cell populations in 59% of glomerulonephritis patients with podocyte injury (6/7 with focal segmental glomerulosclerosis, 1/3 minimal change disease, 1/3 idiopathic membranous nephropathy, 3/4 IgA nephropathy, 2/5 membranous lupus nephritis), 20% of glomerulonephritis patients without podocyte involvement (4/13 with mesangial or proliferative lupus nephritis, 0/3 idiopathic membranoproliferative glomerulonephritis, 0/4 pauci-immune vasculitis) and 17% of control patients with renal cancer. In multivariate analysis, oligoclonal B-cells were associated with podocyte injury and the grade of glomerulosclerosis (both p = .009). B-cell oligoclonal expansions were not found in the paired peripheral blood samples. We postulate that B-cell expansion in the kidney results from local stimuli, including antigens expressed on podocytes. Further studies to unravel the role of oligoclonal B-cells in (auto)immune-mediated kidney disease are warranted.
Collapse
Affiliation(s)
- Kyriaki Kolovou
- Department of Nephrology and Renal Transplantation, National and Kapodistrian University of Athens Medical School, Laiko Hospital, Athens, Greece
| | - Katerina Laskari
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Laiko Hospital, Athens, Greece
| | - Maria Roumelioti
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Laiko Hospital, Athens, Greece
| | - Maria G Tektonidou
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Laiko Hospital, Athens, Greece
| | - Panayiotis Panayiotidis
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Laiko Hospital, Athens, Greece
| | - John N Boletis
- Department of Nephrology and Renal Transplantation, National and Kapodistrian University of Athens Medical School, Laiko Hospital, Athens, Greece
| | - Smaragdi Marinaki
- Department of Nephrology and Renal Transplantation, National and Kapodistrian University of Athens Medical School, Laiko Hospital, Athens, Greece
| | - Petros P Sfikakis
- Joint Rheumatology Program, National and Kapodistrian University of Athens Medical School, Laiko Hospital, Athens, Greece.
| |
Collapse
|
59
|
Update on the cellular and molecular aspects of lupus nephritis. Clin Immunol 2020; 216:108445. [PMID: 32344016 DOI: 10.1016/j.clim.2020.108445] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/26/2020] [Accepted: 04/23/2020] [Indexed: 12/17/2022]
Abstract
Recent progress has highlighted the involvement of a variety of innate and adaptive immune cells in lupus nephritis. These include activated neutrophils producing extracellular chromatin traps that induce type I interferon production and endothelial injury, metabolically-rewired IL-17-producing T-cells causing tissue inflammation, follicular and extra-follicular helper T-cells promoting the maturation of autoantibody-producing B-cells that may also sustain the formation of germinal centers, and alternatively activated monocytes/macrophages participating in tissue repair and remodeling. The role of resident cells such as podocytes and tubular epithelial cells is increasingly recognized in regulating the local immune responses and determining the kidney function and integrity. These findings are corroborated by advanced, high-throughput genomic studies, which have revealed an unprecedented amount of data highlighting the molecular heterogeneity of immune and non-immune cells implicated in lupus kidney disease. Importantly, this research has led to the discovery of putative pathogenic pathways, enabling the rationale design of novel treatments.
Collapse
|
60
|
Bellamy COC, Prost S. Multiplex tissue imaging: An introduction to the scope and challenges. Am J Transplant 2020; 20:915-917. [PMID: 31885182 DOI: 10.1111/ajt.15767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Christopher O C Bellamy
- Department of Pathology, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Sandrine Prost
- Department of Pathology, Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
61
|
Crepeau RL, Ford ML. Programmed T cell differentiation: Implications for transplantation. Cell Immunol 2020; 351:104099. [PMID: 32247511 DOI: 10.1016/j.cellimm.2020.104099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/27/2020] [Indexed: 12/27/2022]
Abstract
While T cells play a critical role in protective immunity against infection, they are also responsible for graft rejection in the setting of transplantation. T cell differentiation is regulated by both intrinsic transcriptional pathways as well as extrinsic factors such as antigen encounter and the cytokine milieu. Herein, we review recent discoveries in the transcriptional regulation of T cell differentiation and their impact on the field of transplantation. Recent studies uncovering context-dependent differentiation programs that differ in the setting of infection or transplantation will also be discussed. Understanding the key transcriptional pathways that underlie T cell responses in transplantation has important clinical implications, including development of novel therapeutic agents to mitigate graft rejection.
Collapse
Affiliation(s)
- Rebecca L Crepeau
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States
| | - Mandy L Ford
- Emory Transplant Center, Department of Surgery, Emory University, 101 Woodruff Circle, Suite 5208, Atlanta, GA 30322, United States.
| |
Collapse
|
62
|
Makiyama A, Chiba A, Noto D, Murayama G, Yamaji K, Tamura N, Miyake S. Expanded circulating peripheral helper T cells in systemic lupus erythematosus: association with disease activity and B cell differentiation. Rheumatology (Oxford) 2020; 58:1861-1869. [PMID: 30879065 DOI: 10.1093/rheumatology/kez077] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/12/2019] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVE Peripheral helper T (TPH) cells are a recently identified Th cell subset that promotes B cell differentiation and antibody production in inflamed tissues. This study investigated circulating TPH cells to determine their involvement in systemic lupus erythematosus (SLE). METHODS Peripheral blood mononuclear cells collected from SLE patients and healthy individuals were analysed. TPH cells were identified as CD3+CD4+CD45RA-CXCR5- cells with a high expression of PD-1. The frequency, activation status and subsets of TPH cells were evaluated by flow cytometry. The production of IL-21 was assessed by intracellular staining and the association of TPH cells with disease activity and B cell populations was determined. RESULTS Circulating TPH cells, identified as CD3+CD4+CD45RA-PD-1highCXCR5- cells were increased in the peripheral blood of SLE patients compared with controls. Circulating TPH cells produced similar amounts of IL-21 compared with follicular Th cells. The expansion and activation of TPH cells were correlated with SLE disease activity. Activated TPH cells, particularly Th1-type TPH cells, were associated with the promotion of B cell differentiation in SLE patients. CONCLUSION The association of TPH cells with disease activity suggests the involvement of extrafollicular T-B cell interactions in the pathogenesis of SLE. TPH cells promote autoantibody production in aberrant lymphoid organs and therefore might be a novel therapeutic target in autoantibody-producing disorders.
Collapse
Affiliation(s)
- Ayako Makiyama
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Asako Chiba
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Daisuke Noto
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| | - Goh Murayama
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan.,Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Ken Yamaji
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Naoto Tamura
- Department of Internal Medicine and Rheumatology, Juntendo University School of Medicine, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
63
|
Kinloch AJ, Cascino MD, Dai J, Bermea RS, Ko K, Vesselits M, Dragone LL, Mor Vaknin N, Legendre M, Markovitz DM, Okoreeh MK, Townsend MJ, Clark MR. Anti-vimentin antibodies: a unique antibody class associated with therapy-resistant lupus nephritis. Lupus 2020; 29:569-577. [PMID: 32216516 DOI: 10.1177/0961203320913606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Background Tubulointerstitial inflammation (TII) in lupus nephritis is associated with a worse prognosis. Vimentin, a filamental antigen, is commonly targeted by in situ activated B-cells in TII. The prognostic importance of high serum anti-vimentin antibodies (AVAs) in lupus nephritis and their relationship with common lupus autoantibody specificities is unknown. Herein we investigated associations between AVA isotypes, other autoantibodies, and response to mycophenolate mofetil (MMF) in the presence or absence of rituximab. Methods The Translational Research Initiative in the Department of Medicine (TRIDOM) cross-sectional cohort of 99 lupus patients was assayed for IgG-, IgA- and IgM- AVAs, lupus-associated and rheumatoid arthritis-associated antibodies, and hierarchically clustered. Serum from baseline, 26 and 52 weeks from 132 Lupus Nephritis Assessment with Rituximab (LUNAR) trial enrolled lupus nephritis patients was also analysed and correlated with renal function up to week 78. Results In TRIDOM, AVAs, especially IgM AVAs, clustered with IgG anti-dsDNA and away from anti-Sm and -RNP and rheumatoid arthritis-associated antibodies. In LUNAR at baseline, AVAs correlated weakly with anti-dsDNA and more strongly with anticardiolipin titers. Regardless of treatment, IgG-, but not IgM- or IgA-, AVAs were higher at week 52 than at baseline. In contrast, anti-dsDNA titers declined, regardless of therapeutic regime. High IgG AVA titers at entry predicted less response to therapy. Conclusion AVAs, especially IgG AVAs, are unique in distribution and response to therapy compared with other commonly measured autoantibody specificities. Furthermore, high-titer IgG AVAs identify lupus nephritis patients resistant to conventional therapies. These data suggest that AVAs represent an independent class of prognostic autoantibodies.
Collapse
Affiliation(s)
- Andrew J Kinloch
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Section of Rheumatology and Department of Medicine, Chicago, USA
| | - Matthew D Cascino
- Product Development I20, Genentech Research & Early Development, South San Francisco, USA
| | - Jian Dai
- Early Clinical Development Informatics, Genentech Research & Early Development, South San Francisco, USA
| | - Rene S Bermea
- University of Chicago, Section of Rheumatology and Department of Medicine, Chicago, USA
| | - Kichul Ko
- University of Chicago, Section of Rheumatology and Department of Medicine, Chicago, USA
| | - Margaret Vesselits
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Section of Rheumatology and Department of Medicine, Chicago, USA
| | - Leonard L Dragone
- Early Development, Infectious Disease, The Janssen Pharmaceutical Companies of Johnson & Johnson, South San Francisco, California
| | - Nirit Mor Vaknin
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - Maureen Legendre
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - David M Markovitz
- Department of Internal Medicine, University of Michigan, Ann Arbor, USA
| | - Michael K Okoreeh
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Section of Rheumatology and Department of Medicine, Chicago, USA
| | - Michael J Townsend
- Biomarker Discovery OMNI, Genentech Research & Early Development, South San Francisco, USA
| | - Marcus R Clark
- Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Section of Rheumatology and Department of Medicine, Chicago, USA.,University of Chicago, Section of Rheumatology and Department of Medicine, Chicago, USA
| |
Collapse
|
64
|
Therapeutic Targeting of Follicular T Cells with Chimeric Antigen Receptor-Expressing Natural Killer Cells. CELL REPORTS MEDICINE 2020; 1. [PMID: 32864635 PMCID: PMC7455007 DOI: 10.1016/j.xcrm.2020.100003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Follicular helper T cells (TFH) are critical for vaccine and infection elicitation of long-lived humoral immunity, but exaggerated TFH responses can promote autoimmunity and other pathologies. It is unfortunate that no clinical interventions exist for the selective depletion of follicular T cells to alleviate these diseases. We engineered a chimeric antigen receptor (CAR) facilitating the specific targeting of cells with high expression levels of human programmed cell death protein 1 (PD-1), a cardinal feature of follicular T cells. CAR-expressing human natural killer (NK) cells robustly and discriminately eliminated PD-1high follicular human T cells in vitro and in a humanized mouse model of lupus-like disease while sparing B cells and other PD-1low T cell subsets, including regulatory T cells. These results establish a strategy for specific targeting of PD-1high T cells that can be advanced as a clinical tool for the selective depletion of pathogenic follicular T cells or other PD-1high target cells in certain disease states. TFH exhibit high expression levels of PD-1 PD-L1 CAR-expressing NK cells selectively kill TFH but not Treg or memory T cells Killing of TFH by CAR NK inhibits B cell proliferation and antibody production The PD-L1 CAR represents a novel therapeutic tool in TFH-driven diseases
Collapse
|
65
|
Protecting the kidney in systemic lupus erythematosus: from diagnosis to therapy. Nat Rev Rheumatol 2020; 16:255-267. [PMID: 32203285 DOI: 10.1038/s41584-020-0401-9] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2020] [Indexed: 12/20/2022]
Abstract
Lupus nephritis (LN) is a common manifestation of systemic lupus erythematosus that can lead to irreversible renal impairment. Although the prognosis of LN has improved substantially over the past 50 years, outcomes have plateaued in the USA in the past 20 years as immunosuppressive therapies have failed to reverse disease in more than half of treated patients. This failure might reflect disease complexity and heterogeneity, as well as social and economic barriers to health-care access that can delay intervention until after damage has already occurred. LN progression is still poorly understood and involves multiple cell types and both immune and non-immune mechanisms. Single-cell analysis of intrinsic renal cells and infiltrating cells from patients with LN is a new approach that will help to define the pathways of renal injury at a cellular level. Although many new immune-modulating therapies are being tested in the clinic, the development of therapies to improve regeneration of the injured kidney and to prevent fibrosis requires a better understanding of the mechanisms of LN progression. This mechanistic understanding, together with the development of clinical measures to evaluate risk and detect early disease and better access to expert health-care providers, should improve outcomes for patients with LN.
Collapse
|
66
|
Rahkonen S, Koskinen E, Pölönen I, Heinonen T, Ylikomi T, Äyrämö S, Eskelinen MA. Multilabel segmentation of cancer cell culture on vascular structures with deep neural networks. J Med Imaging (Bellingham) 2020; 7:024001. [PMID: 32280728 PMCID: PMC7138259 DOI: 10.1117/1.jmi.7.2.024001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 03/23/2020] [Indexed: 11/29/2022] Open
Abstract
New increasingly complex in vitro cancer cell models are being developed. These new models seem to represent the cell behavior in vivo more accurately and have better physiological relevance than prior models. An efficient testing method for selecting the most optimal drug treatment does not exist to date. One proposed solution to the problem involves isolation of cancer cells from the patients' cancer tissue, after which they are exposed to potential drugs alone or in combinations to find the most optimal medication. To achieve this goal, methods that can efficiently quantify and analyze changes in tested cell are needed. Our study aimed to detect and segment cells and structures from cancer cell cultures grown on vascular structures in phase-contrast microscope images using U-Net neural networks to enable future drug efficacy assessments. We cultivated prostate carcinoma cell lines PC3 and LNCaP on the top of a matrix containing vascular structures. The cells were imaged with a Cell-IQ phase-contrast microscope. Automatic analysis of microscope images could assess the efficacy of tested drugs. The dataset included 36 RGB images and ground-truth segmentations with mutually not exclusive classes. The used method could distinguish vascular structures, cells, spheroids, and cell matter around spheroids in the test images. Some invasive spikes were also detected, but the method could not distinguish the invasive cells in the test images.
Collapse
Affiliation(s)
- Samuli Rahkonen
- University of Jyväskylä, Faculty of Information Technology, Jyväskylä, Finland
| | - Emilia Koskinen
- Tampere University, Faculty of Medicine and Health Technology, Finnish Centre for Alternative Methods, Tampere, Finland
| | - Ilkka Pölönen
- University of Jyväskylä, Faculty of Information Technology, Jyväskylä, Finland
| | - Tuula Heinonen
- Tampere University, Faculty of Medicine and Health Technology, Finnish Centre for Alternative Methods, Tampere, Finland
| | - Timo Ylikomi
- Tampere University, Faculty of Medicine and Health Technology, Finnish Centre for Alternative Methods, Tampere, Finland
| | - Sami Äyrämö
- University of Jyväskylä, Faculty of Information Technology, Jyväskylä, Finland
| | - Matti A. Eskelinen
- University of Jyväskylä, Faculty of Information Technology, Jyväskylä, Finland
| |
Collapse
|
67
|
|
68
|
Chong AS. B cells as antigen-presenting cells in transplantation rejection and tolerance. Cell Immunol 2020; 349:104061. [PMID: 32059816 DOI: 10.1016/j.cellimm.2020.104061] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/21/2022]
Abstract
Transplantation of fully allogeneic organs into immunocompetent recipients invariably elicits T cell and B cell responses that lead to the production of donor-specific antibodies (DSA). When immunosuppression is inadequate donor-specific T cell and B cell responses escape, leading to T cell-mediated rejection (TCMR), antibody mediated (ABMR) rejection, or mixed rejection (MR) exhibiting features of both TCMR and ABMR. Current literature suggests that ABMR is a major cause of late graft loss, and that new therapies to curtail the donor-specific humoral response are necessary. The majority of research into B cell responses elicited by allogeneic allografts in both preclinical models and clinical studies, has focused on the function of B cells as antibody-secreting cells and the pathogenic effects of DSA as mediators of ABMR. However, it has long been recognized that the DSA response to allografts is T cell-dependent, and that B cells engage in cognate interactions with T cells that provide "help" and promote B cell differentiation into antibody-secreting cells (ASCs). This review focusses the function of B cells as antigen-presenting cells (APCs) to T cells in lymphoid organs, how they may be critical APCs to T cell in the allograft, and the functional consequences of these interactions.
Collapse
Affiliation(s)
- Anita S Chong
- Section of Transplantation, Department of Surgery, University of Chicago, Chicago, IL, United States.
| |
Collapse
|
69
|
Rao DA, Arazi A, Wofsy D, Diamond B. Design and application of single-cell RNA sequencing to study kidney immune cells in lupus nephritis. Nat Rev Nephrol 2019; 16:238-250. [PMID: 31853010 DOI: 10.1038/s41581-019-0232-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2019] [Indexed: 11/09/2022]
Abstract
The immune mechanisms that cause tissue injury in lupus nephritis have been challenging to define. The advent of high-dimensional cellular analyses, such as single-cell RNA sequencing, has enabled detailed characterization of the cell populations present in small biopsy samples of kidney tissue. In parallel, the development of methods that cryopreserve kidney biopsy specimens in a manner that preserves intact, viable cells, has enabled the uniform analysis of tissue samples collected at multiple sites and across many geographic areas and demographic cohorts with high-dimensional platforms. The application of these methods to kidney biopsy samples from patients with lupus nephritis has begun to define the phenotypes of both infiltrating and resident immune cells, as well as parenchymal cells, present in nephritic kidneys. The detection of similar immune cell populations in urine suggests that it might be possible to non-invasively monitor immune activation in kidneys. Once applied to large patient cohorts, these high-dimensional studies might enable patient stratification according to patterns of immune cell activation in the kidney or identify disease features that can be used as surrogate measures of efficacy in clinical trials. Applied broadly across multiple inflammatory kidney diseases, these studies promise to enormously expand our understanding of renal inflammation in the next decade.
Collapse
Affiliation(s)
- Deepak A Rao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Arnon Arazi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David Wofsy
- Rheumatology Division and Russell/Engleman Research Center, University of California San Francisco, San Francisco, CA, USA
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
70
|
Ueno H. The IL-12-STAT4 axis in the pathogenesis of human systemic lupus erythematosus. Eur J Immunol 2019; 50:10-16. [PMID: 31762023 DOI: 10.1002/eji.201948134] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/05/2019] [Indexed: 12/28/2022]
Abstract
Generation of autoantibodies is a hallmark of systemic lupus erythematosus (SLE). As demonstrated in a number of lupus mouse models, recent evidence suggests that both GC and extrafollicular pathways contribute to the generation of autoantibodies also in human SLE, and that CD11c+ IgD- CD27- (double negative:DN) B cells play a central role in the latter pathway. In this mini-review, the author will first briefly summarize the features of CD11c+ DN B cells in human SLE, and discuss how the IL-12-STAT4 axis might contribute to the generation of autoantibodies in SLE. In addition, various types of CD4+ helper T cell subsets promoting the generation of autoantibodies in SLE will be described, and finally it will be discussed how these recent discoveries contribute to understanding of SLE pathogenesis and treatment of SLE patients.
Collapse
Affiliation(s)
- Hideki Ueno
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.,Department of Immunology, Graduate School of Medicine, Kyoto University, Sakyo-ku, Kyoto, Japan.,Institute for the Advanced Study of Human Biology, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
71
|
Cashman KS, Jenks SA, Woodruff MC, Tomar D, Tipton CM, Scharer CD, Lee EH, Boss JM, Sanz I. Understanding and measuring human B-cell tolerance and its breakdown in autoimmune disease. Immunol Rev 2019; 292:76-89. [PMID: 31755562 PMCID: PMC6935423 DOI: 10.1111/imr.12820] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022]
Abstract
The maintenance of immunological tolerance of B lymphocytes is a complex and critical process that must be implemented as to avoid the detrimental development of autoreactivity and possible autoimmunity. Murine models have been invaluable to elucidate many of the key components in B-cell tolerance; however, translation to human homeostatic and pathogenic immune states can be difficult to assess. Functional autoreactive, flow cytometric, and single-cell cloning assays have proven to be critical in deciphering breaks in B-cell tolerance within autoimmunity; however, newer approaches to assess human B-cell tolerance may prove to be vital in the further exploration of underlying tolerance defects. In this review, we supply a comprehensive overview of human immune tolerance checkpoints with associated mechanisms of enforcement, and highlight current and future methodologies which are likely to benefit future studies into the mechanisms that become defective in human autoimmune conditions.
Collapse
Affiliation(s)
- Kevin S. Cashman
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Scott A. Jenks
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Matthew C. Woodruff
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Deepak Tomar
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Christopher M. Tipton
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| | - Christopher D. Scharer
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Eun-Hyung Lee
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care, Emory University, Atlanta, Georgia, USA
| | - Jeremy M. Boss
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Ignacio Sanz
- Department of Medicine, Division of Rheumatology, Emory University, Atlanta, Georgia, USA
- Lowance Center for Human Immunology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
72
|
Bocharnikov AV, Keegan J, Wacleche VS, Cao Y, Fonseka CY, Wang G, Muise ES, Zhang KX, Arazi A, Keras G, Li ZJ, Qu Y, Gurish MF, Petri M, Buyon JP, Putterman C, Wofsy D, James JA, Guthridge JM, Diamond B, Anolik JH, Mackey MF, Alves SE, Nigrovic PA, Costenbader KH, Brenner MB, Lederer JA, Rao DA. PD-1hiCXCR5- T peripheral helper cells promote B cell responses in lupus via MAF and IL-21. JCI Insight 2019; 4:130062. [PMID: 31536480 DOI: 10.1172/jci.insight.130062] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023] Open
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by pathologic T cell-B cell interactions and autoantibody production. Defining the T cell populations that drive B cell responses in SLE may enable design of therapies that specifically target pathologic cell subsets. Here, we evaluated the phenotypes of CD4+ T cells in the circulation of 52 SLE patients drawn from multiple cohorts and identified a highly expanded PD-1hiCXCR5-CD4+ T cell population. Cytometric, transcriptomic, and functional assays demonstrated that PD-1hiCXCR5-CD4+ T cells from SLE patients are T peripheral helper (Tph) cells, a CXCR5- T cell population that stimulates B cell responses via IL-21. The frequency of Tph cells, but not T follicular helper (Tfh) cells, correlated with both clinical disease activity and the frequency of CD11c+ B cells in SLE patients. PD-1hiCD4+ T cells were found within lupus nephritis kidneys and correlated with B cell numbers in the kidney. Both IL-21 neutralization and CRISPR-mediated deletion of MAF abrogated the ability of Tph cells to induce memory B cell differentiation into plasmablasts in vitro. These findings identify Tph cells as a highly expanded T cell population in SLE and suggest a key role for Tph cells in stimulating pathologic B cell responses.
Collapse
Affiliation(s)
| | | | | | - Ye Cao
- Division of Rheumatology, Immunology, and Allergy
| | - Chamith Y Fonseka
- Center for Data Sciences, and.,Division of Rheumatology and Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA.,Department of Biomedical Informatics, Harvard Medical School, Boston, Massachusetts, USA.,Broad Institute of Massachusetts Institute and Technology and Harvard University, Cambridge, Massachusetts, USA
| | | | - Eric S Muise
- Oncology & Immunology Discovery, and.,Genetics and Pharmacogenomics, Merck & Co. Inc., Boston, Massachusetts, USA
| | - Kelvin X Zhang
- Oncology & Immunology Discovery, and.,Genetics and Pharmacogenomics, Merck & Co. Inc., Boston, Massachusetts, USA
| | - Arnon Arazi
- Broad Institute of Massachusetts Institute and Technology and Harvard University, Cambridge, Massachusetts, USA
| | | | - Zhihan J Li
- Division of Rheumatology, Immunology, and Allergy
| | - Yujie Qu
- Oncology & Immunology Discovery, and
| | | | - Michelle Petri
- Division of Rheumatology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jill P Buyon
- Division of Rheumatology, New York University School of Medicine, New York, New York, USA
| | - Chaim Putterman
- Department of Microbiology & Immunology and Division of Rheumatology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - David Wofsy
- Rheumatology Division and Russell/Engleman Research Center, UCSF, San Francisco, California, USA
| | - Judith A James
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Joel M Guthridge
- Department of Arthritis and Clinical Immunology, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Betty Diamond
- Center for Autoimmune, Musculoskeletal and Hematopoietic Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, New York, USA
| | - Jennifer H Anolik
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, Rochester, New York, USA
| | | | | | - Peter A Nigrovic
- Division of Rheumatology, Immunology, and Allergy.,Division of Immunology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | | | | | - Deepak A Rao
- Division of Rheumatology, Immunology, and Allergy
| | | |
Collapse
|
73
|
Ernst JD, Cornelius A, Desvignes L, Tavs J, Norris BA. Limited Antimycobacterial Efficacy of Epitope Peptide Administration Despite Enhanced Antigen-Specific CD4 T-Cell Activation. J Infect Dis 2019; 218:1653-1662. [PMID: 29548008 DOI: 10.1093/infdis/jiy142] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 03/13/2018] [Indexed: 12/21/2022] Open
Abstract
Background Infection with Mycobacterium tuberculosis is associated with inconsistent and incomplete elimination of the bacteria, despite development of antigen-specific T-cell responses. One mechanism used by M tuberculosis is to limit availability of antigen for activation of CD4 T cells. Methods We examined the utility of systemic administration of epitope peptides to activate pre-existing T cells in mice infected with M tuberculosis. Results We found that systemic peptide administration (1) selectively activates T cells specific for the epitope peptide, (2) loads major histocompatibility complex class II on lung macrophages and dendritic cells, (3) activates CD4 T cells in the lung parenchyma, (4) and has little antimycobacterial activity. Conclusions Further studies revealed that CD4 T cells in lung lesions are distant from the infected cells, suggesting that, even if they can be activated, the positioning of CD4 T cells and their direct interactions with infected cells may be limiting determinants of immunity in tuberculosis.
Collapse
Affiliation(s)
- Joel D Ernst
- Division of Infectious Diseases, Department of Medicine University School of Medicine, New York.,Departments of Pathology University School of Medicine, New York.,Department of Microbiology, New York University School of Medicine, New York
| | - Amber Cornelius
- Division of Infectious Diseases, Department of Medicine University School of Medicine, New York
| | - Ludovic Desvignes
- Division of Infectious Diseases, Department of Medicine University School of Medicine, New York
| | - Jacqueline Tavs
- Division of Infectious Diseases, Department of Medicine University School of Medicine, New York
| | - Brian A Norris
- Division of Infectious Diseases, Department of Medicine University School of Medicine, New York
| |
Collapse
|
74
|
Danger R, Chesneau M, Delbos F, Le Bot S, Kerleau C, Chenouard A, Ville S, Degauque N, Conchon S, Cesbron A, Giral M, Brouard S. CXCR5 +PD1 +ICOS + Circulating T Follicular Helpers Are Associated With de novo Donor-Specific Antibodies After Renal Transplantation. Front Immunol 2019; 10:2071. [PMID: 31552030 PMCID: PMC6746839 DOI: 10.3389/fimmu.2019.02071] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 08/16/2019] [Indexed: 12/21/2022] Open
Abstract
Donor-specific anti-HLA antibodies (DSAs) are a major risk factor associated with renal allograft outcomes. As a trigger of B cell antibody production, T follicular helper cells (Tfhs) promote DSA appearance. Herein, we evaluated whether circulating Tfhs (cTfhs) are associated with the genesis of antibody-mediated rejection. We measured cTfh levels on the day of transplantation and 1 year after transplantation in blood from a prospective cohort of 237 renal transplantation patients without DSA during the first year post-transplantation. Total cTfhs were characterized as CD4+CD45RA−CXCR5+, and the three following subsets of activated cTfh were analyzed: CXCR5+PD1+, CXCR5+PD1+ICOS+, an CXCR5+PD1+CXCR3−. Immunizing events (previous blood transfusion and/or pregnancy) and the presence of class II anti-HLA antibodies were associated with increased frequencies of activated CXCR5+PD1+, CXCR5+PD1+ICOS+, and CXCR5+PD1+CXCR3− cTfh subsets. In addition, ATG-depleting induction and calcineurin inhibitor treatments were associated with a relative increase of activated cTfh subsets frequencies at 1 year post-transplantation. In multivariate survival analysis, we reported that a decrease in activated CXCR5+PD1+ICOS+ at 1 year after transplantation in the blood of DSA-free patients was significantly associated with the risk of developing de novo DSA after the first year (p = 0.018, HR = 0.39), independently of HLA mismatches (p = 0.003, HR = 3.79). These results highlight the importance of monitoring activated Tfhs in patients early after transplantation and show that current treatments cannot provide early, efficient prevention of Tfh activation and migration. These findings indicate the need to develop innovative treatments to specifically target Tfhs to prevent DSA appearance in renal transplantation.
Collapse
Affiliation(s)
- Richard Danger
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Mélanie Chesneau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Florent Delbos
- Laboratoire Histocompatibilité et Immunogénétique - Etablissement Français du sang, Nantes, France
| | - Sabine Le Bot
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Clarisse Kerleau
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Alexis Chenouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Simon Ville
- Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Nicolas Degauque
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Sophie Conchon
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France
| | - Anne Cesbron
- Laboratoire Histocompatibilité et Immunogénétique - Etablissement Français du sang, Nantes, France
| | - Magali Giral
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Labex IGO, Nantes, France
| | - Sophie Brouard
- Centre de Recherche en Transplantation et Immunologie UMR1064, INSERM, Université de Nantes, Nantes, France.,Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes, Nantes, France.,Centre d'Investigation Clinique en Biothérapie, Centre de Ressources Biologiques (CRB), Labex IGO, Nantes, France
| |
Collapse
|
75
|
Iwasaki K, Kitahata N, Hiramitsu T, Yamamoto T, Noda T, Okada M, Narumi S, Watarai Y, Miwa Y, Uchida K, Matsuoka Y, Horimi K, Kobayashi T. Increased CD40L+PD-1+ follicular helper T cells (Tfh) as a biomarker for predicting calcineurin inhibitor sensitivity against Tfh-mediated B-cell activation/antibody production after kidney transplantation. Int Immunol 2019; 30:345-355. [PMID: 29878122 DOI: 10.1093/intimm/dxy039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 05/30/2018] [Indexed: 11/13/2022] Open
Abstract
It is unclear to what extent the development of follicular helper T cells (Tfh) and de novo donor-specific human leukocyte antigen antibody (DSA) production could be influenced by immunosuppressive agents, particularly calcineurin inhibitor (CNI; cyclosporine or tacrolimus), after kidney transplantation. Here, the effects of immunosuppressive agents on Tfh-mediated B-cell activation and antibody production were investigated. In vitro circulating Tfh (cTfh; memory CD4+CXCR5+)/B-cell (CD19+) co-culture assays revealed that CNI considerably inhibited cTfh-mediated B-cell activation and IgG antibody secretion through the suppression of IL-21 and IL-2. Both IL-21 and CD40L up-regulated IL-2 receptors (CD25) on B cells, and anti-CD25 antibody induced apoptosis of activated B cells, resulting in the inhibition of IgG production. The frequency of cTfh-expressed CD40L and PD-1 was elevated in patients with de novo DSA 1 year after transplantation. The degree of inhibition by CNI was dependent on Staphylococcal enterotoxin B-induced CD40L+PD-1+ cTfh up-regulation level. Our data demonstrate that CD40L+PD-1+cTfh could be a marker to implicate individual difference in CNI sensitivity for Tfh-mediated B-cell activation in kidney transplantation.
Collapse
Affiliation(s)
- Kenta Iwasaki
- Department of Kidney Disease and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Nana Kitahata
- Department of Kidney Disease and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Takahisa Hiramitsu
- Nagoya Daini Red Cross Hospital, Department of Nephrology, 2-9 Myoken-cho, Showa-ku, Nagoya, Japan
| | - Takayuki Yamamoto
- Nagoya Daini Red Cross Hospital, Department of Nephrology, 2-9 Myoken-cho, Showa-ku, Nagoya, Japan
| | - Takayuki Noda
- Department of Kidney Disease and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Manabu Okada
- Nagoya Daini Red Cross Hospital, Department of Nephrology, 2-9 Myoken-cho, Showa-ku, Nagoya, Japan
| | - Shunji Narumi
- Nagoya Daini Red Cross Hospital, Department of Nephrology, 2-9 Myoken-cho, Showa-ku, Nagoya, Japan
| | - Yoshihiko Watarai
- Nagoya Daini Red Cross Hospital, Department of Nephrology, 2-9 Myoken-cho, Showa-ku, Nagoya, Japan
| | - Yuko Miwa
- Department of Kidney Disease and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kazuharu Uchida
- Department of Kidney Disease and Transplant Immunology, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Yutaka Matsuoka
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Kosei Horimi
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| | - Takaaki Kobayashi
- Department of Renal Transplant Surgery, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan
| |
Collapse
|
76
|
Chong AS, Rothstein D, Safa K, Riella LV. Outstanding questions in transplantation: B cells, alloantibodies, and humoral rejection. Am J Transplant 2019; 19:2155-2163. [PMID: 30803121 PMCID: PMC6691724 DOI: 10.1111/ajt.15323] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/06/2019] [Accepted: 02/16/2019] [Indexed: 01/25/2023]
Abstract
Over the past three decades, improved immunosuppression has significantly reduced T cell-mediated acute rejection rates, but long-term graft survival rates have seen only marginal improvement. The cause of late graft loss has been under intense investigation, and chronic antibody-mediated rejection (AMR) has been identified as one of the leading causes, thus providing a strong rationale for basic science investigation into donor-specific B cells and antibodies in transplantation and ways to mitigate their pathogenicity. In 2018, the American Society of Transplantation launched a community-wide online discussion of Outstanding Questions in Transplantation, and the topic of B cell biology and donor-specific antibody prevention emerged as a major area of interest to the community, leading to a highly engaged dialogue, with comments from basic and translational scientists as well as physicians (http://community.myast.org/communities/community-home/digestviewer). We have summarized this discussion from a bedside to bench perspective and have organized this review into outstanding questions within the paradigm that AMR is a leading cause of graft loss in the clinic, and points of view that challenge aspects of this paradigm. We also highlight opportunities for basic and translational scientists to contribute to the resolution of these questions, mapping important future directions for the transplant research field.
Collapse
Affiliation(s)
- Anita S. Chong
- Department of Surgery, The University of Chicago,Corresponding author: Anita S. Chong, PhD, 5841 S. Maryland Ave, Chicago, IL 60637, Ofc: 773-702-5521; Fax: 773-702-5517;
| | - David Rothstein
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh
| | - Kassem Safa
- Transplant Center and Division of Nephrology, Massachusetts General Hospital, Harvard Medical School
| | - Leonardo V. Riella
- Schuster Transplantation Research Center, Renal Division, Brigham & Women’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
77
|
Seth A, Craft J. Spatial and functional heterogeneity of follicular helper T cells in autoimmunity. Curr Opin Immunol 2019; 61:1-9. [PMID: 31374450 DOI: 10.1016/j.coi.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022]
Abstract
Follicular helper T cells provide signals that promote B cell development, proliferation, and production of affinity matured and appropriately isotype switched antibodies. In addition to their classical locations within B cell follicles and germinal centers therein, B cell helper T cells are also found in extrafollicular spaces - either in secondary lymphoid or non-lymphoid tissues. Both follicular and extrafollicular T helper cells drive autoantibody-mediated autoimmunity. Interfering with B cell help provided by T cells can ameliorate autoimmune disease in animal models and human patients. The next frontier in Tfh cell biology will be identification of Tfh cell-specific pathogenic changes in autoimmunity and exploiting them for therapeutic purposes.
Collapse
Affiliation(s)
- Abhinav Seth
- Department of Internal Medicine, Section of Rheumatology, New Haven, CT, United States
| | - Joe Craft
- Department of Internal Medicine, Section of Rheumatology, New Haven, CT, United States; Department of Immunobiology, Yale University School of Medicine, New Haven, CT, United States.
| |
Collapse
|
78
|
T follicular helper cells and T follicular regulatory cells in rheumatic diseases. Nat Rev Rheumatol 2019; 15:475-490. [DOI: 10.1038/s41584-019-0254-2] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 12/15/2022]
|
79
|
Arazi A, Rao DA, Berthier CC, Davidson A, Liu Y, Hoover PJ, Chicoine A, Eisenhaure TM, Jonsson AH, Li S, Lieb DJ, Zhang F, Slowikowski K, Browne EP, Noma A, Sutherby D, Steelman S, Smilek DE, Tosta P, Apruzzese W, Massarotti E, Dall'Era M, Park M, Kamen DL, Furie RA, Payan-Schober F, Pendergraft WF, McInnis EA, Buyon JP, Petri MA, Putterman C, Kalunian KC, Woodle ES, Lederer JA, Hildeman DA, Nusbaum C, Raychaudhuri S, Kretzler M, Anolik JH, Brenner MB, Wofsy D, Hacohen N, Diamond B. The immune cell landscape in kidneys of patients with lupus nephritis. Nat Immunol 2019; 20:902-914. [PMID: 31209404 PMCID: PMC6726437 DOI: 10.1038/s41590-019-0398-x] [Citation(s) in RCA: 472] [Impact Index Per Article: 94.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 04/05/2019] [Indexed: 02/07/2023]
Abstract
Lupus nephritis is a potentially fatal autoimmune disease for which the current treatment is ineffective and often toxic. To develop mechanistic hypotheses of disease, we analyzed kidney samples from patients with lupus nephritis and from healthy control subjects using single-cell RNA sequencing. Our analysis revealed 21 subsets of leukocytes active in disease, including multiple populations of myeloid cells, T cells, natural killer cells and B cells that demonstrated both pro-inflammatory responses and inflammation-resolving responses. We found evidence of local activation of B cells correlated with an age-associated B-cell signature and evidence of progressive stages of monocyte differentiation within the kidney. A clear interferon response was observed in most cells. Two chemokine receptors, CXCR4 and CX3CR1, were broadly expressed, implying a potentially central role in cell trafficking. Gene expression of immune cells in urine and kidney was highly correlated, which would suggest that urine might serve as a surrogate for kidney biopsies.
Collapse
Affiliation(s)
- Arnon Arazi
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Deepak A Rao
- Division of Rheumatology, Immunology, Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Celine C Berthier
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Anne Davidson
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Yanyan Liu
- Division of Rheumatology, Immunology, Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul J Hoover
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam Chicoine
- Division of Rheumatology, Immunology, Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | - A Helena Jonsson
- Division of Rheumatology, Immunology, Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Shuqiang Li
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David J Lieb
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Fan Zhang
- Division of Rheumatology, Immunology, Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kamil Slowikowski
- Division of Rheumatology, Immunology, Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward P Browne
- UNC HIV Cure Center and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Akiko Noma
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Dawn E Smilek
- Lupus Nephritis Trials Network, University of California San Francisco, San Francisco, CA, USA
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, USA
| | - Patti Tosta
- Lupus Nephritis Trials Network, University of California San Francisco, San Francisco, CA, USA
- Immune Tolerance Network, University of California San Francisco, San Francisco, CA, USA
| | - William Apruzzese
- Division of Rheumatology, Immunology, Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elena Massarotti
- Division of Rheumatology, Immunology, Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Maria Dall'Era
- Rheumatology Division, University of California San Francisco, San Francisco, CA, USA
| | - Meyeon Park
- Division of Nephrology, University of California San Francisco, San Francisco, CA, USA
| | - Diane L Kamen
- Division of Rheumatology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Richard A Furie
- Division of Rheumatology, Northwell Health, Great Neck, NY, USA
| | - Fernanda Payan-Schober
- Department of Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX, USA
| | | | - Elizabeth A McInnis
- University of North Carolina Kidney Center, Division of Nephrology and Hypertension, Department of Medicine, UNC School of Medicine, Chapel Hill, NC, USA
| | - Jill P Buyon
- Department of Medicine, Division of Rheumatology, New York University School of Medicine, New York, NY, USA
| | - Michelle A Petri
- Division of Rheumatology, Johns Hopkins University, Baltimore, MD, USA
| | - Chaim Putterman
- Division of Rheumatology and Department of Microbiology and Immunology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, USA
| | - Kenneth C Kalunian
- University of California San Diego School of Medicine, La Jolla, CA, USA
| | - E Steve Woodle
- Division of Transplantation, Department of Surgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - James A Lederer
- Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David A Hildeman
- Department of Pediatrics, University of Cincinnati, Cincinnati, OH, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Soumya Raychaudhuri
- Division of Rheumatology, Immunology, Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthias Kretzler
- Internal Medicine, Department of Nephrology, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer H Anolik
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael B Brenner
- Division of Rheumatology, Immunology, Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David Wofsy
- Rheumatology Division, University of California San Francisco, San Francisco, CA, USA
| | - Nir Hacohen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Betty Diamond
- Center for Autoimmune and Musculoskeletal Diseases, The Feinstein Institute for Medical Research, Northwell Health, Manhasset, NY, USA.
| |
Collapse
|
80
|
Mijnheer G, van Wijk F. T-Cell Compartmentalization and Functional Adaptation in Autoimmune Inflammation: Lessons From Pediatric Rheumatic Diseases. Front Immunol 2019; 10:940. [PMID: 31143175 PMCID: PMC6520654 DOI: 10.3389/fimmu.2019.00940] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 04/11/2019] [Indexed: 12/30/2022] Open
Abstract
Chronic inflammatory diseases are characterized by a disturbed immune balance leading to recurring episodes of inflammation in specific target tissues, such as the joints in juvenile idiopathic arthritis. The tissue becomes infiltrated by multiple types of immune cell, including high numbers of CD4 and CD8 T-cells, which are mostly effector memory cells. Locally, these T-cells display an environment-adapted phenotype, induced by inflammation- and tissue-specific instructions. Some of the infiltrated T-cells may become tissue resident and play a role in relapses of inflammation. Adaptation to the environment may lead to functional (re)programming of cells and altered cellular interactions and responses. For example, specifically at the site of inflammation both CD4 and CD8 T-cells can become resistant to regulatory T-cell-mediated regulation. In addition, CD8 and CD4 T-cells show a unique profile with pro- and anti-inflammatory features coexisting in the same compartment. Also regulatory T-cells are neither homogeneous nor static in nature and show features of functional differentiation, and plasticity in inflammatory environments. Here we will discuss the recent insights in T-cell functional specialization, regulation, and clonal expansion in local (tissue) inflammation.
Collapse
Affiliation(s)
- Gerdien Mijnheer
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Femke van Wijk
- Laboratory of Translational Immunology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
81
|
Liarski VM, Sibley A, van Panhuys N, Ai J, Chang A, Kennedy D, Merolle M, Germain RN, Giger ML, Clark MR. Quantifying in situ adaptive immune cell cognate interactions in humans. Nat Immunol 2019; 20:503-513. [PMID: 30778242 PMCID: PMC6474677 DOI: 10.1038/s41590-019-0315-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/07/2019] [Indexed: 12/26/2022]
Abstract
Two-photon excitation microscopy (TPEM) has revolutionized the understanding of adaptive immunity. However, TPEM usually requires animal models and is not amenable to the study of human disease. The recognition of antigen by T cells requires cell contact and is associated with changes in T cell shape. We postulated that by capturing these features in fixed tissue samples, we could quantify in situ adaptive immunity. Therefore, we used a deep convolutional neural network to identify fundamental distance and cell-shape features associated with cognate help (cell-distance mapping (CDM)). In mice, CDM was comparable to TPEM in discriminating cognate T cell-dendritic cell (DC) interactions from non-cognate T cell-DC interactions. In human lupus nephritis, CDM confirmed that myeloid DCs present antigen to CD4+ T cells and identified plasmacytoid DCs as an important antigen-presenting cell. These data reveal a new approach with which to study human in situ adaptive immunity broadly applicable to autoimmunity, infection, and cancer.
Collapse
Affiliation(s)
- Vladimir M Liarski
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Adam Sibley
- Department of Radiology and Committee on Medical Physics, University of Chicago, Chicago, IL, USA
| | - Nicholas van Panhuys
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Junting Ai
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Anthony Chang
- Department of Pathology, University of Chicago, Chicago, IL, USA
| | - Domenick Kennedy
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
| | - Maria Merolle
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA
- Department of Radiology and Committee on Medical Physics, University of Chicago, Chicago, IL, USA
| | - Ronald N Germain
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Maryellen L Giger
- Department of Radiology and Committee on Medical Physics, University of Chicago, Chicago, IL, USA.
| | - Marcus R Clark
- Department of Medicine, Section of Rheumatology and Gwen Knapp Center for Lupus and Immunology Research, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
82
|
Jin H, Yang K, Zhang H, Chen Y, Qi H, Fan Z, Huang F, Xuan L, Lin R, Zhao K, Liu Q. Expansion of circulating extrafollicular helper T-like cells in patients with chronic graft-versus-host disease. J Autoimmun 2019; 100:95-104. [PMID: 30878167 DOI: 10.1016/j.jaut.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 03/05/2019] [Indexed: 10/27/2022]
Abstract
Chronic graft-versus-host disease (cGVHD) is a major cause of morbidity and mortality after allogeneic hematopoietic stem cell transplantation (allo-HSCT). Previous studies have shown that T follicular helper cells (Tfh) contribute to immune pathology in cGVHD, but the function of extrafollicular helper T cells during cGVHD pathogenesis remains largely unknown. In the current study, we identified circulating extrafollicular helper T-like cells (CD44hiCD62LloPSGL-1loCD4+, c-extrafollicular Th-like) in human peripheral blood. We performed phenotypic and functional analyses of c-extrafollicular Th-like cells from 80 patients after allo-HSCT to explore the role of these cells in the development of human cGVHD. Patients with active cGVHD had significantly higher frequencies and counts of c-extrafollicular Th-like cells than those of patients without cGVHD. The expansion of c-extrafollicular Th-like cells was more significant in patients with moderate/severe cGVHD than that of patients with mild cGVHD. C-extrafollicular Th-like cells from patients with active cGVHD exhibited increased functional abilities to induce plasmablast differentiation and IgG1 secretion compared to those of patients without cGVHD. Moreover, c-extrafollicular Th-like cell levels were highly correlated with the generation of autoreactive B cells, plasmablasts and IgG1 antibodies. Our studies provide new insights into human cGVHD pathogenesis and identify c-extrafollicular Th-like cells as a key element in the development of human cGVHD.
Collapse
Affiliation(s)
- Hua Jin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Kaibo Yang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Haiyan Zhang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yanqiu Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Hanzhou Qi
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Zhiping Fan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Fen Huang
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ren Lin
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Ke Zhao
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Qifa Liu
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Southern Medical University, Guangdong, China.
| |
Collapse
|
83
|
Heidt S, Vergunst M, Anholts JDH, Swings GMJS, Gielis EMJ, Groeneweg KE, Witkamp MJ, de Fijter JW, Reinders MEJ, Roelen DL, Eikmans M, Claas FHJ. Presence of intragraft B cells during acute renal allograft rejection is accompanied by changes in peripheral blood B cell subsets. Clin Exp Immunol 2019; 196:403-414. [PMID: 30712266 PMCID: PMC6514375 DOI: 10.1111/cei.13269] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2019] [Indexed: 01/08/2023] Open
Abstract
B cells have various functions, besides being plasma cell precursors. We determined the presence of intragraft B cells at time of acute rejection (AR) and looked for correlates of B cell involvement in peripheral blood. Renal biopsies at time of AR or stable graft function were analysed for the presence of B cells and B cell‐related gene expression, as well as C4d staining. Peripheral blood B cell subset distribution was analysed at various time‐points in patients with AR and controls, alongside serum human leucocyte antigen (HLA) antibodies. AR was accompanied by intragraft CD20+ B cells, as well as elevated CD20 (MS4A1) and CD19 gene expression compared to controls. B cell infiltrates were proportional to T cells, and accompanied by the chemokine pair C‐X‐C motif chemokine ligand 13 (CXCL13)–C‐X‐C motif chemokine receptor 5 (CXCR5) and B cell activating factor (BAFF). Peripheral blood memory B cells were decreased and naive B cells increased at AR, in contrast to controls. While 22% of patients with AR and 5% of controls showed de‐novo donor‐specific antibodies (DSA), all biopsies were C4d‐negative. These results suggest a role for B cells in AR by infiltrating the graft alongside T cells. We hypothesize that the shift in peripheral blood B cell composition is related to the graft infiltration at time of AR.
Collapse
Affiliation(s)
- S Heidt
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - M Vergunst
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - J D H Anholts
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - G M J S Swings
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - E M J Gielis
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - K E Groeneweg
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - M J Witkamp
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - J W de Fijter
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - M E J Reinders
- Department of Internal Medicine (Nephrology), Leiden University Medical Center, Leiden, the Netherlands
| | - D L Roelen
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - M Eikmans
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| | - F H J Claas
- Department of Immunohaematology and Blood Transfusion, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
84
|
Abstract
Autoimmunity is a leading cause of chronic kidney disease and loss of native and transplanted kidneys. Conventional immunosuppressive therapies can be effective but are non-specific, noncurative, and risk serious side effects such as life-threatening infection and cancer. Novel therapies and targeted interventions are urgently needed. In this brief review we explore diverse strategies currently in development and under consideration to interrupt underlying disease mechanisms in immune-mediated renal injury. Because autoantibodies are prominent in diagnosis and pathogenesis in multiple human glomerulopathies, we highlight several promising therapies that interfere with functions of early mediators (IgG and complement) of the effector arm and with an epicenter (the germinal center) for induction of humoral immunity.
Collapse
Affiliation(s)
- Mary Helen Foster
- a Department of Medicine , Duke University Medical Center , Durham , NC , USA.,b Medical and Research Services , Durham VA Medical Center , Durham , NC , USA
| | | |
Collapse
|
85
|
Yu D, Ye L. A Portrait of CXCR5 + Follicular Cytotoxic CD8 + T cells. Trends Immunol 2018; 39:965-979. [PMID: 30377045 DOI: 10.1016/j.it.2018.10.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/18/2018] [Accepted: 10/03/2018] [Indexed: 12/14/2022]
Abstract
CD8+ T cells differentiate into multiple effector and memory subsets to carry out immune clearance of infected and cancerous cells and provide long-term protection. Recent research identified a CXCR5+Tcf1+Tim-3- subset that localizes in, or proximal to, B cell follicles in secondary lymphoid organs of mice, non-human primates, and humans, hereby termed follicular cytotoxic T (TFC) cells. With remarkable similarity to follicular helper T (TFH) cells, TFC differentiation is dependent on transcription factors E2A, Bcl6, and Tcf1, but inhibited by other regulators, including Blimp1, Id2, and Id3. This review summarizes the phenotype, function, and differentiation of this new subset. Owing to its follicular location and self-renewal capability, we propose immunotherapeutic strategies to target TFC cells to potentially treat certain cancers and chronic infections such as HIV-1.
Collapse
Affiliation(s)
- Di Yu
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Acton, ACT, Australia; Shandong Analysis and Test Center, Shandong Academy of Sciences, Jinan, China; China-Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Lilin Ye
- Institute of Immunology, Third Military Medical University, Chongqing, China.
| |
Collapse
|
86
|
Zhang R, Qi CF, Hu Y, Shan Y, Hsieh YP, Xu F, Lu G, Dai J, Gupta M, Cui M, Peng L, Yang J, Xue Q, Chen-Liang R, Chen K, Zhang Y, Fung-Leung WP, Mora JR, Li L, Morse HC, Ozato K, Heeger PS, Xiong H. T follicular helper cells restricted by IRF8 contribute to T cell-mediated inflammation. J Autoimmun 2018; 96:113-122. [PMID: 30241692 DOI: 10.1016/j.jaut.2018.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 09/06/2018] [Accepted: 09/07/2018] [Indexed: 12/14/2022]
Abstract
The follicular helper T cell (TFH) are established regulators of germinal center (GC) B cells, whether TFH have pathogenic potential independent of B cells is unknown. Based on in vitro TFH cell differentiation, in vivo T cell transfer animal colitis model, and intestinal tissues of inflammatory bowel disease (IBD) patients, TFH and its functions in colitis development were analyzed by FACS, ChIP, ChIP-sequencing, WB, ELISA and PCR. Herein we demonstrate that intestinal tissues of patients and colon tissues obtained from Rag1-/- recipients of naïve CD4+ T cells with colitis, each over-express TFH-associated gene products. Adoptive transfer of naïve Bcl6-/- CD4+ T cells into Rag1-/- recipient mice abrogated development of colitis and limited TFH differentiation in vivo, demonstrating a mechanistic link. In contrast, T cell deficiency of interferon regulatory factor 8 (IRF8) resulted in augmentation of TFH induction in vitro and in vivo. Functional studies showed that adoptive transfer of IRF8 deficient CD4+ T cells into Rag1-/- recipients exacerbated colitis development associated with increased gut TFH-related gene expression, while Irf8-/-/Bcl6-/- CD4+ T cells abrogated colitis, together indicating that IRF8-regulated TFH can directly cause colon inflammation. Molecular analyses revealed that IRF8 suppresses TFH differentiation by inhibiting transcription and transactivation of the TF IRF4, which is also known to be essential for TFH induction. Our documentation showed that IRF8-regulated TFH can function as B-cell-independent, pathogenic, mediators of colitis suggests that targeting TFH could be effective for treatment of IBD.
Collapse
Affiliation(s)
- Ruihua Zhang
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Chen-Feng Qi
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yuan Hu
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yanhong Shan
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yuan-Pang Hsieh
- Department of Biological Sciences, College of Science, Virginia Tech, USA
| | - Feihong Xu
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Geming Lu
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jun Dai
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Monica Gupta
- Programs in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Miao Cui
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Liang Peng
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jianjun Yang
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Qingjie Xue
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ray Chen-Liang
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kang Chen
- Department of Obstetrics and Gynecology, Wayne State University, Detroit, MI 48201, USA
| | - Yeyunfei Zhang
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | | | - Liwu Li
- Department of Biological Sciences, College of Science, Virginia Tech, USA
| | - Herbert C Morse
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Keiko Ozato
- Programs in Genomics of Differentiation, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter S Heeger
- Department of Medicine, Translational Transplant Research Center, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Huabao Xiong
- Department of Medicine, Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
87
|
Rao DA. T Cells That Help B Cells in Chronically Inflamed Tissues. Front Immunol 2018; 9:1924. [PMID: 30190721 PMCID: PMC6115497 DOI: 10.3389/fimmu.2018.01924] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 08/06/2018] [Indexed: 12/24/2022] Open
Abstract
Chronically inflamed tissues commonly accrue lymphocyte aggregates that facilitate local T cell-B cell interactions. These aggregates can range from small, loosely arranged lymphocyte clusters to large, organized ectopic lymphoid structures. In some cases, ectopic lymphoid structures develop germinal centers that house prototypical T follicular helper (Tfh) cells with high expression of Bcl6, CXCR5, PD-1, and ICOS. However, in many chronically inflamed tissues, the T cells that interact with B cells show substantial differences from Tfh cells in their surface phenotypes, migratory capacity, and transcriptional regulation. This review discusses observations from multiple diseases and models in which tissue-infiltrating T cells produce factors associated with B cell help, including IL-21 and the B cell chemoattractant CXCL13, yet vary dramatically in their resemblance to Tfh cells. Particular attention is given to the PD-1hi CXCR5− Bcl6low T peripheral helper (Tph) cell population in rheumatoid arthritis, which infiltrates inflamed synovium through expression of chemokine receptors such as CCR2 and augments synovial B cell responses via CXCL13 and IL-21. The factors that regulate CD4+ T cell production of CXCL13 and IL-21 in these settings are also discussed. Understanding the range of T cell populations that can provide help to B cells within chronically inflamed tissues is essential to recognize these cells in diverse inflammatory conditions and to optimize either broad or selective therapeutic targeting of B cell-helper T cells.
Collapse
Affiliation(s)
- Deepak A Rao
- Division of Rheumatology, Immunology, Allergy, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
88
|
Qin L, Waseem TC, Sahoo A, Bieerkehazhi S, Zhou H, Galkina EV, Nurieva R. Insights Into the Molecular Mechanisms of T Follicular Helper-Mediated Immunity and Pathology. Front Immunol 2018; 9:1884. [PMID: 30158933 PMCID: PMC6104131 DOI: 10.3389/fimmu.2018.01884] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/31/2018] [Indexed: 12/18/2022] Open
Abstract
T follicular helper (Tfh) cells play key role in providing help to B cells during germinal center (GC) reactions. Generation of protective antibodies against various infections is an important aspect of Tfh-mediated immune responses and the dysregulation of Tfh cell responses has been implicated in various autoimmune disorders, inflammation, and malignancy. Thus, their differentiation and maintenance must be closely regulated to ensure appropriate help to B cells. The generation and function of Tfh cells is regulated by multiple checkpoints including their early priming stage in T zones and throughout the effector stage of differentiation in GCs. Signaling pathways activated downstream of cytokine and costimulatory receptors as well as consequent activation of subset-specific transcriptional factors are essential steps for Tfh cell generation. Thus, understanding the mechanisms underlying Tfh cell-mediated immunity and pathology will bring into spotlight potential targets for novel therapies. In this review, we discuss the recent findings related to the molecular mechanisms of Tfh cell differentiation and their role in normal immune responses and antibody-mediated diseases.
Collapse
Affiliation(s)
- Lei Qin
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States.,School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Tayab C Waseem
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Anupama Sahoo
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Shayahati Bieerkehazhi
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Hong Zhou
- School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Elena V Galkina
- Department of Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, United States
| | - Roza Nurieva
- Department of Immunology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| |
Collapse
|
89
|
Kim SJ, Lee K, Diamond B. Follicular Helper T Cells in Systemic Lupus Erythematosus. Front Immunol 2018; 9:1793. [PMID: 30123218 PMCID: PMC6085416 DOI: 10.3389/fimmu.2018.01793] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 07/20/2018] [Indexed: 01/01/2023] Open
Abstract
CD4+ follicular helper T (Tfh) cells constitute a subset of effector T cells that participate in the generation of high-affinity humoral responses. They express the chemokine receptor CXCR5 and produce the cytokine IL-21, both of which are required for their contribution to germinal center formation. Uncontrolled expansion of Tfh cells is observed in various mouse models of systemic autoimmune diseases and in patients with these diseases. In particular, the frequency of circulating Tfh is correlated with disease activity and anti-DNA antibody titer in patients with systemic lupus erythematosus. Recent studies reveal functional diversity within the Tfh population in both humans and mice. We will summarize here the molecular mechanisms for Tfh cell generation, survival and function in both humans and mice, and the relationship between Tfh cells and autoimmune disease in animal models and in patients.
Collapse
Affiliation(s)
- Sun Jung Kim
- The Feinstein Institute for Medical Research, Northwell Health, New York, NY, United States
| | - Kyungwoo Lee
- The Feinstein Institute for Medical Research, Northwell Health, New York, NY, United States
| | - Betty Diamond
- The Feinstein Institute for Medical Research, Northwell Health, New York, NY, United States
| |
Collapse
|
90
|
Hutloff A. T Follicular Helper-Like Cells in Inflamed Non-Lymphoid Tissues. Front Immunol 2018; 9:1707. [PMID: 30083164 PMCID: PMC6064731 DOI: 10.3389/fimmu.2018.01707] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/11/2018] [Indexed: 11/13/2022] Open
Abstract
T and B cell cooperation normally takes place in secondary lymphoid organs (SLO). However, both cell types are also frequently found in inflamed non-lymphoid tissues. Under certain conditions, these infiltrates develop into ectopic lymphoid structures, also known as tertiary lymphoid tissues, which structurally and functionally fully resemble germinal centers (GCs) in SLO. However, tertiary lymphoid tissue is uncommon in most human autoimmune conditions; instead, relatively unstructured T and B cell infiltrates are found. Recent studies have demonstrated that active T and B cell cooperation can also take place in such unstructured aggregates. The infiltrating cells contain a population of T follicular helper (Tfh)-like cells (also designated "peripheral T helper cells") lacking prototypic Tfh markers like CXCR5 and Bcl-6 but nevertheless expressing high levels of molecules important for B cell help like IL-21 and CD40L. Moreover, Tfh-like cells isolated from inflamed tissues can drive the differentiation of B cells into antibody-secreting cells in vitro. These findings are not restricted to experimental animal models but have been reproduced in rheumatoid arthritis and breast cancer patients. At this point, it is unclear whether T and B cell cooperation outside the ordered structure of the GC fully mirrors the reactions in SLO. However, Tfh-like cells in inflamed tissues are certainly important for the local differentiation of B cells into antibody-secreting cells, and should be considered as an important target for the treatment of autoimmune diseases.
Collapse
Affiliation(s)
- Andreas Hutloff
- Chronic Immune Reactions, German Rheumatism Research Centre Berlin (DRFZ), a Leibniz Institute, Berlin, Germany
| |
Collapse
|
91
|
Gensous N, Charrier M, Duluc D, Contin-Bordes C, Truchetet ME, Lazaro E, Duffau P, Blanco P, Richez C. T Follicular Helper Cells in Autoimmune Disorders. Front Immunol 2018; 9:1637. [PMID: 30065726 PMCID: PMC6056609 DOI: 10.3389/fimmu.2018.01637] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Accepted: 07/03/2018] [Indexed: 12/14/2022] Open
Abstract
T follicular helper (Tfh) cells are a distinct subset of CD4+ T lymphocytes, specialized in B cell help and in regulation of antibody responses. They are required for the generation of germinal center reactions, where selection of high affinity antibody producing B cells and development of memory B cells occur. Owing to the fundamental role of Tfh cells in adaptive immunity, the stringent control of their production and function is critically important, both for the induction of an optimal humoral response against thymus-dependent antigens but also for the prevention of self-reactivity. Indeed, deregulation of Tfh activities can contribute to a pathogenic autoantibody production and can play an important role in the promotion of autoimmune diseases. In the present review, we briefly introduce the molecular factors involved in Tfh cell formation in the context of a normal immune response, as well as markers associated with their identification (transcription factor, surface marker expression, and cytokine production). We then consider in detail the role of Tfh cells in the pathogenesis of a broad range of autoimmune diseases, with a special focus on systemic lupus erythematosus and rheumatoid arthritis, as well as on the other autoimmune/inflammatory disorders. We summarize the observed alterations in Tfh numbers, activation state, and circulating subset distribution during autoimmune and some other inflammatory disorders. In addition, central role of interleukin-21, major cytokine produced by Tfh cells, is discussed, as well as the involvement of follicular regulatory T cells, which share characteristics with both Tfh and regulatory T cells.
Collapse
Affiliation(s)
- Noémie Gensous
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Manon Charrier
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Dorothée Duluc
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | | | | | - Estibaliz Lazaro
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Pierre Duffau
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Patrick Blanco
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| | - Christophe Richez
- ImmunoConcept, UMR-CNRS 5164, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
92
|
Flores-Mendoza G, Sansón SP, Rodríguez-Castro S, Crispín JC, Rosetti F. Mechanisms of Tissue Injury in Lupus Nephritis. Trends Mol Med 2018. [PMID: 29526595 DOI: 10.1016/j.molmed.2018.02.003] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Disease heterogeneity remains a major challenge for the understanding of systemic lupus erythematosus (SLE). Recent work has revealed the important role of nonimmune factors in the development of end-organ damage involvement, shifting the current paradigm that views SLE as a disease inflicted by a disturbed immune system on passive target organs. Here, we discuss the pathogenesis of lupus nephritis in a comprehensive manner, by incorporating the role that target organs play by withstanding and modulating the local inflammatory response. Moreover, we consider the effects that genetic variants exert on immune and nonimmune cells in order to shape the phenotype of the disease in each affected individual.
Collapse
Affiliation(s)
- Giovanna Flores-Mendoza
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; Doctorado en Ciencias Biológicas, Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Stephanie P Sansón
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, UNAM, Mexico City, Mexico
| | - Santiago Rodríguez-Castro
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico; Plan de Estudios Combinados en Medicina (PECEM), Facultad de Medicina, UNAM, Mexico City, Mexico
| | - José C Crispín
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.
| | - Florencia Rosetti
- Departamento de Inmunología y Reumatología, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City 14080, Mexico.
| |
Collapse
|
93
|
Taylor DK, Mittereder N, Kuta E, Delaney T, Burwell T, Dacosta K, Zhao W, Cheng LI, Brown C, Boutrin A, Guo X, White WI, Zhu J, Dong H, Bowen MA, Lin J, Gao C, Yu L, Ramaswamy M, Gaudreau MC, Woods R, Herbst R, Carlesso G. T follicular helper–like cells contribute to skin fibrosis. Sci Transl Med 2018. [DOI: 10.1126/scitranslmed.aaf5307] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
94
|
Allogeneic dendritic cells stimulated with antibodies against HLA class II polarize naive T cells in a follicular helper phenotype. Sci Rep 2018; 8:4025. [PMID: 29507364 PMCID: PMC5838222 DOI: 10.1038/s41598-018-22391-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 02/22/2018] [Indexed: 01/05/2023] Open
Abstract
Follicular helper T cells (Tfh) are crucial for the production of high-affinity antibodies, such as alloantibodies, by providing the signals for B-cell proliferation and differentiation. Here, we demonstrate that human allogeneic dendritic cells (DC) stimulated with antibodies against HLA class II antigens preferentially differentiate human naive CD4+ T cells into Tfh cells. Following coculture with DCs treated with these antibodies, CD4+ T cells expressed CXCR5, ICOS, IL-21, Bcl-6 and phosphorylated STAT3. Blockade of IL-21 abrogated Bcl-6, while addition of the IL-12p40 subunit to the coculture increased CXCR5, Bcl-6, phosphorylated STAT3 and ICOS, indicating that they were both involved in Tfh polarization. We further phenotyped the peripheral T cells in a cohort of 55 kidney transplant recipients. Patients with anti-HLA-II donor-specific antibodies (DSA) presented higher blood counts of circulating Tfh cells than those with anti-HLA-I DSAs. Moreover, there was a predominance of lymphoid aggregates containing Tfh cells in biopsies from patients with antibody-mediated rejection and anti-HLA-II DSAs. Collectively, these data suggest that alloantibodies against HLA class II specifically promote the differentiation of naive T cells to Tfh cells following contact with DCs, a process that might appear in situ in human allografts and constitutes a therapeutic target.
Collapse
|
95
|
Schrezenmeier E, Jayne D, Dörner T. Targeting B Cells and Plasma Cells in Glomerular Diseases: Translational Perspectives. J Am Soc Nephrol 2018; 29:741-758. [PMID: 29326157 DOI: 10.1681/asn.2017040367] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The unique contributions of memory B cells and plasma cells in kidney diseases remain unclear. In this review, we evaluate the clinical experience with treatments directed at B cells, such as rituximab, and at plasma cells, such as proteasome inhibition, to shed light on the role of these two B lineage compartments in glomerular diseases. Specifically, analysis of these targeted interventions in diseases such as ANCA-associated vasculitis, SLE, and antibody-mediated transplant rejection permits insight into the pathogenetic effect of these cells. Notwithstanding the limitations of preclinical models and clinical studies (heterogeneous populations, among others), the data suggest that memory B and plasma cells represent two engines of autoimmunity, with variable involvement in these diseases. Whereas memory B cells and plasma cells appear to be key in ANCA-associated vasculitis and antibody-mediated transplant rejection, respectively, SLE seems likely to be driven by both autoimmune compartments. These conclusions have implications for the future development of targeted therapeutics in immune-mediated renal disease.
Collapse
Affiliation(s)
| | - David Jayne
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Thomas Dörner
- Rheumatology and Clinical Immunology, Department of Medicine, Charité Universitätsmedizin Berlin, Campus Mitte, Berlin, Germany; and
| |
Collapse
|
96
|
Kim Y, Shim SC. Wolves Trapped in the NETs–The Pathogenesis of Lupus Nephritis. JOURNAL OF RHEUMATIC DISEASES 2018. [DOI: 10.4078/jrd.2018.25.2.81] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Young Kim
- Division of Internal Medicine, Daejeon Veterans Hospital, Daejeon, Korea
| | - Seung Cheol Shim
- Division of Rheumatology, Department of Internal Medicine, Daejeon Rheumatoid and Degenerative Arthritis Center, Chungnam National University Hospital, Chungnam National University College of Medicine, Daejeon, Korea
| |
Collapse
|
97
|
Choi SC, Morel L. B cell contribution of the CD4 + T cell inflammatory phenotypes in systemic lupus erythematosus. Autoimmunity 2017; 50:37-41. [PMID: 28166683 DOI: 10.1080/08916934.2017.1280028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Systemic lupus erythematosus is an autoimmune disease in which the effector molecules responsible for tissue damage are antibodies directed against a large number of self-antigens, among which nucleic acids complexed with proteins play a prominent role. These pathogenic autoantibodies are produced by plasma cells differentiated from activated autoreactive B cells, a process that requires complex interactions between multiple components of the immune systems. A key step in the activation of autoreactive B cells is provided by CD4+ T cells through cytokines and cell-to-cell contact. Lupus CD4+ T cells are autoreactive and they present an activated inflammatory phenotype that has been shown to contribute to disease. In addition to their role in antibody production, B cells have other effector functions, the most important ones being antigen presentation to and co-stimulation of CD4+ T cells, as well as the secretion of cytokines. Here, we review what is known, largely based on mouse models, how these B cell effector functions contribute to the CD4+ T cell inflammatory phenotypes in lupus. When possible, we compare CD4+ T cell activation by B cells and by dendritic cells, and speculate how these interactions may contribute to the disease process.
Collapse
Affiliation(s)
- Seung-Chul Choi
- a Department of Pathology, Immunology, and Laboratory Medicine , University of Florida , Gainesville , FL , USA
| | - Laurence Morel
- a Department of Pathology, Immunology, and Laboratory Medicine , University of Florida , Gainesville , FL , USA
| |
Collapse
|
98
|
Li W, Sivakumar R, Titov AA, Choi SC, Morel L. Metabolic Factors that Contribute to Lupus Pathogenesis. Crit Rev Immunol 2017; 36:75-98. [PMID: 27480903 DOI: 10.1615/critrevimmunol.2016017164] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease in which organ damage is mediated by pathogenic autoantibodies directed against nucleic acids and protein complexes. Studies in SLE patients and in mouse models of lupus have implicated virtually every cell type in the immune system in the induction or amplification of the autoimmune response as well as the promotion of an inflammatory environment that aggravates tissue injury. Here, we review the contribution of CD4+ T cells, B cells, and myeloid cells to lupus pathogenesis and then discuss alterations in the metabolism of these cells that may contribute to disease, given the recent advances in the field of immunometabolism.
Collapse
Affiliation(s)
- Wei Li
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610; Department of Biochemistry and Molecular Biology, Gene Engineering and Biotechnology, Beijing Key Laboratory, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Ramya Sivakumar
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Anton A Titov
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Seung-Chul Choi
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| | - Laurence Morel
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610
| |
Collapse
|
99
|
Alsughayyir J, Pettigrew GJ, Motallebzadeh R. Spoiling for a Fight: B Lymphocytes As Initiator and Effector Populations within Tertiary Lymphoid Organs in Autoimmunity and Transplantation. Front Immunol 2017; 8:1639. [PMID: 29218052 PMCID: PMC5703719 DOI: 10.3389/fimmu.2017.01639] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Accepted: 11/09/2017] [Indexed: 12/13/2022] Open
Abstract
Tertiary lymphoid organs (TLOs) develop at ectopic sites within chronically inflamed tissues, such as in autoimmunity and rejecting organ allografts. TLOs differ structurally from canonical secondary lymphoid organs (SLOs), in that they lack a mantle zone and are not encapsulated, suggesting that they may provide unique immune function. A notable feature of TLOs is the frequent presence of structures typical of germinal centers (GCs). However, little is known about the role of such GCs, and in particular, it is not clear if the B cell response within is autonomous, or whether it synergizes with concurrent responses in SLOs. This review will discuss ectopic lymphoneogenesis and the role of the B cell in TLO formation and subsequent effector output in the context of autoimmunity and transplantation, with particular focus on the contribution of ectopic GCs to affinity maturation in humoral immune responses and to the potential breakdown of self-tolerance and development of humoral autoimmunity.
Collapse
Affiliation(s)
- Jawaher Alsughayyir
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Gavin J Pettigrew
- School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Reza Motallebzadeh
- Division of Surgery and Interventional Science, University College London, London, United Kingdom.,Institute of Immunity and Transplantation, University College London, London, United Kingdom.,Department of Nephrology, Urology and Transplantation, Royal Free Hospital, London, United Kingdom
| |
Collapse
|
100
|
Large-scale 3-dimensional quantitative imaging of tissues: state-of-the-art and translational implications. Transl Res 2017; 189:1-12. [PMID: 28784428 PMCID: PMC5659947 DOI: 10.1016/j.trsl.2017.07.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 06/26/2017] [Accepted: 07/18/2017] [Indexed: 12/12/2022]
Abstract
Recent developments in automated optical sectioning microscope systems have enabled researchers to conduct high resolution, three-dimensional (3D) microscopy at the scale of millimeters in various types of tissues. This powerful technology allows the exploration of tissues at an unprecedented level of detail, while preserving the spatial context. By doing so, such technology will also enable researchers to explore cellular and molecular signatures within tissue and correlate with disease course. This will allow an improved understanding of pathophysiology and facilitate a precision medicine approach to assess the response to treatment. The ability to perform large-scale imaging in 3D cannot be realized without the widespread availability of accessible quantitative analysis. In this review, we will outline recent advances in large-scale 3D imaging and discuss the available methodologies to perform meaningful analysis and potential applications in translational research.
Collapse
|