51
|
Wei X, Wang J, Liang M, Song M. Development of functional nanomedicines for tumor associated macrophages-focused cancer immunotherapy. Theranostics 2022; 12:7821-7852. [PMID: 36451865 PMCID: PMC9706587 DOI: 10.7150/thno.78572] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/23/2022] [Indexed: 12/03/2022] Open
Abstract
Clinical cancer immunotherapies are usually impeded by tumor immunosuppression driven by tumor associated macrophages (TAMs). Thus, TAMs can be considered as a promising therapeutic target for improved immunotherapy, and TAMs-focused molecular targeting agents have made ideal progress in clinical practice. Even so, most TAMs-targeting agents still cannot cover up their own shortcomings as free drugs. The emergence of multifunctional nanomaterials can expectedly endow these therapeutic cargoes with high solubility, favorable pharmacokinetic distribution, cell-specific delivery, and controlled release. Here, the underlying mechanisms of tumor immunosuppression caused by TAMs are first emphatically elucidated, and then the basic design of TAMs-focused immune-nanomedicines are discussed, mainly including diverse categories of nanomaterials, targeted and stimulus-responsive modifications, and TAM imaging in nanomedicines. A summary of current TAMs-targeting immunotherapeutic mechanisms based on functional nanomedicines for TAMs elimination and/or repolarization is further presented. Lastly, some severe challenges related to functional nanomedicines for TAMs-focused cancer immunotherapy are proposed, and some feasible perspectives on clinical translation of TAMs-associated anticancer immunonanomedicines are provided. It is hoped that, with rapid development of nanomedicine in cancer immunotherapy, TAMs-focused therapeutic strategies may be anticipated to become an emerging immunotherapeutic modality for future clinical cancer treatment.
Collapse
Affiliation(s)
- Xiao Wei
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, P. R. China
| | - Jing Wang
- Section of Molecular Dermatology, Medical Faculty Mannheim of Heidelberg University, Mannheim, Germany
| | - Min Liang
- Department of Thoracic and Cardiac Surgery, Affiliated Hospital of Chengdu University, Chengdu 610081, P. R. China
| | - Mingzhu Song
- School of Preclinical Medicine, Chengdu University, Chengdu 610106, P. R. China
- Evidence-Based Medicine Center, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
52
|
Ma X, Zhang MJ, Wang J, Zhang T, Xue P, Kang Y, Sun ZJ, Xu Z. Emerging Biomaterials Imaging Antitumor Immune Response. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2204034. [PMID: 35728795 DOI: 10.1002/adma.202204034] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/19/2022] [Indexed: 06/15/2023]
Abstract
Immunotherapy is one of the most promising clinical modalities for the treatment of malignant tumors and has shown excellent therapeutic outcomes in clinical settings. However, it continues to face several challenges, including long treatment cycles, high costs, immune-related adverse events, and low response rates. Thus, it is critical to predict the response rate to immunotherapy by using imaging technology in the preoperative and intraoperative. Here, the latest advances in nanosystem-based biomaterials used for predicting responses to immunotherapy via the imaging of immune cells and signaling molecules in the immune microenvironment are comprehensively summarized. Several imaging methods, such as fluorescence imaging, magnetic resonance imaging, positron emission tomography imaging, ultrasound imaging, and photoacoustic imaging, used in immune predictive imaging, are discussed to show the potential of nanosystems for distinguishing immunotherapy responders from nonresponders. Nanosystem-based biomaterials aided by various imaging technologies are expected to enable the effective prediction and diagnosis in cases of tumors, inflammation, and other public diseases.
Collapse
Affiliation(s)
- Xianbin Ma
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Meng-Jie Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Jingting Wang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Tian Zhang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Peng Xue
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Yuejun Kang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| | - Zhi-Jun Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, Wuhan, 430079, P. R. China
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy and Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, P. R. China
| |
Collapse
|
53
|
Approaches to Improve Macromolecule and Nanoparticle Accumulation in the Tumor Microenvironment by the Enhanced Permeability and Retention Effect. Polymers (Basel) 2022; 14:polym14132601. [PMID: 35808648 PMCID: PMC9268820 DOI: 10.3390/polym14132601] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/17/2022] [Accepted: 06/18/2022] [Indexed: 12/17/2022] Open
Abstract
Passive targeting is the foremost mechanism by which nanocarriers and drug-bearing macromolecules deliver their payload selectively to solid tumors. An important driver of passive targeting is the enhanced permeability and retention (EPR) effect, which is the cornerstone of most carrier-based tumor-targeted drug delivery efforts. Despite the huge number of publications showcasing successes in preclinical animal models, translation to the clinic has been poor, with only a few nano-based drugs currently being used for the treatment of cancers. Several barriers and factors have been adduced for the low delivery efficiency to solid tumors and poor clinical translation, including the characteristics of the nanocarriers and macromolecules, vascular and physiological barriers, the heterogeneity of tumor blood supply which affects the homogenous distribution of nanocarriers within tumors, and the transport and penetration depth of macromolecules and nanoparticles in the tumor matrix. To address the challenges associated with poor tumor targeting and therapeutic efficacy in humans, the identified barriers that affect the efficiency of the enhanced permeability and retention (EPR) effect for macromolecular therapeutics and nanoparticle delivery systems need to be overcome. In this review, approaches to facilitate improved EPR delivery outcomes and the clinical translation of novel macromolecular therapeutics and nanoparticle drug delivery systems are discussed.
Collapse
|
54
|
Zhuang D, Zhang H, Hu G, Guo B. Recent development of contrast agents for magnetic resonance and multimodal imaging of glioblastoma. J Nanobiotechnology 2022; 20:284. [PMID: 35710493 PMCID: PMC9204881 DOI: 10.1186/s12951-022-01479-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022] Open
Abstract
Glioblastoma (GBM) as the most common primary malignant brain tumor exhibits a high incidence and degree of malignancy as well as poor prognosis. Due to the existence of formidable blood–brain barrier (BBB) and the aggressive growth and infiltrating nature of GBM, timely diagnosis and treatment of GBM is still very challenging. Among different imaging modalities, magnetic resonance imaging (MRI) with merits including high soft tissue resolution, non-invasiveness and non-limited penetration depth has become the preferred tool for GBM diagnosis. Furthermore, multimodal imaging with combination of MRI and other imaging modalities would not only synergistically integrate the pros, but also overcome the certain limitation in each imaging modality, offering more accurate morphological and pathophysiological information of brain tumors. Since contrast agents contribute to amplify imaging signal output for unambiguous pin-pointing of tumors, tremendous efforts have been devoted to advances of contrast agents for MRI and multimodal imaging. Herein, we put special focus on summary of the most recent advances of not only MRI contrast agents including iron oxide-, manganese (Mn)-, gadolinium (Gd)-, 19F- and copper (Cu)-incorporated nanoplatforms for GBM imaging, but also dual-modal or triple-modal nanoprobes. Furthermore, potential obstacles and perspectives for future research and clinical translation of these contrast agents are discussed. We hope this review provides insights for scientists and students with interest in this area.
Collapse
Affiliation(s)
- Danping Zhuang
- The Second Clinical Medical College, Jinan University, Shenzhen, Guangdong, 518020, China
| | - Huifen Zhang
- Department of Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Genwen Hu
- Department of Radiology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China.
| | - Bing Guo
- School of Science and Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen, 518055, China.
| |
Collapse
|
55
|
Hu H, Quintana J, Weissleder R, Parangi S, Miller M. Deciphering albumin-directed drug delivery by imaging. Adv Drug Deliv Rev 2022; 185:114237. [PMID: 35364124 PMCID: PMC9117484 DOI: 10.1016/j.addr.2022.114237] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 03/10/2022] [Accepted: 03/23/2022] [Indexed: 01/03/2023]
Abstract
Albumin is the most abundant plasma protein, exhibits extended circulating half-life, and its properties have long been exploited for diagnostics and therapies. Many drugs intrinsically bind albumin or have been designed to do so, yet questions remain about true rate limiting factors that govern albumin-based transport and their pharmacological impacts, particularly in advanced solid cancers. Imaging techniques have been central to quantifying - at a molecular and single-cell level - the impact of mechanisms such as phagocytic immune cell signaling, FcRn-mediated recycling, oncogene-driven macropinocytosis, and albumin-drug interactions on spatial albumin deposition and related pharmacology. Macroscopic imaging of albumin-binding probes quantifies vessel structure, permeability, and supports efficiently targeted molecular imaging. Albumin-based imaging in patients and animal disease models thus offers a strategy to understand mechanisms, guide drug development and personalize treatments.
Collapse
Affiliation(s)
- Huiyu Hu
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States; Department of General Surgery, Xiangya Hospital, Central South University, China
| | - Jeremy Quintana
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States; Department of Systems Biology, Harvard Medical School, United States
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, United States
| | - Miles Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, United States; Department of Radiology, Massachusetts General Hospital and Harvard Medical School, United States.
| |
Collapse
|
56
|
Zhang W, Liang X, Zhu L, Zhang X, Jin Z, Du Y, Tian J, Xue H. Optical magnetic multimodality imaging of plectin-1-targeted imaging agent for the precise detection of orthotopic pancreatic ductal adenocarcinoma in mice. EBioMedicine 2022; 80:104040. [PMID: 35525203 PMCID: PMC9079778 DOI: 10.1016/j.ebiom.2022.104040] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy worldwide, and the precise detection is challenging currently. Magnetic particle imaging (MPI) is suitable for imaging deep and internal PDAC tumours because of its high sensitivity and unlimited imaging depth. The purpose of this study was to utilize the MPI, in combination with fluorescence molecular imaging (FMI) and magnetic resonance imaging (MRI), to advance the in vivo precise detection of PDAC xenografts. METHODS The PDAC targeted plectin-1 peptide and IRDye800CW were conjugated to the superparamagnetic iron oxide nanoparticles (PTP-Fe3O4-IRDye800CW) for the PDAC-targeting triple-modality imaging. Subcutaneous and orthotopic PDAC mouse models were established. FMI, MPI, and MRI were performed for dynamic and quantitative observation of PDAC tumours. Histological staining analyses were used for ex vivo validation. FINDINGS PTP-Fe3O4-IRDye800CW nanoparticles possessed great triple-modality imaging performance and specific targeting to plectin-1 expressed on PDAC cells. For in vivo multi-modality imaging of orthotopic PDAC models, the PTP-Fe3O4-IRDye800CW nanoparticles demonstrated higher specificity, even distribution, and longer retention effects in tumours for over 7 d compared with Con-Fe3O4-IRDye800CW nanoparticles. (MPI, 2d post-injection: PTP-Fe3O4-IRDye800CW: 85.72% ± 1.53% vs. Con-Fe3O4-IRDye800CW: 74.41% ± 1.91%, **P < 0.01 (Student's t test)). Ex vivo histological and Prussian blue stainings were performed to validate the distribution of probes. INTERPRETATION These data demonstrate the feasibility of utilizing MPI for in vivo PDAC imaging and complement with FMI/MRI for a precise and comprehensive in vivo characterization of PDAC. This may benefit PDAC patients for precise diagnosis and guidance of therapy. FUNDING This study was funded by the National Natural Science Foundation of China (Grant No. 62027901, 82071896, 81871422, 81871514, 81227901), Ministry of Science and Technology of China under Grant No. 2017YFA0205200, 2017YFA0700401, Beijing Natural Science Foundation (Grant No. 7212207), Elite Program of Dong Cheng District of Beijing (2020-dchrcpyzz-28), and Peking University Third Hospital (BYSYZD2019018, and jyzc2018-02).
Collapse
Affiliation(s)
- Wenjia Zhang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China; CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Hai Dian District, Beijing 100190, China
| | - Xiaolong Liang
- Department of Ultrasound, Peking University Third Hospital, Beijing 100191, China
| | - Liang Zhu
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China
| | - Xinyu Zhang
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China
| | - Zhengyu Jin
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China.
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Hai Dian District, Beijing 100190, China; The University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, the State Key Laboratory of Management and Control for Complex Systems, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Hai Dian District, Beijing 100190, China; Beijing Advanced Innovation Centre for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing 100191, China.
| | - Huadan Xue
- Department of Radiology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan, Dong Cheng District, Beijing 100730, China.
| |
Collapse
|
57
|
How CW, Teoh SL, Loh JS, Tan SLK, Foo JB, Ng HS, Wong SYW, Ong YS. Emerging Nanotheranostics for 5-Fluorouracil in Cancer Therapy: A Systematic Review on Efficacy, Safety, and Diagnostic Capability. Front Pharmacol 2022; 13:882704. [PMID: 35662688 PMCID: PMC9158334 DOI: 10.3389/fphar.2022.882704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
The conventional concept of using nanocarriers to deliver chemotherapeutic drugs has advanced to accommodate additional diagnostic capability. Nanotheranostic agents (NTA), combining both treatment and diagnostic tools, are an ideal example of engineering-health integration for cancer management. Owing to the diverse materials used to construct NTAs, their safety, effectiveness, and diagnostic accuracy could vary substantially. This systematic review consolidated current NTAs incorporating 5-fluorouracil and elucidated their toxicity, anticancer efficacy, and imaging capability. Medline and Embase databases were searched up to March 18, 2022. The search, selection, and extraction were performed by the preferred reporting items for systematic reviews and meta-analysis (PRISMA) guidelines to ensure completeness and reproducibility. Original research papers involving 5-fluorouracil in the preparation of nanoparticles which reported their efficacy, toxicity, and diagnostic capability in animal cancer models were recruited. The quality of included studies was assessed using the Collaborative Approach to Meta-Analysis and Review of Animal Data from Experimental Studies (CAMARADES) checklist. Nine studies were eligible for the systematic review. There was no significant toxicity reported based on animal weight and organ histology. Complete tumor remission was observed in several animal models using chemo-thermal ablation with NTAs, proving the enhancement of 5-fluorouracil efficacy. In terms of imaging performance, the time to achieve maximum tumor image intensity correlates with the presence of targeting ligand on NTAs. The NTAs, which are composed of tumor-targeting ligands, hold promises for further development. Based on the input of current NTA research on cancer, this review proposed a checklist of parameters to recommend researchers for their future NTA testing, especially in animal cancer studies. Systematic Review Registration: website, identifier registration number.
Collapse
Affiliation(s)
- Chee Wun How
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Siew Li Teoh
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| | - Stella Li Kar Tan
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health and Medical Sciences, Taylor’s University, Subang Jaya, Malaysia
| | - Hui Suan Ng
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Sepang, Malaysia
| | | | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Subang Jaya, Malaysia
| |
Collapse
|
58
|
Ye P, Li F, Zou J, Luo Y, Wang S, Lu G, Zhang F, Chen C, Long J, Jia R, Shi M, Wang Y, Cheng X, Ma G, Wei W. In Situ Generation of Gold Nanoparticles on Bacteria‐Derived Magnetosomes for Imaging‐Guided Starving/Chemodynamic/Photothermal Synergistic Therapy against Cancer. ADVANCED FUNCTIONAL MATERIALS 2022; 32. [DOI: 10.1002/adfm.202110063] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Indexed: 07/23/2023]
Abstract
AbstractThere are several attractive opportunities for using magnetic nanomaterials for anticancer applications. Herein, a magnetic nanomaterial platform is successfully developed based on natural Fe3O4 magnetosomes extracted from the bacterium Magnetospirillum magneticum AMB‐1 for anticancer therapy. The authors initially functionalize the magnetosome membranes in situ with gold nanoparticles to construct an attractive core‐satellite structure. Subsequently, the physical properties and application potentials of these structures are characterized as contrast agents for photoacoustic imaging and magnetic resonance imaging and as therapeutic agents with selective magnetic field guidance for diverse antitumor modalities, including starving, chemodynamic, and photothermal therapies. Owing to the high‐performance imaging‐guided synergistic effect, only a single injection and single laser irradiation result in excellent therapeutic efficacy against tumor growth in multiple cell‐derived xenograft tumor models and, most notably, patient‐derived organoid and patient‐derived xenograft tumor models. The demonstrations of the use of natural magnetic nanomaterials to achieve strong and synergistic antitumor performances highlight the promising application potential of this flexible and easy‐to‐prepare platform for developing innovative treatments for diseases in humans.
Collapse
Affiliation(s)
- Peng Ye
- College of Life Sciences and Bioengineering School of Science Beijing Jiaotong University Beijing 100044 P. R. China
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Feng Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Jiale Zou
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- Department of Gastroenterology and Hepatology The First Medical Centre Chinese PLA General Hospital Beijing 100853 P. R. China
| | - Ying Luo
- College of Life Sciences and Bioengineering School of Science Beijing Jiaotong University Beijing 100044 P. R. China
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Guihong Lu
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Fan Zhang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Chang Chen
- College of Life Sciences and Bioengineering School of Science Beijing Jiaotong University Beijing 100044 P. R. China
| | - Jiaxin Long
- College of Life Sciences and Bioengineering School of Science Beijing Jiaotong University Beijing 100044 P. R. China
| | - Rongrong Jia
- Department of Gastroenterology Shanghai Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Min Shi
- Department of Gastroenterology Shanghai Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Yugang Wang
- Department of Gastroenterology Shanghai Tongren Hospital Shanghai Jiao Tong University School of Medicine Shanghai 200336 P. R. China
| | - Xiyu Cheng
- College of Life Sciences and Bioengineering School of Science Beijing Jiaotong University Beijing 100044 P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 P. R. China
- School of Chemical Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China
| |
Collapse
|
59
|
Biancacci I, De Lorenzi F, Theek B, Bai X, May J, Consolino L, Baues M, Moeckel D, Gremse F, von Stillfried S, El Shafei A, Benderski K, Azadkhah Shalmani A, Wang A, Momoh J, Peña Q, Buhl EM, Buyel J, Hennink W, Kiessling F, Metselaar J, Shi Y, Lammers T. Monitoring EPR Effect Dynamics during Nanotaxane Treatment with Theranostic Polymeric Micelles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103745. [PMID: 35072358 PMCID: PMC8981450 DOI: 10.1002/advs.202103745] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Cancer nanomedicines rely on the enhanced permeability and retention (EPR) effect for efficient target site accumulation. The EPR effect, however, is highly heterogeneous among different tumor types and cancer patients and its extent is expected to dynamically change during the course of nanochemotherapy. Here the authors set out to longitudinally study the dynamics of the EPR effect upon single- and double-dose nanotherapy with fluorophore-labeled and paclitaxel-loaded polymeric micelles. Using computed tomography-fluorescence molecular tomography imaging, it is shown that the extent of nanomedicine tumor accumulation is predictive for therapy outcome. It is also shown that the interindividual heterogeneity in EPR-based tumor accumulation significantly increases during treatment, especially for more efficient double-dose nanotaxane therapy. Furthermore, for double-dose micelle therapy, tumor accumulation significantly increased over time, from 7% injected dose per gram (ID g-1 ) upon the first administration to 15% ID g-1 upon the fifth administration, contributing to more efficient inhibition of tumor growth. These findings shed light on the dynamics of the EPR effect during nanomedicine treatment and they exemplify the importance of using imaging in nanomedicine treatment prediction and clinical translation.
Collapse
Affiliation(s)
- Ilaria Biancacci
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Federica De Lorenzi
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Benjamin Theek
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Xiangyang Bai
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Jan‐Niklas May
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Lorena Consolino
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Maike Baues
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Diana Moeckel
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Felix Gremse
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
- Gremse‐IT GmbHAachen52068Germany
| | - Saskia von Stillfried
- Institute of PathologyMedical FacultyRWTH Aachen University ClinicAachen52074Germany
| | - Asmaa El Shafei
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Karina Benderski
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Armin Azadkhah Shalmani
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Alec Wang
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Jeffrey Momoh
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Quim Peña
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Eva Miriam Buhl
- Electron Microscopy FacilityInstitute of PathologyRWTH University HospitalAachen52074Germany
| | - Johannes Buyel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IMEAachen52074Germany
- Institute of Molecular BiotechnologyRWTH Aachen UniversityAachen52074Germany
| | - Wim Hennink
- Department of PharmaceuticsUtrecht Institute for Pharmaceutical SciencesUtrecht UniversityUtrecht3584 CGThe Netherlands
| | - Fabian Kiessling
- Institute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
- Fraunhofer Institute for Medical Image Computing MEVISBremen28359Germany
| | - Josbert Metselaar
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Yang Shi
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| | - Twan Lammers
- Department of Nanomedicine and TheranosticsInstitute for Experimental Molecular ImagingRWTH Aachen University ClinicAachen52074Germany
| |
Collapse
|
60
|
Actively Targeted Nanomedicines in Breast Cancer: From Pre-Clinal Investigation to Clinic. Cancers (Basel) 2022; 14:cancers14051198. [PMID: 35267507 PMCID: PMC8909490 DOI: 10.3390/cancers14051198] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Despite all the efforts and advances made in the treatment of breast cancer, this pathology continues to be one of the main causes of cancer death in women, particularly triple-negative breast cancer (TNBC), and, although to a lesser degree, HER-2 receptor-positive tumors. Chemotherapy is one of the main treatments available. However, it shows numerous limitations due to its lack of selectivity. In this sense, the selective delivery of antineoplastics to cancer cells can reduce their adverse effects and increase their efficacy. The use of active targeted nanomedicine is a good strategy to achieve this selective chemotherapy. In fact, in recent decades, several active targeted nanoformulations have been approved or reached clinical investigation with excellent results. Among all nanomedicines, antibody-drug conjugates are the most promising. Abstract Breast cancer is one of the most frequently diagnosed tumors and the second leading cause of cancer death in women worldwide. The use of nanosystems specifically targeted to tumor cells (active targeting) can be an excellent therapeutic tool to improve and optimize current chemotherapy for this type of neoplasm, since they make it possible to reduce the toxicity and, in some cases, increase the efficacy of antineoplastic drugs. Currently, there are 14 nanomedicines that have reached the clinic for the treatment of breast cancer, 4 of which are already approved (Kadcyla®, Enhertu®, Trodelvy®, and Abraxane®). Most of these nanomedicines are antibody–drug conjugates. In the case of HER-2-positive breast cancer, these conjugates (Kadcyla®, Enhertu®, Trastuzumab-duocarmycin, RC48, and HT19-MMAF) target HER-2 receptors, and incorporate maytansinoid, deruxtecan, duocarmicyn, or auristatins as antineoplastics. In TNBC these conjugates (Trodelvy®, Glembatumumab-Vedotin, Ladiratuzumab-vedotin, Cofetuzumab-pelidotin, and PF-06647263) are directed against various targets, in particular Trop-2 glycoprotein, NMB glycoprotein, Zinc transporter LIV-1, and Ephrin receptor-4, to achieve this selective accumulation, and include campthotecins, calicheamins, or auristatins as drugs. Apart from the antibody–drug conjugates, there are other active targeted nanosystems that have reached the clinic for the treatment of these tumors such as Abraxane® and Nab-rapamicyn (albumin nanoparticles entrapping placlitaxel and rapamycin respectively) and various liposomes (MM-302, C225-ILS-Dox, and MM-310) loaded with doxorubicin or docetaxel and coated with ligands targeted to Ephrin A2, EPGF, or HER-2 receptors. In this work, all these active targeted nanomedicines are discussed, analyzing their advantages and disadvantages over conventional chemotherapy as well as the challenges involved in their lab to clinical translation. In addition, examples of formulations developed and evaluated at the preclinical level are also discussed.
Collapse
|
61
|
Sudheesh MS, Pavithran K, M S. Revisiting the outstanding questions in cancer nanomedicine with a future outlook. NANOSCALE ADVANCES 2022; 4:634-653. [PMID: 36131837 PMCID: PMC9418065 DOI: 10.1039/d1na00810b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/22/2021] [Indexed: 06/01/2023]
Abstract
The field of cancer nanomedicine has been fueled by the expectation of mitigating the inefficiencies and life-threatening side effects of conventional chemotherapy. Nanomedicine proposes to utilize the unique nanoscale properties of nanoparticles to address the most pressing questions in cancer treatment and diagnosis. The approval of nano-based products in the 1990s inspired scientific explorations in this direction. However, despite significant progress in the understanding of nanoscale properties, there are only very few success stories in terms of substantial increase in clinical efficacy and overall patient survival. All existing paradigms such as the concept of enhanced permeability and retention (EPR), the stealth effect and immunocompatibility of nanomedicine have been questioned in recent times. In this review we critically examine impediments posed by biological factors to the clinical success of nanomedicine. We put forth current observations on critical outstanding questions in nanomedicine. We also provide the promising side of cancer nanomedicine as we move forward in nanomedicine research. This would provide a future direction for research in nanomedicine and inspire ongoing investigations.
Collapse
Affiliation(s)
- M S Sudheesh
- Dept. of Pharmaceutics, Amrita School of Pharmacy Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India +91-9669372019
| | - K Pavithran
- Department of Medical Oncology, Amrita Institute of Medial Sciences and Research Centre Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India
| | - Sabitha M
- Dept. of Pharmaceutics, Amrita School of Pharmacy Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara Kochi - 682041 India +91-9669372019
| |
Collapse
|
62
|
Chu Y, Sun T, Jiang C. Emerging landscapes of nanosystems based on pre-metastatic microenvironment for cancer theranostics. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
63
|
Rahman MM, Islam F, Afsana Mim S, Khan MS, Islam MR, Haque MA, Mitra S, Emran TB, Rauf A. [Retracted] Multifunctional Therapeutic Approach of Nanomedicines against Inflammation in Cancer and Aging. JOURNAL OF NANOMATERIALS 2022; 2022. [DOI: 10.1155/2022/4217529] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/21/2022] [Indexed: 09/01/2023]
Abstract
Cancer is a fatal disorder that affects people across the globe, yet existing therapeutics are ineffective. The development of submicrometer transport for optimizing the biodistribution of systemically provided medications is the focus of nanomedicine. Nanoparticle‐ (NP‐) based treatments may enable the development of novel therapeutic approaches to combat this deadly disorder. In multifunctional, multimodal imaging, and drug delivery carriers, NPs generally play a major role. They have emerged as potential strategies for the invention of innovative therapeutic procedures in the last decade. The exponential growth of nanotechnologies in recent years has increased public awareness of the application of these innovative therapeutic approaches. Many tumor‐targeted nanomedicines have been studied in cancer therapy, and there is clear evidence for a significant improvement in the therapeutic index of antineoplastic drugs. Age‐related factors such as metabolic and physiological alterations in old age and inadequate animal models are currently understudied in nanomedicine and pharmacology. This review highlighted the most important targeting approaches, as well as public awareness, therapeutic advancements, and future prospects in age‐related metabolic variations, and tumor‐targeted nanomedicine studies.
Collapse
|
64
|
Schoen S, Kilinc MS, Lee H, Guo Y, Degertekin FL, Woodworth GF, Arvanitis C. Towards controlled drug delivery in brain tumors with microbubble-enhanced focused ultrasound. Adv Drug Deliv Rev 2022; 180:114043. [PMID: 34801617 PMCID: PMC8724442 DOI: 10.1016/j.addr.2021.114043] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 09/27/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
Brain tumors are particularly challenging malignancies, due to their location in a structurally and functionally distinct part of the human body - the central nervous system (CNS). The CNS is separated and protected by a unique system of brain and blood vessel cells which together prevent most bloodborne therapeutics from entering the brain tumor microenvironment (TME). Recently, great strides have been made through microbubble (MB) ultrasound contrast agents in conjunction with ultrasound energy to locally increase the permeability of brain vessels and modulate the brain TME. As we elaborate in this review, this physical method can effectively deliver a wide range of anticancer agents, including chemotherapeutics, antibodies, and nanoparticle drug conjugates across a range of preclinical brain tumors, including high grade glioma (glioblastoma), diffuse intrinsic pontine gliomas, and brain metastasis. Moreover, recent evidence suggests that this technology can promote the effective delivery of novel immunotherapeutic agents, including immune check-point inhibitors and chimeric antigen receptor T cells, among others. With early clinical studies demonstrating safety, and several Phase I/II trials testing the preclinical findings underway, this technology is making firm steps towards shaping the future treatments of primary and metastatic brain cancer. By elaborating on its key components, including ultrasound systems and MB technology, along with methods for closed-loop spatial and temporal control of MB activity, we highlight how this technology can be tuned to enable new, personalized treatment strategies for primary brain malignancies and brain metastases.
Collapse
Affiliation(s)
- Scott Schoen
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - M. Sait Kilinc
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Hohyun Lee
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Yutong Guo
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - F. Levent Degertekin
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Graeme F. Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA,Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, College Park, MD 20742, USA,Fischell Department of Bioengineering A. James Clarke School of Engineering, University of Maryland
| | - Costas Arvanitis
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA,Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| |
Collapse
|
65
|
Cao S, Saw PE, Shen Q, Li R, Liu Y, Xu X. Reduction-responsive RNAi nanoplatform to reprogram tumor lipid metabolism and repolarize macrophage for combination pancreatic cancer therapy. Biomaterials 2021; 280:121264. [PMID: 34823884 DOI: 10.1016/j.biomaterials.2021.121264] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/06/2021] [Accepted: 11/16/2021] [Indexed: 12/22/2022]
Abstract
Pancreatic cancer (PAC) is one of the most lethal malignant neoplasms with poor prognosis and high mortality. Emerging evidence has revealed that abnormal tumor lipid metabolism and tumor-associated macrophages (TAMs) significantly contribute to PAC development and progression. Therefore, concurrently reprogramming tumor lipid metabolism and regulating TAMs function could be a promising strategy for effective PAC therapy. Herein, we identified an important enzyme catabolizing lipids (monoacylglycerol lipase, MGLL) and a key receptor regulating macrophage phenotype (endocannabinoid receptor-2, CB-2) that are over-expressed in PAC cells and on TAMs, respectively. Based on this finding, we developed a reduction-responsive poly (disulfide amide) (PDSA)-based nanoplatform for systemic co-delivery of MGLL siRNA (siMGLL) and CB-2 siRNA (siCB-2). This nanoplatform could utilize its reduction-responsive characteristic to rapidly release siRNA for efficient silencing of MGLL and CB-2, inducing concurrent suppression of free fatty acids (FFAs) generation in PAC cells and repolarization of TAMs into tumor-inhibiting M1-like phenotype. With this suppressed FFAs generation to inhibit nutrient supply for tumor cells and repolarized TAMs to secrete tumoricidal cytokines such as TNF-α and IL-12, a combinational anticancer effect could be achieved in both xenograft and orthotopic PAC tumor models.
Collapse
Affiliation(s)
- Shuwen Cao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Phei Er Saw
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China
| | - Qian Shen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; The Second Affiliated Hospital, Department of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Rong Li
- The Second Affiliated Hospital, Department of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, PR China
| | - Yun Liu
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, PR China
| | - Xiaoding Xu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, PR China; The Second Affiliated Hospital, Department of Clinical Pharmacology, Hengyang Medical School, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
66
|
Etemadi H, Buchanan JK, Kandile NG, Plieger PG. Iron Oxide Nanoparticles: Physicochemical Characteristics and Historical Developments to Commercialization for Potential Technological Applications. ACS Biomater Sci Eng 2021; 7:5432-5450. [PMID: 34786932 DOI: 10.1021/acsbiomaterials.1c00938] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Iron oxide nanoparticles (IONPs) have gained increasing attention in various biomedical and industrial sectors due to their physicochemical and magnetic properties. In the biomedical field, IONPs are being developed for enzyme/protein immobilization, magnetofection, cell labeling, DNA detection, and tissue engineering. However, in some established areas, such as magnetic resonance imaging (MRI), magnetic drug targeting (MDT), magnetic fluid hyperthermia (MFH), immunomagnetic separation (IMS), and magnetic particle imaging (MPI), IONPs have crossed from the research bench, received clinical approval, and have been commercialized. Additionally, in industrial sectors IONP-based fluids (ferrofluids) have been marketed in electronic and mechanical devices for some time. This review explores the historical evolution of IONPs to their current state in biomedical and industrial applications.
Collapse
Affiliation(s)
- Hossein Etemadi
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4410, New Zealand
| | - Jenna K Buchanan
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4410, New Zealand
| | - Nadia G Kandile
- Department of Chemistry, Faculty of Women, Ain Shams University, Heliopolis 11757, Cairo, Egypt
| | - Paul G Plieger
- School of Fundamental Sciences, Massey University, Private Bag 11 222, Palmerston North 4410, New Zealand
| |
Collapse
|
67
|
Neutrophil-mediated clinical nanodrug for treatment of residual tumor after focused ultrasound ablation. J Nanobiotechnology 2021; 19:345. [PMID: 34715854 PMCID: PMC8555249 DOI: 10.1186/s12951-021-01087-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/13/2021] [Indexed: 02/08/2023] Open
Abstract
Background The risk of local recurrence after high-intensity focused ultrasound (HIFU) is relatively high, resulting in poor prognosis of malignant tumors. The combination of HIFU with traditional chemotherapy continues to have an unsatisfactory outcome because of off-site drug uptake. Results Herein, we propose a strategy of inflammation-tendency neutrophil-mediated clinical nanodrug targeted therapy for residual tumors after HIFU ablation. We selected neutrophils as carriers and PEGylated liposome doxorubicin (PLD) as a model chemotherapeutic nanodrug to form an innovative cell therapy drug (PLD@NEs). The produced PLD@NEs had a loading capacity of approximately 5 µg of PLD per 106 cells and maintained the natural characteristics of neutrophils. The targeting performance and therapeutic potential of PLD@NEs were evaluated using Hepa1-6 cells and a corresponding tumor-bearing mouse model. After HIFU ablation, PLD@NEs were recruited to the tumor site by inflammation (most in 4 h) and released PLD with inflammatory stimuli, leading to targeted and localized postoperative chemotherapy. Conclusions This effective integrated method fully leverages the advantages of HIFU, chemotherapy and neutrophils to attract more focus on the practice of improving existing clinical therapies. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-01087-w.
Collapse
|
68
|
Loh JS, Tan LKS, Lee WL, Ming LC, How CW, Foo JB, Kifli N, Goh BH, Ong YS. Do Lipid-based Nanoparticles Hold Promise for Advancing the Clinical Translation of Anticancer Alkaloids? Cancers (Basel) 2021; 13:5346. [PMID: 34771511 PMCID: PMC8582402 DOI: 10.3390/cancers13215346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/09/2021] [Accepted: 06/10/2021] [Indexed: 12/12/2022] Open
Abstract
Since the commercialization of morphine in 1826, numerous alkaloids have been isolated and exploited effectively for the betterment of mankind, including cancer treatment. However, the commercialization of alkaloids as anticancer agents has generally been limited by serious side effects due to their lack of specificity to cancer cells, indiscriminate tissue distribution and toxic formulation excipients. Lipid-based nanoparticles represent the most effective drug delivery system concerning clinical translation owing to their unique, appealing characteristics for drug delivery. To the extent of our knowledge, this is the first review to compile in vitro and in vivo evidence of encapsulating anticancer alkaloids in lipid-based nanoparticles. Alkaloids encapsulated in lipid-based nanoparticles have generally displayed enhanced in vitro cytotoxicity and an improved in vivo efficacy and toxicity profile than free alkaloids in various cancers. Encapsulated alkaloids also demonstrated the ability to overcome multidrug resistance in vitro and in vivo. These findings support the broad application of lipid-based nanoparticles to encapsulate anticancer alkaloids and facilitate their clinical translation. The review then discusses several limitations of the studies analyzed, particularly the discrepancies in reporting the pharmacokinetics, biodistribution and toxicity data. Finally, we conclude with examples of clinically successful encapsulated alkaloids that have received regulatory approval and are undergoing clinical evaluation.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia; (L.K.S.T.); (J.B.F.)
| | - Wai Leng Lee
- School of Science, Monash University Malaysia, Subang Jaya 47500, Malaysia;
| | - Long Chiau Ming
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei; (L.C.M.); (N.K.)
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya 47500, Malaysia
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia; (L.K.S.T.); (J.B.F.)
- Centre for Drug Discovery and Molecular Pharmacology (CDDMP), Faculty of Health & Medical Sciences, Taylor’s University, Jalan Taylors 1, Subang Jaya 47500, Malaysia
| | - Nurolaini Kifli
- PAP Rashidah Sa’adatul Bolkiah Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei; (L.C.M.); (N.K.)
| | - Bey Hing Goh
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Subang Jaya 47500, Malaysia; (J.S.L.); (C.W.H.)
- Health and Well-Being Cluster, Global Asia in the 21st Century (GA21) Platform, Monash University Malaysia, Subang Jaya 47500, Malaysia
- Biofunctional Molecule Exploratory Research Group (BMEX), School of Pharmacy, Monash University Malaysia, Subang Jaya 47500, Malaysia
| |
Collapse
|
69
|
Soni SS, Rodell CB. Polymeric materials for immune engineering: Molecular interaction to biomaterial design. Acta Biomater 2021; 133:139-152. [PMID: 33484909 DOI: 10.1016/j.actbio.2021.01.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/12/2021] [Indexed: 12/15/2022]
Abstract
Biomaterials continue to evolve as complex engineered tools for interactively instructing biological systems, aiding in the understanding and treatment of various disease states through intimate biological interaction. The immune response to polymeric materials is a critical area of study, as it governs the body's response to biomaterial implants, drug delivery vehicles, and even therapeutic drug formulations. Importantly, the development of the immune response to polymeric biomaterials spans length scales - from single molecular interactions to the complex sensing of bulk biophysical properties, all of which coordinate a tissue- and systems-level response. In this review, we specifically discuss a bottom-up approach to designing biomaterials that use molecular-scale interactions to drive immune response to polymers and discuss how these interactions can be leveraged for biomaterial design. STATEMENT OF SIGNIFICANCE: The immune system is an integral controller of (patho)physiological processes, affecting nearly all aspects of human health and disease. Polymeric biomaterials, whether biologically derived or synthetically produced, can potentially alter the behavior of immune cells due to their molecular-scale interaction with individual cells, as well as their interpretation at the bulk scale. This article reviews common mechanisms by which immune cells interact with polymers at the molecular level and discusses how these interactions are being leveraged to produce the next generation of biocompatible and immunomodulatory materials.
Collapse
|
70
|
Chi Z, Yi Y, Wang Y, Wu M, Wang L, Zhao X, Meng Y, Zheng Z, Zhao Q, Zhou J. Adaptive Cylindrical Wireless Metasurfaces in Clinical Magnetic Resonance Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2102469. [PMID: 34402556 DOI: 10.1002/adma.202102469] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/16/2021] [Indexed: 06/13/2023]
Abstract
The signal-to-noise ratio (SNR) is one of the most important criteria for evaluating the image quality in magnetic resonance imaging (MRI), and metasurfaces with unique electromagnetic properties provide a novel method for SNR improvement. However, their applications in clinical MRI are highly restricted by the inhomogeneous enhancement of the magnetic field and interference in the radio frequency (RF) transmitting field. In this study, an adaptive cylindrical wireless metasurface (ACWM) with homogeneous field enhancement and adaptive resonant modes is reported. The ACWM automatically switches its resonant modes between the partial (transmitting period) and whole (receiving period) resonance, which enables it to not only eliminate the interference in RF transmitting field, but also greatly enhance the SNR. Its adaptability also makes the ACWM applicable to all common clinical sequences without any modifications in the scan parameters. The SNR of MRI images of the human wrist, acquired with ACWM, is two to four times compared with the conventional coil. This work offers a practical control method to fill the scientific knowledge gaps between the preclinical research and medical applications for metasurfaces, and suggests a novel and powerful tool for diagnosing and evaluating human diseases.
Collapse
Affiliation(s)
- Zhonghai Chi
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yi Yi
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing, 102218, China
| | - Yakui Wang
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing, 102218, China
| | - Maopeng Wu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Lixue Wang
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing, 102218, China
| | - Xihai Zhao
- The Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yonggang Meng
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Zhuozhao Zheng
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Medicine, Tsinghua University, Beijing, 102218, China
| | - Qian Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Ji Zhou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
71
|
Clinically translatable quantitative molecular photoacoustic imaging with liposome-encapsulated ICG J-aggregates. Nat Commun 2021; 12:5410. [PMID: 34518530 PMCID: PMC8438038 DOI: 10.1038/s41467-021-25452-3] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 08/11/2021] [Indexed: 02/08/2023] Open
Abstract
Photoacoustic (PA) imaging is a functional and molecular imaging technique capable of high sensitivity and spatiotemporal resolution at depth. Widespread use of PA imaging, however, is limited by currently available contrast agents, which either lack PA-signal-generation ability for deep imaging or their absorbance spectra overlap with hemoglobin, reducing sensitivity. Here we report on a PA contrast agent based on targeted liposomes loaded with J-aggregated indocyanine green (ICG) dye (i.e., PAtrace) that we synthesized, bioconjugated, and characterized to addresses these limitations. We then validated PAtrace in phantom, in vitro, and in vivo PA imaging environments for both spectral unmixing accuracy and targeting efficacy in a folate receptor alpha-positive ovarian cancer model. These study results show that PAtrace concurrently provides significantly improved contrast-agent quantification/sensitivity and SO2 estimation accuracy compared to monomeric ICG. PAtrace's performance attributes and composition of FDA-approved components make it a promising agent for future clinical molecular PA imaging.
Collapse
|
72
|
Franconi F, Lemaire L, Gimel JC, Bonnet S, Saulnier P. NMR diffusometry: A new perspective for nanomedicine exploration. J Control Release 2021; 337:155-167. [PMID: 34280413 DOI: 10.1016/j.jconrel.2021.07.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 12/09/2022]
Abstract
Nuclear Magnetic Resonance (NMR) based diffusion methods open new perspectives for nanomedicine characterization and their bioenvironment interaction understanding. This review summarizes the theoretical background of diffusion phenomena. Self-diffusion and mutual diffusion coefficient notions are featured. Principles, advantages, drawbacks, and key challenges of NMR diffusometry spectroscopic and imaging methods are presented. This review article also gives an overview of representative applicative works to the nanomedicine field that can contribute to elucidate important issues. Examples of in vitro characterizations such as identification of formulated species, process monitoring, drug release follow-up, nanomedicine interactions with biological barriers are presented as well as possible transpositions for studying in vivo nanomedicine fate.
Collapse
Affiliation(s)
- Florence Franconi
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, PRISM, SFR ICAT, F-49000 Angers, France.
| | - Laurent Lemaire
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France; Univ Angers, PRISM, SFR ICAT, F-49000 Angers, France.
| | | | - Samuel Bonnet
- Univ Angers, PRISM, SFR ICAT, F-49000 Angers, France.
| | - Patrick Saulnier
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France.
| |
Collapse
|
73
|
Application of smart nanoparticles as a potential platform for effective colorectal cancer therapy. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213949] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
74
|
Liu J, Cabral H, Song B, Aoki I, Chen Z, Nishiyama N, Huang Y, Kataoka K, Mi P. Nanoprobe-Based Magnetic Resonance Imaging of Hypoxia Predicts Responses to Radiotherapy, Immunotherapy, and Sensitizing Treatments in Pancreatic Tumors. ACS NANO 2021; 15:13526-13538. [PMID: 34355882 DOI: 10.1021/acsnano.1c04263] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Accurate diagnosis of tumors and predicting the therapeutic responses are highly demanded in the clinic to improve the treatment efficacy and survival rates. Since hypoxia develops in the progression of tumors and inversely correlates with prognosis and promotes resistance to radiotherapies and immunotherapies, it is a potential marker for therapeutic prediction. Therefore, effective discrimination of tumor hypoxia for predicting therapeutic outcomes is critical. Here, a magnetic resonance imaging (MRI)-based diagnosis strategy using contrast-amplifying nanoprobes that sense tumor acidosis and real-time observation of hypoxic conditions in tumors has been developed, aiming at accurate detection of pancreatic tumors and prediction of therapeutic effects. Our approach selectively probed xenograft, allograft, and transgenic spontaneous models of intractable pancreatic cancer, which lacks standardized predictive markers to identify patients who benefit most from treatments, and effectively discriminated the intratumoral hypoxia levels. By stratification of pancreatic tumors based on quantitative MR imaging of hypoxia, it enabled prediction of the responses to radiotherapy and immune checkpoint inhibitors. Moreover, the nanoprobe-based MRI could monitor hypoxia reduction by tumor normalization treatments, which permits visualizing pancreatic tumors that will respond to immune checkpoint blockade therapy, enhancing the response rate. The results demonstrate the potential of our strategy for accurate tumor diagnosis, patient stratification, and effective therapy.
Collapse
Affiliation(s)
- Jing Liu
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, South Renmin Road, Chengdu 610041, China
| | - Horacio Cabral
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Bin Song
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, South Renmin Road, Chengdu 610041, China
| | - Ichio Aoki
- National Institute of Radiological Sciences, Japan Agency for Quantum and Radiological Science and Technology, Anagawa 4-9-1,
Inage, Chiba 263-8555, Japan
| | - Zhouyun Chen
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, South Renmin Road, Chengdu 610041, China
| | - Nobuhiro Nishiyama
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Yuan Huang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, No. 17, South Renmin Road, Chengdu 610041, China
| | - Kazunori Kataoka
- Innovation Center of Nanomedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki 210-0821, Japan
- Institute for Future Initiatives, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Peng Mi
- Department of Radiology, Center for Medical Imaging, and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, No. 17, South Renmin Road, Chengdu 610041, China
| |
Collapse
|
75
|
Gessner I. Optimizing nanoparticle design and surface modification toward clinical translation. MRS BULLETIN 2021; 46:643-649. [PMID: 34305307 PMCID: PMC8279028 DOI: 10.1557/s43577-021-00132-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/02/2021] [Indexed: 05/14/2023]
Abstract
The field of nanomedicine is a rapidly evolving field driven by the need for safer and more efficient therapies as well as ultrasensitive and fast diagnostics. Although the advantages of nanoparticles for diagnostic and therapeutic applications are unambiguous, in vivo requirements, including low toxicity, long blood circulation time, proper clearance, sufficient stability, and reproducible synthesis have, in most cases, bedeviled their clinical translation. Nevertheless, researchers have the opportunity to have a decisive influence on the future of nanomedicine by developing new multifunctional molecules and adapting the material design to the requirements. Ultimately, the goal is to find the right level of functionality without adding unnecessary complexity to the system. This article aims to emphasize the potential and current challenges of nanoparticle-based medical agents and highlights how smart and functional material design considerations can help to overcome many of the current limitations and increase the clinical value of nanoparticles.
Collapse
Affiliation(s)
- Isabel Gessner
- Center for Systems Biology, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| |
Collapse
|
76
|
Sharifi S, Caracciolo G, Pozzi D, Digiacomo L, Swann J, Daldrup-Link HE, Mahmoudi M. The role of sex as a biological variable in the efficacy and toxicity of therapeutic nanomedicine. Adv Drug Deliv Rev 2021; 174:337-347. [PMID: 33957181 DOI: 10.1016/j.addr.2021.04.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 04/19/2021] [Accepted: 04/29/2021] [Indexed: 02/08/2023]
Abstract
Males and females have physiological, hormonal, and genetic differences that can cause different responses to medicinal treatments. The role of sex in the pharmacokinetics and pharmacodynamics of drugs is well established in the literature. However, researchers have yet to robustly and consistently consider the impact of sex differences on the pharmacokinetics and pharmacodynamics of nanomedicine formulations when designing nanomedicine therapeutics and/or constructing clinical trials. In this review, we highlight the physiological and anatomical differences between sexes and discuss how these differences can influence the therapeutic efficacy, side effects, and drug delivery safety of nanomedicine products. A deep understanding of the effects of sex on nano-based drug delivery agents will robustly improve the risk assessment process, resulting in safer formulations, successful clinical translation, and improved therapeutic efficacies for both sexes.
Collapse
|
77
|
Li R, Ng TSC, Wang SJ, Prytyskach M, Rodell CB, Mikula H, Kohler RH, Garlin MA, Lauffenburger DA, Parangi S, Dinulescu DM, Bardeesy N, Weissleder R, Miller MA. Therapeutically reprogrammed nutrient signalling enhances nanoparticulate albumin bound drug uptake and efficacy in KRAS-mutant cancer. NATURE NANOTECHNOLOGY 2021; 16:830-839. [PMID: 33958764 PMCID: PMC8491539 DOI: 10.1038/s41565-021-00897-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/11/2021] [Indexed: 05/04/2023]
Abstract
Nanoparticulate albumin bound paclitaxel (nab-paclitaxel, nab-PTX) is among the most widely prescribed nanomedicines in clinical use, yet it remains unclear how nanoformulation affects nab-PTX behaviour in the tumour microenvironment. Here, we quantified the biodistribution of the albumin carrier and its chemotherapeutic payload in optically cleared tumours of genetically engineered mouse models, and compared the behaviour of nab-PTX with other clinically relevant nanoparticles. We found that nab-PTX uptake is profoundly and distinctly affected by cancer-cell autonomous RAS signalling, and RAS/RAF/MEK/ERK inhibition blocked its selective delivery and efficacy. In contrast, a targeted screen revealed that IGF1R kinase inhibitors enhance uptake and efficacy of nab-PTX by mimicking glucose deprivation and promoting macropinocytosis via AMPK, a nutrient sensor in cells. This study thus shows how nanoparticulate albumin bound drug efficacy can be therapeutically improved by reprogramming nutrient signalling and enhancing macropinocytosis in cancer cells.
Collapse
Affiliation(s)
- Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Thomas S C Ng
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Stephanie J Wang
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mark Prytyskach
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Christopher B Rodell
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA, USA
| | - Hannes Mikula
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Institute of Applied Synthetic Chemistry, Vienna University of Technology (TU Wien), Vienna, Austria
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Michelle A Garlin
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Douglas A Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sareh Parangi
- Department of Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Daniela M Dinulescu
- Division of Women's and Perinatal Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Nabeel Bardeesy
- MGH Cancer Center, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA, USA.
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
78
|
Shepherd SJ, Issadore D, Mitchell MJ. Microfluidic formulation of nanoparticles for biomedical applications. Biomaterials 2021; 274:120826. [PMID: 33965797 PMCID: PMC8752123 DOI: 10.1016/j.biomaterials.2021.120826] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 03/31/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Nanomedicine has made significant advances in clinical applications since the late-20th century, in part due to its distinct advantages in biocompatibility, potency, and novel therapeutic applications. Many nanoparticle (NP) therapies have been approved for clinical use, including as imaging agents or as platforms for drug delivery and gene therapy. However, there are remaining challenges that hinder translation, such as non-scalable production methods and the inefficiency of current NP formulations in delivering their cargo to their target. To address challenges with existing formulation methods that have batch-to-batch variability and produce particles with high dispersity, microfluidics-devices that manipulate fluids on a micrometer scale-have demonstrated enormous potential to generate reproducible NP formulations for therapeutic, diagnostic, and preventative applications. Microfluidic-generated NP formulations have been shown to have enhanced properties for biomedical applications by formulating NPs with more controlled physical properties than is possible with bulk techniques-such as size, size distribution, and loading efficiency. In this review, we highlight advances in microfluidic technologies for the formulation of NPs, with an emphasis on lipid-based NPs, polymeric NPs, and inorganic NPs. We provide a summary of microfluidic devices used for NP formulation with their advantages and respective challenges. Additionally, we provide our analysis for future outlooks in the field of NP formulation and microfluidics, with emerging topics of production scale-independent formulations through device parallelization and multi-step reactions within droplets.
Collapse
Affiliation(s)
- Sarah J Shepherd
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA; Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
79
|
Moody AS, Dayton PA, Zamboni WC. Imaging methods to evaluate tumor microenvironment factors affecting nanoparticle drug delivery and antitumor response. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:382-413. [PMID: 34796317 PMCID: PMC8597952 DOI: 10.20517/cdr.2020.94] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/07/2021] [Accepted: 01/28/2021] [Indexed: 11/24/2022]
Abstract
Standard small molecule and nanoparticulate chemotherapies are used for cancer treatment; however, their effectiveness remains highly variable. One reason for this variable response is hypothesized to be due to nonspecific drug distribution and heterogeneity of the tumor microenvironment, which affect tumor delivery of the agents. Nanoparticle drugs have many theoretical advantages, but due to variability in tumor microenvironment (TME) factors, the overall drug delivery to tumors and associated antitumor response are low. The nanotechnology field would greatly benefit from a thorough analysis of the TME factors that create these physiological barriers to tumor delivery and treatment in preclinical models and in patients. Thus, there is a need to develop methods that can be used to reveal the content of the TME, determine how these TME factors affect drug delivery, and modulate TME factors to increase the tumor delivery and efficacy of nanoparticles. In this review, we will discuss TME factors involved in drug delivery, and how biomedical imaging tools can be used to evaluate tumor barriers and predict drug delivery to tumors and antitumor response.
Collapse
Affiliation(s)
- Amber S. Moody
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - Paul A. Dayton
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Chapel Hill, NC 27599, USA
| | - William C. Zamboni
- UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA
- UNC Lineberger Comprehensive Cancer Center, Chapel Hill, NC 27599, USA
- Carolina Institute for Nanomedicine, Chapel Hill, NC 27599, USA
| |
Collapse
|
80
|
Subhan MA, Yalamarty SSK, Filipczak N, Parveen F, Torchilin VP. Recent Advances in Tumor Targeting via EPR Effect for Cancer Treatment. J Pers Med 2021; 11:571. [PMID: 34207137 PMCID: PMC8234032 DOI: 10.3390/jpm11060571] [Citation(s) in RCA: 262] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 12/11/2022] Open
Abstract
Cancer causes the second-highest rate of death world-wide. A major shortcoming inherent in most of anticancer drugs is their lack of tumor selectivity. Nanodrugs for cancer therapy administered intravenously escape renal clearance, are unable to penetrate through tight endothelial junctions of normal blood vessels and remain at a high level in plasma. Over time, the concentration of nanodrugs builds up in tumors due to the EPR effect, reaching several times higher than that of plasma due to the lack of lymphatic drainage. This review will address in detail the progress and prospects of tumor-targeting via EPR effect for cancer therapy.
Collapse
Affiliation(s)
- Md Abdus Subhan
- Department of Chemistry, Shah Jalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Satya Siva Kishan Yalamarty
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Nina Filipczak
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
| | - Farzana Parveen
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Punjab 63100, Pakistan
| | - Vladimir P. Torchilin
- CPBN, Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA; (S.S.K.Y.); (N.F.); (F.P.)
- Department of Oncology, Radiotherapy and Plastic Surgery, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
81
|
Ashford MB, England RM, Akhtar N. Highway to Success—Developing Advanced Polymer Therapeutics. ADVANCED THERAPEUTICS 2021; 4. [DOI: 10.1002/adtp.202000285] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 01/06/2025]
Abstract
AbstractPolymer therapeutics are advancing as an important class of drugs. Polymers have already demonstrated their value in extending the half‐life of proteins. They show great potential as delivery systems for improving the therapeutic index of drugs, via biophysical targeting and more recently with more precision targeting. They are also important for intracellular delivery of nucleic acid based drugs. The same frameworks that have been successfully applied to improve the small molecule drug development can be adopted. This approach together with improved pathophysiological disease knowledge and critical developability considerations, imperative given the size and complexity of polymer therapeutics, provides a structured framework that should improve their clinical translation and exploit their functionality and potential. Progress in understanding the right target, gaining the right tissue and cell exposure, ensuring the right safety, selecting the right patient population is discussed. The right commercial considerations are outlined and the need for a multi‐disciplinary approach is emphasized. Crucial developability factors together with scientific and technical advancements to enable pharmaceutical development of a quality robust product are addressed. It is argued that by applying this structured approach to their design and development, polymer therapeutics will continue to grow and develop as important next generation medicines.
Collapse
Affiliation(s)
- Marianne B. Ashford
- Advanced Drug Delivery Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield SK10 2NA UK
| | - Richard M. England
- Advanced Drug Delivery Pharmaceutical Sciences, R&D, AstraZeneca Macclesfield SK10 2NA UK
| | - Nadim Akhtar
- New Modalities & Parenteral Development Pharmaceutical Technology & Development, Operations, AstraZeneca Macclesfield SK10 2NA UK
| |
Collapse
|
82
|
Yin Q, Pan A, Chen B, Wang Z, Tang M, Yan Y, Wang Y, Xia H, Chen W, Du H, Chen M, Fu C, Wang Y, Yuan X, Lu Z, Zhang Q, Wang Y. Quantitative imaging of intracellular nanoparticle exposure enables prediction of nanotherapeutic efficacy. Nat Commun 2021; 12:2385. [PMID: 33888701 PMCID: PMC8062465 DOI: 10.1038/s41467-021-22678-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Nanoparticle internalisation is crucial for the precise delivery of drug/genes to its intracellular targets. Conventional quantification strategies can provide the overall profiling of nanoparticle biodistribution, but fail to unambiguously differentiate the intracellularly bioavailable particles from those in tumour intravascular and extracellular microenvironment. Herein, we develop a binary ratiometric nanoreporter (BiRN) that can specifically convert subtle pH variations involved in the endocytic events into digitised signal output, enabling the accurately quantifying of cellular internalisation without introducing extracellular contributions. Using BiRN technology, we find only 10.7-28.2% of accumulated nanoparticles are internalised into intracellular compartments with high heterogeneity within and between different tumour types. We demonstrate the therapeutic responses of nanomedicines are successfully predicted based on intracellular nanoparticle exposure rather than the overall accumulation in tumour mass. This nonlinear optical nanotechnology offers a valuable imaging tool to evaluate the tumour targeting of new nanomedicines and stratify patients for personalised cancer therapy.
Collapse
Affiliation(s)
- Qingqing Yin
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Anni Pan
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Binlong Chen
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zenghui Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Mingmei Tang
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yue Yan
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yaoqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Heming Xia
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Wei Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Hongliang Du
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Meifang Chen
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Chuanxun Fu
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yanni Wang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xia Yuan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Zhihao Lu
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Qiang Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yiguang Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China.
- Beijing Key Laboratory of Molecular Pharmaceutics, School of Pharmaceutical Sciences, Peking University, Beijing, China.
| |
Collapse
|
83
|
Khan M, Sherwani S, Khan S, Alouffi S, Alam M, Al-Motair K, Khan S. Insights into Multifunctional Nanoparticle-Based Drug Delivery Systems for Glioblastoma Treatment. Molecules 2021; 26:molecules26082262. [PMID: 33919694 PMCID: PMC8069805 DOI: 10.3390/molecules26082262] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma (GB) is an aggressive cancer with high microvascular proliferation, resulting in accelerated invasion and diffused infiltration into the surrounding brain tissues with very low survival rates. Treatment options are often multimodal, such as surgical resection with concurrent radiotherapy and chemotherapy. The development of resistance of tumor cells to radiation in the areas of hypoxia decreases the efficiency of such treatments. Additionally, the difficulty of ensuring drugs effectively cross the natural blood-brain barrier (BBB) substantially reduces treatment efficiency. These conditions concomitantly limit the efficacy of standard chemotherapeutic agents available for GB. Indeed, there is an urgent need of a multifunctional drug vehicle system that has potential to transport anticancer drugs efficiently to the target and can successfully cross the BBB. In this review, we summarize some nanoparticle (NP)-based therapeutics attached to GB cells with antigens and membrane receptors for site-directed drug targeting. Such multicore drug delivery systems are potentially biodegradable, site-directed, nontoxic to normal cells and offer long-lasting therapeutic effects against brain cancer. These models could have better therapeutic potential for GB as well as efficient drug delivery reaching the tumor milieu. The goal of this article is to provide key considerations and a better understanding of the development of nanotherapeutics with good targetability and better tolerability in the fight against GB.
Collapse
Affiliation(s)
- Mohd Khan
- Department of Chemistry, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.A.); (K.A.-M.)
- Correspondence: or
| | - Subuhi Sherwani
- Department of Biology, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.S.); (M.A.)
| | - Saif Khan
- Department of Basic Dental and Medical Sciences, College of Dentistry, University of Ha’il, Ha’il 2440, Saudi Arabia;
| | - Sultan Alouffi
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.A.); (K.A.-M.)
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia
| | - Mohammad Alam
- Department of Biology, College of Sciences, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.S.); (M.A.)
| | - Khalid Al-Motair
- Molecular Diagnostic and Personalised Therapeutics Unit, University of Ha’il, Ha’il 2440, Saudi Arabia; (S.A.); (K.A.-M.)
| | - Shahper Khan
- Interdisciplinary Nanotechnology Centre, Aligarh Muslim University, Aligarh 202002, U.P., India;
| |
Collapse
|
84
|
Consolino L, Irrera P, Romdhane F, Anemone A, Longo DL. Investigating plasma volume expanders as novel macromolecular MRI-CEST contrast agents for tumor contrast-enhanced imaging. Magn Reson Med 2021; 86:995-1007. [PMID: 33764575 DOI: 10.1002/mrm.28778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/29/2022]
Abstract
PURPOSE The aim of this study was to investigate two clinically approved plasma volume expanders (dextran 70 and voluven) as macromolecular MRI-chemical exchange saturation transfer (CEST) contrast agents to assess tumor vascular properties. METHODS CEST contrast efficiency of both molecules (6% w/v) was measured in vitro at various irradiation saturation powers (1-6 μT for 5 s) and pH values (range, 5.5-7.9) and the exchange rate of hydroxyl protons was calculated. In vivo studies in a murine adenocarcinoma model (n = 4 mice for each contrast agent) upon i.v. injection provided CEST-derived perfusion tumor properties that were compared with those obtained with a gadolinium-based blood-pool agent (Gd-AAZTA-Madec). RESULTS In vitro measurements showed a marked CEST contrast dependency to pH, with higher CEST contrast at lower pH values for both molecules. The measured prototropic exchange rates confirmed a base-catalyzed exchange rate that was faster for dextran 70 in comparison to voluven. Both molecules showed a similar CEST contrast increase (ΔST% > 3%) in the tumor tissue up to 30 min postinjection, with heterogeneous accumulation. In tumors receiving both CEST and T1 -weighted agents, a voxel-by-voxel analysis indicated moderate spatial correlation of perfusion properties between voluven/dextran 70 and Gd-AAZTA-Madec, suggesting different distribution patterns according to their molecular size. CONCLUSIONS The obtained results showed that both voluven and dextran 70 can be exploited as MRI-CEST contrast agents for evaluating tumor enhancement properties. Their increased accumulation in tumors and prolonged contrast enhancement promote their use as blood-pool MRI-CEST agents to examine tumor vascularization.
Collapse
Affiliation(s)
- Lorena Consolino
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Pietro Irrera
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy.,University of Campania Luigi Vanvitelli, Caserta, Italy
| | - Feriel Romdhane
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Annasofia Anemone
- Molecular Imaging Center, Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Dario Livio Longo
- Institute of Biostructures and Bioimaging (IBB), National Research Council of Italy (CNR), Turin, Italy
| |
Collapse
|
85
|
Shi C, Zhou Z, Lin H, Gao J. Imaging Beyond Seeing: Early Prognosis of Cancer Treatment. SMALL METHODS 2021; 5:e2001025. [PMID: 34927817 DOI: 10.1002/smtd.202001025] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/24/2020] [Indexed: 06/14/2023]
Abstract
Assessing cancer response to therapeutic interventions has been realized as an important course to early predict curative efficacy and treatment outcomes due to tumor heterogeneity. Compared to the traditional invasive tissue biopsy method, molecular imaging techniques have fundamentally revolutionized the ability to evaluate cancer response in a spatiotemporal manner. The past few years has witnessed a paradigm shift on the efforts from manufacturing functional molecular imaging probes for seeing a tumor to a vantage stage of interpreting the tumor response during different treatments. This review is to stand by the current development of advanced imaging technologies aiming to predict the treatment response in cancer therapy. Special interest is placed on the systems that are able to provide rapid and noninvasive assessment of pharmacokinetic drug fates (e.g., drug distribution, release, and activation) and tumor microenvironment heterogeneity (e.g., tumor cells, macrophages, dendritic cells (DCs), T cells, and inflammatory cells). The current status, practical significance, and future challenges of the emerging artificial intelligence (AI) technology and machine learning in the applications of medical imaging fields is overviewed. Ultimately, the authors hope that this review is timely to spur research interest in molecular imaging and precision medicine.
Collapse
Affiliation(s)
- Changrong Shi
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zijian Zhou
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Hongyu Lin
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Jinhao Gao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, The Key Laboratory for Chemical Biology of Fujian Province and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
86
|
Bhandari C, Guirguis M, Savan NA, Shrivastava N, Oliveira S, Hasan T, Obaid G. What NIR photodynamic activation offers molecular targeted nanomedicines: Perspectives into the conundrum of tumor specificity and selectivity. NANO TODAY 2021; 36:101052. [PMID: 33552231 PMCID: PMC7864390 DOI: 10.1016/j.nantod.2020.101052] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Near infrared (NIR) photodynamic activation is playing increasingly critical roles in cutting-edge anti-cancer nanomedicines, which include spatiotemporal control over induction of therapy, photodynamic priming, and phototriggered immunotherapy. Molecular targeted photonanomedicines (mt-PNMs) are tumor-specific nanoscale drug delivery systems, which capitalize on the unparalleled spatio-temporal precision of NIR photodynamic activation to augment the accuracy of tumor tissue treatment. mt-PNMs are emerging as a paradigm approach for the targeted treatment of solid tumors, yet remain highly complex and multifaceted. While ligand targeted nanomedicines in general suffer from interdependent challenges in biophysics, surface chemistry and nanotechnology, mt-PNMs provide distinct opportunities to synergistically potentiate the effects of ligand targeting. This review provides what we believe to be a much-need demarcation between the processes involved in tumor specificity (biomolecular recognition events) and tumor selectivity (preferential tumor accumulation) of ligand targeted nanomedicines, such as mt-PNMs, and elaborate on what NIR photodynamic activation has to offer. We discuss the interplay between both tumor specificity and tumor selectivity and the degree to which both may play central roles in cutting-edge NIR photoactivable nanotechnologies. A special emphasis is made on NIR photoactivable biomimetic nanotechnologies that capitalize on both specificity and selectivity phenomena to augment the safety and efficacy of photodynamic anti-tumor regimens.
Collapse
Affiliation(s)
- Chanda Bhandari
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, U.S
| | - Mina Guirguis
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, U.S
| | - N. Anna Savan
- Michigan State University, East Lansing, Michigan, 48824, U.S
| | - Navadeep Shrivastava
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, U.S
| | - Sabrina Oliveira
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Science Faculty, Utrecht University, Utrecht 3584 CH, The Netherlands
- Pharmaceutics, Department of Pharmaceutical Sciences, Science Faculty, Utrecht University, Utrecht 3584 CG, The Netherlands
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, U.S
- Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, U.S
| | - Girgis Obaid
- Department of Bioengineering, University of Texas at Dallas, Richardson, Texas 75080, U.S
| |
Collapse
|
87
|
Kang Y, Li Z, Yang Y, Su Z, Ji X, Zhang S. Antimonene Nanosheets-Based Z-Scheme Heterostructure with Enhanced Reactive Oxygen Species Generation and Photothermal Conversion Efficiency for Photonic Therapy of Cancer. Adv Healthc Mater 2021; 10:e2001835. [PMID: 33200585 DOI: 10.1002/adhm.202001835] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Indexed: 12/12/2022]
Abstract
A Z-scheme heterojunction with high separation efficiency of photogenerated electrons and holes and enhanced reduction/oxidation potentials, which can enhance reactive oxygen species generation and photothermal conversion efficiency, exhibits tremendous potential in photonic theranostics. Herein, antimonene nanosheets (Sb NSs) are functionalized with photosensitizer 5,10,15,20-Tetrakis(4-hydroxy-phenyl)-21H,12H-porphine (THPP) and a poly(ethylene glycol) (PEG) modifier. The Sb-THPP-PEG NSs thus fabricated are found to form a Z-scheme heterojunction structure between Sb and THPP, based on their valence band and bandgap level analysis. The Z-scheme heterojunction structure enables the Sb-THPP-PEG NSs multiple promising features for cancer therapy. Firstly, due to improved electron-hole pairs separation efficiency and redox potential, new reactive oxygen species •O2 - is generated, besides the production of 1 O2 by THPP. Secondly, the assembly of THPP enhances the NIR-light-to-heat conversion of Sb NS, a photothermal conversion efficiency as high as 44.6% is obtained by this Sb-THPP-PEG NSs photonic nanomedicine. Moreover, the photothermal, fluorescent, and photoacoustic imaging properties of Sb-THPP-PEG NSs allow multimodal imaging-guided tumor treatment.
Collapse
Affiliation(s)
- Yong Kang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Engineering University of Chinese Academy of Sciences No. 19 Yuquan Road, Shijingshan District Beijing 100049 China
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Yanli Yang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| | - Xiaoyuan Ji
- School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Guangzhou 510275 China
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering Institute of Process Engineering Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
88
|
Naumenko VA, Vodopyanov SS, Vlasova KY, Potashnikova DM, Melnikov PA, Vishnevskiy DA, Garanina AS, Valikhov MP, Lipatova AV, Chekhonin VP, Majouga AG, Abakumov MA. Intravital imaging of liposome behavior upon repeated administration: A step towards the development of liposomal companion diagnostic for cancer nanotherapy. J Control Release 2021; 330:244-256. [DOI: 10.1016/j.jconrel.2020.12.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/29/2020] [Accepted: 12/11/2020] [Indexed: 01/04/2023]
|
89
|
Li B, Chu F, Lu Q, Wang Y, Lane LA. Alternating stealth polymer coatings between administrations minimizes toxic and antibody immune responses towards nanomedicine treatment regimens. Acta Biomater 2021; 121:527-540. [PMID: 33285326 DOI: 10.1016/j.actbio.2020.11.047] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 11/25/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023]
Abstract
In efforts to achieve minimal systemic toxicity and high tumor delivery efficiencies in cancer therapy, various nanomedicine formulations having stealth polymer coatings have been developed for minimizing immune cell uptake and off-target macrophage phagocyte system (MPS) organ accumulation. Despite an initial reduction in immune cell uptake, stealth nanoparticles still initiate an antibody immune response. This response acts on subsequent administrations in treatment regimens resulting in accelerated blood clearance of particles into MPS organs, particularly the liver, where they are retained for prolonged periods. Consequently, doses after the first administration in treatment regimens have diminished tumor accumulation and increased MPS toxicity. Here, we present a strategy reducing antibody responses to each dose in a treatment regimen by alternating between polyethylene-glycol and polymethyloxazoline polymers as the nanoparticle coating between administrations. In a weekly dosing regimen, we find that the first dose of particles having either coating display similar favorable pharmacokinetics and biodistributions, thus allowing the polymers to be used interchangeably. However, when maintaining the same coating in subsequent administrations, we find that particles are in circulation at the height of the antibody immune response resulting in 50-60% decreases of circulation half-lives and tumor accumulation along with 50% increases in liver accumulation. By alternating the polymers used in the nanoparticle coating between administrations, we find each dose maintains favorable in vivo behaviors at the height of the antibody immune response to the previous administration. Furthermore, our strategy increases the clearance of particles uptaken by macrophages and hepatocytes, resulting in marked decreases in hepatotoxicity.
Collapse
|
90
|
Islam R, Maeda H, Fang J. Factors affecting the dynamics and heterogeneity of the EPR effect: pathophysiological and pathoanatomic features, drug formulations and physicochemical factors. Expert Opin Drug Deliv 2021; 19:199-212. [PMID: 33430661 DOI: 10.1080/17425247.2021.1874916] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
INTRODUCTION The enhanced permeability and retention (EPR) effect serves as the foundation of anticancer nanomedicine design. EPR effect-based drug delivery is an effective strategy for most solid tumors. However, the degree of efficacy depends on the pathophysiological conditions of tumors, drug formulations, and other factors. AREAS COVERED Vascular mediators including nitric oxide, bradykinin , and prostaglandins are vital for facilitating and maintaining EPR effect dynamics. Progression to large, advanced cancers may induce activated blood coagulation cascades, which lead to thrombus formation in tumor vasculature. Rapidly growing tumors cause obstructed or suppressed blood flow in tumor vasculature related to embolism or occluded blood vessels. The resulting limited tumor blood flow leads to less drug delivered to tumors, i.e. no or poor EPR effect. High stromal content also suppresses vascular permeability and drug diffusion. Restoring obstructed tumor blood flow and improving tumor vascular permeability via vascular mediators will improve drug delivery and the EPR effect. Physicochemical features of nanomedicines also influence therapeutic outcomes and are vital for the EPR effect. EXPERT OPINION The tumor microenvironment, especially tumor blood flow, is critical for a potent EPR effect. A rational strategy for circumventing EPR effect barriers must include restoring tumor blood flow.
Collapse
Affiliation(s)
- Rayhanul Islam
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| | - Hiroshi Maeda
- BioDynamics Research Foundation, Kumamoto, Japan.,Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Jun Fang
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Sojo University, Kumamoto, Japan
| |
Collapse
|
91
|
Liu Y, Wang J, Xiong Q, Hornburg D, Tao W, Farokhzad OC. Nano-Bio Interactions in Cancer: From Therapeutics Delivery to Early Detection. Acc Chem Res 2021; 54:291-301. [PMID: 33180454 DOI: 10.1021/acs.accounts.0c00413] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Understanding the interactions between nanomaterials and biological systems plays a pivotal role in enhancing the efficacy of nanomedicine and advancing the disease diagnosis. The nanoparticle-protein corona, an active biomolecular layer, is formed around nanoparticles (NPs) upon mixing with biological fluid. The surface layer which consists of rapidly exchanged biomolecules is called the "soft" corona. The inner layer which is more stable and tightly packed is called the "hard" corona. It has been suggested that the NP-protein corona has a decisive effect on the in vivo fate of nanomedicine upon intravenously administration into the mouse. Furthermore, the features of the NP-protein corona make it a powerful platform to enrich low-abundance proteins from serum/plasma for downstream mass-spectrometry (MS)-based proteomics for biomarker discovery and disease diagnosis.Herein, we summarize our recent work on the development of nanomedicine and disease detection from the level of nano-bio interactions between nanoparticles and biological systems. Nanomedicine has made substantial progress over the past two decades. However, the significant enhancement of overall patient survival by nanomedicine remains a challenge due to the lack of a deep understanding of nano-bio interactions in the clinical setting. The pharmacokinetic effect of the protein corona on PEGylated NPs during blood circulation indicated that the adsorbed apolipoproteins could prolong the circulation time of NPs. This mechanistic understanding of the protein corona (active biomolecule) formed around polymeric NPs offered insights into enhancing the efficacy of nanomedicine from the biological interactions point of view. Moreover, we discuss the basic rationale for developing bioresponsive cancer nanomedicine by exploiting the pathophysiological environment around the tumor, typically the pH, reactive oxygen species (ROS), and redox-responsive supramolecular motifs based on synthetic amphiphilic polymers. The protein corona in vivo determines the biological fate of NPs, whereas it opens a new avenue to enrich low abundant proteins in a biospecimen ex vivo to render them "visible" for downstream analytical workflows, such as MS-based proteomics. Blood serum/plasma, due to easy accessibility and great potential to uncover and monitor physiological and pathological changes in health and disease, has remained a major source of detecting protein biomarker candidates. Inspired by the features of the NP-protein corona, a Proteograph platform, which integrates multi-NP-protein coronas with MS for large-scale efficient and deep proteome profiling has been developed. Finally, we conclude this Account with a better understanding of nano-bio interactions to accelerate the nanomedicine translation and how MS-based proteomics can boost our understanding of the corona composition and facilitate the identification of disease biomarkers.
Collapse
Affiliation(s)
- Yuan Liu
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Junqing Wang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qingqing Xiong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | | | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Omid C. Farokhzad
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Seer, Inc., Redwood City, California 94065, United States
| |
Collapse
|
92
|
Su H, Cui Y, Wang F, Zhang W, Zhang C, Wang R, Cui H. Theranostic supramolecular polymers formed by the self-assembly of a metal-chelating prodrug. Biomater Sci 2021; 9:463-470. [DOI: 10.1039/d0bm00827c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The direct linkage of two camptothecin moieties to a metal chelator creates a self-assembling prodrug capable of associating in aqueous solution into theranostic supramolecular polymers.
Collapse
Affiliation(s)
- Hao Su
- Department of Chemical and Biomolecular Engineering
- and Institute for NanoBioTechnology
- The Johns Hopkins University
- Baltimore
- USA
| | - Yonggang Cui
- Department of Nuclear Medicine
- Peking University First Hospital
- Beijing
- China
| | - Feihu Wang
- Department of Chemical and Biomolecular Engineering
- and Institute for NanoBioTechnology
- The Johns Hopkins University
- Baltimore
- USA
| | - Weijie Zhang
- Department of Chemical and Biomolecular Engineering
- and Institute for NanoBioTechnology
- The Johns Hopkins University
- Baltimore
- USA
| | - Chunli Zhang
- Department of Nuclear Medicine
- Peking University First Hospital
- Beijing
- China
| | - Rongfu Wang
- Department of Nuclear Medicine
- Peking University First Hospital
- Beijing
- China
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering
- and Institute for NanoBioTechnology
- The Johns Hopkins University
- Baltimore
- USA
| |
Collapse
|
93
|
Arlauckas S, Oh N, Li R, Weissleder R, Miller MA. Macrophage imaging and subset analysis using single-cell RNA sequencing. Nanotheranostics 2021; 5:36-56. [PMID: 33391974 PMCID: PMC7738942 DOI: 10.7150/ntno.50185] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/19/2020] [Indexed: 12/12/2022] Open
Abstract
Macrophages have been associated with drug response and resistance in diverse settings, thus raising the possibility of using macrophage imaging as a companion diagnostic to inform personalized patient treatment strategies. Nanoparticle-based contrast agents are especially promising because they efficiently deliver fluorescent, magnetic, and/or radionuclide labels by leveraging the intrinsic capacity of macrophages to accumulate nanomaterials in their role as professional phagocytes. Unfortunately, current clinical imaging modalities are limited in their ability to quantify broad molecular programs that may explain (a) which particular cell subsets a given imaging agent is actually labeling, and (b) what mechanistic role those cells play in promoting drug response or resistance. Highly multiplexed single-cell approaches including single-cell RNA sequencing (scRNAseq) have emerged as resources to help answer these questions. In this review, we query recently published scRNAseq datasets to support companion macrophage imaging, with particular focus on using dextran-based nanoparticles to predict the action of anti-cancer nanotherapies and monoclonal antibodies.
Collapse
Affiliation(s)
- Sean Arlauckas
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Nuri Oh
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA
| | - Ran Li
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA.,Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Miles A Miller
- Center for Systems Biology, Massachusetts General Hospital Research Institute, Boston, MA 02114, USA.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
94
|
Teh J, Tripathi M, Reichel D, Sagong B, Montoya R, Zhang Y, Wagner S, Saouaf R, Chung LWK, Perez JM. Intraoperative assessment and postsurgical treatment of prostate cancer tumors using tumor-targeted nanoprobes. Nanotheranostics 2021; 5:57-72. [PMID: 33391975 PMCID: PMC7738944 DOI: 10.7150/ntno.50095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/13/2020] [Indexed: 02/07/2023] Open
Abstract
Successful visualization of prostate cancer (PCa) tumor margins during surgery remains a major challenge. The visualization of these tumors during surgery via near infrared fluorescence (NIRF) imaging would greatly enhance surgical resection, minimizing tumor recurrence and improving outcome. Furthermore, chemotherapy is typically administered to patients after surgery to treat any missed tumor tissue around the surgical area, minimizing metastasis and increasing patient survival. For these reasons, a theranostics fluorescent nanoparticle could be developed to assist in the visualization of PCa tumor margins, while also delivering chemotherapeutic drug after surgery. Methods: Ferumoxytol (FMX) conjugated to the fluorescent dye and PCa targeting agent, heptamethine carbocyanine (HMC), yielded the HMC-FMX nanoprobe that was tested in vitro with various PCa cell lines and in vivo with both subcutaneous and orthotopic PCa mouse models. Visualization of these tumors via NIRF imaging after administration of HMC-FMX was performed. In addition, delivery of chemotherapeutic drug and their effect on tumor growth was also assessed. Results: HMC-FMX internalized into PCa cells, labeling these cells and PCa tumors in mice with near infrared fluorescence, facilitating tumor margin visualization. HMC-FMX was also able to deliver drugs to these tumors, reducing cell migration and slowing down tumor growth. Conclusion: HMC-FMX specifically targeted PCa tumors in mice allowing for the visualization of tumor margins by NIRF imaging. Furthermore, delivery of anticancer drugs by HMC-FMX effectively reduced prostate tumor growth and reduced cell migration in vitro. Thus, HMC-FMX can potentially translate into the clinic as a nanotheranostics agent for the intraoperative visualization of PCa tumor margins, and post-operative treatment of tumors with HMC-FMX loaded with anticancer drugs.
Collapse
Affiliation(s)
- James Teh
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Manisha Tripathi
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Current address: Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Derek Reichel
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Bien Sagong
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Ricardo Montoya
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Yi Zhang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Shawn Wagner
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Rola Saouaf
- S. Mark Taper Foundation Imaging Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Leland W K Chung
- Department of Medicine, Uro-Oncology Research Program, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - J Manuel Perez
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,S. Mark Taper Foundation Imaging Center, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.,Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
95
|
Wang J, Li Y, Nie G. Multifunctional biomolecule nanostructures for cancer therapy. NATURE REVIEWS. MATERIALS 2021; 6:766-783. [PMID: 34026278 PMCID: PMC8132739 DOI: 10.1038/s41578-021-00315-x] [Citation(s) in RCA: 250] [Impact Index Per Article: 62.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/06/2021] [Indexed: 05/08/2023]
Abstract
Biomolecule-based nanostructures are inherently multifunctional and harbour diverse biological activities, which can be explored for cancer nanomedicine. The supramolecular properties of biomolecules can be precisely programmed for the design of smart drug delivery vehicles, enabling efficient transport in vivo, targeted drug delivery and combinatorial therapy within a single design. In this Review, we discuss biomolecule-based nanostructures, including polysaccharides, nucleic acids, peptides and proteins, and highlight their enormous design space for multifunctional nanomedicines. We identify key challenges in cancer nanomedicine that can be addressed by biomolecule-based nanostructures and survey the distinct biological activities, programmability and in vivo behaviour of biomolecule-based nanostructures. Finally, we discuss challenges in the rational design, characterization and fabrication of biomolecule-based nanostructures, and identify obstacles that need to be overcome to enable clinical translation.
Collapse
Affiliation(s)
- Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Yiye Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, China, Beijing, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, China
- GBA Research Innovation Institute for Nanotechnology, Guangdong, China
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
96
|
Decuzzi P, Peer D, Di Mascolo D, Palange AL, Manghnani PN, Moghimi SM, Farhangrazi ZS, Howard KA, Rosenblum D, Liang T, Chen Z, Wang Z, Zhu JJ, Gu Z, Korin N, Letourneur D, Chauvierre C, van der Meel R, Kiessling F, Lammers T. Roadmap on nanomedicine. NANOTECHNOLOGY 2021; 32:012001. [PMID: 33043901 PMCID: PMC7612035 DOI: 10.1088/1361-6528/abaadb] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Since the launch of the Alliance for Nanotechnology in Cancer by the National Cancer Institute in late 2004, several similar initiatives have been promoted all over the globe with the intention of advancing the diagnosis, treatment and prevention of cancer in the wake of nanoscience and nanotechnology. All this has encouraged scientists with diverse backgrounds to team up with one another, learn from each other, and generate new knowledge at the interface between engineering, physics, chemistry and biomedical sciences. Importantly, this new knowledge has been wisely channeled towards the development of novel diagnostic, imaging and therapeutic nanosystems, many of which are currently at different stages of clinical development. This roadmap collects eight brief articles elaborating on the interaction of nanomedicines with human biology; the biomedical and clinical applications of nanomedicines; and the importance of patient stratification in the development of future nanomedicines. The first article reports on the role of geometry and mechanical properties in nanomedicine rational design; the second articulates on the interaction of nanomedicines with cells of the immune system; and the third deals with exploiting endogenous molecules, such as albumin, to carry therapeutic agents. The second group of articles highlights the successful application of nanomedicines in the treatment of cancer with the optimal delivery of nucleic acids, diabetes with the sustained and controlled release of insulin, stroke by using thrombolytic particles, and atherosclerosis with the development of targeted nanoparticles. Finally, the last contribution comments on how nanomedicine and theranostics could play a pivotal role in the development of personalized medicines. As this roadmap cannot cover the massive extent of development of nanomedicine over the past 15 years, only a few major achievements are highlighted as the field progressively matures from the initial hype to the consolidation phase.
Collapse
Affiliation(s)
- Paolo Decuzzi
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
- Corresponding authors: and
| | - Dan Peer
- Laboratory of Precision NanoMedicine, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering
- Center for Nanoscience and Nanotechnology
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 6997801, Israel
- Corresponding authors: and
| | - Daniele Di Mascolo
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Anna Lisa Palange
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - Purnima Naresh Manghnani
- Laboratory of Nanotechnology for Precision Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego 30, Genoa 16163, Italy
| | - S. Moein Moghimi
- School of Pharmacy, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | | | - Kenneth A. Howard
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, Denmark
| | - Daniel Rosenblum
- Laboratory of Precision NanoMedicine, School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering
- Center for Nanoscience and Nanotechnology
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Tingxizi Liang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- State Key Laboratory of Analytical Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zhaowei Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Netanel Korin
- Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Didier Letourneur
- Université de Paris, Université Paris 13, INSERM 1148, LVTS, Hôpital Bichat, F-75018 Paris, France
| | - Cédric Chauvierre
- Université de Paris, Université Paris 13, INSERM 1148, LVTS, Hôpital Bichat, F-75018 Paris, France
| | - Roy van der Meel
- Laboratory of Chemical Biology, Dept. of Biomedical Engineering and Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Fabian Kiessling
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
| | - Twan Lammers
- Institute for Experimental Molecular Imaging, RWTH Aachen University, Aachen, Germany
- Dept. of Targeted Therapeutics, University of Twente, Enschede, The Netherlands
- Dept. of Pharmaceutics, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
97
|
Challenges and opportunities in the delivery of cancer therapeutics: update on recent progress. Ther Deliv 2020; 12:55-76. [PMID: 33307811 DOI: 10.4155/tde-2020-0079] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Global cancer prevalence has continuously increased in the last decades despite substantial progress achieved for patient care. Cancer is no longer recognized as a singular disease but as a plurality of different ones, leading to the important choice of the drug administration route and promoting the development of novel drug-delivery systems (DDS). Due to their structural diversity, therapeutic cancer drugs present specific challenges in physicochemical properties that can adversely affect their efficacy and toxicity profile. These challenges are addressed by innovative DDS to improve bioavailability, pharmacokinetics and biodistribution profiles. Here, we define the drug delivery challenges related to oral, intravenous, subcutaneous or alternative routes of administration, and review innovative DDS, marketed or in development, that answer those challenges.
Collapse
|
98
|
Affiliation(s)
- Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, Faculty of Medicine, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
99
|
Wang Y, Shang W, Zhong H, Luo T, Niu M, Xu K, Tian J. Tumor Vessel Targeted Self-Assemble Nanoparticles for Amplification and Prediction of the Embolization Effect in Hepatocellular Carcinoma. ACS NANO 2020; 14:14907-14918. [PMID: 33111520 DOI: 10.1021/acsnano.0c04341] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Vessel embolization is recommended as the first line treatment for unresectable hepatocellular carcinoma (HCC). However, owing to the imprecise vessel embolization and heterogeneous response performance among patients, its survival benefits are often compromised. Herein, we reported an innovative strategy to extensively embolize the tumor by triggering the coagulation cascade, and predict the embolization effect with vessel density assessment. We synthesized manganese dioxide (MnO2)/verteporfin (BPD) nanocomposites, in which BPD bound to the tumor vessel endothelial cells (TVECs) and MnO2 nanosheets served as the carrier. MnO2 was reduced to Mn2+ ions and self-assembled with BPD to produce nanoBPD, resulting in enhanced TVECs apoptosis and coagulation cascade compared to that with free BPD. Furthermore, multimodal imaging was used to visualize tumor vessel density, which can be used as a predictor to identify the patients who would benefit from embolization. Our findings describe a promising strategy for both tumor eradication and effect prediction to improve survival benefits in unresectable HCC patients.
Collapse
Affiliation(s)
- Yaqin Wang
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Wenting Shang
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Hongshan Zhong
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Ting Luo
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Meng Niu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Ke Xu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110000, China
| | - Jie Tian
- Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China
| |
Collapse
|
100
|
Sulaiman A, McGarry S, El‐Sahli S, Li L, Chambers J, Phan A, Al‐Kadi E, Kahiel Z, Farah E, Ji G, Lee S, Inampudi KK, Alain T, Li X, Liu S, Han X, Zheng P, Liu Z, Gadde S, Wang L. Nanoparticles Loaded with Wnt and YAP/Mevalonate Inhibitors in Combination with Paclitaxel Stop the Growth of TNBC Patient‐Derived Xenografts and Diminish Tumorigenesis. ADVANCED THERAPEUTICS 2020; 3. [DOI: 10.1002/adtp.202000123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Indexed: 12/21/2022]
Abstract
AbstractTriple negative breast cancer (TNBC) accounts for the majority of breast cancer‐related deaths and remains the hardest breast cancer to treat due to the lack of specific therapeutic targets. While chemotherapy is the mainstay of systemic treatment for TNBC, it is associated with chemotherapy‐induced cancer stem cells (CSCs) and tumor regeneration. Here, it is found that Wnt and YAP target genes that have been closely associated with CSCs are highly expressed in TNBC patient tumors and negatively correlated with patient survival. Therefore, a nanotherapeutic strategy is employed, using nanomaterials that are approved by the FDA, and two co‐delivery nanoparticle platforms (NPs) are developed to target TNBC. These NPs contain Wnt inhibitor PRI‐724 (in clinical trials) and YAP/mevalonate inhibitor simvastatin (FDA‐approved). Toward clinical translation, nanotherapeutic efficacy is assessed in clinically relevant patient‐derived xenograft (PDX) models. These NPs in combination with the chemotherapeutic drug paclitaxel effectively halt the growth of both paclitaxel‐resistant and paclitaxel‐sensitive PDX tumors, and diminish the paclitaxel‐induced CSC enrichment around two to fourfold. Importantly, NPs also decrease the paclitaxel‐enhanced PDX tumorigenesis after secondary transplantation. Together, this study demonstrates the efficacy of two NP platforms using clinically translatable TNBC PDX models, suggesting their application potential for the treatment of TNBC.
Collapse
Affiliation(s)
- Andrew Sulaiman
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Sarah McGarry
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Sara El‐Sahli
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Li Li
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Jason Chambers
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Alexandra Phan
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Emil Al‐Kadi
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Zaina Kahiel
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Eliya Farah
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Guang Ji
- Institute of Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine 725 South Wanping Road Shanghai 200032 China
| | - Seung‐Hwan Lee
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Krishna K. Inampudi
- Department of Biophysics All India Institute of Medical Sciences New Delhi 110029 India
| | - Tommy Alain
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Children Hospital of Eastern Ontario Research Institute Ottawa Ontario K1H 8L1 Canada
| | - Xuguang Li
- Centre for Biologics Evaluation Biologics and Genetic Therapies Directorate Health Canada Sir Frederick G. Banting Research Centre Ottawa Ontario K1Y 0M1 Canada
| | - Sheng Liu
- Institute of Chinese Traditional Surgery Longhua Hospital Shanghai University of Traditional Chinese Medicine 725 South Wanping Road Shanghai 200032 China
| | - Xianghui Han
- Institute of Chinese Traditional Surgery Longhua Hospital Shanghai University of Traditional Chinese Medicine 725 South Wanping Road Shanghai 200032 China
| | - Peiyong Zheng
- Institute of Digestive Diseases Longhua Hospital Shanghai University of Traditional Chinese Medicine 725 South Wanping Road Shanghai 200032 China
| | - Zhen Liu
- State Key Laboratory of Analytical Chemistry for Life Science School of Chemistry and Chemical Engineering Nanjing University 163 Xianlin Avenue Nanjing 210023 China
| | - Suresh Gadde
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
| | - Lisheng Wang
- Department of Biochemistry Microbiology and Immunology Faculty of Medicine University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- China‐Canada Centre of Research for Digestive Diseases 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Ottawa Institute of Systems Biology University of Ottawa 451 Smyth Road Ottawa Ontario K1H 8M5 Canada
- Regenerative Medicine Program Ottawa Hospital Research Institute Ottawa Ontario K1H 8L6 Canada
| |
Collapse
|