51
|
Mwanga MJ, Verani JR, Omore R, Tate JE, Parashar UD, Murunga N, Gicheru E, Breiman RF, Nokes DJ, Agoti CN. Multiple Introductions and Predominance of Rotavirus Group A Genotype G3P[8] in Kilifi, Coastal Kenya, 4 Years after Nationwide Vaccine Introduction. Pathogens 2020; 9:pathogens9120981. [PMID: 33255256 PMCID: PMC7761311 DOI: 10.3390/pathogens9120981] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 01/22/2023] Open
Abstract
Globally, rotavirus group A (RVA) remains a major cause of severe childhood diarrhea, despite the use of vaccines in more than 100 countries. RVA sequencing for local outbreaks facilitates investigation into strain composition, origins, spread, and vaccine failure. In 2018, we collected 248 stool samples from children aged less than 13 years admitted with diarrheal illness to Kilifi County Hospital, coastal Kenya. Antigen screening detected RVA in 55 samples (22.2%). Of these, VP7 (G) and VP4 (P) segments were successfully sequenced in 48 (87.3%) and phylogenetic analysis based on the VP7 sequences identified seven genetic clusters with six different GP combinations: G3P[8], G1P[8], G2P[4], G2P[8], G9P[8] and G12P[8]. The G3P[8] strains predominated the season (n = 37, 67.2%) and comprised three distinct G3 genetic clusters that fell within Lineage I and IX (the latter also known as equine-like G3 Lineage). Both the two G3 lineages have been recently detected in several countries. Our study is the first to document African children infected with G3 Lineage IX. These data highlight the global nature of RVA transmission and the importance of increasing global rotavirus vaccine coverage.
Collapse
Affiliation(s)
- Mike J. Mwanga
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, off Hospital Road, Kilifi 80108, Kenya; (M.J.M.); (N.M.); (E.G.); (D.J.N.)
| | - Jennifer R. Verani
- Centers for Disease Control and Prevention (CDC), KEMRI Complex, off Mbagathi Way, Village Market, Nairobi 00621, Kenya;
- Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA; (J.E.T.); (U.D.P.)
| | - Richard Omore
- KEMRI, Center for Global Health Research (KEMRI-CGHR), Kisumu 00202, Kenya;
| | - Jacqueline E. Tate
- Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA; (J.E.T.); (U.D.P.)
| | - Umesh D. Parashar
- Centers for Disease Control and Prevention (CDC), Atlanta, GA 30333, USA; (J.E.T.); (U.D.P.)
| | - Nickson Murunga
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, off Hospital Road, Kilifi 80108, Kenya; (M.J.M.); (N.M.); (E.G.); (D.J.N.)
| | - Elijah Gicheru
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, off Hospital Road, Kilifi 80108, Kenya; (M.J.M.); (N.M.); (E.G.); (D.J.N.)
| | - Robert F. Breiman
- Hubert Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA;
| | - D. James Nokes
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, off Hospital Road, Kilifi 80108, Kenya; (M.J.M.); (N.M.); (E.G.); (D.J.N.)
- School of Life Sciences and Zeeman Institute (SBIDER), The University of Warwick, Coventry CV4 7AL, UK
| | - Charles N. Agoti
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, off Hospital Road, Kilifi 80108, Kenya; (M.J.M.); (N.M.); (E.G.); (D.J.N.)
- School of Health and Human Sciences, Pwani University, Kilifi 80108, Kenya
- Correspondence:
| |
Collapse
|
52
|
Mhango C, Mandolo JJ, Chinyama E, Wachepa R, Kanjerwa O, Malamba-Banda C, Matambo PB, Barnes KG, Chaguza C, Shawa IT, Nyaga MM, Hungerford D, Parashar UD, Pitzer VE, Kamng'ona AW, Iturriza-Gomara M, Cunliffe NA, Jere KC. Rotavirus Genotypes in Hospitalized Children with Acute Gastroenteritis Before and After Rotavirus Vaccine Introduction in Blantyre, Malawi, 1997 - 2019. J Infect Dis 2020; 225:2127-2136. [PMID: 33033832 PMCID: PMC9200156 DOI: 10.1093/infdis/jiaa616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 09/28/2020] [Indexed: 01/02/2023] Open
Abstract
Background Rotavirus vaccine (Rotarix [RV1]) has reduced diarrhea-associated hospitalizations and deaths in Malawi. We examined the trends in circulating rotavirus genotypes in Malawi over a 22-year period to assess the impact of RV1 introduction on strain distribution. Methods Data on rotavirus-positive stool specimens among children aged <5 years hospitalized with diarrhea in Blantyre, Malawi before (July 1997–October 2012, n = 1765) and after (November 2012–October 2019, n = 934) RV1 introduction were analyzed. Rotavirus G and P genotypes were assigned using reverse-transcription polymerase chain reaction. Results A rich rotavirus strain diversity circulated throughout the 22-year period; Shannon (H′) and Simpson diversity (D′) indices did not differ between the pre- and postvaccine periods (H′ P < .149; D′ P < .287). Overall, G1 (n = 268/924 [28.7%]), G2 (n = 308/924 [33.0%]), G3 (n = 72/924 [7.7%]), and G12 (n = 109/924 [11.8%]) were the most prevalent genotypes identified following RV1 introduction. The prevalence of G1P[8] and G2P[4] genotypes declined each successive year following RV1 introduction, and were not detected after 2018. Genotype G3 reemerged and became the predominant genotype from 2017 onward. No evidence of genotype selection was observed 7 years post–RV1 introduction. Conclusions Rotavirus strain diversity and genotype variation in Malawi are likely driven by natural mechanisms rather than vaccine pressure.
Collapse
Affiliation(s)
- Chimwemwe Mhango
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Biomedical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Jonathan J Mandolo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre, Malawi.,Department of Biomedical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi
| | - End Chinyama
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Richard Wachepa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Oscar Kanjerwa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi
| | - Chikondi Malamba-Banda
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre, Malawi.,Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Prisca B Matambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre, Malawi.,Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| | - Kayla G Barnes
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, USA
| | - Chrispin Chaguza
- Genomics of Pneumonia and Meningitis, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
| | - Isaac T Shawa
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Martin M Nyaga
- Next Generation Sequencing Unit, Division of Virology, Faculty of Health Sciences, University of the Free State, Bloemfontein, South Africa
| | - Daniel Hungerford
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, UK
| | - Umesh D Parashar
- Epidemiology Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Virginia E Pitzer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, Yale University, New Haven, USA
| | - Arox W Kamng'ona
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Biomedical Sciences, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Miren Iturriza-Gomara
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, UK
| | - Nigel A Cunliffe
- Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, UK
| | - Khuzwayo C Jere
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, Blantyre, Malawi.,Department of Medical Laboratory Sciences, College of Medicine, University of Malawi, Blantyre, Malawi.,Centre for Global Vaccine Research, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK.,NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, UK
| |
Collapse
|
53
|
Sánchez-Tacuba L, Feng N, Meade NJ, Mellits KH, Jaïs PH, Yasukawa LL, Resch TK, Jiang B, López S, Ding S, Greenberg HB. An Optimized Reverse Genetics System Suitable for Efficient Recovery of Simian, Human, and Murine-Like Rotaviruses. J Virol 2020; 94:e01294-20. [PMID: 32759316 PMCID: PMC7459567 DOI: 10.1128/jvi.01294-20] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/01/2020] [Indexed: 12/12/2022] Open
Abstract
An entirely plasmid-based reverse genetics (RG) system was recently developed for rotavirus (RV), opening new avenues for in-depth molecular dissection of RV biology, immunology, and pathogenesis. Several improvements to further optimize the RG efficiency have now been described. However, only a small number of individual RV strains have been recovered to date. None of the current methods have supported the recovery of murine RV, impeding the study of RV replication and pathogenesis in an in vivo suckling mouse model. Here, we describe useful modifications to the RG system that significantly improve rescue efficiency of multiple RV strains. In addition to the 11 group A RV segment-specific (+)RNAs [(+)ssRNAs], a chimeric plasmid was transfected, from which the capping enzyme NP868R of African swine fever virus (ASFV) and the T7 RNA polymerase were expressed. Second, a genetically modified MA104 cell line was used in which several components of the innate immunity were degraded. Using this RG system, we successfully recovered the simian RV RRV strain, the human RV CDC-9 strain, a reassortant between murine RV D6/2 and simian RV SA11 strains, and several reassortants and reporter RVs. All these recombinant RVs were rescued at a high efficiency (≥80% success rate) and could not be reliably rescued using several recently published RG strategies (<20%). This improved system represents an important tool and great potential for the rescue of other hard-to-recover RV strains such as low-replicating attenuated vaccine candidates or low-cell culture passage clinical isolates from humans or animals.IMPORTANCE Group A rotavirus (RV) remains as the single most important cause of severe acute gastroenteritis among infants and young children worldwide. An entirely plasmid-based reverse genetics (RG) system was recently developed, opening new ways for in-depth molecular study of RV. Despite several improvements to further optimize the RG efficiency, it has been reported that current strategies do not enable the rescue of all cultivatable RV strains. Here, we described a helpful modification to the current strategies and established a tractable RG system for the rescue of the simian RRV strain, the human CDC-9 strain, and a murine-like RV strain, which is suitable for both in vitro and in vivo studies. This improved RV reverse genetics system will facilitate study of RV biology in both in vitro and in vivo systems that will facilitate the improved design of RV vaccines, better antiviral therapies, and expression vectors.
Collapse
Affiliation(s)
- Liliana Sánchez-Tacuba
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, California, USA
| | - Ningguo Feng
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, California, USA
| | - Nathan J Meade
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- School of Biosciences, Division of Microbiology, Brewing, and Biotechnology, University of Nottingham, Sutton Bonington, UK
| | - Kenneth H Mellits
- School of Biosciences, Division of Microbiology, Brewing, and Biotechnology, University of Nottingham, Sutton Bonington, UK
| | | | - Linda L Yasukawa
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, California, USA
| | - Theresa K Resch
- Cherokee Nation Assurance, contracted to Division of Viral Disease, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Baoming Jiang
- Division of Viral Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Susana López
- Departamento de Génetica del Desarrollo y Fisiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, México
| | - Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Harry B Greenberg
- Department of Medicine, Division of Gastroenterology and Hepatology, Stanford School of Medicine, Stanford, California, USA
- Department of Microbiology and Immunology, Stanford School of Medicine, Stanford, California, USA
- VA Palo Alto Health Care System, Department of Veterans Affairs, Palo Alto, California, USA
| |
Collapse
|
54
|
Shepherd FK, Dvorak CMT, Murtaugh MP, Marthaler DG. Leveraging a Validated in silico Approach to Elucidate Genotype-Specific VP7 Epitopes and Antigenic Relationships of Porcine Rotavirus A. Front Genet 2020; 11:828. [PMID: 32849819 PMCID: PMC7411229 DOI: 10.3389/fgene.2020.00828] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/09/2020] [Indexed: 11/13/2022] Open
Abstract
Rotavirus A (RVA) remains one of the most widespread causes of diarrheal disease and mortality in piglets despite decades of research and efforts to boost lactogenic immunity for passive protection. Genetic changes at B cell epitopes (BCEs) may be driving failure of lactogenic immunity, which relies on production of IgA antibodies to passively neutralize RVA within the piglet gut, yet little research has mapped epitopes to swine-specific strains of RVA. Here we describe a bioinformatic approach to predict BCEs on the VP7 outer capsid protein using sequence data alone. We first validated the approach using a previously published dataset of VP7-specific cross-neutralization titers, and found that amino acid changes at predicted BCEs on the VP7 protein allowed for accurate recapitulation of antigenic relationships among the strains. Applying the approach to a dataset of swine RVA sequences identified 9 of the 11 known BCEs previously mapped to swine strains, indicating that epitope prediction can identify sites that are known to drive neutralization escape in vitro. Additional genotype-specific BCEs were also predicted that may be the cause of antigenic differences among strains of RVA on farms and should be targeted for further confirmatory work. The results of this work lay the groundwork for high throughput, immunologically-relevant analysis of swine RVA sequence data, and provide potential sites that can be targeted with vaccines to reduce piglet mortality and support farm health.
Collapse
Affiliation(s)
- Frances K Shepherd
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Cheryl M T Dvorak
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Michael P Murtaugh
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, United States
| | - Douglas G Marthaler
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
55
|
Ding S, Song Y, Brulois KF, Pan J, Co JY, Ren L, Feng N, Yasukawa LL, Sánchez-Tacuba L, Wosen JE, Mellins ED, Monack DM, Amieva MR, Kuo CJ, Butcher EC, Greenberg HB. Retinoic Acid and Lymphotoxin Signaling Promote Differentiation of Human Intestinal M Cells. Gastroenterology 2020; 159:214-226.e1. [PMID: 32247021 PMCID: PMC7569531 DOI: 10.1053/j.gastro.2020.03.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 03/12/2020] [Accepted: 03/20/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND & AIMS Intestinal microfold (M) cells are a unique subset of intestinal epithelial cells in the Peyer's patches that regulate mucosal immunity, serving as portals for sampling and uptake of luminal antigens. The inability to efficiently develop human M cells in cell culture has impeded studies of the intestinal immune system. We aimed to identify signaling pathways required for differentiation of human M cells and establish a robust culture system using human ileum enteroids. METHODS We analyzed transcriptome data from mouse Peyer's patches to identify cell populations in close proximity to M cells. We used the human enteroid system to determine which cytokines were required to induce M-cell differentiation. We performed transcriptome, immunofluorescence, scanning electron microscope, and transcytosis experiments to validate the development of phenotypic and functional human M cells. RESULTS A combination of retinoic acid and lymphotoxin induced differentiation of glycoprotein 2-positive human M cells, which lack apical microvilli structure. Upregulated expression of innate immune-related genes within M cells correlated with a lack of viral antigens after rotavirus infection. Human M cells, developed in the enteroid system, internalized and transported enteric viruses, such as rotavirus and reovirus, across the intestinal epithelium barrier in the enteroids. CONCLUSIONS We identified signaling pathways required for differentiation of intestinal M cells, and used this information to create a robust culture method to develop human M cells with capacity for internalization and transport of viruses. Studies of this model might increase our understanding of antigen presentation and the systemic entry of enteric pathogens in the human intestine.
Collapse
Affiliation(s)
- Siyuan Ding
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri.
| | - Yanhua Song
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA,Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Kevin F. Brulois
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Junliang Pan
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Julia Y. Co
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA,Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Lili Ren
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, 211816, China
| | - Ningguo Feng
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Linda L. Yasukawa
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Liliana Sánchez-Tacuba
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Jonathan E. Wosen
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Manuel R. Amieva
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA,Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Calvin J. Kuo
- Department of Medicine, Division of Hematology, Stanford University, Stanford, CA 94305, USA
| | - Eugene C. Butcher
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Harry B. Greenberg
- Palo Alto Veterans Institute of Research, VA Palo Alto Health Care System, Palo Alto, CA 94304, USA,Department of Medicine, Division of Gastroenterology and Hepatology, Stanford University, Stanford, CA 94305, USA,Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
56
|
Elliott SE, Kongpachith S, Lingampalli N, Adamska JZ, Cannon BJ, Blum LK, Bloom MS, Henkel M, McGeachy MJ, Moreland LW, Robinson WH. B cells in rheumatoid arthritis synovial tissues encode focused antibody repertoires that include antibodies that stimulate macrophage TNF-α production. Clin Immunol 2020; 212:108360. [PMID: 32035179 DOI: 10.1016/j.clim.2020.108360] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/04/2020] [Accepted: 02/04/2020] [Indexed: 01/13/2023]
Abstract
Rheumatoid arthritis (RA) is characterized by the production of anti-citrullinated protein antibodies (ACPAs). To gain insights into the relationship between ACPA-expressing B cells in peripheral blood (PB) and synovial tissue (ST), we sequenced the B cell repertoire in paired PB and ST samples from five individuals with established, ACPA+ RA. Bioinformatics analysis of paired heavy- and light-chain sequences revealed clonally-related family members shared between PB and ST. ST-derived antibody repertoires exhibited reduced diversity and increased normalized clonal family size compared to PB-derived repertoires. Functional characterization showed that seven recombinant antibodies (rAbs) expressed from subject-derived sequences from both compartments bound citrullinated antigens and immune complexes (ICs) formed using one ST-derived rAb stimulated macrophage TNF-α production. Our findings demonstrate B cell trafficking between PB and ST in subjects with RA and ST repertoires include B cells that encode ACPA capable of forming ICs that stimulate cellular responses implicated in RA pathogenesis.
Collapse
Affiliation(s)
- Serra E Elliott
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America; VA Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Sarah Kongpachith
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America; VA Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Nithya Lingampalli
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America; VA Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Julia Z Adamska
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America; VA Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Bryan J Cannon
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America; VA Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Lisa K Blum
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America; VA Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Michelle S Bloom
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America; VA Palo Alto Health Care System, Palo Alto, CA, United States of America
| | - Matthew Henkel
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Mandy J McGeachy
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - Larry W Moreland
- Division of Rheumatology & Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - William H Robinson
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA, United States of America; VA Palo Alto Health Care System, Palo Alto, CA, United States of America.
| |
Collapse
|
57
|
Abstract
Because of their replication mode and segmented dsRNA genome, homologous recombination is assumed to be rare in the rotaviruses. We analyzed 23,627 complete rotavirus genome sequences available in the NCBI Virus Variation database, and found 109 instances of homologous recombination, at least eleven of which prevailed across multiple sequenced isolates. In one case, recombination may have generated a novel rotavirus VP1 lineage. We also found strong evidence for intergenotypic recombination in which more than one sequence strongly supported the same event, particularly between different genotypes of segment 9, which encodes the glycoprotein, VP7. The recombined regions of many putative recombinants showed amino acid substitutions differentiating them from their major and minor parents. This finding suggests that these recombination events were not overly deleterious, since presumably these recombinants proliferated long enough to acquire adaptive mutations in their recombined regions. Protein structural predictions indicated that, despite the sometimes substantial amino acid replacements resulting from recombination, the overall protein structures remained relatively unaffected. Notably, recombination junctions appear to occur nonrandomly with hot spots corresponding to secondary RNA structures, a pattern seen consistently across segments. In total, we found strong evidence for recombination in nine of eleven rotavirus A segments. Only segments 7 (NSP3) and 11 (NSP5) did not show strong evidence of recombination. Collectively, the results of our computational analyses suggest that, contrary to the prevailing sentiment, recombination may be a significant driver of rotavirus evolution and may influence circulating strain diversity.
Collapse
Affiliation(s)
- Irene Hoxie
- Biology Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Queens, NY 11367, USA.,The Graduate Center of The City University of New York, Biology Program, 365 5th Ave, New York, NY 10016, USA
| | - John J Dennehy
- Biology Department, Queens College of The City University of New York, 65-30 Kissena Blvd, Queens, NY 11367, USA.,The Graduate Center of The City University of New York, Biology Program, 365 5th Ave, New York, NY 10016, USA
| |
Collapse
|
58
|
Sen A, Ding S, Greenberg HB. The Role of Innate Immunity in Regulating Rotavirus Replication, Pathogenesis, and Host Range Restriction and the Implications for Live Rotaviral Vaccine Development. MUCOSAL VACCINES 2020. [PMCID: PMC7148637 DOI: 10.1016/b978-0-12-811924-2.00041-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Rotaviruses (RVs) are important causative agents of viral gastroenteritis in the young of most mammalian species studied, including humans, in which they are the most important cause of severe gastroenteritis worldwide despite the availability of several safe and effective vaccines. Replication of RVs is restricted in a host species-specific manner, and this barrier is determined predominantly by the host interferon (IFN) signaling and the ability of different RV strains to successfully negate IFN activation and amplification pathways. In addition, viral attachment to the target intestinal epithelial cells also regulates host range restriction. Several studies have focused on the role of the innate immune response in regulating RV replication and pathogenesis. The knowledge accrued from these efforts is likely to result in rational attenuation of RV vaccines to closely match circulating (and host species-matched) virus strains. In this chapter, we review prevalent models of RV interactions with innate immune factors, viral strategies employed to regulate their function, and the implications of these findings for improved RV vaccine development.
Collapse
|
59
|
King JR, Varadé J, Hammarström L. Fucosyltransferase Gene Polymorphisms and Lewisb-Negative Status Are Frequent in Swedish Newborns, With Implications for Infectious Disease Susceptibility and Personalized Medicine. J Pediatric Infect Dis Soc 2019; 8:507-518. [PMID: 30544260 DOI: 10.1093/jpids/piy085] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 10/26/2018] [Indexed: 01/11/2023]
Abstract
BACKGROUND Single-nucleotide polymorphisms (SNPs) in the fucosyltransferase genes FUT2 and FUT3 have been associated with susceptibility to various infectious and inflammatory disorders. FUT variations influence the expression of human histo-blood group antigens (HBGAs) (H-type 1 and Lewis), which are highly expressed in the gut and play an important role in microbial attachment, metabolism, colonization, and shaping of the microbiome. In particular, FUT polymorphisms confer susceptibility to specific rotavirus and norovirus genotypes, which has important global health implications. METHODS We designed a genotyping method using a nested polymerase chain reaction approach to determine the frequency of SNPs in FUT2 and FUT3, thereby inferring the prevalence of Lewisb-positive, Lewisb-negative, secretor, and nonsecretor phenotypes in 520 Swedish newborns. RESULTS There was an increased frequency of homozygotes for the minor allele for 1 SNP in FUT2 and 4 SNPs in FUT3. Overall, 37.3% of newborns were found to have Lewis b negative phenotypes (Le (a+b-) or Le (a-b-). Using our new, sensitive genotyping method, we were able to genetically define the Le (a-b-) individuals based on their secretor status and found that the frequency of Lewis b negative newborns in our cohort was 28%. CONCLUSIONS Given the high frequency of fucosyltransferase polymorphisms observed in our newborn cohort and the implications for disease susceptibility, FUT genotyping might play a future role in personalized health care, including recommendations for disease screening, therapy, and vaccination.
Collapse
Affiliation(s)
- Jovanka R King
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
- Department of Immunopathology, SA Pathology, Women's and Children's Hospital Campus, and Robinson Research Institute and Discipline of Paediatrics, School of Medicine, University of Adelaide, North Adelaide, South Australia
| | - Jezabel Varadé
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
60
|
Full genome characterization of human G3P[6] and G3P[9] rotavirus strains in Lebanon. INFECTION GENETICS AND EVOLUTION 2019; 78:104133. [PMID: 31812761 DOI: 10.1016/j.meegid.2019.104133] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/04/2019] [Accepted: 12/02/2019] [Indexed: 11/24/2022]
Abstract
Rotaviruses are the most common infectious agents causing severe diarrheal diseases in young children globally. Three rare human rotavirus strains, two G3P[9] and one G3P[6], were detected in stool samples of children under 5 years of age hospitalized for gastroenteritis in Lebanon during the course of a surveillance study. Complete genomes of these strains were sequenced using VirCapSeq-VERT, a capture based high-throughput sequencing method. Genomic sequences were further characterized by using phylogenetic analyses with global RVA G3P[6]/P[9] strains, other vaccine and reference strains. Genetic analysis revealed that the G3P[6] strain emerged as a DS-1/Wa-like mono-reassortant strain with a potential Ethiopian origin. The two G3P[9] strains possessed a mixed DS-1/Wa/AU-1-like origin indicating that these may have evolved via multiple reassortment events involving feline, human and bovine rotaviruses. Furthermore, analysis of these strains revealed high antigenic variability compared to the vaccine strains. Additional studies are essential to fully understand the evolutionary dynamics of G3P[6]/P[9] strains spreading worldwide and their implications on vaccine effectiveness.
Collapse
|
61
|
Tan M, Jiang X. Norovirus Capsid Protein-Derived Nanoparticles and Polymers as Versatile Platforms for Antigen Presentation and Vaccine Development. Pharmaceutics 2019; 11:pharmaceutics11090472. [PMID: 31547456 PMCID: PMC6781506 DOI: 10.3390/pharmaceutics11090472] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/27/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Major viral structural proteins interact homotypically and/or heterotypically, self-assembling into polyvalent viral capsids that usually elicit strong host immune responses. By taking advantage of such intrinsic features of norovirus capsids, two subviral nanoparticles, 60-valent S60 and 24-valent P24 nanoparticles, as well as various polymers, have been generated through bioengineering norovirus capsid shell (S) and protruding (P) domains, respectively. These nanoparticles and polymers are easily produced, highly stable, and extremely immunogenic, making them ideal vaccine candidates against noroviruses. In addition, they serve as multifunctional platforms to display foreign antigens, self-assembling into chimeric nanoparticles or polymers as vaccines against different pathogens and illnesses. Several chimeric S60 and P24 nanoparticles, as well as P domain-derived polymers, carrying different foreign antigens, have been created and demonstrated to be promising vaccine candidates against corresponding pathogens in preclinical animal studies, warranting their further development into useful vaccines.
Collapse
Affiliation(s)
- Ming Tan
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| | - Xi Jiang
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.
| |
Collapse
|
62
|
Feng N, Hu L, Ding S, Sanyal M, Zhao B, Sankaran B, Ramani S, McNeal M, Yasukawa LL, Song Y, Prasad BV, Greenberg HB. Human VP8* mAbs neutralize rotavirus selectively in human intestinal epithelial cells. J Clin Invest 2019; 129:3839-3851. [PMID: 31403468 PMCID: PMC6715378 DOI: 10.1172/jci128382] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/18/2019] [Indexed: 01/07/2023] Open
Abstract
We previously generated 32 rotavirus-specific (RV-specific) recombinant monoclonal antibodies (mAbs) derived from B cells isolated from human intestinal resections. Twenty-four of these mAbs were specific for the VP8* fragment of RV VP4, and most (20 of 24) were non-neutralizing when tested in the conventional MA104 cell-based assay. We reexamined the ability of these mAbs to neutralize RVs in human intestinal epithelial cells including ileal enteroids and HT-29 cells. Most (18 of 20) of the "non-neutralizing" VP8* mAbs efficiently neutralized human RV in HT-29 cells or enteroids. Serum RV neutralization titers in adults and infants were significantly higher in HT-29 than MA104 cells and adsorption of these sera with recombinant VP8* lowered the neutralization titers in HT-29 but not MA104 cells. VP8* mAbs also protected suckling mice from diarrhea in an in vivo challenge model. X-ray crystallographic analysis of one VP8* mAb (mAb9) in complex with human RV VP8* revealed that the mAb interaction site was distinct from the human histo-blood group antigen binding site. Since MA104 cells are the most commonly used cell line to detect anti-RV neutralization activity, these findings suggest that prior vaccine and other studies of human RV neutralization responses may have underestimated the contribution of VP8* antibodies to the overall neutralization titer.
Collapse
Affiliation(s)
- Ningguo Feng
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Liya Hu
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Siyuan Ding
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Mrinmoy Sanyal
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, California, USA
| | - Boyang Zhao
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Banumathi Sankaran
- Berkeley Center for Structural Biology, Molecular Biophysics, and Integrated Bioimaging, Lawrence Berkeley Laboratory, Berkeley, California, USA
| | - Sasirekha Ramani
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Monica McNeal
- Division of Infectious Disease, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Yanhua Song
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California, USA.,Institute of Veterinary Medicine, Jiangsu Academy of Agriculture Science, Nanjing, China
| | - B.V. Venkataram Prasad
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, USA
| | - Harry B. Greenberg
- Departments of Medicine and Microbiology and Immunology, School of Medicine, Stanford University, Stanford, California, USA.,VA Palo Alto Health Care System, Palo Alto, California, USA
| |
Collapse
|
63
|
Velasquez DE, Jiang B. Evolution of P[8], P[4], and P[6] VP8* genes of human rotaviruses globally reported during 1974 and 2017: possible implications for rotavirus vaccines in development. Hum Vaccin Immunother 2019; 15:3003-3008. [PMID: 31124743 DOI: 10.1080/21645515.2019.1619400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Non-replicating parenteral rotavirus (RV) vaccine candidates are in development in an attempt to overcome the lower efficacy and effectiveness of oral RV vaccines in low-income countries. One of the leading candidates is a truncated recombinant VP8* protein, expressed in Escherichia coli from original sequences of the prototype RV genotypes P[8], P[4], or P[6] isolated before 1983. Since VP8* is highly variable, it was considered useful to examine the evolutionary changes of RV strains reported worldwide over time in relation to the three P2-VP8 vaccine strains. Here, we retrieved from the GenBank 6,366 RV VP8* gene sequences of P[8], P[4], or P[6] strains isolated between 1974 and 2017, in 77 countries, and compared them with those of the three P2-VP8 vaccine strains: Wa (USA, 1974, G1P[8]), DS-1 (USA, 1976, G2P[4]), and 1076 (Sweden, 1983, G2P[6]). Phylogenetic analysis showed that 94.9% (4,328/4,560), 99.8% (1,141/1,143), and 100% (663/663) of the P[8], P[4], and P[6] strains, respectively, reported globally between 1974 and 2018 belong to non-vaccine lineages. These P[8], P[4], and P[6] RV strains have a mean of 9%, 5%, and 6% amino acid difference from the corresponding vaccine strains. Additionally, in the USA, the mean percentage difference between all the P[8] RV strains and the original Wa strain increased over time: 4% (during 1974-1980), 5% (1988-1991), and 9% (2005-2013). Our analysis substantiated high evolutionary changes in VP8* of the P[8], P[4], and P[6] major RV strains and their increasing variations from the candidate subunit vaccine strains over time. These findings may have implications for the development of new RV vaccines.
Collapse
Affiliation(s)
- Daniel E Velasquez
- Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA, USA
| | - Baoming Jiang
- Division of Viral Diseases, Centers for Diseases Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
64
|
Kongpachith S, Lingampalli N, Ju CH, Blum LK, Lu DR, Elliott SE, Mao R, Robinson WH. Affinity Maturation of the Anti-Citrullinated Protein Antibody Paratope Drives Epitope Spreading and Polyreactivity in Rheumatoid Arthritis. Arthritis Rheumatol 2019; 71:507-517. [PMID: 30811898 DOI: 10.1002/art.40760] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 10/11/2018] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Anti-citrullinated protein antibodies (ACPAs) are a hallmark of rheumatoid arthritis (RA). While epitope spreading of the serum ACPA response is believed to contribute to RA pathogenesis, little is understood regarding how this phenomenon occurs. This study was undertaken to analyze the antibody repertoires of individuals with RA to gain insight into the mechanisms leading to epitope spreading of the serum ACPA response in RA. METHODS Plasmablasts from the blood of 6 RA patients were stained with citrullinated peptide tetramers to identify ACPA-producing B cells by flow cytometry. Plasmablasts were single-cell sorted and sequenced to obtain antibody repertoires. Sixty-nine antibodies were recombinantly expressed, and their anticitrulline reactivities were characterized using a cyclic citrullinated peptide enzyme-linked immuosorbent assay and synovial antigen arrays. Thirty-six mutated antibodies designed either to represent ancestral antibodies or to test paratope residues critical for binding, as determined from molecular modeling studies, were also tested for anticitrulline reactivities. RESULTS Clonally related monoclonal ACPAs and their shared ancestral antibodies each exhibited differential reactivity against citrullinated antigens. Molecular modeling identified residues within the complementarity-determining region loops and framework regions predicted to be important for citrullinated antigen binding. Affinity maturation resulted in mutations of these key residues, which conferred binding to different citrullinated epitopes and/or increased polyreactivity to citrullinated epitopes. CONCLUSION These results demonstrate that the different somatic hypermutations accumulated by clonally related B cells during affinity maturation alter the antibody paratope to mediate epitope spreading and polyreactivity of the ACPA response in RA, suggesting that these may be key properties that likely contribute to the pathogenicity of ACPAs.
Collapse
Affiliation(s)
- Sarah Kongpachith
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Nithya Lingampalli
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Chia-Hsin Ju
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Lisa K Blum
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Daniel R Lu
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Serra E Elliott
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - Rong Mao
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| | - William H Robinson
- Stanford University, Stanford, California, and VA Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
65
|
The 13th International Double-Stranded RNA Virus Symposium, Houffalize, Belgium, 24 to 28 September 2018. J Virol 2019; 93:JVI.01964-18. [PMID: 30723139 DOI: 10.1128/jvi.01964-18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/20/2018] [Indexed: 11/20/2022] Open
Abstract
The triennial International Double-Stranded RNA Virus Symposium, this year organized by J. Matthijnssens, J. S. L. Parker, P. Danthi, and P. Van Damme in Belgium, gathered over 200 scientists to discuss novel observations and hypotheses in the field. The keynote lecture on functional interactions of bacteria and viruses in the gut microbiome was presented by Julie Pfeiffer. Workshops were held on viral diversity, molecular epidemiology, molecular virology, immunity and pathogenesis, virus structure, the viral use and abuse of cellular pathways, and applied double-stranded RNA (dsRNA) virology. The establishment of a plasmid only-based reverse genetics system for rotaviruses by several Japanese research groups in 2017 has now been reproduced by various other research groups and was discussed in detail. The visualization of dsRNA virus replication steps in living cells received much attention. Mechanisms of the cellular innate immune response to virus infection and of viral pathogenesis were explored. Knowledge of the gut microbiome's influence on specific immune responses has increased rapidly, also due to the availability of relevant animal models of virus infection. The method of cryo-electron microscopic (cryo-EM) tomography has elucidated various asymmetric structures in viral particles. The use of orthoreoviruses for oncolytic virotherapy was critically assessed. The application of llama-derived single chain nanobodies for passive immunotherapy was considered attractive. In a satellite symposium the introduction, impact and further developments of rotavirus vaccines were reviewed. The Jean Cohen Lecturer of this meeting was Harry B. Greenberg, who presented aspects of his research on rotaviruses over a period of more than 40 years. He was also interviewed at the meeting by Vincent Racaniello for the 513th session of This Week in Virology.
Collapse
|
66
|
Vesicle-Cloaked Virus Clusters Are Optimal Units for Inter-organismal Viral Transmission. Cell Host Microbe 2019; 24:208-220.e8. [PMID: 30092198 DOI: 10.1016/j.chom.2018.07.006] [Citation(s) in RCA: 200] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 06/11/2018] [Accepted: 07/13/2018] [Indexed: 01/29/2023]
Abstract
In enteric viral infections, such as those with rotavirus and norovirus, individual viral particles shed in stool are considered the optimal units of fecal-oral transmission. We reveal that rotaviruses and noroviruses are also shed in stool as viral clusters enclosed within vesicles that deliver a high inoculum to the receiving host. Cultured cells non-lytically release rotaviruses and noroviruses inside extracellular vesicles. In addition, stools of infected hosts contain norovirus and rotavirus within vesicles of exosomal or plasma membrane origin. These vesicles remain intact during fecal-oral transmission and thereby transport multiple viral particles collectively to the next host, enhancing both the MOI and disease severity. Vesicle-cloaked viruses are non-negligible populations in stool and have a disproportionately larger contribution to infectivity than free viruses. Our findings indicate that vesicle-cloaked viruses are highly virulent units of fecal-oral transmission and highlight a need for antivirals targeting vesicles and virus clustering.
Collapse
|
67
|
Development of Stable Rotavirus Reporter Expression Systems. J Virol 2019; 93:JVI.01774-18. [PMID: 30541830 DOI: 10.1128/jvi.01774-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/27/2018] [Indexed: 01/22/2023] Open
Abstract
Engineered recombinant viruses expressing reporter genes have been developed for real-time monitoring of replication and for mass screening of antiviral inhibitors. Recently, we reported using a reverse genetics system to develop the first recombinant reporter rotaviruses (RVs) that expressed NanoLuc (NLuc) luciferase. Here, we describe a strategy for developing stable reporter RVs expressing luciferase and green or red fluorescent proteins. The reporter genes were inserted into the open reading frame of NSP1 and expressed as a fusion with an NSP1 peptide consisting of amino acids 1 to 27. The stability of foreign genes within the reporter RV strains harboring a shorter chimeric NSP1-reporter gene was greater than that of those in the original reporter RV strain, independent of the transgene inserted. The improved reporter RV was used to screen for neutralizing monoclonal antibodies (MAbs). Sequence analysis of escape mutants from one MAb clone (clone 29) identified an amino acid substitution (arginine to glycine) at position 441 in the VP4 protein, which resides within neutralizing epitope 5-1 in the VP5* fragment. Furthermore, to express a native reporter protein lacking NSP1 amino acids 1 to 27, the 5'- and 3'-terminal region sequences were modified to restore the predicted secondary RNA structure of the NSP1-reporter chimeric gene. These data demonstrate the utility of reporter RVs for live monitoring of RV infections and also suggest further applications (e.g., RV vaccine vectors, which can induce mucosal immunity against intestinal pathogens).IMPORTANCE Development of reporter RVs has been hampered by the lack of comprehensive reverse genetics systems. Recently, we developed a plasmid-based reverse genetics system that enables generation of reporter RVs expressing NLuc luciferase. The prototype reporter RV had some disadvantages (i.e., the transgene was unstable and was expressed as a fusion protein with a partial NSP1 peptide); however, the improved reporter RV overcomes these problems through modification of the untranslated region of the reporter-NSP1 chimeric gene. This strategy for generating stable reporter RVs could be expanded to diverse transgenes and be used to develop RV transduction vectors. Also, the data improve our understanding of the importance of 5'- and 3'-terminal sequences in terms of genome replication, assembly, and packaging.
Collapse
|
68
|
Ogden KM, Tan Y, Akopov A, Stewart LS, McHenry R, Fonnesbeck CJ, Piya B, Carter MH, Fedorova NB, Halpin RA, Shilts MH, Edwards KM, Payne DC, Esona MD, Mijatovic-Rustempasic S, Chappell JD, Patton JT, Halasa NB, Das SR. Multiple Introductions and Antigenic Mismatch with Vaccines May Contribute to Increased Predominance of G12P[8] Rotaviruses in the United States. J Virol 2019; 93:e01476-18. [PMID: 30333170 PMCID: PMC6288334 DOI: 10.1128/jvi.01476-18] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/09/2018] [Indexed: 01/19/2023] Open
Abstract
Rotavirus is the leading global cause of diarrheal mortality for unvaccinated children under 5 years of age. The outer capsid of rotavirus virions consists of VP7 and VP4 proteins, which determine viral G and P types, respectively, and are primary targets of neutralizing antibodies. Successful vaccination depends upon generating broadly protective immune responses following exposure to rotaviruses presenting a limited number of G- and P-type antigens. Vaccine introduction resulted in decreased rotavirus disease burden but also coincided with the emergence of uncommon G and P genotypes, including G12. To gain insight into the recent predominance of G12P[8] rotaviruses in the United States, we evaluated 142 complete rotavirus genome sequences and metadata from 151 clinical specimens collected in Nashville, TN, from 2011 to 2013 through the New Vaccine Surveillance Network. Circulating G12P[8] strains were found to share many segments with other locally circulating strains but to have distinct constellations. Phylogenetic analyses of G12 sequences and their geographic sources provided evidence for multiple separate introductions of G12 segments into Nashville, TN. Antigenic epitopes of VP7 proteins of G12P[8] strains circulating in Nashville, TN, differ markedly from those of vaccine strains. Fully vaccinated children were found to be infected with G12P[8] strains more frequently than with other rotavirus genotypes. Multiple introductions and significant antigenic mismatch may in part explain the recent predominance of G12P[8] strains in the United States and emphasize the need for continued monitoring of rotavirus vaccine efficacy against emerging rotavirus genotypes.IMPORTANCE Rotavirus is an important cause of childhood diarrheal disease worldwide. Two immunodominant proteins of rotavirus, VP7 and VP4, determine G and P genotypes, respectively. Recently, G12P[8] rotaviruses have become increasingly predominant. By analyzing rotavirus genome sequences from stool specimens obtained in Nashville, TN, from 2011 to 2013 and globally circulating rotaviruses, we found evidence of multiple introductions of G12 genes into the area. Based on sequence polymorphisms, VP7 proteins of these viruses are predicted to present themselves to the immune system very differently than those of vaccine strains. Many of the sick children with G12P[8] rotavirus in their diarrheal stools also were fully vaccinated. Our findings emphasize the need for continued monitoring of circulating rotaviruses and the effectiveness of the vaccines against strains with emerging G and P genotypes.
Collapse
Affiliation(s)
- Kristen M Ogden
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yi Tan
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- J. Craig Venter Institute, Rockville, Maryland, USA
| | - Asmik Akopov
- J. Craig Venter Institute, Rockville, Maryland, USA
| | - Laura S Stewart
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Rendie McHenry
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | - Bhinnata Piya
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Maximilian H Carter
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | | | | | - Meghan H Shilts
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Kathryn M Edwards
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Daniel C Payne
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Mathew D Esona
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | | | - James D Chappell
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - John T Patton
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Natasha B Halasa
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Suman R Das
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- J. Craig Venter Institute, Rockville, Maryland, USA
| |
Collapse
|
69
|
Elliott SE, Kongpachith S, Lingampalli N, Adamska JZ, Cannon BJ, Mao R, Blum LK, Robinson WH. Affinity Maturation Drives Epitope Spreading and Generation of Proinflammatory Anti-Citrullinated Protein Antibodies in Rheumatoid Arthritis. Arthritis Rheumatol 2018; 70:1946-1958. [PMID: 29927104 PMCID: PMC6261684 DOI: 10.1002/art.40587] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/12/2018] [Indexed: 01/01/2023]
Abstract
OBJECTIVE Rheumatoid arthritis (RA) is characterized by the presence of anti-citrullinated protein antibodies (ACPAs); nevertheless, the origin, specificity, and functional properties of ACPAs remain poorly understood. The aim of this study was to characterize the evolution of ACPAs by sequencing the plasmablast antibody repertoire at serial time points in patients with established RA. METHODS Blood samples were obtained at up to 4 serial time points from 8 individuals with established RA who were positive for ACPAs by the anti-cyclic citrullinated peptide test. CD19+CD3-IgD-CD14-CD20-CD27+CD38++ plasmablasts were isolated by single-cell sorting and costained with citrullinated peptide tetramers to identify ACPA-expressing plasmablasts. Cell-specific oligonucleotide barcodes were utilized, followed by large-scale sequencing and bioinformatics analysis, to obtain error-corrected, paired heavy- and light-chain antibody gene sequences for each B cell. RESULTS Bioinformatics analysis revealed 170 persistent plasmablast lineages in the RA blood, of which 19% included multiple isotypes. Among IgG- and IgA-expressing plasmablasts, significantly more IgA-expressing than IgG-expressing persistent lineages were observed (P < 0.01). Shared complementarity-determining region 3 sequence motifs were identified across subjects. A subset of the plasmablast lineages included members derived from later time points with divergent somatic hypermutations that encoded antibodies that bind an expanded set of citrullinated antigens. Furthermore, these recombinant, differentially mutated plasmablast antibodies formed immune complexes that stimulated higher macrophage production of tumor necrosis factor (TNF) compared to antibodies representing earlier time point-derived lineage members that were less mutated. CONCLUSION These findings demonstrate that established RA is characterized by a persistent IgA ACPA response that exhibits ongoing affinity maturation. This observation suggests the presence of a persistent mucosal antigen that continually promotes the production of IgA plasmablasts and their affinity maturation and epitope spreading, thus leading to the generation of ACPAs that bind additional citrullinated antigens and more potently stimulate macrophage production of TNF.
Collapse
Affiliation(s)
- Serra E. Elliott
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA
| | - Sarah Kongpachith
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA
| | - Nithya Lingampalli
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA
| | - Julia Z. Adamska
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA
| | - Bryan J. Cannon
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA
| | - Rong Mao
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA
| | - Lisa K. Blum
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA
| | - William H. Robinson
- Division of Immunology and Rheumatology, Stanford University, Stanford, CA; VA Palo Alto Health Care System, Palo Alto, CA
| |
Collapse
|
70
|
Cowley D, Nirwati H, Donato CM, Bogdanovic-Sakran N, Boniface K, Kirkwood CD, Bines JE. Molecular characterisation of rotavirus strains detected during a clinical trial of the human neonatal rotavirus vaccine (RV3-BB) in Indonesia. Vaccine 2018; 36:5872-5878. [PMID: 30145099 PMCID: PMC6143382 DOI: 10.1016/j.vaccine.2018.08.027] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/12/2022]
Abstract
Equine-like G3P[8] the major cause of gastroenteritis during RV3-BB efficacy trial. The Indonesian equine-like G3P[8] strain was genetically similar to Hungarian and Spanish strains. Equine-like G3P[8] strain is an emerging cause of gastroenteritis in Indonesia.
Background The RV3-BB human neonatal rotavirus vaccine aims to provide protection from severe rotavirus disease from birth. The aim of the current study was to characterise the rotavirus strains causing gastroenteritis during the Indonesian Phase IIb efficacy trial. Methods A randomized, double-blind placebo-controlled trial involving 1649 participants was conducted from January 2013 to July 2016 in Central Java and Yogyakarta, Indonesia. Participants received three doses of oral RV3-BB vaccine with the first dose given at 0–5 days after birth (neonatal schedule), or the first dose given at ∼8 weeks after birth (infant schedule), or placebo (placebo schedule). Stool samples from episodes of gastroenteritis were tested for rotavirus using EIA testing, positive samples were genotyped by RT-PCR. Full genome sequencing was performed on two representative rotavirus strains. Results There were 1110 episodes of acute gastroenteritis of any severity, 105 episodes were confirmed as rotavirus gastroenteritis by EIA testing. The most common genotype identified was G3P[8] (90/105), the majority (52/56) of severe (Vesikari score ≥11) rotavirus gastroenteritis episodes were due to the G3P[8] strain. Full genome analysis of two representative G3P[8] samples demonstrated the strain was an inter-genogroup reassortant, containing an equine-like G3 VP7, P[8] VP4 and a genogroup 2 backbone I2-R2-C2-M2-A2-N2-T2-E2-H2. The complete genome of the Indonesian equine-like G3P[8] strain demonstrated highest genetic identity to G3P[8] strains circulating in Hungary and Spain. Conclusions The dominant circulating strain during the Indonesian Phase IIb efficacy trial of the RV3-BB vaccine was an equine-like G3P[8] strain. The equine-like G3P[8] strain is an emerging cause of severe gastroenteritis in Indonesia and in other regions.
Collapse
Affiliation(s)
- Daniel Cowley
- Enteric Virus Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Rotavirus Program, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Hera Nirwati
- Department of Microbiology, Faculty of Medicine, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Celeste M Donato
- Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
| | - Nada Bogdanovic-Sakran
- Enteric Virus Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Rotavirus Program, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Karen Boniface
- Enteric Virus Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Rotavirus Program, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | - Carl D Kirkwood
- Enteric Virus Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia
| | - Julie E Bines
- Enteric Virus Group, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Rotavirus Program, Murdoch Children's Research Institute, Parkville, Victoria, Australia; Department of Paediatrics, The University of Melbourne, Parkville, VIC, Australia; Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria, Australia.
| |
Collapse
|
71
|
Blum LK, Adamska JZ, Martin DS, Rebman AW, Elliott SE, Cao RRL, Embers ME, Aucott JN, Soloski MJ, Robinson WH. Robust B Cell Responses Predict Rapid Resolution of Lyme Disease. Front Immunol 2018; 9:1634. [PMID: 30072990 PMCID: PMC6060717 DOI: 10.3389/fimmu.2018.01634] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/03/2018] [Indexed: 12/11/2022] Open
Abstract
Lyme disease (Borrelia burgdorferi infection) is increasingly recognized as a significant source of morbidity worldwide. Here, we show that blood plasmablasts and CD27− memory B cells are elevated in untreated Lyme disease, with higher plasmablast levels associated with more rapid resolution of clinical symptoms. Stronger serum reactivity to surface proteins and peptides from B. burgdorferi was also associated with faster resolution of clinical symptoms. Through molecular identifier-enabled antibody heavy-chain sequencing of bulk B cells and single-cell paired-chain antibody sequencing of blood plasmablasts, we characterized immunoglobulin gene usage patterns specific to B. burgdorferi infection. Recombinantly expressed antibodies from expanded lineages bound B. burgdorferi antigens, confirming that these clones are driven by the infection. Furthermore, recombinant sequence-derived antibodies were functional, inhibiting growth of B. burgdorferi in vitro. Elevations and clonal expansion of blood plasmablasts were associated with rapid return to health, while poor plasmablast responses were associated with a longer duration of symptoms following treatment. Plasmablasts induced by B. burgdorferi infection showed preferential antibody gene segment usage, while bulk sequencing of total B cells revealed convergent CDR3 motifs specific to B. burgdorferi-infected patients. Our results show that robust plasmablast responses encoding Bb-static antibodies are associated with more rapid resolution of Lyme disease, and these antibodies could provide the basis for next-generation therapeutics for Lyme disease.
Collapse
Affiliation(s)
- Lisa K Blum
- Stanford University School of Medicine, Stanford, CA, United States.,VA Palo Alto Healthcare System, Palo Alto, CA, United States
| | - Julia Z Adamska
- Stanford University School of Medicine, Stanford, CA, United States.,VA Palo Alto Healthcare System, Palo Alto, CA, United States
| | - Dale S Martin
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Alison W Rebman
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Serra E Elliott
- Stanford University School of Medicine, Stanford, CA, United States.,VA Palo Alto Healthcare System, Palo Alto, CA, United States
| | - Richard R L Cao
- Stanford University School of Medicine, Stanford, CA, United States
| | - Monica E Embers
- Division of Bacteriology and Parasitology, Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - John N Aucott
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Mark J Soloski
- Lyme Disease Research Center, Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - William H Robinson
- Stanford University School of Medicine, Stanford, CA, United States.,VA Palo Alto Healthcare System, Palo Alto, CA, United States
| |
Collapse
|
72
|
Regional Genotyping of Rotavirus: Role in Vaccine Development. Indian J Pediatr 2018; 85:337-338. [PMID: 29511950 DOI: 10.1007/s12098-018-2648-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 10/17/2022]
|
73
|
Glass RI, Jiang B, Parashar U. The future control of rotavirus disease: Can live oral vaccines alone solve the rotavirus problem? Vaccine 2018; 36:2233-2236. [PMID: 29567032 PMCID: PMC11342445 DOI: 10.1016/j.vaccine.2018.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 03/01/2018] [Accepted: 03/02/2018] [Indexed: 10/17/2022]
Abstract
Live oral rotavirus (RV) vaccines used worldwide are most effective in reducing diarrheal hospitalizations from RV in high income countries and least effective in low income countries where RV remains a prime cause of death in children. Research has failed to fully explain the reason for this difference of efficacy for RV vaccines, an observation made with other live oral vaccines for polio, cholera and typhoid fever. Use of parenteral vaccines have been successful in overcoming this problem for both polio and typhoid and parenteral RV vaccines are now in development. This approach should be pursued for rotavirus vaccine as well because in low income countries where oral RV vaccines have been introduced and are only partially effective, RV remains the most common cause of diarrhea in children under 5 years. The ultimate control of RV diarrheal will likely require both oral and parenteral vaccines.
Collapse
Affiliation(s)
- Roger I Glass
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA; Viral Gastroenteritis Branch (proposed), Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Baoming Jiang
- Viral Gastroenteritis Branch (proposed), Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Umesh Parashar
- Viral Gastroenteritis Branch (proposed), Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
74
|
Blum LK, Cao RRL, Sweatt AJ, Bill M, Lahey LJ, Hsi AC, Lee CS, Kongpachith S, Ju CH, Mao R, Wong HH, Nicolls MR, Zamanian RT, Robinson WH. Circulating plasmablasts are elevated and produce pathogenic anti-endothelial cell autoantibodies in idiopathic pulmonary arterial hypertension. Eur J Immunol 2018; 48:874-884. [PMID: 29369345 DOI: 10.1002/eji.201747460] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 12/18/2017] [Accepted: 01/17/2018] [Indexed: 01/05/2023]
Abstract
Idiopathic pulmonary arterial hypertension (IPAH) is a devastating pulmonary vascular disease in which autoimmune and inflammatory phenomena are implicated. B cells and autoantibodies have been associated with IPAH and identified as potential therapeutic targets. However, the specific populations of B cells involved and their roles in disease pathogenesis are not clearly defined. We aimed to assess the levels of activated B cells (plasmablasts) in IPAH, and to characterize recombinant antibodies derived from these plasmablasts. Blood plasmablasts are elevated in IPAH, remain elevated over time, and produce IgA autoantibodies. Single-cell sequencing of plasmablasts in IPAH revealed repertoires of affinity-matured antibodies with small clonal expansions, consistent with an ongoing autoimmune response. Recombinant antibodies representative of these clonal lineages bound known autoantigen targets and displayed an unexpectedly high degree of polyreactivity. Representative IPAH plasmablast recombinant antibodies stimulated human umbilical vein endothelial cells to produce cytokines and overexpress the adhesion molecule ICAM-1. Together, our results demonstrate an ongoing adaptive autoimmune response involving IgA plasmablasts that produce anti-endothelial cell autoantibodies in IPAH. These antibodies stimulate endothelial cell production of cytokines and adhesion molecules, which may contribute to disease pathogenesis. These findings suggest a role for mucosally-driven autoimmunity and autoimmune injury in the pathogenesis of IPAH.
Collapse
Affiliation(s)
- Lisa K Blum
- Stanford University School of Medicine, Division of Immunology and Rheumatology, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Richard R L Cao
- Stanford University School of Medicine, Division of Immunology and Rheumatology, Stanford, CA, USA
| | - Andrew J Sweatt
- Stanford University Medical Center, Division of Pulmonary and Critical Care Medicine, Stanford, CA, USA
| | - Matthew Bill
- Stanford University Medical Center, Division of Pulmonary and Critical Care Medicine, Stanford, CA, USA
| | - Lauren J Lahey
- Stanford University School of Medicine, Division of Immunology and Rheumatology, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Andrew C Hsi
- Stanford University Medical Center, Division of Pulmonary and Critical Care Medicine, Stanford, CA, USA
| | - Casey S Lee
- Stanford University School of Medicine, Division of Immunology and Rheumatology, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sarah Kongpachith
- Stanford University School of Medicine, Division of Immunology and Rheumatology, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Chia-Hsin Ju
- Stanford University School of Medicine, Division of Immunology and Rheumatology, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Rong Mao
- Stanford University School of Medicine, Division of Immunology and Rheumatology, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| | - Heidi H Wong
- Stanford University School of Medicine, Division of Immunology and Rheumatology, Stanford, CA, USA
| | - Mark R Nicolls
- VA Palo Alto Health Care System, Palo Alto, CA, USA
- Stanford University Medical Center, Division of Pulmonary and Critical Care Medicine, Stanford, CA, USA
| | - Roham T Zamanian
- Stanford University Medical Center, Division of Pulmonary and Critical Care Medicine, Stanford, CA, USA
| | - William H Robinson
- Stanford University School of Medicine, Division of Immunology and Rheumatology, Stanford, CA, USA
- VA Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
75
|
Abstract
Antibodies have been used for over a century prophylactically and, less often, therapeutically against viruses. 'Super-antibodies' — a new generation of highly potent and/or broadly cross-reactive human monoclonal antibodies — offer new opportunities for prophylaxis and therapy of viral infections. Super-antibodies are typically generated infrequently and/or in a limited number of individuals during natural infections. Isolation of these antibodies has primarily been achieved by large-scale screening for suitable donors and new single B cell approaches to human monoclonal antibody generation. Super-antibodies may offer the possibility of treating multiple viruses of a given family with a single reagent. They are also valuable templates for rational vaccine design. The great potency of super-antibodies has many advantages for practical development as therapeutic reagents. These advantages can be enhanced by a variety of antibody engineering technologies.
So-called super-antibodies are highly potent, broadly reactive antiviral antibodies that offer promise for the treatment of various chronic and emerging viruses. This Review describes how recent technological advances led to their isolation from rare, infected individuals and their development for the prevention and treatment of various viral infections. Antibodies have been used for more than 100 years in the therapy of infectious diseases, but a new generation of highly potent and/or broadly cross-reactive human monoclonal antibodies (sometimes referred to as 'super-antibodies') offers new opportunities for intervention. The isolation of these antibodies, most of which are rarely induced in human infections, has primarily been achieved by large-scale screening for suitable donors and new single B cell approaches to human monoclonal antibody generation. Engineering the antibodies to improve half-life and effector functions has further augmented their in vivo activity in some cases. Super-antibodies offer promise for the prophylaxis and therapy of infections with a range of viruses, including those that are highly antigenically variable and those that are newly emerging or that have pandemic potential. The next few years will be decisive in the realization of the promise of super-antibodies.
Collapse
|
76
|
Morozova OV, Sashina TA, Epifanova NV, Zverev VV, Kashnikov AU, Novikova NA. Phylogenetic comparison of the VP7, VP4, VP6, and NSP4 genes of rotaviruses isolated from children in Nizhny Novgorod, Russia, 2015-2016, with cogent genes of the Rotarix and RotaTeq vaccine strains. Virus Genes 2017; 54:225-235. [PMID: 29236215 DOI: 10.1007/s11262-017-1529-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 12/07/2017] [Indexed: 02/01/2023]
Abstract
Group A rotaviruses (RVA) are one of the leading causes of gastroenteritis in young children worldwide. The introduction of universal mass vaccination around the world has contributed to a reduction in hospitalizations and outpatient visits associated with rotavirus infection. Continued surveillance of RVA strains is needed to determine long-term effects of vaccine introduction. In the present work, we carried out the analysis of the genotypic diversity of RVA strains isolated in Nizhny Novgorod (Russia) during the 2015-2016 epidemic season. Also we conducted a comparative analysis of the amino acid sequences of T-cell epitopes of wild-type and vaccine (RotaTeq and Rotarix) strains. In total, 1461 samples were examined. RVAs were detected in 30.4% of cases. Rotaviruses with genotype G9P[8] (40.5%) dominated in the 2015-16 epidemic season. Additionally, RVAs with the following genotypes were detected: G4P[8] (25.4%), G1P[8] (13%), G2P[4] (3.2%). Rotaviruses with genotypes G3P[9], G6P[9], and G1P[9] totaled 3%. The number of partially typed and untyped RVA samples was 66 (14.9%). The findings of a RVA of G6P[9] genotype in Russia were an original observation. Our analysis of VP6 and NSP4 T-cell epitopes showed highly conserved amino acid sequences. The found differences seem not to be caused by the immune pressure but were rather related to the genotypic affiliations of the proteins. Vaccination against rotavirus infection is not included in the national vaccination schedule in Russia. Monitoring of the genotypic and antigenic diversity of contemporary RVA will allow providing a comparative analysis of wild-type strains in areas with and without vaccine campaign.
Collapse
Affiliation(s)
- O V Morozova
- I. N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation. .,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation.
| | - T A Sashina
- I. N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| | - N V Epifanova
- I. N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| | - V V Zverev
- I. N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| | - A U Kashnikov
- I. N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation
| | - N A Novikova
- I. N. Blokhina Nizhny Novgorod Research Institute of Epidemiology and Microbiology, Nizhny Novgorod, Russian Federation.,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russian Federation
| |
Collapse
|
77
|
Jing Z, Zhang X, Shi H, Chen J, Shi D, Dong H, Feng L. A G3P[13] porcine group A rotavirus emerging in China is a reassortant and a natural recombinant in the VP4 gene. Transbound Emerg Dis 2017; 65:e317-e328. [PMID: 29148270 PMCID: PMC7169750 DOI: 10.1111/tbed.12756] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 12/22/2022]
Abstract
Group A rotaviruses (RVAs) are a major cause of serious intestinal disease in piglets. In this study, a novel pig strain was identified in a stool sample from China. The strain was designated RVA/Pig/China/LNCY/2016/G3P[13] and had a G3-P[13]-I5-R1-C1-M1-A8-N1-T1-E1-H1 genome. The viral protein 7 (VP7) and non-structural protein 4 (NSP4) genes of RVA/Pig/China/LNCY/2016/G3P[13] were closely related to cogent genes of human RVAs, suggesting that a reassortment between pig and human strains had occurred. Recombination analysis showed that RVA/Pig/China/LNCY/2016/G3P[13] is a natural recombinant strain between the P[23] and P[7] RVA strains, and crossover points for recombination were found at nucleotides (nt) 456 and 804 of the VP4 gene. Elucidating the biological characteristics of porcine rotavirus (PoRV) will be helpful for further analyses of the epidemic characteristics of this virus. The results of this study provide valuable information for RVA recombination and evolution and will facilitate future investigations into the molecular pathogenesis of RVAs.
Collapse
Affiliation(s)
- Z Jing
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| | - X Zhang
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| | - H Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| | - J Chen
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| | - D Shi
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| | - H Dong
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China.,Molecular Biology (Gembloux Agro-Bio Tech), University of Liège (ULg), Liège, Belgium
| | - L Feng
- Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute of the Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
78
|
Abstract
Rotavirus infections are a leading cause of severe, dehydrating gastroenteritis in children <5 years of age. Despite the global introduction of vaccinations for rotavirus over a decade ago, rotavirus infections still result in >200,000 deaths annually, mostly in low-income countries. Rotavirus primarily infects enterocytes and induces diarrhoea through the destruction of absorptive enterocytes (leading to malabsorption), intestinal secretion stimulated by rotavirus non-structural protein 4 and activation of the enteric nervous system. In addition, rotavirus infections can lead to antigenaemia (which is associated with more severe manifestations of acute gastroenteritis) and viraemia, and rotavirus can replicate in systemic sites, although this is limited. Reinfections with rotavirus are common throughout life, although the disease severity is reduced with repeat infections. The immune correlates of protection against rotavirus reinfection and recovery from infection are poorly understood, although rotavirus-specific immunoglobulin A has a role in both aspects. The management of rotavirus infection focuses on the prevention and treatment of dehydration, although the use of antiviral and anti-emetic drugs can be indicated in some cases.
Collapse
|
79
|
Desselberger U. 7th European rotavirus biology conference, Cork/Ireland, 18–21 June 2017. Virus Res 2017; 240:197-199. [DOI: 10.1016/j.virusres.2017.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|