51
|
Chiang CH, Chang YC, Wang SS, Chen YJ, See XY, Peng CY, Hsia YP, Chiang CH, Chiang CH, Peng CM. The impact of peroxisome proliferator-activated receptor-γ activating angiotensin receptor blocker on outcomes of patients receiving immunotherapy. Cancer Med 2023; 12:9583-9588. [PMID: 36825549 PMCID: PMC10166924 DOI: 10.1002/cam4.5734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Certain angiotensin receptor blockers (ARBs) have peroxisome proliferator-activated receptor-γ (PPAR-γ) activation property, which has been associated with improved programmed cell death ligand 1 blockade and cytotoxic T lymphocyte-mediated antitumor activity. METHODS We conducted a retrospective cohort study to investigate the impact of PPAR-γ-activating ARBs on patient survival in patients treated with immune checkpoint inhibitors (ICIs) across all types of cancers. RESULTS A total of 167 patients receiving both angiotensin receptor blockers (ARBs) and immune checkpoint inhibitors (ICIs) were included. Compared with non-PPAR-γ-ARB users (n = 102), PPAR-γ-ARB users (n = 65) had a longer median overall survival (not reached [IQR, 16.0-not reached] vs. 18.6 [IQR, 6.1-38.6] months) and progression-free survival (17.3 [IQR, 5.1-not reached] vs. 8.2 [IQR, 2.4-18.6] months). In Cox regression analysis, the use of PPAR-γ-activating ARBs had an approximately 50% reduction in all-cause mortality and disease progression. Patients who received PPAR-γ-activating ARBs also had higher clinical benefit rates than non-PPAR-γ-ARB users (82% vs. 61%, p = 0.005). CONCLUSION The use of ARBs with PPAR-γ-activating property is linked with better survival among patients receiving ICIs.
Collapse
Affiliation(s)
- Cho-Han Chiang
- Department of Medicine, Mount Auburn Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yu-Cheng Chang
- Da Vinci Minimally Invasive Surgery Center, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Shih-Syuan Wang
- Da Vinci Minimally Invasive Surgery Center, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Yuan-Jen Chen
- Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Xin Ya See
- Department of Medicine, Unity Hospital, Rochester Regional Health, Rochester, New York, USA
| | - Chun-Yu Peng
- Department of Medicine, Danbury Hospital, Danbury, Connecticut, USA
| | - Yuan Ping Hsia
- Department of Family Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Cho-Hsien Chiang
- Department of Medical Education, Kuang Tien General Hospital, Taichung, Taiwan.,London School of Hygiene & Tropical Medicine, London, UK
| | - Cho-Hung Chiang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.,Department of General Division, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
| | - Cheng-Ming Peng
- Da Vinci Minimally Invasive Surgery Center, Chung Shan Medical University Hospital, Taichung, Taiwan.,School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
52
|
Arnhold J. Host-Derived Cytotoxic Agents in Chronic Inflammation and Disease Progression. Int J Mol Sci 2023; 24:ijms24033016. [PMID: 36769331 PMCID: PMC9918110 DOI: 10.3390/ijms24033016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/20/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
At inflammatory sites, cytotoxic agents are released and generated from invading immune cells and damaged tissue cells. The further fate of the inflammation highly depends on the presence of antagonizing principles that are able to inactivate these host-derived cytotoxic agents. As long as the affected tissues are well equipped with ready-to-use protective mechanisms, no damage by cytotoxic agents occurs and resolution of inflammation is initiated. However, long-lasting and severe immune responses can be associated with the decline, exhaustion, or inactivation of selected antagonizing principles. Hence, cytotoxic agents are only partially inactivated and contribute to damage of yet-unperturbed cells. Consequently, a chronic inflammatory process results. In this vicious circle of permanent cell destruction, not only novel cytotoxic elements but also novel alarmins and antigens are liberated from affected cells. In severe cases, very low protection leads to organ failure, sepsis, and septic shock. In this review, the major classes of host-derived cytotoxic agents (reactive species, oxidized heme proteins and free heme, transition metal ions, serine proteases, matrix metalloproteases, and pro-inflammatory peptides), their corresponding protective principles, and resulting implications on the pathogenesis of diseases are highlighted.
Collapse
Affiliation(s)
- Jürgen Arnhold
- Medical Faculty, Institute of Medical Physics and Biophysics, Leipzig University, Härtelstr. 16-18, 04107 Leipzig, Germany
| |
Collapse
|
53
|
Sehn F, Büttner H, Godau B, Müller M, Sarcan S, Offermann A, Perner S, Kramer MW, Merseburger AS, Roesch MC. The alternative renin-angiotensin-system (RAS) signalling pathway in prostate cancer and its link to the current COVID-19 pandemic. Mol Biol Rep 2023; 50:1809-1816. [PMID: 36478297 PMCID: PMC9734445 DOI: 10.1007/s11033-022-08087-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/03/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND The renin-angiotensin system is known to maintain blood pressure and body fluids. However, it has been found to consist of at least two major constituents, the classic and the alternative pathway, balancing and supporting each other's signalling in a very intricate way. Current research has shown that the renin-angiotensin system is involved in a broad range of biological processes and diseases, such as cancer and infectious diseases. METHODS AND RESULTS We conducted a literature review on the interaction of the renin-angiotensin system and prostate cancer and explored the research on the possible impact of the SARS-CoV-2 virus in this context. This review provides an update on contemporary knowledge into the alternative renin-angiotensin system, its role in cancer, specifically prostate cancer, and the implications of the current COVID-19 pandemic on cancer and cancer care. CONCLUSION In this work, we aim to demonstrate how shifting the RAS signalling pathway from the classic to the alternative axis seems to be a viable option in supporting treatment of specific cancers and at the same time demonstrating beneficial properties in supportive care. It however seems to be the case that the infection with SARS-CoV-2 and subsequent impairment of the renin-angiotensin-system could exhibit serious deleterious long-term effects even in oncology.
Collapse
Affiliation(s)
- Fabian Sehn
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Takeda Pharma Vertrieb GmbH und Co. KG, Jägerstrasse 27, 10117 Berlin, Germany
| | - Hartwig Büttner
- Takeda Pharma Vertrieb GmbH und Co. KG, Jägerstrasse 27, 10117 Berlin, Germany
| | - Beate Godau
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Marten Müller
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Semih Sarcan
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Anne Offermann
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Sven Perner
- Institute of Pathology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
- Research Center Borstel, Leibniz Lung Center, Pathology, Parkallee 1-40, 23845 Borstel, Germany
| | - Mario W. Kramer
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Axel S. Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| | - Marie C. Roesch
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany
| |
Collapse
|
54
|
Benkhaled S, Peters C, Jullian N, Arsenijevic T, Navez J, Van Gestel D, Moretti L, Van Laethem JL, Bouchart C. Combination, Modulation and Interplay of Modern Radiotherapy with the Tumor Microenvironment and Targeted Therapies in Pancreatic Cancer: Which Candidates to Boost Radiotherapy? Cancers (Basel) 2023; 15:cancers15030768. [PMID: 36765726 PMCID: PMC9913158 DOI: 10.3390/cancers15030768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/20/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Pancreatic ductal adenocarcinoma cancer (PDAC) is a highly diverse disease with low tumor immunogenicity. PDAC is also one of the deadliest solid tumor and will remain a common cause of cancer death in the future. Treatment options are limited, and tumors frequently develop resistance to current treatment modalities. Since PDAC patients do not respond well to immune checkpoint inhibitors (ICIs), novel methods for overcoming resistance are being explored. Compared to other solid tumors, the PDAC's tumor microenvironment (TME) is unique and complex and prevents systemic agents from effectively penetrating and killing tumor cells. Radiotherapy (RT) has the potential to modulate the TME (e.g., by exposing tumor-specific antigens, recruiting, and infiltrating immune cells) and, therefore, enhance the effectiveness of targeted systemic therapies. Interestingly, combining ICI with RT and/or chemotherapy has yielded promising preclinical results which were not successful when translated into clinical trials. In this context, current standards of care need to be challenged and transformed with modern treatment techniques and novel therapeutic combinations. One way to reconcile these findings is to abandon the concept that the TME is a well-compartmented population with spatial, temporal, physical, and chemical elements acting independently. This review will focus on the most interesting advancements of RT and describe the main components of the TME and their known modulation after RT in PDAC. Furthermore, we will provide a summary of current clinical data for combinations of RT/targeted therapy (tRT) and give an overview of the most promising future directions.
Collapse
Affiliation(s)
- Sofian Benkhaled
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Department of Radiation Oncology, UNIL-CHUV, Rue du Bugnon 46, 1011 Lausanne, Switzerland
| | - Cedric Peters
- Department of Radiation Oncology, AZ Turnhout, Rubensstraat 166, 2300 Turnhout, Belgium
| | - Nicolas Jullian
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Tatjana Arsenijevic
- Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Julie Navez
- Department of Hepato-Biliary-Pancreatic Surgery, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Dirk Van Gestel
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Luigi Moretti
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
| | - Jean-Luc Van Laethem
- Department of Gastroenterology, Hepatology and Digestive Oncology, Hopital Universitaire de Bruxelles H.U.B. CUB Hopital Erasme, Université Libre de Bruxelles (ULB), Route de Lennik 808, 1070 Brussels, Belgium
| | - Christelle Bouchart
- Department of Radiation Oncology, Hopital Universitaire de Bruxelles (H.U.B.), Institut Jules Bordet, Université Libre de Bruxelles (ULB), Rue Meylenmeersch 90, 1070 Brussels, Belgium
- Correspondence: ; Tel.: +32-25-413-800
| |
Collapse
|
55
|
Tuli HS, Vashishth K, Sak K, Mohapatra RK, Dhama K, Kumar M, Abbas Z, Lata K, Yerer MB, Garg VK, Sharma AK, Kaur G. Anticancer Role of Natural Phenolic Acids by Targeting Angiotensin-Converting Enzyme (ACE). ADVANCES IN BIOCHEMISTRY IN HEALTH AND DISEASE 2023:465-481. [DOI: 10.1007/978-3-031-23621-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2024]
|
56
|
Shen J, Hou H, Liang B, Guo X, Chen L, Yang Y, Wang Y. Effect of renin-angiotensin-aldosterone system inhibitors on survival outcomes in cancer patients treated with immune checkpoint inhibitors: a systematic review and meta-analysis. Front Immunol 2023; 14:1155104. [PMID: 37153578 PMCID: PMC10154532 DOI: 10.3389/fimmu.2023.1155104] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/04/2023] [Indexed: 05/09/2023] Open
Abstract
Background Effect of renin-angiotensin-aldosterone system inhibitors (RAASIs) in combination with immune checkpoint inhibitors (ICIs) on prognoses in cancer patients remains controversial. This study systematically evaluated the effect of RAASIs on survival outcomes in cancer patients receiving ICIs treatment and provided an evidence-based reference for the rational use of RAASIs and ICIs combination therapy in clinical practice. Methods Studies evaluating the prognosis of RAASIs-used versus RAASIs-free in cancer patients receiving ICIs treatment from inception to 1 November 2022 were retrieved by searching PubMed, Cochrane Library, Web of Science, Embase, and major conference proceedings. Studies in English reporting hazard ratios (HRs) with 95% confidence intervals (CIs) for overall survival (OS) and/or progression-free survival (PFS) were included. Statistical analyses were conducted using the software Stata 17.0. Results A total of 12 studies containing 11739 patients were included, comprising ~4861 patients in the RAASIs-used and ICIs-treated group and ~6878 patients in RAASIs-free and ICIs-treated group. The pooled HR was 0.85 (95%CI, 0.75-0.96; P = 0.009) for OS and 0.91 (95%CI, 0.76-1.09; P = 0.296) for PFS, indicating a positive effect of RAASIs concomitant with ICIs on cancer patients. This effect was observed especially in patients with urothelial carcinoma (HR, 0.53; 95%CI, 0.31-0.89; P = 0.018) and renal cell carcinoma (HR, 0.56; 95%CI, 0.37-0.84; P = 0.005) on OS. Conclusion Concomitant use of RAASIs and ICIs enhanced the efficacy of ICIs and this combination regimen was associated with significantly improved OS and a trend towards better PFS. RAASIs can be considered as adjuvant drugs when hypertensive patients receive ICIs treatment. Our results provide an evidence-based reference for the rational use of the RAASIs and ICIs combination therapy to improve the efficacy of ICIs in clinical practice. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42022372636; https://inplasy.com/, identifier INPLASY2022110136.
Collapse
Affiliation(s)
- Jinhai Shen
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Hui Hou
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bowen Liang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Xiao Guo
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Li Chen
- Department of Pharmacology, Suzhou Institute for Drug Control, Suzhou, Jiangsu, China
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
- *Correspondence: Yun Wang, ; Yong Yang,
| | - Yun Wang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, Jiangsu, China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, China
- *Correspondence: Yun Wang, ; Yong Yang,
| |
Collapse
|
57
|
Albertini S, Martuscelli L, Borgogna C, Virdi S, Indenbirken D, Lo Cigno I, Griffante G, Calati F, Boldorini R, Fischer N, Gariglio M. Cancer-Associated Fibroblasts Exert Proangiogenic Activity in Merkel Cell Carcinoma. J Invest Dermatol 2022; 143:965-976.e15. [PMID: 36572089 DOI: 10.1016/j.jid.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/01/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022]
Abstract
The tumor microenvironment is a complex niche enveloping a tumor formed by extracellular matrix, blood vessels, immune cells, and fibroblasts constantly interacting with cancer cells. Although tumor microenvironment is increasingly recognized as a major player in cancer initiation and progression in many tumor types, its involvement in Merkel cell carcinoma (MCC) pathogenesis is currently unknown. In this study, we provide a molecular and functional characterization of cancer-associated fibroblasts (CAFs), the major tumor microenvironment component, in patient-derived xenografts of patients with MCC. We show that subcutaneous coinjection of patient-derived CAFs and human MCC MKL-1 cells into severe combined immunodeficient mice significantly promotes tumor growth and metastasis. These fast-growing xenografts are characterized by areas densely populated with human CAFs, mainly localized around blood vessels. We provide evidence that the growth-promoting activity of MCC-derived CAFs is mediated by the aminopeptidase A/angiotensin II and III/angiotensin II type 1 receptor axis, with the expression of aminopeptidase A in CAFs being a triggering event. Together, our findings point to aminopeptidase A as a potential marker for MCC prognostic stratification and as a candidate for therapeutic intervention.
Collapse
Affiliation(s)
- Silvia Albertini
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Licia Martuscelli
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Cinzia Borgogna
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Sanamjeet Virdi
- Technology Platform Next Generation Sequencing, Leibniz Institute for Virology, Hamburg, Germany
| | - Daniela Indenbirken
- Technology Platform Next Generation Sequencing, Leibniz Institute for Virology, Hamburg, Germany
| | - Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Gloria Griffante
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy
| | - Renzo Boldorini
- Pathology Unit, Department of Health Sciences, Novara Medical School, Novara, Italy
| | - Nicole Fischer
- Institute for Medical Microbiology, Virology and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Novara Medical School, Novara, Italy.
| |
Collapse
|
58
|
Kopp W. Pathogenesis of (smoking-related) non-communicable diseases-Evidence for a common underlying pathophysiological pattern. Front Physiol 2022; 13:1037750. [PMID: 36589440 PMCID: PMC9798240 DOI: 10.3389/fphys.2022.1037750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Non-communicable diseases, like diabetes, cardiovascular diseases, cancer, stroke, chronic obstructive pulmonary disease, osteoporosis, arthritis, Alzheimer's disease and other more are a leading cause of death in almost all countries. Lifestyle factors, especially poor diet and tobacco consumption, are considered to be the most important influencing factors in the development of these diseases. The Western diet has been shown to cause a significant distortion of normal physiology, characterized by dysregulation of the sympathetic nervous system, renin-angiotensin aldosterone system, and immune system, as well as disruption of physiological insulin and oxidant/antioxidant homeostasis, all of which play critical roles in the development of these diseases. This paper addresses the question of whether the development of smoking-related non-communicable diseases follows the same pathophysiological pattern. The evidence presented shows that exposure to cigarette smoke and/or nicotine causes the same complex dysregulation of physiology as described above, it further shows that the factors involved are strongly interrelated, and that all of these factors play a key role in the development of a broad spectrum of smoking-related diseases. Since not all smokers develop one or more of these diseases, it is proposed that this disruption of normal physiological balance represents a kind of pathogenetic "basic toolkit" for the potential development of a range of non-communicable diseases, and that the decision of whether and what disease will develop in an individual is determined by other, individual factors ("determinants"), such as the genome, epigenome, exposome, microbiome, and others. The common pathophysiological pattern underlying these diseases may provide an explanation for the often poorly understood links between non-communicable diseases and disease comorbidities. The proposed pathophysiological process offers new insights into the development of non-communicable diseases and may influence the direction of future research in both prevention and therapy.
Collapse
|
59
|
LPS-induced PTGS2 manipulates the inflammatory response through trophoblast invasion in preeclampsia via NF-κB pathway. Reprod Biol 2022; 22:100696. [DOI: 10.1016/j.repbio.2022.100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 08/12/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
|
60
|
Kilmister EJ, Koh SP, Weth FR, Gray C, Tan ST. Cancer Metastasis and Treatment Resistance: Mechanistic Insights and Therapeutic Targeting of Cancer Stem Cells and the Tumor Microenvironment. Biomedicines 2022; 10:biomedicines10112988. [PMID: 36428556 PMCID: PMC9687343 DOI: 10.3390/biomedicines10112988] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer metastasis and treatment resistance are the main causes of treatment failure and cancer-related deaths. Their underlying mechanisms remain to be fully elucidated and have been attributed to the presence of cancer stem cells (CSCs)-a small population of highly tumorigenic cancer cells with pluripotency and self-renewal properties, at the apex of a cellular hierarchy. CSCs drive metastasis and treatment resistance and are sustained by a dynamic tumor microenvironment (TME). Numerous pathways mediate communication between CSCs and/or the surrounding TME. These include a paracrine renin-angiotensin system and its convergent signaling pathways, the immune system, and other signaling pathways including the Notch, Wnt/β-catenin, and Sonic Hedgehog pathways. Appreciation of the mechanisms underlying metastasis and treatment resistance, and the pathways that regulate CSCs and the TME, is essential for developing a durable treatment for cancer. Pre-clinical and clinical studies exploring single-point modulation of the pathways regulating CSCs and the surrounding TME, have yielded partial and sometimes negative results. This may be explained by the presence of uninhibited alternative signaling pathways. An effective treatment of cancer may require a multi-target strategy with multi-step inhibition of signaling pathways that regulate CSCs and the TME, in lieu of the long-standing pursuit of a 'silver-bullet' single-target approach.
Collapse
Affiliation(s)
| | - Sabrina P. Koh
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Freya R. Weth
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Clint Gray
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 6242, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt 5010, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC 3010, Australia
- Correspondence:
| |
Collapse
|
61
|
Gupta S, Nichols P, Lohse CM, Kosari F, Kattah AG, Harris FR, Karagouga G, Mehra R, Fine SW, Reuter VE, Herrera-Hernandez L, Zganjar AJ, Britton CJ, Potretzke AM, Boorjian SA, Thompson RH, Jimenez RE, Leibovich BC, Garovic VD, Cheville JC, Sharma V. Renin Production by Juxtaglomerular Cell Tumors and Clear Cell Renal Cell Carcinoma and the Role of Angiotensin Signaling Inhibitors. Mayo Clin Proc 2022; 97:2050-2064. [PMID: 35753824 PMCID: PMC10225974 DOI: 10.1016/j.mayocp.2022.03.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/13/2022] [Accepted: 03/23/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To profile juxtaglomerular cell tumors (JXG) and histologic mimics by analyzing renin expression; to identify non-JXG renin-producing tumors in The Cancer Genome Atlas (TCGA) data sets; and to define the prevalence of hypertension (HTN) and patient outcomes with angiotensin signaling inhibitor (ASI) use in tumors of interest. PATIENTS AND METHODS Thirteen JXGs and 10 glomus tumors (GTs), a histologic mimic, were evaluated for clinicopathologic features; TCGA data were analyzed to identify non-JXG renin-overexpressing tumors. An institutional registry was queried to determine the incidence of HTN, the use of ASIs in hypertensive patients, and the impact of ASIs on outcomes including progression-free survival (PFS) in a tumor type with high renin expression (clear cell renal cell carcinoma [CC-RCC] diagnosed between January 1, 2005, and December 31, 2012). RESULTS We found an association between renin production and HTN in JXG compared with GT. Analysis of TCGA data found that a subset of CC-RCCs overexpress renin relative to 29 other tumor types. Furthermore, analysis of our institutional registry revealed a high prevalence (64%) of HTN among 1203 patients treated with radical or partial nephrectomy for nonmetastatic CC-RCC. On multivariable Cox regression, patients with HTN treated with ASIs (34%) had improved PFS (hazard ratio, 0.76; 95% CI, 0.57 to 1.00; P=.05) compared with patients with HTN not treated with ASIs (30%). CONCLUSION The identification of renin expression in a subset of CC-RCC may provide a biologic rationale for the high prevalence of HTN and improved PFS with ASI use in hypertensive patients with nonmetastatic CC-RCC.
Collapse
Affiliation(s)
- Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN.
| | | | - Christine M Lohse
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Farhad Kosari
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Andrea G Kattah
- Division of Nephrology and Hypertension, and Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN
| | - Faye R Harris
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Giannoula Karagouga
- Biomarker Discovery Program, Center of Individualized Medicine, Mayo Clinic, Rochester, MN
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI
| | - Samson W Fine
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Victor E Reuter
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY
| | | | | | | | | | | | | | - Rafael E Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | | | - Vesna D Garovic
- Division of Nephrology and Hypertension, and Department of Obstetrics and Gynecology, Mayo Clinic, Rochester, MN
| | - John C Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN
| | - Vidit Sharma
- Department of Urology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
62
|
Chawla A, Qadan M, Castillo CFD, Wo JY, Allen JN, Clark JW, Murphy JE, Catalano OA, Ryan DP, Ting DT, Deshpande V, Weekes CD, Parikh A, Lillemoe KD, Hong TS, Ferrone CR. Prospective Phase II Trials Validate the Effect of Neoadjuvant Chemotherapy on Pattern of Recurrence in Pancreatic Adenocarcinoma. Ann Surg 2022; 276:e502-e509. [PMID: 33086310 DOI: 10.1097/sla.0000000000004585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The objective of this study was to characterize the patterns of first recurrence after curative-intent resection for pancreatic adenocarcinoma (PDAC). SUMMARY OF BACKGROUND DATA We evaluated the first site of recurrence after neoadjuvant treatment as locoregional (LR) or distant metastasis (DM). To validate our findings, we evaluated the pattern from 2 phase II clinical trials evaluating neoadjuvant chemotherapy (NAC) in PDAC. METHODS We identified site of first recurrence from a retrospective cohort of patients from 2011 to 2017 treated with NAC followed by chemoradiation and then an operation or an operation first followed by adjuvant therapy, and 2 separate prospective cohorts of patients derived from 2 phase II clinical trials evaluating patients treated with NAC in borderline-resectable and locally advanced PDAC. RESULTS In the retrospective cohorts, 160 out of 285 patients (56.1%) recurred after a median disease-free survival (mDFS) of 17.2 months. The pattern of recurrence was DM in 81.9% of patients, versus LR in 11.1%. This pattern was consistent in patients treated with upfront resection and adjuvant chemotherapy (DM 83.0%, LR 16.9%) regardless of margin-involvement (DM 80.1%, LR 19.4%). The use of NAC did not alter pattern of recurrence; 81.7% had DM and 18.3% had LR. This pattern also remained consistent regardless of margin-involvement (DM 94.1%, LR 5.9%). In the Phase II borderline-resectable trial (NCI# 01591733) cohort of 32 patients, the mDFS was 34.2 months. Pattern of recurrence remained predominantly DM (88.9%) versus LR (11.1%). In the Phase II locally-advanced trial (NCI# 01821729) cohort of 34 patients, the mDFS was 30.7 months. Although there was a higher rate of local recurrence in this cohort, pattern of first recurrence remained predominantly DM (66.6%) versus LR (33.3%) and remained consistent independent of margin-status. CONCLUSIONS The pattern of recurrence in PDAC is predominantly DM rather than LR, and is consistent regardless of the use of NAC and margin involvement.
Collapse
Affiliation(s)
- Akhil Chawla
- Division of Surgical Oncology, Department of Surgery, Northwestern Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Motaz Qadan
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | | | - Jennifer Y Wo
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jill N Allen
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jeffrey W Clark
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Janet E Murphy
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Onofrio A Catalano
- Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David P Ryan
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David T Ting
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Vikram Deshpande
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Colin D Weekes
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Aparna Parikh
- Department of Medical Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Keith D Lillemoe
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Theodore S Hong
- Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Cristina R Ferrone
- Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
63
|
Zhao C, Liu W, Sun W, Yu H, Sheng Z, Wang J, Jiang Y, Liu Y. Activatable self-assembled organic nanotheranostics: Aspartyl aminopeptidase triggered NIR fluorescence imaging-guided photothermal/photodynamic synergistic therapy. Anal Chim Acta 2022; 1231:340198. [PMID: 36220284 DOI: 10.1016/j.aca.2022.340198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 11/01/2022]
Abstract
Phototherapy has developed as a powerful method for remedial modalities. The conventional photosensitizers are "always on" state and lack tumor targeting, which contributed to poor therapeutic effect and high toxicity. Therefore, we developed an aspartyl aminopeptidase (DNPEP) activated self-assembled organic nanoparticles (NRh-Asp NPs) with sensitive external irradiation-induced photothermal therapy and photodynamic therapy (PTT/PDT). NRh-Asp NPs can be activated to NRh-NH2 NPs by DNPEP, demonstrating strong near-infrared (NIR) fluorescence, and efficiently generating heat and singlet oxygen under the near-infrared laser. NRh-Asp NPs was successfully used for visualizing DNPEP in vitro and in vivo in NIR region, and demonstrated good synergistic anti-cancer efficacy of PDT and PTT. These results suggest that DNPEP-mediated NRh-Asp NPs are promising candidates for image-guided phototherapeutic of tumor.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Wangwang Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Wanlu Sun
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Hui Yu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhijia Sheng
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Jing Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yiming Jiang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
64
|
Yan C, Niu Y, Ma L, Tian L, Ma J. System analysis based on the cuproptosis-related genes identifies LIPT1 as a novel therapy target for liver hepatocellular carcinoma. J Transl Med 2022; 20:452. [PMID: 36195876 PMCID: PMC9531858 DOI: 10.1186/s12967-022-03630-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) ranks sixth among the most common types of cancer with a high mortality rate. Cuproptosis is a newly discovered type of cell death in tumor, which is characterized by accumulation of intracellular copper leading to the aggregation of mitochondrial lipoproteins and destabilization of proteins. Thus, understanding the exact effects of cuproptosis-related genes in LIHC and determining their prognosticvalue is critical. However, the prognostic model of LIHC based on cuproptosis-related genes has not been reported. METHODS Firstly, we downloaded transcriptome data and clinical information of LIHC patients from TCGA and GEO (GSE76427), respectively. We then extracted the expression of cuproptosis-related genes and established a prognostic model by lasso cox regression analysis. Afterwards, the prediction performance of the model was evaluated by Kaplan-Meier survival analysis and receiver operating characteristic curve (ROC). Then, the prognostic model and the expression levels of the three genes were validated using the dataset from GEO. Subsequently, we divided LIHC patients into two subtypes by non-negative matrix factorization (NMF) classification and performed survival analysis. We constructed a Sankey plot linking different subtypes and prognostic models. Next, we calculate the drug sensitivity of each sample from patients in the high-risk group and low-risk group by the R package pRRophetic. Finally, we verified the function of LIPT1 in LIHC. RESULTS Using lasso cox regression analysis, we developed a prognostic risk model based on three cuproptosis-related genes (GCSH, LIPT1 and CDKN2A). Both in the training and in the test sets, the overall survival (OS) of LIHC patients in the low-risk group was significantly longer than that in the high-risk group. By performing NMF cluster, we identified two molecular subtypes of LIHC (C1 and C2), with C1 subtype having significantly longer OS and PFS than C2 subtype. The ROC analysis indicated that our model had a precisely predictive capacity for patients with LIHC. The multivariate Cox regression analysis indicated that the risk score is an independent predictor. Subsequently, we identified 71 compounds with IC50 values that differed between the high-risk and low-risk groups. Finally, we determined that knockdown of LIPT1 gene expression inhibited proliferation and invasion of hepatoma cells. CONCLUSION In this study, we developed a novel prognostic model for hepatocellular carcinoma based on cuproptosis-related genes that can effectively predict the prognosis of LIHC patients. The model may be helpful for clinicians to make clinical decisions for patients with LIHC and provide valuable insights for individualized treatment. Two distinct subtypes of LIHC were identified based on cuproptosis-related genes, with different prognosis and immune characteristics. In addition, we verified that LIPT1 may promote proliferation, invasion and migration of LIHC cells. LIPT1 might be a new potential target for therapy of LIHC.
Collapse
Affiliation(s)
- Cheng Yan
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, Henan China
| | - Yandie Niu
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, Henan China
| | - Liukai Ma
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, Henan China
| | - Lifang Tian
- grid.495434.b0000 0004 1797 4346School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, Henan China
| | - Jiahao Ma
- School of Pharmacy, Key Laboratory of Nano-Carbon Modified Film Technology of Henan Province, Diagnostic Laboratory of Animal Diseases, Xinxiang University, Xinxiang, Henan, China.
| |
Collapse
|
65
|
Kidoguchi S, Sugano N, Yokoo T, Kaneko H, Akazawa H, Mukai M, Node K, Yano Y, Nishiyama A. Antihypertensive Drugs and Cancer Risk. Am J Hypertens 2022; 35:767-783. [PMID: 35595533 DOI: 10.1093/ajh/hpac066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 05/18/2022] [Indexed: 02/07/2023] Open
Abstract
Hypertension is the most prevalent comorbidity in cancer patients. Consequently, many cancer patients are prescribed antihypertensive drugs before cancer diagnosis or during cancer treatment. However, whether antihypertensive drugs affect the incidence, treatment efficacy, or prognosis of cancer remains unanswered. For instance, renin-angiotensin and β-adrenergic signaling may be involved not only in blood pressure elevation but also in cell proliferation, angiogenesis, and tissue invasion. Therefore, the inhibition of these pathways may have beneficial effects on cancer prevention or treatment. In this article, we reviewed several studies regarding antihypertensive drugs and cancer. In particular, we focused on the results of clinical trials to evaluate whether the use of antihypertensive drugs affects future cancer risk and prognosis. Unfortunately, the results are somewhat inconsistent, and evidence demonstrating the effect of antihypertensive drugs remains limited. We indicate that the heterogeneity in the study designs makes it difficult to clarify the causal relationship between antihypertensive drugs and cancer. We also propose that additional experimental studies, including research with induced pluripotent cells derived from cancer patients, single-cell analyses of cancer cell clusters, and clinical studies using artificial intelligence electronic health record systems, might be helpful to reveal the precise association between antihypertensive drugs and cancer risk.
Collapse
Affiliation(s)
- Satoshi Kidoguchi
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan.,Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | - Naoki Sugano
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Takashi Yokoo
- Division of Nephrology and Hypertension, Department of Internal Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hidehiro Kaneko
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan.,Department of Advanced Cardiology, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Akazawa
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, Japan
| | - Mikio Mukai
- Osaka Prefectural Hospital Organization, Osaka International Cancer Institute, Department of Medical Check-up, Osaka, Japan
| | - Koichi Node
- Department of Cardiovascular Medicine, Saga University, Saga, Japan
| | - Yuichiro Yano
- Department of Advanced Epidemiology, NCD Epidemiology Research Center, Shiga University of Medical Science, Shiga, Japan
| | - Akira Nishiyama
- Department of Pharmacology, Faculty of Medicine, Kagawa University, Kagawa, Japan
| | | |
Collapse
|
66
|
Yang A, Wu H, Lau ESH, Shi M, Fan B, Kong APS, Ma RCW, Luk AOY, Chan JCN, Chow E. Effects of RAS inhibitors on all-site cancers and mortality in the Hong Kong diabetes surveillance database (2002-2019). EBioMedicine 2022; 83:104219. [PMID: 35970023 PMCID: PMC9399959 DOI: 10.1016/j.ebiom.2022.104219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background Cancer is replacing cardiovascular-disease as a leading cause of death in type 2 diabetes (T2D). The association of RAS-inhibitors (RASi) and cancer, including differences between angiotensin-converting-enzyme-inhibitor (ACEi) and angiotensin-receptor-blocker (ARBs) as well as their associations independent of blood pressure lowering, remains inconclusive in T2D. Methods We conducted a cohort study with new-user design in 253,491 patients in the Hong-Kong-Diabetes-Surveillance-Database (HKDSD) in 2002-2019. We evaluated the associations of time-varying RASi use (ACEi and ARBs) with all-site cancer, diabetes-related cancers, and cancer-specific mortality including comparison with new-users of calcium-channel-blockers (CCBs) as an active-comparator group. Findings Of 253,491, 133,730 (52.8%) were new-RASi and 119,761 (47.2%) were non-RASi users with a median follow-up period of 6.3 (interquartile ragne: 3.4-9.2) years (1,678,719 patient-years). After propensity-score weighting and adjustment for time-varying covariables, RASi use was associated with lower risk of all-site cancer (HR=0.76, 95%CI: 0.74-0.79), diabetes-related cancer (HR=0.79, 95%CI: 0.75-0.84), cancer-specific mortality (HR=0.50, 95%CI: 0.47-0.53), and diabetes-related cancer mortality (HR=0.49, 95%CI: 0.45-0.54) versus non-RASi. Amongst RASi users, ARBs use was associated with lower risk of cancer-specific mortality versus ACEi (HR=0.77, 95%CI: 0.66-0.91). Use of RASi was associated with an estimated-prevention of 2.6 (95%CI: 2.3-3.0) all-site cancer per-1000-person-years and 2.2 (95%CI: 2.0-2.5) cancer-related mortality per-1000-person-years. Lower risk of cancer-specific mortality was similarly observed in new-RASi compared with new-CCBs users. Interpretation RASi use was independently associated with lower cancer risk in T2D with stronger associations in users of ARBs than ACEi. The benefits of RASi in patients with diabetes might go beyond cardiovascular-renal protection if confirmed by other real-world studies and trials. Funding Dr. Aimin Yang was supported by a CUHK Impact-Research-Fellowship Scheme.
Collapse
Affiliation(s)
- Aimin Yang
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Hongjiang Wu
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Eric S H Lau
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Mai Shi
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Baoqi Fan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Alice Pik-Shan Kong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Ronald Ching-Wan Ma
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Andrea On-Yan Luk
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Juliana Chung-Ngor Chan
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Elaine Chow
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Hong Kong Institute of Diabetes and Obesity, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China; Phase 1 Clinical Trial Centre, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China.
| |
Collapse
|
67
|
Xiong Y, Ke R, Zhang Q, Lan W, Yuan W, Chan KNI, Roussel T, Jiang Y, Wu J, Liu S, Wong AST, Shim JS, Zhang X, Xie R, Dusetti N, Iovanna J, Habib N, Peng L, Lee LTO. Small Activating RNA Modulation of the G Protein-Coupled Receptor for Cancer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200562. [PMID: 35712764 PMCID: PMC9475523 DOI: 10.1002/advs.202200562] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/23/2022] [Indexed: 06/15/2023]
Abstract
G protein-coupled receptors (GPCRs) are the most common and important drug targets. However, >70% of GPCRs are undruggable or difficult to target using conventional chemical agonists/antagonists. Small nucleic acid molecules, which can sequence-specifically modulate any gene, offer a unique opportunity to effectively expand drug targets, especially those that are undruggable or difficult to address, such as GPCRs. Here, the authors report for the first time that small activating RNAs (saRNAs) effectively modulate a GPCR for cancer treatment. Specifically, saRNAs promoting the expression of Mas receptor (MAS1), a GPCR that counteracts the classical angiotensin II pathway in cancer cell proliferation and migration, are identified. These saRNAs, delivered by an amphiphilic dendrimer vector, enhance MAS1 expression, counteracting the angiotensin II/angiotensin II Receptor Type 1 axis, and leading to significant suppression of tumorigenesis and the inhibition of tumor progression of multiple cancers in tumor-xenografted mouse models and patient-derived tumor models. This study provides not only a new strategy for cancer therapy by targeting the renin-angiotensin system, but also a new avenue to modulate GPCR signaling by RNA activation.
Collapse
Affiliation(s)
- Yunfang Xiong
- Cancer CentreFaculty of Health SciencesUniversity of MacauTaipaMacau999078China
| | - Ran Ke
- Cancer CentreFaculty of Health SciencesUniversity of MacauTaipaMacau999078China
| | - Qingyu Zhang
- Department of Obstetrics and GynaecologyAffiliated Hospital of Guangdong Medical UniversityZhanjiangGuangdong524001China
| | - Wenjun Lan
- Aix Marseille UniversitéCNRSCentre Interdisciplinaire de Nanoscience de Marseille (UMR 7325)Equipe Labellisée Ligue Contre le CancerMarseille13288France
- Centre de Recherche en Cancérologie de Marseille (CRCM)INSERM U1068CNRSAix‐Marseille Université and Institut Paoli‐CalmettesMarseille13288France
| | - Wanjun Yuan
- Cancer CentreFaculty of Health SciencesUniversity of MacauTaipaMacau999078China
| | - Karol Nga Ieng Chan
- Cancer CentreFaculty of Health SciencesUniversity of MacauTaipaMacau999078China
| | - Tom Roussel
- Aix Marseille UniversitéCNRSCentre Interdisciplinaire de Nanoscience de Marseille (UMR 7325)Equipe Labellisée Ligue Contre le CancerMarseille13288France
| | - Yifan Jiang
- Aix Marseille UniversitéCNRSCentre Interdisciplinaire de Nanoscience de Marseille (UMR 7325)Equipe Labellisée Ligue Contre le CancerMarseille13288France
| | - Jing Wu
- Aix Marseille UniversitéCNRSCentre Interdisciplinaire de Nanoscience de Marseille (UMR 7325)Equipe Labellisée Ligue Contre le CancerMarseille13288France
| | - Shuai Liu
- Cancer CentreFaculty of Health SciencesUniversity of MacauTaipaMacau999078China
| | - Alice Sze Tsai Wong
- School of Biological SciencesThe University of Hong KongPokfulam RoadHong KongChina
| | - Joong Sup Shim
- Cancer CentreFaculty of Health SciencesUniversity of MacauTaipaMacau999078China
- MOE Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacau999078China
| | - Xuanjun Zhang
- Cancer CentreFaculty of Health SciencesUniversity of MacauTaipaMacau999078China
- MOE Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacau999078China
| | - Ruiyu Xie
- Cancer CentreFaculty of Health SciencesUniversity of MacauTaipaMacau999078China
- MOE Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacau999078China
| | - Nelson Dusetti
- Centre de Recherche en Cancérologie de Marseille (CRCM)INSERM U1068CNRSAix‐Marseille Université and Institut Paoli‐CalmettesMarseille13288France
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille (CRCM)INSERM U1068CNRSAix‐Marseille Université and Institut Paoli‐CalmettesMarseille13288France
| | - Nagy Habib
- Department of Surgery and CancerImperial College LondonLondonW12 0NNUK
- MiNA Therapeutics, Translation & Innovation Hub80 Wood LaneLondonW12 0BZUK
| | - Ling Peng
- Aix Marseille UniversitéCNRSCentre Interdisciplinaire de Nanoscience de Marseille (UMR 7325)Equipe Labellisée Ligue Contre le CancerMarseille13288France
| | - Leo Tsz On Lee
- Cancer CentreFaculty of Health SciencesUniversity of MacauTaipaMacau999078China
- MOE Frontiers Science Center for Precision OncologyUniversity of MacauTaipaMacau999078China
- Centre of Reproduction, Development, and AgingFaculty of Health SciencesUniversity of MacauTaipaMacau999078China
| |
Collapse
|
68
|
Munday JS, Odom T, Dittmer KE, Wetzel S, Hillmer K, Tan ST. Multimodal Blockade of the Renin-Angiotensin System Is Safe and Is a Potential Cancer Treatment for Cats. Vet Sci 2022; 9:vetsci9080411. [PMID: 36006326 PMCID: PMC9413835 DOI: 10.3390/vetsci9080411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/21/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary As activation of the renin-angiotensin system (RAS) promotes cancer cell growth, medications that inhibit RAS activation could reduce cancer progression. However, studies in people in which RAS has been inhibited by a single treatment have not been consistently beneficial, possibly as RAS can be activated by many different cellular pathways. Multiple treatments have been used to more consistently block RAS in people, but such multimodal treatments have never previously been evaluated in veterinary species. In the present study, the safety of multimodal RAS inhibition using a combination of five treatments was assessed in six cats with cancer. Cats were treated for 8 weeks and none of the cats developed low blood pressure, evidence of kidney or liver disease, or significant adverse effects. Of the six cats enrolled in the study, one cat was withdrawn from the study due to difficulties administering the medications and another cat died of an unrelated cause. Two cats were euthanatized due to cancer progression during the study period while two cats completed the 8-week treatment period. The study showed that a multimodal blockade of RAS has the potential to be a safe and cost-effective treatment for cancer in cats. Abstract The role of the renin-angiotensin system (RAS) in cancer growth and progression is well recognized in humans. However, studies on RAS inhibition with a single agent have not shown consistent anticancer effects, potentially due to the neoplastic cells utilizing alternative pathways for RAS activation. To achieve more complete RAS inhibition, multimodal therapy with several medications that simultaneously block multiple steps in the RAS has been developed for use in humans. In the present study, the safety of multimodal RAS inhibition using atenolol, benazepril, metformin, curcumin, and meloxicam was assessed in six cats with squamous cell carcinomas. Cats were treated for 8 weeks, with blood pressure measured and blood sampled five times during the treatment period. None of the cats developed hypotension, azotemia, or increased serum liver enzyme concentrations. The packed cell volume of one cat decreased to just below the reference range during treatment. One cat was reported to have increased vomiting, although this occurred infrequently. One cat was withdrawn from the study due to difficulties administering the medications, and another cat died of an unrelated cause. Two cats were euthanatized during the study period due to cancer progression. Two cats completed the 8-week study period. One was subsequently euthanized due to cancer progression while the other cat is still alive 32 weeks after entering the study and is still receiving the multimodal blockade of the RAS. This is the first evaluation of multimodal blockade of the RAS in veterinary species. The study showed that the treatment is safe, with only mild adverse effects observed in two treated cats. Due to the small number of cats, the efficacy of treatment could not be evaluated. However, evidence from human studies suggests that a multimodal blockade of RAS could be a safe and cost-effective treatment option for cancer in cats.
Collapse
Affiliation(s)
- John S. Munday
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
- Correspondence:
| | - Thomas Odom
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | - Keren E. Dittmer
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | - Sarah Wetzel
- School of Veterinary Science, Massey University, Palmerston North 4410, New Zealand
| | | | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington 7184, New Zealand
| |
Collapse
|
69
|
Impact of renin-angiotensin system inhibitors on outcomes in patients with metastatic renal cell carcinoma treated with immune-checkpoint inhibitors. Clin Genitourin Cancer 2022; 20:301-306. [PMID: 35614012 PMCID: PMC10013974 DOI: 10.1016/j.clgc.2022.04.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/20/2022] [Accepted: 04/22/2022] [Indexed: 01/02/2023]
Abstract
BACKGROUND Renin-angiotensin system inhibitors (RASi) have been shown to improve outcomes in studies of multiple malignancies by effects on the tumor microenvironment to enhance the immune repertoire and improve drug delivery. Repurposing RASi to treat metastatic renal cell carcinoma (mRCC) in combination with immune-checkpoint inhibitors (ICI) may improve survival coupled with tolerability and cost efficacy. We evaluated the impact of RASi on outcomes in mRCC patients receiving ICI. METHODS This multicenter, retrospective cohort study included mRCC patients treated with ICI with or without RASi. The patients from Dana-Farber Cancer Institute (DFCI) were used as a discovery cohort, and the patients from University of California San Diego (UCSD) were used for validation. Receipt of an ICI (PD1/L1 and/or CTLA-4 inhibitors) was required. RASi use was defined as receipt of a RASi at baseline and for a minimum of 30 days after ICI initiation. For both the discovery and validation cohorts, the primary outcome assessed was overall survival (OS) and the secondary endpoints were time-to-treatment failure (TTF), and objective response rate (ORR). RESULTS Overall, 229 patients who received an ICI were included: 100 patients from DFCI and 129 patients from UCSD. Concomitant RASi were administered in 30 patients (30%) in the DFCI cohort and 59 (45%) in the UCSD cohort. Median age at ICI initiation was 62.5 years in both cohorts. Median follow-up was 3.8 [IQR 3-5.3] years in the DFCI cohort, and 2.3 [IQR 1.4-3.6] years in the UCSD cohort. In the DFCI cohort, RASi was significantly associated with longer OS (adjusted-HR 0.35 [95% CI, 0.17-0.70], P = .003) and TTF (adjusted-HR 0.57 [0.36-0.92], P = .02). In the validation cohort, RASi was associated with TTF (adjusted HR, 0.60 [0.39-0.92], P = .02) and not statistically associated with OS (adjusted-HR 0.60 [0.34-1.06], P = .07). The propensity analysis, matching 83 patients from both cohorts receiving RASi while on ICI with 83 who did not, showed that RASi significantly improved OS (HR 0.59 [0.37-0.95], P = .03) and TTF (HR 0.60 [0.43-0.85], P = .0034). CONCLUSIONS RASi was associated with improved OS and TTF in mRCC patients receiving ICI. This provides a rationale for prospective randomized studies combining ICI and RASi in mRCC patients.
Collapse
|
70
|
Martin JD, Lanning RM, Chauhan VP, Martin MR, Mousa AS, Kamoun WS, Han HS, Lee H, Stylianopoulos T, Bawendi MG, Duda DG, Brown EB, Padera TP, Fukumura D, Jain RK. Multiphoton Phosphorescence Quenching Microscopy Reveals Kinetics of Tumor Oxygenation during Antiangiogenesis and Angiotensin Signaling Inhibition. Clin Cancer Res 2022; 28:3076-3090. [PMID: 35584239 PMCID: PMC9355624 DOI: 10.1158/1078-0432.ccr-22-0486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/14/2022] [Accepted: 05/11/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE The abnormal function of tumor blood vessels causes tissue hypoxia, promoting disease progression and treatment resistance. Although tumor microenvironment normalization strategies can alleviate hypoxia globally, how local oxygen levels change is not known because of the inability to longitudinally assess vascular and interstitial oxygen in tumors with sufficient resolution. Understanding the spatial and temporal heterogeneity should help improve the outcome of various normalization strategies. EXPERIMENTAL DESIGN We developed a multiphoton phosphorescence quenching microscopy system using a low-molecular-weight palladium porphyrin probe to measure perfused vessels, oxygen tension, and their spatial correlations in vivo in mouse skin, bone marrow, and four different tumor models. Further, we measured the temporal and spatial changes in oxygen and vessel perfusion in tumors in response to an anti-VEGFR2 antibody (DC101) and an angiotensin-receptor blocker (losartan). RESULTS We found that vessel function was highly dependent on tumor type. Although some tumors had vessels with greater oxygen-carrying ability than those of normal skin, most tumors had inefficient vessels. Further, intervessel heterogeneity in tumors is associated with heterogeneous response to DC101 and losartan. Using both vascular and stromal normalizing agents, we show that spatial heterogeneity in oxygen levels persists, even with reductions in mean extravascular hypoxia. CONCLUSIONS High-resolution spatial and temporal responses of tumor vessels to two agents known to improve vascular perfusion globally reveal spatially heterogeneous changes in vessel structure and function. These dynamic vascular changes should be considered in optimizing the dose and schedule of vascular and stromal normalizing strategies to improve the therapeutic outcome.
Collapse
Affiliation(s)
- John D. Martin
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Ryan M. Lanning
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Harvard-Massachusetts Institute of Technology Division of Health Sciences and Technology, Cambridge, Massachusetts
| | - Vikash P. Chauhan
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Margaret R. Martin
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ahmed S. Mousa
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Walid S. Kamoun
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Hee-Sun Han
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Hang Lee
- Biostatistics Center, Harvard Medical School, Massachusetts General Hospital, Boston, Massachusetts
| | - Triantafyllos Stylianopoulos
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Moungi G. Bawendi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Dan G. Duda
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Edward B. Brown
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Timothy P. Padera
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Dai Fukumura
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Rakesh K. Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.,Corresponding Author: Rakesh K. Jain, Department of Radiation Oncology, 100 Blossom Street, Cox 7, Boston, MA 02114. E-mail:
| |
Collapse
|
71
|
Di Fusco SA, Cianfrocca C, Bisceglia I, Spinelli A, Alonzo A, Mocini E, Gulizia MM, Gabrielli D, Oliva F, Imperoli G, Colivicchi F. Potential pathophysiologic mechanisms underlying the inherent risk of cancer in patients with atherosclerotic cardiovascular disease. Int J Cardiol 2022; 363:190-195. [PMID: 35724799 DOI: 10.1016/j.ijcard.2022.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/22/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022]
Abstract
Emerging evidence demonstrates an intimate interplay between cardiovascular disease and cancer pathophysiology. The aim of this review is to shed light on the common biological pathways underlying cardiovascular disease and cancer. These common pathways form the basis of "reverse cardio-oncology". We focus on the role of inflammation, stress response, cell proliferation, angiogenesis and tissue remodeling, neurohormonal system activation, and genomic instability as pathogenic pathways shared by cardiovascular disease and cancer. We also discuss shared mediators that may have a potential role as biomarkers for risk prediction in both diseases. Furthermore, we highlight current knowledge on biological pathways and mediators that are upregulated in diabetes and myocardial infarction and may be involved in tumorigenesis. On the basis of the shared pathophysiologic mechanisms, we also suggest an integrated approach to reduce the global burden of both cardiovascular disease and cancer.
Collapse
Affiliation(s)
| | - Cinzia Cianfrocca
- Clinical and Rehabilitation Cardiology Unit, P.O. San Filippo Neri, ASL Roma 1, Rome, Italy
| | - Irma Bisceglia
- Integrated Cardiology Services, Cardio-Thoracic-Vascular Department, San Camillo Hospital, Rome, Italy
| | - Antonella Spinelli
- Clinical and Rehabilitation Cardiology Unit, P.O. San Filippo Neri, ASL Roma 1, Rome, Italy
| | - Alessandro Alonzo
- Clinical and Rehabilitation Cardiology Unit, P.O. San Filippo Neri, ASL Roma 1, Rome, Italy
| | - Edoardo Mocini
- Department of Experimental Medicine, Sapienza University, Rome
| | - Michele Massimo Gulizia
- Cardiology Division, Ospedale Garibaldi-Nesima, Azienda di Rilievo Nazionale e Alta Specializzazione "Garibaldi" Catania, Italy; Fondazione per il Tuo Cuore, Heart Care Foundation, Florence, Italy
| | | | - Fabrizio Oliva
- De Gasperis Cardio Center, Niguarda Hospital, Milano, Italy
| | - Giuseppe Imperoli
- Medicine Unit, Emergency Department, P.O San Filippo Neri, ASL Roma 1, Rome, Italy
| | - Furio Colivicchi
- Clinical and Rehabilitation Cardiology Unit, P.O. San Filippo Neri, ASL Roma 1, Rome, Italy
| |
Collapse
|
72
|
Melo V, Bremer E, Martin JD. Towards Immunotherapy-Induced Normalization of the Tumor Microenvironment. Front Cell Dev Biol 2022; 10:908389. [PMID: 35712656 PMCID: PMC9196132 DOI: 10.3389/fcell.2022.908389] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapies modulate the function of immune cells to eradicate cancer cells through various mechanisms. These therapies are successful across a spectrum of cancers, but they are curative only in a subset of patients. Indeed, a major obstacle to the success of immunotherapies is the immunosuppressive nature of the tumor microenvironment (TME), comprising the stromal component and immune infiltrate of tumors. Importantly, the TME in most solid cancers is characterized by sparsely perfused blood vessels resulting from so-called pathological angiogenesis. In brief, dysregulated development of new vessels results in leaky tumor blood vessels that inefficiently deliver oxygen and other nutrients. Moreover, the occurrence of dysregulated fibrosis around the lesion, known as pathological desmoplasia, further compresses tumor blood vessels and impairs blood flow. TME normalization is a clinically tested treatment strategy to reverse these tumor blood vessel abnormalities resulting in stimulated antitumor immunity and enhanced immunotherapy efficacy. TME normalization includes vascular normalization to reduce vessel leakiness and reprogramming of cancer-associated fibroblast to decompress vessels. How immunotherapies themselves normalize the TME is poorly understood. In this review, we summarize current concepts and progress in TME normalization. Then, we review observations of immunotherapy-induced TME normalization and discuss the considerations for combining vascular normalizing and immunotherapies. If TME could be more completely normalized, immunotherapies could be more effective in more patients.
Collapse
Affiliation(s)
- Vinicio Melo
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Edwin Bremer
- Department of Hematology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
73
|
Khiali S, Rezagholizadeh A, Entezari-Maleki T. SARS-CoV-2 and probable lung cancer risk. BIOIMPACTS : BI 2022; 12:291-292. [PMID: 35677665 PMCID: PMC9124879 DOI: 10.34172/bi.2022.23266] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/14/2020] [Accepted: 11/02/2020] [Indexed: 12/15/2022]
Abstract
![]()
The pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a global crisis with a growing number of mortalities and morbidities worldwide. Despite performing numerous researches, there are still considerable unrevealed details regarding the long-term complications and post-infection immunity of the coronavirus disease 2019 (COVID-19). Based on pathophysiological features, SARS-CoV-2 may act similarly as an oncovirus in the lung. This letter summarized three possible oncogenic mechanisms of SARS-CoV-2 that may be associated with lung cancer development.
Collapse
Affiliation(s)
- Sajad Khiali
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Afra Rezagholizadeh
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Entezari-Maleki
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Cardiovascular Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
74
|
Ackland GL, Abbott TEF. Hypotension as a marker or mediator of perioperative organ injury: a narrative review. Br J Anaesth 2022; 128:915-930. [PMID: 35151462 PMCID: PMC9204667 DOI: 10.1016/j.bja.2022.01.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/16/2021] [Accepted: 01/08/2022] [Indexed: 12/21/2022] Open
Abstract
Perioperative hypotension has been repeatedly associated with organ injury and worse outcome, yet many interventions to reduce morbidity by attempting to avoid or reverse hypotension have floundered. In part, this reflects uncertainty as to what threshold of hypotension is relevant in the perioperative setting. Shifting population-based definitions for hypertension, plus uncertainty regarding individualised norms before surgery, both present major challenges in constructing useful clinical guidelines that may help improve clinical outcomes. Aside from these major pragmatic challenges, a wealth of biological mechanisms that underpin the development of higher blood pressure, particularly with increasing age, suggest that hypotension (however defined) or lower blood pressure per se does not account solely for developing organ injury after major surgery. The mosaic theory of hypertension, first proposed more than 60 yr ago, incorporates multiple, complementary mechanistic pathways through which clinical (macrovascular) attempts to minimise perioperative organ injury may unintentionally subvert protective or adaptive pathways that are fundamental in shaping the integrative host response to injury and inflammation. Consideration of the mosaic framework is critical for a more complete understanding of the perioperative response to acute sterile and infectious inflammation. The largely arbitrary treatment of perioperative blood pressure remains rudimentary in the context of multiple complex adaptive hypertensive endotypes, defined by distinct functional or pathobiological mechanisms, including the regulation of reactive oxygen species, autonomic dysfunction, and inflammation. Developing coherent strategies for the management of perioperative hypotension requires smarter, mechanistically solid interventions delivered by RCTs where observer bias is minimised.
Collapse
Affiliation(s)
- Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK.
| | - Tom E F Abbott
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| |
Collapse
|
75
|
Kilmister EJ, Tan ST. Insights Into Vascular Anomalies, Cancer, and Fibroproliferative Conditions: The Role of Stem Cells and the Renin-Angiotensin System. Front Surg 2022; 9:868187. [PMID: 35574555 PMCID: PMC9091963 DOI: 10.3389/fsurg.2022.868187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Cells exhibiting embryonic stem cell (ESC) characteristics have been demonstrated in vascular anomalies (VAs), cancer, and fibroproliferative conditions, which are commonly managed by plastic surgeons and remain largely unsolved. The efficacy of the mTOR inhibitor sirolimus, and targeted therapies that block the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways in many types of cancer and VAs, further supports the critical role of ESC-like cells in the pathogenesis of these conditions. ESC-like cells in VAs, cancer, and fibroproliferative conditions express components of the renin-angiotensin system (RAS) – a homeostatic endocrine signaling cascade that regulates cells with ESC characteristics. ESC-like cells are influenced by the Ras/BRAF/MEK/ERK1/2 and PI3KCA/AKT/mTOR pathways, which directly regulate cellular proliferation and stemness, and interact with the RAS at multiple points. Gain-of-function mutations affecting these pathways have been identified in many types of cancer and VAs, that have been treated with targeted therapies with some success. In cancer, the RAS promotes tumor progression, treatment resistance, recurrence, and metastasis. The RAS modulates cellular invasion, migration, proliferation, and angiogenesis. It also indirectly regulates ESC-like cells via its direct influence on the tissue microenvironment and by its interaction with the immune system. In vitro studies show that RAS inhibition suppresses the hallmarks of cancer in different experimental models. Numerous epidemiological studies show a reduced incidence of cancer and improved survival outcomes in patients taking RAS inhibitors, although some studies have shown no such effect. The discovery of ESC-like cells that express RAS components in infantile hemangioma (IH) underscores the paradigm shift in the understanding of its programmed biologic behavior and accelerated involution induced by β-blockers and angiotensin-converting enzyme inhibitors. The findings of SOX18 inhibition by R-propranolol suggests the possibility of targeting ESC-like cells in IH without β-adrenergic blockade, and its associated side effects. This article provides an overview of the current knowledge of ESC-like cells and the RAS in VAs, cancer, and fibroproliferative conditions. It also highlights new lines of research and potential novel therapeutic approaches for these unsolved problems in plastic surgery, by targeting the ESC-like cells through manipulation of the RAS, its bypass loops and converging signaling pathways using existing low-cost, commonly available, and safe oral medications.
Collapse
Affiliation(s)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand
- Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Lower Hutt, New Zealand
- Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
- *Correspondence: Swee T. Tan
| |
Collapse
|
76
|
Drobni ZD, Michielin O, Quinaglia T, Zlotoff DA, Zubiri L, Gilman HK, Supraja S, Merkely B, Muller V, Sullivan RJ, Reynolds KL, Pittet MJ, Jain RK, Neilan TG. Renin-angiotensin-aldosterone system inhibitors and survival in patients with hypertension treated with immune checkpoint inhibitors. Eur J Cancer 2022; 163:108-118. [PMID: 35065368 PMCID: PMC9618285 DOI: 10.1016/j.ejca.2021.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/17/2021] [Accepted: 12/21/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Preclinical studies indicate that the concurrent use of inhibitors of the renin-angiotensin-aldosterone system (RAAS) may improve outcomes in broad groups of patients with cancer. There are limited data on the association between the use of RAAS inhibitors and outcomes among patients treated with immune checkpoint inhibitors (ICIs). METHODS We performed a retrospective study of all patients treated with an ICI in a single academic network. Of 10,903 patients, 5910 were on any anti-hypertensive medication. Of those on anti-hypertensive therapy, 3426 were prescribed a RAAS inhibitor during ICI treatment, and 2484 were prescribed other anti-hypertensive medications. The primary outcome was overall survival in the entire cohort and in sub-groups by cancer types. RESULTS Thoracic cancer (34%) and melanoma (16%) were the most common types of cancer. Those prescribed a RAAS inhibitor were older, more frequently male, and had more cardiovascular risk factors. In a Cox proportional hazard model, the concurrent use of RAAS inhibitors was associated with better overall survival (hazard ratio (HR):0.92, [95% Confidence Interval (CI):0.85-0.99], P = .032). Patients with gastrointestinal (HR:0.82, [95% CI: 0.67-1.01], P = .057) and genitourinary cancer (HR:0.81, [95% CI:0.64-1.01], P = .067) had a non-statistically significant better overall survival. CONCLUSIONS In this large retrospective study, patients with hypertension who were concomitantly taking a RAAS inhibitor during ICI therapy had better overall survival. This benefit was primarily noted among patients with gastrointestinal and genitourinary cancers. Prospective randomized trials are warranted to further evaluate and specify the benefit of RAAS inhibitors in patients with cancer who receive ICI therapy.
Collapse
Affiliation(s)
- Zsofia D. Drobni
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary,Cardiovascular Imaging Research Center (CIRC), Department of Radiology and Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Corresponding author: Heart and Vascular Center, Semmelweis University, Városmajor street 68, Budapest, 1122, Hungary. , (Z.D. Drobni). @zsofidrobni (Z.D. Drobni)
| | - Olivier Michielin
- Oncology Department, Precision Oncology Center, Lausanne, Switzerland,Oncology Department, Lausanne University Hospital, Lausanne, Switzerland
| | - Thiago Quinaglia
- Cardiovascular Imaging Research Center (CIRC), Department of Radiology and Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel A. Zlotoff
- Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Leyre Zubiri
- Division of Oncology and Hematology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hannah K. Gilman
- Cardiovascular Imaging Research Center (CIRC), Department of Radiology and Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Sama Supraja
- Cardiovascular Imaging Research Center (CIRC), Department of Radiology and Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bela Merkely
- Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Veronika Muller
- Department of Pulmonology, Semmelweis University, Budapest, Hungary
| | - Ryan J. Sullivan
- Division of Oncology and Hematology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kerry L. Reynolds
- Division of Oncology and Hematology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J. Pittet
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland
| | - Rakesh K. Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Tomas G. Neilan
- Cardiovascular Imaging Research Center (CIRC), Department of Radiology and Division of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA,Cardio-Oncology Program, Division of Cardiology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
77
|
Inhibition of angiotensin pathway via valsartan reduces tumor growth in models of colorectal cancer. Toxicol Appl Pharmacol 2022; 440:115951. [PMID: 35235860 DOI: 10.1016/j.taap.2022.115951] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/09/2022] [Accepted: 02/23/2022] [Indexed: 01/05/2023]
|
78
|
Asgharzadeh F, Geraylow KR, Khazaei M, Nassiri M, Hassanian SM, Ferns GA, Avan A. Angiotensin-converting Enzyme Inhibitors and Angiotensin Receptor Blockers as Potential Therapeutic Options for Pancreatic Cancer. Curr Cancer Drug Targets 2022; 22:785-795. [PMID: 35585824 DOI: 10.2174/1568009622666220517104411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 11/22/2022]
Abstract
The renin-angiotensin system (RAS) has been reported to have a role in carcinogenesis, and therefore it may be of value as a potential therapeutic target in inhibiting tumor growth. It has been shown that inhibition of RAS via angiotensin I-converting enzyme inhibitors (ACEIs) and angiotensin II type-1 receptor (ARBs) inhibitors may have a protective effect against several malignancies. Here, we provide an overview of the potential value of the RAS pathway and targeting via ACE/ARB inhibitors in pancreatic cancer. Whilst the potential role of RAS as a target for the treatment of pancreatic cancer has been reported, the use of candesartan with gemcitabine failed to improve outcomes in pancreatic cancer. Another study of 1-3 years using ARB was found to reduce the risk of pancreatic cancer. In line with these trials, others have demonstrated that the ARBs in combination with gemcitabine might improve clinical outcomes in patients with advanced pancreatic cancer. Prospective trials are warranted to investigate this hypothesis.
Collapse
Affiliation(s)
- Fereshteh Asgharzadeh
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Khazaei
- Department of Medical Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nassiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, UK
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
79
|
Bahmad HF, Daher D, Aljamal AA, Elajami MK, Oh KS, Alvarez Moreno JC, Delgado R, Suarez R, Zaldivar A, Azimi R, Castellano A, Sackstein R, Poppiti RJ. Repurposing of Anticancer Stem Cell Drugs in Brain Tumors. J Histochem Cytochem 2021; 69:749-773. [PMID: 34165342 PMCID: PMC8647630 DOI: 10.1369/00221554211025482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022] Open
Abstract
Brain tumors in adults may be infrequent when compared with other cancer etiologies, but they remain one of the deadliest with bleak survival rates. Current treatment modalities encompass surgical resection, chemotherapy, and radiotherapy. However, increasing resistance rates are being witnessed, and this has been attributed, in part, to cancer stem cells (CSCs). CSCs are a subpopulation of cancer cells that reside within the tumor bulk and have the capacity for self-renewal and can differentiate and proliferate into multiple cell lineages. Studying those CSCs enables an increasing understanding of carcinogenesis, and targeting CSCs may overcome existing treatment resistance. One approach to weaponize new drugs is to target these CSCs through drug repurposing which entails using drugs, which are Food and Drug Administration-approved and safe for one defined disease, for a new indication. This approach serves to save both time and money that would otherwise be spent in designing a totally new therapy. In this review, we will illustrate drug repurposing strategies that have been used in brain tumors and then further elaborate on how these approaches, specifically those that target the resident CSCs, can help take the field of drug repurposing to a new level.
Collapse
Affiliation(s)
- Hisham F. Bahmad
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Darine Daher
- Faculty of Medicine, American University of
Beirut, Beirut, Lebanon
| | - Abed A. Aljamal
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Mohamad K. Elajami
- Department of Internal Medicine, Mount Sinai
Medical Center, Miami Beach, Florida
| | - Kei Shing Oh
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Juan Carlos Alvarez Moreno
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Ruben Delgado
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Richard Suarez
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Ana Zaldivar
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Roshanak Azimi
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
| | - Amilcar Castellano
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| | - Robert Sackstein
- Department of Translational Medicine,
Translational Glycobiology Institute, Herbert Wertheim College of Medicine,
Florida International University, Miami, Florida
| | - Robert J. Poppiti
- Arkadi M. Rywlin M.D. Department of Pathology
and Laboratory Medicine, Mount Sinai Medical Center, Miami Beach,
Florida
- Department of Pathology, Herbert Wertheim
College of Medicine, Florida International University, Miami, Florida
| |
Collapse
|
80
|
Kilmister EJ, Tan ST. The Role of the Renin-Angiotensin System in the Cancer Stem Cell Niche. J Histochem Cytochem 2021; 69:835-847. [PMID: 34165363 PMCID: PMC8647629 DOI: 10.1369/00221554211026295] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/28/2021] [Indexed: 02/08/2023] Open
Abstract
Cancer stem cells (CSCs) drive metastasis, treatment resistance, and tumor recurrence. CSCs reside within a niche, an anatomically distinct site within the tumor microenvironment (TME) that consists of malignant and non-malignant cells, including immune cells. The renin-angiotensin system (RAS), a critical regulator of stem cells and key developmental processes, plays a vital role in the TME. Non-malignant cells within the CSC niche and stem cell signaling pathways such as the Wnt, Hedgehog, and Notch pathways influence CSCs. Components of the RAS and cathepsins B and D that constitute bypass loops of the RAS are expressed on CSCs in many cancer types. There is extensive in vitro and in vivo evidence showing that RAS inhibition reduces tumor growth, cell proliferation, invasion, and metastasis. However, there is inconsistent epidemiological data on the effect of RAS inhibitors on cancer incidence and survival outcomes, attributed to different patient characteristics and methodologies used between studies. Further mechanistic studies are warranted to investigate the precise effects of the RAS on CSCs directly and/or the CSC niche. Targeting the RAS, its bypass loops, and convergent signaling pathways participating in the TME and other key stem cell pathways that regulate CSCs may be a novel approach to cancer treatment.
Collapse
Affiliation(s)
| | - Swee T. Tan
- Gillies McIndoe Research Institute, Wellington,
New Zealand
- Wellington Regional Plastic, Maxillofacial and
Burns Unit, Hutt Hospital, Wellington, New Zealand
- Department of Surgery, The University of
Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
81
|
Larrinaga G, Calvete-Candenas J, Solano-Iturri JD, Martín AM, Pueyo A, Nunes-Xavier CE, Pulido R, Dorado JF, López JI, Angulo JC. (Pro)renin Receptor Is a Novel Independent Prognostic Marker in Invasive Urothelial Carcinoma of the Bladder. Cancers (Basel) 2021; 13:cancers13225642. [PMID: 34830803 PMCID: PMC8616163 DOI: 10.3390/cancers13225642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 01/01/2023] Open
Abstract
Simple Summary This is a novel description of (Pro)renin receptor (PRR) protein and its prognostic role in invasive urothelial cancer of the bladder. Using a tissue microarray, we investigated PRR expression and other immunohistochemical markers including p53, immune-checkpoint inhibition, and basal and luminal phenotypes in a series of patients with invasive urothelial carcinoma of the bladder treated with radical cystectomy. PRR expression is an independent prognostic marker and could be a potential target in urothelial carcinoma that should be further investigated. Abstract (Pro)renin receptor (PRR) is being investigated in several malignancies as it activates pathogenic pathways that contribute to cell proliferation, immunosuppressive microenvironments, and acquisition of aggressive neoplastic phenotypes. Its implication in urothelial cancer (UC) has not been evaluated so far. We retrospectively evaluate the prognostic role of PRR expression in a series of patients with invasive UC treated with radical cystectomy and other clinical and histopathological parameters including p53, markers of immune-checkpoint inhibition, and basal and luminal phenotypes evaluated by tissue microarray. Cox regression analyses using stepwise selection evaluated candidate prognostic factors and disease-specific survival. PRR was expressed in 77.3% of the primary tumors and in 70% of positive lymph nodes. PRR expression correlated with age (p = 0.006) and was associated with lower preoperatively hemoglobin levels. No other statistical association was evidenced with clinical and pathological variables (gender, ASA score, Charlson comorbidity index, grade, pT, pN) or immunohistochemical expressions evaluated (CK20, GA-TA3, CK5/6, CD44, PD-L1, PD-1, B7-H3, VISTA, and p53). PRR expression in primary tumors was associated with worse survival (log-rank, p = 0.008). Cox regression revealed that PRR expression (HR 1.85, 95% CI 1.22–2.8), pT (HR 7.02, 95% CI 2.68–18.39), pN (HR 2.3, 95% CI 1.27–4.19), and p53 expression (HR 1.95, 95% CI 1.1–3.45) were independent prognostic factors in this series. In conclusion, we describe PRR protein and its prognostic role in invasive UC for the first time. Likely mechanisms involved are MAPK/ERK activation, Wnt/β-catenin signaling, and v-ATPAse function.
Collapse
Affiliation(s)
- Gorka Larrinaga
- Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Correspondence:
| | | | - Jon Danel Solano-Iturri
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Service of Pathology, Donostia University Hospital, 20014 San Sebastian, Spain
| | - Ana M. Martín
- Service of Pathology, University Hospital of Getafe, 28905 Madrid, Spain;
| | - Angel Pueyo
- Foundation for Biomedical Research and Innovation of University Hospitals Infanta Leonor and South-East, 28003 Madrid, Spain;
- Heath Science PhD Program, UCAM Universidad Católica San Antonio de Murcia, Guadalupe de Maciascoque, 30107 Murcia, Spain
| | - Caroline E. Nunes-Xavier
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital Radiumhospitalet, 0310 Oslo, Norway
| | - Rafael Pulido
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Ikerbasque, The Basque Foundation for Science, 48011 Bilbao, Spain
| | | | - José I. López
- Biomarkers in Cancer Unit, Biocruces-Bizkaia Institute, 48903 Barakaldo, Spain; (J.D.S.-I.); (C.E.N.-X.); (R.P.); (J.I.L.)
- Department of Pathology, Cruces University Hospital, 48903 Barakaldo, Spain
| | - Javier C. Angulo
- Clinical Department, Faculty of Medical Sciences, European University of Madrid, 28005 Madrid, Spain;
- Department of Urology, University Hospital of Getafe, 28907 Madrid, Spain
| |
Collapse
|
82
|
Roles of G Protein-Coupled Receptors (GPCRs) in Gastrointestinal Cancers: Focus on Sphingosine 1-Shosphate Receptors, Angiotensin II Receptors, and Estrogen-Related GPCRs. Cells 2021; 10:cells10112988. [PMID: 34831211 PMCID: PMC8616429 DOI: 10.3390/cells10112988] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/19/2021] [Accepted: 10/20/2021] [Indexed: 02/05/2023] Open
Abstract
It is well established that gastrointestinal (GI) cancers are common and devastating diseases around the world. Despite the significant progress that has been made in the treatment of GI cancers, the mortality rates remain high, indicating a real need to explore the complex pathogenesis and develop more effective therapeutics for GI cancers. G protein-coupled receptors (GPCRs) are critical signaling molecules involved in various biological processes including cell growth, proliferation, and death, as well as immune responses and inflammation regulation. Substantial evidence has demonstrated crucial roles of GPCRs in the development of GI cancers, which provided an impetus for further research regarding the pathophysiological mechanisms and drug discovery of GI cancers. In this review, we mainly discuss the roles of sphingosine 1-phosphate receptors (S1PRs), angiotensin II receptors, estrogen-related GPCRs, and some other important GPCRs in the development of colorectal, gastric, and esophageal cancer, and explore the potential of GPCRs as therapeutic targets.
Collapse
|
83
|
Gao J, Wang Y, Lyu B, Chen J, Chen G. Component Identification of Phenolic Acids in Cell Suspension Cultures of Saussureainvolucrata and Its Mechanism of Anti-Hepatoma Revealed by TMT Quantitative Proteomics. Foods 2021; 10:foods10102466. [PMID: 34681515 PMCID: PMC8535732 DOI: 10.3390/foods10102466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/13/2022] Open
Abstract
Saussurea involucrata (S. involucrata) had been reported to have anti-hepatoma function. However, the mechanism is complex and unclear. To evaluate the anti-hepatoma mechanism of S. involucrata comprehensively and make a theoretical basis for the mechanical verification of later research, we carried out this work. In this study, the total phenolic acids from S. involucrata determined by a cell suspension culture (ESPI) was mainly composed of 4,5-dicaffeoylquinic acid, according to the LC-MS analysis. BALB/c nude female mice were injected with HepG2 cells to establish an animal model of liver tumor before being divided into a control group, a low-dose group, a middle-dose group, a high-dose group, and a DDP group. Subsequently, EPSI was used as the intervention drug for mice. Biochemical indicators and differences in protein expression determined by TMT quantitative proteomics were used to resolve the mechanism after the low- (100 mg/kg), middle- (200 mg/kg), and high-dose (400 mg/kg) interventions for 24 days. The results showed that EPSI can not only limit the growth of HepG2 cells in vitro, but also can inhibit liver tumors significantly with no toxicity at high doses in vivo. Proteomics analysis revealed that the upregulated differentially expressed proteins (DE proteins) in the high-dose group were over three times that in the control group. ESPI affected the pathways significantly associated with the protein metabolic process, metabolic process, catalytic activity, hydrolase activity, proteolysis, endopeptidase activity, serine-type endopeptidase activity, etc. The treatment group showed significant differences in the pathways associated with the renin-angiotensin system, hematopoietic cell lineage, etc. In conclusion, ESPI has a significant anti-hepatoma effect and the potential mechanism was revealed.
Collapse
Affiliation(s)
- Junpeng Gao
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
| | - Yi Wang
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (B.L.); (J.C.)
| | - Bo Lyu
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (B.L.); (J.C.)
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jian Chen
- College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China; (Y.W.); (B.L.); (J.C.)
| | - Guang Chen
- College of Life Science, Jilin Agricultural University, Changchun 130118, China;
- Correspondence:
| |
Collapse
|
84
|
Humphries F, Chang-McDonald B, Patel J, Bockett N, Paterson E, Davis PF, Tan ST. Cathepsins B, D, and G Are Expressed in Metastatic Head and Neck Cutaneous Squamous Cell Carcinoma. Front Oncol 2021; 11:690460. [PMID: 34621666 PMCID: PMC8491843 DOI: 10.3389/fonc.2021.690460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/30/2021] [Indexed: 12/26/2022] Open
Abstract
Aim We have previously demonstrated the presence of two cancer stem cell (CSC) subpopulations within metastatic head and neck cutaneous squamous cell carcinoma (mHNcSCC) expressing components of the renin-angiotensin system (RAS), which promotes tumorigenesis. Cathepsins B, D and G are enzymes that constitute bypass loops for the RAS. This study investigated the expression and localization of cathepsins B, D, and G in relation to CSC subpopulations within mHNcSCC. Methods Immunohistochemical staining was performed on mHNcSCC tissue samples from 20 patients to determine the expression and localization of cathepsins B, D, and G. Immunofluorescence staining was performed on two of these mHNcSCC tissue samples by co-staining of cathepsins B and D with OCT4 and SOX2, and cathepsin G with mast cell markers tryptase and chymase. Western blotting and quantitative reverse transcription polymerase chain reaction (RT-qPCR) were performed on five mHNcSCC samples and four mHNcSCC-derived primary cell lines, to determine protein and transcript expression of these three cathepsins, respectively. Enzyme activity assays were performed on mHNcSCC tissue samples to determine whether these cathepsins were active. Results Immunohistochemical staining demonstrated the presence of cathepsins B, D and G in in all 20 mHNcSCC tissue samples. Immunofluorescence staining showed that cathepsins B and D were localized to the CSCs both within the tumor nests and peri-tumoral stroma (PTS) and cathepsin G was localized to the phenotypic mast cells within the PTS. Western blotting demonstrated protein expression of cathepsin B and D, and RT-qPCR demonstrated transcript expression of all three cathepsins. Enzyme activity assays showed that cathepsin B and D to be active. Conclusion The presence of cathepsins B and D on the CSCs and cathepsin G on the phenotypic mast cells suggest the presence of bypass loops for the RAS which may be a potential novel therapeutic target for mHNcSCC.
Collapse
Affiliation(s)
| | | | - Josie Patel
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | | | - Erin Paterson
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Paul F Davis
- Gillies McIndoe Research Institute, Wellington, New Zealand
| | - Swee T Tan
- Gillies McIndoe Research Institute, Wellington, New Zealand.,Wellington Regional Plastic, Maxillofacial & Burns Unit, Hutt Hospital, Wellington, New Zealand.,Department of Surgery, The Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
85
|
Keskus AG, Tombaz M, Arici BI, Dincaslan FB, Nabi A, Shehwana H, Konu O. Functional analysis of co-expression networks of zebrafish ace2 reveals enrichment of pathways associated with development and disease. Genome 2021; 65:57-74. [PMID: 34606733 DOI: 10.1139/gen-2021-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Human Angiotensin I Converting Enzyme 2 (ACE2) plays an essential role in blood pressure regulation and SARS-CoV-2 entry. ACE2 has a highly conserved, one-to-one ortholog (ace2) in zebrafish, which is an important model for human diseases. However, the zebrafish ace2 expression profile has not yet been studied during early development, between genders, across different genotypes, or in disease. Moreover, a network-based meta-analysis for the extraction of functionally enriched pathways associated with differential ace2 expression is lacking in the literature. Herein, we first identified significant development-, tissue-, genotype-, and gender-specific modulations in ace2 expression via meta-analysis of zebrafish Affymetrix transcriptomics datasets (ndatasets = 107); and the correlation analysis of ace2 meta-differential expression profile revealed distinct positively and negatively correlated local functionally enriched gene networks. Moreover, we demonstrated that ace2 expression was significantly modulated under different physiological and pathological conditions related to development, tissue, gender, diet, infection, and inflammation using additional RNA-seq datasets. Our findings implicate a novel translational role for zebrafish ace2 in organ differentiation and pathologies observed in the intestines and liver.
Collapse
Affiliation(s)
- Ayse Gokce Keskus
- Interdisciplinary Program in Neuroscience, Bilkent University, Ankara, Turkey
| | - Melike Tombaz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Burcin Irem Arici
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | | | - Afshan Nabi
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Faculty of Engineering and Natural Sciences, Sabancı University, Istanbul, Turkey
| | - Huma Shehwana
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan
| | - Ozlen Konu
- Interdisciplinary Program in Neuroscience, Bilkent University, Ankara, Turkey.,Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.,UNAM-Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, Turkey
| |
Collapse
|
86
|
Regan DP, Chow L, Das S, Haines L, Palmer E, Kurihara JN, Coy JW, Mathias A, Thamm DH, Gustafson DL, Dow SW. Losartan Blocks Osteosarcoma-Elicited Monocyte Recruitment, and Combined With the Kinase Inhibitor Toceranib, Exerts Significant Clinical Benefit in Canine Metastatic Osteosarcoma. Clin Cancer Res 2021; 28:662-676. [PMID: 34580111 DOI: 10.1158/1078-0432.ccr-21-2105] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/16/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE There is increasing recognition that progress in immuno-oncology could be accelerated by evaluating immune-based therapies in dogs with spontaneous cancers. Osteosarcoma (OS) is one tumor for which limited clinical benefit has been observed with the use of immune checkpoint inhibitors. We previously reported the angiotensin receptor blocker losartan suppressed metastasis in preclinical mouse models through blockade of CCL2-CCR2 monocyte recruitment. Here we leverage dogs with spontaneous OS to determine losartan's safety and pharmacokinetics associated with monocyte pharmacodynamic endpoints, and assess its antitumor activity, in combination with the kinase inhibitor toceranib. PATIENTS AND METHODS CCL2 expression, monocyte infiltration, and monocyte recruitment by human and canine OS tumors and cell lines were assessed by gene expression, ELISA, and transwell migration assays. Safety and efficacy of losartan-toceranib therapy were evaluated in 28 dogs with lung metastatic OS. Losartan PK and monocyte PD responses were assessed in three dose cohorts of dogs by chemotaxis, plasma CCL2, and multiplex cytokine assays, and RNA-seq of losartan-treated human peripheral blood mononuclear cells. RESULTS Human and canine OS cells secrete CCL2 and elicit monocyte migration, which is inhibited by losartan. Losartan PK/PD studies in dogs revealed that a 10-fold-higher dose than typical antihypertensive dosing was required for blockade of monocyte migration. Treatment with high-dose losartan and toceranib was well-tolerated and induced a clinical benefit rate of 50% in dogs with lung metastases. CONCLUSIONS Losartan inhibits the CCL2-CCR2 axis, and in combination with toceranib, exerts significant biological activity in dogs with metastatic osteosarcoma, supporting evaluation of this drug combination in patients with pediatric osteosarcoma.
Collapse
Affiliation(s)
- Daniel P Regan
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado. .,Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Lyndah Chow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Sunetra Das
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Laurel Haines
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Eric Palmer
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jade N Kurihara
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Jonathan W Coy
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Alissa Mathias
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Douglas H Thamm
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Daniel L Gustafson
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado.,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| | - Steven W Dow
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado. .,Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado
| |
Collapse
|
87
|
Yang T, Xiao H, Liu X, Wang Z, Zhang Q, Wei N, Guo X. Vascular Normalization: A New Window Opened for Cancer Therapies. Front Oncol 2021; 11:719836. [PMID: 34476218 PMCID: PMC8406857 DOI: 10.3389/fonc.2021.719836] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/23/2021] [Indexed: 12/17/2022] Open
Abstract
Preclinical and clinical antiangiogenic approaches, with multiple side effects such as resistance, have not been proved to be very successful in treating tumor blood vessels which are important targets for tumor therapy. Meanwhile, restoring aberrant tumor blood vessels, known as tumor vascular normalization, has been shown not only capable of reducing tumor invasion and metastasis but also of enhancing the effectiveness of chemotherapy, radiation therapy, and immunotherapy. In addition to the introduction of such methods of promoting tumor vascular normalization such as maintaining the balance between proangiogenic and antiangiogenic factors and targeting endothelial cell metabolism, microRNAs, and the extracellular matrix, the latest molecular mechanisms and the potential connections between them were primarily explored. In particular, the immunotherapy-induced normalization of blood vessels further promotes infiltration of immune effector cells, which in turn improves immunotherapy, thus forming an enhanced loop. Thus, immunotherapy in combination with antiangiogenic agents is recommended. Finally, we introduce the imaging technologies and serum markers, which can be used to determine the window for tumor vascular normalization.
Collapse
Affiliation(s)
- Ting Yang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hongqi Xiao
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoxia Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhihui Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qingbai Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Nianjin Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinggang Guo
- Department of General Surgery, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
88
|
Chen W, Shen L, Jiang J, Zhang L, Zhang Z, Pan J, Ni C, Chen Z. Antiangiogenic therapy reverses the immunosuppressive breast cancer microenvironment. Biomark Res 2021; 9:59. [PMID: 34294146 PMCID: PMC8296533 DOI: 10.1186/s40364-021-00312-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 07/08/2021] [Indexed: 12/11/2022] Open
Abstract
Tumor angiogenesis induces local hypoxia and recruits immunosuppressive cells, whereas hypoxia subsequently promotes tumor angiogenesis. Immunotherapy efficacy depends on the accumulation and activity of tumor-infiltrating immune cells (TIICs). Antangiogenic therapy could improve local perfusion, relieve tumor microenvironment (TME) hypoxia, and reverse the immunosuppressive state. Combining antiangiogenic therapy with immunotherapy might represent a promising option for the treatment of breast cancer. This article discusses the immunosuppressive characteristics of the breast cancer TME and outlines the interaction between the tumor vasculature and the immune system. Combining antiangiogenic therapy with immunotherapy could interrupt abnormal tumor vasculature-immunosuppression crosstalk, increase effector immune cell infiltration, improve immunotherapy effectiveness, and reduce the risk of immune-related adverse events. In addition, we summarize the preclinical research and ongoing clinical research related to the combination of antiangiogenic therapy with immunotherapy, discuss the underlying mechanisms, and provide a view for future developments. The combination of antiangiogenic therapy and immunotherapy could be a potential therapeutic strategy for treatment of breast cancer to promote tumor vasculature normalization and increase the efficiency of immunotherapy.
Collapse
Affiliation(s)
- Wuzhen Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Lesang Shen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jingxin Jiang
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China.,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Leyi Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Zhigang Zhang
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Jun Pan
- Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China
| | - Chao Ni
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China. .,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China.
| | - Zhigang Chen
- Department of Breast Surgery (Surgical Oncology), Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou, 310000, Zhejiang Province, China. .,Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
89
|
Wu L, Vasilijic S, Sun Y, Chen J, Landegger LD, Zhang Y, Zhou W, Ren J, Early S, Yin Z, Ho WW, Zhang N, Gao X, Lee GY, Datta M, Sagers JE, Brown A, Muzikansky A, Stemmer-Rachamimov A, Zhang L, Plotkin SR, Jain RK, Stankovic KM, Xu L. Losartan prevents tumor-induced hearing loss and augments radiation efficacy in NF2 schwannoma rodent models. Sci Transl Med 2021; 13:eabd4816. [PMID: 34261799 PMCID: PMC8409338 DOI: 10.1126/scitranslmed.abd4816] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/10/2020] [Accepted: 05/20/2021] [Indexed: 12/14/2022]
Abstract
Hearing loss is one of the most common symptoms of neurofibromatosis type 2 (NF2) caused by vestibular schwannomas (VSs). Fibrosis in the VS tumor microenvironment (TME) is associated with hearing loss in patients with NF2. We hypothesized that reducing the fibrosis using losartan, an FDA-approved antihypertensive drug that blocks fibrotic and inflammatory signaling, could improve hearing. Using NF2 mouse models, we found that losartan treatment normalized the TME by (i) reducing neuroinflammatory IL-6/STAT3 signaling and preventing hearing loss, (ii) normalizing tumor vasculature and alleviating neuro-edema, and (iii) increasing oxygen delivery and enhancing efficacy of radiation therapy. In preparation to translate these exciting findings into the clinic, we used patient samples and data and demonstrated that IL-6/STAT3 signaling inversely associated with hearing function, that elevated production of tumor-derived IL-6 was associated with reduced viability of cochlear sensory cells and neurons in ex vivo organotypic cochlear cultures, and that patients receiving angiotensin receptor blockers have no progression in VS-induced hearing loss compared with patients on other or no antihypertensives based on a retrospective analysis of patients with VS and hypertension. Our study provides the rationale and critical data for a prospective clinical trial of losartan in patients with VS.
Collapse
Affiliation(s)
- Limeng Wu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Sasa Vasilijic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Yao Sun
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jie Chen
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Lukas D Landegger
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Yanling Zhang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Wenjianlong Zhou
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jun Ren
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Samuel Early
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
- Division of Otolaryngology, Head and Neck Surgery, Department of Surgery, UC San Diego Medical Center, San Diego, CA 92103, USA
| | - Zhenzhen Yin
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - William W Ho
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Na Zhang
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
| | - Xing Gao
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Grace Y Lee
- St. Mark's School, Southborough, MA 01772, USA
| | - Meenal Datta
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Jessica E Sagers
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Alyssa Brown
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA
| | - Alona Muzikansky
- Division of Biostatistics, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | | | - Luo Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing TongRen Hospital, Capital Medical University, Beijing 100730, China
| | - Scott R Plotkin
- Department of Neurology and Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Konstantina M Stankovic
- Eaton-Peabody Laboratories and Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear and Harvard Medical School, Boston, MA 02114, USA.
| | - Lei Xu
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
90
|
Zhang HF, Gao X, Wang X, Chen X, Huang Y, Wang L, Xu ZW. The mechanisms of renin-angiotensin system in hepatocellular carcinoma: From the perspective of liver fibrosis, HCC cell proliferation, metastasis and angiogenesis, and corresponding protection measures. Biomed Pharmacother 2021; 141:111868. [PMID: 34328104 DOI: 10.1016/j.biopha.2021.111868] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common cancers worldwide, of which the occurrence and development involve a variety of pathophysiological processes, such as liver fibrosis, hepatocellular malignant proliferation, metastasis, and tumor angiogenesis. Some important cytokines, such as TGF-β, PI3K, protein kinase B (Akt), VEGF and NF-κB, can regulate the growth, proliferation, diffusion, metastasis, and apoptosis of HCC cells by acting on the corresponding signaling pathways. Besides, many studies have shown that the formation of HCC is closely related to the main components of renin-angiotensin system (RAS), such as Ang II, ACE, ACE2, MasR, AT1R, and AT2R. Therefore, this review focused on liver fibrosis, HCC cell proliferation, metastasis, tumor angiogenesis, and corresponding protective measures. ACE-Ang II-AT1 axis and ACE2-Ang-(1-7)-MasR axis were taken as the main lines to introduce the mechanism of RAS in the occurrence and development of HCC, so as to provide references for future clinical work and scientific research.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiang Gao
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Xuan Wang
- Department of Clinical Medical, the Second Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Xin Chen
- Department of Clinical Medical, the Second Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Yu Huang
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Lang Wang
- Department of Clinical Medical, the First Clinical Medical College of Anhui Medical University, Hefei, Anhui 230032, China
| | - Zhou-Wei Xu
- Department of Emergency Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230022, China; Institute of Clinical Pharmacology, Anhui Medical University, Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-inflammatory and Immune Medicine, Hefei, Anhui 230032, China.
| |
Collapse
|
91
|
Effect of concomitant use of antihypertensives and immune check point inhibitors on cancer outcomes. J Hypertens 2021; 39:1274-1281. [PMID: 34074965 DOI: 10.1097/hjh.0000000000002799] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES Antihypertensives and cancer have a complex relationship. Among the antihypertensives, renin--angiotensin system inhibitors have strong immune modulatory activities that may affect immune check point inhibitors-related outcomes in cancer patients. We evaluated the association between concomitant use of renin--angiotensin system inhibitors and other antihypertensive agents with survival/toxicity outcomes from atezolizumab. METHODS A post hoc analysis of individual patient data from seven clinical trials of lung, renal or urothelial cancers was performed. Users and nonusers of antihypertensive classes were compared for overall survival, progression-free survival and immune adverse events. Cox proportional hazards were calculated between the groups and reported as hazards ratio and 95% confidence interval (95% CI). RESULTS Of the 3695 patients, 2539 were treated with atezolizumab and the rest with chemotherapy. Twenty-four percent of patients were on a renin--angiotensin system inhibitor at trial commencement. No statistically significant difference in overall survival (hazard ratio 0.92, 95% CI 0.79-1.07, P = 0.29), progression-free survival (hazard ratio 0.95, 95% CI 0.84-1.08, P = 0.42) or immune adverse events (odds ratio 0.94, 95% CI 0.76-1.15, P = 0.55) between renin--angiotensin system inhibitor users and nonusers were identified in the atezolizumab-treated cohort. Other classes of antihypertensives were also not associated with survival. CONCLUSION Concomitant use of antihypertensives including RASi was not associated with survival and immune-related safety outcomes during atezolizumab therapy for solid cancers. Future studies should evaluate the association between antihypertensives and other ICI as well as ICI combination interventions in clinical trials and real-world settings.
Collapse
|
92
|
Garcia-Garduño TC, Padilla-Gutierrez JR, Cambrón-Mora D, Valle Y. RAAS: A Convergent Player in Ischemic Heart Failure and Cancer. Int J Mol Sci 2021; 22:7106. [PMID: 34281199 PMCID: PMC8268500 DOI: 10.3390/ijms22137106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/23/2021] [Accepted: 06/25/2021] [Indexed: 12/12/2022] Open
Abstract
The current global prevalence of heart failure is estimated at 64.34 million cases, and it is expected to increase in the coming years, especially in countries with a medium-low sociodemographic index where the prevalence of risk factors is increasing alarmingly. Heart failure is associated with many comorbidities and among them, cancer has stood out as a contributor of death in these patients. This connection points out new challenges both in the context of the pathophysiological mechanisms involved, as well as in the quality of life of affected individuals. A hallmark of heart failure is chronic activation of the renin-angiotensin-aldosterone system, especially marked by a systemic increase in levels of angiotensin-II, a peptide with pleiotropic activities. Drugs that target the renin-angiotensin-aldosterone system have shown promising results both in the prevention of secondary cardiovascular events in myocardial infarction and heart failure, including a lower risk of certain cancers in these patients, as well as in current cancer therapies; therefore, understanding the mechanisms involved in this complex relationship will provide tools for a better diagnosis and treatment and to improve the prognosis and quality of life of people suffering from these two deadly diseases.
Collapse
Affiliation(s)
- Texali C. Garcia-Garduño
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico; (T.C.G.-G.); (J.R.P.-G.)
- Doctorado en Genética Humana, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico
| | - Jorge R. Padilla-Gutierrez
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico; (T.C.G.-G.); (J.R.P.-G.)
| | - Diego Cambrón-Mora
- Doctorado en Biología Molecular, Departamento de Biología Molecular y Genómica, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Yeminia Valle
- Centro Universitario de Ciencias de la Salud, Instituto de Investigación en Ciencias Biomédicas, Universidad de Guadalajara, Guadalajara 44340, Mexico; (T.C.G.-G.); (J.R.P.-G.)
| |
Collapse
|
93
|
Khalili-Tanha G, Khalili-Tanha N, Nazari SE, Chaeichi-Tehrani N, Khazaei M, Aliakbarian M, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Avan A. The Therapeutic Potential of Targeting the Angiotensin Pathway as a Novel Therapeutic Approach to Ameliorating Post-Surgical Adhesions. Curr Pharm Des 2021; 28:180-186. [PMID: 34176457 DOI: 10.2174/1381612827666210625153011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 04/27/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Post-surgical adhesion is a common complication after abdominal or pelvic surgeries. Despite improvements in surgical techniques or the application of physical barriers, little improvements have been achieved. It causes bowel obstruction, pelvic pain, and infertility in women and has an adverse effect on the quality of life. Renin-Angiotensin System (RAS) is traditionally considered as a blood pressure regulator. However, recent studies also indicate that the RAS plays a vital role in other processes, including oxidative stress, fibrosis, proliferation, inflammation, and the wound healing process. Angiotensin II (Ang II) is the main upstream effector of the RAS that can bind to the AT1 receptor (ATIR). A growing body of evidence has revealed that targeting Angiotensin-Converting Enzyme Inhibitors (ACEIs), Angiotensin II type 1 Receptor Blockers (ARBs), and Direct Renin Inhibitors (DRIs) can prevent post-surgical adhesions. Here we provide an overview of the therapeutic effect of RAS antagonists for adhesion. METHODS PubMed, EMBASE, and the Cochrane library were reviewed to identify potential agents targeting the RAS system as a potential approach for post-surgical adhesion. RESULTS Available evidence suggests the involvement of the RAS signaling pathway in inflammation, proliferation, and fibrosis pathways as well as in post-surgical adhesions. Several FDA-approved drugs are being used for targeting the RAS system. Some of them are being tested in different models to reduce fibrosis and improve adhesion after surgery, including Telmisartan, valsartan, and enalapril. CONCLUSION Identification of the pathological causes of post-surgical adhesion and the potential role of targeting Renin-Angiotensin System may help prevent this problem. Based on the pathological function of RAS signaling after surgeries, the administration of ARBs may be considered as a novel and efficient approach to prevent postsurgical adhesions. Pre-clinical and clinical studies should be carried out to have better information on the clinical significance of this therapy against post-surgical adhesion formation.
Collapse
Affiliation(s)
- Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Khalili-Tanha
- Veterinary Medicine Student, Faculty of Veterinary Medicine, Ferdowsi University Mashhad, Iran
| | - Seyedeh Elnaz Nazari
- Metabolic Syndrome Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Majid Khazaei
- Medical Genetics Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Aliakbarian
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Gordon A Ferns
- Brighton & Sussex Medical School, Division of Medical Education, Falmer, Brighton, Sussex BN1 9PH, United Kingdom
| | - Amir Avan
- Metabolic Syndrome Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
94
|
Captopril, a Renin-Angiotensin System Inhibitor, Attenuates Features of Tumor Invasion and Down-Regulates C-Myc Expression in a Mouse Model of Colorectal Cancer Liver Metastasis. Cancers (Basel) 2021; 13:cancers13112734. [PMID: 34073112 PMCID: PMC8199217 DOI: 10.3390/cancers13112734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/28/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Approximately 25% of patients with colorectal cancer will present with or develop colorectal liver metastasis (CRLM). Surgical resection of CRLM offers these patients the best chance of a cure. However, liver resection and the subsequent regenerative response has been linked to tumor recurrence in the liver remnant. The Wnt/β-catenin pathway is one of many pathways common to both post-hepatectomy liver regeneration and tumorigenesis. Wnt signaling modulates multiple genes of the renin-angiotensin system (RAS), and Wnt inhibition can attenuate fibrotic responses and improve cancer outcomes via diverse mechanisms. In this study, we investigate the effects of captopril, a RAS inhibitor (RASi), on the Wnt/β-catenin pathway and phenotypic changes associated with tumor progression in the context of the regenerating liver. We show that RASi induced increased Wnt signaling whilst downregulating features of epithelial-to-mesenchymal transition (EMT). Furthermore, RASi induced significant down-regulation of Wnt target genes, c-myc and cyclin D1, indicating that expression of these genes can be down-regulated by RASi despite the accumulation of stabilized β-catenin. Abstract (1) Background: Recent clinical and experimental data suggests that the liver’s regenerative response following partial hepatectomy can stimulate tumor recurrence in the liver remnant. The Wnt/β-catenin pathway plays important roles in both colorectal cancer carcinogenesis and liver regeneration. Studies have shown that the Wnt/β-catenin pathway regulates multiple renin-angiotensin system (RAS) genes, whilst RAS inhibition (RASi) reduces tumor burden and progression. This study explores whether RASi attenuates features of tumor progression in the regenerating liver post-hepatectomy by modulating Wnt/β-catenin signaling. (2) Methods: Male CBA mice underwent CRLM induction, followed one week later by 70% partial hepatectomy. Mice were treated daily with captopril, a RASi, at 250 mg/kg/day or vehicle control from experimental Day 4. Tumor and liver samples were analyzed for RAS and Wnt signaling markers using qRT-PCR and immunohistochemistry. (3) Results: Treatment with captopril reduced the expression of down-stream Wnt target genes, including a significant reduction in both c-myc and cyclin-D1, despite activating Wnt signaling. This was a tumor-specific response that was not elicited in corresponding liver samples. (4) Conclusions: We report for the first time decreased c-myc expression in colorectal tumors following RASi treatment in vivo. Decreased c-myc expression was accompanied by an attenuated invasive phenotype, despite increased Wnt signaling.
Collapse
|
95
|
Varayathu H, Sarathy V, Thomas BE, Mufti SS, Naik R. Combination Strategies to Augment Immune Check Point Inhibitors Efficacy - Implications for Translational Research. Front Oncol 2021; 11:559161. [PMID: 34123767 PMCID: PMC8193928 DOI: 10.3389/fonc.2021.559161] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 04/30/2021] [Indexed: 12/22/2022] Open
Abstract
Immune checkpoint inhibitor therapy has revolutionized the field of cancer immunotherapy. Even though it has shown a durable response in some solid tumors, several patients do not respond to these agents, irrespective of predictive biomarker (PD-L1, MSI, TMB) status. Multiple preclinical, as well as early-phase clinical studies are ongoing for combining immune checkpoint inhibitors with anti-cancer and/or non-anti-cancer drugs for beneficial therapeutic interactions. In this review, we discuss the mechanistic basis behind the combination of immune checkpoint inhibitors with other drugs currently being studied in early phase clinical studies including conventional chemotherapy drugs, metronomic chemotherapy, thalidomide and its derivatives, epigenetic therapy, targeted therapy, inhibitors of DNA damage repair, other small molecule inhibitors, anti-tumor antibodies hormonal therapy, multiple checkpoint Inhibitors, microbiome therapeutics, oncolytic viruses, radiotherapy, drugs targeting myeloid-derived suppressor cells, drugs targeting Tregs, drugs targeting renin-angiotensin system, drugs targeting the autonomic nervous system, metformin, etc. We also highlight how translational research strategies can help better understand the true therapeutic potential of such combinations.
Collapse
Affiliation(s)
- Hrishi Varayathu
- Department of Translational Medicine and Therapeutics, HealthCare Global Enterprises Limited, Bangalore, India
| | - Vinu Sarathy
- Department of Medical Oncology, HealthCare Global Enterprises Limited, Bangalore, India
| | - Beulah Elsa Thomas
- Department of Clinical Pharmacology, HealthCare Global Enterprises Limited, Bangalore, India
| | - Suhail Sayeed Mufti
- Department of Translational Medicine and Therapeutics, HealthCare Global Enterprises Limited, Bangalore, India
| | - Radheshyam Naik
- Department of Medical Oncology, HealthCare Global Enterprises Limited, Bangalore, India
| |
Collapse
|
96
|
Carlos-Escalante JA, de Jesús-Sánchez M, Rivas-Castro A, Pichardo-Rojas PS, Arce C, Wegman-Ostrosky T. The Use of Antihypertensive Drugs as Coadjuvant Therapy in Cancer. Front Oncol 2021; 11:660943. [PMID: 34094953 PMCID: PMC8173186 DOI: 10.3389/fonc.2021.660943] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/19/2021] [Indexed: 12/23/2022] Open
Abstract
Cancer is a complex group of diseases that constitute the second largest cause of mortality worldwide. The development of new drugs for treating this disease is a long and costly process, from the discovery of the molecule through testing in phase III clinical trials, a process during which most candidate molecules fail. The use of drugs currently employed for the management of other diseases (drug repurposing) represents an alternative for developing new medical treatments. Repurposing existing drugs is, in principle, cheaper and faster than developing new drugs. Antihypertensive drugs, primarily belonging to the pharmacological categories of angiotensin-converting enzyme inhibitors, angiotensin II receptors, direct aldosterone antagonists, β-blockers and calcium channel blockers, are commonly prescribed and have well-known safety profiles. Additionally, some of these drugs have exhibited pharmacological properties useful for the treatment of cancer, rendering them candidates for drug repurposing. In this review, we examine the preclinical and clinical evidence for utilizing antihypertensive agents in the treatment of cancer.
Collapse
Affiliation(s)
- José A. Carlos-Escalante
- Plan de Estudios Combinados En Medicina (PECEM) (MD/PhD), Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Marcela de Jesús-Sánchez
- Facultad de Ciencias Biológicas y Agropecuarias, Universidad Veracruzana, Orizaba-Córdoba, Mexico
| | - Alejandro Rivas-Castro
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | | | - Claudia Arce
- Medical Oncology/Breast Tumors, Instituto Nacional de Cancerología, Mexico City, Mexico
| | - Talia Wegman-Ostrosky
- Basic Research Subdirection, Instituto Nacional de Cancerología, Mexico City, Mexico
| |
Collapse
|
97
|
de Miranda FS, Guimarães JPT, Menikdiwela KR, Mabry B, Dhakal R, Rahman RL, Moussa H, Moustaid-Moussa N. Breast cancer and the renin-angiotensin system (RAS): Therapeutic approaches and related metabolic diseases. Mol Cell Endocrinol 2021; 528:111245. [PMID: 33753205 DOI: 10.1016/j.mce.2021.111245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 03/09/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The Renin-Angiotensin System (RAS) is classically recognized for regulating blood pressure and fluid balance. Recently, this role has extended to other areas including inflammation, obesity, diabetes, as well as breast cancer. RAS components are expressed in normal and cancerous breast tissues, and downregulation of RAS inhibits metastasis, proliferation, angiogenesis, and desmoplasia in the tumor microenvironment. Therefore, RAS inhibitors (Angiotensin receptor blockers, ARBs, or angiotensin converting enzyme inhibitors, ACE-I) may be beneficial as preventive adjuvant therapies to thwart breast cancer development and improve outcomes, respectively. Given the beneficial effects of RAS inhibitors in metabolic diseases, which often co-exist in breast cancer patients, combining RAS inhibitors with other breast cancer therapies may enhance the effectiveness of current treatments. This review scrutinizes above associations, to advance our understanding of the role of RAS in breast cancer and its potential for repurposing of RAS inhibitors to improve the therapeutic approach for breast cancer patients.
Collapse
Affiliation(s)
- Flávia Sardela de Miranda
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - João Pedro Tôrres Guimarães
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA; Laboratory of Immunopharmacology, Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo (ICB/USP), São Paulo, SP, Brazil; Laboratory of Immunoendocrinology, Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo (FCF/USP), São Paulo, SP, Brazil
| | - Kalhara R Menikdiwela
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA
| | - Brennan Mabry
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA
| | - Rabin Dhakal
- Department of Mechanical Engineering, Texas Tech University (TTU), Lubbock, TX, USA
| | - Rakhshanda Layeequr Rahman
- Department of Surgery, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Hanna Moussa
- Obesity Research Institute, Texas Tech University, Lubbock, TX, USA; Department of Mechanical Engineering, Texas Tech University (TTU), Lubbock, TX, USA
| | - Naima Moustaid-Moussa
- Laboratory of Nutrigenomics, Inflammation and Obesity Research, Department of Nutritional Sciences, Texas Tech University (TTU), Lubbock, TX, USA; Obesity Research Institute, Texas Tech University, Lubbock, TX, USA.
| |
Collapse
|
98
|
Liu Z, Zhao Q, Zheng Z, Liu S, Meng L, Dong L, Jiang X. Vascular normalization in immunotherapy: A promising mechanisms combined with radiotherapy. Biomed Pharmacother 2021; 139:111607. [PMID: 33965730 DOI: 10.1016/j.biopha.2021.111607] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/02/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Leakage and compression of blood vessels may result in deprivation of blood flow to a large number of tumor tissues, which can lead to tumor hypoxia. Hypoxia induces an increase in the expression of hypoxia-inducible factor 1 in tumor cells, which induces angiogenesis in tumors through the high expression of vascular endothelial growth factor, thereby forming a positive feedback vicious circle. Improving hypoxia by normalizing blood vessels and improving radiosensitivity by immunotherapy has emerged as a new application of combined immunotherapy and radiotherapy. Interferon γ produced by CD4 + /CD8 + T cells, induced by immune checkpoint inhibitors, plays an important role in the normalization of blood vessels; tumor-associated eosinophils also play a role in the process of immunotherapy-induced blood vessel normalization. In addition, the reduction in regulatory T cells induced by immune checkpoint inhibitors can increase eosinophil levels, which promotes the further development of vascular normalization mechanisms. This review focuses on the mechanism of immunotherapy to normalize blood vessels, and proposes a good prospect for improving hypoxia. Due to the narrow vascular normalization window of anti-angiogenesis therapy, discovery of the vascular normalization effect of immunotherapy provides a new idea for the combined application of immunotherapy and radiotherapy. The enlarged vascular normalization window and improved hypoxia provide a good opportunity for the subsequent implementation of radiotherapy. The above sorting and analysis may pave the way for a promising strategy for cancer treatment via combined immunotherapy and radiotherapy.
Collapse
Affiliation(s)
- Zijing Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Qin Zhao
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Zhuangzhuang Zheng
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Shiyu Liu
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL 33612, USA
| | - Lihua Dong
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun 130021, China; Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun 130021, China.
| |
Collapse
|
99
|
Batais M, Almigbal T, Alotaibi K, Alodhayani A, Alkhushail A, Altheaby A, Alhantoushi M, Alsaad S, Dalbhi SA, Alghamdi Y. Angiotensin converting enzyme inhibitors and risk of lung cancer: A systematic review and meta-analysis. Medicine (Baltimore) 2021; 100:e25714. [PMID: 33907158 PMCID: PMC8084080 DOI: 10.1097/md.0000000000025714] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND We performed a meta-analysis to determine whether a consistent relationship exists between the use of angiotensin converting enzyme inhibitors (ACEIs) and the risk of lung cancer. Accordingly, we summarized and reviewed previously published quantitative studies. METHODS Eligible studies with reference lists published before June 1st, 2019 were obtained from searching several databases. Random effects' models were used to summarize the overall estimate of the multivariate adjusted odds ratios (ORs) with 95% confidence intervals (CIs). RESULTS Thirteen observational studies involving 458,686 ACEI users were included in the analysis, Overall, pooled risk ratios indicate that ACEIs use was not a risk factor for lung cancer (RR 0.982, 95% C.I. 0.873 - 1.104; P = .76). There was significant heterogeneity between the studies (Q = 52.54; P < .001; I2 = 86.07). There was no significant association between ACEIs use and lung cancer in studies with over five years of ACEIs exposure (RR 0.95, 95% C.I. 0.75 - 1.20; P = .70); and ≤ 5years of exposure to ACEIs (RR 0.98, 95% C.I. 0.83 - 1.15; P = .77). There were no statistically significant differences in the pooled risk ratio obtained according to the study design (Q = 0.65; P = .723) and the comparator regimen (Q = 3.37; P = .19). CONCLUSIONS The use of ACEIs was not associated with an increased risk of lung cancer. Nevertheless, well-designed observational studies with different ethnic populations are still needed to evaluate the long-term (over 10 years) association between ACEIs use and lung cancer.
Collapse
Affiliation(s)
- Mohammed Batais
- King Saud University Medical City, College of Medicine, King Saud University
| | - Turky Almigbal
- King Saud University Medical City, College of Medicine, King Saud University
| | | | | | | | | | | | - Saad Alsaad
- King Saud University Medical City, College of Medicine, King Saud University
| | | | - Yasser Alghamdi
- Prince Mohammed Bin Abdulaziz Hospital, Riyadh, Saudi Arabia
| |
Collapse
|
100
|
Jain RK, Skelton Iv WP, Pond GR, Naqvi M, Kim Y, Curran C, Freeman D, Nuzzo PV, Alaiwi SA, Nassar AH, Jain RK, Sonpavde G. Angiotensin Blockade Modulates the Activity of PD1/L1 Inhibitors in Metastatic Urothelial Carcinoma. Clin Genitourin Cancer 2021; 19:540-546. [PMID: 34011489 DOI: 10.1016/j.clgc.2021.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/03/2021] [Accepted: 04/05/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND The renin-angiotensin system is involved in the regulation of angiogenesis and cell proliferation. Angiotensin inhibition may improve drug delivery by enhancing tumor perfusion partly by downregulating transforming growth factor (TGF)-β. Because TGF-β is associated with resistance in patients with metastatic urothelial carcinoma (mUC) receiving programmed cell death protein 1/programmed cell death ligand 1 (PD1/L1) inhibitors, we hypothesized that angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs) may enhance the outcomes of patients with mUC who receive PD1/L1 inhibitors. PATIENTS AND METHODS Data from patients with mUC who received PD1/L1 inhibitors as monotherapy were obtained; patients from the Dana-Farber Cancer Institute constituted the discovery dataset, and data from Moffitt Cancer Center served as the validation dataset. A logistic regression investigated the impact of concurrent ACEI/ARB primarily on any regression of tumor (ART) after controlling for prognostic factors. RESULTS Data were available for 178 patients from the discovery dataset, of whom 153 (86%) had received prior platinum and 33 (18.5%) concurrent ACEIs/ARBs. Multivariable logistic regression analysis revealed that ACEIs/ARBs were associated with greater probability of ART (odds ratio [OR] = 2.69; 95% confidence interval [CI], 1.15-6.30; P = .022). In the validation dataset, 101 patients were available, of whom 59 (58.4%) had received prior platinum and 22 (21.8%) concurrent ACEIs/ARBs. ACEI/ARB demonstrated a trend for association with ART (OR = 3.28; 95% CI, 0.98-10.99; P = .054) on multivariable analysis of the validation dataset. CONCLUSIONS Concurrent angiotensin blockade was associated with a higher rate of tumor regression in patients with mUC receiving PD1/L1 inhibitors. Validation is warranted in a prospective trial, especially given the cost efficacy of ACEIs/ARBs.
Collapse
Affiliation(s)
- Rohit K Jain
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | | | | | - Mahrukh Naqvi
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Youngchul Kim
- H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL
| | - Catherine Curran
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Dory Freeman
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Pier Vitale Nuzzo
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Sarah Abou Alaiwi
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Amin H Nassar
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Rakesh K Jain
- Edwin L. Steele Laboratories, Department of Radiation Oncology, Massachusetts General Hospital, Boston, USA
| | - Guru Sonpavde
- Lank Center for Genitourinary Oncology, Dana-Farber Cancer Institute, Boston, MA.
| |
Collapse
|