51
|
McConville TH, Giddins MJ, Uhlemann AC. An efficient and versatile CRISPR-Cas9 system for genetic manipulation of multi-drug resistant Klebsiella pneumoniae. STAR Protoc 2021; 2:100373. [PMID: 33733242 PMCID: PMC7941085 DOI: 10.1016/j.xpro.2021.100373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Multi-drug resistant (MDR) Klebsiella pneumoniae remains an urgent public health threat. While whole-genome sequencing has helped identify genetic changes underlying resistance, functional validation remains difficult due to a lack of genetic manipulation systems for MDR K. pneumoniae. CRISPR-Cas9 has revolutionized molecular biology, but its use was only recently adapted in bacteria by overcoming the lack of genetic repair systems. We describe a CRISPR-Cas9/lambda recombineering system utilizing a zeocin resistance cassette allowing efficient and versatile genetic manipulation of K. pneumoniae. For complete details on the use and execution of this protocol, please refer to McConville et al. (2020). Gene editing for multi-drug resistant Klebsiella pneumoniae utilizing CRISPR-Cas9 Description of plasmid design, cloning, genetic manipulation, and mutant confirmation Approach allows for gene knockouts and single nucleotide polymorphism editing “Scarless” editing allows for serial modifications in a single bacterial isolate
Collapse
Affiliation(s)
- Thomas H McConville
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 West 168 Street, New York, NY 10032, USA
| | - Marla J Giddins
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 West 168 Street, New York, NY 10032, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, 630 West 168 Street, New York, NY 10032, USA
| |
Collapse
|
52
|
Effects of Regulatory Network Organization and Environment on PmrD Connector Activity and Polymyxin Resistance in Klebsiella pneumoniae and Escherichia coli. Antimicrob Agents Chemother 2021; 65:AAC.00889-20. [PMID: 33361295 DOI: 10.1128/aac.00889-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022] Open
Abstract
Polymyxins are a class of cyclic peptides with antimicrobial activity against Gram-negative bacteria. In Enterobacteriaceae, the PhoQ/PhoP and PmrB/PmrA two-component systems regulate many genes that confer resistance to both polymyxins and host antimicrobial peptides. The activities of these two-component systems are modulated by additional proteins that are conserved across Enterobacteriaceae, such as MgrB, a negative regulator of PhoQ, and PmrD, a "connector" protein that activates PmrB/PmrA in response to PhoQ/PhoP stimulation. Despite the conservation of many protein components of the PhoQ/PhoP-PmrD-PmrB/PmrA network, the specific molecular interactions and regulatory mechanisms vary across different genera. Here, we explore the role of PmrD in modulating this signaling network in Klebsiella pneumoniae and Escherichia coli We show that in K. pneumoniae, PmrD is not required for polymyxin resistance arising from mutation of mgrB-the most common cause of spontaneous polymyxin resistance in this bacterium-suggesting that direct activation of polymyxin resistance genes by PhoQ/PhoP plays a critical role in this resistance pathway. However, for conditions of low pH or intermediate iron concentrations, both of which stimulate PmrB/PmrA, we find that PmrD does contribute to resistance. We further show that in E. coli, PmrD functions as a connector between PhoQ/PhoP and PmrB/PmrA, in contrast with previous reports. In this case, activity also depends on PmrB/PmrA stimulation, or on very high activation of PhoQ/PhoP. Our results indicate that the importance of the PmrD connector in modulating the polymyxin resistance network depends on both the network organization and on the environmental conditions associated with PmrB stimulation.
Collapse
|
53
|
Lopes SP, Jorge P, Sousa AM, Pereira MO. Discerning the role of polymicrobial biofilms in the ascent, prevalence, and extent of heteroresistance in clinical practice. Crit Rev Microbiol 2021; 47:162-191. [PMID: 33527850 DOI: 10.1080/1040841x.2020.1863329] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Antimicrobial therapy is facing a worrisome and underappreciated challenge, the phenomenon of heteroresistance (HR). HR has been gradually documented in clinically relevant pathogens (e.g. Pseudomonas aeruginosa, Staphylococcus aureus, Burkholderia spp., Acinetobacter baumannii, Klebsiella pneumoniae, Candida spp.) towards several drugs and is believed to complicate the clinical picture of chronic infections. This type of infections are typically mediated by polymicrobial biofilms, wherein microorganisms inherently display a wide range of physiological states, distinct metabolic pathways, diverging refractory levels of stress responses, and a complex network of chemical signals exchange. This review aims to provide an overview on the relevance, prevalence, and implications of HR in clinical settings. Firstly, related terminologies (e.g. resistance, tolerance, persistence), sometimes misunderstood and overlapped, were clarified. Factors generating misleading HR definitions were also uncovered. Secondly, the recent HR incidences reported in clinically relevant pathogens towards different antimicrobials were annotated. The potential mechanisms underlying such occurrences were further elucidated. Finally, the link between HR and biofilms was discussed. The focus was to recognize the presence of heterogeneous levels of resistance within most biofilms, as well as the relevance of polymicrobial biofilms in chronic infectious diseases and their role in resistance spreading. These topics were subject of a critical appraisal, gaining insights into the ascending clinical implications of HR in antimicrobial resistance spreading, which could ultimately help designing effective therapeutic options.
Collapse
Affiliation(s)
- Susana Patrícia Lopes
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Paula Jorge
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Ana Margarida Sousa
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| | - Maria Olívia Pereira
- CEB - Centre of Biological Engineering, LIBRO - Laboratory of Research in Biofilms Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
54
|
Paveenkittiporn W, Kamjumphol W, Ungcharoen R, Kerdsin A. Whole-Genome Sequencing of Clinically Isolated Carbapenem-Resistant Enterobacterales Harboring mcr Genes in Thailand, 2016-2019. Front Microbiol 2021; 11:586368. [PMID: 33505364 PMCID: PMC7829498 DOI: 10.3389/fmicb.2020.586368] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 11/16/2020] [Indexed: 01/26/2023] Open
Abstract
Mobile colistin-resistant genes (mcr) have become an increasing public health concern. Since the first report of mcr-1 in Thailand in 2016, perspective surveillance was conducted to explore the genomic characteristics of clinical carbapenem-resistant Enterobacterales (CRE) isolates harboring mcr in 2016-2019. Thirteen (0.28%) out of 4,516 CRE isolates were found to carry mcr genes, including 69.2% (9/13) of E. coli and 30.8% (4/13) of K. pneumoniae isolates. Individual mcr-1.1 was detected in eight E. coli (61.5%) isolates, whereas the co-occurrence of mcr-1.1 and mcr-3.5 was seen in only one E. coli isolate (7.7%). No CRE were detected carrying mcr-2, mcr-4, or mcr-5 through to mcr-9. Analysis of plasmid replicon types carrying mcr revealed that IncX4 was the most common (61.5%; 8/13), followed by IncI2 (15.4%; 2/13). The minimum inhibitory concentration values for colistin were in the range of 4-16 μg/ml for all CRE isolates harboring mcr, suggesting they have 100% colistin resistance. Clermont phylotyping of nine mcr-harboring carbapenem-resistant E. coli isolates demonstrated phylogroup C was predominant in ST410. In contrast, ST336 belonged to CC17, and the KL type 25 was predominant in carbapenem-resistant K. pneumoniae isolates. This report provides a comprehensive insight into the prevalence of mcr-carrying CRE from patients in Thailand. The information highlights the importance of strengthening official active surveillance efforts to detect, control, and prevent mcr-harboring CRE and the need for rational drug use in all sectors.
Collapse
Affiliation(s)
- Wantana Paveenkittiporn
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Watcharaporn Kamjumphol
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | | | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Nakhon, Thailand
| |
Collapse
|
55
|
The Acquisition of Colistin Resistance Is Associated to the Amplification of a Large Chromosomal Region in Klebsiella pneumoniae kp52145. Int J Mol Sci 2021; 22:ijms22020649. [PMID: 33440735 PMCID: PMC7826664 DOI: 10.3390/ijms22020649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/23/2020] [Accepted: 12/29/2020] [Indexed: 11/17/2022] Open
Abstract
The appearance of carbapenem-resistant Klebsiella pneumoniae has increased the use of colistin as a last-resort antibiotic for treating infections by this pathogen. A consequence of its use has been the spread of colistin-resistant strains, in several cases carrying colistin resistance genes. In addition, when susceptible strains are confronted with colistin during treatment, mutation is a major cause of the acquisition of resistance. To analyze the mechanisms of resistance that might be selected during colistin treatment, an experimental evolution assay for 30 days using as a model the clinical K. pneumoniae kp52145 isolate in the presence of increasing amounts of colistin was performed. All evolved populations presented a decreased susceptibility to colistin, without showing cross-resistance to antibiotics belonging to other structural families. We did not find any common mutation in the evolved mutants, neither in already known genes, previously known to be associated with the resistance phenotype, nor in new ones. The only common genetic change observed in the strains that evolved in the presence of colistin was the amplification of a 34 Kb sequence, homologous to a prophage (Enterobacteria phage Fels-2). Our data support that gene amplification can be a driving force in the acquisition of colistin resistance by K. pneumoniae.
Collapse
|
56
|
Mohapatra SS, Dwibedy SK, Padhy I. Polymyxins, the last-resort antibiotics: Mode of action, resistance emergence, and potential solutions. J Biosci 2021; 46:85. [PMID: 34475315 PMCID: PMC8387214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/03/2021] [Indexed: 04/04/2024]
Abstract
Infections caused by multi-drug resistant (MDR) bacterial pathogens are a leading cause of mortality and morbidity across the world. Indiscriminate use of broad-spectrum antibiotics has seriously affected this situation. With the diminishing discovery of novel antibiotics, new treatment methods are urgently required to combat MDR pathogens. Polymyxins, the cationic lipopeptide antibiotics, discovered more than half a century ago, are considered to be the last-line of antibiotics available at the moment. This antibiotic shows a great bactericidal effect against Gram-negative bacteria. Polymyxins primarily target the bacterial membrane and disrupt them, causing lethality. Because of their membrane interacting mode of action, polymyxins cause nephrotoxicity and neurotoxicity in humans, limiting their usability. However, recent modifications in their chemical structure have been able to reduce the toxic effects. The development of better dosing regimens has also helped in getting better clinical outcomes in the infections caused by MDR pathogens. Since the mid1990s the use of polymyxins has increased manifold in clinical settings, resulting in the emergence of polymyxin-resistant strains. The risk posed by the polymyxin-resistant nosocomial pathogens such as the Enterobacteriaceae group, Pseudomonas aeruginosa, and Acinetobacter baumannii, etc. is very serious considering these pathogens are resistant to almost all available antibacterial drugs. In this review article, the mode of action of the polymyxins and the genetic regulatory mechanism responsible for the emergence of resistance are discussed. Specifically, this review aims to update our current understanding in the field and suggest possible solutions that can be pursued for future antibiotic development. As polymyxins primarily target the bacterial membranes, resistance to polymyxins arises primarily by the modification of the lipopolysaccharides (LPS) in the outer membrane (OM). The LPS modification pathways are largely regulated by the bacterial two-component signal transduction (TCS) systems. Therefore, targeting or modulating the TCS signalling mechanisms can be pursued as an alternative to treat the infections caused by polymyxin-resistant MDR pathogens. In this review article, this aspect is also highlighted.
Collapse
Affiliation(s)
- Saswat S Mohapatra
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Sambit K Dwibedy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| | - Indira Padhy
- Molecular Microbiology Lab, Department of Bioscience and Bioinformatics, Khallikote University, Konisi, Berhampur, 761 008 Odisha India
| |
Collapse
|
57
|
Evolution of Colistin Resistance in the Klebsiella pneumoniae Complex Follows Multiple Evolutionary Trajectories with Variable Effects on Fitness and Virulence Characteristics. Antimicrob Agents Chemother 2020; 65:AAC.01958-20. [PMID: 33139278 DOI: 10.1128/aac.01958-20] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 10/25/2020] [Indexed: 12/14/2022] Open
Abstract
The increasing prevalence of multidrug-resistant Klebsiella pneumoniae has led to a resurgence in the use of colistin as a last-resort drug. Colistin is a cationic antibiotic that selectively acts on Gram-negative bacteria through electrostatic interactions with anionic phosphate groups of the lipid A moiety of lipopolysaccharides (LPSs). Colistin resistance in K. pneumoniae is mediated through loss of these phosphate groups, their modification by cationic groups, and by the hydroxylation of acyl groups of lipid A. Here, we study the in vitro evolutionary trajectories toward colistin resistance in four clinical K. pneumoniae complex strains and their impact on fitness and virulence characteristics. Through population sequencing during in vitro evolution, we found that colistin resistance develops through a combination of single nucleotide polymorphisms, insertions and deletions, and the integration of insertion sequence elements, affecting genes associated with LPS biosynthesis and modification and capsule structures. Colistin resistance decreased the maximum growth rate of one K. pneumoniae sensu stricto strain, but not those of the other three K. pneumoniae complex strains. Colistin-resistant strains had lipid A modified through hydroxylation, palmitoylation, and l-Ara4N addition. K. pneumoniae sensu stricto strains exhibited cross-resistance to LL-37, in contrast to the Klebsiella variicola subsp. variicola strain. Virulence, as determined in a Caenorhabditis elegans survival assay, was increased in two colistin-resistant strains. Our study suggests that nosocomial K. pneumoniae complex strains can rapidly develop colistin resistance through diverse evolutionary trajectories upon exposure to colistin. This effectively shortens the life span of this last-resort antibiotic for the treatment of infections with multidrug-resistant Klebsiella.
Collapse
|
58
|
Emerging Transcriptional and Genomic Mechanisms Mediating Carbapenem and Polymyxin Resistance in Enterobacteriaceae: a Systematic Review of Current Reports. mSystems 2020; 5:5/6/e00783-20. [PMID: 33323413 PMCID: PMC7771540 DOI: 10.1128/msystems.00783-20] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. The spread of carbapenem- and polymyxin-resistant Enterobacteriaceae poses a significant threat to public health, challenging clinicians worldwide with limited therapeutic options. This review describes the current coding and noncoding genetic and transcriptional mechanisms mediating carbapenem and polymyxin resistance, respectively. A systematic review of all studies published in PubMed database between 2015 to October 2020 was performed. Journal articles evaluating carbapenem and polymyxin resistance mechanisms, respectively, were included. The search identified 171 journal articles for inclusion. Different New Delhi metallo-β-lactamase (NDM) carbapenemase variants had different transcriptional and affinity responses to different carbapenems. Mutations within the Klebsiella pneumoniae carbapenemase (KPC) mobile transposon, Tn4401, affect its promoter activity and expression levels, increasing carbapenem resistance. Insertion of IS26 in ardK increased imipenemase expression 53-fold. ompCF porin downregulation (mediated by envZ and ompR mutations), micCF small RNA hyperexpression, efflux upregulation (mediated by acrA, acrR, araC, marA, soxS, ramA, etc.), and mutations in acrAB-tolC mediated clinical carbapenem resistance when coupled with β-lactamase activity in a species-specific manner but not when acting without β-lactamases. Mutations in pmrAB, phoPQ, crrAB, and mgrB affect phosphorylation of lipid A of the lipopolysaccharide through the pmrHFIJKLM (arnBCDATEF or pbgP) cluster, leading to polymyxin resistance; mgrB inactivation also affected capsule structure. Mobile and induced mcr, efflux hyperexpression and porin downregulation, and Ecr transmembrane protein also conferred polymyxin resistance and heteroresistance. Carbapenem and polymyxin resistance is thus mediated by a diverse range of genetic and transcriptional mechanisms that are easily activated in an inducing environment. The molecular understanding of these emerging mechanisms can aid in developing new therapeutics for multidrug-resistant Enterobacteriaceae isolates.
Collapse
|
59
|
El-Sayed Ahmed MAEG, Zhong LL, Shen C, Yang Y, Doi Y, Tian GB. Colistin and its role in the Era of antibiotic resistance: an extended review (2000-2019). Emerg Microbes Infect 2020; 9:868-885. [PMID: 32284036 PMCID: PMC7241451 DOI: 10.1080/22221751.2020.1754133] [Citation(s) in RCA: 374] [Impact Index Per Article: 93.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 03/28/2020] [Accepted: 04/04/2020] [Indexed: 12/17/2022]
Abstract
Increasing antibiotic resistance in multidrug-resistant (MDR) Gram-negative bacteria (MDR-GNB) presents significant health problems worldwide, since the vital available and effective antibiotics, including; broad-spectrum penicillins, fluoroquinolones, aminoglycosides, and β-lactams, such as; carbapenems, monobactam, and cephalosporins; often fail to fight MDR Gram-negative pathogens as well as the absence of new antibiotics that can defeat these "superbugs". All of these has prompted the reconsideration of old drugs such as polymyxins that were reckoned too toxic for clinical use. Only two polymyxins, polymyxin E (colistin) and polymyxin B, are currently commercially available. Colistin has re-emerged as a last-hope treatment in the mid-1990s against MDR Gram-negative pathogens due to the development of extensively drug-resistant GNB. Unfortunately, rapid global resistance towards colistin has emerged following its resurgence. Different mechanisms of colistin resistance have been characterized, including intrinsic, mutational, and transferable mechanisms.In this review, we intend to discuss the progress over the last two decades in understanding the alternative colistin mechanisms of action and different strategies used by bacteria to develop resistance against colistin, besides providing an update about what is previously recognized and what is novel concerning colistin resistance.
Collapse
Affiliation(s)
- Mohamed Abd El-Gawad El-Sayed Ahmed
- Department of Microbiology, Zhongshan School of
Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of
China
- Key Laboratory of Tropical Diseases Control, Sun
Yat-sen University, Ministry of Education, Guangzhou, People’s
Republic of China
- Department of Microbiology and Immunology,
Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science
and Technology (MUST), Cairo, Egypt
| | - Lan-Lan Zhong
- Department of Microbiology, Zhongshan School of
Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of
China
- Key Laboratory of Tropical Diseases Control, Sun
Yat-sen University, Ministry of Education, Guangzhou, People’s
Republic of China
| | - Cong Shen
- Department of Microbiology, Zhongshan School of
Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of
China
- Key Laboratory of Tropical Diseases Control, Sun
Yat-sen University, Ministry of Education, Guangzhou, People’s
Republic of China
| | - Yongqiang Yang
- Department of Microbiology, Zhongshan School of
Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of
China
- Key Laboratory of Tropical Diseases Control, Sun
Yat-sen University, Ministry of Education, Guangzhou, People’s
Republic of China
| | - Yohei Doi
- University of Pittsburgh School of
Medicine, Pittsburgh, PA, USA
- Department of Microbiology and Infectious
Diseases, Fujita Health University, School of Medicine, Aichi,
Japan
| | - Guo-Bao Tian
- Department of Microbiology, Zhongshan School of
Medicine, Sun Yat-sen University, Guangzhou, People’s Republic of
China
- Key Laboratory of Tropical Diseases Control, Sun
Yat-sen University, Ministry of Education, Guangzhou, People’s
Republic of China
| |
Collapse
|
60
|
Rocha IV, Dos Santos Silva N, das Neves Andrade CA, de Lacerda Vidal CF, Leal NC, Xavier DE. Diverse and emerging molecular mechanisms award polymyxins resistance to Enterobacteriaceae clinical isolates from a tertiary hospital of Recife, Brazil. INFECTION GENETICS AND EVOLUTION 2020; 85:104584. [PMID: 33022426 DOI: 10.1016/j.meegid.2020.104584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/21/2020] [Accepted: 10/01/2020] [Indexed: 10/23/2022]
Abstract
OBJECTIVE To describe the molecular mechanisms of polymyxins resistance in five Enterobacteriaceae clinical isolates from a tertiary hospital of Recife, Brazil. METHODS The species identification and the susceptibility to antimicrobials were firstly performed by automatized methods and polymyxin resistance was confirmed by broth microdilution methods. The genetic basis of resistance was characterized with WGS analyses to study their resistome, plasmidome and mobilome, by BLAST searches on reference databases. RESULTS Five (5%) Enterobacteriaceae isolates, comprising Escherichia coli (n = 2), Klebsiella pneumoniae (n = 2) and Citrobacter freundii (n = 1) species, exhibited polymyxin resistance. The mcr-1.1 gene was found in identical IncX4-plasmids harbored by both K. pneumoniae C119 (PolB MIC = 512 mg/L) and E. coli C153 (PolB MIC = 8 mg/L). The remaining E. coli strain C027 harbored the mcr-5.1 gene on an undefined Inc-plasmid (PolB MIC 256 mg/L). Some amino acid substitutions in PmrA (S29G, G144S), PmrB (S202P; D283G, W350*, Y258N) and PhoP (I44L) was detected among the E. coli clinical isolates, however they were also found in colistin-susceptible strains and predicted as neutral alterations. The mgrB of the ST54 KPC-2-producing K. pneumoniae C151 (PolB MIC = 32 g/mL) was interrupted at 69 nt by the IS903 element. The ST117 C. freundii C156 (PolB MIC = 256 mg/L) showed the A91T substitution on HAMP domain of the histidine kinase sensor CrrB, predicted as deleterious and deemed the remarkable determinant to polymyxins resistance in this strain. CONCLUSIONS Diverse mechanisms of polymyxins resistance were identified among clinical Enterobacteriaceae from a tertiary hospital of Recife, Brazil, such as plasmid-mediated MCR-1 and MCR-5; IS903-interruption of mgrB and mutation in CrrAB regulatory system. These findings highlight the involvement of the identified plasmids on mcr dissemination among Enterobacteriaceae; warn about co-selection of the polymyxin-resistant and KPC-producer K. pneumoniae ΔmgrB lineage by carbapenems usage; and demonstrate potential role of CrrAB on emerging of polymyxin resistance among Enterobacteriaceae, besides Klebsiella species.
Collapse
|
61
|
McConville TH, Annavajhala MK, Giddins MJ, Macesic N, Herrera CM, Rozenberg FD, Bhushan GL, Ahn D, Mancia F, Trent MS, Uhlemann AC. CrrB Positively Regulates High-Level Polymyxin Resistance and Virulence in Klebsiella pneumoniae. Cell Rep 2020; 33:108313. [PMID: 33113377 PMCID: PMC7656232 DOI: 10.1016/j.celrep.2020.108313] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/16/2020] [Accepted: 10/05/2020] [Indexed: 12/20/2022] Open
Abstract
Polymyxin resistance (PR) threatens the treatment of carbapenem-resistant Klebsiella pneumoniae (CRKP) infections. PR frequently arises through chemical modification of the lipid A portion of lipopolysaccharide. Various mutations are implicated in PR, including in three two-component systems—CrrA/B, PmrA/B, and PhoP/Q—and the negative regulator MgrB. Few have been functionally validated. Therefore, here we adapt a CRISPR-Cas9 system to CRKP to elucidate how mutations in clinical CRKP isolates induce PR. We demonstrate that CrrB is a positive regulator of PR, and common clinical mutations lead to the addition of both 4-amino-4-deoxy-L-arabinose (L-Ara4N) and phosophethanolamine (pEtN) to lipid A, inducing notably higher polymyxin minimum inhibitory concentrations than mgrB disruption. Additionally, crrB mutations cause a significant virulence increase at a fitness cost, partially from activation of the pentose phosphate pathway. Our data demonstrate the importance of CrrB in high-level PR and establish important differences across crrB alleles in balancing resistance with fitness and virulence. McConville et al. leverage CRISPR-Cas to demonstrate that mutations in crrB induce high-level polymyxin resistance in Klebsiella pneumoniae via the addition of L-Ara4N and pEtN to lipid A. CrrB mutations also increase virulence while conferring a fitness cost and alter carbon metabolism through activation of the pentose phosphate pathway.
Collapse
Affiliation(s)
- Thomas H McConville
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Medini K Annavajhala
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Marla J Giddins
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Nenad Macesic
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, 3004 VIC, Australia
| | - Carmen M Herrera
- Departments of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Felix D Rozenberg
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Gitanjali L Bhushan
- Division of Pediatric Critical Care, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Danielle Ahn
- Division of Pediatric Critical Care, Department of Pediatrics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology, Columbia University, New York, NY 10032, USA
| | - M Stephen Trent
- Departments of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Anne-Catrin Uhlemann
- Division of Infectious Diseases, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
62
|
Wistrand-Yuen P, Olsson A, Skarp KP, Friberg L, Nielsen E, Lagerbäck P, Tängdén T. Evaluation of polymyxin B in combination with 13 other antibiotics against carbapenemase-producing Klebsiella pneumoniae in time-lapse microscopy and time-kill experiments. Clin Microbiol Infect 2020; 26:1214-1221. [DOI: 10.1016/j.cmi.2020.03.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/17/2020] [Accepted: 03/10/2020] [Indexed: 12/17/2022]
|
63
|
Colistin Heteroresistance among Extended Spectrum β-lactamases-Producing Klebsiella pneumoniae. Microorganisms 2020; 8:microorganisms8091279. [PMID: 32825799 PMCID: PMC7569871 DOI: 10.3390/microorganisms8091279] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/14/2020] [Accepted: 08/20/2020] [Indexed: 01/24/2023] Open
Abstract
Colistin-heteroresistant (CST-HR) Enterobacterales isolates have been identified recently, challenging the clinical laboratories since routine susceptibility tests fail to detect this phenotype. In this work we describe the first CST-HR phenotype in extended-spectrum β-lactamase (ESBL)-producing Klebsiella pneumoniae isolates in South America. Additionally, we determine the genomic mechanisms of colistin heteroresistance in these strains. The CST-HR phenotype was analyzed by the population analysis profile (PAP) method, and mutations associated with this phenotype were determined by whole-genome sequencing (WGS) and the local BLAST+ DB tool. As a result, 8/60 isolates were classified as CST-HR according to the PAP method. From WGS, we determined that the CST-HR isolates belong to three different Sequence Types (STs) and four K-loci: ST11 (KL15 and KL81), ST25 (KL2), and ST1161 (KL19). We identified diverse mutations in the two-component regulatory systems PmrAB and PhoPQ, as well as a disruption of the mgrB global regulator mediated by IS1-like and IS-5-like elements, which could confer resistance to CST in CST-HR and ESBL-producing isolates. These are the first descriptions in Chile of CST-HR in ESBL-producing K. pneumoniae isolates. The emergence of these isolates could have a major impact on the effectiveness of colistin as a “last resort” against these isolates, thus jeopardizing current antibiotic alternatives; therefore, it is important to consider the epidemiology of the CST-HR phenotype.
Collapse
|
64
|
Cheung CHP, Dulyayangkul P, Heesom KJ, Avison MB. Proteomic Investigation of the Signal Transduction Pathways Controlling Colistin Resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 2020; 64:AAC.00790-20. [PMID: 32457105 PMCID: PMC7526815 DOI: 10.1128/aac.00790-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 05/19/2020] [Indexed: 12/15/2022] Open
Abstract
Colistin resistance in Klebsiella pneumoniae is predominantly caused by mutations that increase expression of the arn (also known as pbg or pmrF) operon. Expression is activated by the PhoPQ and PmrAB two-component systems. Constitutive PhoPQ activation occurs directly by mutation or following loss of MgrB. PhoPQ may also cross-activate PmrAB via the linker protein PmrD. Using proteomics, we show that MgrB loss causes a wider proteomic effect than direct PhoPQ activation, suggesting additional targets for MgrB. Different mgrB mutations cause different amounts of Arn protein production, which correlated with colistin MICs. Disruption of phoP in an mgrB mutant had a reciprocal effect to direct activation of PhoQ in a wild-type background, but the regulated proteins showed almost total overlap. Disruption of pmrD or pmrA slightly reduced Arn protein production in an mgrB mutant, but production was still high enough to confer colistin resistance; disruption of phoP conferred wild-type Arn production and colistin MIC. Activation of PhoPQ directly or through mgrB mutation did not significantly activate PmrAB or PmrC production, but direct activation of PmrAB by mutation was able to do this, and also activated Arn production and conferred colistin resistance. There was little overlap between the PmrAB and PhoPQ regulons. We conclude that under the conditions used for colistin susceptibility testing, PhoPQ-PmrD-PmrAB cross-regulation is not significant and that independent activation of PhoPQ or PmrAB is the main reason that Arn protein production increases above the threshold required for colistin resistance.
Collapse
Affiliation(s)
| | - Punyawee Dulyayangkul
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Kate J Heesom
- University of Bristol Proteomics Facility, Bristol, United Kingdom
| | - Matthew B Avison
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
65
|
Conceição-Neto OC, da Costa BS, Pontes LS, Santos ICO, Silveira MC, Cordeiro-Moura JR, Pereira NF, Tavares-Teixeira CB, Picão RC, Rocha-de-Souza CM, Carvalho-Assef APD. Difficulty in detecting low levels of polymyxin resistance in clinical Klebsiella pneumoniae isolates: evaluation of Rapid Polymyxin NP test, Colispot Test and SuperPolymyxin medium. New Microbes New Infect 2020; 36:100722. [PMID: 32642069 PMCID: PMC7334411 DOI: 10.1016/j.nmni.2020.100722] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/06/2020] [Accepted: 06/22/2020] [Indexed: 01/29/2023] Open
Abstract
Polymyxins are important therapeutic options for treating infections, mainly those caused by carbapenem-resistant Klebsiella pneumoniae. Specific chemical characteristics of polymyxins make it difficult to perform antimicrobial susceptibility testing, especially within the clinical laboratory. Here we aimed to evaluate the performance of three phenotypic methods: Rapid NP Polymyxin Test, ColiSpot test and the SuperPolymyxin medium. To accomplish this, 170 non-duplicate clinical K. pneumoniae isolates were analysed (123 colistin-resistant and 47 susceptible). The sensitivity and specificity obtained for Rapid Polymyxin NP Test, Colispot and SuperPolymyxin medium were, respectively, 90% and 94%, 74% and 100%, and 82% and 85%. Very major errors occurred more frequently in low-level colistin-resistant isolates (MICs 4 and 8 μg/mL). Rapid Polymyxin NP proved to be a method capable of identifying colistin-resistant strains in acceptable categorical agreement. However, major errors and very major errors of this method were considered unacceptable for colistin-resistance screening. Although the Colispot test is promising and easy to perform and interpret, the results did not reproduce well in the isolates tested. The colistin-containing selective medium (SuperPolymyxin) showed limitations, including quantification of mucoid colonies and poor stability. Nevertheless, Colispot and SuperPolymyxin medium methods did not present acceptable sensitivity, specificity and categorical agreement. It is essential to use analytical tools that faithfully reproduce bacterial resistance in vitro, especially in last-line drugs, such as polymyxins, when misinterpretation of a test can result in therapeutic ineffectiveness.
Collapse
Affiliation(s)
- O C Conceição-Neto
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - B S da Costa
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - L S Pontes
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - I C O Santos
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - M C Silveira
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - J R Cordeiro-Moura
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - N F Pereira
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - C B Tavares-Teixeira
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - R C Picão
- Laboratório de Investigação em Microbiologia Médica, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C M Rocha-de-Souza
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| | - A P D Carvalho-Assef
- Laboratório de Pesquisa em Infecção Hospitalar, Instituto Oswaldo Cruz-FIOCRUZ, Rio de Janeiro, Brazil
| |
Collapse
|
66
|
Pitt ME, Cao MD, Butler MS, Ramu S, Ganesamoorthy D, Blaskovich MAT, Coin LJM, Cooper MA. Octapeptin C4 and polymyxin resistance occur via distinct pathways in an epidemic XDR Klebsiella pneumoniae ST258 isolate. J Antimicrob Chemother 2020; 74:582-593. [PMID: 30445429 DOI: 10.1093/jac/dky458] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Polymyxin B and E (colistin) have been pivotal in the treatment of XDR Gram-negative bacterial infections; however, resistance has emerged. A structurally related lipopeptide, octapeptin C4, has shown significant potency against XDR bacteria, including polymyxin-resistant strains, but its mode of action remains undefined. OBJECTIVES We sought to compare and contrast the acquisition of resistance in an XDR Klebsiella pneumoniae (ST258) clinical isolate in vitro with all three lipopeptides to potentially unveil variations in their mode of action. METHODS The isolate was exposed to increasing concentrations of polymyxins and octapeptin C4 over 20 days. Day 20 strains underwent WGS, complementation assays, antimicrobial susceptibility testing and lipid A analysis. RESULTS Twenty days of exposure to the polymyxins resulted in a 1000-fold increase in the MIC, whereas for octapeptin C4 a 4-fold increase was observed. There was no cross-resistance observed between the polymyxin- and octapeptin-resistant strains. Sequencing of polymyxin-resistant isolates revealed mutations in previously known resistance-associated genes, including crrB, mgrB, pmrB, phoPQ and yciM, along with novel mutations in qseC. Octapeptin C4-resistant isolates had mutations in mlaDF and pqiB, genes related to phospholipid transport. These genetic variations were reflected in distinct phenotypic changes to lipid A. Polymyxin-resistant isolates increased 4-amino-4-deoxyarabinose fortification of lipid A phosphate groups, whereas the lipid A of octapeptin C4-resistant strains harboured a higher abundance of hydroxymyristate and palmitoylate. CONCLUSIONS Octapeptin C4 has a distinct mode of action compared with the polymyxins, highlighting its potential as a future therapeutic agent to combat the increasing threat of XDR bacteria.
Collapse
Affiliation(s)
- Miranda E Pitt
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Minh Duc Cao
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Mark S Butler
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Soumya Ramu
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Devika Ganesamoorthy
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Mark A T Blaskovich
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Lachlan J M Coin
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Matthew A Cooper
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| |
Collapse
|
67
|
Sun L, Rasmussen PK, Bai Y, Chen X, Cai T, Wang J, Guo X, Xie Z, Ding X, Niu L, Zhu N, You X, Kirpekar F, Yang F. Proteomic Changes of Klebsiella pneumoniae in Response to Colistin Treatment and crrB Mutation-Mediated Colistin Resistance. Antimicrob Agents Chemother 2020; 64:e02200-19. [PMID: 32229491 PMCID: PMC7269499 DOI: 10.1128/aac.02200-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 03/25/2020] [Indexed: 01/07/2023] Open
Abstract
Polymyxins are increasingly used as the critical last-resort therapeutic options for multidrug-resistant Gram-negative bacteria. Unfortunately, polymyxin resistance has increased gradually over the past few years. Although studies on polymyxin mechanisms are expanding, systemwide analyses of the underlying mechanism for polymyxin resistance and stress response are still lacking. To understand how Klebsiella pneumoniae adapts to colistin (polymyxin E) pressure, we carried out proteomic analysis of a K. pneumoniae strain cultured with different concentrations of colistin. Our results showed that the proteomic responses to colistin treatment in K. pneumoniae involve several pathways, including (i) gluconeogenesis and the tricarboxylic acid (TCA) cycle, (ii) arginine biosynthesis, (iii) porphyrin and chlorophyll metabolism, and (iv) enterobactin biosynthesis. Interestingly, decreased abundances of class A β-lactamases, including TEM, SHV-11, and SHV-4, were observed in cells treated with colistin. Moreover, we present comprehensive proteome atlases of paired polymyxin-susceptible and -resistant K. pneumoniae strains. The polymyxin-resistant strain Ci, a mutant of K. pneumoniae ATCC BAA 2146, showed a missense mutation in crrB This crrB mutant, which displayed lipid A modification with 4-amino-4-deoxy-l-arabinose (l-Ara4N) and palmitoylation, showed striking increases in the expression of CrrAB, PmrAB, PhoPQ, ArnBCADT, and PagP. We hypothesize that crrB mutations induce elevated expression of the arnBCADTEF operon and pagP via PmrAB and PhoPQ. Moreover, the multidrug efflux pump KexD, which was induced by crrB mutation, also contributed to colistin resistance. Overall, our results demonstrated proteomic responses to colistin treatment and the mechanism of CrrB-mediated colistin resistance, which may offer valuable information on the management of polymyxin resistance.
Collapse
Affiliation(s)
- Lang Sun
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Beijing, China
| | - Pernille Kronholm Rasmussen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Beijing, China
| | - Yinlei Bai
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiulan Chen
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tanxi Cai
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jifeng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaojing Guo
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhensheng Xie
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiang Ding
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Lili Niu
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Nali Zhu
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xuefu You
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Finn Kirpekar
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
- Sino-Danish Center for Education and Research, Beijing, China
| | - Fuquan Yang
- Key Laboratory of Protein and Peptide Pharmaceuticals and Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Sino-Danish Center for Education and Research, Beijing, China
| |
Collapse
|
68
|
Abstract
The discovery, commercialization and administration of antibiotics revolutionized the world of medicine in the middle of the last century, generating a significant change in the therapeutic paradigm of the infectious diseases. Nevertheless, this great breakthrough was soon threatened due to the enormous adaptive ability that bacteria have, through which they are able to develop or acquire different mechanisms that allow them to survive the exposure to antibiotics. We are faced with a complex, multifactorial and inevitable but potentially manageable threat. To fight against it, a global and multidisciplinary approach is necessary, based on the support, guidance and training of the next generation of professionals. Nevertheless, the information published regarding the resistance mechanisms to antibiotics are abundant, varied and, unfortunately, not always well structured. The objective of this review is to structure the, in our opinion, most relevant and novel information regarding the mechanisms of resistance to antibiotics that has been published from January 2014 to September 2019, analysing their possible clinical and epidemiological impact.
Collapse
|
69
|
Huang J, Li C, Song J, Velkov T, Wang L, Zhu Y, Li J. Regulating polymyxin resistance in Gram-negative bacteria: roles of two-component systems PhoPQ and PmrAB. Future Microbiol 2020; 15:445-459. [PMID: 32250173 DOI: 10.2217/fmb-2019-0322] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Polymyxins (polymyxin B and colistin) are last-line antibiotics against multidrug-resistant Gram-negative pathogens. Polymyxin resistance is increasing worldwide, with resistance most commonly regulated by two-component systems such as PmrAB and PhoPQ. This review discusses the regulatory mechanisms of PhoPQ and PmrAB in mediating polymyxin resistance, from receiving an external stimulus through to activation of genes responsible for lipid A modifications. By analyzing the reported nonsynonymous substitutions in each two-component system, we identified the domains that are critical for polymyxin resistance. Notably, for PmrB 71% of resistance-conferring nonsynonymous mutations occurred in the HAMP (present in histidine kinases, adenylate cyclases, methyl accepting proteins and phosphatase) linker and DHp (dimerization and histidine phosphotransfer) domains. These results enhance our understanding of the regulatory mechanisms underpinning polymyxin resistance and may assist with the development of new strategies to minimize resistance emergence.
Collapse
Affiliation(s)
- Jiayuan Huang
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Chen Li
- Biomedicine Discovery Institute & Department of Biochemistry & Molecular Biology, Monash University, Melbourne 3800, Australia.,Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, Zurich 8093, Switzerland
| | - Jiangning Song
- Biomedicine Discovery Institute & Department of Biochemistry & Molecular Biology, Monash University, Melbourne 3800, Australia
| | - Tony Velkov
- Department of Pharmacology & Therapeutics, School of Biomedical Sciences, Faculty of Medicine, Dentistry & Health Sciences, The University of Melbourne, Melbourne 3010, Australia
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yan Zhu
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| | - Jian Li
- Biomedicine Discovery Institute & Department of Microbiology, Monash University, Melbourne 3800, Australia
| |
Collapse
|
70
|
Simpson BW, Trent MS. Pushing the envelope: LPS modifications and their consequences. Nat Rev Microbiol 2020; 17:403-416. [PMID: 31142822 DOI: 10.1038/s41579-019-0201-x] [Citation(s) in RCA: 271] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The defining feature of the Gram-negative cell envelope is the presence of two cellular membranes, with the specialized glycolipid lipopolysaccharide (LPS) exclusively found on the surface of the outer membrane. The surface layer of LPS contributes to the stringent permeability properties of the outer membrane, which is particularly resistant to permeation of many toxic compounds, including antibiotics. As a common surface antigen, LPS is recognized by host immune cells, which mount defences to clear pathogenic bacteria. To alter properties of the outer membrane or evade the host immune response, Gram-negative bacteria chemically modify LPS in a wide variety of ways. Here, we review key features and physiological consequences of LPS biogenesis and modifications.
Collapse
Affiliation(s)
- Brent W Simpson
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - M Stephen Trent
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA. .,Center for Vaccines and Immunology, College of Veterinary Medicine, University of Georgia, Athens, GA, USA. .,Department of Microbiology, Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA.
| |
Collapse
|
71
|
Huang J, Dai X, Ge L, Shafiq M, Shah JM, Sun J, Yi S, Wang L. Sequence Duplication Within pmrB Gene Contribute to High-Level Colistin Resistance in Avian Pathogenic Escherichia coli. Microb Drug Resist 2019; 26:1442-1451. [PMID: 31770069 DOI: 10.1089/mdr.2019.0290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Beyond the emergence of plasmid-encoded mechanisms, mutation within the pmrAB genes remains one of the primary colistin resistance mechanisms in Escherichia coli. However, the mechanisms of high-level colistin resistance (HLCR) have not been elucidated. In this study, we evaluated the HLCR mechanisms in five colistin-susceptible Avian pathogenic Escherichia coli (APEC) isolates after colistin exposure. Three PmrB substitutions (G19R, L167P, V88E) and two PmrB sequence duplication (PmrB-sd) mutations (68-77dup and 94-156dup) were detected. Chromosomal replacement and deletion mutagenesis revealed the two PmrB-sd mutations contribute to, but are not fully responsible for, HLCR in APEC strains. Quantitative reverse transcription/polymerase chain reaction (qRT-PCR) revealed that the PmrB-sd induction mutants showed an increased pmrAB transcript level and the PmrB-sd reversion mutants exhibited a reduction of pmrAB expression. All five induction mutants exhibited decreased minimum inhibitory concentrations to florfenicol and tetracycline. In addition, four mutants (G19R, L167P, V88E, and 94-156dup) and two mutants (68-77dup and 94-156dup) also displayed increased sensitivity to ceftiofur and gentamicin, respectively. Zeta potential measurement of the induction mutants showed that there was less negative charge on the cell surface compared with its parental strains in the absence of colistin. The induction mutants also showed an increase of lag time and decrease of fitness. In summary, the identification of novel PmrB-sd mutations contributing to HLCR is helpful to broaden the knowledge of colistin resistance. Attention should be paid to the use of colistin for the treatment of infections caused by APEC strains.
Collapse
Affiliation(s)
- Jinhu Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xingyang Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Lin Ge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Shafiq
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jan Mohammad Shah
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Junjie Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Sida Yi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Liping Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
72
|
Huang YH, Chou SH, Liang SW, Ni CE, Lin YT, Huang YW, Yang TC. Emergence of an XDR and carbapenemase-producing hypervirulent Klebsiella pneumoniae strain in Taiwan. J Antimicrob Chemother 2019; 73:2039-2046. [PMID: 29800340 DOI: 10.1093/jac/dky164] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 04/12/2018] [Indexed: 12/26/2022] Open
Abstract
Background Carbapenemase-producing Klebsiella pneumoniae causes high mortality owing to the limited therapeutic options available. Here, we investigated an emergent carbapenem-resistant K. pneumoniae strain with hypervirulence found among KPC-2-producing strains in Taiwan. Methods KPC-producing K. pneumoniae strains were collected consecutively from clinical specimens at the Taipei Veterans General Hospital between January 2012 and December 2014. Capsular types and the presence of rmpA/rmpA2 were analysed, and PFGE and MLST performed using these strains. The strain positive for rmpA/rmpA2 was tested in an in vivo mouse lethality study to verify its virulence and subjected to WGS to delineate its genomic features. Results A total of 62 KPC-2-producing K. pneumoniae strains were identified; all of these belonged to ST11 and capsular genotype K47. One strain isolated from a fatal case with intra-abdominal abscess (TVGHCRE225) harboured rmpA and rmpA2 genes. This strain was resistant to tigecycline and colistin, in addition to carbapenems, and did not belong to the major cluster in PFGE. TVGHCRE225 exhibited high in vivo virulence in the mouse lethality experiment. WGS showed that TVGHCRE225 acquired a novel hybrid virulence plasmid harbouring a set of virulence genes (iroBCDN, iucABCD, rmpA and rmpA2, and iutA) compared with the classic ST11 KPC-2-producing strain. Conclusions We identified an XDR ST11 KPC-2-producing K. pneumoniae strain carrying a hybrid virulent plasmid in Taiwan. Active surveillance focusing on carbapenem-resistant hypervirulent K. pneumoniae strains is necessary, as the threat to human health is imminent.
Collapse
Affiliation(s)
- Yen-Hua Huang
- Institute of Biomedical Informatics and Centre for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Sheng-Hua Chou
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Syun-Wun Liang
- Institute of Biomedical Informatics and Centre for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Chung-En Ni
- Institute of Biomedical Informatics and Centre for Systems and Synthetic Biology, National Yang-Ming University, Taipei, Taiwan
| | - Yi-Tsung Lin
- Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan.,Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Yi-Wei Huang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Tsuey-Ching Yang
- Department of Biotechnology and Laboratory Science in Medicine, National Yang-Ming University, Taipei, Taiwan
| |
Collapse
|
73
|
Cheng YH, Lin TL, Lin YT, Wang JT. A putative RND-type efflux pump, H239_3064, contributes to colistin resistance through CrrB in Klebsiella pneumoniae. J Antimicrob Chemother 2019; 73:1509-1516. [PMID: 29506266 PMCID: PMC5961088 DOI: 10.1093/jac/dky054] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/27/2018] [Indexed: 12/20/2022] Open
Abstract
Background Colistin is one of the last-resort antibiotics used to treat carbapenem-resistant Klebsiella pneumoniae infection. Our previous studies indicated that clinical strains encoding CrrB with amino acid substitutions exhibited higher colistin resistance (MICs ≥512 mg/L) than did colistin-resistant strains encoding mutant MgrB, PmrB or PhoQ. Objectives CrrAB may regulate another unknown mechanism(s) contributing to colistin resistance, besides modifications of LPS with 4-amino-4-deoxy-l-arabinose and phosphoethanolamine. Methods To identify these potential unknown mechanism(s), a transposon mutant library of A4528 crrB(N141I) was constructed. Loci that might contribute to colistin resistance and were regulated by crrB were confirmed by deletion and complementation experiments. Results Screening of 2976 transposon mutants identified 47 mutants in which the MICs of colistin were significantly decreased compared with that for the parent. Besides crrAB, crrC and pmrHFIJKLM operons, these 47 transposon insertion mutants included another 13 loci. Notably, transcript levels of one of these insertion targets, H239_3064 (encoding a putative RND-type efflux pump), were significantly increased in A4528 crrB(N141I) compared with the A4528 parent strain. Deletion of H239_3064 in the A4528 crrB(N141I) background resulted in an 8-fold decrease in the MIC of colistin; complementation of the deletion mutant with H239_3064 restored resistance to colistin. Susceptibilities of A4528-derived strains to other antibiotics were also tested. Mutations of crrB resulted in decreased susceptibility to tetracycline and tigecycline, and deletion of H239_3064 in A4528 crrB(N141I) attenuated this phenomenon. Conclusions This study demonstrated that missense mutations of K. pneumoniae crrB lead to increased expression of H239_3064, leading in turn to decreased susceptibility to colistin, tetracycline and tigecycline.
Collapse
Affiliation(s)
- Yi-Hsiang Cheng
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Tsung Lin
- Division of Infectious Diseases, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.,Institute of Emergency and Critical Care Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan.,Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
74
|
Acquired Resistance to Colistin via Chromosomal And Plasmid-Mediated Mechanisms in Klebsiella pneumoniae. ACTA ACUST UNITED AC 2019. [DOI: 10.1097/im9.0000000000000002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
75
|
Belda-Orlowski A, Pfennigwerth N, Gatermann SG, Korte-Berwanger M. Evaluation and readout optimization of the rapid polymyxin NP test for the detection of colistin-resistant Enterobacteriaceae. J Med Microbiol 2019; 68:1189-1193. [PMID: 31225790 DOI: 10.1099/jmm.0.001030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Affiliation(s)
- Anna Belda-Orlowski
- German National Reference Centre for Multidrug-Resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Niels Pfennigwerth
- German National Reference Centre for Multidrug-Resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Soeren G Gatermann
- German National Reference Centre for Multidrug-Resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
| | - Miriam Korte-Berwanger
- German National Reference Centre for Multidrug-Resistant Gram-negative Bacteria, Department of Medical Microbiology, Ruhr-University Bochum, Universitätsstraße 150, 44801 Bochum, Germany
- NRW Centre for Health, Gesundheitscampus 10, 44801 Bochum, Germany
| |
Collapse
|
76
|
An Approach to Measuring Colistin Plasma Levels Regarding the Treatment of Multidrug-Resistant Bacterial Infection. Antibiotics (Basel) 2019; 8:antibiotics8030100. [PMID: 31344885 PMCID: PMC6784070 DOI: 10.3390/antibiotics8030100] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/18/2022] Open
Abstract
Antimicrobial resistance to antibiotic treatment has significantly increased during recent years, causing this to become a worldwide public health problem. More than 70% of pathogenic bacteria are resistant to at least one of the currently used antibiotics. Polymyxin E (colistin) has recently been used as a “last line” therapy when treating Gram-negative multi-resistant bacteria. However, little is known about these molecules’ pharmacological use as they have been discontinued because of their high toxicity. Recent research has been focused on determining colistimethate sodium’s pharmacokinetic parameters to find the optimal dose for maintaining a suitable benefit–risk balance. This review has thus been aimed at describing the use of colistin on patients infected by multi-drug resistant bacteria and the importance of measuring this drug’s plasma levels in such patients.
Collapse
|
77
|
Jayol A, Nordmann P, André C, Poirel L, Dubois V. Evaluation of three broth microdilution systems to determine colistin susceptibility of Gram-negative bacilli. J Antimicrob Chemother 2019; 73:1272-1278. [PMID: 29481600 DOI: 10.1093/jac/dky012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 01/02/2018] [Indexed: 11/13/2022] Open
Abstract
Background The broth microdilution (BMD) method is currently the recommended technique to determine susceptibility to colistin. Objectives We evaluated the accuracy of three commercialized BMD panels [Sensititre (ThermoFisher Diagnostics), UMIC (Biocentric) and MicroScan (Beckman Coulter)] to determine colistin susceptibility. Methods A collection of 185 isolates of Gram-negative bacilli (133 colistin resistant and 52 colistin susceptible) was tested. Manual BMD according to EUCAST guidelines was used as the reference method, and EUCAST 2017 breakpoints were used for susceptibility categorization. Results The UMIC system gave the highest rate of very major errors (11.3%) compared with the Sensititre and MicroScan systems (3% and 0.8%, respectively). A high rate of major errors (26.9%) was found with the MicroScan system due to an overestimation of the MICs for the non-fermenting Gram-negative bacilli, whereas no major errors were found with the Sensititre and UMIC systems. Conclusions The UMIC system was easy to use, but failed to detect >10% of colistin-resistant isolates. The MicroScan system showed excellent results for enterobacterial isolates, but non-susceptible results for non-fermenters should be confirmed by another method and the range of MICs tested was narrow. The Sensititre system was the most reliable marketed BMD panel with a categorical agreement of 97.8%.
Collapse
Affiliation(s)
- Aurélie Jayol
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland.,INSERM European Unit (LEA-IAME Paris, France), University of Fribourg, Fribourg, Switzerland.,National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland.,Laboratory of Bacteriology, University Hospital of Bordeaux, Bordeaux, France
| | - Patrice Nordmann
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland.,INSERM European Unit (LEA-IAME Paris, France), University of Fribourg, Fribourg, Switzerland.,National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland.,University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | | | - Laurent Poirel
- Emerging Antibiotic Resistance Unit, Medical and Molecular Microbiology, Department of Medicine, University of Fribourg, Fribourg, Switzerland.,INSERM European Unit (LEA-IAME Paris, France), University of Fribourg, Fribourg, Switzerland.,National Reference Center for Emerging Antibiotic Resistance (NARA), University of Fribourg, Fribourg, Switzerland
| | - Véronique Dubois
- Laboratory of Bacteriology, University Hospital of Bordeaux, Bordeaux, France.,CNRS UMR5234, University of Bordeaux, Bordeaux, France
| |
Collapse
|
78
|
Application of CRISPR/Cas9-Based Genome Editing in Studying the Mechanism of Pandrug Resistance in Klebsiella pneumoniae. Antimicrob Agents Chemother 2019; 63:AAC.00113-19. [PMID: 30988149 DOI: 10.1128/aac.00113-19] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 03/19/2019] [Indexed: 12/13/2022] Open
Abstract
In this study, a CRISPR/Cas9-mediated genome editing method was used to study the functions of the mgrB, tetA, and ramR genes in mediating colistin and tigecycline resistance in carbapenem-resistant Klebsiella pneumoniae (CRKP). Inactivation of the tetA or ramR gene or the mgrB gene by CRISPR/Cas9 affected bacterial susceptibility to tigecycline or colistin, respectively. This study proved that the CRISPR/Cas9-based genome editing method could be effectively applied to K. pneumoniae and should be further utilized for genetic characterization.
Collapse
|
79
|
Aghapour Z, Gholizadeh P, Ganbarov K, Bialvaei AZ, Mahmood SS, Tanomand A, Yousefi M, Asgharzadeh M, Yousefi B, Kafil HS. Molecular mechanisms related to colistin resistance in Enterobacteriaceae. Infect Drug Resist 2019; 12:965-975. [PMID: 31190901 PMCID: PMC6519339 DOI: 10.2147/idr.s199844] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/04/2019] [Indexed: 12/16/2022] Open
Abstract
Colistin is an effective antibiotic for treatment of most multidrug-resistant Gram-negative bacteria. It is used currently as a last-line drug for infections due to severe Gram-negative bacteria followed by an increase in resistance among Gram-negative bacteria. Colistin resistance is considered a serious problem, due to a lack of alternative antibiotics. Some bacteria, including Pseudomonas aeruginosa, Acinetobacter baumannii, Enterobacteriaceae members, such as Escherichia coli, Salmonella spp., and Klebsiella spp. have an acquired resistance against colistin. However, other bacteria, including Serratia spp., Proteus spp. and Burkholderia spp. are naturally resistant to this antibiotic. In addition, clinicians should be alert to the possibility of colistin resistance among multidrug-resistant bacteria and development through mutation or adaptation mechanisms. Rapidly emerging bacterial resistance has made it harder for us to rely completely on the discovery of new antibiotics; therefore, we need to have logical approaches to use old antibiotics, such as colistin. This review presents current knowledge about the different mechanisms of colistin resistance.
Collapse
Affiliation(s)
- Zahra Aghapour
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Pourya Gholizadeh
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Suhad Saad Mahmood
- Department of Biotechnology, College of Science, University of Baghdad, Baghdad, Iraq
| | - Asghar Tanomand
- Department of Microbiology, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Mehdi Yousefi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
80
|
Bhagirath AY, Li Y, Patidar R, Yerex K, Ma X, Kumar A, Duan K. Two Component Regulatory Systems and Antibiotic Resistance in Gram-Negative Pathogens. Int J Mol Sci 2019; 20:E1781. [PMID: 30974906 PMCID: PMC6480566 DOI: 10.3390/ijms20071781] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 04/05/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Gram-negative pathogens such as Klebsiella pneumoniae, Acinetobacter baumannii, and Pseudomonas aeruginosa are the leading cause of nosocomial infections throughout the world. One commonality shared among these pathogens is their ubiquitous presence, robust host-colonization and most importantly, resistance to antibiotics. A significant number of two-component systems (TCSs) exist in these pathogens, which are involved in regulation of gene expression in response to environmental signals such as antibiotic exposure. While the development of antimicrobial resistance is a complex phenomenon, it has been shown that TCSs are involved in sensing antibiotics and regulating genes associated with antibiotic resistance. In this review, we aim to interpret current knowledge about the signaling mechanisms of TCSs in these three pathogenic bacteria. We further attempt to answer questions about the role of TCSs in antimicrobial resistance. We will also briefly discuss how specific two-component systems present in K. pneumoniae, A. baumannii, and P. aeruginosa may serve as potential therapeutic targets.
Collapse
Affiliation(s)
- Anjali Y Bhagirath
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Yanqi Li
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Rakesh Patidar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Katherine Yerex
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Xiaoxue Ma
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| | - Ayush Kumar
- Department of Microbiology, Faculty of Sciences, University of Manitoba, Winnipeg, MB R3E 0J9, Canada.
| | - Kangmin Duan
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
- Department of Medical Microbiology & Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, 780 Bannatyne Ave, Winnipeg, MB R3E 0J9, Canada.
| |
Collapse
|
81
|
Hadjadj L, Baron SA, Diene SM, Rolain JM. How to discover new antibiotic resistance genes? Expert Rev Mol Diagn 2019; 19:349-362. [PMID: 30895843 DOI: 10.1080/14737159.2019.1592678] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Antibiotic resistance (AR) is a worldwide concern and the description of AR have been discovered mainly because of their implications in human medicine. Since the recent burden of whole-genome sequencing of microorganisms, the number of new AR genes (ARGs) have dramatically increased over the last decade. Areas covered: In this review, we will describe the different methods that could be used to characterize new ARGs using classic or innovative methods. First, we will focus on the biochemical methods, then we will develop on molecular methods, next-generation sequencing and bioinformatics approaches. The use of various methods, including cloning, mutagenesis, transposon mutagenesis, functional genomics, whole genome sequencing, metagenomic and functional metagenomics will be reviewed here, outlining the advantages and drawbacks of each method. Bioinformatics softwares used for resistome analysis and protein modeling will be also described. Expert opinion: Biological experiments and bioinformatics analysis are complementary. Nowadays, the ARGs described only account for the tip of the iceberg of all existing resistance mechanisms. The multiplication of the ecosystems studied allows us to find a large reservoir of AR mechanisms. Furthermore, the adaptation ability of bacteria facing new antibiotics promises a constant discovery of new AR mechanisms.
Collapse
Affiliation(s)
- Linda Hadjadj
- a Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille-Univ , Marseille , France
| | - Sophie Alexandra Baron
- a Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille-Univ , Marseille , France
| | - Seydina M Diene
- a Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille-Univ , Marseille , France
| | - Jean-Marc Rolain
- a Microbes Evolution Phylogeny and Infections (MEPHI), IRD, APHM, IHU Méditerranée Infection, Faculté de Médecine et de Pharmacie , Aix-Marseille-Univ , Marseille , France.,b IHU Méditerranée Infection , Marseille , France
| |
Collapse
|
82
|
|
83
|
Pishnian Z, Haeili M, Feizi A. Prevalence and molecular determinants of colistin resistance among commensal Enterobacteriaceae isolated from poultry in northwest of Iran. Gut Pathog 2019; 11:2. [PMID: 30728861 PMCID: PMC6354369 DOI: 10.1186/s13099-019-0282-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023] Open
Abstract
Background The emergence of colistin-resistant Enterobacteriaceae from human and animal sources is a public health concern as this antibiotic is considered to be the last line therapeutic option for infections caused by multidrug-resistant Gram-negative bacteria. Here we aimed to determine the prevalence of colistin resistance, among enterobacteria isolated from poultry and the possible underlying colistin resistance mechanisms. Methods A collection of 944 cloacal samples were obtained from poultry and screened for colistin resistance. To uncover the molecular mechanism behind colistin resistance, the presence of plasmid encoded colistin resistance genes mcr-1, mcr-2, mcr-3 and mcr-4 was examined by PCR. The nucleotide sequences of the mgrB, pmrA, pmrB, phoP, phoQ, crrA and crrB genes were determined. The genetic relatedness of the colistin resistant (ColR) isolates was evaluated by Multilocus sequence typing. Three ColR mutants were generated in vitro by repetitive drug exposure. Results Overall from 931 enteric bacteria isolated from poultry samples obtained from 131 farms, nine ColR bacteria (0.96%) with high level colistin resistance (MICs ≥ 64 mg/L) were detected all being identified as K. pneumoniae. The 9 ColR bacteria originated from different farms and belonged to 7 distinct Sequence types including ST11 (22.2%) and ST726 (22.2%) being the most prevalent STs followed by ST37, ST74, ST485, ST525 and novel sequence type 3380 (11.1% each). mcr-type genes were not detected in any isolate. In 88.8% of the isolates (n = 8), MgrB was inactivated by Insertion of IS elements (IS1-like, IS3-like, IS5-like families, positions + 75, + 113, + 117, + 135) and nonsense mutations at codons 8, 16, 30. All ColR isolates harboured wild type PmrA, PhoP, PhoQ or polymorphic variants of PmrB. Sequence analysis of the CrrB revealed a familiar S195N and 4 novel I27V, T150R, F303S and K325R substitutions. PmrB T93N substitution and mgrB locus deletion were identified in two laboratory induced ColR mutants and one mutant lacked alteration in the studied loci. In one ColR isolate with wild type MgrB an A83V substitution was detected in CrrA. Conclusion It is concluded from our results that colistin resistance in the studied avian K. pneumoniae isolates was mostly linked to alterations identified within the mgrB gene.
Collapse
Affiliation(s)
- Zeinab Pishnian
- 1Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mehri Haeili
- 1Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Adel Feizi
- 2Department of Clinical Sciences, Faculty of Veterinary Medicine, Islamic Azad University of Tabriz, Tabriz, Iran
| |
Collapse
|
84
|
Molecular mechanisms of polymyxin resistance and detection of mcr genes. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2018; 163:28-38. [PMID: 30439931 DOI: 10.5507/bp.2018.070] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 10/26/2018] [Indexed: 12/12/2022] Open
Abstract
Antibiotic resistance is an ever-increasing global problem. Major commercial antibiotics often fail to fight common bacteria, and some pathogens have become multi-resistant. Polymyxins are potent bactericidal antibiotics against gram-negative bacteria. Known resistance to polymyxin includes intrinsic, mutational and adaptive mechanisms, with the recently described horizontally acquired resistance mechanisms. In this review, we present several strategies for bacteria to develop enhanced resistance to polymyxins, focusing on changes in the outer membrane, efflux and other resistance determinants. Better understanding of the genes involved in polymyxin resistance may pave the way for the development of new and effective antimicrobial agents. We also report novel in silico tested primers for PCR assay that may be able distinguish colistin-resistant isolates carrying the plasmid-encoded mcr genes and will assist in combating the spread of colistin resistance in bacteria.
Collapse
|
85
|
Jayol A, Poirel L, André C, Dubois V, Nordmann P. Detection of colistin-resistant Gram-negative rods by using the SuperPolymyxin medium. Diagn Microbiol Infect Dis 2018; 92:95-101. [DOI: 10.1016/j.diagmicrobio.2018.05.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 10/16/2022]
|
86
|
Yousfi H, Hadjadj L, Dandachi I, Lalaoui R, Merah A, Amoura K, Dahi A, Dekhil M, Messalhi N, Diene SM, Baron S, Rolain JM. Colistin- and Carbapenem-Resistant Klebsiella pneumoniae Clinical_Isolates: Algeria. Microb Drug Resist 2018; 25:258-263. [PMID: 30256174 DOI: 10.1089/mdr.2018.0147] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This study investigates the molecular mechanisms of colistin and carbapenem resistance in Klebsiella pneumoniae ST101 strains. The three K. pneumoniae carried blaCTX-M-15, blaTEM-183, and blaSHV-106 genes and two coharbored blaOXA-48. As for colistin resistance, the isolates had amino acid substitutions in PmrA/B and a truncated mgrB gene in one isolate.
Collapse
Affiliation(s)
- Hanane Yousfi
- 1 Aix Marseille University , IRD, APHM, MEPHI, IHU-Mediterranean Infection, Marseille, France
| | - Linda Hadjadj
- 1 Aix Marseille University , IRD, APHM, MEPHI, IHU-Mediterranean Infection, Marseille, France
| | - Iman Dandachi
- 1 Aix Marseille University , IRD, APHM, MEPHI, IHU-Mediterranean Infection, Marseille, France
| | - Rym Lalaoui
- 1 Aix Marseille University , IRD, APHM, MEPHI, IHU-Mediterranean Infection, Marseille, France
| | - Adil Merah
- 2 Microbiology Department, Annaba University Hospital , Annaba, Algeria
| | - Kamel Amoura
- 2 Microbiology Department, Annaba University Hospital , Annaba, Algeria .,3 Department of Infectious Diseases, Annaba University Hospital , Annaba, Algeria
| | - Ahlem Dahi
- 2 Microbiology Department, Annaba University Hospital , Annaba, Algeria .,3 Department of Infectious Diseases, Annaba University Hospital , Annaba, Algeria
| | - Mazouz Dekhil
- 2 Microbiology Department, Annaba University Hospital , Annaba, Algeria .,3 Department of Infectious Diseases, Annaba University Hospital , Annaba, Algeria
| | - Naima Messalhi
- 2 Microbiology Department, Annaba University Hospital , Annaba, Algeria .,3 Department of Infectious Diseases, Annaba University Hospital , Annaba, Algeria
| | - Seydina M Diene
- 1 Aix Marseille University , IRD, APHM, MEPHI, IHU-Mediterranean Infection, Marseille, France
| | - Sophie Baron
- 1 Aix Marseille University , IRD, APHM, MEPHI, IHU-Mediterranean Infection, Marseille, France
| | - Jean-Marc Rolain
- 1 Aix Marseille University , IRD, APHM, MEPHI, IHU-Mediterranean Infection, Marseille, France
| |
Collapse
|
87
|
Esposito EP, Cervoni M, Bernardo M, Crivaro V, Cuccurullo S, Imperi F, Zarrilli R. Molecular Epidemiology and Virulence Profiles of Colistin-Resistant Klebsiella pneumoniae Blood Isolates From the Hospital Agency "Ospedale dei Colli," Naples, Italy. Front Microbiol 2018; 9:1463. [PMID: 30061868 PMCID: PMC6054975 DOI: 10.3389/fmicb.2018.01463] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 06/12/2018] [Indexed: 11/13/2022] Open
Abstract
Resistance to colistin is increasingly reported in Klebsiella pneumoniae clinical isolates. The aim of this study was to analyze the molecular epidemiology and virulence profiles of 25 colistin-resistant K. pneumoniae blood isolates from the Hospital Agency “Ospedale dei Colli,” Naples, Italy, during 2015 and 2016. Colistin MIC values of isolates ranged from 4 to 256 mg/L. The inactivation of the mgrB gene, encoding a negative regulator of the PhoQ/PhoP signaling system, was the most frequent mechanism of colistin resistance found in 22 out of 25 isolates. Of these, 10 isolates assigned to ST512 and PFGE types A and A4 showed identical frameshift mutation and premature termination of mgrB gene; 4 isolates assigned to ST258 and PFGE types A1 showed non-sense, frameshift mutation, and premature termination; 3 and 1 isolates assigned to ST258 and PFGE A2 and ST512 and PFGE A3, respectively, had insertional inactivation of mgrB gene due to IS5-like mobile element; 2 isolates assigned to ST101 and 1 to ST392 had missense mutations in the mgrB gene, 1 isolate assigned to ST45 showed insertional inactivation of mgrB gene due to IS903-like mobile element. phoQ missense mutations were found in 2 isolates assigned to ST629 and ST101, respectively, which also showed a missense mutation in pmrA gene. The mcr-1-2-3-4 genes were not detected in any isolate. Colistin-resistant K. pneumoniae isolates showed variable virulence profiles in Galleria mellonella infection assays, with the infectivity of two isolates assigned to ST45 and ST629 being significantly higher than that of all other strains (P < 0.001). Interestingly, colistin MIC values proved to make a significant contribution at predicting lethal doses values (LD50 and LD90) of studied isolates in G. mellonella. Our data show that MgrB inactivation is a common mechanism of colistin resistance among K. pneumoniae in our clinical setting. The presence of identical mutations/insertions in isolates of the same ST and PFGE profile suggests the occurrence of clonal expansion and cross-transmission. Although virulence profiles differ among isolates irrespective of their genotypes, our results suggest that high colistin MIC could predict lower infectivity capability of the isolates.
Collapse
Affiliation(s)
- Eliana P Esposito
- Department of Public Health, University of Naples "Federico II,", Naples, Italy
| | - Matteo Cervoni
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Mariano Bernardo
- Azienda Ospedaliera di Rilievo Nazionale (AORN) dei Colli, V. Monaldi Hospital, Naples, Italy
| | - Valeria Crivaro
- Azienda Ospedaliera di Rilievo Nazionale (AORN) dei Colli, V. Monaldi Hospital, Naples, Italy
| | - Susanna Cuccurullo
- Azienda Ospedaliera di Rilievo Nazionale (AORN) dei Colli, V. Monaldi Hospital, Naples, Italy
| | - Francesco Imperi
- Department of Biology and Biotechnology "Charles Darwin," Sapienza University of Rome, Rome, Italy.,Laboratory Affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples "Federico II,", Naples, Italy.,Centro di Ingegneria Genetica (CEINGE) Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
88
|
Cain AK, Boinett CJ, Barquist L, Dordel J, Fookes M, Mayho M, Ellington MJ, Goulding D, Pickard D, Wick RR, Holt KE, Parkhill J, Thomson NR. Morphological, genomic and transcriptomic responses of Klebsiella pneumoniae to the last-line antibiotic colistin. Sci Rep 2018; 8:9868. [PMID: 29959380 PMCID: PMC6026146 DOI: 10.1038/s41598-018-28199-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 06/08/2018] [Indexed: 11/09/2022] Open
Abstract
Colistin remains one of the few antibiotics effective against multi-drug resistant (MDR) hospital pathogens, such as Klebsiella pneumoniae. Yet resistance to this last-line drug is rapidly increasing. Characterized mechanisms of colR in K. pneumoniae are largely due to chromosomal mutations in two-component regulators, although a plasmid-mediated colR mechanism has recently been uncovered. However, the effects of intrinsic colistin resistance are yet to be characterized on a whole-genome level. Here, we used a genomics-based approach to understand the mechanisms of adaptive colR acquisition in K. pneumoniae. In controlled directed-evolution experiments we observed two distinct paths to colistin resistance acquisition. Whole genome sequencing identified mutations in two colistin resistance genes: in the known colR regulator phoQ which became fixed in the population and resulted in a single amino acid change, and unstable minority variants in the recently described two-component sensor crrB. Through RNAseq and microscopy, we reveal the broad range of effects that colistin exposure has on the cell. This study is the first to use genomics to identify a population of minority variants with mutations in a colR gene in K. pneumoniae.
Collapse
Affiliation(s)
- Amy K Cain
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,Chemistry and Biomolecular Sciences, Macquarie University, Sydney, Australia.
| | - Christine J Boinett
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, Ho Chi Minh City, Vietnam.
| | - Lars Barquist
- Helmholtz Institute for RNA-based Infection Research, Würzburg, D-97080, Germany
| | - Janina Dordel
- Department of Biology, Drexel University, Philadelphia, 19104, PA, USA
| | - Maria Fookes
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Matthew Mayho
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | | | - David Goulding
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Derek Pickard
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Ryan R Wick
- Centre for Systems Genomics, The University of Melbourne, Melbourne, VIC, Australia
| | - Kathryn E Holt
- Centre for Systems Genomics, The University of Melbourne, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, VIC, Australia
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Nicholas R Thomson
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK. .,Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.
| |
Collapse
|
89
|
Insertion sequence transpositions and point mutations in mgrB causing colistin resistance in a clinical strain of carbapenem-resistant Klebsiella pneumoniae from Vietnam. Int J Antimicrob Agents 2018; 51:789-793. [PMID: 29180281 DOI: 10.1016/j.ijantimicag.2017.11.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 10/27/2017] [Accepted: 11/18/2017] [Indexed: 01/04/2023]
|
90
|
Becker L, Fuchs S, Pfeifer Y, Semmler T, Eckmanns T, Korr G, Sissolak D, Friedrichs M, Zill E, Tung ML, Dohle C, Kaase M, Gatermann S, Rüssmann H, Steglich M, Haller S, Werner G. Whole Genome Sequence Analysis of CTX-M-15 Producing Klebsiella Isolates Allowed Dissecting a Polyclonal Outbreak Scenario. Front Microbiol 2018. [PMID: 29527200 PMCID: PMC5829066 DOI: 10.3389/fmicb.2018.00322] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Extended-spectrum β-lactamase (ESBL) producing Klebsiella pneumoniae pose an important threat of infection with increased morbidity and mortality, especially for immunocompromised patients. Here, we use the rise of multidrug-resistant K. pneumoniae in a German neurorehabilitation center from April 2015 to April 2016 to dissect the benefit of whole genome sequencing (WGS) for outbreak analyses. In total, 53 isolates were obtained from 52 patients and examined using WGS. Two independent analysis strategies (reference-based and -free) revealed the same distinct clusters of two CTX-M-15 producing K. pneumoniae clones (ST15, n = 31; ST405, n = 7) and one CTX-M-15 producing Klebsiella quasipneumoniae strain (ST414, n = 8). Additionally, we determined sequence variations associated with antimicrobial resistance phenotypes in single isolates expressing carbapenem and colistin resistance, respectively. For rapid detection of the major K. pneumoniae outbreak clone (ST15), a selective triplex PCR was deduced from WGS data of the major outbreak strain and K. pneumoniae genome data deposited in central databases. Moreover, we introduce two novel open-source applications supporting reference genome selection (refRank; https://gitlab.com/s.fuchs/refRank) and alignment-based SNP-filtering (SNPfilter; https://gitlab.com/s.fuchs/snpfilter) in NGS analyses.
Collapse
Affiliation(s)
- Laura Becker
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Stephan Fuchs
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Yvonne Pfeifer
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Torsten Semmler
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Tim Eckmanns
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Gerit Korr
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany.,Postgraduate Training for Applied Epidemiology, Robert Koch Institute, Affiliated to the European Programme for Intervention Epidemiology Training, European Centre for Disease Prevention and Control (ECDC), Stockholm, Sweden
| | - Dagmar Sissolak
- Department of Infection Control, Medical Disaster Control and Environmental Health Control, Department of Public Health, Berlin, Germany
| | | | - Edith Zill
- Medical Care Centre Labor 28 GmbH, Berlin, Germany
| | | | | | - Martin Kaase
- National Reference Centre for Multidrug-Resistant Gram-Negative Bacteria, Department for Medical Microbiology, Ruhr-University Bochum, Berlin, Germany
| | - Sören Gatermann
- National Reference Centre for Multidrug-Resistant Gram-Negative Bacteria, Department for Medical Microbiology, Ruhr-University Bochum, Berlin, Germany
| | - Holger Rüssmann
- Immunology and Laboratory Medicine, Institute for Microbiology, HELIOS Klinikum Emil von Behring, Berlin, Germany
| | - Matthias Steglich
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Culture, Braunschweig, Germany
| | - Sebastian Haller
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| | - Guido Werner
- Department of Infectious Diseases, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
91
|
Jayol A, Nordmann P, Lehours P, Poirel L, Dubois V. Comparison of methods for detection of plasmid-mediated and chromosomally encoded colistin resistance in Enterobacteriaceae. Clin Microbiol Infect 2018; 24:175-179. [DOI: 10.1016/j.cmi.2017.06.002] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 05/03/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
|
92
|
Wang R, Liu Y, Zhang Q, Jin L, Wang Q, Zhang Y, Wang X, Hu M, Li L, Qi J, Luo Y, Wang H. The prevalence of colistin resistance in Escherichia coli and Klebsiella pneumoniae isolated from food animals in China: coexistence of mcr-1 and bla NDM with low fitness cost. Int J Antimicrob Agents 2018; 51:739-744. [PMID: 29409993 DOI: 10.1016/j.ijantimicag.2018.01.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 01/14/2018] [Accepted: 01/24/2018] [Indexed: 12/25/2022]
Abstract
Increasing colistin resistance is a global concern because colistin is used as a last resort for the treatment of carbapenem-resistant Enterobacteriaceae infections. The plasmid-mediated colistin resistance gene, mcr-1 was found in distinct bacterial species isolated from humans, animals, and the environment. In this study, farms in four different agricultural provinces in China were investigated to determine the occurrence of the antimicrobial resistance and related genes. A total of 373 Escherichia coli and 54 Klebsiella pneumoniae were isolated from 510 non-duplicated samples. Of the E. coli and K. pneumoniae isolates, 72.7% and 66.7%, respectively, were susceptible to colistin. Isolates resistant to colistin comprised 46.6% of the samples isolated from Shandong, and 17.8% and 16.4% of the samples from Jilin and Henan, respectively. Twenty-six carbapenem-resistant E. coli isolates were resistant to colistin, in which both mcr-1 and blaNDM were present. Specifically, the co-existence was found in isolates from animals and sewage. Most of the resistance genes were located on plasmids and were 40-244 kilobases. Growth curves of transconjugants carrying mcr-1, blaNDM-1, blaNDM-4, blaNDM-5, and blaNDM-9 showed a low fitness cost compared with the recipient. In conclusion, mcr-1 was widespread in E. coli and K. pneumoniae isolated from farms in China. Co-existence of mcr-1 and blaNDM-9 was identified in different sequence types of E. coli with low fitness cost from various origins, indicating an urgent need to take measures for decreasing dissemination.
Collapse
Affiliation(s)
- Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yuqing Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China
| | - Qing Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yawei Zhang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xiaojuan Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ming Hu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China
| | - Lulu Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China
| | - Jing Qi
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China
| | - Yanbo Luo
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Shandong Province, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China.
| |
Collapse
|
93
|
Haeili M, Javani A, Moradi J, Jafari Z, Feizabadi MM, Babaei E. MgrB Alterations Mediate Colistin Resistance in Klebsiella pneumoniae Isolates from Iran. Front Microbiol 2017; 8:2470. [PMID: 29326662 PMCID: PMC5741654 DOI: 10.3389/fmicb.2017.02470] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/28/2017] [Indexed: 11/25/2022] Open
Abstract
Colistin is one of the last-resort therapeutic agents to combat multidrug-resistant Gram-negative bacteria (GNB) including Klebsiella pneumoniae. Although it happens rarely, resistance to colistin has been reported for several GNB. A total of 20 colistin resistant (col-R) and three colistin susceptible (col-S) clinical isolates of K. pneumoniae were studied to explore the underlying mechanisms of colistin resistance. The presence of plasmid encoded resistance genes, mcr-1, mcr-2, mcr-3, and mcr-4 genes were examined by PCR. The nucleotide sequences of pmrA, pmrB, phoP, phoQ, and mgrB genes were determined. To evaluate the association between colistin resistance and upregulation of pmrHFIJKLM and pmrCAB operons, transcriptional level of the pmrK and pmrC genes encoding for lipopolysaccharide target modifying enzymes was quantified by RT-qPCR analysis. None of the plasmid encoded resistance genes were detected in the studied isolates. Inactivation of MgrB due to nonsense mutations and insertion of IS elements was observed in 15 col-R isolates (75%). IS elements (IS5-like and IS1-like families) most commonly targeted the coding region and in one case the promoter region of the mgrB. Complementation with wild-type MgrB restored colistin susceptibility in isolates with altered mgrB. All col-R isolates lacked any genetic alterations in the pmrA, phoP, and phoQ genes and substitutions identified in the pmrB were not found to be involved in resistance conferring determined by complementation assay. Colistin resistance linked with upregulation of pmrHFIJKLM and pmrCAB operons with the pmrK and pmrC being overexpressed in 20 and 11 col-R isolates, respectively. Our results demonstrated that MgrB alterations are the major mechanisms contributing to colistin resistance in the tested K. pneumoniae isolates from Iran.
Collapse
Affiliation(s)
- Mehri Haeili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Afsaneh Javani
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Jale Moradi
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zeinab Jafari
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad M Feizabadi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Thorax Research Center, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Esmaeil Babaei
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
94
|
Polymyxins: Antibacterial Activity, Susceptibility Testing, and Resistance Mechanisms Encoded by Plasmids or Chromosomes. Clin Microbiol Rev 2017; 30:557-596. [PMID: 28275006 DOI: 10.1128/cmr.00064-16] [Citation(s) in RCA: 938] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Polymyxins are well-established antibiotics that have recently regained significant interest as a consequence of the increasing incidence of infections due to multidrug-resistant Gram-negative bacteria. Colistin and polymyxin B are being seriously reconsidered as last-resort antibiotics in many areas where multidrug resistance is observed in clinical medicine. In parallel, the heavy use of polymyxins in veterinary medicine is currently being reconsidered due to increased reports of polymyxin-resistant bacteria. Susceptibility testing is challenging with polymyxins, and currently available techniques are presented here. Genotypic and phenotypic methods that provide relevant information for diagnostic laboratories are presented. This review also presents recent works in relation to recently identified mechanisms of polymyxin resistance, including chromosomally encoded resistance traits as well as the recently identified plasmid-encoded polymyxin resistance determinant MCR-1. Epidemiological features summarizing the current knowledge in that field are presented.
Collapse
|
95
|
High-Level Resistance to Colistin Mediated by Various Mutations in the crrB Gene among Carbapenemase-Producing Klebsiella pneumoniae. Antimicrob Agents Chemother 2017; 61:AAC.01423-17. [PMID: 28874377 DOI: 10.1128/aac.01423-17] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 08/30/2017] [Indexed: 11/20/2022] Open
Abstract
Mutations in crrAB genes encoding a two-component regulator involved in modifications of lipopolysaccharide were searched for among a collection of colistin-resistant Klebsiella pneumoniae isolates. Four isolates, respectively, producing carbapenemases NDM-1, OXA-181, or KPC-2 showed mutated CrrB proteins compared with those in wild-type strains. Complementation assays with a wild-type CrrB protein restored the susceptibility to colistin in all cases, confirming the involvement of the identified substitutions in the resistance phenotype.
Collapse
|
96
|
Emergence of polymyxin B resistance in a polymyxin B-susceptible KPC-producing Klebsiella pneumoniae causing bloodstream infection in a neutropenic patient during polymyxin B therapy. Diagn Microbiol Infect Dis 2017; 90:134-138. [PMID: 29150371 DOI: 10.1016/j.diagmicrobio.2017.10.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 09/25/2017] [Accepted: 10/13/2017] [Indexed: 01/27/2023]
Abstract
The emergence of resistance to polymyxins in KPC-producing Klebsiella pneumoniae isolates has been a major clinical problem. This study evaluated the molecular mechanisms associated with polymyxin B (PMB) resistance that emerged in a previously PMB-susceptible KPC-2-producing K. pneumoniae during PMB therapy for a bloodstream infection in a neutropenic patient. The first isolate (PMB-susceptible) was obtained while the patient was receiving meropenem and other isolates were recovered from 2 sets of blood cultures in different dates while the patient was receiving PMB therapy (4 of 6 blood cultures bottles yielded isolates with full PMB resistance). The population analysis profile of the first isolate revealed the growth of resistant subpopulations with PFGE profile distinct from the parental isolate but undistinguishable from those obtained in subsequent days under PMB exposure. Resistant subpopulations were obtained from all parental PMB-susceptible and in one PMB-resistant isolate recovered from the patient. The molecular mechanism observed in the hetero-resistant subpopulations (IS1-like in mgrB-promoter region, increased rstB transcription with no mutation and non-identified mechanism) differed from those found in the PMB-resistant isolates, in which no mutation or transcriptional alterations were detected. This study showed that the mechanism of resistance to PMB that emerged during PMB therapy was not related to those observed in subpopulations selected in vitro from PMB-susceptible isolates recovered from the patient. The absence of mutations in the former isolates may be due to adaptive resistance occurred because of sub-optimal PMB levels as well as amikacin and meropenem used in combination.
Collapse
|
97
|
Jeannot K, Bolard A, Plésiat P. Resistance to polymyxins in Gram-negative organisms. Int J Antimicrob Agents 2017; 49:526-535. [PMID: 28163137 DOI: 10.1016/j.ijantimicag.2016.11.029] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/10/2016] [Accepted: 11/25/2016] [Indexed: 12/30/2022]
Abstract
Polymyxins have recently been re-introduced into the therapeutic arsenal to combat infections caused by multidrug-resistant Gram-negative bacteria. However, the emergence of strains resistant to these last-resort drugs is becoming a critical issue in a growing number of countries. Both intrinsic and transferable mechanisms of polymyxin resistance have been characterised. These mechanisms as well as the epidemiological data regarding four relevant bacterial pathogens (Escherichia coli, Klebsiella pneumoniae, Acinetobacter baumannii and Pseudomonas aeruginosa) are considered in this review. A special focus is made on plasmid-mediated resistance and the spread of mcr genes.
Collapse
Affiliation(s)
- Katy Jeannot
- Laboratoire de bactériologie, Centre national de référence (CNR) de la résistance aux antibiotiques, Centre hospitalier universitaire (CHRU) de Besançon, boulevard Fleming, 25000 Besançon, France.
| | - Arnaud Bolard
- Laboratoire de bactériologie, Centre national de référence (CNR) de la résistance aux antibiotiques, Centre hospitalier universitaire (CHRU) de Besançon, boulevard Fleming, 25000 Besançon, France
| | - Patrick Plésiat
- Laboratoire de bactériologie, Centre national de référence (CNR) de la résistance aux antibiotiques, Centre hospitalier universitaire (CHRU) de Besançon, boulevard Fleming, 25000 Besançon, France
| |
Collapse
|
98
|
Wyres KL, Holt KE. Klebsiella pneumoniae Population Genomics and Antimicrobial-Resistant Clones. Trends Microbiol 2016; 24:944-956. [PMID: 27742466 DOI: 10.1016/j.tim.2016.09.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 09/06/2016] [Accepted: 09/20/2016] [Indexed: 02/05/2023]
Abstract
Antimicrobial-resistant Klebsiella pneumoniae (Kp) has emerged as a major global public health problem. While resistance can occur across a broad range of Kp clones, a small number have become globally distributed and commonly cause outbreaks in hospital settings. Here we describe recent comparative genomics investigations that have shed light on Kp population structure and the evolution of antimicrobial-resistant clones. These studies provide the basic framework within which genomic epidemiology and evolution can be understood, but have merely scratched the surface of what can and should be explored. We assert that further large-scale comparative and functional genomics studies are urgently needed to better understand the biology of this clinically important bacterium.
Collapse
Affiliation(s)
- Kelly L Wyres
- Centre for Systems Genomics, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Kathryn E Holt
- Centre for Systems Genomics, University of Melbourne, Parkville, Victoria 3010, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
99
|
Baron S, Hadjadj L, Rolain JM, Olaitan AO. Molecular mechanisms of polymyxin resistance: knowns and unknowns. Int J Antimicrob Agents 2016; 48:583-591. [PMID: 27524102 DOI: 10.1016/j.ijantimicag.2016.06.023] [Citation(s) in RCA: 288] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/14/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022]
Abstract
Colistin, also referred to as polymyxin E, is an effective antibiotic against most multidrug-resistant Gram-negative bacteria and is currently used as a last-line drug for treating severe bacterial infections. Colistin resistance has increased gradually for the last few years, and knowledge of its multifaceted mechanisms is expanding. This includes the newly discovered plasmid-mediated colistin resistance gene mcr-1, which has been detected in over 20 countries within 3 months of its first report. We previously reported all of the known mechanisms of polymyxin resistance in our first review in 2014, but an update seems necessary in 2016, considering the significant recent discoveries that have been made in this domain. This review provides an update about what is already known, what is new, and some unresolved questions with respect to colistin resistance.
Collapse
Affiliation(s)
- Sophie Baron
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Linda Hadjadj
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France
| | - Jean-Marc Rolain
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| | - Abiola Olumuyiwa Olaitan
- Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), CNRS-IRD UMR 6236, Méditerranée Infection, Faculté de Médecine et de Pharmacie, Aix-Marseille Université, Marseille, France.
| |
Collapse
|