51
|
Li WJ, Li HZ, Xu J, Gillings MR, Zhu YG. Sewage Sludge Promotes the Accumulation of Antibiotic Resistance Genes in Tomato Xylem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10796-10805. [PMID: 38853591 DOI: 10.1021/acs.est.4c02497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Xylem serves as a conduit linking soil to the aboveground plant parts and facilitating the upward movement of microbes into leaves and fruits. Despite this potential, the composition of the xylem microbiome and its associated risks, including antibiotic resistance, are understudied. Here, we cultivated tomatoes and analyzed their xylem sap to assess the microbiome and antibiotic resistance profiles following treatment with sewage sludge. Our findings show that xylem microbes primarily originate from soil, albeit with reduced diversity in comparison to those of their soil microbiomes. Using single-cell Raman spectroscopy coupled with D2O labeling, we detected significantly higher metabolic activity in xylem microbes than in rhizosphere soil, with 87% of xylem microbes active compared to just 36% in the soil. Additionally, xylem was pinpointed as a reservoir for antibiotic resistance genes (ARGs), with their abundance being 2.4-6.9 times higher than in rhizosphere soil. Sludge addition dramatically increased the abundance of ARGs in xylem and also increased their mobility and host pathogenicity. Xylem represents a distinct ecological niche for microbes and is a significant reservoir for ARGs. These results could be used to manage the resistome in crops and improve food safety.
Collapse
Affiliation(s)
- Wen-Jing Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Zhe Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jiayang Xu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Michael R Gillings
- School of Natural Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
- ARC Centre of Excellence in Synthetic Biology, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
52
|
Sornsenee P, Surachat K, Wong T, Kaewdech A, Saki M, Romyasamit C. Lyophilized cell-free supernatants of Limosilactobacillus fermentum T0701 exhibited antibacterial activity against Helicobacter pylori. Sci Rep 2024; 14:13632. [PMID: 38871850 DOI: 10.1038/s41598-024-64443-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024] Open
Abstract
Helicobacter pylori is a prominent gastrointestinal pathogen associated with various gastrointestinal illnesses. It presents substantial health risks due to its antibiotic resistance. Therefore, it is crucial to identify alternative treatments for H. pylori infections. Limosilactobacillus spp exhibit probiotic properties with beneficial effects in humans; however, the mechanisms by which it counteracts H. pylori infection are unknown. This study aimed to evaluate the potential of Limosilactobacillus fermentum T0701 lyophilized cell-free supernatants (LCFS) against H. pylori. The LCFS has varying antimicrobial activities, with inhibition zones of up to 10.67 mm. The minimum inhibitory concentration and minimum bacterial concentration of LCFS are 6.25-25.00 mg/mL and 6.25 mg/mL to > 50.00 mg/mL, respectively, indicating its capability to inhibit H. pylori. There is morphological damage observed in H. pylori treated with LCFS. Additionally, H. pylori adhesion to AGS cells (human gastric adenocarcinoma epithelial cells) reduces by 74.23%, highlighting the LCFS role in preventing bacterial colonization. Moreover, LCFS exhibits no cytotoxicity or morphological changes in AGS cells, and with no detected virulence or antimicrobial resistance genes, further supporting its safety profile. L. fermentum T0701 LCFS shows promise as a safe and effective non-toxic agent against H. pylori, with the potential to prevent gastric colonization.
Collapse
Affiliation(s)
- Phoomjai Sornsenee
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, 90110, Thailand
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Hat Yai, Songkhla, 90110, Thailand
| | - Thanawin Wong
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Apichat Kaewdech
- Gastroenterology and Hepatology Unit, Division of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla, Thailand
| | - Morteza Saki
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Center of Excellence in Innovation of Essential Oil and Bioactive Compounds, Walailak University, Nakhon Si Thammarat, 80160, Thailand.
- Research Center in Tropical Pathobiology, Walailak University, Thasala District, Nakhon Si Thammarat, Thailand.
| |
Collapse
|
53
|
Sung K, Nawaz M, Park M, Chon J, Khan SA, Alotaibi K, Revollo J, Miranda JA, Khan AA. Whole-Genome Sequence Analysis of Antibiotic Resistance, Virulence, and Plasmid Dynamics in Multidrug-Resistant E. coli Isolates from Imported Shrimp. Foods 2024; 13:1766. [PMID: 38890994 PMCID: PMC11171581 DOI: 10.3390/foods13111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024] Open
Abstract
We analyzed antimicrobial resistance and virulence traits in multidrug-resistant (MDR) E. coli isolates obtained from imported shrimp using whole-genome sequences (WGSs). Antibiotic resistance profiles were determined phenotypically. WGSs identified key characteristics, including their multilocus sequence type (MLST), serotype, virulence factors, antibiotic resistance genes, and mobile elements. Most of the isolates exhibited resistance to gentamicin, streptomycin, ampicillin, chloramphenicol, nalidixic acid, ciprofloxacin, tetracycline, and trimethoprim/sulfamethoxazole. Multilocus sequence type (MLST), serotype, average nucleotide identity (ANI), and pangenome analysis showed high genomic similarity among isolates, except for EC15 and ECV01. The EC119 plasmid contained a variety of efflux pump genes, including those encoding the acid resistance transcriptional activators (gadE, gadW, and gadX), resistance-nodulation-division-type efflux pumps (mdtE and mdtF), and a metabolite, H1 symporter (MHS) family major facilitator superfamily transporter (MNZ41_23075). Virulence genes displayed diversity, particularly EC15, whose plasmids carried genes for adherence (faeA and faeC-I), invasion (ipaH and virB), and capsule (caf1A and caf1M). This comprehensive analysis illuminates antimicrobial resistance, virulence, and plasmid dynamics in E. coli from imported shrimp and has profound implications for public health, emphasizing the need for continued surveillance and research into the evolution of these important bacterial pathogens.
Collapse
Affiliation(s)
- Kidon Sung
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.N.); (M.P.); (S.A.K.); (A.A.K.)
| | - Mohamed Nawaz
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.N.); (M.P.); (S.A.K.); (A.A.K.)
| | - Miseon Park
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.N.); (M.P.); (S.A.K.); (A.A.K.)
| | - Jungwhan Chon
- Department of Companion Animal Health, Inje University, Gimhae 50834, Republic of Korea;
| | - Saeed A. Khan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.N.); (M.P.); (S.A.K.); (A.A.K.)
| | - Khulud Alotaibi
- Saudi Food and Drug Authority (SFDA), Riyadh 13513, Saudi Arabia;
| | - Javier Revollo
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (J.R.); (J.A.M.)
| | - Jaime A. Miranda
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (J.R.); (J.A.M.)
| | - Ashraf A. Khan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA; (M.N.); (M.P.); (S.A.K.); (A.A.K.)
| |
Collapse
|
54
|
Sornsenee P, Surachat K, Kang DK, Mendoza R, Romyasamit C. Probiotic Insights from the Genomic Exploration of Lacticaseibacillus paracasei Strains Isolated from Fermented Palm Sap. Foods 2024; 13:1773. [PMID: 38891001 PMCID: PMC11172291 DOI: 10.3390/foods13111773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 05/31/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
This study focused on L. paracasei strains isolated from fermented palm sap in southern Thailand that exhibit potential probiotic characteristics, including antibiotic susceptibility, resistance to gastrointestinal stresses, and antimicrobial activity against various pathogens. However, a thorough investigation of the whole genome sequences of L. paracasei isolates is required to ensure their safety and probiotic properties for human applications. This study aimed to sequence the genome of L. paracasei isolated from fermented palm sap, to assess its safety profile, and to conduct a comprehensive comparative genomic analysis with other Lacticaseibacillus species. The genome sizes of the seven L. paracasei strains ranged from 3,070,747 bp to 3,131,129 bp, with a GC content between 46.11% and 46.17% supporting their classification as nomadic lactobacilli. In addition, the minimal presence of cloud genes and a significant number of core genes suggest a high degree of relatedness among the strains. Meanwhile, phylogenetic analysis of core genes revealed that the strains possessed distinct genes and were grouped into two distinct clades. Genomic analysis revealed key genes associated with probiotic functions, such as those involved in gastrointestinal, oxidative stress resistance, vitamin synthesis, and biofilm disruption. This study is consistent with previous studies that used whole-genome sequencing and bioinformatics to assess the safety and potential benefits of probiotics in various food fermentation processes. Our findings provide valuable insights into the potential use of seven L. paracasei strains isolated from fermented palm sap as probiotic and postbiotic candidates in functional foods and pharmaceuticals.
Collapse
Affiliation(s)
- Phoomjai Sornsenee
- Department of Family and Preventive Medicine, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Komwit Surachat
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Dae-Kyung Kang
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea; (D.-K.K.); (R.M.)
| | - Remylin Mendoza
- Department of Animal Biotechnology, Dankook University, Cheonan 31116, Republic of Korea; (D.-K.K.); (R.M.)
| | - Chonticha Romyasamit
- Department of Medical Technology, School of Allied Health Sciences, Walailak University, Nakhon Si Thammarat 80160, Thailand
- Center of Excellence in Innovation of Essential Oil and Bioactive Compounds, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
55
|
Pirnay JP, Djebara S, Steurs G, Griselain J, Cochez C, De Soir S, Glonti T, Spiessens A, Vanden Berghe E, Green S, Wagemans J, Lood C, Schrevens E, Chanishvili N, Kutateladze M, de Jode M, Ceyssens PJ, Draye JP, Verbeken G, De Vos D, Rose T, Onsea J, Van Nieuwenhuyse B, Soentjens P, Lavigne R, Merabishvili M. Personalized bacteriophage therapy outcomes for 100 consecutive cases: a multicentre, multinational, retrospective observational study. Nat Microbiol 2024; 9:1434-1453. [PMID: 38834776 PMCID: PMC11153159 DOI: 10.1038/s41564-024-01705-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/19/2024] [Indexed: 06/06/2024]
Abstract
In contrast to the many reports of successful real-world cases of personalized bacteriophage therapy (BT), randomized controlled trials of non-personalized bacteriophage products have not produced the expected results. Here we present the outcomes of a retrospective observational analysis of the first 100 consecutive cases of personalized BT of difficult-to-treat infections facilitated by a Belgian consortium in 35 hospitals, 29 cities and 12 countries during the period from 1 January 2008 to 30 April 2022. We assessed how often personalized BT produced a positive clinical outcome (general efficacy) and performed a regression analysis to identify functional relationships. The most common indications were lower respiratory tract, skin and soft tissue, and bone infections, and involved combinations of 26 bacteriophages and 6 defined bacteriophage cocktails, individually selected and sometimes pre-adapted to target the causative bacterial pathogens. Clinical improvement and eradication of the targeted bacteria were reported for 77.2% and 61.3% of infections, respectively. In our dataset of 100 cases, eradication was 70% less probable when no concomitant antibiotics were used (odds ratio = 0.3; 95% confidence interval = 0.127-0.749). In vivo selection of bacteriophage resistance and in vitro bacteriophage-antibiotic synergy were documented in 43.8% (7/16 patients) and 90% (9/10) of evaluated patients, respectively. We observed a combination of antibiotic re-sensitization and reduced virulence in bacteriophage-resistant bacterial isolates that emerged during BT. Bacteriophage immune neutralization was observed in 38.5% (5/13) of screened patients. Fifteen adverse events were reported, including seven non-serious adverse drug reactions suspected to be linked to BT. While our analysis is limited by the uncontrolled nature of these data, it indicates that BT can be effective in combination with antibiotics and can inform the design of future controlled clinical trials. BT100 study, ClinicalTrials.gov registration: NCT05498363 .
Collapse
Affiliation(s)
- Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium.
- European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Study Group for Non-traditional Antibacterial Therapy (ESGNTA), Basel, Switzerland.
| | - Sarah Djebara
- Center for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Griet Steurs
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Johann Griselain
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Christel Cochez
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Steven De Soir
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Tea Glonti
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - An Spiessens
- Center for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Emily Vanden Berghe
- Center for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Sabrina Green
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Jeroen Wagemans
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Cédric Lood
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | | | - Nina Chanishvili
- Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi, Georgia
| | - Mzia Kutateladze
- Eliava Institute of Bacteriophages, Microbiology and Virology, Tbilisi, Georgia
| | | | | | - Jean-Pierre Draye
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Gilbert Verbeken
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Daniel De Vos
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Thomas Rose
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Jolien Onsea
- Department of Trauma Surgery, University Hospitals Leuven; Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Brieuc Van Nieuwenhuyse
- Institute of Experimental and Clinical Research, Pediatric Department, UCLouvain, Brussels, Belgium
| | - Patrick Soentjens
- Center for Infectious Diseases, Queen Astrid Military Hospital, Brussels, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| |
Collapse
|
56
|
Di Cesare A, Sathicq MB, Sbaffi T, Sabatino R, Manca D, Breider F, Coudret S, Pinnell LJ, Turner JW, Corno G. Parity in bacterial communities and resistomes: Microplastic and natural organic particles in the Tyrrhenian Sea. MARINE POLLUTION BULLETIN 2024; 203:116495. [PMID: 38759465 DOI: 10.1016/j.marpolbul.2024.116495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
Petroleum-based microplastic particles (MPs) are carriers of antimicrobial resistance genes (ARGs) in aquatic environments, influencing the selection and spread of antimicrobial resistance. This research characterized MP and natural organic particle (NOP) bacterial communities and resistomes in the Tyrrhenian Sea, a region impacted by plastic pollution and climate change. MP and NOP bacterial communities were similar but different from the free-living planktonic communities. Likewise, MP and NOP ARG abundances were similar but different (higher) from the planktonic communities. MP and NOP metagenome-assembled genomes contained ARGs associated with mobile genetic elements and exhibited co-occurrence with metal resistance genes. Overall, these findings show that MPs and NOPs harbor potential pathogenic and antimicrobial resistant bacteria, which can aid in the spread of antimicrobial resistance. Further, petroleum-based MPs do not represent novel ecological niches for allochthonous bacteria; rather, they synergize with NOPs, collectively facilitating the spread of antimicrobial resistance in marine ecosystems.
Collapse
Affiliation(s)
- Andrea Di Cesare
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Maria Belen Sathicq
- Instituto de Limnología "Dr. Raúl A. Ringuelet" (ILPLA) CONICET-UNLP, Bv. 120 y 62 n1437, La Plata, Buenos Aires, Argentina
| | - Tomasa Sbaffi
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Raffaella Sabatino
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Dario Manca
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy
| | - Florian Breider
- Ecole Polytechnique Fédérale de Lausanne EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland
| | - Sylvain Coudret
- Ecole Polytechnique Fédérale de Lausanne EPFL, Central Environmental Laboratory, IIE, ENAC, Station 2, CH-1015 Lausanne, Switzerland
| | - Lee J Pinnell
- Veterinary Education, Research, and Outreach Program, School of Veterinary Medicine & Biomedical Sciences, Texas A&M University, Canyon, TX, USA
| | - Jeffrey W Turner
- Department of Life Sciences, Texas A&M University, Corpus Christi, TX, USA
| | - Gianluca Corno
- National Research Council of Italy - Water Research Institute (CNR-IRSA) Molecular Ecology Group (MEG), Verbania, Italy.
| |
Collapse
|
57
|
Gao Y, Zhong Z, Zhang D, Zhang J, Li YX. Exploring the roles of ribosomal peptides in prokaryote-phage interactions through deep learning-enabled metagenome mining. MICROBIOME 2024; 12:94. [PMID: 38790030 PMCID: PMC11118758 DOI: 10.1186/s40168-024-01807-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 04/04/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Microbial secondary metabolites play a crucial role in the intricate interactions within the natural environment. Among these metabolites, ribosomally synthesized and post-translationally modified peptides (RiPPs) are becoming a promising source of therapeutic agents due to their structural diversity and functional versatility. However, their biosynthetic capacity and ecological functions remain largely underexplored. RESULTS Here, we aim to explore the biosynthetic profile of RiPPs and their potential roles in the interactions between microbes and viruses in the ocean, which encompasses a vast diversity of unique biomes that are rich in interactions and remains chemically underexplored. We first developed TrRiPP to identify RiPPs from ocean metagenomes, a deep learning method that detects RiPP precursors in a hallmark gene-independent manner to overcome the limitations of classic methods in processing highly fragmented metagenomic data. Applying this method to metagenomes from the global ocean microbiome, we uncover a diverse array of previously uncharacterized putative RiPP families with great novelty and diversity. Through correlation analysis based on metatranscriptomic data, we observed a high prevalence of antiphage defense-related and phage-related protein families that were co-expressed with RiPP families. Based on this putative association between RiPPs and phage infection, we constructed an Ocean Virus Database (OVD) and established a RiPP-involving host-phage interaction network through host prediction and co-expression analysis, revealing complex connectivities linking RiPP-encoding prokaryotes, RiPP families, viral protein families, and phages. These findings highlight the potential of RiPP families involved in prokaryote-phage interactions and coevolution, providing insights into their ecological functions in the ocean microbiome. CONCLUSIONS This study provides a systematic investigation of the biosynthetic potential of RiPPs from the ocean microbiome at a global scale, shedding light on the essential insights into the ecological functions of RiPPs in prokaryote-phage interactions through the integration of deep learning approaches, metatranscriptomic data, and host-phage connectivity. This study serves as a valuable example of exploring the ecological functions of bacterial secondary metabolites, particularly their associations with unexplored microbial interactions. Video Abstract.
Collapse
Affiliation(s)
- Ying Gao
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Zheng Zhong
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Dengwei Zhang
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Jian Zhang
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China
| | - Yong-Xin Li
- CYM305, Department of Chemistry and The Swire Institute of Marine Science, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, 999077, China.
| |
Collapse
|
58
|
Heckman TI, Yazdi Z, Older CE, Griffin MJ, Waldbieser GC, Chow AM, Medina Silva I, Anenson KM, García JC, LaFrentz BR, Slavic D, Toohey-Kurth KL, Yant P, Fritz HM, Henderson EE, McDowall R, Cai H, Adkison M, Soto E. Redefining piscine lactococcosis. Appl Environ Microbiol 2024; 90:e0234923. [PMID: 38597602 PMCID: PMC11107168 DOI: 10.1128/aem.02349-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 03/10/2024] [Indexed: 04/11/2024] Open
Abstract
Piscine lactococcosis is a significant threat to cultured and wild fish populations worldwide. The disease typically presents as a per-acute to acute hemorrhagic septicemia causing high morbidity and mortality, recalcitrant to antimicrobial treatment or management interventions. Historically, the disease was attributed to the gram-positive pathogen Lactococcus garvieae. However, recent work has revealed three distinct lactococcosis-causing bacteria (LCB)-L. garvieae, L. petauri, and L. formosensis-which are phenotypically and genetically similar, leading to widespread misidentification. An update on our understanding of lactococcosis and improved methods for identification are urgently needed. To this end, we used representative isolates from each of the three LCB species to compare currently available and recently developed molecular and phenotypic typing assays, including whole-genome sequencing (WGS), end-point and quantitative PCR (qPCR) assays, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), API 20 Strep and Biolog systems, fatty acid methyl ester analysis (FAME), and Sensititre antimicrobial profiling. Apart from WGS, sequencing of the gyrB gene was the only method capable of consistent and accurate identification to the species and strain level. A qPCR assay based on a putative glycosyltransferase gene was also able to distinguish L. petauri from L. garvieae/formosensis. Biochemical tests and MALDI-TOF MS showed some species-specific patterns in sugar and fatty acid metabolism or protein profiles but should be complemented by additional analyses. The LCB demonstrated overlap in host and geographic range, but there were relevant differences in host specificity, regional prevalence, and antimicrobial susceptibility impacting disease treatment and prevention. IMPORTANCE Lactococcosis affects a broad range of host species, including fish from cold, temperate, and warm freshwater or marine environments, as well as several terrestrial animals, including humans. As such, lactococcosis is a disease of concern for animal and ecosystem health. The disease is endemic in European and Asian aquaculture but is rapidly encroaching on ecologically and economically important fish populations across the Americas. Piscine lactococcosis is difficult to manage, with issues of vaccine escape, ineffective antimicrobial treatment, and the development of carrier fish or biofilms leading to recurrent outbreaks. Our understanding of the disease is also widely outdated. The accepted etiologic agent of lactococcosis is Lactococcus garvieae. However, historical misidentification has masked contributions from two additional species, L. petauri and L. formosensis, which are indistinguishable from L. garvieae by common diagnostic methods. This work is the first comprehensive characterization of all three agents and provides direct recommendations for species-specific diagnosis and management.
Collapse
Affiliation(s)
- Taylor I. Heckman
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Zeinab Yazdi
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Caitlin E. Older
- USDA-ARS, Warmwater Aquaculture Research Unit, Stoneville, Mississippi, USA
| | - Matt J. Griffin
- College of Veterinary Medicine, Mississippi State University, Stoneville, Mississippi, USA
| | | | - Alexander M. Chow
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Isabella Medina Silva
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Kelsey M. Anenson
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| | - Julio C. García
- USDA-ARS, Aquatic Animal Health Research Unit, Auburn, Alabama, USA
| | | | - Durda Slavic
- Animal Health Laboratory, University of Guelph, Ontario, Canada
| | - Kathy L. Toohey-Kurth
- California Animal Health and Food Safety Laboratory, University of California, Davis, California, USA
| | - Paula Yant
- California Animal Health and Food Safety Laboratory, University of California, Davis, California, USA
| | - Heather M. Fritz
- California Animal Health and Food Safety Laboratory, University of California, Davis, California, USA
| | - Eileen E. Henderson
- California Animal Health and Food Safety Laboratory, University of California, Davis, California, USA
| | | | - Hugh Cai
- Animal Health Laboratory, University of Guelph, Ontario, Canada
| | - Mark Adkison
- California Department of Fish and Wildlife, Rancho Cordova, California, USA
| | - Esteban Soto
- Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, California, USA
| |
Collapse
|
59
|
Wang T, Shi Y, Zheng M, Zheng J. Comparative Genomics Unveils Functional Diversity, Pangenome Openness, and Underlying Biological Drivers among Bacillus subtilis Group. Microorganisms 2024; 12:986. [PMID: 38792815 PMCID: PMC11124052 DOI: 10.3390/microorganisms12050986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
The Bacillus subtilis group (Bs group), with Bacillus subtilis as its core species, holds significant research and economic value in various fields, including science, industrial production, food, and pharmaceuticals. However, most studies have been confined to comparative genomics analyses and exploration within individual genomes at the level of species, with few conducted within groups across different species. This study focused on Bacillus subtilis, the model of Gram-positive bacteria, and 14 other species with significant research value, employing comparative pangenomics as well as population enrichment analysis to ascertain the functional enrichment and diversity. Through the quantification of pangenome openness, this work revealed the underlying biological drivers and significant correlation between pangenome openness and various factors, including the distribution of toxin-antitoxin- and integrase-related genes, as well as the number of endonucleases, recombinases, repair system-related genes, prophages, integrases, and transfer mobile elements. Furthermore, the functional enrichment results indicated the potential for secondary metabolite, probiotic, and antibiotic exploration in Bacillus licheniformis, Bacillus paralicheniformis, and Bacillus spizizenii, respectively. In general, this work systematically exposed the quantification of pangenome openness, biological drivers, the pivotal role of genomic instability factors, and mobile elements, providing targeted exploration guidance for the Bs group.
Collapse
Affiliation(s)
- Taiquan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (Y.S.); (M.Z.)
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yiling Shi
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (Y.S.); (M.Z.)
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Mengzhuo Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (Y.S.); (M.Z.)
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China; (T.W.); (Y.S.); (M.Z.)
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
60
|
Frantsuzova E, Bogun A, Kopylova O, Vetrova A, Solyanikova I, Streletskii R, Delegan Y. Genomic, Phylogenetic and Physiological Characterization of the PAH-Degrading Strain Gordonia polyisoprenivorans 135. BIOLOGY 2024; 13:339. [PMID: 38785821 PMCID: PMC11117675 DOI: 10.3390/biology13050339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/07/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024]
Abstract
The strain Gordonia polyisoprenivorans 135 is able to utilize a wide range of aromatic compounds. The aim of this work was to study the features of genetic organization and biotechnological potential of the strain G. polyisoprenivorans 135 as a degrader of aromatic compounds. The study of the genome of the strain 135 and the pangenome of the G. polyisoprenivorans species revealed that some genes, presumably involved in PAH catabolism, are atypical for Gordonia and belong to the pangenome of Actinobacteria. Analyzing the intergenic regions of strain 135 alongside the "panIGRome" of G. polyisoprenivorans showed that some intergenic regions in strain 135 also differ from those located between the same pairs of genes in related strains. The strain G. polyisoprenivorans 135 in our work utilized naphthalene (degradation degree 39.43%) and grew actively on salicylate. At present, this is the only known strain of G. polyisoprenivorans with experimentally confirmed ability to utilize these compounds.
Collapse
Affiliation(s)
- Ekaterina Frantsuzova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Alexander Bogun
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Olga Kopylova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
- Pushchino Branch of Federal State Budgetary Educational Institution of Higher Education “Russian Biotechnology University (ROSBIOTECH)”, 142290 Pushchino, Moscow Region, Russia
| | - Anna Vetrova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| | - Inna Solyanikova
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
- Regional Microbiological Center, Belgorod State University, 308015 Belgorod, Russia
| | - Rostislav Streletskii
- Laboratory of Ecological Soil Science, Faculty of Soil Science, Lomonosov Moscow State University, 119991 Moscow, Russia;
| | - Yanina Delegan
- Institute of Biochemistry and Physiology of Microorganisms, Federal Research Center “Pushchino Scientific Center for Biological Research of Russian Academy of Sciences” (FRC PSCBR RAS), 142290 Pushchino, Moscow Region, Russia; (E.F.); (A.B.); (O.K.); (A.V.); (I.S.)
| |
Collapse
|
61
|
Wang YC, Mao Y, Fu HM, Wang J, Weng X, Liu ZH, Xu XW, Yan P, Fang F, Guo JS, Shen Y, Chen YP. New insights into functional divergence and adaptive evolution of uncultured bacteria in anammox community by complete genome-centric analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 924:171530. [PMID: 38453092 DOI: 10.1016/j.scitotenv.2024.171530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/13/2023] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Anaerobic ammonium-oxidation (anammox) bacteria play a crucial role in global nitrogen cycling and wastewater nitrogen removal, but they share symbiotic relationships with various other microorganisms. Functional divergence and adaptive evolution of uncultured bacteria in anammox community remain underexplored. Although shotgun metagenomics based on short reads has been widely used in anammox research, metagenome-assembled genomes (MAGs) are often discontinuous and highly contaminated, which limits in-depth analyses of anammox communities. Here, for the first time, we performed Pacific Biosciences high-fidelity (HiFi) long-read sequencing on the anammox granule sludge sample from a lab-scale bioreactor, and obtained 30 accurate and complete metagenome-assembled genomes (cMAGs). These cMAGs were obtained by selecting high-quality circular contigs from initial assemblies of long reads generated by HiFi sequencing, eliminating the need for Illumina short reads, binning, and reassembly. One new anammox species affiliated with Candidatus Jettenia and three species affiliated with novel families were found in this anammox community. cMAG-centric analysis revealed functional divergence in general and nitrogen metabolism among the anammox community members, and they might adopt a cross-feeding strategy in organic matter, cofactors, and vitamins. Furthermore, we identified 63 mobile genetic elements (MGEs) and 50 putative horizontal gene transfer (HGT) events within these cMAGs. The results suggest that HGT events and MGEs related to phage and integration or excision, particularly transposons containing tnpA in anammox bacteria, might play important roles in the adaptive evolution of this anammox community. The cMAGs generated in the present study could be used to establish of a comprehensive database for anammox bacteria and associated microorganisms. These findings highlight the advantages of HiFi sequencing for the studies of complex mixed cultures and advance the understanding of anammox communities.
Collapse
Affiliation(s)
- Yi-Cheng Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518071, Guangdong, China
| | - Hui-Min Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China; National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - Jin Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Xun Weng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Zi-Hao Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Xiao-Wei Xu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Jin-Song Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China
| | - Yu Shen
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing 400067, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
62
|
Da Silva Morais E, Grimaud GM, Warda A, Stanton C, Ross P. Genome plasticity shapes the ecology and evolution of Phocaeicola dorei and Phocaeicola vulgatus. Sci Rep 2024; 14:10109. [PMID: 38698002 PMCID: PMC11066082 DOI: 10.1038/s41598-024-59148-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/08/2024] [Indexed: 05/05/2024] Open
Abstract
Phocaeicola dorei and Phocaeicola vulgatus are very common and abundant members of the human gut microbiome and play an important role in the infant gut microbiome. These species are closely related and often confused for one another; yet, their genome comparison, interspecific diversity, and evolutionary relationships have not been studied in detail so far. Here, we perform phylogenetic analysis and comparative genomic analyses of these two Phocaeicola species. We report that P. dorei has a larger genome yet a smaller pan-genome than P. vulgatus. We found that this is likely because P. vulgatus is more plastic than P. dorei, with a larger repertoire of genetic mobile elements and fewer anti-phage defense systems. We also found that P. dorei directly descends from a clade of P. vulgatus¸ and experienced genome expansion through genetic drift and horizontal gene transfer. Overall, P. dorei and P. vulgatus have very different functional and carbohydrate utilisation profiles, hinting at different ecological strategies, yet they present similar antimicrobial resistance profiles.
Collapse
Affiliation(s)
- Emilene Da Silva Morais
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Microbiology Department, University College Cork, Co. Cork, Ireland
| | - Ghjuvan Micaelu Grimaud
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Alicja Warda
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland
- Food Biosciences Department, Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Paul Ross
- APC Microbiome Ireland, University College Cork, Co. Cork, Ireland.
- Microbiology Department, University College Cork, Co. Cork, Ireland.
| |
Collapse
|
63
|
Guillén-Chable F, Valdez Iuit JO, Avila Castro LA, Rosas C, Merino E, Rodríguez-Escamilla Z, Martínez-Núñez MA. Geographical distribution of mobile genetic elements in microbial communities along the Yucatan coast. PLoS One 2024; 19:e0301642. [PMID: 38683832 PMCID: PMC11057721 DOI: 10.1371/journal.pone.0301642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/19/2024] [Indexed: 05/02/2024] Open
Abstract
Horizontal gene transfer (HGT) is a well-documented strategy used by bacteria to enhance their adaptability to challenging environmental conditions. Through HGT, a group of conserved genetic elements known as mobile genetic elements (MGEs) is disseminated within bacterial communities. MGEs offer numerous advantages to the host, increasing its fitness by acquiring new functions that help bacteria contend with adverse conditions, including exposure to heavy metal and antibiotics. This study explores MGEs within microbial communities along the Yucatan coast using a metatranscriptomics approach. Prior to this research, nothing was known about the coastal Yucatan's microbial environmental mobilome and HGT processes between these bacterial communities. This study reveals a positive correlation between MGEs and antibiotic resistance genes (ARGs) along the Yucatan coast, with higher MGEs abundance in more contaminated sites. The Proteobacteria and Firmicutes groups exhibited the highest number of MGEs. It's important to highlight that the most abundant classes of MGEs might not be the ones most strongly linked to ARGs, as observed for the recombination/repair class. This work presents the first geographical distribution of the environmental mobilome in Yucatan Peninsula mangroves.
Collapse
Affiliation(s)
- Francisco Guillén-Chable
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | - Johnny Omar Valdez Iuit
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | | | - Carlos Rosas
- UMDI-Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México, Sisal, Yucatán, México
| | - Enrique Merino
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Zuemy Rodríguez-Escamilla
- Facultad de Sistemas Biológicos e Innovación Tecnológica, Universidad Autónoma "Benito Juárez" de Oaxaca, Oaxaca de Juárez, Oaxaca, México
| | | |
Collapse
|
64
|
Li Z, Guo X, Liu B, Huang T, Liu R, Liu X. Metagenome sequencing reveals shifts in phage-associated antibiotic resistance genes from influent to effluent in wastewater treatment plants. WATER RESEARCH 2024; 253:121289. [PMID: 38341975 DOI: 10.1016/j.watres.2024.121289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/12/2024] [Accepted: 02/07/2024] [Indexed: 02/13/2024]
Abstract
Antibiotic resistance poses a significant threat to global health, and the microbe-rich activated sludge environment may contribute to the dissemination of antibiotic resistance genes (ARGs). ARGs spread across various bacterial populations via multiple dissemination routes, including horizontal gene transfer mediated by bacteriophages (phages). However, the potential role of phages in spreading ARGs in wastewater treatment systems remains unclear. This study characterized the core resistome, mobile genetic elements (MGEs), and virus-associated ARGs (vir_ARGs) in influents (Inf) and effluents (Eff) samples from nine WWTPs in eastern China. The abundance of ARGs in the Inf samples was higher than that in the Eff samples. A total of 21 core ARGs were identified, accounting for 38.70 %-83.70 % of the different samples. There was an increase in MGEs associated with phage-related processes from influents to effluents (from 12.68 % to 21.10 %). These MGEs showed strong correlations in relative abundance and composition with the core ARGs in the Eff samples. Across the Inf and Eff samples, 58 unique vir_ARGs were detected, with the Eff samples exhibiting higher diversity of vir_ARGs than the Inf samples. Statistical analyses indicated a robust relationship between core ARG profile, MGEs associated with phage-related processes, and vir_ARG composition in the Eff samples. Additionally, the co-occurrence of MGEs and ARGs in viral genomes was observed, ranging from 22.73 % to 68.75 %. This co-occurrence may exacerbate the persistence and spread of ARGs within WWTPs. The findings present new information on the changes in core ARGs, MGEs, and phage-associated ARGs from influents to effluents in WWTPs and provide new insights into the role of phage-associated ARGs in these systems.
Collapse
Affiliation(s)
- Zong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Binzhou 256212, China
| | - Xiaoxiao Guo
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Binzhou 256212, China
| | - Bingxin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ting Huang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruyin Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Binzhou 256212, China.
| | - Xinchun Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Binzhou Institute of Technology, Binzhou 256212, China.
| |
Collapse
|
65
|
Bombaywala S, Bajaj A, Dafale NA. Oxygen mediated mobilization and co-occurrence of antibiotic resistance in lab-scale bioreactor using metagenomic binning. World J Microbiol Biotechnol 2024; 40:142. [PMID: 38519761 DOI: 10.1007/s11274-024-03952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/11/2024] [Indexed: 03/25/2024]
Abstract
Sub-lethal levels of antibiotic stimulate bacteria to generate reactive oxygen species (ROS) that promotes emergence and spread of antibiotic resistance mediated by mobile genetic elements (MGEs). Nevertheless, the influence of dissolved oxygen (DO) levels on mobility of antibiotic resistance genes (ARGs) in response to ROS-induced stress remains elusive. Thus, the study employs metagenomic assembly and binning approaches to decipher mobility potential and co-occurrence frequency of ARGs and MGEs under hyperoxic (5.5-7 mgL- 1), normoxic (2.5-4 mgL- 1), and hypoxic (0.5-1 mgL- 1) conditions in lab-scale bioreactor for 6 months. Among 163 high-quality metagenome-assembled genomes (MAGs) recovered from 13 metagenomes, 42 MAGs harboured multiple ARGs and were assigned to priority pathogen group. Total ARG count increased by 4.3 and 2.5% in hyperoxic and normoxic, but decreased by 0.53% in hypoxic conditions after 150 days. On contrary, MGE count increased by 7.3-1.3% in all the DO levels, with only two ARGs showed positive correlation with MGEs in hypoxic compared to 20 ARGs under hyperoxic conditions. Opportunistic pathogens (Escherichia, Klebsiella, Clostridium, and Proteus) were detected as potential hosts of ARGs wherein co-localisation of critical ARG gene cassette (sul1, dfr1,adeF, and qacC) were identified in class 1 integron/Tn1 family transposons. Thus, enhanced co-occurrence frequency of ARGs with MGEs in pathogens suggested promotion of ARGs mobility under oxidative stress. The study offers valuable insights into ARG dissemination and hosts dynamics that is essential for controlling oxygen-related stress for mitigating MGEs and ARGs in the environment.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhay Bajaj
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
- Environmental Toxicology Group, FEST Division, CSIR-Indian Institute of Toxicology Research, 31 Mahatma Gandhi Marg, Lucknow, 226001, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
66
|
Hoque MN, Faisal GM, Jerin S, Moyna Z, Islam MA, Talukder AK, Alam MS, Das ZC, Isalm T, Hossain MA, Rahman ANMA. Unveiling distinct genetic features in multidrug-resistant Escherichia coli isolated from mammary tissue and gut of mastitis induced mice. Heliyon 2024; 10:e26723. [PMID: 38434354 PMCID: PMC10904246 DOI: 10.1016/j.heliyon.2024.e26723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/08/2024] [Accepted: 02/19/2024] [Indexed: 03/05/2024] Open
Abstract
Escherichia coli is one of the major pathogens causing mastitis in lactating mammals. We hypothesized that E. coli from the gut and mammary glands may have similar genomic characteristics in the causation of mastitis. To test this hypothesis, we used whole genome sequencing to analyze two multidrug resistant E. coli strains isolated from mammary tissue (G2M6U) and fecal sample (G6M1F) of experimentally induced mastitis mice. Both strains showed resistance to multiple (>7) antibiotics such as oxacillin, aztreonam, nalidixic acid, streptomycin, gentamicin, cefoxitin, ampicillin, tetracycline, azithromycin and nitrofurantoin. The genome of E. coli G2M6U had 59 antimicrobial resistance genes (ARGs) and 159 virulence factor genes (VFGs), while the E. coli G6M1F genome possessed 77 ARGs and 178 VFGs. Both strains were found to be genetically related to many E. coli strains causing mastitis and enteric diseases originating from different hosts and regions. The G6M1F had several unique ARGs (e.g., QnrS1, sul2, tetA, tetR, emrK, blaTEM-1/105, and aph(6)-Id, aph(3″)-Ib) conferring resistance to certain antibiotics, whereas G2M6U had a unique heat-stable enterotoxin gene (astA) and 7192 single nucleotide polymorphisms. Furthermore, there were 43 and 111 unique genes identified in G2M6U and G6M1F genomes, respectively. These results indicate distinct differences in the genomic characteristics of E. coli strain G2M6U and G6M1F that might have important implications in the pathophysiology of mammalian mastitis, and treatment strategies for mastitis in dairy animals.
Collapse
Affiliation(s)
- M. Nazmul Hoque
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Golam Mahbub Faisal
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Shobnom Jerin
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Zannatara Moyna
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Md Aminul Islam
- Advanced Molecular Lab, Department of Microbiology, President Abdul Hamid Medical College, Karimganj, 2310, Bangladesh
| | - Anup Kumar Talukder
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | | | - Ziban Chandra Das
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| | - Tofazzal Isalm
- Institute of Biotechnology and Genetic Engineering (IBGE), BSMRAU, Gazipur, 1706, Bangladesh
| | - M. Anwar Hossain
- Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Abu Nasar Md Aminoor Rahman
- Molecular Biology and Bioinformatics Laboratory, Department of Gynecology, Obstetrics and Reproductive Health, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur, 1706, Bangladesh
| |
Collapse
|
67
|
Ling F, Giammar DE, Parker KM, Turner JR, Yeoh W. Fostering Convergence: Strategies for Designing a Graduate Training Program at the Intersection of Environmental Engineering and Computational Sciences. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4465-4468. [PMID: 38428924 PMCID: PMC10938632 DOI: 10.1021/acs.est.3c10491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Indexed: 03/03/2024]
Affiliation(s)
- Fangqiong Ling
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Daniel E. Giammar
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
- Washington
University Center for the Environment, St. Louis, Missouri 63130, United States
| | - Kimberly M. Parker
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Jay R. Turner
- Department
of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - William Yeoh
- Department
of Computer Science and Engineering, Washington
University in St. Louis, St. Louis, Missouri 63130, United
States
| |
Collapse
|
68
|
Olanrewaju OS, Molale-Tom LG, Kritzinger RK, Bezuidenhout CC. Genome mining of Escherichia coli WG5D from drinking water source: unraveling antibiotic resistance genes, virulence factors, and pathogenicity. BMC Genomics 2024; 25:263. [PMID: 38459466 PMCID: PMC10924361 DOI: 10.1186/s12864-024-10110-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/09/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Escherichia coli, a ubiquitous inhabitant of the gut microbiota, has been recognized as an indicator of fecal contamination and a potential reservoir for antibiotic resistance genes. Its prevalence in drinking water sources raises concerns about the potential dissemination of antibiotic resistance within aquatic ecosystems and the subsequent impact on public health. The ability of E. coli to acquire and transfer resistance genes, coupled with the constant exposure to low levels of antibiotics in the environment, underscores the need for comprehensive surveillance and rigorous antimicrobial stewardship strategies to safeguard the quality and safety of drinking water supplies, ultimately mitigating the escalation of antibiotic resistance and its implications for human well-being. METHODS WG5D strain, isolated from a drinking water distribution source in North-West Province, South Africa, underwent genomic analysis following isolation on nutrient agar, anaerobic cultivation, and DNA extraction. Paired-end Illumina sequencing with a Nextera XT Library Preparation kit was performed. The assembly, annotation, and subsequent genomic analyses, including phylogenetic analysis using TYGS, pairwise comparisons, and determination of genes related to antimicrobial resistance and virulence, were carried out following standard protocols and tools, ensuring comprehensive insights into the strain's genomic features. RESULTS This study explores the notable characteristics of E. coli strain WG5D. This strain stands out because it possesses multiple antibiotic resistance genes, encompassing tetracycline, cephalosporin, vancomycin, and aminoglycoside resistances. Additionally, virulence-associated genes indicate potential heightened pathogenicity, complemented by the identification of mobile genetic elements that underscore its adaptability. The intriguing possibility of bacteriophage involvement and factors contributing to pathogenicity further enriches our understanding. We identified E. coli WG5D as a potential human pathogen associated with a drinking water source in South Africa. The analysis provided several antibiotic resistance-associated genes/mutations and mobile genetic elements. It further identified WG5D as a potential human pathogen. The occurrence of E. coli WG5D raised the awareness of the potential pathogens and the carrying of antibiotic resistance in drinking water. CONCLUSIONS The findings of this study have highlighted the advantages of the genomic approach in identifying the bacterial species and antibiotic resistance genes of E. coli and its potential as a human pathogen.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, 2520, Potchefstroom, South Africa
| | - Lesego G Molale-Tom
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, 2520, Potchefstroom, South Africa
| | - Rinaldo K Kritzinger
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, 2520, Potchefstroom, South Africa
| | - Cornelius Carlos Bezuidenhout
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom Campus, Private Bag X6001, 2520, Potchefstroom, South Africa.
| |
Collapse
|
69
|
Xu JY, Ding J, Du S, Zhu D. Tire particles and its leachates: Impact on antibiotic resistance genes in coastal sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133333. [PMID: 38147751 DOI: 10.1016/j.jhazmat.2023.133333] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/28/2023]
Abstract
Tire particles (TPs), a significant group of microplastics, can be discharged into the coastal environments in various ways. However, our understanding of how TPs impact the antibiotic resistance and pathogenic risks of microorganisms in coastal sediments remains limited. In this study, we used metagenomics to investigate how TPs and their leachates could affect the prevalence of antibiotic resistance genes (ARGs), virulence factor genes (VFGs), and their potential risks to the living creatures such as soil invertebrates and microorganisms in the coastal sediments. We discovered that TP addition significantly increased the abundance and diversity of ARGs and VFGs in coastal sediments, with raw TPs displayed higher impacts than TP leachates and TPs after leaching on ARGs and VFGs. With increasing TP exposure concentrations, the co-occurrence frequency of ARGs and mobile genetic elements (MGEs) in the same contig also increased, suggesting that TPs could enhance the dispersal risk of ARGs. Our metagenome-based binning analysis further revealed that exposure to TPs increased the abundance of potentially pathogenic antibiotic-resistant bacteria (PARB). In addition, chemical additives of TP leachates (e.g., Zn and N-cyclohexylformamide) significantly affected the changes of ARGs in the pore water. In summary, our study provides novel insights into the adverse effects of TP pollutions on aggravating the dissemination and pathogenic risks of ARGs and PARB in the coastal environment.
Collapse
Affiliation(s)
- Jia-Yang Xu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People' s Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People' s Republic of China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, People' s Republic of China
| | - Shuai Du
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People' s Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People' s Republic of China.
| | - Dong Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People' s Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo 315830, People' s Republic of China.
| |
Collapse
|
70
|
Mondol SM, Islam MR, Rakhi NN, Shakil SK, Islam I, Mustary JF, Amiruzzaman, Shahjalal HM, Gomes DJ, Rahaman MM. Unveiling a high-risk epidemic clone (ST 357) of 'Difficult to Treat Extensively Drug-Resistant' (DT-XDR) Pseudomonas aeruginosa from a burn patient in Bangladesh: A resilient beast revealing coexistence of four classes of beta lactamases. J Glob Antimicrob Resist 2024; 36:83-95. [PMID: 38122983 DOI: 10.1016/j.jgar.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/17/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
OBJECTIVES Pseudomonas aeruginosa (P. aeruginosa) stands out as a key culprit in the colonization of burn wounds, instigating grave infections of heightened severity. In this study, we have performed comparative whole genome analysis of a difficult to treat extensively drug resistant P. aeruginosa isolated from a burn patient in order to elucidate genomic diversity, molecular patterns, mechanisms and genes responsible for conferring antimicrobial resistance and virulence. METHOD P. aeruginosa SHNIBPS206 was isolated from an infected burn wound of a critically injured burn patient. Whole genome sequencing was carried out and annotated with Prokka. Sequence type, serotype, antimicrobial resistance genes and mechanisms, virulence genes, metal resistance genes and CRISPR/Cas systems were investigated. Later, pangenome analysis was carried out to find out genomic diversity. RESULT P. aeruginosa SHNIBPS206 (MLST 357, Serotype O11) was resistant to 14 antibiotics including carbapenems and harboured all four classes of beta lactamase producing genes: Class A (blaPME-1, blaVEB-9), Class B (blaNDM-1), Class C (blaPDC-11) and Class D (blaOXA-846). Mutational analysis of Porin D gave valuable insights. Several efflux pump, virulence and metal resistance genes were also detected. Pangenome analysis revealed high genomic diversity among different strains of P. aeruginosa. CONCLUSION To our knowledge, this is the first report of an extensively drug resistant ST 357 P. aeruginosa from Bangladesh, which is an epidemic high-risk P. aeruginosa clone. Further research and in-depth comprehensive studies are required to investigate the prevalence of such high-risk clone of P. aeruginosa in Bangladesh.
Collapse
Affiliation(s)
| | - Md Rafiul Islam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | | | - Shahriar Kabir Shakil
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh; Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Israt Islam
- Department of Microbiology, University of Dhaka, Dhaka, Bangladesh
| | - Jannatul Ferdous Mustary
- Microbiology Department, Sheikh Hasina National Institute of Burn and Plastic Surgery, Dhaka, Bangladesh
| | - Amiruzzaman
- Department of Medicine, Sir Salimullah Medical College, Dhaka, Bangladesh
| | - Hussain Md Shahjalal
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, Bangladesh
| | | | | |
Collapse
|
71
|
Li LJ, Xu F, Xu JX, Yan Y, Su JQ, Zhu YG, Li H. Spatiotemporal Changes of Antibiotic Resistance, Potential Pathogens, and Health Risk in Kindergarten Dust. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3919-3930. [PMID: 38353611 DOI: 10.1021/acs.est.3c07935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
The microorganisms present in kindergartens are extremely important for children's health during their three-year preschool education. To assess the risk of outdoor dust in kindergartens, the antibiotic resistome and potential pathogens were investigated in dust samples collected from 59 kindergartens in Xiamen, southeast China in both the winter and summer. Both high-throughput quantitative PCR and metagenome analysis revealed a higher richness and abundance of antibiotic resistance genes (ARGs) in winter (P < 0.05). Besides, the bloom of ARGs and potential pathogens was evident in the urban kindergartens. The co-occurrence patterns among ARGs, mobile genetic elements (MGEs), and potential pathogens suggested some bacterial pathogens were potential hosts of ARGs and MGEs. We found a large number of high-risk ARGs in the dust; the richness and abundance of high-risk ARGs were higher in winter and urban kindergartens compared to in summer and peri-urban kindergartens, respectively. The results of the co-occurrence patterns and high-risk ARGs jointly reveal that urbanization will significantly increase the threat of urban dust to human beings and their risks will be higher in winter. This study unveils the close association between ARGs/mobile ARGs and potential pathogens and emphasizes that we should pay more attention to the health risks induced by their combination.
Collapse
Affiliation(s)
- Li-Juan Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Fei Xu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jian-Xin Xu
- Department of Environmental and Resource Engineering, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Yu Yan
- Department of Environmental Science and Engineering, Huaqiao University, Xiamen 361021, China
| | - Jian-Qiang Su
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Hu Li
- Key Laboratory of Urban Environment and Health, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
72
|
Roman-Reyna V, Sharma A, Toth H, Konkel Z, Omiotek N, Murthy S, Faith S, Slot J, Peduto Hand F, Goss EM, Jacobs JM. Live tracking of a plant pathogen outbreak reveals rapid and successive, multidecade plasmid reduction. mSystems 2024; 9:e0079523. [PMID: 38275768 PMCID: PMC10878067 DOI: 10.1128/msystems.00795-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024] Open
Abstract
Quickly understanding the genomic changes that lead to pathogen emergence is necessary to launch mitigation efforts and reduce harm. In this study, we tracked in real time a 2022 bacterial plant disease outbreak in U.S. geraniums (Pelargonium × hortorum) caused by Xhp2022, a novel lineage of Xanthomonas hortorum. Genomes from 31 Xhp2022 isolates from seven states showed limited chromosomal variation and all contained a single plasmid (p93). Time tree and single nucleotide polymorphism whole-genome analysis estimated that Xhp2022 emerged within the last decade. The phylogenomic analysis determined that p93 resulted from the cointegration of three plasmids (p31, p45, and p66) found sporadically across isolates from previous outbreaks. Although p93 had a 49 kb nucleotide reduction, it retained putative fitness genes, which became predominant in the 2022 outbreak. Overall, we demonstrated, through rapid whole-genome sequencing and analysis, a recent, traceable event of genome reduction for niche adaptation typically observed over millennia in obligate and fastidious pathogens.IMPORTANCEThe geranium industry, valued at $4 million annually, faces an ongoing Xanthomonas hortorum pv. pelargonii (Xhp) pathogen outbreak. To track and describe the outbreak, we compared the genome structure across historical and globally distributed isolates. Our research revealed Xhp population has not had chromosome rearrangements since 1974 and has three distinct plasmids. In 2012, we found all three plasmids in individual Xhp isolates. However, in 2022, the three plasmids co-integrated into one plasmid named p93. p93 retained putative fitness genes but lost extraneous genomic material. Our findings show that the 2022 strain group of the bacterial plant pathogen Xanthomonas hortorum underwent a plasmid reduction. We also observed several Xanthomonas species from different years, hosts, and continents have similar plasmids to p93, possibly due to shared agricultural settings. We noticed parallels between genome efficiency and reduction that we see across millennia with obligate parasites with increased niche specificity.
Collapse
Affiliation(s)
- Veronica Roman-Reyna
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Anuj Sharma
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Hannah Toth
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Zachary Konkel
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
| | - Nicolle Omiotek
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| | - Shashanka Murthy
- Applied Microbiology Services Laboratory, The Ohio State University, Columbus, Ohio, USA
| | - Seth Faith
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
- Applied Microbiology Services Laboratory, The Ohio State University, Columbus, Ohio, USA
| | - Jason Slot
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
| | | | - Erica M. Goss
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Jonathan M. Jacobs
- Department of Plant Pathology, The Ohio State University, Columbus, Ohio, USA
- Infectious Diseases Institute, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
73
|
Maddamsetti R, Yao Y, Wang T, Gao J, Huang VT, Hamrick GS, Son HI, You L. Duplicated antibiotic resistance genes reveal ongoing selection and horizontal gene transfer in bacteria. Nat Commun 2024; 15:1449. [PMID: 38365845 PMCID: PMC10873360 DOI: 10.1038/s41467-024-45638-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 01/29/2024] [Indexed: 02/18/2024] Open
Abstract
Horizontal gene transfer (HGT) and gene duplication are often considered as separate mechanisms driving the evolution of new functions. However, the mobile genetic elements (MGEs) implicated in HGT can copy themselves, so positive selection on MGEs could drive gene duplications. Here, we use a combination of modeling and experimental evolution to examine this hypothesis and use long-read genome sequences of tens of thousands of bacterial isolates to examine its generality in nature. Modeling and experiments show that antibiotic selection can drive the evolution of duplicated antibiotic resistance genes (ARGs) through MGE transposition. A key implication is that duplicated ARGs should be enriched in environments associated with antibiotic use. To test this, we examined the distribution of duplicated ARGs in 18,938 complete bacterial genomes with ecological metadata. Duplicated ARGs are highly enriched in bacteria isolated from humans and livestock. Duplicated ARGs are further enriched in an independent set of 321 antibiotic-resistant clinical isolates. Our findings indicate that duplicated genes often encode functions undergoing positive selection and horizontal gene transfer in microbial communities.
Collapse
Affiliation(s)
- Rohan Maddamsetti
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yi Yao
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Teng Wang
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Junheng Gao
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC, USA
| | - Vincent T Huang
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Grayson S Hamrick
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC, USA
| | - Hye-In Son
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Lingchong You
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA.
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Biomolecular and Tissue Engineering, Duke University, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
74
|
Song J, Zheng C, Qiu M, Zhan XP, Zhang Z, Zhang H, Shi N, Zhang L, Yu Y, Nicolaisen M, Xu L, Fang H. Mechanisms Underlying the Overlooked Chiral Fungicide-Driven Enantioselective Proliferation of Antibiotic Resistance in Earthworm Intestinal Microbiome. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2931-2943. [PMID: 38306257 DOI: 10.1021/acs.est.3c07761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
From a "One Health" perspective, the global threat of antibiotic resistance genes (ARGs) is associated with modern agriculture practices including agrochemicals application. Chiral fungicides account for a considerable proportion of wildly used agrochemicals; however, whether and how their enantiomers lead to differential proliferation of antibiotic resistance in agricultural environments remain overlooked. Focused on the soil-earthworm ecosystem, we for the first time deciphered the mechanisms underlying the enantioselective proliferation of antibiotic resistance driven by the enantiomers of a typical chiral fungicide mandipropamid (i.e., R-MDP and S-MDP) utilizing a multiomic approach. Time-series metagenomic analysis revealed that R-MDP led to a significant enhancement of ARGs with potential mobility (particularly the plasmid-borne ARGs) in the earthworm intestinal microbiome. We further demonstrated that R-MDP induced a concentration-dependent facilitation of plasmid-mediated ARG transfer among microbes. In addition, transcriptomic analysis with verification identified the key aspects involved, where R-MDP enhanced cell membrane permeability, transfer ability, biofilm formation and quorum sensing, rebalanced energy production, and decreased cell mobility versus S-MDP. Overall, the findings provide novel insights into the enantioselective disruption of microbiome and resistome in earthworm gut by chiral fungicides and offer significant contributions to the comprehensive risk assessment of chiral agrochemicals in agroecosystems.
Collapse
Affiliation(s)
- Jiajin Song
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Conglai Zheng
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mengting Qiu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiu-Ping Zhan
- Shanghai Agricultural Technology Extension and Service Center, Shanghai 201103, China
| | - Zihan Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Houpu Zhang
- College of Resources and Environment, Anhui Agricultural University, Anhui Provincial Key Laboratory of Hazardous Factors and Risk Control of Agri-food Quality Safety, Hefei 230036, China
| | - Nan Shi
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California 92697, United States
| | - Luqing Zhang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Mogens Nicolaisen
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Slagelse 4200, Denmark
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hua Fang
- Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang Province, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
75
|
Liu W, Sun C, Ren Z, Hao S, Chen Z, Li T, Wen X. Long-term occurrence, resistance risk and chaotic characteristics of antibiotic resistance genes in sludge anaerobic digestion system. BIORESOURCE TECHNOLOGY 2024; 394:130267. [PMID: 38154733 DOI: 10.1016/j.biortech.2023.130267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/08/2023] [Accepted: 12/25/2023] [Indexed: 12/30/2023]
Abstract
The long-term occurrence, dynamics and risk of antibiotic resistance genes (ARGs) in anaerobic digestion (AD) of excess sludge (ES) are not fully understood. Therefore, 13-month metagenomic monitoring was carried out in a full-scale AD plant. The highest ARG abundance and risk scores were observed in spring. AD achieved a 35 % removal rate for the total ARG abundance, but the risk score of AD sludge was not always lower than ES samples, because of the higher proportion of Rank I ARGs in AD sludge. ARGs showed less obvious patterns under linear models compared with microbial community, implying their chaotic dynamics, which was further confirmed by nonlinearity tests. Empirical dynamic modeling performed better than the autoregressive integrated moving average model for ARG dynamics, especially for those with simple and nonlinear dynamics. This study highlighted spring for its higher ARG abundance and risk, and recommended nonlinear models for revealing the dynamics of ARGs.
Collapse
Affiliation(s)
- Wei Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Chenxiang Sun
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhengran Ren
- Research and Development Center, Beijing Drainage Group Co. Ltd., Beijing 100080, China
| | - Shan Hao
- Research and Development Center, Beijing Drainage Group Co. Ltd., Beijing 100080, China
| | - Zhan Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Tianle Li
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Xianghua Wen
- School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
76
|
Mondol SM, Islam I, Islam MR, Shakil SK, Rakhi NN, Mustary JF, Amiruzzaman, Gomes DJ, Shahjalal HM, Rahaman MM. Genomic landscape of NDM-1 producing multidrug-resistant Providencia stuartii causing burn wound infections in Bangladesh. Sci Rep 2024; 14:2246. [PMID: 38278862 PMCID: PMC10817959 DOI: 10.1038/s41598-024-51819-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 01/09/2024] [Indexed: 01/28/2024] Open
Abstract
The increasing antimicrobial resistance in Providencia stuartii (P. stuartii) worldwide, particularly concerning for immunocompromised and burn patients, has raised concern in Bangladesh, where the significance of this infectious opportunistic pathogen had been previously overlooked, prompting a need for investigation. The two strains of P. stuartii (P. stuartii SHNIBPS63 and P. stuartii SHNIBPS71) isolated from wound swab of two critically injured burn patients were found to be multidrug-resistant and P. stuartii SHNIBPS63 showed resistance to all the 22 antibiotics tested as well as revealed the co-existence of blaVEB-6 (Class A), blaNDM-1 (Class B), blaOXA-10 (Class D) beta lactamase genes. Complete resistance to carbapenems through the production of NDM-1, is indicative of an alarming situation as carbapenems are considered to be the last line antibiotic to combat this pathogen. Both isolates displayed strong biofilm-forming abilities and exhibited resistance to copper, zinc, and iron, in addition to carrying multiple genes associated with metal resistance and the formation of biofilms. The study also encompassed a pangenome analysis utilizing a dataset of eighty-six publicly available P. stuartii genomes (n = 86), revealing evidence of an open or expanding pangenome for P. stuartii. Also, an extensive genome-wide analysis of all the P. stuartii genomes revealed a concerning global prevalence of diverse antimicrobial resistance genes, with a particular alarm raised over the abundance of carbapenem resistance gene blaNDM-1. Additionally, this study highlighted the notable genetic diversity within P. stuartii, significant informations about phylogenomic relationships and ancestry, as well as potential for cross-species transmission, raising important implications for public health and microbial adaptation across different environments.
Collapse
Affiliation(s)
| | - Israt Islam
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Md Rafiul Islam
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Shahriar Kabir Shakil
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | | | - Jannatul Ferdous Mustary
- Microbiology Department, Sheikh Hasina National Institute of Burn and Plastic Surgery, Dhaka, 1000, Bangladesh
| | - Amiruzzaman
- Department of Medicine, Sir Salimullah Medical College, Dhaka, 1000, Bangladesh
| | - Donald James Gomes
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
| | - Hussain Md Shahjalal
- Department of Biochemistry and Molecular Biology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Md Mizanur Rahaman
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
77
|
Rhoads DD, Pummill J, Alrubaye AAK. Molecular Genomic Analyses of Enterococcus cecorum from Sepsis Outbreaks in Broilers. Microorganisms 2024; 12:250. [PMID: 38399654 PMCID: PMC10892122 DOI: 10.3390/microorganisms12020250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Extensive genomic analyses of Enterococcus cecorum isolates from sepsis outbreaks in broilers suggest a polyphyletic origin, likely arising from core genome mutations rather than gene acquisition. This species is a normal intestinal flora of avian species with particular isolates associated with osteomyelitis. More recently, this species has been associated with sepsis outbreaks affecting broilers during the first 3 weeks post-hatch. Understanding the genetic and management basis of this new phenotype is critical for developing strategies to mitigate this emerging problem. Phylogenomic analyses of 227 genomes suggest that sepsis isolates are polyphyletic and closely related to both commensal and osteomyelitis isolate genomes. Pangenome analyses detect no gene acquisitions that distinguish all the sepsis isolates. Core genome single nucleotide polymorphism analyses have identified a number of mutations, affecting the protein-coding sequences, that are enriched in sepsis isolates. The analysis of the protein substitutions supports the mutational origins of sepsis isolates.
Collapse
Affiliation(s)
- Douglas D. Rhoads
- Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA; (J.P.); (A.A.K.A.)
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR 72701, USA
| | - Jeff Pummill
- Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA; (J.P.); (A.A.K.A.)
- Arkansas High Performance Computing Center, University of Arkansas, Fayetteville, AR 72701, USA
| | - Adnan Ali Khalaf Alrubaye
- Program in Cell and Molecular Biology, University of Arkansas, Fayetteville, AR 72701, USA; (J.P.); (A.A.K.A.)
- Department of Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
78
|
Choi DG, Baek JH, Han DM, Khan SA, Jeon CO. Comparative pangenome analysis of Enterococcus faecium and Enterococcus lactis provides new insights into the adaptive evolution by horizontal gene acquisitions. BMC Genomics 2024; 25:28. [PMID: 38172677 PMCID: PMC10765913 DOI: 10.1186/s12864-023-09945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Enterococcus faecium and E. lactis are phylogenetically closely related lactic acid bacteria that are ubiquitous in nature and are known to be beneficial or pathogenic. Despite their considerable industrial and clinical importance, comprehensive studies on their evolutionary relationships and genomic, metabolic, and pathogenic traits are still lacking. Therefore, we conducted comparative pangenome analyses using all available dereplicated genomes of these species. RESULTS E. faecium was divided into two subclades: subclade I, comprising strains derived from humans, animals, and food, and the more recent phylogenetic subclade II, consisting exclusively of human-derived strains. In contrast, E. lactis strains, isolated from diverse sources including foods, humans, animals, and the environment, did not display distinct clustering based on their isolation sources. Despite having similar metabolic features, noticeable genomic differences were observed between E. faecium subclades I and II, as well as E. lactis. Notably, E. faecium subclade II strains exhibited significantly larger genome sizes and higher gene counts compared to both E. faecium subclade I and E. lactis strains. Furthermore, they carried a higher abundance of antibiotic resistance, virulence, bacteriocin, and mobile element genes. Phylogenetic analysis of antibiotic resistance and virulence genes suggests that E. faecium subclade II strains likely acquired these genes through horizontal gene transfer, facilitating their effective adaptation in response to antibiotic use in humans. CONCLUSIONS Our study offers valuable insights into the adaptive evolution of E. faecium strains, enabling their survival as pathogens in the human environment through horizontal gene acquisitions.
Collapse
Affiliation(s)
- Dae Gyu Choi
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Dong Min Han
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Shehzad Abid Khan
- Atta‑ur‑Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000, Islamabad, Pakistan
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea.
| |
Collapse
|
79
|
Lee I, Jo JW, Woo HJ, Suk KT, Lee SS, Kim BS. Proton pump inhibitors increase the risk of carbapenem-resistant Enterobacteriaceae colonization by facilitating the transfer of antibiotic resistance genes among bacteria in the gut microbiome. Gut Microbes 2024; 16:2341635. [PMID: 38634770 PMCID: PMC11028007 DOI: 10.1080/19490976.2024.2341635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024] Open
Abstract
Carbapenem-resistant Enterobacteriaceae (CRE) pose a global health threat; however, there is still limited understanding of the risk factors and underlying mechanisms of CRE colonization in the gut microbiome. We conducted a matched case-control study involving 282 intensive care unit patients to analyze influencing covariates on CRE colonization. Subsequently, their effects on the gut microbiome were analyzed in a subset of 98 patients (47 CRE carriers and 51 non-CRE carriers) using whole metagenome sequences. The concomitant use of proton pump inhibitors (PPIs) and antibiotics was a significant risk factor for CRE colonization. The gut microbiome differed according to PPI administration, even within the CRE and non-CRE groups. Moreover, the transfer of mobile genetic elements (MGEs) harboring carbapenem resistance genes (CRGs) between bacteria was higher in the PPI-treated group than in the PPI-not-treated group among CRE carriers. The concomitant use of PPIs and antibiotics significantly alters the gut microbiome and increases the risk of CRE colonization by facilitating the transfer of CRGs among bacteria of the gut microbiome. Based on these findings, improved stewardship of PPIs as well as antibiotics can provide strategies to reduce the risk of CRE colonization, thereby potentially improving patient prognosis.
Collapse
Affiliation(s)
- Imchang Lee
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Jae-Won Jo
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| | - Heung-Jeong Woo
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Dongtan Sacred Heart Hospital, Hallym University College of Medicine, Hwaseong, Republic of Korea
| | - Ki Tae Suk
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, Republic of Korea
| | - Seung Soon Lee
- Division of Infectious Diseases, Department of Internal Medicine, Hallym University Chuncheon Sacred Heart Hospital, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Bong-Soo Kim
- Department of Life Science, Multidisciplinary Genome Institute, Hallym University, Chuncheon, Republic of Korea
- The Korean Institute of Nutrition, Hallym University, Chuncheon, Republic of Korea
| |
Collapse
|
80
|
Liu XJ, Zhu KL, Ye YQ, Han ZT, Tan XY, Du ZJ, Ye MQ. Phenotypic and genotypic characterization of Marinobacterium weihaiense sp. nov. and Marinobacterium marinum sp. nov., isolated from marine sediment, and genomic properties of the genus Marinobacterium. Microb Genom 2024; 10:001182. [PMID: 38265428 PMCID: PMC10868613 DOI: 10.1099/mgen.0.001182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024] Open
Abstract
In this study, two novel bacterial strains were isolated from coastal sediment of Weihai, China. The two strains were Gram-stain-negative and facultatively aerobic, designated 3-1745T and A346T. Based on phenotypic, genetic and phylogenetic properties, strains 3-1745T and A346T represent two novel species of the genus Marinobacterium. The results of genome analysis revealed many central carbohydrate metabolism pathways such as gluconeogenesis, pyruvate oxidation, tricyclic acid cycle, pentose phosphate pathway and PRPP biosynthesis in the genus Marinobacterium. The ability of strains 3-1745T and A346T to utilize volatile fatty acids was experimentally confirmed. Polyhydroxyalkanoate synthases (PhaA, PhaB and PhaC) for the synthesis of polyhydroxyalkanoates were prevalent in the genus Marinobacterium. Multiple BGCs (biosynthetic gene clusters) including betalactone, ectoine, ranthipeptide, redox-cofactor, RiPPs (ribosomally synthesized post-translationally modified peptides) and T3PKS (polyketide synthases) in the genome of the genus Marinobacterium were found. Additional genome analyses suggested that the genus Marinobacterium contained diverse potential mechanisms of salt tolerance and mainly utilized oligosaccharides. This is the first report on broad genomic analyses of the genus Marinobacterium with the description of two novel species and potential ecological and biotechnological implications.
Collapse
Affiliation(s)
- Xin-Jiang Liu
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057, PR China
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Ke-Lei Zhu
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Yu-Qi Ye
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Ze-Tian Han
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Xin-Yun Tan
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
| | - Zong-Jun Du
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, 264209, PR China
| | - Meng-Qi Ye
- Shenzhen Research Institute of Shandong University, Shenzhen, Guangdong, 518057, PR China
- Marine College, Shandong University, Weihai, Shandong, 264209, PR China
- Weihai Research Institute of Industrial Technology of Shandong University, Weihai, 264209, PR China
| |
Collapse
|
81
|
Mukhopadhyay S, Singh M, Ghosh MM, Chakrabarti S, Ganguli S. Comparative Genomics and Characterization of Shigella flexneri Isolated from Urban Wastewater. Microbes Environ 2024; 39:ME23105. [PMID: 38839365 PMCID: PMC11220449 DOI: 10.1264/jsme2.me23105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 02/22/2024] [Indexed: 06/07/2024] Open
Abstract
Shigella species are a group of highly transmissible Gram-negative pathogens. Increasing reports of infection with extensively drug-resistant varieties of this stomach bug has convinced the World Health Organization to prioritize Shigella for novel therapeutic interventions. We herein coupled the whole-genome sequencing of a natural isolate of Shigella flexneri with a pangenome ana-lysis to characterize pathogen genomics within this species, which will provide us with an insight into its existing genomic diversity and highlight the root causes behind the emergence of quick vaccine escape variants. The isolated novel strain of S. flexneri contained ~4,500 protein-coding genes, 57 of which imparted resistance to antibiotics. A comparative pan-genomic ana-lysis revealed genomic variability of ~64%, the shared conservation of core genes in central metabolic processes, and the enrichment of unique/accessory genes in virulence and defense mechanisms that contributed to much of the observed antimicrobial resistance (AMR). A pathway ana-lysis of the core genome mapped 22 genes to 2 antimicrobial resistance pathways, with the bulk coding for multidrug efflux pumps and two component regulatory systems that are considered to work synergistically towards the development of resistance phenotypes. The prospective evolvability of Shigella species as witnessed by the marked difference in genomic content, the strain-specific essentiality of unique/accessory genes, and the inclusion of a potent resistance mechanism within the core genome, strengthens the possibility of novel serotypes emerging in the near future and emphasizes the importance of tracking down genomic diversity in drug/vaccine design and AMR governance.
Collapse
Affiliation(s)
- Sarmishta Mukhopadhyay
- Post Graduate and Research Department of Biotechnology, St. Xavier’s College (Autonomous) Kolkata, West Bengal, India
| | - Meesha Singh
- Post Graduate and Research Department of Microbiology, St. Xavier’s College (Autonomous) Kolkata, West Bengal, India
| | - Mahashweta Mitra Ghosh
- Post Graduate and Research Department of Microbiology, St. Xavier’s College (Autonomous) Kolkata, West Bengal, India
| | - Santanu Chakrabarti
- Department of Zoology, Government General Degree College Singur, Hooghly, West Bengal, India
| | - Sayak Ganguli
- Post Graduate and Research Department of Biotechnology, St. Xavier’s College (Autonomous) Kolkata, West Bengal, India
| |
Collapse
|
82
|
Sevillano E, Lafuente I, Peña N, Cintas LM, Muñoz-Atienza E, Hernández PE, Borrero J. Evaluation of Safety and Probiotic Traits from a Comprehensive Genome-Based In Silico Analysis of Ligilactobacillus salivarius P1CEA3, Isolated from Pigs and Producer of Nisin S. Foods 2023; 13:107. [PMID: 38201135 PMCID: PMC10778751 DOI: 10.3390/foods13010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
Ligilactobacillus salivarius is an important member of the porcine gastrointestinal tract (GIT). Some L. salivarius strains are considered to have a beneficial effect on the host by exerting different probiotic properties, including the production of antimicrobial peptides which help maintain a healthy gut microbiota. L. salivarius P1CEA3, a porcine isolated strain, was first selected and identified by its antimicrobial activity against a broad range of pathogenic bacteria due to the production of the novel bacteriocin nisin S. The assembled L. salivarius P1CEA3 genome includes a circular chromosome, a megaplasmid (pMP1CEA3) encoding the nisin S gene cluster, and two small plasmids. A comprehensive genome-based in silico analysis of the L. salivarius P1CEA3 genome reveals the presence of genes related to probiotic features such as bacteriocin synthesis, regulation and production, adhesion and aggregation, the production of lactic acid, amino acids metabolism, vitamin biosynthesis, and tolerance to temperature, acid, bile salts and osmotic and oxidative stress. Furthermore, the strain is absent of risk-related genes for acquired antibiotic resistance traits, virulence factors, toxic metabolites and detrimental metabolic or enzymatic activities. Resistance to common antibiotics and gelatinase and hemolytic activities have been discarded by in vitro experiments. This study identifies several probiotic and safety traits of L. salivarius P1CEA3 and suggests its potential as a promising probiotic in swine production.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Juan Borrero
- Departamento de Nutrición y Ciencia de los Alimentos (NUTRYCIAL), Sección Departamental de Nutrición y Ciencia de los Alimentos (SD-NUTRYCIAL), Facultad de Veterinaria, Universidad Complutense de Madrid (UCM), Avenida Puerta de Hierro, s/n, 28040 Madrid, Spain; (E.S.); (I.L.); (N.P.); (L.M.C.); (E.M.-A.); (P.E.H.)
| |
Collapse
|
83
|
Seethalakshmi PS, Prabhakaran A, Kiran GS, Selvin J. Genomic insights into plasmid-mediated antimicrobial resistance in the bacterium Bhargavaea beijingensis strain PS04. Arch Microbiol 2023; 206:33. [PMID: 38133813 DOI: 10.1007/s00203-023-03746-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023]
Abstract
The dissemination of antimicrobial-resistant bacteria through environment is a major health concern for public health. Pathogenic bacteria in natural environment can mediate the transfer of antimicrobial-resistant genes via horizontal gene transfer to naturally occurring bacteria in the soil. Bhargavaea beijingensis is a Gram-negative bacterium that is commonly found in soil and water. In recent years, there has been an emergence of antibiotic-resistant strains of environmental bacteria, which pose a significant threat to human health. One mechanism of antibiotic resistance in bacteria is through the acquisition of plasmids, which can carry genes that confer resistance to various antibiotics. In this study, a novel plasmid of repUS12 replicon type was identified in the strain PS04 of B. beijingensis, which carried the ermT and tet(L) genes, encoding resistance to macrolides, lincosamides, and tetracycline. The plasmid was found to be the first of its kind in B. beijingensis and was thought to have been acquired through horizontal gene transfer. The emergence of plasmid-mediated resistance in B. beijingensis highlights the need for continued surveillance and monitoring of antibiotic resistance in environmental bacteria.
Collapse
Affiliation(s)
- P S Seethalakshmi
- Department of Microbiology, Pondicherry University, Puducherry, 605014, India
| | | | - George Seghal Kiran
- Department of Food Science and Technology, Pondicherry University, Puducherry, 605014, India
| | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Puducherry, 605014, India.
| |
Collapse
|
84
|
Ren CY, Zhao HP. Synthetic Nuclease-Producing Microbiome Achieves Efficient Removal of Extracellular Antibiotic Resistance Genes from Wastewater Effluent. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21224-21234. [PMID: 38059467 DOI: 10.1021/acs.est.3c07974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Antibiotic resistance gene (ARG) transmission poses significant threats to human health. The effluent of wastewater treatment plants is demonstrated as a hotspot source of ARGs released into the environment. In this study, a synthetic microbiome containing nuclease-producing Deinococcus radiodurans was constructed to remove extracellular ARGs. Results of quantitative polymerase chain reaction (qPCR) showed significant reduction in plasmid RP4-associated ARGs (by more than 3 orders of magnitude) and reduction of indigenous ARG sul1 and mobile genetic element (MGE) intl1 (by more than 1 order of magnitude) in the synthetic microbiome compared to the control without D. radiodurans. Metagenomic analysis revealed a decrease in ARG and MGE diversity in extracellular DNA (eDNA) of the treated group. Notably, whereas eight antibiotic-resistant plasmids with mobility risk were detected in the control, only one was detected in the synthetic microbiome. The abundance of the nuclease encoding gene exeM, quantified by qPCR, indicated its enrichment in the synthetic microbiome, which ensures stable eDNA degradation even when D. radiodurans decreased. Moreover, intracellular ARGs and MGEs and pathogenic ARG hosts in the river receiving treated effluent were lower than those in the river receiving untreated effluent. Overall, this study presents a new approach for removing extracellular ARGs and further reducing the risk of ARG transmission in receiving rivers.
Collapse
Affiliation(s)
- Chong-Yang Ren
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
85
|
Cullom A, Spencer MS, Williams MD, Falkinham JO, Brown C, Edwards MA, Pruden A. Premise Plumbing Pipe Materials and In-Building Disinfectants Shape the Potential for Proliferation of Pathogens and Antibiotic Resistance Genes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21382-21394. [PMID: 38071676 DOI: 10.1021/acs.est.3c05905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
In-building disinfectants are commonly applied to control the growth of pathogens in plumbing, particularly in facilities such as hospitals that house vulnerable populations. However, their application has not been well optimized, especially with respect to interactive effects with pipe materials and potential unintended effects, such as enrichment of antibiotic resistance genes (ARGs) across the microbial community. Here, we used triplicate convectively mixed pipe reactors consisting of three pipe materials (PVC, copper, and iron) for replicated simulation of the distal reaches of premise plumbing and evaluated the effects of incrementally increased doses of chlorine, chloramine, chlorine dioxide, and copper-silver disinfectants. We used shotgun metagenomic sequencing to characterize the resulting succession of the corresponding microbiomes over the course of 37 weeks. We found that both disinfectants and pipe material affected ARG and microbial community taxonomic composition both independently and interactively. Water quality and total bacterial numbers were not found to be predictive of pathogenic species markers. One result of particular concern was the tendency of disinfectants, especially monochloramine, to enrich ARGs. Metagenome assembly indicated that many ARGs were enriched specifically among the pathogenic species. Functional gene analysis was indicative of a response of the microbes to oxidative stress, which is known to co/cross-select for antibiotic resistance. These findings emphasize the need for a holistic evaluation of pathogen control strategies for plumbing.
Collapse
Affiliation(s)
- Abraham Cullom
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Matheu Storme Spencer
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Myra D Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Connor Brown
- Department of Genetics, Bioinformatics, and Computational Biology, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Marc A Edwards
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| | - Amy Pruden
- Civil and Environmental Engineering, Virginia Tech, 1145 Perry St., 418 Durham Hall, Blacksburg, Virginia 24061, United States
| |
Collapse
|
86
|
Męcik M, Buta-Hubeny M, Paukszto Ł, Maździarz M, Wolak I, Harnisz M, Korzeniewska E. Poultry manure-derived microorganisms as a reservoir and source of antibiotic resistance genes transferred to soil autochthonous microorganisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119303. [PMID: 37832303 DOI: 10.1016/j.jenvman.2023.119303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
Animal husbandry is increasing yearly due to the growing demand for meat and livestock products, among other reasons. To meet these demands, prophylactic antibiotics are used in the livestock industry (i.e., poultry farming) to promote health and stimulate animal growth. However, antibiotics are not fully metabolized by animals, and they are evacuated to the environment with excreta. Animal manure is used as fertilizer to reduce the volume of waste generated in the livestock sector. However, manure often contains microorganisms harboring antibiotic resistance genes (ARGs). Then, the microbiome of manure applicate to the soil may contribute to the spread of antibiotic resistance in the environment, including autochthonous soil-dwelling microorganisms. The present study was conducted during the crops growing season in Poland (May to September 2019) to determine the influence of poultry manure as well as poultry manure supplemented with selected antibiotics on the diversity of the soil microbiome in treatments that had not been previously fertilized with manure and the ability of antibiotic-resistant bacteria to transfer ARGs to other soil bacteria. Antibiotic concentrations were elevated at the beginning of the study and decreased over time. Poultry manure induced significant changes in the structure of microbial communities in soil; the diversity of the soil microbiome decreased, and the abundance of bacterial genera Bradyrhizobium, Streptomyces, and Pseudomonas, which are characteristic of the analyzed manure, increased. Over time, soil microbial diversity was restored to the state observed before the application of manure. Genes conferring resistance to multiple drugs as well as genes encoding resistance to bacitracin and aminoglycosides were the most frequently identified ARGs in the analyzed bacteria, including on mobile genetic elements. Multidrug resistance was observed in 17 bacterial taxa, whereas ARGs were identified in 32 bacterial taxa identified in the soil microbiome. The results of the study conclude that the application of poultry manure supplemented with antibiotics initially affects soil microbiome and resistome diversity but finally, the soil shows resilience and returns to its original state after time, with most antibiotic resistance genes disappearing. This phenomenon is of great importance in sustainable soil health after manure application.
Collapse
Affiliation(s)
- Magdalena Męcik
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Martyna Buta-Hubeny
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Łukasz Paukszto
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-721, Olsztyn, Poland
| | - Mateusz Maździarz
- Department of Botany and Nature Protection, Faculty of Biology and Biotechnology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-721, Olsztyn, Poland
| | - Izabela Wolak
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Monika Harnisz
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland
| | - Ewa Korzeniewska
- Department of Water Protection Engineering and Environmental Microbiology, Faculty of Geoengineering, University of Warmia and Mazury in Olsztyn, Prawocheńskiego 1, 10-720, Olsztyn, Poland.
| |
Collapse
|
87
|
Medeot D, Sannazzaro A, Estrella MJ, Torres Tejerizo G, Contreras-Moreira B, Pistorio M, Jofré E. Unraveling the genome of Bacillus velezensis MEP 218, a strain producing fengycin homologs with broad antibacterial activity: comprehensive comparative genome analysis. Sci Rep 2023; 13:22168. [PMID: 38092837 PMCID: PMC10719345 DOI: 10.1038/s41598-023-49194-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/05/2023] [Indexed: 12/17/2023] Open
Abstract
Bacillus sp. MEP218, a soil bacterium with high potential as a source of bioactive molecules, produces mostly C16-C17 fengycin and other cyclic lipopeptides (CLP) when growing under previously optimized culture conditions. This work addressed the elucidation of the genome sequence of MEP218 and its taxonomic classification. The genome comprises 3,944,892 bp, with a total of 3474 coding sequences and a G + C content of 46.59%. Our phylogenetic analysis to determine the taxonomic position demonstrated that the assignment of the MEP218 strain to Bacillus velezensis species provides insights into its evolutionary context and potential functional attributes. The in silico genome analysis revealed eleven gene clusters involved in the synthesis of secondary metabolites, including non-ribosomal CLP (fengycins and surfactin), polyketides, terpenes, and bacteriocins. Furthermore, genes encoding phytase, involved in the release of phytic phosphate for plant and animal nutrition, or other enzymes such as cellulase, xylanase, and alpha 1-4 glucanase were detected. In vitro antagonistic assays against Salmonella typhimurium, Acinetobacter baumanii, Escherichia coli, among others, demonstrated a broad spectrum of C16-C17 fengycin produced by MEP218. MEP218 genome sequence analysis expanded our understanding of the diversity and genetic relationships within the Bacillus genus and updated the Bacillus databases with its unique trait to produce antibacterial fengycins and its potential as a resource of biotechnologically useful enzymes.
Collapse
Affiliation(s)
- Daniela Medeot
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CCT-CONICET-Córdoba, Universidad Nacional de Río Cuarto, 5800, Córdoba, Argentina
| | - Analía Sannazzaro
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín (UNSAM), 7130, Chascomús, Argentina
| | - María Julia Estrella
- Instituto Tecnológico de Chascomús (INTECH), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de San Martín (UNSAM), 7130, Chascomús, Argentina
| | - Gonzalo Torres Tejerizo
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | | | - Mariano Pistorio
- Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, IBBM (Instituto de Biotecnología y Biología Molecular), CCT-CONICET-La Plata, Universidad Nacional de La Plata, 1900, La Plata, Argentina
| | - Edgardo Jofré
- Instituto de Biotecnología Ambiental y Salud (INBIAS), CCT-CONICET-Córdoba, Universidad Nacional de Río Cuarto, 5800, Córdoba, Argentina.
| |
Collapse
|
88
|
Goettelmann F, Koebnik R, Roman-Reyna V, Studer B, Kölliker R. High genomic plasticity and unique features of Xanthomonas translucens pv. graminis revealed through comparative analysis of complete genome sequences. BMC Genomics 2023; 24:741. [PMID: 38053038 DOI: 10.1186/s12864-023-09855-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/28/2023] [Indexed: 12/07/2023] Open
Abstract
BACKGROUND Xanthomonas translucens pv. graminis (Xtg) is a major bacterial pathogen of economically important forage grasses, causing severe yield losses. So far, genomic resources for this pathovar consisted mostly of draft genome sequences, and only one complete genome sequence was available, preventing comprehensive comparative genomic analyses. Such comparative analyses are essential in understanding the mechanisms involved in the virulence of pathogens and to identify virulence factors involved in pathogenicity. RESULTS In this study, we produced high-quality, complete genome sequences of four strains of Xtg, complementing the recently obtained complete genome sequence of the Xtg pathotype strain. These genomic resources allowed for a comprehensive comparative analysis, which revealed a high genomic plasticity with many chromosomal rearrangements, although the strains were highly related. A high number of transposases were exclusively found in Xtg and corresponded to 413 to 457 insertion/excision transposable elements per strain. These mobile genetic elements are likely to be involved in the observed genomic plasticity and may play an important role in the adaptation of Xtg. The pathovar was found to lack a type IV secretion system, and it possessed the smallest set of type III effectors in the species. However, three XopE and XopX family effectors were found, while in the other pathovars of the species two or less were present. Additional genes that were specific to the pathovar were identified, including a unique set of minor pilins of the type IV pilus, 17 TonB-dependent receptors (TBDRs), and 11 plant cell wall degradative enzymes. CONCLUSION These results suggest a high adaptability of Xtg, conferred by the abundance of mobile genetic elements, which could play a crucial role in pathogen adaptation. The large amount of such elements in Xtg compared to other pathovars of the species could, at least partially, explain its high virulence and broad host range. Conserved features that were specific to Xtg were identified, and further investigation will help to determine genes that are essential to pathogenicity and host adaptation of Xtg.
Collapse
Affiliation(s)
- Florian Goettelmann
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Ralf Koebnik
- Plant Health Institute of Montpellier, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Veronica Roman-Reyna
- Department of Plant Pathology and Environmental Microbiology, The Pennsylvania State University, University Park, PA, USA
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Roland Kölliker
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
89
|
Liu X, Yan Z, Ye L, Wang K, Li J, Lin Y, Liao C, Liu Y, Li P, Du M. Genomic epidemiological investigation of an outbreak of Serratia marcescens neurosurgical site infections associated with contaminated haircutting toolkits in a hospital barber shop. J Hosp Infect 2023; 142:58-66. [PMID: 37774927 DOI: 10.1016/j.jhin.2023.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Nine surgical site infections caused by Serratia marcescens were diagnosed in neurosurgical patients in a 3500-bed hospital between 2nd February and 6th April 2022. OBJECTIVE To trace the source of infections caused by S. marcescens to expedite termination of the outbreak and prevent future epidemics. METHODS A review of all surgical procedures and cultures yielding S. marcescens since February 2022 was conducted. Samples were collected from patients and environmental sources. S. marcescens isolates were characterized by antibiotic susceptibility testing. Whole-genome sequencing (WGS) was used to investigate genetic relationships. Resistance genes, virulence genes and plasmid replicons were identified. RESULTS S. marcescens was isolated from patients' puncture fluid, cerebrospinal fluid and other secretions, and was also cultured from the barbers' haircutting tools, including leather knives, slicker scrapers and razors. In total, 15 isolates were obtained from patients and eight isolates were obtained from haircutting tools. All isolates exhibited identical antibiotic resistance patterns. WGS revealed close clustering among the 23 isolates which differed significantly from previous strains. Three resistance genes and nine virulence-associated genes were detected in all isolates, and 19 of 23 isolates harboured an MOBP-type plasmid. The results confirmed an outbreak of S. marcescens, which was traced to contaminated haircutting tools in the hospital barber shop. The outbreak ended after extensive reinforcement of infection control procedures and re-education of the barbers. CONCLUSIONS These results highlight the risk of postoperative infections related to pre-operative skin preparation, and demonstrate the value of next-generation sequencing tools to expedite outbreak investigations.
Collapse
Affiliation(s)
- X Liu
- Chinese PLA Centre for Disease Control and Prevention, Beijing, China
| | - Z Yan
- Department of Disease Prevention and Control, The Second Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - L Ye
- Department of Laboratory Medicine, The First Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - K Wang
- Chinese PLA Centre for Disease Control and Prevention, Beijing, China
| | - J Li
- Chinese PLA Centre for Disease Control and Prevention, Beijing, China
| | - Y Lin
- Chinese PLA Centre for Disease Control and Prevention, Beijing, China
| | - C Liao
- Chinese PLA Centre for Disease Control and Prevention, Beijing, China; School of Public Health, China Medical University, Shenyang, China
| | - Y Liu
- Department of Disease Prevention and Control, The First Medical Centre of Chinese PLA General Hospital, Beijing, China
| | - P Li
- Chinese PLA Centre for Disease Control and Prevention, Beijing, China.
| | - M Du
- Department of Disease Prevention and Control, The First Medical Centre of Chinese PLA General Hospital, Beijing, China.
| |
Collapse
|
90
|
Wang Y, Yang L, Ma J, Tang J, Chen M. Unraveling the antibiotic resistome in backwater zones of large cascade reservoirs: Co-occurrence patterns, horizontal transfer directions and health risks. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119144. [PMID: 37776796 DOI: 10.1016/j.jenvman.2023.119144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/13/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023]
Abstract
The widespread occurrence of antibiotic resistant genes (ARGs) throughout aquatic environments has raised global concerns for public health. However, the profiles and patterns of antibiotic resistome in backwater zone of cascade reservoirs, where water flow is slowed down, are still poorly understood. Here, we proposed a metagenomic analysis framework to comprehensively reveal the diversity, abundance, co-occurrence patterns and transfer direction of ARGs in cascade reservoirs system and evaluated their health risks through a procedure based on contigs. A total of 364 ARGs subtypes conferring resistance to different antibiotics classes were detected in our water samples, and the dominant ARGs (macB, bacA, vanRA, bcrA) were similar in different reservoirs. Meanwhile, the distribution of ARGs was influenced by the presence of biotic factors such as metal resistant genes (MRGs) and mobile genetic elements (MGEs), as well as abiotic factors such as dissolved oxygen (DO) and pH. Remarkably, ARGs (vanR, rosB, MexT) co-occurred with plasmids and virulence factor genes (VFGs), which can lead to the emergence and spread of highly virulent and antibiotic resistant bacteria in microbial communities. Overall, this study helps administrators to better understand the complex patterns of ARGs in backwater zones of large cascade reservoirs and provides a proper procedure for detecting the presence of high-risk of ARGs.
Collapse
Affiliation(s)
- Yujie Wang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Liu Yang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jun Ma
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Jian Tang
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China
| | - Ming Chen
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China.
| |
Collapse
|
91
|
Diabankana RGC, Frolov M, Keremli S, Validov SZ, Afordoanyi DM. Genomic Insights into the Microbial Agent Streptomyces albidoflavus MGMM6 for Various Biotechnology Applications. Microorganisms 2023; 11:2872. [PMID: 38138016 PMCID: PMC10745817 DOI: 10.3390/microorganisms11122872] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/22/2023] [Accepted: 11/25/2023] [Indexed: 12/24/2023] Open
Abstract
Microbial biotechnology plays a crucial role in improving industrial processes, particularly in the production of compounds with diverse applications. In this study, we used bioinformatic approaches to analyze the genomic architecture of Streptomyces albidoflavus MGMM6 and identify genes involved in various metabolic pathways that have significant biotechnological potential. Genome mining revealed that MGMM6 consists of a linear chromosome of 6,932,303 bp, with a high G+C content of 73.5%, lacking any plasmid contigs. Among the annotated genes, several are predicted to encode enzymes such as dye peroxidase, aromatic ring-opening dioxygenase, multicopper oxidase, cytochrome P450 monooxygenase, and aromatic ring hydroxylating dioxygenases which are responsible for the biodegradation of numerous endogenous and xenobiotic pollutants. In addition, we identified genes associated with heavy metal resistance, such as arsenic, cadmium, mercury, chromium, tellurium, antimony, and bismuth, suggesting the potential of MGMM6 for environmental remediation purposes. The analysis of secondary metabolites revealed the presence of multiple biosynthesis gene clusters responsible for producing compounds with potent antimicrobial and metal-chelating activities. Furthermore, laboratory tests conducted under controlled conditions demonstrated the effectiveness of MGMM6 in inhibiting phytopathogenic microbes, decolorizing and degrading aromatic triphenylmethane dyes, particularly Blue Brilliant G250, from wastewater by up to 98 ± 0.15%. Overall, the results of our study highlight the promising biotechnological potential of S. albidoflavus MGMM6.
Collapse
Affiliation(s)
- Roderic Gilles Claret Diabankana
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (M.F.); (S.K.); (S.Z.V.); (D.M.A.)
| | - Mikhail Frolov
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (M.F.); (S.K.); (S.Z.V.); (D.M.A.)
| | - Saparmyradov Keremli
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (M.F.); (S.K.); (S.Z.V.); (D.M.A.)
| | - Shamil Zavdatovich Validov
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (M.F.); (S.K.); (S.Z.V.); (D.M.A.)
| | - Daniel Mawuena Afordoanyi
- Laboratory of Molecular Genetics and Microbiology Methods, Kazan Scientific Center of the Russian Academy of Sciences, 420111 Kazan, Russia; (M.F.); (S.K.); (S.Z.V.); (D.M.A.)
- Tatar Scientific Research Institute of Agricultural Chemistry and Soil Science, FRC Kazan Scientific Center, Russian Academy of Sciences, 420111 Kazan, Russia
| |
Collapse
|
92
|
Vasco KA, Carbonell S, Sloup RE, Bowcutt B, Colwell RR, Graubics K, Erskine R, Norby B, Ruegg PL, Zhang L, Manning SD. Persistent effects of intramammary ceftiofur treatment on the gut microbiome and antibiotic resistance in dairy cattle. Anim Microbiome 2023; 5:56. [PMID: 37946266 PMCID: PMC10636827 DOI: 10.1186/s42523-023-00274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/09/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Intramammary (IMM) ceftiofur treatment is commonly used in dairy farms to prevent mastitis, though its impact on the cattle gut microbiome and selection of antibiotic-resistant bacteria has not been elucidated. Herein, we enrolled 40 dairy (Holstein) cows at the end of the lactation phase for dry-cow therapy: 20 were treated with IMM ceftiofur (Spectramast®DC) and a non-antibiotic internal teat sealant (bismuth subnitrate) and 20 (controls) received only bismuth subnitrate. Fecal grab samples were collected before and after treatment (weeks 1, 2, 3, 5, 7, and 9) for bacterial quantification and metagenomic next-generation sequencing. RESULTS Overall, 90% and 24% of the 278 samples had Gram-negative bacteria with resistance to ampicillin and ceftiofur, respectively. Most of the cows treated with ceftiofur did not have an increase in the number of resistant bacteria; however, a subset (25%) shed higher levels of ceftiofur-resistant bacteria for up to 2 weeks post-treatment. At week 5, the antibiotic-treated cows had lower microbiota abundance and richness, whereas a greater abundance of genes encoding extended-spectrum β-lactamases (ESBLs), CfxA, ACI-1, and CMY, was observed at weeks 1, 5 and 9. Moreover, the contig and network analyses detected associations between β-lactam resistance genes and phages, mobile genetic elements, and specific genera. Commensal bacterial populations belonging to Bacteroidetes most commonly possessed ESBL genes followed by members of Enterobacteriaceae. CONCLUSION This study highlights variable, persistent effects of IMM ceftiofur treatment on the gut microbiome and resistome in dairy cattle. Antibiotic-treated cattle had an increased abundance of specific taxa and genes encoding ESBL production that persisted for 9 weeks. Fecal shedding of ESBL-producing Enterobacteriaceae, which was classified as a serious public health threat, varied across animals. Together, these findings highlight the need for additional studies aimed at identifying factors associated with shedding levels and the dissemination and persistence of antibiotic resistance determinants on dairy farms across geographic locations.
Collapse
Affiliation(s)
- Karla A Vasco
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Samantha Carbonell
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Rebekah E Sloup
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Bailey Bowcutt
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA
| | - Rita R Colwell
- University of Maryland, Institute for Advanced Computer Studies, College Park, MD, 20742, USA
- Cosmos ID, Inc, Germantown, MD, 20874, USA
| | | | - Ronald Erskine
- Department of Large Animal Clinical Sciences, Michigan State University, E. Lansing, MI, 48824, USA
| | - Bo Norby
- Department of Large Animal Clinical Sciences, Michigan State University, E. Lansing, MI, 48824, USA
| | - Pamela L Ruegg
- Department of Large Animal Clinical Sciences, Michigan State University, E. Lansing, MI, 48824, USA.
| | - Lixin Zhang
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA.
- Department of Epidemiology and Biostatistics, Michigan State University, E. Lansing, MI, 48824, USA.
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, E. Lansing, MI, 48824, USA.
| |
Collapse
|
93
|
Kim MJ, Kang D, Lee G, Kim K, Kim J, Shin JH, Lee S. Interplays between cyanobacterial blooms and antibiotic resistance genes. ENVIRONMENT INTERNATIONAL 2023; 181:108268. [PMID: 37897871 DOI: 10.1016/j.envint.2023.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/04/2023] [Accepted: 10/13/2023] [Indexed: 10/30/2023]
Abstract
Cyanobacterial harmful algal blooms (cyanoHABs), which are a form of microbial dysbiosis in freshwater environments, are an emerging environmental and public health concern. Additionally, the freshwater environment serves as a reservoir of antibiotic resistance genes (ARGs), which pose a risk of transmission during microbial dysbiosis, such as cyanoHABs. However, the interactions between potential synergistic pollutants, cyanoHABs, and ARGs remain poorly understood. During cyanoHABs, Microcystis and high microcystin levels were dominant in all the nine regions of the river sampled. The resistome, mobilome, and microbiome were interrelated and linked to the physicochemical properties of freshwater. Planktothrix and Pseudanabaena competed with Actinobacteriota and Proteobacteria during cyanoHABs. Forty two ARG carriers were identified, most of which belonged to Actinobacteriota and Proteobacteria. ARG carriers showed a strong correlation with ARGs density, which decreased with the severity of cyanoHAB. Although ARGs decreased due to a reduction of ARG carriers during cyanoHABs, mobile gene elements (MGEs) and virulence factors (VFs) genes increased. We explored the relationship between cyanoHABs and ARGs for potential synergistic interaction. Our findings demonstrated that cyanobacteria compete with freshwater commensal bacteria such as Actinobacteriota and Proteobacteria, which carry ARGs in freshwater, resulting in a reduction of ARGs levels. Moreover, cyanoHABs generate biotic and abiotic stress in the freshwater microbiome, which may lead to an increase in MGEs and VFs. Exploration of the intricate interplays between microbiome, resistome, mobilome, and pathobiome during cyanoHABs not only revealed that the mechanisms underlying the dynamics of microbial dysbiosis but also emphasizes the need to prioritize the prevention of microbial dysbiosis in the risk management of ARGs.
Collapse
Affiliation(s)
- Min-Ji Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Dayun Kang
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea.
| | - GyuDae Lee
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Kyeongnam Kim
- Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Jinnam Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea.
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea; NGS Core Facility, Kyungpook National University, Daegu 41566, Republic of Korea.
| | - Seungjun Lee
- Department of Food Science and Nutrition, Pukyong National University, Busan 48513, Republic of Korea.
| |
Collapse
|
94
|
Yang Y, Hu X, Cai S, Hu N, Yuan Y, Wu Y, Wang Y, Mi J, Liao X. Pet cats may shape the antibiotic resistome of their owner's gut and living environment. MICROBIOME 2023; 11:235. [PMID: 37872584 PMCID: PMC10591416 DOI: 10.1186/s40168-023-01679-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/27/2023] [Indexed: 10/25/2023]
Abstract
BACKGROUND Companion animals can contribute to the physical and mental health of people and often live in very close association with their owners. However, the antibiotic resistome carried by companion animals and the impact they have on their owners and living environment remain unclear. In this study, we compared the ARG profiles of cats, humans, and their living environments using metagenomic analysis to identify the core ARGs in the cat and human gut and explore the potential impact of cats on ARGs in the human gut through the environment. RESULTS Results showed that the abundance of ARGs in the cat gut was significantly higher than that in the human gut (P < 0.0001), with aminoglycoside and tetracycline resistance genes being the dominant ARGs in the cat gut. There was no significant difference in the abundance of total ARGs in the guts of cat owners and non-owners (P > 0.05). However, the abundance of aminoglycoside resistance genes including APH(2'')-IIa and AAC(6')-Im was significantly higher in cat owners than that in non-cat owners (P < 0.001). Also, ARG abundance was positively correlated with the frequency of cat activity in the living environment. Enterobacteriaceae was the dominant ARG host co-occurring in the cat gut, human gut, and living environment. CONCLUSIONS Our results show that cats may shape the living environment resistome and thus the composition of some ARGs in the human gut, highlighting the importance of companion animal environment health. Video Abstract.
Collapse
Affiliation(s)
- Yiwen Yang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agriculture University, Guangzhou, 510642, China.
| | - Xinwen Hu
- Institute of Digestive Disease, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Nan Hu
- Department of Rehabilitation, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510260, China
| | - Yilin Yuan
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agriculture University, Guangzhou, 510642, China
| | - Yinbao Wu
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agriculture University, Guangzhou, 510642, China
| | - Yan Wang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agriculture University, Guangzhou, 510642, China
| | - Jiandui Mi
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, 730000, China
| | - Xindi Liao
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, College of Animal Science, South China Agriculture University, Guangzhou, 510642, China.
| |
Collapse
|
95
|
Gao J, Yi X, Wang Z. The application of multi-omics in the respiratory microbiome: Progresses, challenges and promises. Comput Struct Biotechnol J 2023; 21:4933-4943. [PMID: 37867968 PMCID: PMC10585227 DOI: 10.1016/j.csbj.2023.10.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/10/2023] [Accepted: 10/10/2023] [Indexed: 10/24/2023] Open
Abstract
The study of the respiratory microbiome has entered a multi-omic era. Through integrating different omic data types such as metagenome, metatranscriptome, metaproteome, metabolome, culturome and radiome surveyed from respiratory specimens, holistic insights can be gained on the lung microbiome and its interaction with host immunity and inflammation in respiratory diseases. The power of multi-omics have moved the field forward from associative assessment of microbiome alterations to causative understanding of the lung microbiome in the pathogenesis of chronic, acute and other types of respiratory diseases. However, the application of multi-omics in respiratory microbiome remains with unique challenges from sample processing, data integration, and downstream validation. In this review, we first introduce the respiratory sample types and omic data types applicable to studying the respiratory microbiome. We next describe approaches for multi-omic integration, focusing on dimensionality reduction, multi-omic association and prediction. We then summarize progresses in the application of multi-omics to studying the microbiome in respiratory diseases. We finally discuss current challenges and share our thoughts on future promises in the field.
Collapse
Affiliation(s)
- Jingyuan Gao
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Xinzhu Yi
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| | - Zhang Wang
- Institute of Ecological Sciences, School of Life Sciences, South China Normal University, Guangzhou, Guangdong Province, China
| |
Collapse
|
96
|
Asif M, Li-Qun Z, Zeng Q, Atiq M, Ahmad K, Tariq A, Al-Ansari N, Blom J, Fenske L, Alodaini HA, Hatamleh AA. Comprehensive genomic analysis of Bacillus paralicheniformis strain BP9, pan-genomic and genetic basis of biocontrol mechanism. Comput Struct Biotechnol J 2023; 21:4647-4662. [PMID: 37841331 PMCID: PMC10568305 DOI: 10.1016/j.csbj.2023.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/28/2023] [Accepted: 09/28/2023] [Indexed: 10/17/2023] Open
Abstract
Many Bacillus species are essential antibacterial agents, but their antibiosis potential still needs to be elucidated to its full extent. Here, we isolated a soil bacterium, BP9, which has significant antibiosis activity against fungal and bacterial pathogens. BP9 improved the growth of wheat seedlings via active colonization and demonstrated effective biofilm and swarming activity. BP9 sequenced genome contains 4282 genes with a mean G-C content of 45.94% of the whole genome. A single copy concatenated 802 core genes of 28 genomes, and their calculated average nucleotide identity (ANI) discriminated the strain BP9 from Bacillus licheniformis and classified it as Bacillus paralicheniformis. Furthermore, a comparative pan-genome analysis of 40 B. paralicheniformis strains suggested that the genetic repertoire of BP9 belongs to open-type genome species. A comparative analysis of a pan-genome dataset using the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Cluster of Orthologous Gene groups (COG) revealed the diversity of secondary metabolic pathways, where BP9 distinguishes itself by exhibiting a greater prevalence of loci associated with the metabolism and transportation of organic and inorganic substances, carbohydrate and amino acid for effective inhabitation in diverse environments. The primary secondary metabolites and their genes involved in synthesizing bacillibactin, fencing, bacitracin, and lantibiotics were identified as acquired through a recent Horizontal gene transfer (HGT) event, which contributes to a significant part of the strain`s antimicrobial potential. Finally, we report some genes essential for plant-host interaction identified in BP9, which reduce spore germination and virulence of multiple fungal and bacterial species. The effective colonization, diverse predicted metabolic pathways and secondary metabolites (antibiotics) suggest testing the suitability of strain BP9 as a potential bio-preparation in agricultural fields.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Zhang Li-Qun
- Department of Plant Pathology and MOA Key Lab of Pest Monitoring and Green Management, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Qingchao Zeng
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Muhammad Atiq
- Department of Plant Pathology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Khalil Ahmad
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Aqil Tariq
- Department of Wildlife, Fisheries, and Aquaculture, College of Forest Resources, Mississippi State, University, MS 39762-9690, USA
| | | | - Jochen Blom
- Bioinformatics and Systems Biology, Justus Liebig University, Giessen 35392, Germany
| | - Linda Fenske
- Bioinformatics and Systems Biology, Justus Liebig University, Giessen 35392, Germany
| | - Hissah Abdulrahman Alodaini
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ashraf Atef Hatamleh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
97
|
Sabatino R, Sbaffi T, Sivalingam P, Corno G, Fontaneto D, Di Cesare A. Bacteriophages limitedly contribute to the antimicrobial resistome of microbial communities in wastewater treatment plants. Microbiol Spectr 2023; 11:e0110123. [PMID: 37724865 PMCID: PMC10580818 DOI: 10.1128/spectrum.01101-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/26/2023] [Indexed: 09/21/2023] Open
Abstract
Bacteriophages are known as players in the transmission of antimicrobial resistance genes (ARGs) by horizontal gene transfer. In this study, we characterized the bacteriophage community and the associated ARGs to estimate the potential for phages to spread ARGs in aquatic ecosystems analyzing the intra- and extracellular DNA isolated from two wastewater treatment plants (WWTPs) by shotgun metagenomics. We compared the phage antimicrobial resistome with the bacterial resistome and investigated the effect of the final disinfection treatment on the phage community and its resistome. Phage community was mainly composed by Siphoviridae and other members of the order Caudovirales. The final disinfection only marginally affected the composition of the phage community, and it was not possible to measure its effect on the antimicrobial resistome. Indeed, only three phage metagenome-assembled genomes (pMAGs) annotated as Siphoviridae, Padoviridae, and Myoviridae were positive for putative ARGs. Among the detected ARGs, i.e., dfrB6, rpoB mutants, and EF-Tu mutants, the first one was not annotated in the bacterial MAGs. Overall, these results demonstrate that bacteriophages limitedly contribute to the whole antimicrobial resistome. However, in order to obtain a comprehensive understanding of the antimicrobial resistome within a microbial community, the role of bacteriophages needs to be investigated. IMPORTANCE WWTPs are considered hotspots for the spread of ARGs by horizontal gene transfer. In this study, we evaluated the phage composition and the associated antimicrobial resistome by shotgun metagenomics of samples collected before and after the final disinfection treatment. Only a few bacteriophages carried ARGs. However, since one of the detected genes was not found in the bacterial metagenome-assembled genomes, it is necessary to investigate the phage community in order to gain a comprehensive overview of the antimicrobial resistome. This investigation could help assess the potential threats to human health.
Collapse
Affiliation(s)
- Raffaella Sabatino
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Tomasa Sbaffi
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Periyasamy Sivalingam
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Gianluca Corno
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Diego Fontaneto
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| | - Andrea Di Cesare
- Molecular Ecology Group (MEG), National Research Council of Italy – Water Research Institute (CNR-IRSA), Verbania, Italy
| |
Collapse
|
98
|
Liang X, Zhang J, Kim Y, Ho J, Liu K, Keenum I, Gupta S, Davis B, Hepp SL, Zhang L, Xia K, Knowlton KF, Liao J, Vikesland PJ, Pruden A, Heath LS. ARGem: a new metagenomics pipeline for antibiotic resistance genes: metadata, analysis, and visualization. Front Genet 2023; 14:1219297. [PMID: 37811141 PMCID: PMC10558085 DOI: 10.3389/fgene.2023.1219297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
Antibiotic resistance is of crucial interest to both human and animal medicine. It has been recognized that increased environmental monitoring of antibiotic resistance is needed. Metagenomic DNA sequencing is becoming an attractive method to profile antibiotic resistance genes (ARGs), including a special focus on pathogens. A number of computational pipelines are available and under development to support environmental ARG monitoring; the pipeline we present here is promising for general adoption for the purpose of harmonized global monitoring. Specifically, ARGem is a user-friendly pipeline that provides full-service analysis, from the initial DNA short reads to the final visualization of results. The capture of extensive metadata is also facilitated to support comparability across projects and broader monitoring goals. The ARGem pipeline offers efficient analysis of a modest number of samples along with affordable computational components, though the throughput could be increased through cloud resources, based on the user's configuration. The pipeline components were carefully assessed and selected to satisfy tradeoffs, balancing efficiency and flexibility. It was essential to provide a step to perform short read assembly in a reasonable time frame to ensure accurate annotation of identified ARGs. Comprehensive ARG and mobile genetic element databases are included in ARGem for annotation support. ARGem further includes an expandable set of analysis tools that include statistical and network analysis and supports various useful visualization techniques, including Cytoscape visualization of co-occurrence and correlation networks. The performance and flexibility of the ARGem pipeline is demonstrated with analysis of aquatic metagenomes. The pipeline is freely available at https://github.com/xlxlxlx/ARGem.
Collapse
Affiliation(s)
- Xiao Liang
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Jingyi Zhang
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Yoonjin Kim
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Josh Ho
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Kevin Liu
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Ishi Keenum
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Suraj Gupta
- Interdisciplinary PhD Program in Genetics, Bioinformatics, and Computational Biology, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Benjamin Davis
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Shannon L. Hepp
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Liqing Zhang
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Kang Xia
- School of Plant and Environmental Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Katharine F. Knowlton
- Department of Dairy Science, Virginia Polytechnic Institute and State University, Blacksburg, VaA, United States
| | - Jingqiu Liao
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Peter J. Vikesland
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Lenwood S. Heath
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
99
|
Bucka-Kolendo J, Kiousi DE, Wojtczak A, Doulgeraki AI, Galanis A, Sokołowska B. Depiction of the In Vitro and Genomic Basis of Resistance to Hop and High Hydrostatic Pressure of Lactiplantibacillus plantarum Isolated from Spoiled Beer. Genes (Basel) 2023; 14:1710. [PMID: 37761850 PMCID: PMC10530735 DOI: 10.3390/genes14091710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Among the beer-spoiling microorganisms, the dominant ones belong to the genera Lactobacillus, Leuconostoc, Oenococcus, and Pediococcus. It is assumed that resistance to hop bitters correlates with resistance to other factors and can significantly impact the brewing industry. Beer preservation with high hydrostatic pressure eliminates the spoiling microorganisms while preserving all desired properties of the beer. Here, we present comprehensive in vitro and genomic analysis of the beer-spoiling Lactiplantibacillus plantarum KKP 3573 capacity to resist hop and high hydrostatic pressure. Lp. plantarum KKP 3573 is a strain isolated from spoiled beer. Our finding suggests that the growth rate of the strain depends on the medium variant, where a small concentration of beer (5 IBU) stimulates the growth, suggesting that the limited concentration has a positive effect on cell growth. At the same time, increased concentrations of 20 IBU, 30 IBU, and pure beer 43.6 IBU decreased the growth rate of the KKP 3573 strain. We observed that higher extract content in the pressurized beer increased microbial survivability. The wort and Vienna Lager beer can stimulate the baroprotective effect. The taxonomy of the novel strain was confirmed after whole genome sequencing (WGS) and comparative genomic analysis. More specifically, it contains a chromosome of 3.3 Mb with a GC content of 44.4%, indicative of the Lp. plantarum species. Accordingly, it possesses high genomic similarity (>98%) with other species members. Annotation algorithms revealed that the strain carries several genes involved in resistance to stress, including extreme temperature, hop bitters and high pressure, and adaptation to the brewing environment. Lastly, the strain does not code for toxins and virulence proteins and cannot produce biogenic amines.
Collapse
Affiliation(s)
- Joanna Bucka-Kolendo
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (A.W.); (B.S.)
| | - Despoina Eugenia Kiousi
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (A.G.)
| | - Adrian Wojtczak
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (A.W.); (B.S.)
| | - Agapi I. Doulgeraki
- Laboratory of Food Microbiology and Hygiene, Department of Food Science & Technology, Faculty of Agriculture, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Alex Galanis
- Department of Molecular Biology and Genetics, Faculty of Health Sciences, Democritus University of Thrace, 68100 Alexandroupolis, Greece; (D.E.K.); (A.G.)
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology, State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland; (A.W.); (B.S.)
| |
Collapse
|
100
|
Li Z, Zhou X, Liao D, Liu R, Zhao X, Wang J, Zhong Q, Zeng Z, Peng Y, Tan Y, Yang Z. Comparative genomics and DNA methylation analysis of Pseudomonas aeruginosa clinical isolate PA3 by single-molecule real-time sequencing reveals new targets for antimicrobials. Front Cell Infect Microbiol 2023; 13:1180194. [PMID: 37662009 PMCID: PMC10471985 DOI: 10.3389/fcimb.2023.1180194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 07/31/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Pseudomonas aeruginosa (P.aeruginosa) is an important opportunistic pathogen with broad environmental adaptability and complex drug resistance. Single-molecule real-time (SMRT) sequencing technique has longer read-length sequences, more accuracy, and the ability to identify epigenetic DNA alterations. Methods This study applied SMRT technology to sequence a clinical strain P. aeruginosa PA3 to obtain its genome sequence and methylation modification information. Genomic, comparative, pan-genomic, and epigenetic analyses of PA3 were conducted. Results General genome annotations of PA3 were discovered, as well as information about virulence factors, regulatory proteins (RPs), secreted proteins, type II toxin-antitoxin (TA) pairs, and genomic islands. A genome-wide comparison revealed that PA3 was comparable to other P. aeruginosa strains in terms of identity, but varied in areas of horizontal gene transfer (HGT). Phylogenetic analysis showed that PA3 was closely related to P. aeruginosa 60503 and P. aeruginosa 8380. P. aeruginosa's pan-genome consists of a core genome of roughly 4,300 genes and an accessory genome of at least 5,500 genes. The results of the epigenetic analysis identified one main methylation sites, N6-methyladenosine (m6A) and 1 motif (CATNNNNNNNTCCT/AGGANNNNNNNATG). 16 meaningful methylated sites were picked. Among these, purH, phaZ, and lexA are of great significance playing an important role in the drug resistance and biological environment adaptability of PA3, and the targeting of these genes may benefit further antibacterial studies. Disucssion This study provided a detailed visualization and DNA methylation information of the PA3 genome and set a foundation for subsequent research into the molecular mechanism of DNA methyltransferase-controlled P. aeruginosa pathogenicity.
Collapse
Affiliation(s)
- Zijiao Li
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
- Cadet Brigade 4, College of Basic Medicine, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Xiang Zhou
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
- Cadet Brigade 4, College of Basic Medicine, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Danxi Liao
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Ruolan Liu
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Xia Zhao
- Department of Microbiology, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Jing Wang
- Department of Microbiology, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Qiu Zhong
- Department of Microbiology, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Zhuo Zeng
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The First Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Yizhi Peng
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The First Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Yinling Tan
- Department of Microbiology, Army Medical University, The Third Military Medical University, Chongqing, China
| | - Zichen Yang
- Department of Plastic and Cosmetic Surgery, Xinqiao Hospital, The Second Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
- Department of Microbiology, Army Medical University, The Third Military Medical University, Chongqing, China
- Institute of Burn Research, State Key Laboratory of Trauma, Burns and Combined Injury, Southwest Hospital, The First Affiliated Hospital, Army Medical University, The Third Military Medical University, Chongqing, China
| |
Collapse
|