51
|
Manful T, Mulindwa J, Frank FM, Clayton CE, Matovu E. A search for Trypanosoma brucei rhodesiense diagnostic antigens by proteomic screening and targeted cloning. PLoS One 2010; 5:e9630. [PMID: 20224787 PMCID: PMC2835760 DOI: 10.1371/journal.pone.0009630] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2010] [Accepted: 02/16/2010] [Indexed: 11/21/2022] Open
Abstract
Background The only available diagnostic method for East African trypanosomiasis is light microscopy of blood samples. A simple immunodiagnostic would greatly aid trypanosomiasis control. Methodology and Principal Findings To find trypanosome proteins that are specifically recognised by sera from human sleeping sickness patients, we have screened the Trypanosoma brucei brucei proteome by Western blotting. Using cytosolic, cytoskeletal and glycosomal fractions, we found that the vast majority of abundant trypanosome proteins is not specifically recognised by patient sera. We identified phosphoglycerate kinase (PGKC), heat shock protein (HSP70), and histones H2B and H3 as possible candidate diagnostic antigens. These proteins, plus paraflagellar rod protein 1, rhodesain (a cysteine protease), and an extracellular fragment of the Trypanosoma brucei nucleoside transporter TbNT10, were expressed in E. coli and tested for reactivity with patient and control sera. Only TbHSP70 was preferentially recognized by patient sera, but the sensitivity and specificity were insufficient for use of TbHSP70 alone as a diagnostic. Immunoprecipitation using a native protein extract revealed no specifically reacting proteins. Conclusions No abundant T. brucei soluble, glycosomal or cytoskeletal protein is likely to be useful in diagnosis. To find useful diagnostic antigens it will therefore be necessary to use more sophisticated proteomic methods, or to test a very large panel of candidate proteins.
Collapse
Affiliation(s)
- Theresa Manful
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Julius Mulindwa
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
- Faculty of Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Fernanda M. Frank
- Cátedra de Inmunología IDEHU (UBA-CONICET), Facultad de Farmacia y Bioquímica (UBA), Buenos Aires, Argentina
| | - Christine E. Clayton
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany
- * E-mail:
| | - Enock Matovu
- Faculty of Veterinary Medicine, Makerere University, Kampala, Uganda
| |
Collapse
|
52
|
Tonoli CCC, Vieira PS, Ward RJ, Arni RK, de Oliveira AHC, Murakami MT. Production, purification, crystallization and preliminary X-ray diffraction studies of the nucleoside diphosphate kinase b from Leishmania major. Acta Crystallogr Sect F Struct Biol Cryst Commun 2009; 65:1116-9. [PMID: 19923730 DOI: 10.1107/s1744309109037567] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2009] [Accepted: 09/16/2009] [Indexed: 02/05/2023]
Abstract
Nucleoside diphosphate kinases (NDKs; EC 2.7.4.6) play an essential role in the synthesis of nucleotides from intermediates in the salvage pathway in all parasitic trypanosomatids and their structural studies will be instrumental in shedding light on the biochemical machinery involved in the parasite life cycle and host-parasite interactions. In this work, NDKb from Leishmania major was overexpressed in Escherichia coli, purified to homogeneity and crystallized using the sitting-drop vapour-diffusion method. The NDK crystal diffracted to 2.2 angstrom resolution and belonged to the trigonal crystal system, with unit-cell parameters a = 114.2, c = 93.9 angstrom. Translation-function calculations yielded an unambiguous solution in the enantiomorphic space group P3(2)21.
Collapse
Affiliation(s)
- Celisa Caldana Costa Tonoli
- Center for Structural Molecular Biology, Brazilian Association for Synchrotron Light Technology, Campinas-SP, Brazil
| | | | | | | | | | | |
Collapse
|
53
|
Vashist U, Carvalhaes R, D’agosto M, da Silva AD. Antimalarial Activity of the Novel Quinoline/6-Thiopurine Conjugate inGallus gallusLinnaeus, Infected Experimentally byPlasmodium(Novyella)juxtanucleare. Chem Biol Drug Des 2009; 74:434-7. [DOI: 10.1111/j.1747-0285.2009.00877.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
54
|
Costales JA, Daily JP, Burleigh BA. Cytokine-dependent and-independent gene expression changes and cell cycle block revealed in Trypanosoma cruzi-infected host cells by comparative mRNA profiling. BMC Genomics 2009; 10:252. [PMID: 19480704 PMCID: PMC2709661 DOI: 10.1186/1471-2164-10-252] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Accepted: 05/29/2009] [Indexed: 01/13/2023] Open
Abstract
Background The requirements for growth and survival of the intracellular pathogen Trypanosoma cruzi within mammalian host cells are poorly understood. Transcriptional profiling of the host cell response to infection serves as a rapid read-out for perturbation of host physiology that, in part, reflects adaptation to the infective process. Using Affymetrix oligonucleotide array analysis we identified common and disparate host cell responses triggered by T. cruzi infection of phenotypically diverse human cell types. Results We report significant changes in transcript abundance in T. cruzi-infected fibroblasts, endothelial cells and smooth muscle cells (2852, 2155 and 531 genes respectively; fold-change ≥ 2, p-value < 0.01) 24 hours post-invasion. A prominent type I interferon response was observed in each cell type, reflecting a secondary response to secreted cytokine in infected cultures. To identify a core cytokine-independent response in T. cruzi-infected fibroblasts and endothelial cells transwell plates were used to distinguish cytokine-dependent and -independent gene expression profiles. This approach revealed the induction of metabolic and signaling pathways involved in cell proliferation, amino acid catabolism and response to wounding as common themes in T. cruzi-infected cells. In addition, the downregulation of genes involved in mitotic cell cycle and cell division predicted that T. cruzi infection may impede host cell cycle progression. The observation of impaired cytokinesis in T. cruzi-infected cells, following nuclear replication, confirmed this prediction. Conclusion Metabolic pathways and cellular processes were identified as significantly altered at the transcriptional level in response to T. cruzi infection in a cytokine-independent manner. Several of these alterations are supported by previous studies of T. cruzi metabolic requirements or effects on the host. However, our methods also revealed a T. cruzi-dependent block in the host cell cycle, at the level of cytokinesis, previously unrecognized for this pathogen-host cell interaction.
Collapse
Affiliation(s)
- Jaime A Costales
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | |
Collapse
|
55
|
Two novel nucleobase/pentamidine transporters from Trypanosoma brucei. Mol Biochem Parasitol 2008; 163:67-76. [PMID: 18992774 DOI: 10.1016/j.molbiopara.2008.09.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2007] [Revised: 09/24/2008] [Accepted: 09/25/2008] [Indexed: 11/23/2022]
Abstract
African trypanosomes are unable to synthesize purines de novo and must salvage preformed purine nucleosides and nucleobases from their hosts. The Trypanosoma brucei genome project has identified 12 members of the equilibrative nucleoside transporter family, most of which have been characterized previously as nucleoside and/or nucleobase transporters. Here the 11th member of this family, TbNT11.1, has been functionally expressed in null mutants of Leishmania that are deficient in purine nucleoside or nucleobase uptake and identified as a high-affinity purine nucleobase transporter. Expression of TbNT11.1 in Xenopus oocytes revealed that it is also a transporter for the diamidine drug pentamidine that is the principal drug employed to treat early stage human African trypanosomiasis and may thus contribute to the uptake of this therapeutically important compound. In addition, characterization of the 12th member of the family, TbNT12.1, reveals that it is an adenine/pentamidine transporter.
Collapse
|
56
|
Efficacy of the tubercidin antileishmania action associated with an inhibitor of the nucleoside transport. Parasitol Res 2008; 104:223-8. [PMID: 18787843 DOI: 10.1007/s00436-008-1177-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Accepted: 08/18/2008] [Indexed: 10/21/2022]
Abstract
Tubercidin (TUB) is an adenosine analog with potent antiparasite action, unfortunately associated with severe host toxicity. Prevention of TUB toxicity can be reached associating nitrobenzylthioinosine (NBMPR), an inhibitor of the purine nucleoside transport, specifically target to the mammal cells. It was demonstrated that this nucleoside transport inhibitor has no significant effect in the in vitro uptake of TUB by Schistosoma mansoni and Trypanosoma gambiense. Seeking to evaluate if the association of these compounds is also effective against leishmania, we analyzed the TUB-NBMPR combined treatment in in vitro cultures of promastigote forms of Leishmania (L.) amazonensis, Leishmania (L.) chagasi, Leishmania (L.) major, and Leishmania (V.) braziliensis as well as in cultures of amastigote forms of L. (L.) amazonensis, mice macrophages infected with L. (L.) amazonensis, and in vivo tests in BALB/c mice infected with L. (L.) amazonensis. We demonstrated that TUB-NBMPR combined treatment can be effective against leishmania cells protecting mammalian cells from TUB toxicity.
Collapse
|
57
|
Landfear SM. Drugs and transporters in kinetoplastid protozoa. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2008; 625:22-32. [PMID: 18365656 DOI: 10.1007/978-0-387-77570-8_3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Kinetoplastid protozoa express hundreds of membrane transport proteins that allow them to take up nutrients, establish ion gradients, efflux metabolites, translocate compounds from one intracellular compartment to another, and take up or export drugs. The combination of molecular cloning, genetic approaches, and the completed genome projects for Trypanosoma brucei, Leishmania major, and Trypanosoma cruzi have allowed detailed functional analysis of various transporters and predictions about the likely functions of others. Thus many opportunities exist to define the biological and pharmacological properties of parasite transporters whose genes were often difficult to identify in the pregenomic era. A subset of these transporters that are essential for parasite viability could serve as targets for novel drug therapies by identifying compounds that interfere with their uptake functions. Other permeases provide routes for uptake of selectively cytotoxic compounds and can thus be useful for delivery of drugs. Drug resistance may develop in strains where such drug uptake transporters are nonfunctional or in parasites that over-express other permeases that export a drug. A summary of recent work on Leishmania transporters for glucose and for purines is provided as an example of permeases that are being studied in molecular detail.
Collapse
Affiliation(s)
- Scott M Landfear
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon 97239, USA.
| |
Collapse
|
58
|
Bridges DJ, Pitt AR, Hanrahan O, Brennan K, Voorheis HP, Herzyk P, de Koning HP, Burchmore RJS. Characterisation of the plasma membrane subproteome of bloodstream form Trypanosoma brucei. Proteomics 2008; 8:83-99. [PMID: 18095354 DOI: 10.1002/pmic.200700607] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteome analysis by conventional approaches is biased against hydrophobic membrane proteins, many of which are also of low abundance. We have isolated plasma membrane sheets from bloodstream forms of Trypanosoma brucei by subcellular fractionation, and then applied a battery of complementary protein separation and identification techniques to identify a large number of proteins in this fraction. The results of these analyses have been combined to generate a subproteome for the pellicular plasma membrane of bloodstream forms of T. brucei as well as a separate subproteome for the pellicular cytoskeleton. In parallel, we have used in silico approaches to predict the relative abundance of proteins potentially expressed by bloodstream form trypanosomes, and to identify likely polytopic membrane proteins, providing quality control for the experimentally defined plasma membrane subproteome. We show that the application of multiple high-resolution proteomic techniques to an enriched organelle fraction is a valuable approach for the characterisation of relatively intractable membrane proteomes. We present here the most complete analysis of a protozoan plasma membrane proteome to date and show the presence of a large number of integral membrane proteins, including 11 nucleoside/nucleobase transporters, 15 ion pumps and channels and a large number of adenylate cyclases hitherto listed as putative proteins.
Collapse
Affiliation(s)
- Daniel J Bridges
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Kolli BK, Kostal J, Zaborina O, Chakrabarty AM, Chang KP. Leishmania-released nucleoside diphosphate kinase prevents ATP-mediated cytolysis of macrophages. Mol Biochem Parasitol 2007; 158:163-75. [PMID: 18242727 DOI: 10.1016/j.molbiopara.2007.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 12/10/2007] [Accepted: 12/13/2007] [Indexed: 12/14/2022]
Abstract
Leishmania amazonensis was found to release nucleoside diphosphate kinase (NdK)-a stable enzyme capable of decreasing extracellular ATP. The release of this enzyme from Leishmania results in its progressive accumulation extracellularly as they replicate, peaking at the stationary phase in vitro. The released NdK is immunoprecipitable and constitutes approximately 40% of its total activities and proteins. The retention of a known cytosolic protein by wild type cells and a fluorescent protein by DsRed transfectants at stationary phase, which release NdK, indicates that this is a spontaneous event, independent of inadvertent cytolysis. Recombinant products of Leishmania NdK prepared were enzymatically and immunologically active. Both recombinant and native Leishmania NdK utilized ATP to produce expected nucleoside triphosphates in the presence of nucleoside diphosphates in excess. Both native and recombinant Leishmania NdK were also found to prevent ATP-induced cytolysis of J774 macrophages in vitro, as determined by assays for lactate dehydrogenase release from these cells and for their mitochondrial membrane potential changes. The results obtained thus suggest that Leishmania NdK not only serves its normal house-keeping and other important functions true to all cells, but also prevents ATP-mediated lysis of macrophages, thereby preserving the integrity of the host cells to the benefit of the parasite.
Collapse
Affiliation(s)
- Bala Krishna Kolli
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL 60064, United States.
| | | | | | | | | |
Collapse
|
60
|
Papageorgiou I, De Koning HP, Soteriadou K, Diallinas G. Kinetic and mutational analysis of the Trypanosoma brucei NBT1 nucleobase transporter expressed in Saccharomyces cerevisiae reveals structural similarities between ENT and MFS transporters. Int J Parasitol 2007; 38:641-53. [PMID: 18036529 DOI: 10.1016/j.ijpara.2007.10.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Revised: 10/04/2007] [Accepted: 10/08/2007] [Indexed: 02/04/2023]
Abstract
Parasitic protozoa are unable to synthesise purines de novo and thus depend on the uptake of nucleosides and nucleobases across their plasma membrane through specific transporters. A number of nucleoside and nucleobase transporters from Trypanosoma brucei brucei and Leishmania major have recently been characterised and shown to belong to the equilibrative nucleoside transporter (ENT) family. A number of studies have demonstrated the functional importance of particular transmembrane segments (TMS) in nucleoside-specific ENT proteins. TbNBT1, one of only three bona fide nucleobase-selective members of the ENT family, has previously been shown to be a high-affinity transporter for purine nucleobases and guanosine. In this study, we use the Saccharomyces cerevisiae expression system to build a biochemical model of how TbNBT1 recognises nucleobases. We next performed random in vitro and site-directed mutagenesis to identify residues critical for TbNBT1 function. The identification of residues likely to contribute to permeant binding, when combined with a structural model of TbNBT1 obtained by homology threading, yield a tentative three-dimensional model of the transporter binding site that is consistent with the binding model emerging from the biochemical data. The model strongly suggests the involvement of TMS5, TMS7 and TMS8 in TbNBT1 function. This situation is very similar to that concerning transporters of the major facilitator superfamily (MFS), one of which was used as a template for the threading. This point raises the possibility that ENT and MFS carriers, despite being considered evolutionarily distinct, might in fact share similar topologies and substrate translocations pathways.
Collapse
Affiliation(s)
- I Papageorgiou
- Department of Botany, University of Athens, Panepistimioupolis, Athens 15781, Greece
| | | | | | | |
Collapse
|
61
|
Lüscher A, Onal P, Schweingruber AM, Mäser P. Adenosine kinase of Trypanosoma brucei and its role in susceptibility to adenosine antimetabolites. Antimicrob Agents Chemother 2007; 51:3895-901. [PMID: 17698621 PMCID: PMC2151413 DOI: 10.1128/aac.00458-07] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma brucei cannot synthesize purines de novo and relies on purine salvage from its hosts to build nucleic acids. With adenosine being a preferred purine source of bloodstream-form trypanosomes, adenosine kinase (AK; EC 2.7.1.20) is likely to be a key player in purine salvage. Adenosine kinase is also of high pharmacological interest, since for many adenosine antimetabolites, phosphorylation is a prerequisite for activity. Here, we cloned and functionally characterized adenosine kinase from T. brucei (TbAK). TbAK is a tandem gene, expressed in both procyclic- and bloodstream-form trypanosomes, whose product localized to the cytosol of the parasites. The RNA interference-mediated silencing of TbAK suggested that the gene is nonessential under standard growth conditions. Inhibition or downregulation of TbAK rendered the trypanosomes resistant to cordycepin (3'-deoxyadenosine), demonstrating a role for TbAK in the activation of adenosine antimetabolites. The expression of TbAK in Saccharomyces cerevisiae complemented a null mutation in the adenosine kinase gene ado1. The concomitant expression of TbAK with the T. brucei adenosine transporter gene TbAT1 allowed S. cerevisiae ado1 ade2 double mutants to grow on adenosine as the sole purine source and, at the same time, sensitized them to adenosine antimetabolites. The coexpression of TbAK and TbAT1 in S. cerevisiae ado1 ade2 double mutants proved to be a convenient tool for testing nucleoside analogues for uptake and activation by T. brucei adenosine salvage enzymes.
Collapse
Affiliation(s)
- Alexandra Lüscher
- Institute of Cell Biology, University of Bern, Baltzerstrasse 4, CH-3012 Bern, Switzerland
| | | | | | | |
Collapse
|
62
|
Ortiz D, Sanchez MA, Pierce S, Herrmann T, Kimblin N, Archie Bouwer HG, Landfear SM. Molecular genetic analysis of purine nucleobase transport in Leishmania major. Mol Microbiol 2007; 64:1228-43. [PMID: 17542917 DOI: 10.1111/j.1365-2958.2007.05730.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Leishmania major and all other parasitic protozoa are unable to synthesize purines de novo and are therefore reliant upon uptake of preformed purines from their hosts via nucleobase and nucleoside transporters. L. major expresses two nucleobase permeases, NT3 that is a high affinity transporter for purine nucleobases and NT4 that is a low affinity transporter for adenine. nt3((-/-)) null mutant promastigotes were unable to replicate in medium containing 10 microM hypoxanthine, guanine, or xanthine and replicated slowly in 10 microM adenine due to residual low affinity uptake of that purine. The NT3 transporter mediated the uptake of the anti-leishmanial drug allopurinol, and the nt3((-/-)) mutants were resistant to killing by this drug. Expression of the NT3 permease was profoundly downregulated at the protein but not the mRNA level in stationary phase compared with logarithmic phase promastigotes. The nt4((-/-)) null mutant was quantitatively impaired in survival within murine bone marrow-derived macrophages. Extensive efforts to generate an nt3((-/-))/nt4((-/-)) dual null mutant were not successful, suggesting that one of the two nucleobase permeases must be retained for robust growth of the parasite. The phenotypes of these null mutants underscore the importance of purine nucleobase transporters in the Leishmania life cycle and pharmacology.
Collapse
Affiliation(s)
- Diana Ortiz
- Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR 97239, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
McConville MJ, de Souza D, Saunders E, Likic VA, Naderer T. Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends Parasitol 2007; 23:368-75. [PMID: 17606406 DOI: 10.1016/j.pt.2007.06.009] [Citation(s) in RCA: 154] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 04/26/2007] [Accepted: 06/13/2007] [Indexed: 12/11/2022]
Abstract
Leishmania amastigotes primarily proliferate within macrophages in the mammalian host. Genome-based metabolic reconstructions, combined with biochemical, reverse genetic and mRNA or protein profiling studies are providing new insights into the metabolism of this intracellular stage. We propose that the complex nutritional requirements of amastigotes have contributed to the tropism of these parasites for the amino acid-rich phagolysosome of macrophages. Amastigote metabolism in this compartment is robust because many metabolic mutants are capable of either growing normally or persisting long term in susceptible animals. New approaches for measuring amastigote metabolism in vivo are discussed.
Collapse
Affiliation(s)
- Malcolm J McConville
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | | | | | | | |
Collapse
|
64
|
Zhang J, Visser F, King KM, Baldwin SA, Young JD, Cass CE. The role of nucleoside transporters in cancer chemotherapy with nucleoside drugs. Cancer Metastasis Rev 2007; 26:85-110. [PMID: 17345146 DOI: 10.1007/s10555-007-9044-4] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Nucleoside analogs are important components of treatment regimens for various malignancies. Nucleoside-specific membrane transporters mediate plasma membrane permeation of physiologic nucleosides and most nucleoside analogs, for which the initial event is cellular conversion of nucleosides to active agents. Understanding of the roles of nucleoside transporters in nucleoside drug toxicity and resistance will provide opportunities for potentiating anticancer efficacy and avoiding resistance. Because transportability is a possible determinant of toxicity and resistance of many nucleoside analogs, nucleoside transporter abundance might be a prognostic marker to assess drug resistance. Elucidation of the structural determinants of nucleoside analogs for interaction with transporter proteins as well as the structural features of transporter proteins required for permeant interaction and translocation will lead to "transportability guidelines" for the rational design and therapeutic application of nucleoside analogs as anticancer drugs. It should eventually be possible to develop clinical assays that predict sensitivity and/or resistance to nucleoside anti-cancer drugs and thus to identify those patient populations that will most likely benefit from optimal nucleoside analog treatments. This review discusses recent results from structure/function studies of human nucleoside transporters, the role of nucleoside transport processes in the cytotoxicity and resistance of several anticancer nucleoside analogs and strategies to improve the nucleoside transporter-related anticancer effects of nucleoside analogs.
Collapse
Affiliation(s)
- Jing Zhang
- Membrane Protein Research Group, University of Alberta, Edmonton, AB, Canada
| | | | | | | | | | | |
Collapse
|
65
|
Ogbunude POJ, Lamour N, Barrett MP. Molecular cloning, expression and characterization of ribokinase of Leishmania major. Acta Biochim Biophys Sin (Shanghai) 2007; 39:462-6. [PMID: 17558452 DOI: 10.1111/j.1745-7270.2007.00298.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Ribokinase (EC 2.1.7.15) from Leishmania major was cloned, sequenced and overexpressed in Escherichia coli. The gene expressed an active enzyme that had comparable activity to the same enzyme studied in E. coli. It specifically phosphorylated D-ribose. Under defined conditions, the K(m) for the substrates D-ribose and ATP were 0.3+/-0.04 mM and 0.2+/-0.02 mM, respectively. The turnover numbers of the enzyme for the substrates were 10.8 s(-1) and 10.2 s(-1), respectively. The enzyme product ribose 5-phosphate inhibited the phosphorylation of D-ribose with an apparent K(i) of 0.4 mM, which is close to the K(m) (0.3 mM) of D-ribose, suggesting that it might play a role in regulating flux through the enzyme.
Collapse
Affiliation(s)
- Patrick O J Ogbunude
- Department of Medical Biochemistry, University of Nigeria, Enugu 1000004, Nigeria.
| | | | | |
Collapse
|
66
|
Braga FG, Coimbra ES, de Oliveira Matos M, Lino Carmo AM, Cancio MD, da Silva AD. Synthesis and biological evaluation of some 6-substituted purines. Eur J Med Chem 2007; 42:530-7. [PMID: 17156894 DOI: 10.1016/j.ejmech.2006.10.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 10/22/2006] [Accepted: 10/26/2006] [Indexed: 10/23/2022]
Abstract
We report herein the synthesis and the in vitro antileishmanial evaluation of a series of 6-substituted purines. The most active compounds against Leishmania amazonensis promastigotes were 6-(3'-chloropropylthio)purine 2 [11,12] [corrected] 6-(3'-(thioethylamine)propylthio)purine 5, 6-(alpha-aceticacidthio)purine 7 and 6-(6'-deoxy-1'-O-methyl-beta-D-ribofuranose)purine 14 with an IC(50)=50, 50, 39 and 29 microM, respectively.
Collapse
Affiliation(s)
- Fernanda Gambogi Braga
- Departamento de Parasitologia, Microbiologia e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Campus Universitario, Bairro Martelos, Juiz de Fora, Minas Gerais 36036-900, Brazil
| | | | | | | | | | | |
Collapse
|
67
|
Bellofatto V. Pyrimidine transport activities in trypanosomes. Trends Parasitol 2007; 23:187-9; discussion 190. [PMID: 17374509 DOI: 10.1016/j.pt.2007.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Revised: 02/06/2007] [Accepted: 03/08/2007] [Indexed: 01/31/2023]
Abstract
Parasites of the Trypanosomatidae family are unable to synthesize purines. Instead, they rely on their hosts to supply these necessary compounds. The article by Gudin et al. identifies three transport mechanisms of the equilibrative nucleoside transporter family by which nucleosides and nucleobases are transported in this medically important family of organisms. The work by Gudin et al. characterizes the dynamics of these transporters and points to further areas for future genetic and therapeutic experiments.
Collapse
Affiliation(s)
- Vivian Bellofatto
- Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, Newark, NJ 07101, USA.
| |
Collapse
|
68
|
Keough DT, Skinner-Adams T, Jones MK, Ng AL, Brereton IM, Guddat LW, de Jersey J. Lead compounds for antimalarial chemotherapy: purine base analogs discriminate between human and P. falciparum 6-oxopurine phosphoribosyltransferases. J Med Chem 2007; 49:7479-86. [PMID: 17149876 DOI: 10.1021/jm061012j] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The malarial parasite Plasmodium falciparum depends on the purine salvage enzyme hypoxanthine-guanine-xanthine phosphoribosyltransferase (HGXPRT) to convert purine bases from the host to nucleotides needed for DNA and RNA synthesis. An approach to developing antimalarial drugs is to use HGXPRT to convert introduced purine base analogs to nucleotides that are toxic to the parasite. This strategy requires that these compounds be good substrates for the parasite enzyme but poor substrates for the human counterpart, HGPRT. Bases with a chlorine atom in the 6-position or a nitrogen in the 8-position exhibited strong discrimination between P. falciparum HGXPRT and human HGPRT. The k(cat)/K(m) values for the Plasmodium enzyme using 6-chloroguanine and 8-azaguanine as substrates were 50 - 80-fold and 336-fold higher than for the human enzyme, respectively. These and other bases were effective in inhibiting the growth of the parasite in vitro, giving IC(50) values as low as 1 microM.
Collapse
Affiliation(s)
- Dianne T Keough
- School of Molecular and Microbial Sciences, The University of Queensland, 4072, Australia
| | | | | | | | | | | | | |
Collapse
|
69
|
Colasante C, Alibu VP, Kirchberger S, Tjaden J, Clayton C, Voncken F. Characterization and developmentally regulated localization of the mitochondrial carrier protein homologue MCP6 from Trypanosoma brucei. EUKARYOTIC CELL 2007; 5:1194-205. [PMID: 16896205 PMCID: PMC1539146 DOI: 10.1128/ec.00096-06] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Proteins of the mitochondrial carrier family (MCF) are located mainly in the inner mitochondrial membrane and mediate the transport of a large range of metabolic intermediates. The genome of Trypanosoma brucei harbors 29 genes encoding different MCF proteins. We describe here the characterization of MCP6, a novel T. brucei MCF protein. Sequence comparison and phylogenetic reconstruction revealed that MCP6 is closely related to different mitochondrial ADP/ATP and calcium-dependent solute carriers, including the ATP-Mg/Pi carrier of Homo sapiens. However, MCP6 lacks essential amino acids and sequence motifs conserved in these metabolite transporters, and functional reconstitution and transport assays with E. coli suggested that this protein indeed does not function as an ADP/ATP or ATP-Mg/Pi carrier. The subcellular localization of MCP6 is developmentally regulated: in bloodstream-form trypanosomes, the protein is predominantly glycosomal, whereas in the procyclic form, it is found mainly in the mitochondria. Depletion of MCP6 in procyclic trypanosomes resulted in growth inhibition, an increased cell size, aberrant numbers of nuclei and kinetoplasts, and abnormal kinetoplast morphology, suggesting that depletion of MCP6 inhibits division of the kinetoplast.
Collapse
Affiliation(s)
- Claudia Colasante
- Zentrum für Molekulare Biologie (ZMBH), Im Neuenheimer Feld 282, D-69120 Heidelberg, Germany
| | | | | | | | | | | |
Collapse
|
70
|
Joshi MB, Dwyer DM. Molecular and functional analyses of a novel class I secretory nuclease from the human pathogen, Leishmania donovani. J Biol Chem 2007; 282:10079-10095. [PMID: 17276983 DOI: 10.1074/jbc.m610770200] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The primitive protozoan pathogen of humans, Leishmania donovani, resides and multiplies in highly restricted micro-environments within their hosts (i.e. as promastigotes in the gut lumen of their sandfly vectors and as amastigotes in the phagolysosomal compartments of infected mammalian macrophages). Like other trypanosomatid parasites, they are purine auxotrophs (i.e. lack the ability to synthesize purines de novo) and therefore are totally dependent upon salvaging these essential nutrients from their hosts. In that context, in this study we identified a unique 35-kDa, dithiothreitol-sensitive nuclease and showed that it was constitutively released/secreted by both promastigote and amastigote developmental forms of this parasite. By using several different molecular approaches, we identified and characterized the structure of LdNuc(s), a gene that encodes this new 35-kDa class I nuclease family member in these organisms. Homologous episomal expression of an epitope-tagged LdNuc(s) chimeric construct was used in conjunction with an anti-LdNuc(s) peptide antibody to delineate the functional and biochemical properties of this unique 35-kDa parasite released/secreted enzyme. Results of coupled immunoprecipitation-enzyme activity analyses demonstrated that this "secretory" enzyme could hydrolyze a variety of synthetic polynucleotides as well as several natural nucleic acid substrates, including RNA and single- and double-stranded DNA. Based on these cumulative observations, we hypothesize that within the micro-environments of its host, this leishmanial "secretory" nuclease could function at a distance away from the parasite to harness (i.e. hydrolyze/access) host-derived nucleic acids to satisfy the essential purine requirements of these organisms. Thus, this enzyme might play an important role(s) in facilitating the survival, growth, and development of this important human pathogen.
Collapse
Affiliation(s)
- Manju B Joshi
- Cell Biology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425
| | - Dennis M Dwyer
- Cell Biology Section, Laboratory of Parasitic Diseases, Division of Intramural Research, NIAID, National Institutes of Health, Bethesda, Maryland 20892-0425.
| |
Collapse
|
71
|
Machado J, Abdulla P, Hanna WJB, Hilliker AJ, Coe IR. Genomic analysis of nucleoside transporters in Diptera and functional characterization ofDmENT2, a Drosophila equilibrative nucleoside transporter. Physiol Genomics 2007; 28:337-47. [PMID: 17090699 DOI: 10.1152/physiolgenomics.00087.2006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The recent completion of genome sequencing projects in a number of eukaryotes allows comparative analysis of orthologs, which can aid in identifying evolutionary constraints on protein structure and function. Nucleoside transporters (NTs) are present in a diverse array of organisms and previous studies have suggested that there is low protein sequence similarity but conserved structure in invertebrate and vertebrate NT orthologs. In addition, most taxa possess multiple NT isoforms but their respective roles in the physiology of the organism are not clear. To investigate the evolution of the structure and function of NTs, we have extended our previous studies by identifying NT orthologs in the Dipteran Anopheles gambiae and comparing these proteins to human and Drosophila melanogaster (Dm) NTs. In addition, we have functionally characterized DmENT2, one of three putative D. melanogaster ENTs that we have previously described. DmENT2 has broad substrate specificity, is insensitive to standard nucleoside transport inhibitors and is expressed in the digestive tract of late stage embryos based on in situ hybridization. DmENT1 and DmENT2 are expressed in most stages during development with the exception of early embryogenesis suggesting specific physiological roles for each isoform. These data represent the first complete genomic analysis of Dipteran NTs and the first report of the functional characterization of any Dipteran NT.
Collapse
Affiliation(s)
- Jerry Machado
- Department of Biology, York University, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
72
|
Abstract
Synthesis de novo, acquisition by salvage and interconversion of purines and pyrimidines represent the fundamental requirements for their eventual assembly into nucleic acids as nucleotides and the deployment of their derivatives in other biochemical pathways. A small number of drugs targeted to nucleotide metabolism, by virtue of their effect on folate biosynthesis and recycling, have been successfully used against apicomplexan parasites such as Plasmodium and Toxoplasma for many years, although resistance is now a major problem in the prevention and treatment of malaria. Many targets not involving folate metabolism have also been explored at the experimental level. However, the unravelling of the genome sequences of these eukaryotic unicellular organisms, together with increasingly sophisticated molecular analyses, opens up possibilities of introducing new drugs that could interfere with these processes. This review examines the status of established drugs of this type and the potential for further exploiting the vulnerability of apicomplexan human pathogens to inhibition of this key area of metabolism.
Collapse
Affiliation(s)
- John E Hyde
- Manchester Interdisciplinary Biocentre, Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7ND, UK.
| |
Collapse
|
73
|
Barrett MP, Gilbert IH. Targeting of toxic compounds to the trypanosome's interior. ADVANCES IN PARASITOLOGY 2006; 63:125-83. [PMID: 17134653 DOI: 10.1016/s0065-308x(06)63002-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Drugs can be targeted into African trypanosomes by exploiting carrier proteins at the surface of these parasites. This has been clearly demonstrated in the case of the melamine-based arsenical and the diamidine classes of drug that are already in use in the treatment of human African trypanosomiasis. These drugs can enter via an aminopurine transporter, termed P2, encoded by the TbAT1 gene. Other toxic compounds have also been designed to enter via this transporter. Some of these compounds enter almost exclusively through the P2 transporter, and hence loss of the P2 transporter leads to significant resistance to these particular compounds. It now appears, however, that some diamidines and melaminophenylarsenicals may also be taken up by other routes (of yet unknown function). These too may be exploited to target new drugs into trypanosomes. Additional purine nucleoside and nucleobase transporters have also been subverted to deliver toxic agents to trypanosomes. Glucose and amino acid transporters too have been investigated with a view to manipulating them to carry toxins into Trypanosoma brucei, and recent work has demonstrated that aquaglyceroporins may also have considerable potential for drug-targeting. Transporters, including those that carry lipids and vitamins such as folate and other pterins also deserve more attention in this regard. Some drugs, for example suramin, appear to enter via routes other than plasma-membrane-mediated transport. Receptor-mediated endocytosis has been proposed as a possible way in for suramin. Endocytosis also appears to be crucial in targeting natural trypanocides, such as trypanosome lytic factor (TLF) (apolipoprotein L1), into trypanosomes and this offers an alternative means of selectively targeting toxins to the trypanosome's interior. Other compounds may be induced to enter by increasing their capacity to diffuse over cell membranes; in this case depending exclusively on selective activity within the cell rather than selective uptake to impart selective toxicity. This review outlines studies that have aimed to exploit trypanosome nutrient uptake routes to selectively carry toxins into these parasites.
Collapse
Affiliation(s)
- Michael P Barrett
- Division of Infection & Immunity, Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8QQ, UK
| | | |
Collapse
|
74
|
Al-Salabi MI, Wallace LJM, Lüscher A, Mäser P, Candlish D, Rodenko B, Gould MK, Jabeen I, Ajith SN, de Koning HP. Molecular interactions underlying the unusually high adenosine affinity of a novel Trypanosoma brucei nucleoside transporter. Mol Pharmacol 2006; 71:921-9. [PMID: 17185380 DOI: 10.1124/mol.106.031559] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Trypanosoma brucei encodes a relatively high number of genes of the equilibrative nucleoside transporter (ENT) family. We report here the cloning and in-depth characterization of one T. brucei brucei ENT member, TbNT9/AT-D. This transporter was expressed in Saccharomyces cerevisiae and displayed a uniquely high affinity for adenosine (Km = 0.068 +/- 0.013 microM), as well as broader selectivity for other purine nucleosides in the low micromolar range, but was not inhibited by nucleobases or pyrimidines. This selectivity profile is consistent with the P1 transport activity observed previously in procyclic and long-slender bloodstream T. brucei, apart from the 40-fold higher affinity for adenosine than for inosine. We found that, like the previously investigated P1 activity of long/slender bloodstream trypanosomes, the 3'-hydroxy, 5'-hydroxy, N3, and N7 functional groups contribute to transporter binding. In addition, we show that the 6-position amine group of adenosine, but not the inosine 6-keto group, makes a major contribution to binding (DeltaG0 = 12 kJ/mol), explaining the different Km values of the purine nucleosides. We further found that P1 activity in procyclic and long-slender trypanosomes is pharmacologically distinct, and we identified the main gene encoding this activity in procyclic cells as NT10/AT-B. The presence of multiple P1-type nucleoside transport activities in T. brucei brucei facilitates the development of nucleoside-based treatments for African trypanosomiasis and would delay the onset of uptake-related drug resistance to such therapy. We show that both TbNT9/AT-D and NT10/AT-B transport a range of potentially therapeutic nucleoside analogs.
Collapse
Affiliation(s)
- Mohammed I Al-Salabi
- Institute of Biomedical and Life Sciences, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, United Kingdom
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Ouakad M, Chenik M, Ben Achour-Chenik Y, Louzir H, Dellagi K. Gene expression analysis of wild Leishmania major isolates: identification of genes preferentially expressed in amastigotes. Parasitol Res 2006; 100:255-64. [PMID: 17016728 DOI: 10.1007/s00436-006-0277-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 07/03/2006] [Indexed: 10/24/2022]
Abstract
Trying to identify virulence genes of wild Leishmania (L.) major parasites, the species responsible for zoonotic cutaneous leishmaniasis, we compared, using differential display technique, gene expression in two L. major isolates obtained from human lesions and characterized by their contrasting pathogenicity in the BALB/c mouse model. The analysis was performed on amastigotes derived from BALB/c mice lesions. A total of 13 different clones were identified, but the use of reverse transcription and real-time polymerase chain reaction technique did not allow us to confirm any of these clones as differentially expressed. However, the fact that we used the amastigote stage of the parasite led us the identification of amastigote-specific genes, essentially (8 among 13). They are overexpressed, two to seven times, in amastigotes relative to promastigotes. Sequence analysis revealed that two of them namely LPG3 and the ATP dependent RNA helicase correspond to previously described amastigote-specific genes. The others correspond to genes involved in important biological process. Their better characterization could help the development of new drugs targeting the processes in which these molecules are involved.
Collapse
Affiliation(s)
- Meriem Ouakad
- Laboratoire d'Immunopathologie, Vaccinologie et Génétique Moléculaire, Institut Pasteur de Tunis, 13, Place Pasteur 1002, Tunis-Belvédère, Tunisia
| | | | | | | | | |
Collapse
|
76
|
Abstract
Every year, forty percent of the world population is at risk of contracting malaria. Hopes for the erradication of this disease during the 20th century were dashed by the ability of Plasmodium falciparum, its most deadly causative agent, to develop resistance to available drugs. Efforts to produce an effective vaccine have so far been unsuccessful, enhancing the need to develop novel antimalarial drugs. In this review, we summarize our knowledge concerning existing antimalarials, mechanisms of drug-resistance development, the use of drug combination strategies and the quest for novel anti-plasmodial compounds. We emphasize the potential role of host genes and molecules as novel targets for newly developed drugs. Recent results from our laboratory have shown Hepatocyte Growth Factor/MET signaling to be essential for the establishment of infection in hepatocytes. We discuss the potential use of this pathway in the prophylaxis of malaria infection.
Collapse
|
77
|
Zhang J, Smith KM, Tackaberry T, Sun X, Carpenter P, Slugoski MD, Robins MJ, Nielsen LPC, Nowak I, Baldwin SA, Young JD, Cass CE. Characterization of the transport mechanism and permeant binding profile of the uridine permease Fui1p of Saccharomyces cerevisiae. J Biol Chem 2006; 281:28210-21. [PMID: 16854981 DOI: 10.1074/jbc.m605129200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The uptake of Urd into the yeast Saccharomyces cerevisiae is mediated by Fui1p, a Urd-specific nucleoside transporter encoded by the FUI1 gene and a member of the yeast Fur permease family, which also includes the uracil, allantoin, and thiamine permeases. When Fui1p was produced in a double-permease knock-out strain (fur4Deltafui1Delta) of yeast, Urd uptake was stimulated at acidic pH and sensitive to the protonophore carbonyl cyanide m-chlorophenylhydrazone. Electrophysiological analysis of recombinant Fui1p produced in Xenopus oocytes demonstrated that Fui1p-mediated Urd uptake was dependent on proton cotransport with a 1:1 stoichiometry. Mutagenesis analysis of three charged amino acids (Glu(259), Lys(288), and Asp(474) in putative transmembrane segments 3, 4, and 7, respectively) revealed that only Lys(288) was required for maintaining high Urd transport efficiency. Analysis of binding energies between Fui1p and different Urd analogs indicated that Fuip1 interacted with C(3')-OH, C(2')-OH, C(5)-H, and N(3)-H of Urd. Fui1p-mediated transport of Urd was inhibited by analogs with modifications at C-5', but was not inhibited significantly by analogs with modifications at C-3', C-5, and N-3 or inversions of configuration at C-2' and C-3'. This characterization of Fui1p contributes to the emerging knowledge of the structure and function of the Fur family of permeases, including the Fui1p orthologs of pathogenic fungi.
Collapse
Affiliation(s)
- Jing Zhang
- Membrane Protein Research Group and the Department of Oncology, University of Alberta, Alberta T6H 1Z2, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Downie MJ, Saliba KJ, Howitt SM, Bröer S, Kirk K. Transport of nucleosides across the Plasmodium falciparum parasite plasma membrane has characteristics of PfENT1. Mol Microbiol 2006; 60:738-48. [PMID: 16629674 DOI: 10.1111/j.1365-2958.2006.05125.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Like all parasitic protozoa, the human malaria parasite Plasmodium falciparum lacks the enzymes required for de novo synthesis of purines and it is therefore reliant upon the salvage of these compounds from the external environment. P. falciparum equilibrative nucleoside transporter 1 (PfENT1) is a nucleoside transporter that has been localized to the plasma membrane of the intraerythrocytic form of the parasite. In this study we have characterized the transport of purine and pyrimidine nucleosides across the plasma membrane of 'isolated' trophozoite-stage P. falciparum parasites and compared the transport characteristics of the parasite with those of PfENT1 expressed in Xenopus oocytes. The transport of nucleosides into the parasite: (i) was, in the case of adenosine, inosine and thymidine, very fast, equilibrating within a few seconds; (ii) was of low affinity [K(m) (adenosine) = 1.45 +/- 0.25 mM; K(m) (thymidine) = 1.11 +/- 0.09 mM]; and (iii) showed 'cross-competition' for adenosine, inosine and thymidine, but not cytidine. The kinetic characteristics of nucleoside transport in intact parasites matched very closely those of PfENT1 expressed in Xenopus oocytes [K(m) (adenosine) = 1.86 +/- 0.28 mM; K(m) (thymidine) = 1.33 +/- 0.17 mM]. Furthermore, PfENT1 transported adenosine, inosine and thymidine, with a cross-competition profile the same as that seen for isolated parasites. The data are consistent with PfENT1 serving as a major route for the uptake of nucleosides across the parasite plasma membrane.
Collapse
Affiliation(s)
- Megan J Downie
- School of Biochemistry and Molecular Biology, The Australian National University, Canberra ACT 0200, Australia
| | | | | | | | | |
Collapse
|
79
|
Shaked-Mishan P, Suter-Grotemeyer M, Yoel-Almagor T, Holland N, Zilberstein D, Rentsch D. A novel high-affinity arginine transporter from the human parasitic protozoan Leishmania donovani. Mol Microbiol 2006; 60:30-8. [PMID: 16556218 DOI: 10.1111/j.1365-2958.2006.05060.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We describe the first functional and molecular characterization of an amino acid permease (LdAAP3) from the human parasitic protozoan Leishmania donovani, the causative agent of visceral leishmaniasis in humans. This permease contains 480 amino acids with 11 predicted trans-membrane domains. Expressing LdAAP3 in Saccharomyces cerevisiae mutants revealed that LdAAP3 codes for a high-affinity arginine transporter (Km 1.9 microM). LdAAP3 is highly specific for arginine as its transport was not inhibited by other amino acids or arginine-related compounds. Using green fluorescence protein (GFP) fused to the N-terminus of LdAAP3, this transporter was localized to the surface membrane of promastigotes. The GFP-LdAAP3 chimera mediated a threefold increase in arginine transport in promastigotes, indicating that it is active and confirmed that LdAAP3 codes for an arginine transporter in parasite cells as well. LdAAP3 is novel as it shares a high level of homology with amino acid permeases from other trypanosomatidae but almost none with permeases from other phyla. The results of this work suggest that LdAAP3 might play a role in host-parasite interaction.
Collapse
Affiliation(s)
- Pninit Shaked-Mishan
- Department of Biology, Technion-Israel Institute of Technology, Haifa 32000, Israel
| | | | | | | | | | | |
Collapse
|
80
|
Abstract
Complete or partial genome sequences have recently become available for several medically and evolutionarily important parasitic protozoa. Through the application of bioinformatics complete metabolic repertoires for these parasites can be predicted. For experimentally intractable parasites insight provided by metabolic maps generated in silico has been startling. At its more extreme end, such bioinformatics reckoning facilitated the discovery in some parasites of mitochondria remodelled beyond previous recognition, and the identification of a non-photosynthetic chloroplast relic in malarial parasites. However, for experimentally tractable parasites, mapping of the general metabolic terrain is only a first step in understanding how the parasite modulates its streamlined, yet still often puzzlingly complex, metabolism in order to complete life cycles within host, vector, or environment. This review provides a comparative overview and discussion of metabolic strategies used by several different parasitic protozoa in order to subvert and survive host defences, and illustrates how genomic data contribute to the elucidation of parasite metabolism.
Collapse
Affiliation(s)
- Michael L Ginger
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.
| |
Collapse
|
81
|
Mukherjee A, Padmanabhan PK, Sahani MH, Barrett MP, Madhubala R. Roles for mitochondria in pentamidine susceptibility and resistance in Leishmania donovani. Mol Biochem Parasitol 2006; 145:1-10. [PMID: 16219371 DOI: 10.1016/j.molbiopara.2005.08.016] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2005] [Revised: 08/18/2005] [Accepted: 08/26/2005] [Indexed: 11/15/2022]
Abstract
Pentamidine resistant Leishmania donovani was raised in the laboratory by stepwise exposure to increasing drug pressure until a line capable of growth in 8 microM pentamidine (R8) had been selected. An IC(50) value of 40 microM was determined for this line, some 50-fold higher than that recorded for the parental wild-type line. The pentamidine resistant promastigotes were cross-resistant to other toxic diamidine derivatives but not to antimonials or substrates of multidrug resistance pumps. Decreased mitochondrial transmembrane potential was observed in pentamidine resistant promastigotes. A substantial net decrease in accumulation of [(3)H]-pentamidine accompanied the resistance phenotype. Inhibitors of P-glycoprotein pumps, including prochlorperazine and trifluoperazine, did not reverse this decreased drug uptake, which distinguishes the L. donovani resistant line studied here from L. mexicana promastigotes previously studied for pentamidine resistance. Kinetic analysis identified a carrier with an apparent K(m) value of 6 microM for pentamidine. No significant difference between wild-type and resistant parasites could be detected with respect to this transporter in rapid uptake experiments. However, in longer-term uptake experiments and also using concentrations of pentamidine up to 1mM, it was demonstrated that wild-type cells, but not resistant cells, could continue to accumulate pentamidine after apparent saturation via the measured transporter had been reached. Agents that diminish the mitochondrial membrane potential inhibited this secondary route. A fluorescent analogue of pentamidine, 2,5-bis-(4-amidophenyl)-3,4-dimethylfuran (DB99), accumulated in the kinetoplast of wild-type but not resistant parasites indicating that uptake of this cationic compound into mitochondria of wild-type cells was more pronounced than in the resistant line. These data together indicate that resistance to pentamidine in L. donovani is associated with alterations to the mitochondria of the parasites, which lead to reduced accumulation of drug.
Collapse
Affiliation(s)
- Angana Mukherjee
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | | | | | | | | |
Collapse
|
82
|
de Koning HP, Bridges DJ, Burchmore RJS. Purine and pyrimidine transport in pathogenic protozoa: From biology to therapy. FEMS Microbiol Rev 2005; 29:987-1020. [PMID: 16040150 DOI: 10.1016/j.femsre.2005.03.004] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 03/22/2005] [Accepted: 03/24/2005] [Indexed: 01/10/2023] Open
Abstract
Purine salvage is an essential function for all obligate parasitic protozoa studied to date and most are also capable of efficient uptake of preformed pyrimidines. Much progress has been made in the identification and characterisation of protozoan purine and pyrimidine transporters. While the genes encoding protozoan or metazoan pyrimidine transporters have yet to be identified, numerous purine transporters have now been cloned. All protozoan purine transporter-encoding genes characterised to date have been of the Equilibrative Nucleoside Transporter family conserved in a great variety of eukaryote organisms. However, these protozoan transporters have been shown to be sufficiently different from mammalian transporters to mediate selective uptake of therapeutic agents. Recent studies are increasingly addressing the structure and substrate recognition mechanisms of these vital transport proteins.
Collapse
Affiliation(s)
- Harry P de Koning
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK.
| | | | | |
Collapse
|
83
|
Baliani A, Bueno GJ, Stewart ML, Yardley V, Brun R, Barrett MP, Gilbert IH. Design and synthesis of a series of melamine-based nitroheterocycles with activity against Trypanosomatid parasites. J Med Chem 2005; 48:5570-9. [PMID: 16107157 DOI: 10.1021/jm050177+] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The parasites that give rise to human African trypanosomiasis (HAT) are auxotrophs for various nutrients from the human host, including purines. They have specialist nucleoside transporters to import these metabolites. In addition to uptake of purine nucleobases and purine nucleosides, one of these transporters, the P2 transporter, can carry melamine derivatives; these derivatives are not substrates for the corresponding mammalian transporters. In this paper, we report the coupling of the melamine moiety to selected nitro heterocycles with the aim of selectively delivering these compounds to the parasites. Some compounds prepared have similar in vitro trypanocidal activities as melarsoprol, the principal drug used against late-stage HAT, with 50% growth inhibitory concentrations in the submicromolar range. Selected compounds were also evaluated in vivo in rodent models infected with Trypanosoma brucei brucei and T. brucei rhodesiense and showed pronounced activity and in two cases were curative without overt signs of toxicity. Compounds were also tested against other trypanosomatid pathogens, Leishmania donovani and Trypanosoma cruzi, and significant activity in vitro was noted for T. cruzi against which various nitro heterocycles are already registered for use.
Collapse
Affiliation(s)
- Alessandro Baliani
- Welsh School of Pharmacy, Redwood Building, Cardiff University, King Edward VII Avenue, Cardiff CF10 3XF, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
84
|
Al-Salabi MI, de Koning HP. Purine nucleobase transport in amastigotes of Leishmania mexicana: involvement in allopurinol uptake. Antimicrob Agents Chemother 2005; 49:3682-9. [PMID: 16127040 PMCID: PMC1195421 DOI: 10.1128/aac.49.9.3682-3689.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 05/05/2005] [Accepted: 05/22/2005] [Indexed: 11/20/2022] Open
Abstract
Nucleobase and nucleoside transporters play central roles in the biochemistry of parasitic protozoa, as they lack the ability to synthesize purines de novo and are absolutely reliant upon purine salvage from their hosts. Furthermore, such transporters are potentially critical to the pharmacology of these important human pathogens, because they mediate the uptake of purine analogues, as well as some nonpurine drugs, that can be selectively cytotoxic to the parasites. We here report the first identification and characterization of a purine nucleobase transporter in Leishmania amastigotes. Uptake of [3H]hypoxanthine by Leishmania mexicana amastigotes was mediated by a single high-affinity transporter, LmexNBT1, with a Km of 1.6 +/- 0.4 microM and high affinity for adenine, guanine, and xanthine but low affinity for nucleosides and pyrimidine nucleobases. Allopurinol, an antileishmanial hypoxanthine analogue, was apparently taken up by the same transporter. Using [3H]allopurinol, a Km value of 33.6 +/- 6.0 microM was obtained. All evidence was compatible with a model of a single purine nucleobase transporter being expressed in amastigotes. Using various purine nucleobase analogues, a model for the interactions between hypoxanthine and the transporter's permeant binding site was constructed. The binding interactions were compared with those of the LmajNBT1 transporter in Leishmania major promastigotes and found to be very similar.
Collapse
Affiliation(s)
- Mohammed I Al-Salabi
- Institute of Biomedical and Life Sciences, Division of Infection and Immunity, Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | | |
Collapse
|
85
|
Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Böhme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UCM, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feldblyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris BR, Hauser H, Hostetler J, Ivens A, Jagels K, Johnson D, Johnson J, Jones K, Kerhornou AX, Koo H, Larke N, Landfear S, Larkin C, Leech V, Line A, Lord A, Macleod A, Mooney PJ, Moule S, Martin DMA, Morgan GW, Mungall K, Norbertczak H, Ormond D, Pai G, Peacock CS, Peterson J, Quail MA, Rabbinowitsch E, Rajandream MA, Reitter C, Salzberg SL, Sanders M, Schobel S, Sharp S, Simmonds M, Simpson AJ, Tallon L, Turner CMR, Tait A, Tivey AR, Van Aken S, Walker D, Wanless D, Wang S, White B, White O, Whitehead S, Woodward J, Wortman J, Adams MD, Embley TM, Gull K, Ullu E, Barry JD, Fairlamb AH, Opperdoes F, Barrell BG, Donelson JE, Hall N, Fraser CM, Melville SE, El-Sayed NM. The genome of the African trypanosome Trypanosoma brucei. Science 2005; 309:416-22. [PMID: 16020726 DOI: 10.1126/science.1112642] [Citation(s) in RCA: 1257] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
African trypanosomes cause human sleeping sickness and livestock trypanosomiasis in sub-Saharan Africa. We present the sequence and analysis of the 11 megabase-sized chromosomes of Trypanosoma brucei. The 26-megabase genome contains 9068 predicted genes, including approximately 900 pseudogenes and approximately 1700 T. brucei-specific genes. Large subtelomeric arrays contain an archive of 806 variant surface glycoprotein (VSG) genes used by the parasite to evade the mammalian immune system. Most VSG genes are pseudogenes, which may be used to generate expressed mosaic genes by ectopic recombination. Comparisons of the cytoskeleton and endocytic trafficking systems with those of humans and other eukaryotic organisms reveal major differences. A comparison of metabolic pathways encoded by the genomes of T. brucei, T. cruzi, and Leishmania major reveals the least overall metabolic capability in T. brucei and the greatest in L. major. Horizontal transfer of genes of bacterial origin has contributed to some of the metabolic differences in these parasites, and a number of novel potential drug targets have been identified.
Collapse
Affiliation(s)
- Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton CB10 1SA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Baldwin SA, Yao SYM, Hyde RJ, Ng AML, Foppolo S, Barnes K, Ritzel MWL, Cass CE, Young JD. Functional characterization of novel human and mouse equilibrative nucleoside transporters (hENT3 and mENT3) located in intracellular membranes. J Biol Chem 2005; 280:15880-7. [PMID: 15701636 DOI: 10.1074/jbc.m414337200] [Citation(s) in RCA: 234] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The first mammalian examples of the equilibrative nucleoside transporter family to be characterized, hENT1 and hENT2, were passive transporters located predominantly in the plasma membranes of human cells. We now report the functional characterization of members of a third subgroup of the family, from human and mouse, which differ profoundly in their properties from previously characterized mammalian nucleoside transporters. The 475-residue human and mouse proteins, designated hENT3 and mENT3, respectively, are 73% identical in amino acid sequence and possess long N-terminal hydrophilic domains that bear typical (DE)XXXL(LI) endosomal/lysosomal targeting motifs. ENT3 transcripts and proteins are widely distributed in human and rodent tissues, with a particular abundance in placenta. However, in contrast to ENT1 and ENT2, the endogenous and green fluorescent protein-tagged forms of the full-length hENT3 protein were found to be predominantly intracellular proteins that co-localized, in part, with lysosomal markers in cultured human cells. Truncation of the hydrophilic N-terminal region or mutation of its dileucine motif to alanine caused the protein to be relocated to the cell surface both in human cells and in Xenopus oocytes, allowing characterization of its transport activity in the latter. The protein proved to be a broad selectivity, low affinity nucleoside transporter that could also transport adenine. Transport activity was relatively insensitive to the classical nucleoside transport inhibitors nitrobenzylthioinosine, dipyridamole, and dilazep and was sodium ion-independent. However, it was strongly dependent upon pH, and the optimum pH value of 5.5 probably reflected the location of the transporter in acidic, intracellular compartments.
Collapse
Affiliation(s)
- Stephen A Baldwin
- School of Biochemistry and Microbiology, University of Leeds, Leeds LS2 9JT, United Kingdom.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Natto MJ, Wallace LJM, Candlish D, Al-Salabi MI, Coutts SE, de Koning HP. Trypanosoma brucei: expression of multiple purine transporters prevents the development of allopurinol resistance. Exp Parasitol 2005; 109:80-6. [PMID: 15687014 DOI: 10.1016/j.exppara.2004.11.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Revised: 11/03/2004] [Accepted: 11/18/2004] [Indexed: 11/26/2022]
Abstract
Allopurinol is a hypoxanthine analogue used to treat Leishmania infections that also displays activity against the related parasite Trypanosoma brucei. We have investigated the ease by which resistance to this drug is established in Trypanosoma brucei brucei and correlated this to the mechanisms by which it is accumulated by the parasite. Long-term exposure of procyclic T. b. brucei to 3mM allopurinol did not induce resistance. This appears to be related to the fact that allopurinol was taken up through two distinct nucleobase transporters, H1 and H4, both with high affinity for the drug. The apparent Km for [3H]allopurinol transport by H4 (2.1+/-0.4 microM) was determined by expressing the encoding gene in Saccharomyces cerevisiae. Long-term allopurinol exposure did not change Km (hypoxanthine), Ki (allopurinol), or Vmax values of either H1 or H4 transporters and the cells retained their ability to proliferate with hypoxanthine as sole purine source. This study shows that transport-related resistance to purine antimetabolites is not easily induced in Trypanosoma spp. as long as uptake is mediated by multiple transporters.
Collapse
Affiliation(s)
- Manal J Natto
- Division of Infection and Immunity, Institute of Biomedical and Life Sciences, University of Glasgow, Joseph Black Building, Glasgow G12 8QQ, UK
| | | | | | | | | | | |
Collapse
|