51
|
Abstract
Small cis-acting ribozymes have been converted into trans-acting ribozymes possessing the ability to cleave RNA substrates. The Hepatitis Delta Virus (HDV) ribozyme is one of the rare examples of these that is derived from an RNA species that is found in human cells. Consequently, it possesses the natural ability to function in the presence of human proteins in addition to an outstanding stability in human cells, two significant advantages in its use. The development of an additional specific on/off adaptor (SOFA) has led to the production of a new generation of HDV ribozymes with improved specificities that provide a tool with significant potential for future development in the fields of both functional genomics and gene -therapy. SOFA-HDV ribozyme-based gene inactivation systems have been reported in both prokaryotic and eukaryotic cells. Here, a step-by-step approach for the efficient design of highly specific SOFA-HDV ribozymes with a minimum investment of time and effort is described.
Collapse
Affiliation(s)
- Michel V Lévesque
- Département de Biochimie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
52
|
Holz CL, Albina E, Minet C, Lancelot R, Kwiatek O, Libeau G, Servan de Almeida R. RNA interference against animal viruses: how morbilliviruses generate extended diversity to escape small interfering RNA control. J Virol 2012; 86:786-95. [PMID: 22072768 PMCID: PMC3255857 DOI: 10.1128/jvi.06210-11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 10/26/2011] [Indexed: 11/20/2022] Open
Abstract
Viruses are serious threats to human and animal health. Vaccines can prevent viral diseases, but few antiviral treatments are available to control evolving infections. Among new antiviral therapies, RNA interference (RNAi) has been the focus of intensive research. However, along with the development of efficient RNAi-based therapeutics comes the risk of emergence of resistant viruses. In this study, we challenged the in vitro propensity of a morbillivirus (peste des petits ruminants virus), a stable RNA virus, to escape the inhibition conferred by single or multiple small interfering RNAs (siRNAs) against conserved regions of the N gene. Except with the combination of three different siRNAs, the virus systematically escaped RNAi after 3 to 20 consecutive passages. The genetic modifications involved consisted of single or multiple point nucleotide mutations and a deletion of a stretch of six nucleotides, illustrating that this virus has an unusual genomic malleability.
Collapse
|
53
|
Shah PS, Schaffer DV. Antiviral RNAi: translating science towards therapeutic success. Pharm Res 2011; 28:2966-82. [PMID: 21826573 PMCID: PMC5012899 DOI: 10.1007/s11095-011-0549-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Accepted: 07/25/2011] [Indexed: 01/07/2023]
Abstract
Viruses continuously evolve to contend with an ever-changing environment that involves transmission between hosts and sometimes species, immune responses, and in some cases therapeutic interventions. Given the high mutation rate of viruses relative to the timescales of host evolution and drug development, novel drug classes that are readily screened and translated to the clinic are needed. RNA interference (RNAi)-a natural mechanism for specific degradation of target RNAs that is conserved from plants to invertebrates and vertebrates-can potentially be harnessed to yield therapies with extensive specificity, ease of design, and broad application. In this review, we discuss basic mechanisms of action and therapeutic applications of RNAi, including design considerations and areas for future development in the field.
Collapse
Affiliation(s)
- Priya S. Shah
- Department of Chemical and Biolmolecular Engineering, University of California, Berkeley, California 94720 USA
| | - David V. Schaffer
- Department of Chemical and Biolmolecular Engineering, University of California, Berkeley, California 94720 USA
- Department of Bioengineering, University of California, Berkeley, California 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720 USA
| |
Collapse
|
54
|
Directed HIV-1 evolution of protease inhibitor resistance by second-generation short hairpin RNAs. Antimicrob Agents Chemother 2011; 56:479-86. [PMID: 22064528 DOI: 10.1128/aac.05491-11] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Despite the success of antiretroviral drugs in decreasing AIDS-related mortality, a substantial fraction of HIV-infected patients experience therapy failure due to the emergence of drug-resistant virus variants. For durable inhibition of HIV-1 replication, the emergence of such escape viruses must be controlled. In addition to antiretroviral drugs, RNA interference (RNAi)-based gene therapy can be used to inhibit HIV-1 replication by targeting the viral RNA genome. RNAi is an evolutionary conserved gene silencing mechanism that mediates the sequence-specific breakdown of the targeted mRNA. Here we investigated an alternative strategy combining the activity of a protease inhibitor (PI) with second-generation short hairpin RNAs (shRNAs) designed to specifically block the emergence of PI-resistant HIV-1 variants. We demonstrate that dominant viral escape routes can be effectively blocked by second-generation shRNAs and that virus evolution can be redirected toward less-fit variants. These results are of importance for a deeper understanding of HIV-1 evolution under combined drug and RNAi pressure and may be used to design future therapeutic approaches.
Collapse
|
55
|
Kumar A, Silverstein PS. New approaches to the inhibition of replication of viral pathogens. Expert Rev Anti Infect Ther 2011; 9:975-7. [PMID: 22029515 DOI: 10.1586/eri.11.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This meeting was a special symposium sponsored by the American Society for Biochemistry and Molecular Biology. The conference was held in Gangzhou, China on 24-26 July 2011 and shared a venue with the Society of Chinese Bioscientists in America Thirteenth International Symposium. Over 150 participants from the Americas, Europe, Asia and Australia attended the meeting. This article focuses on two areas of research in which there have been exciting developments that have application to the development of antivirals: the regulation of host and viral mRNA by RNAi and NF-κB regulation of viral gene expression.
Collapse
Affiliation(s)
- Anil Kumar
- Division of Pharmacology and Toxicology, UMKC-School of Pharmacy, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| | | |
Collapse
|
56
|
Fechner H, Pinkert S, Geisler A, Poller W, Kurreck J. Pharmacological and biological antiviral therapeutics for cardiac coxsackievirus infections. Molecules 2011; 16:8475-503. [PMID: 21989310 PMCID: PMC6264230 DOI: 10.3390/molecules16108475] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 09/29/2011] [Accepted: 09/30/2011] [Indexed: 01/16/2023] Open
Abstract
Subtype B coxsackieviruses (CVB) represent the most commonly identified infectious agents associated with acute and chronic myocarditis, with CVB3 being the most common variant. Damage to the heart is induced both directly by virally mediated cell destruction and indirectly due to the immune and autoimmune processes reacting to virus infection. This review addresses antiviral therapeutics for cardiac coxsackievirus infections discovered over the last 25 years. One group represents pharmacologically active low molecular weight substances that inhibit virus uptake by binding to the virus capsid (e.g., pleconaril) or inactivate viral proteins (e.g., NO-metoprolol and ribavirin) or inhibit cellular proteins which are essential for viral replication (e.g., ubiquitination inhibitors). A second important group of substances are interferons. They have antiviral but also immunomodulating activities. The third and most recently discovered group includes biological and cellular therapeutics. Soluble receptor analogues (e.g., sCAR-Fc) bind to the virus capsid and block virus uptake. Small interfering RNAs, short hairpin RNAs and antisense oligonucleotides bind to and led to degradation of the viral RNA genome or cellular RNAs, thereby preventing their translation and viral replication. Most recently mesenchymal stem cell transplantation has been shown to possess antiviral activity in CVB3 infections. Taken together, a number of antiviral therapeutics has been developed for the treatment of myocardial CVB infection in recent years. In addition to low molecular weight inhibitors, biological therapeutics have become promising anti-viral agents.
Collapse
Affiliation(s)
- Henry Fechner
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
- Author to whom correspondence should be addressed; ; Tel.: +49-30-31472181; Fax: +49-30-31427502
| | - Sandra Pinkert
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
| | - Anja Geisler
- Department of Cardiology & Pneumology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; (A.G.); wolfgang.poller@charite (W.P.)
| | - Wolfgang Poller
- Department of Cardiology & Pneumology, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Hindenburgdamm 30, 12200 Berlin, Germany; (A.G.); wolfgang.poller@charite (W.P.)
| | - Jens Kurreck
- Department of Applied Biochemistry, Institute of Biotechnology, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany; (S.P.); (J.K.)
| |
Collapse
|
57
|
Lafforgue G, Martínez F, Sardanyés J, de la Iglesia F, Niu QW, Lin SS, Solé RV, Chua NH, Daròs JA, Elena SF. Tempo and mode of plant RNA virus escape from RNA interference-mediated resistance. J Virol 2011; 85:9686-95. [PMID: 21775453 PMCID: PMC3196453 DOI: 10.1128/jvi.05326-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 07/12/2011] [Indexed: 12/21/2022] Open
Abstract
A biotechnological application of artificial microRNAs (amiRs) is the generation of plants that are resistant to virus infection. This resistance has proven to be highly effective and sequence specific. However, before these transgenic plants can be deployed in the field, it is important to evaluate the likelihood of the emergence of resistance-breaking mutants. Two issues are of particular interest: (i) whether such mutants can arise in nontransgenic plants that may act as reservoirs and (ii) whether a suboptimal expression level of the transgene, resulting in subinhibitory concentrations of the amiR, would favor the emergence of escape mutants. To address the first issue, we experimentally evolved independent lineages of Turnip mosaic virus (TuMV) (family Potyviridae) in fully susceptible wild-type Arabidopsis thaliana plants and then simulated the spillover of the evolving virus to fully resistant A. thaliana transgenic plants. To address the second issue, the evolution phase took place with transgenic plants that expressed the amiR at subinhibitory concentrations. Our results show that TuMV populations replicating in susceptible hosts accumulated resistance-breaking alleles that resulted in the overcoming of the resistance of fully resistant plants. The rate at which resistance was broken was 7 times higher for TuMV populations that experienced subinhibitory concentrations of the antiviral amiR. A molecular characterization of escape alleles showed that they all contained at least one nucleotide substitution in the target sequence, generally a transition of the G-to-A and C-to-U types, with many instances of convergent molecular evolution. To better understand the viral population dynamics taking place within each host, as well as to evaluate relevant population genetic parameters, we performed in silico simulations of the experiments. Together, our results contribute to the rational management of amiR-based antiviral resistance in plants.
Collapse
Affiliation(s)
- Guillaume Lafforgue
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Fernando Martínez
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Josep Sardanyés
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Francisca de la Iglesia
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Qi-Wen Niu
- Laboratory of Plant Biology, Rockefeller University, New York, New York
| | - Shih-Shun Lin
- Laboratory of Plant Biology, Rockefeller University, New York, New York
| | - Ricard V. Solé
- Complex Systems Laboratory, ICREA-Universitat Pompeu Fabra, Barcelona, Spain
- Instituto de Biología Evolutiva, Universitat Pompeu Fabra-Consejo Superior de Investigaciones Científicas, Barcelona, Spain
- The Santa Fe Institute, Santa Fe, New Mexico
| | - Nam-Hai Chua
- Laboratory of Plant Biology, Rockefeller University, New York, New York
| | - José-Antonio Daròs
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas-Universitat Politècnica de València, València, Spain
- The Santa Fe Institute, Santa Fe, New Mexico
| |
Collapse
|
58
|
Nevot M, Martrus G, Clotet B, Martínez MA. RNA interference as a tool for exploring HIV-1 robustness. J Mol Biol 2011; 413:84-96. [PMID: 21875599 DOI: 10.1016/j.jmb.2011.08.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 08/10/2011] [Accepted: 08/16/2011] [Indexed: 01/17/2023]
Abstract
Short interfering RNAs (siRNAs) that target viral genes can efficiently inhibit human immunodeficiency virus type 1 (HIV-1) replication. Nevertheless, there is the potential for viral escape, particularly with a highly mutable target such as HIV-1. We present a novel strategy for anticipating and preventing viral escape using second-generation siRNAs. The evolutionary capacity of HIV-1 was tested by exerting strong selective pressure on a highly conserved sequence in the HIV-1 genome. We assayed the antiviral efficacy of five overlapping siRNAs directed against an essential region of the HIV-1 protease. Serial viral transfers in U87-CD4-CXCR4 cells were performed using four of the siRNAs. This procedure was repeated until virus breakthrough was detected. After several serial culture passages, resistant virus with a single point mutation in the targeted region was detected in the culture supernatants. The emergence of resistant virus was confirmed by molecular cloning and DNA sequencing of viral RNA. The most common escape route was the D30N mutation. Importantly, the addition of a second-generation siRNA that matched the D30N mutation restored viral inhibition and delayed development of escape variants. Passages performed with both siRNAs prevented the emergence of the D30N escape mutant and forced the virus to develop new escape routes. Thus, second-generation siRNAs can be used to block escape from RNA interference (RNAi) and to search for new RNAi escape routes. The protocol described here may be useful for exploring the sequence space available for HIV-1 evolution and for producing attenuated or deleterious viruses.
Collapse
Affiliation(s)
- Maria Nevot
- Fundació irsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autonoma de Barcelona, 08916 Badalona, Spain
| | | | | | | |
Collapse
|
59
|
Mcintyre GJ, Arndt AJ, Gillespie KM, Mak WM, Fanning GC. A comparison of multiple shRNA expression methods for combinatorial RNAi. GENETIC VACCINES AND THERAPY 2011; 9:9. [PMID: 21496330 PMCID: PMC3098768 DOI: 10.1186/1479-0556-9-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 04/17/2011] [Indexed: 01/09/2023]
Abstract
RNAi gene therapies for HIV-1 will likely need to employ multiple shRNAs to counter resistant strains. We evaluated 3 shRNA co-expression methods to determine their suitability for present use; multiple expression vectors, multiple expression cassettes and single transcripts comprised of several dsRNA units (aka domains) with each being designed to a different target. Though the multiple vector strategy was effective with 2 shRNAs, the increasing number of vectors required is a major shortcoming. With single transcript configurations we only saw adequate activity from 1 of 10 variants tested, the variants being comprised of 2 - 3 different target domains. Whilst single transcript configurations have the most advantages on paper, these configurations can not yet be rapidly and reliably re-configured for new targets. However, our multiple cassette combinations of 2, 3 and 4 (29 bp) shRNAs were all successful, with suitable activity maintained in all positions and net activities comparable to that of the corresponding single shRNAs. We conclude that the multiple cassette strategy is the most suitably developed for present use as it is easy to design, assemble, is directly compatible with pre-existing shRNA and can be easily expanded.
Collapse
Affiliation(s)
- Glen J Mcintyre
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Allison J Arndt
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Kirsten M Gillespie
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Wendy M Mak
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
| | - Gregory C Fanning
- Johnson and Johnson Research Pty Ltd, Level 4 Biomedical Building, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 1430, Australia
- Tibotec BVBA, Gen De Wittelaan L 11 B3, 2800 Mechelen, Belgium
| |
Collapse
|
60
|
Berkhout B, Sanders RW. Molecular strategies to design an escape-proof antiviral therapy. Antiviral Res 2011; 92:7-14. [PMID: 21513746 DOI: 10.1016/j.antiviral.2011.04.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 03/21/2011] [Accepted: 04/04/2011] [Indexed: 02/06/2023]
Abstract
Two antiviral approaches against the human immunodeficiency virus type 1 (HIV-1) were presented at the Antivirals Congress in Amsterdam. The common theme among these two separate therapeutic research lines is the wish to develop a durable therapy that prevents viral escape. We will present a brief overview of these two research lines and focus on our efforts to design an escape-proof anti-HIV therapy. The first topic concerns the class of HIV-1 fusion inhibitors, including the prototype T20 peptide and the improved versions T1249 and T2635, which were all developed by Trimeris-Roche. The selection of T20-resistant HIV-1 strains is a fairly easy evolutionary process that requires a single amino acid substitution in the peptide binding site of the viral envelope glycoprotein (Env) target. The selection of T1249-resistant HIV-1 strains was shown to require a more dramatic amino acid substitution in the viral Env protein, in particular the introduction of charged amino acid residues that cause resistance by charge-repulsion of the antiviral peptide. The third generation peptide T2635 remains active against all these HIV-1 escape variants because the charged residues within this peptide are "masked" by an introduced intra-helical salt bridge. This charge masking concept could facilitate the future design of escape-proof antiviral peptides. The second topic concerns the mechanism of RNA interference (RNAi) that we are currently employing to develop an antiviral gene therapy. One can make human T cells resistant to HIV-1 infection by a stable RNAi-inducing gene transfer, but the virus escapes under therapeutic pressure of a single inhibitor. Several options for a combinatorial RNAi attack to prevent viral escape will be discussed. The simultaneous use of multiple RNAi inhibitors turns out to be the most effective and durable strategy.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | |
Collapse
|
61
|
Silencing early viral replication in macrophages and dendritic cells effectively suppresses flavivirus encephalitis. PLoS One 2011; 6:e17889. [PMID: 21423625 PMCID: PMC3057999 DOI: 10.1371/journal.pone.0017889] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Accepted: 02/15/2011] [Indexed: 02/06/2023] Open
Abstract
West Nile (WN) and St. Louis encephalitis (SLE) viruses can cause fatal
neurological infection and currently there is neither a specific treatment nor
an approved vaccine for these infections. In our earlier studies, we have
reported that siRNAs can be developed as broad-spectrum antivirals for the
treatment of infection caused by related viruses and that a small peptide called
RVG-9R can deliver siRNA to neuronal cells as well as macrophages. To increase
the repertoire of broad-spectrum antiflaviviral siRNAs, we screened 25 siRNAs
targeting conserved regions in the viral genome. Five siRNAs were found to
inhibit both WNV and SLE replication in vitro reflecting broad-spectrum
antiviral activity and one of these was also validated in vivo. In addition, we
also show that RVG-9R delivers siRNA to macrophages and dendritic cells,
resulting in effective suppression of virus replication. Mice were challenged
intraperitoneally (i.p.) with West Nile virus (WNV) and treated i.v. with
siRNA/peptide complex. The peritoneal macrophages isolated on day 3 post
infection were isolated and transferred to new hosts. Mice receiving macrophages
from the anti-viral siRNA treated mice failed to develop any disease while the
control mice transferred with irrelevant siRNA treated mice all died of
encephalitis. These studies suggest that early suppression of viral replication
in macrophages and dendritic cells by RVG-9R-mediated siRNA delivery is key to
preventing the development of a fatal neurological disease.
Collapse
|
62
|
Dutta S, Bhaduri N, Rastogi N, Chandel SG, Vandavasi JK, Upadhayaya RS, Chattopadhyaya J. Carba-LNA modified siRNAs targeting HIV-1 TAR region downregulate HIV-1 replication successfully with enhanced potency. MEDCHEMCOMM 2011. [DOI: 10.1039/c0md00225a] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
63
|
Toward a durable treatment of HIV-1 infection using RNA interference. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 102:141-63. [PMID: 21846571 DOI: 10.1016/b978-0-12-415795-8.00001-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism that mediates sequence-specific gene silencing at the posttranscriptional level. RNAi can be used as an antiviral approach against human pathogens. An attractive target for RNAi therapeutics is the human immunodeficiency virus type 1 (HIV-1), and the first clinical trial using a lentiviral gene therapy was initiated in early 2008. In this chapter, we focus on some basic principles of such an RNAi-based gene therapy against HIV-1. This includes the subjects of target site selection within the viral RNA genome, the phenomenon of viral escape, and therapeutic strategies to prevent viral escape. The latter antiescape strategies include diverse combinatorial RNAi approaches that are all directed against the HIV-1 RNA genome. As an alternative strategy, we also discuss the possibilities and restrictions of targeting cellular cofactors that are essential for virus replication, but less important for cell physiology.
Collapse
|
64
|
Sugiyama R, Hayafune M, Habu Y, Yamamoto N, Takaku H. HIV-1 RT-dependent DNAzyme expression inhibits HIV-1 replication without the emergence of escape viruses. Nucleic Acids Res 2011; 39:589-98. [PMID: 20833635 PMCID: PMC3025543 DOI: 10.1093/nar/gkq794] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 08/18/2010] [Accepted: 08/23/2010] [Indexed: 12/12/2022] Open
Abstract
DNAzymes are easier to prepare and less sensitive to chemical and enzymatic degradation than ribozymes; however, a DNA enzyme expression system has not yet been developed. In this study, we exploited the mechanism of HIV-1 reverse transcription (RT) in a DNA enzyme expression system. We constructed HIV-1 RT-dependent lentiviral DNAzyme expression vectors including the HIV-1 primer binding site, the DNA enzyme, and either a native tRNA (Lys-3), tR(M)DtR(L), or one of two truncated tRNAs (Lys-3), tR(M)DΔARMtR(L) or tR(M)D3'-endtR(L). Lentiviral vector-mediated DNAzyme expression showed high levels of inhibition of HIV-1 replication in SupT1 cells. We also demonstrated the usefulness of this approach in a long-term assay, in which we found that the DNAzymes prevented escape from inhibition of HIV. These results suggest that HIV-1 RT-dependent lentiviral vector-derived DNAzymes prevent the emergence of escape mutations.
Collapse
Affiliation(s)
- Ryuichi Sugiyama
- Department of Life and Environmental Science, High Technology Research Center, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan, Department of Microbiology, Immunology and Pathology 1619 Campus Delivery, Colorado State University, Fort Collins, CO 80523-161, USA and Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Masaaki Hayafune
- Department of Life and Environmental Science, High Technology Research Center, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan, Department of Microbiology, Immunology and Pathology 1619 Campus Delivery, Colorado State University, Fort Collins, CO 80523-161, USA and Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Yuichiro Habu
- Department of Life and Environmental Science, High Technology Research Center, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan, Department of Microbiology, Immunology and Pathology 1619 Campus Delivery, Colorado State University, Fort Collins, CO 80523-161, USA and Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Norio Yamamoto
- Department of Life and Environmental Science, High Technology Research Center, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan, Department of Microbiology, Immunology and Pathology 1619 Campus Delivery, Colorado State University, Fort Collins, CO 80523-161, USA and Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Musashimurayama-shi, Tokyo 208-0011, Japan
| | - Hiroshi Takaku
- Department of Life and Environmental Science, High Technology Research Center, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino-shi, Chiba 275-0016, Japan, Department of Microbiology, Immunology and Pathology 1619 Campus Delivery, Colorado State University, Fort Collins, CO 80523-161, USA and Influenza Virus Research Center, National Institute of Infectious Diseases, 4-7-1 Musashimurayama-shi, Tokyo 208-0011, Japan
| |
Collapse
|
65
|
Méndez-Ortega MC, Restrepo S, Rodríguez-R LM, Pérez I, Mendoza JC, Martínez AP, Sierra R, Rey-Benito GJ. An RNAi in silico approach to find an optimal shRNA cocktail against HIV-1. Virol J 2010; 7:369. [PMID: 21172023 PMCID: PMC3022682 DOI: 10.1186/1743-422x-7-369] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 12/20/2010] [Indexed: 12/25/2022] Open
Abstract
Background HIV-1 can be inhibited by RNA interference in vitro through the expression of short hairpin RNAs (shRNAs) that target conserved genome sequences. In silico shRNA design for HIV has lacked a detailed study of virus variability constituting a possible breaking point in a clinical setting. We designed shRNAs against HIV-1 considering the variability observed in naïve and drug-resistant isolates available at public databases. Methods A Bioperl-based algorithm was developed to automatically scan multiple sequence alignments of HIV, while evaluating the possibility of identifying dominant and subdominant viral variants that could be used as efficient silencing molecules. Student t-test and Bonferroni Dunn correction test were used to assess statistical significance of our findings. Results Our in silico approach identified the most common viral variants within highly conserved genome regions, with a calculated free energy of ≥ -6.6 kcal/mol. This is crucial for strand loading to RISC complex and for a predicted silencing efficiency score, which could be used in combination for achieving over 90% silencing. Resistant and naïve isolate variability revealed that the most frequent shRNA per region targets a maximum of 85% of viral sequences. Adding more divergent sequences maintained this percentage. Specific sequence features that have been found to be related with higher silencing efficiency were hardly accomplished in conserved regions, even when lower entropy values correlated with better scores. We identified a conserved region among most HIV-1 genomes, which meets as many sequence features for efficient silencing. Conclusions HIV-1 variability is an obstacle to achieving absolute silencing using shRNAs designed against a consensus sequence, mainly because there are many functional viral variants. Our shRNA cocktail could be truly effective at silencing dominant and subdominant naïve viral variants. Additionally, resistant isolates might be targeted under specific antiretroviral selective pressure, but in both cases these should be tested exhaustively prior to clinical use.
Collapse
Affiliation(s)
- María C Méndez-Ortega
- Grupo de Virología SRNL, Instituto Nacional de Salud, Avenida Calle 26 No, 51 - 20 ZONA 6 CAN, Bogotá, Colombia.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Eekels JJM, Geerts D, Jeeninga RE, Berkhout B. Long-term inhibition of HIV-1 replication with RNA interference against cellular co-factors. Antiviral Res 2010; 89:43-53. [PMID: 21093490 DOI: 10.1016/j.antiviral.2010.11.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2010] [Revised: 11/04/2010] [Accepted: 11/08/2010] [Indexed: 12/12/2022]
Abstract
In this study we tested whether HIV-1 replication could be inhibited by stable RNAi-mediated knockdown of cellular co-factors. Cell lines capable of expressing shRNAs against 30 candidate co-factors implicated at different steps of the viral replication cycle were generated and analyzed for effects on cell viability and inhibition of HIV-1 replication. For half of these candidate co-factors we obtained knockdown cell lines that are less susceptible to virus replication. For three co-factors (ALIX, ATG16 and TRBP) the cell lines were resistant to HIV-1 replication for up to 2 months. With these cells we could test the hypothesis that HIV-1 is not able to escape from RNAi-mediated suppression of cellular co-factors, which was indeed not detected.
Collapse
Affiliation(s)
- Julia J M Eekels
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center of University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
67
|
Pongratz C, Yazdanpanah B, Kashkar H, Lehmann MJ, Kräusslich HG, Krönke M. Selection of potent non-toxic inhibitory sequences from a randomized HIV-1 specific lentiviral short hairpin RNA library. PLoS One 2010; 5:e13172. [PMID: 20949027 PMCID: PMC2951894 DOI: 10.1371/journal.pone.0013172] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Accepted: 09/08/2010] [Indexed: 12/30/2022] Open
Abstract
RNA interference (RNAi) has been considered as an efficient therapeutic approach against the human immunodeficiency virus type 1 (HIV-1). However, to establish a durable inhibition of HIV-1, multiple effective short hairpin RNAs (shRNAs) need to be stably expressed to prevent the emergence of viral escape variants. In this study, we engineered a randomized lentiviral H1-promoter driven shRNA-library against the viral genome. Potent HIV-1 specific shRNAs were selected by ganciclovir treatment of cell lines stably expressing the cDNA of Herpes Simplex Virus thymidine kinase (HSV-TK) fused to HIV-1 nucleotide sequences. More than 50% of 200 selected shRNAs inhibited an HIV-1 based luciferase reporter assay by more than 70%. Stable expression of some of those shRNAs in an HIV-1 permissive HeLa cell line inhibited infection of wild-type HIV-1 by more than 90%. The combination of a randomized shRNA-library directed against HIV-1 with a live cell selection procedure yielded non-toxic and highly efficient HIV-1 specific inhibitory sequences that could serve as valuable candidates for gene therapy studies.
Collapse
Affiliation(s)
- Carola Pongratz
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) at the Institute for Genetics, University of Cologne, Cologne, Germany
| | - Benjamin Yazdanpanah
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
- Center for Molecular Medicine at the University of Cologne, Cologne, Germany
- * E-mail:
| | - Hamid Kashkar
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) at the Institute for Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine at the University of Cologne, Cologne, Germany
| | - Maik J. Lehmann
- Department of Virology, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Martin Krönke
- Institute for Medical Microbiology, Immunology and Hygiene, University Hospital Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases (CECAD) at the Institute for Genetics, University of Cologne, Cologne, Germany
- Center for Molecular Medicine at the University of Cologne, Cologne, Germany
| |
Collapse
|
68
|
Lares MR, Rossi JJ, Ouellet DL. RNAi and small interfering RNAs in human disease therapeutic applications. Trends Biotechnol 2010; 28:570-9. [PMID: 20833440 DOI: 10.1016/j.tibtech.2010.07.009] [Citation(s) in RCA: 211] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2010] [Revised: 07/09/2010] [Accepted: 07/22/2010] [Indexed: 12/11/2022]
Abstract
Small interfering RNAs (siRNAs) have been shown to effectively downregulate gene expression in human cells, giving them potential to eradicate disease. Prospects for clinical applications are discussed in this review, along with an overview of recent history and our current understanding of siRNAs used for therapeutic application in human diseases, such as cancer and viral infections. Over recent years, progress has been made in lipids, ligands, nanoparticles, polymers and viral vectors as delivery agents and for gene-based expression of siRNA to enhance the efficacy and specificity of these methods while at the same time reducing toxicity. It has become apparent that given the recent advances in chemistry and delivery, RNAi will soon prove to be an important and widely used therapeutic modality.
Collapse
Affiliation(s)
- Monica R Lares
- Department of Molecular and Cellular Biology, Beckman Institute at City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA
| | | | | |
Collapse
|
69
|
Das AT, Berkhout B. HIV-1 evolution: frustrating therapies, but disclosing molecular mechanisms. Philos Trans R Soc Lond B Biol Sci 2010; 365:1965-73. [PMID: 20478891 PMCID: PMC2880118 DOI: 10.1098/rstb.2010.0072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Replication of HIV-1 under selective pressure frequently results in the evolution of virus variants that replicate more efficiently under the applied conditions. For example, in patients on antiretroviral therapy, such evolution can result in variants that are resistant to the HIV-1 inhibitors, thus frustrating the therapy. On the other hand, virus evolution can help us to understand the molecular mechanisms that underlie HIV-1 replication. For example, evolution of a defective virus mutant can result in variants that overcome the introduced defect by restoration of the original sequence or by the introduction of additional mutations in the viral genome. Analysis of the evolution pathway can reveal the requirements of the element under study and help to understand its function. Analysis of the escape routes may generate new insight in the viral life cycle and result in the identification of unexpected biological mechanisms. We have developed in vitro HIV-1 evolution into a systematic research tool that allows the study of different aspects of the viral replication cycle. We will briefly review this method of forced virus evolution and provide several examples that illustrate the power of this approach.
Collapse
Affiliation(s)
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
70
|
Schopman NCT, ter Brake O, Berkhout B. Anticipating and blocking HIV-1 escape by second generation antiviral shRNAs. Retrovirology 2010; 7:52. [PMID: 20529316 PMCID: PMC2898777 DOI: 10.1186/1742-4690-7-52] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2010] [Accepted: 06/08/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND RNA interference (RNAi) is an evolutionary conserved gene silencing mechanism that mediates the sequence-specific breakdown of target mRNAs. RNAi can be used to inhibit HIV-1 replication by targeting the viral RNA genome. However, the error-prone replication machinery of HIV-1 can generate RNAi-resistant variants with specific mutations in the target sequence. For durable inhibition of HIV-1 replication the emergence of such escape viruses must be controlled. Here we present a strategy that anticipates HIV-1 escape by designing 2nd generation short hairpin RNAs (shRNAs) that form a complete match with the viral escape sequences. RESULTS To block the two favorite viral escape routes observed when the HIV-1 integrase gene sequence is targeted, the original shRNA inhibitor was combined with two 2nd generation shRNAs in a single lentiviral expression vector. We demonstrate in long-term viral challenge experiments that the two dominant viral escape routes were effectively blocked. Eventually, virus breakthrough did however occur, but HIV-1 evolution was skewed and forced to use new escape routes. CONCLUSION These results demonstrate the power of the 2nd generation RNAi concept. Popular viral escape routes are blocked by the 2nd generation RNAi strategy. As a consequence viral evolution was skewed leading to new escape routes. These results are of importance for a deeper understanding of HIV-1 evolution under RNAi pressure.
Collapse
Affiliation(s)
- Nick CT Schopman
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Olivier ter Brake
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
71
|
Sun D, Rösler C, Kidd-Ljunggren K, Nassal M. Quantitative assessment of the antiviral potencies of 21 shRNA vectors targeting conserved, including structured, hepatitis B virus sites. J Hepatol 2010; 52:817-26. [PMID: 20400195 DOI: 10.1016/j.jhep.2009.10.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS RNA interference (RNAi) may offer new treatment options for chronic hepatitis B. Replicating via an RNA intermediate, hepatitis B virus (HBV) is known to be principally vulnerable to RNAi. However, beyond delivery, the relevant issues of potential off-target effects, target site conservation in circulating HBV strains, and efficacy of RNAi itself have not systematically been addressed, nor can the different existing data be quantitatively compared. The aim of this study was to provide such information. METHODS To focus on the intracellular RNAi process itself and minimise other variables affecting overall RNAi efficacy, we used a robust co-transfection system to quantitatively assess the relative potencies of 21 small-hairpin (sh) RNA vectors, targeting conserved sites throughout the HBV genome, against viral RNAs, proteins, nucleocapsids, and secreted virions under standardised conditions. RESULTS The approach enabled a distinct efficacy ranking, with the six most potent shRNAs achieving 95% reductions in virion formation, sequence-specifically and without detectable interferon induction, yet by differentially affecting different steps. Efficacy correlated poorly with predictions and was not principally abolished by target structure. Sequence comparisons suggest that truly conserved, RNAi-targetable sequences comprise less than 500 nucleotides of the circulating HBV genomes. CONCLUSIONS The HBV genome can harbour only a finite number of optimal target sites, but current predictions are poorly suited to constrain the number of possible candidates. However, the small size of the highly conserved sequence space suggests experimental identification as a viable option.
Collapse
Affiliation(s)
- Dianxing Sun
- Bethune International Peace Hospital, Departmrnt of Liver Disease, 398 West Zhongshan Road, 050082 Shijiazhuang, PR China
| | | | | | | |
Collapse
|
72
|
Rohayem J, Bergmann M, Gebhardt J, Gould E, Tucker P, Mattevi A, Unge T, Hilgenfeld R, Neyts J. Antiviral strategies to control calicivirus infections. Antiviral Res 2010; 87:162-78. [PMID: 20471996 PMCID: PMC7114105 DOI: 10.1016/j.antiviral.2010.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 05/01/2010] [Accepted: 05/04/2010] [Indexed: 11/29/2022]
Abstract
Caliciviridae are human or non-human pathogenic viruses with a high diversity. Some members of the Caliciviridae, i.e. human pathogenic norovirus or rabbit hemorrhagic disease virus (RHDV), are worldwide emerging pathogens. The norovirus is the major cause of viral gastroenteritis worldwide, accounting for about 85% of the outbreaks in Europe between 1995 and 2000. In the United States, 25 million cases of infection are reported each year. Since its emergence in 1984 as an agent of fatal hemorrhagic diseases in rabbits, RHDV has killed millions of rabbits and has been dispersed to all of the inhabitable continents. In view of their successful and apparently increasing emergence, the development of antiviral strategies to control infections due to these viral pathogens has now become an important issue in medicine and veterinary medicine. Antiviral strategies have to be based on an understanding of the epidemiology, transmission, clinical symptoms, viral replication and immunity to infection resulting from infection by these viruses. Here, we provide an overview of the mechanisms underlying calicivirus infection, focusing on the molecular aspects of replication in the host cell. Recent experimental data generated through an international collaboration on structural biology, virology and drug design within the European consortium VIZIER is also presented. Based on this analysis, we propose antiviral strategies that may significantly impact on the epidemiological characteristics of these highly successful viral pathogens.
Collapse
Affiliation(s)
- Jacques Rohayem
- The Calicilab, Institute of Virology, Dresden University of Technology, Dresden, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Subramanya S, Kim SS, Manjunath N, Shankar P. RNA interference-based therapeutics for human immunodeficiency virus HIV-1 treatment: synthetic siRNA or vector-based shRNA? Expert Opin Biol Ther 2010; 10:201-13. [PMID: 20088715 PMCID: PMC3745298 DOI: 10.1517/14712590903448158] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE OF THE FIELD Despite the clinical benefits of highly active antiretroviral therapy (HAART), the prospect of life-long antiretroviral treatment poses significant problems, which has spurred interest in developing new drugs and strategies to treat HIV infection and eliminate persistent viral reservoirs. RNAi has emerged as a therapeutic possibility for HIV. AREAS COVERED IN THIS REVIEW We discuss progress in overcoming hurdles to translating transient and stable RNAi enabling technologies to clinical application for HIV; covering the past 2 - 3 years. WHAT THE READER WILL GAIN HIV inhibition can be achieved by transfection of chemically or enzymatically synthesized siRNAs or by DNA-based vector systems expressing short hairpin RNAs (shRNAs) that are processed intracellularly into siRNA. We compare these approaches, focusing on technical and safety issues that will guide the choice of strategy for clinical use. TAKE HOME MESSAGE Introduction of synthetic siRNA into cells or its stable endogenous production using vector-driven shRNA have been shown to suppress HIV replication in vitro and, in some instances, in vivo. Each method has advantages and limitations in terms of ease of delivery, duration of silencing, emergence of escape mutants and potential toxicity. Both appear to have potential as future therapeutics for HIV, once the technical and safety issues of each approach are overcome.
Collapse
Affiliation(s)
- Sandesh Subramanya
- Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Sang-Soo Kim
- Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - N Manjunath
- Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| | - Premlata Shankar
- Department of Biomedical Sciences, Center of Excellence for Infectious Diseases, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, TX 79905
| |
Collapse
|
74
|
RNAi as a new therapeutic strategy against HCV. Biotechnol Adv 2010; 28:27-34. [PMID: 19729057 DOI: 10.1016/j.biotechadv.2009.08.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 12/23/2022]
Abstract
Hepatitis C virus is a major cause of liver associated diseases all over the world. Irrespective of the significant advances in the current therapy, drugs and vaccines are restricted with many factors such as toxicity, complexity, cost and resistance. New technologies particularly RNA interference (RNAi) mediated by small interfering RNA (siRNA) have become more and more interesting and effective therapeutic entities to silence pathogenic gene products associated with disease, including cancer, viral infections and autoimmune disorders. RNAi works at a posttranscriptional level by targeting mRNA as a mean for inhibiting the synthesis of the encoded protein. Several reports have indicated the efficiency and specificity of synthetic and vector based siRNAs inhibiting HCV replication. In the present review, we focused on the recent development in the potential use and issues regarding siRNA as a therapy for HCV.
Collapse
|
75
|
Isel C, Ehresmann C, Marquet R. Initiation of HIV Reverse Transcription. Viruses 2010; 2:213-243. [PMID: 21994608 PMCID: PMC3185550 DOI: 10.3390/v2010213] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 01/08/2010] [Accepted: 01/13/2010] [Indexed: 12/01/2022] Open
Abstract
Reverse transcription of retroviral genomes into double stranded DNA is a key event for viral replication. The very first stage of HIV reverse transcription, the initiation step, involves viral and cellular partners that are selectively packaged into the viral particle, leading to an RNA/protein complex with very specific structural and functional features, some of which being, in the case of HIV-1, linked to particular isolates. Recent understanding of the tight spatio-temporal regulation of reverse transcription and its importance for viral infectivity further points toward reverse transcription and potentially its initiation step as an important drug target.
Collapse
Affiliation(s)
- Catherine Isel
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +33-388-417-040; Fax: +33-388-602-218 (C.I.); E-Mail: ; Tel.: +33-388-417-054; Fax: +33-388-602-218 (R.M.)
| | | | - Roland Marquet
- Authors to whom correspondence should be addressed; E-Mail: ; Tel.: +33-388-417-040; Fax: +33-388-602-218 (C.I.); E-Mail: ; Tel.: +33-388-417-054; Fax: +33-388-602-218 (R.M.)
| |
Collapse
|
76
|
Saayman SM, Arbuthnot P, Weinberg MS. Effective Pol III-expressed long hairpin RNAs targeted to multiple unique sites of HIV-1. Methods Mol Biol 2010; 629:159-74. [PMID: 20387149 DOI: 10.1007/978-1-60761-657-3_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The RNA interference (RNAi) pathway has in recent years been exploited for the development of novel antiviral therapies. The emergence of viral escape mutants, however, is a major impediment to the use of RNAi effectors to treat highly mutable viruses such as HIV-1. A combinatorial approach is therefore required for long-term inhibition of gene expression. RNA Pol III-driven long hairpin RNA (lhRNA) duplexes can be cleaved several times by Dicer, yielding multiple functional siRNAs from a single construct. Here we describe a method for the generation of ectopically expressed U6-lhRNAs encoding three separate siRNA sequences targeting unique sites in HIV-1. This methodological overview explains some crucial aspects of lhRNA design and cloning as well as facile experiments to determine their efficacy in cell culture.
Collapse
Affiliation(s)
- Sheena M Saayman
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of the Witwatersrand Medical School, Wits, Johannesburg, South Africa
| | | | | |
Collapse
|
77
|
Abstract
While the discovery of RNA interference (RNAi) has been considered one of the most significant breakthroughs in biomedicine, its prospects for novel therapeutic applications are even more exciting. The high specificity, exquisite selectivity and chemical homogeneity of small interfering RNAs (siRNA; intermediates in RNAi activity), provide unique advantages for these moieties as multi-targeted inhibitory drugs. Many such applications have demonstrated significant benefit compared with single gene-targeted siRNA inhibitors. In this article, we will review the current status of using a multi-targeted siRNA cocktail for novel therapeutic development in the treatment of cancer and viral infections. We will also propose the characteristics of various types of siRNA cocktails and their design, while recognizing the potential future impact of and challenges facing this unique therapeutic modality.
Collapse
|
78
|
Abrahamyan A, Nagy É, Golovan SP. Human H1 promoter expressed short hairpin RNAs (shRNAs) suppress avian influenza virus replication in chicken CH-SAH and canine MDCK cells. Antiviral Res 2009; 84:159-67. [DOI: 10.1016/j.antiviral.2009.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2009] [Revised: 08/23/2009] [Accepted: 08/25/2009] [Indexed: 11/30/2022]
|
79
|
Liu YP, Gruber J, Haasnoot J, Konstantinova P, Berkhout B. RNAi-mediated inhibition of HIV-1 by targeting partially complementary viral sequences. Nucleic Acids Res 2009; 37:6194-204. [PMID: 19656954 PMCID: PMC2764431 DOI: 10.1093/nar/gkp644] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2009] [Revised: 07/17/2009] [Accepted: 07/19/2009] [Indexed: 12/27/2022] Open
Abstract
Potent antiviral RNAi can be induced by intracellular expression of short hairpin RNAs (shRNAs) and artificial microRNAs (miRNAs). Expression of shRNA and miRNA results in target mRNA degradation (perfect base pairing) or translational repression (partial base pairing). Although efficient inhibition can be obtained, error-prone viruses such as human immunodeficiency virus type 1 (HIV-1) can escape from RNAi-mediated inhibition by mutating the target sequence. Recently, artificial miRNAs have been shown to be potent RNAi inducers due to their efficient processing by the RNAi machinery. Furthermore, miRNAs may be more proficient in suppressing imperfect targets than shRNAs. In this study, we tested the knockdown efficiency of miRNAs and shRNAs against wild-type and RNAi-escape HIV-1 variants with one or two mutations in the target sequence. ShRNAs and miRNAs can significantly inhibit the production of HIV-1 variants with mutated target sequences in the open reading frame. More pronounced mutation-tolerance was measured for targets in the 3' untranslated region (3' UTR). Partially complementary sequences within the 3' UTR of the HIV-1 RNA genome efficiently act as target sites for miRNAs and shRNAs. These data suggest that targeting imperfect target sites by antiviral miRNAs or shRNAs provides an alternative RNAi approach for inhibition of pathogenic viruses.
Collapse
Affiliation(s)
| | | | | | | | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, Meibergdreef 15, Amsterdam, The Netherlands
| |
Collapse
|
80
|
Liu YP, von Eije KJ, Schopman NCT, Westerink JT, ter Brake O, Haasnoot J, Berkhout B. Combinatorial RNAi against HIV-1 using extended short hairpin RNAs. Mol Ther 2009; 17:1712-23. [PMID: 19672247 PMCID: PMC2835024 DOI: 10.1038/mt.2009.176] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2008] [Accepted: 07/06/2009] [Indexed: 12/11/2022] Open
Abstract
RNA interference (RNAi) is a widely used gene suppression tool that holds great promise as a novel antiviral approach. However, for error-prone viruses including human immunodeficiency virus type 1(HIV-1), a combinatorial approach against multiple conserved sequences is required to prevent the emergence of RNAi-resistant escape viruses. Previously, we constructed extended short hairpin RNAs (e-shRNAs) that encode two potent small interfering RNAs (siRNAs) (e2-shRNAs). We showed that a minimal hairpin stem length of 43 base pairs (bp) is needed to obtain two functional siRNAs. In this study, we elaborated on the e2-shRNA design to make e-shRNAs encoding three or four antiviral siRNAs. We demonstrate that siRNA production and the antiviral effect is optimal for e3-shRNA of 66 bp. Further extension of the hairpin stem results in a loss of RNAi activity. The same was observed for long hairpin RNAs (lhRNAs) that target consecutive HIV-1 sequences. Importantly, we show that HIV-1 replication is durably inhibited in T cells stably transduced with a lentiviral vector containing the e3-shRNA expression cassette. These results show that e-shRNAs can be used as a combinatorial RNAi approach to target error-prone viruses.
Collapse
Affiliation(s)
- Ying Poi Liu
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
81
|
von Eije KJ, ter Brake O, Berkhout B. Stringent testing identifies highly potent and escape-proof anti-HIV short hairpin RNAs. J Gene Med 2009; 11:459-67. [PMID: 19384894 DOI: 10.1002/jgm.1329] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND RNA interference (RNAi) is a cellular mechanism that can be induced by small interfering RNAs to mediate sequence-specific gene silencing by cleavage of the targeted mRNA. RNAi can be used as an antiviral approach to silence the human immunodeficiency virus type 1 (HIV-1) through stable expression of short hairpin RNAs (shRNAs). Previously, we used a co-transfection assay in which shRNA constructs were transfected with an HIV-1 molecular clone to identify 20 shRNA inhibitors that target highly conserved HIV-1 sequences. METHODS In the present study, we selected the most potent shRNAs to formulate a combinatorial shRNA therapy and determine the best and easiest method for antiviral shRNA selection. We performed transient inhibition assays with either a luciferase reporter or HIV-1 molecular clone and also infected shRNA-expressing T cell lines with HIV-1 and monitored virus replication. The latter assay allows detection of viral escape. In addition, we also tested shRNA-expressing T cells upon challenge with increasing dosages of HIV-1, and measured the dose required to result in massive virus-induced syncytia formation in this 2-week assay. RESULTS Extended culturing selected three highly effective shRNAs that do not allow viral replication for more than 100 days. This difference in potency was not observed in the transient co-transfection assays. The use of increased dosages of HIV-1 selected the same highly potent shRNAs as the laborious and extended escape study. CONCLUSIONS These highly potent shRNAs could be used for a clinical vector and the comparison of the developed assays might help other researchers in their search for antiviral shRNAs.
Collapse
Affiliation(s)
- Karin J von Eije
- Laboratory of Experimental Virology, Department of Medical Microbiology and Centre for Infection and Immunity Amsterdam (CINIMA), Academic Medical Centre, University of Amsterdam, Amsterdam, The Netherlands
| | | | | |
Collapse
|
82
|
Abstract
Basic research in the field of molecular biology led to the discovery of the mechanism of RNA interference (RNAi) in Caenorhabditis elegans in 1998. RNAi is now widely appreciated as an important gene control mechanism in mammals, and several RNAi-based gene-silencing applications have already been used in clinical trials. In this review I will discuss RNAi approaches to inhibit the pathogenic human immunodeficiency virus type 1 (HIV-1), which establishes a chronic infection that would most likely require a durable gene therapy approach. Viruses, such as HIV-1, are particularly difficult targets for RNAi attack because they mutate frequently, which allows viral escape by mutation of the RNAi target sequence. Combinatorial RNAi strategies are required to prevent viral escape.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Academic Medical Center, University of Amsterdam, the Netherlands.
| |
Collapse
|
83
|
Manjunath N, Haoquan W, Sandesh S, Premlata S. Lentiviral delivery of short hairpin RNAs. Adv Drug Deliv Rev 2009; 61:732-45. [PMID: 19341774 PMCID: PMC2789654 DOI: 10.1016/j.addr.2009.03.004] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Accepted: 03/13/2009] [Indexed: 12/21/2022]
Abstract
In less than a decade after discovery, RNA interference-mediated gene silencing is already being tested as potential therapy in clinical trials for a number of diseases. Lentiviral vectors provide a means to express short hairpin RNA (shRNA) to induce stable and long-term gene silencing in both dividing and non-dividing cells and thus, are being intensively investigated for this purpose. However, induction of long-term shRNA expression can also cause toxicities by inducing off-target effects and interference with the endogenous micro-RNA (miRNA) pathway that regulates cellular gene expression. Recently, several advances have been made in the shRNA vector design to mimic cellular miRNA processing and to express multiplex siRNAs in a tightly regulated and reversible manner to overcome toxicities. In this review we describe some of these advances, focusing on the progress made in the development of lentiviral shRNA delivery strategies to combat viral infections.
Collapse
Affiliation(s)
- N Manjunath
- Paul L Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Wu Haoquan
- Paul L Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Subramanya Sandesh
- Paul L Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| | - Shankar Premlata
- Paul L Foster School of Medicine, Texas Tech University Health Sciences Center, El Paso, Texas 79905
| |
Collapse
|
84
|
Von Eije KJ, Berkhout B. RNA-interference-based Gene Therapy Approaches to HIV Type-1 Treatment: Tackling the Hurdles from Bench to Bedside. ACTA ACUST UNITED AC 2009; 19:221-33. [DOI: 10.1177/095632020901900602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
RNA interference (RNAi) is a cellular mechanism that can be induced by small interfering RNAs (siRNAs) to mediate sequence-specific gene silencing by cleavage of the targeted messenger RNA. RNAi can be used as an antiviral approach to silence HIV type-1 (HIV-1) through stable expression of precursors, such as short hairpin RNAs (shRNAs), which are processed into siRNAs that can elicit degradation of HIV-1 RNAs. At the beginning of 2008, the first clinical trial using a lentivirus with an RNA-based gene therapy against HIV-1 was initiated. The antiviral molecules in this gene therapy consist of three RNA effectors, one of which triggers the RNAi pathway. This review article focuses on the basic principles of an RNAi-based gene therapy against HIV-1, including delivery methods, target selection, viral escape possibilities, systems for multiplexing siRNAs to achieve a durable therapy and the in vitro and in vivo test systems to evaluate the efficacy and safety of such a therapy.
Collapse
Affiliation(s)
- Karin J Von Eije
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
85
|
Abstract
BACKGROUND RNA interference (RNAi) can be employed as a potent antiviral mechanism. OBJECTIVE To discuss RNAi approaches to target pathogenic human viruses causing acute or chronic infections, in particular RNAi gene therapy against HIV-1. METHODS A review of relevant literature. RESULTS/CONCLUSIONS The future of antiviral RNAi therapeutics is very promising. RNAi was discovered only a decade ago, and although we are still in the early days, the first clinical trials are already ongoing.
Collapse
Affiliation(s)
- Ben Berkhout
- Academic Medical Center of the University of Amsterdam, Center for Infection and Immunity Amsterdam (CINIMA), Department of Medical Microbiology, Laboratory of Experimental Virology, Amsterdam, The Netherlands.
| | | |
Collapse
|
86
|
Berkhout B. A new Houdini act: multiple routes for HIV-1 escape from RNAi-mediated inhibition. Future Microbiol 2009; 4:151-4. [DOI: 10.2217/17460913.4.2.151] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Evaluation of: Leonard JN, Shah PS, Burnett JC, Schaffer DV: HIV evades RNA interference directed at TAR by an indirect compensatory mechanism. Cell Host Microbe 4, 484–494 (2008). RNAi can be used to induce the silencing of messenger RNAs in a sequence-specific manner. Several therapeutic RNAi applications are actively being pursued, including the targeting of the RNA genome of human pathogenic viruses such as HIV-1. Viruses are able to escape from RNAi attack by mutation of the targeted sequence. In this report, Leonard and co-workers present evidence of a more indirect viral escape route by selection of up-mutations in the promoter that boosts viral gene expression. This indirect route may serve as a general viral evasion mechanism.
Collapse
Affiliation(s)
- Ben Berkhout
- Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection & Immunity Amsterdam (CINIMA), Academic Medical Center, University of Amsterdam, The Netherlands
| |
Collapse
|
87
|
Yamagishi M, Ishida T, Miyake A, Cooper DA, Kelleher AD, Suzuki K, Watanabe T. Retroviral delivery of promoter-targeted shRNA induces long-term silencing of HIV-1 transcription. Microbes Infect 2009; 11:500-8. [PMID: 19233310 DOI: 10.1016/j.micinf.2009.02.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2009] [Revised: 02/06/2009] [Accepted: 02/07/2009] [Indexed: 12/28/2022]
Abstract
We previously reported prolonged HIV-1 transcriptional gene silencing by an RNA duplex targeting a sequence located within the NF-kappaB binding motif of the HIV-1 promoter in a susceptible HeLa cell line. Here we report extremely prolonged suppression of productive HIV-1 infection in a T-cell line (Molt-4) by a retrovirally delivered short-hairpin RNA (shRNA) targeting the same region (shkappaB). Following retroviral delivery of an shRNA we established shRNA-expressing CD4(+) T-cell lines. HIV-1 gene expression was profoundly suppressed for 1 year. Results of nuclear run-on assays and HIV-1 LTR-luciferase reporter assays revealed that shkappaB acted by inhibition of HIV-1 transcription. The effect was reversed by a histone deacetylase inhibitor, trichostatin-A (TSA), but not by a DNA methyltransferase inhibitor, 5-azacytidine (5-AzaC). Furthermore, chromatin immunoprecipitation assays (ChIP) demonstrated rapid, sustained induction of heterochromatin structures within the HIV-1 promoter region, with enrichment of histone 3 lysine 27 tri-methylation (H3K27me3) and H3K9 methylation. H3K27me3 enrichment was the most pronounced. This prolonged suppression could not be recapitulated by either retrovirally delivered anti-sense or sense strands alone or in combination. Our data strongly suggest that shkappaB induces high level, sustained transcriptional gene silencing of HIV-1 and offers the possibility of new therapeutic strategies.
Collapse
Affiliation(s)
- Makoto Yamagishi
- Laboratory of Tumor Cell Biology, Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
88
|
Lin SS, Wu HW, Elena SF, Chen KC, Niu QW, Yeh SD, Chen CC, Chua NH. Molecular evolution of a viral non-coding sequence under the selective pressure of amiRNA-mediated silencing. PLoS Pathog 2009; 5:e1000312. [PMID: 19247440 PMCID: PMC2642722 DOI: 10.1371/journal.ppat.1000312] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 01/23/2009] [Indexed: 11/18/2022] Open
Abstract
Plant microRNAs (miRNA) guide cleavage of target mRNAs by DICER-like proteins, thereby reducing mRNA abundance. Native precursor miRNAs can be redesigned to target RNAs of interest, and one application of such artificial microRNA (amiRNA) technology is to generate plants resistant to pathogenic viruses. Transgenic Arabidopsis plants expressing amiRNAs designed to target the genome of two unrelated viruses were resistant, in a highly specific manner, to the appropriate virus. Here, we pursued two different goals. First, we confirmed that the 21-nt target site of viral RNAs is both necessary and sufficient for resistance. Second, we studied the evolutionary stability of amiRNA-mediated resistance against a genetically plastic RNA virus, TuMV. To dissociate selective pressures acting upon protein function from those acting at the RNA level, we constructed a chimeric TuMV harboring a 21-nt, amiRNA target site in a non-essential region. In the first set of experiments designed to assess the likelihood of resistance breakdown, we explored the effect of single nucleotide mutation within the target 21-nt on the ability of mutant viruses to successfully infect amiRNA-expressing plants. We found non-equivalency of the target nucleotides, which can be divided into three categories depending on their impact in virus pathogenicity. In the second set of experiments, we investigated the evolution of the virus mutants in amiRNA-expressing plants. The most common outcome was the deletion of the target. However, when the 21-nt target was retained, viruses accumulated additional substitutions on it, further reducing the binding/cleavage ability of the amiRNA. The pattern of substitutions within the viral target was largely dominated by G to A and C to U transitions.
Collapse
Affiliation(s)
- Shih-Shun Lin
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York, United States of America
| | - Hui-Wen Wu
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York, United States of America
| | - Santiago F. Elena
- Instituto de Biología Molecular y Celular de Plantas (CSIC-UPV), Valencia, Spain
| | - Kuan-Chun Chen
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York, United States of America
| | - Qi-Wen Niu
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York, United States of America
| | - Shyi-Dong Yeh
- Department of Plant Pathology, National Chung Hsing University, Taichung, Taiwan
| | - Chin-Chih Chen
- Division of Plant Pathology, Agricultural Research Institute, Wu-Feng, Taichung, Taiwan
| | - Nam-Hai Chua
- Laboratory of Plant Molecular Biology, Rockefeller University, New York, New York, United States of America
| |
Collapse
|
89
|
Rothe D, Werk D, Niedrig S, Horbelt D, Grunert HP, Zeichhardt H, Erdmann VA, Kurreck J. Antiviral activity of highly potent siRNAs against echovirus 30 and its receptor. J Virol Methods 2009; 157:211-8. [PMID: 19187792 DOI: 10.1016/j.jviromet.2009.01.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 01/07/2009] [Accepted: 01/13/2009] [Indexed: 11/27/2022]
Abstract
RNA interference (RNAi) has been shown to be suitable to inhibit viruses in experimental setups and is considered a promising antiviral strategy that is currently being tested in various clinical trials. The present study provides an approach to design siRNAs with high potency against a virus-specific target gene. In recent years, several outbreaks of aseptic meningitis caused by an echovirus 30 (EV-30) infection have been described. Based on an initial set of 30 in silico designed siRNAs, six siRNAs targeting the 3D RNA-dependent RNA-Polymerase (3D(Pol)) of EV-30 were selected. All but one of them showed high efficiency in both, reporter and virus assays. A second aim of the study was to re-investigate the relevance of the decay-accelerating factor (DAF, also known as CD55) as cellular entry receptor of EV-30 by means of RNAi, a question which had been under debate in previous studies. Knockdown of DAF inhibited drastically infection by EV-30 indicating that DAF plays an important role either as an attachment factor or as a receptor.
Collapse
Affiliation(s)
- Diana Rothe
- University of Stuttgart, Institute of Industrial Genetics, Allmandring, Stuttgart, Germany
| | | | | | | | | | | | | | | |
Collapse
|
90
|
Affiliation(s)
- Jens Kurreck
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, 70569 Stuttgart (Deutschland), Fax: (+49) 711‐685 66973 http://www.uni‐stuttgart.de/iig/institut/staff/kurreck/index.html
| |
Collapse
|
91
|
Abstract
For almost three decades, researchers have studied the possibility to use nucleic acids as antiviral therapeutics. In theory, compounds such as antisense oligonucleotides, ribozymes, DNAzymes, and aptamers can be designed to trigger the sequence-specific inhibition of particular mRNA transcripts, including viral genomes. However, difficulties with their efficiency, off-target effects, toxicity, delivery, and stability halted the development of nucleic acid-based therapeutics that can be used in the clinic. So far, only a single antisense drug, Vitravene for the treatment of CMV-induced retinitis in AIDS patients, has made it to the clinic. Since the discovery of RNA interference (RNAi), there is a renewed interest in the development of nucleic acid-based therapeutics. Antiviral RNAi approaches are highly effective in vitro and in animal models and are currently being tested in clinical trials. Here we give an overview of antiviral nucleic acid-based therapeutics. We focus on antisense and RNAi-based compounds that have been shown to be effective in animal model systems.
Collapse
Affiliation(s)
- Hans-Georg Kräusslich
- Hygiene Institute Department of Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, Heidelberg, 69120 Germany
| | - Ralf Bartenschlager
- Hygiene Institute Department of Virology, Universitätsklinikum Heidelberg, Im Neuenheimer Feld 324, Heidelberg, 69120 Germany
| |
Collapse
|
92
|
Abstract
An efficient mechanism for the sequence-specific inhibition of gene expression is RNA interference. In this process, double-stranded RNA molecules induce cleavage of a selected target RNA (see picture). This technique has in recent years developed into a standard method of molecular biology. Successful applications in animal models have already led to the initiation of RNAi-based clinical trials as a new therapeutic option.Only ten years ago Andrew Fire and Craig Mello were able to show that double-stranded RNA molecules could inhibit the expression of homologous genes in eukaryotes. This process, termed RNA interference, has developed into a standard method of molecular biology. This Review provides an overview of the molecular processes involved, with a particular focus on the posttranscriptional inhibition of gene expression in mammalian cells, the possible applications in research, and the results of the first clinical studies.
Collapse
Affiliation(s)
- Jens Kurreck
- Institute of Industrial Genetics, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
93
|
Leonard JN, Shah PS, Burnett JC, Schaffer DV. HIV evades RNA interference directed at TAR by an indirect compensatory mechanism. Cell Host Microbe 2008; 4:484-94. [PMID: 18996348 DOI: 10.1016/j.chom.2008.09.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2007] [Revised: 08/11/2008] [Accepted: 09/08/2008] [Indexed: 02/06/2023]
Abstract
HIV can rapidly evolve when placed under selective pressure, including immune surveillance or the administration of antiretroviral drugs. Typically, a variant protein allows HIV to directly evade the selective pressure. Similarly, HIV has escaped suppression by RNA interference (RNAi) directed against viral RNAs by acquiring mutations at the target region that circumvent RNAi-mediated inhibition while conserving necessary viral functions. However, when we directed RNAi against the viral TAR hairpin, which plays an indispensable role in viral transcription, resistant strains were recovered, but none carried a mutation at the target site. Instead, we isolated several strains carrying promoter mutations that indirectly compensated for the RNAi by upregulating viral transcription. Combining RNAi with the application of an antiviral drug blocked replication of such mutants. Evolutionary tuning of viral transcriptional regulation may serve as a general evasion mechanism that may be targeted to improve the efficacy of antiviral therapy.
Collapse
Affiliation(s)
- Joshua N Leonard
- Department of Chemical Engineering and the Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | |
Collapse
|
94
|
Aagaard LA, Zhang J, von Eije KJ, Li H, Saetrom P, Amarzguioui M, Rossi JJ. Engineering and optimization of the miR-106b cluster for ectopic expression of multiplexed anti-HIV RNAs. Gene Ther 2008; 15:1536-49. [PMID: 18800151 PMCID: PMC3155610 DOI: 10.1038/gt.2008.147] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Many microRNAs (miRNAs) are encoded within the introns of RNA Pol II transcripts, often as polycistronic precursors. Here we demonstrate the optimization of an intron encoding three endogenous miRNAs for the ectopic expression of heterologous anti-HIV-1 siRNAs processed from a single RNA polymerase II primary miRNA. Our expression system, designated as MCM7, is engineered from the intron embedded, tri-cistronic mir106b cluster that endogenously expresses miR-106b, miR-93 and miR-25. Manipulation of the mir106b cluster demonstrated a strict requirement for maintenance of the native flanking pri-miRNA sequences and key structural features of the native miRNAs for efficient siRNA processing. As a model for testing the efficacy of this approach, we have replaced the three endogenous miRNAs with siRNAs targeting the tat and rev transcripts of HIV-1. This study has enabled us to establish guidelines for optimal processing of the engineered miRNA mimics into functional siRNAs. In addition, we demonstrate that the incorporation of a small nucleolar RNA TAR chimeric decoy (snoRNA) inserted within the MCM7 intron resulted ina substantial enhancement of HIV suppression in long term acute infectious HIV-1 challenges.
Collapse
Affiliation(s)
- L A Aagaard
- Division of Molecular Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
We designed a novel experimental approach to probe the sequence space available for HIV-1 evolution. Selective pressure was put on conserved HIV-1 genomic sequences by means of RNA interference (RNAi). Virus escape was monitored in many parallel cultures, and we scored the mutations selected in the RNAi target sequences. The experimentally induced sequence variation closely resembles the sequence variation of natural HIV-1 strains. This indicates that we actually mapped a restricted area of sequence space compatible with virus replication.
Collapse
|
96
|
Effective suppression of HIV-1 by artificial bispecific miRNA targeting conserved sequences with tolerance for wobble base-pairing. Biochem Biophys Res Commun 2008; 374:214-8. [DOI: 10.1016/j.bbrc.2008.06.125] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 06/30/2008] [Indexed: 11/22/2022]
|
97
|
Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, Laouar A, Yao J, Haridas V, Habiro K, Yang YG, Jeong JH, Lee KY, Kim YH, Kim SW, Peipp M, Fey GH, Manjunath N, Shultz LD, Lee SK, Shankar P. T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 2008; 134:577-86. [PMID: 18691745 PMCID: PMC2943428 DOI: 10.1016/j.cell.2008.06.034] [Citation(s) in RCA: 457] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Revised: 05/08/2008] [Accepted: 06/12/2008] [Indexed: 11/17/2022]
Abstract
Evaluation of the therapeutic potential of RNAi for HIV infection has been hampered by the challenges of siRNA delivery and lack of suitable animal models. Using a delivery method for T cells, we show that siRNA treatment can dramatically suppress HIV infection. A CD7-specific single-chain antibody was conjugated to oligo-9-arginine peptide (scFvCD7-9R) for T cell-specific siRNA delivery in NOD/SCIDIL2rgamma-/- mice reconstituted with human lymphocytes (Hu-PBL) or CD34+ hematopoietic stem cells (Hu-HSC). In HIV-infected Hu-PBL mice, treatment with anti-CCR5 (viral coreceptor) and antiviral siRNAs complexed to scFvCD7-9R controlled viral replication and prevented the disease-associated CD4 T cell loss. This treatment also suppressed endogenous virus and restored CD4 T cell counts in mice reconstituted with HIV+ peripheral blood mononuclear cells. Moreover, scFvCD7-9R could deliver antiviral siRNAs to naive T cells in Hu-HSC mice and effectively suppress viremia in infected mice. Thus, siRNA therapy for HIV infection appears to be feasible in a preclinical animal model.
Collapse
Affiliation(s)
- Priti Kumar
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Hong-Seok Ban
- Department of Bioengineering and Hanyang Fusion Materials Program,, Hanyang University, Seoul, 133-791, Korea
| | - Sang-Soo Kim
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Haoquan Wu
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Todd Pearson
- Department of Medicine, Division of Diabetes, University of Massachusetts Medical School, Worcester, 01605, MA, USA
| | - Dale. L. Greiner
- Department of Medicine, Division of Diabetes, University of Massachusetts Medical School, Worcester, 01605, MA, USA
| | - Amale Laouar
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Jiahong Yao
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Viraga Haridas
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | - Katsuyoshi Habiro
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Yong-Guang Yang
- Transplantation Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Ji-Hoon Jeong
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Kuen-Yong Lee
- Department of Bioengineering and Hanyang Fusion Materials Program,, Hanyang University, Seoul, 133-791, Korea
| | - Yong-Hee Kim
- Department of Bioengineering and Hanyang Fusion Materials Program,, Hanyang University, Seoul, 133-791, Korea
| | - Sung Wan Kim
- Center for Controlled Chemical Delivery, Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, 84112, USA
| | - Matthias Peipp
- Division of Stem Cell Transplantation and Immunotherapy, Christian-Albrechts-University, Kiel, Germany
| | - Georg H. Fey
- University of Erlangen, D 91058, Erlangen, Germany
| | - N Manjunath
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| | | | - Sang-Kyung Lee
- Department of Bioengineering and Hanyang Fusion Materials Program,, Hanyang University, Seoul, 133-791, Korea
| | - Premlata Shankar
- Immune Disease Institute and Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
| |
Collapse
|
98
|
Saayman S, Barichievy S, Capovilla A, Morris KV, Arbuthnot P, Weinberg MS. The efficacy of generating three independent anti-HIV-1 siRNAs from a single U6 RNA Pol III-expressed long hairpin RNA. PLoS One 2008; 3:e2602. [PMID: 18596982 PMCID: PMC2434202 DOI: 10.1371/journal.pone.0002602] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2007] [Accepted: 06/06/2008] [Indexed: 11/24/2022] Open
Abstract
RNA Interference (RNAi) effectors have been used to inhibit rogue RNAs in mammalian cells. However, rapidly evolving sequences such as the human immunodeficiency virus type 1 (HIV-1) require multiple targeting approaches to prevent the emergence of escape variants. Expressed long hairpin RNAs (lhRNAs) have recently been used as a strategy to produce multiple short interfering RNAs (siRNAs) targeted to highly variant sequences. We aimed to characterize the ability of expressed lhRNAs to generate independent siRNAs that silence three non-contiguous HIV-1 sites by designing lhRNAs comprising different combinations of siRNA-encoding sequences. All lhRNAs were capable of silencing individual target sequences. However, silencing efficiency together with concentrations of individual lhRNA-derived siRNAs diminished from the stem base (first position) towards the loop side of the hairpin. Silencing efficacy against HIV-1 was primarily mediated by siRNA sequences located at the base of the stem. Improvements could be made to first and second position siRNAs by adjusting spacing arrangements at their junction, but silencing of third position siRNAs remained largely ineffective. Although lhRNAs offer advantages for combinatorial RNAi, we show that good silencing efficacy across the span of the lhRNA duplex is difficult to achieve with sequences that encode more than two adjacent independent siRNAs.
Collapse
Affiliation(s)
- Sheena Saayman
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Samantha Barichievy
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Alexio Capovilla
- HIV Pathogenesis Lab, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Kevin V. Morris
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America
| | - Patrick Arbuthnot
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
| | - Marc S. Weinberg
- Antiviral Gene Therapy Research Unit, Department of Molecular Medicine and Haematology, University of Witwatersrand, Johannesburg, South Africa
- * E-mail:
| |
Collapse
|