51
|
Abstract
Several viral vector-based gene therapy drugs have now received marketing approval. A much larger number of additional viral vectors are in various stages of clinical trials for the treatment of genetic and acquired diseases, with many more in pre-clinical testing. Efficiency of gene transfer and ability to provide long-term therapy make these vector systems very attractive. In fact, viral vector gene therapy has been able to treat or even cure diseases for which there had been no or only suboptimal treatments. However, innate and adaptive immune responses to these vectors and their transgene products constitute substantial hurdles to clinical development and wider use in patients. This review provides an overview of the type of immune responses that have been documented in animal models and in humans who received gene transfer with one of three widely tested vector systems, namely adenoviral, lentiviral, or adeno-associated viral vectors. Particular emphasis is given to mechanisms leading to immune responses, efforts to reduce vector immunogenicity, and potential solutions to the problems. At the same time, we point out gaps in our knowledge that should to be filled and problems that need to be addressed going forward.
Collapse
Affiliation(s)
- Jamie L Shirley
- Gene Therapy Center, University of Massachusetts, Worchester, MA, USA
| | - Ype P de Jong
- Division of Gastroenterology and Hepatology, Weill Cornell Medicine, New York, NY, USA
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, MA, USA
| | - Roland W Herzog
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
52
|
Varghese PM, Murugaiah V, Beirag N, Temperton N, Khan HA, Alrokayan SH, Al-Ahdal MN, Nal B, Al-Mohanna FA, Sim RB, Kishore U. C4b Binding Protein Acts as an Innate Immune Effector Against Influenza A Virus. Front Immunol 2020; 11:585361. [PMID: 33488586 PMCID: PMC7820937 DOI: 10.3389/fimmu.2020.585361] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 11/20/2020] [Indexed: 02/05/2023] Open
Abstract
C4b Binding Protein (C4BP) is a major fluid phase inhibitor of the classical and lectin pathways of the complement system. Complement inhibition is achieved by binding to and restricting the role of activated complement component C4b. C4BP functions as a co-factor for factor I in proteolytic inactivation of both soluble and cell surface-bound C4b, thus restricting the formation of the C3-convertase, C4b2a. C4BP also accelerates the natural decay/dissociation of the C3 convertase. This makes C4BP a prime target for exploitation by pathogens to escape complement attack, as seen in Streptococcus pyogenes or Flavivirus. Here, we examined whether C4BP can act on its own in a complement independent manner, against pathogens. C4BP bound H1N1 and H3N2 subtypes of Influenza A Virus (IAV) most likely via multiple sites in Complement Control Protein (CCP) 1-2, 4-5, and 7-8 domains of its α-chain. In addition, C4BP CCP1-2 bound H3N2 better than H1N1. C4BP bound three IAV envelope proteins: Haemagglutinin (~70 kDa), Neuraminidase (~55 kDa), and Matrix protein 1 (~25kDa). C4BP suppressed H1N1 subtype infection into the lung epithelial cell line, A549, while it promoted infection by H3N2 subtype. C4BP restricted viral entry for H1N1 but had the opposite effect on H3N2, as evident from experiments using pseudo-typed viral particles. C4BP downregulated mRNA levels of pro-inflammatory IFN-α, IL-12, and NFκB in the case of H1N1, while it promoted a pro-inflammatory immune response by upregulating IFN- α, TNF-α, RANTES, and IL-6 in the case of H3N2. We conclude that C4BP differentially modulates the efficacy of IAV entry, and hence, replication in a target cell in a strain-dependent manner, and acts as an entry inhibitor for H1N1. Thus, CCP containing complement proteins such as factor H and C4BP may have additional defense roles against IAV that do not rely on the regulation of complement activation.
Collapse
Affiliation(s)
- Praveen M. Varghese
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Valarmathy Murugaiah
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Nazar Beirag
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Nigel Temperton
- Viral Pseudotype Unit, Medway School of Pharmacy, University of Kent and Greenwich, Kent, United Kingdom
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed N. Al-Ahdal
- Department of Cell Biology, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Beatrice Nal
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Futwan A. Al-Mohanna
- Department of Infection and Immunity, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Robert B. Sim
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Uday Kishore
- Biosciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- *Correspondence: Uday Kishore, uday.kishore.brunel.ac.uk;
| |
Collapse
|
53
|
Abstract
Tumor-selectively replicating "oncolytic" adenoviruses based on serotype 5 are promising tools for the treatment of solid tumors. However, their effective delivery to the tumor by systemic administration remains challenging. Several strategies of molecular retargeting have been pursued to equip adenoviruses with molecular features that facilitate their efficient uptake by tumors and to protect healthy tissue from damage. Transductional retargeting can be conveniently achieved using bispecific molecular adapter proteins based on the ectodomain of the coxsackievirus and adenovirus receptor linked to tumor ligands of choice. In this chapter, we describe methods for their design, purification, and application.
Collapse
Affiliation(s)
- Julia Niemann
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
54
|
Tagliamonte M, Mauriello A, Cavalluzzo B, Ragone C, Manolio C, Petrizzo A, Buonaguro L. Tackling hepatocellular carcinoma with individual or combinatorial immunotherapy approaches. Cancer Lett 2019; 473:25-32. [PMID: 31875523 DOI: 10.1016/j.canlet.2019.12.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/13/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of death from cancer globally. Indeed, there is a single drug approved as first-line systemic therapy in advanced unresectable HCC, providing a very limited survival benefit. In earlier stages, 5-year survival rates after surgical and loco-regional therapies are extremely variable depending on the stage of disease. Nevertheless, HCC is considered an immunogenic tumor arising in chronically inflamed livers. In such a scenario, immunotherapy strategies for HCC, in particular combinations including cancer vaccines, may represent a key therapeutic tool to improve clinical outcome in HCC patients. However, a lot of improvement is needed given the disappointing results obtained so far.
Collapse
Affiliation(s)
- Maria Tagliamonte
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Angela Mauriello
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Beatrice Cavalluzzo
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Concetta Ragone
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Carmen Manolio
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Annacarmen Petrizzo
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy
| | - Luigi Buonaguro
- Cancer Immunoregulation Unit, Istituto Nazionale per lo Studio e la Cura dei Tumori IRCCS, "Fondazione Pascale", Naples, Italy.
| |
Collapse
|
55
|
Barrass SV, Butcher SJ. Advances in high-throughput methods for the identification of virus receptors. Med Microbiol Immunol 2019; 209:309-323. [PMID: 31865406 PMCID: PMC7248041 DOI: 10.1007/s00430-019-00653-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 12/02/2019] [Indexed: 12/26/2022]
Abstract
Viruses have evolved many mechanisms to invade host cells and establish successful infections. The interaction between viral attachment proteins and host cell receptors is the first and decisive step in establishing such infections, initiating virus entry into the host cells. Therefore, the identification of host receptors is fundamental in understanding pathogenesis and tissue tropism. Furthermore, receptor identification can inform the development of antivirals, vaccines, and diagnostic technologies, which have a substantial impact on human health. Nevertheless, due to the complex nature of virus entry, the redundancy in receptor usage, and the limitations in current identification methods, many host receptors remain elusive. Recent advances in targeted gene perturbation, high-throughput screening, and mass spectrometry have facilitated the discovery of virus receptors in recent years. In this review, we compare the current methods used within the field to identify virus receptors, focussing on genomic- and interactome-based approaches.
Collapse
Affiliation(s)
- Sarah V Barrass
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme and Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| | - Sarah J Butcher
- Faculty of Biological and Environmental Sciences, Molecular and Integrative Bioscience Research Programme and Helsinki Institute of Life Sciences, Institute of Biotechnology, University of Helsinki, P.O. Box 56, 00014, Helsinki, Finland.
| |
Collapse
|
56
|
Atasheva S, Yao J, Shayakhmetov DM. Innate immunity to adenovirus: lessons from mice. FEBS Lett 2019; 593:3461-3483. [PMID: 31769012 PMCID: PMC6928416 DOI: 10.1002/1873-3468.13696] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/07/2019] [Accepted: 11/21/2019] [Indexed: 01/01/2023]
Abstract
Adenovirus is a highly evolutionary successful pathogen, as it is widely prevalent across the animal kingdom, infecting hosts ranging from lizards and frogs to dolphins, birds, and humans. Although natural adenovirus infections in humans rarely cause severe pathology, intravenous injection of high doses of adenovirus-based vectors triggers rapid activation of the innate immune system, leading to cytokine storm syndrome, disseminated intravascular coagulation, thrombocytopenia, and hepatotoxicity, which individually or in combination may cause morbidity and mortality. Much of the information on exactly how adenovirus activates the innate immune system has been gathered from mouse experimental systems. Intravenous administration of adenovirus to mice revealed mechanistic insights into cellular and molecular components of the innate immunity that detect adenovirus particles, activate pro-inflammatory signaling pathways and cytokine production, sequester adenovirus particles from the bloodstream, and eliminate adenovirus-infected cells. Collectively, this information greatly improved our understanding of mechanisms of activation of innate immunity to adenovirus and may pave the way for designing safer adenovirus-based vectors for therapy of genetic and acquired human diseases.
Collapse
Affiliation(s)
- Svetlana Atasheva
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jia Yao
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Dmitry M. Shayakhmetov
- Lowance Center for Human Immunology, Departments of Pediatrics and Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Children’s Center for Transplantation and Immuno-mediated Disorders, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
57
|
Systemic delivery and SPECT/CT in vivo imaging of 125I-labelled oncolytic adenoviral mutants in models of pancreatic cancer. Sci Rep 2019; 9:12840. [PMID: 31492884 PMCID: PMC6731255 DOI: 10.1038/s41598-019-49150-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Early phase clinical trials have demonstrated good therapeutic index for oncolytic adenoviruses in patients with solid tumours when administered intratumorally, resulting in local tumour elimination. Entrapment and binding of adenovirus to erythrocytes, blood factors, and neutralising antibodies have prevented efficient systemic delivery and targeting of distant lesions in the clinic. We previously generated the novel replication-selective Ad-3∆-A20T to improve tumour targeting by increasing the viral dose at distant sites. Here, we developed a protocol to directly radiolabel the virus for rapid and sensitive detection by single-photon emitted computed tomography (SPECT/CT) providing a convenient method for determining biodistribution following intravenous administration in murine models. Longitudinal whole-body scans, demonstrated efficient viral uptake in pancreatic Suit-2 and Panc04.03 xenografts with trace amounts of 125I-Ad-3∆-A20T up to 48 h after tail vein delivery. Hepatic and splenic radioactivity decreased over time. Analysis of tissues harvested at the end of the study, confirmed potency and selectivity of mutant viruses. Ad-3∆-A20T-treated animals showed higher viral genome copy numbers and E1A gene expression in tumors than in liver and spleen compared to Ad5wt. Our direct radiolabeling approach, allows for immediate screening of novel oncolytic adenoviruses and selection of optimal viral genome alterations to generate improved mutants.
Collapse
|
58
|
Wu Y, Li L, Frank L, Wagner J, Andreozzi P, Hammer B, D’Alicarnasso M, Pelliccia M, Liu W, Chakrabortty S, Krol S, Simon J, Landfester K, Kuan SL, Stellacci F, Müllen K, Kreppel F, Weil T. Patchy Amphiphilic Dendrimers Bind Adenovirus and Control Its Host Interactions and in Vivo Distribution. ACS NANO 2019; 13:8749-8759. [PMID: 31322856 PMCID: PMC6716120 DOI: 10.1021/acsnano.9b01484] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The surface of proteins is heterogeneous with sophisticated but precise hydrophobic and hydrophilic patches, which is essential for their diverse biological functions. To emulate such distinct surface patterns on macromolecules, we used rigid spherical synthetic dendrimers (polyphenylene dendrimers) to provide controlled amphiphilic surface patches with molecular precision. We identified an optimal spatial arrangement of these patches on certain dendrimers that enabled their interaction with human adenovirus 5 (Ad5). Patchy dendrimers bound to the surface of Ad5 formed a synthetic polymer corona that greatly altered various host interactions of Ad5 as well as in vivo distribution. The dendrimer corona (1) improved the ability of Ad5-derived gene transfer vectors to transduce cells deficient for the primary Ad5 cell membrane receptor and (2) modulated the binding of Ad5 to blood coagulation factor X, one of the most critical virus-host interactions in the bloodstream. It significantly enhanced the transduction efficiency of Ad5 while also protecting it from neutralization by natural antibodies and the complement system in human whole blood. Ad5 with a synthetic dendrimer corona revealed profoundly altered in vivo distribution, improved transduction of heart, and dampened vector sequestration by liver and spleen. We propose the design of bioactive polymers that bind protein surfaces solely based on their amphiphilic surface patches and protect against a naturally occurring protein corona, which is highly attractive to improve Ad5-based in vivo gene therapy applications.
Collapse
Affiliation(s)
- Yuzhou Wu
- Hubei
Key Laboratory of Bioinorganic Chemistry and Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, 430074 Hongshan, Wuhan, P.R. China
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- E-mail:
| | - Longjie Li
- Hubei
Key Laboratory of Bioinorganic Chemistry and Materia Medica, School
of Chemistry and Chemical Engineering, Huazhong
University of Science and Technology, 430074 Hongshan, Wuhan, P.R. China
| | - Larissa Frank
- Department
of Gene Therapy, Ulm University, 89081 Ulm, Germany
| | - Jessica Wagner
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- Graduate
School Materials Science in Mainz, 55128 Mainz, Germany
| | - Patrizia Andreozzi
- IFOM
- FIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Soft
Matter
Nanotechnology Group San Sebastian-Donostia, CIC biomaGUNE, 20014 Donastia San Sebastián, Spain
| | - Brenton Hammer
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Maria Pelliccia
- IFOM
- FIRC Institute of Molecular Oncology, 20139 Milan, Italy
- Fondazione
Centro Europeo Nanomedicina (CEN), 20133 Milan, Italy
- Fondazione
IRCCS Istituto Neurologico “Carlo Besta”, 20133 Milan, Italy
| | - Weina Liu
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- Institute
for Inorganic Chemistry I, Ulm University, 89081 Ulm, Germany
| | - Sabyasachi Chakrabortty
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- Institute
for Inorganic Chemistry I, Ulm University, 89081 Ulm, Germany
| | - Silke Krol
- Fondazione
IRCCS Istituto Neurologico “Carlo Besta”, 20133 Milan, Italy
- IRCCS Istituto Tumori “Giovanni
Paolo II”, 70124 Bari, Italy
- IRCCS Ospedale Specializzato in Gastroenterologia “Saverio
de Bellis”, 70013 Castellana Grotte, Bari, Italy
| | - Johanna Simon
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | | | - Seah Ling Kuan
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Francesco Stellacci
- Institute
of Materials, Ecole Polytechnique Fédérale
de Lausanne (EPFL), 1015 Lausanne, Switzerland
- Interfaculty
Bioengineering Institute, Ecole Polytechnique
Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Klaus Müllen
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Florian Kreppel
- Department
of Gene Therapy, Ulm University, 89081 Ulm, Germany
- Lehrstuhl
für Biochemie und Molekulare Medizin, Center for Biomedical
Research and Education (ZBAF), Fakultät für Gesundheit/Department
für Humanmedizin,, Universität
Witten/Herdecke (UW/H), 58453 Witten, Germany
- E-mail:
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
- Institute
for Inorganic Chemistry I, Ulm University, 89081 Ulm, Germany
- E-mail:
| |
Collapse
|
59
|
Ermert D, Ram S, Laabei M. The hijackers guide to escaping complement: Lessons learned from pathogens. Mol Immunol 2019; 114:49-61. [PMID: 31336249 DOI: 10.1016/j.molimm.2019.07.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 02/07/2023]
Abstract
Pathogens that invade the human host are confronted by a multitude of defence mechanisms aimed at preventing colonization, dissemination and proliferation. The most frequent outcome of this interaction is microbial elimination, in which the complement system plays a major role. Complement, an essential feature of the innate immune machinery, rapidly identifies and marks pathogens for efficient removal. Consequently, this creates a selective pressure for microbes to evolve strategies to combat complement, permitting host colonization and access to resources. All successful pathogens have developed mechanisms to resist complement activity which are intimately aligned with their capacity to cause disease. In this review, we describe the successful methods various pathogens use to evade complement activation, shut down inflammatory signalling through complement, circumvent opsonisation and override terminal pathway lysis. This review summarizes how pathogens undermine innate immunity: 'The Hijackers Guide to Complement'.
Collapse
Affiliation(s)
- David Ermert
- Department of Preclinical Research, BioInvent International AB, Lund, Sweden; Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Sanjay Ram
- Department of Medicine, Division of Infectious Diseases and Immunology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Maisem Laabei
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom.
| |
Collapse
|
60
|
Niemann J, Woller N, Brooks J, Fleischmann-Mundt B, Martin NT, Kloos A, Knocke S, Ernst AM, Manns MP, Kubicka S, Wirth TC, Gerardy-Schahn R, Kühnel F. Molecular retargeting of antibodies converts immune defense against oncolytic viruses into cancer immunotherapy. Nat Commun 2019; 10:3236. [PMID: 31324774 PMCID: PMC6642145 DOI: 10.1038/s41467-019-11137-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 06/18/2019] [Indexed: 01/06/2023] Open
Abstract
Virus-neutralizing antibodies are a severe obstacle in oncolytic virotherapy. Here, we present a strategy to convert this unfavorable immune response into an anticancer immunotherapy via molecular retargeting. Application of a bifunctional adapter harboring a tumor-specific ligand and the adenovirus hexon domain DE1 for engaging antiadenoviral antibodies, attenuates tumor growth and prolongs survival in adenovirus-immunized mice. The therapeutic benefit achieved by tumor retargeting of antiviral antibodies is largely due to NK cell-mediated triggering of tumor-directed CD8 T-cells. We further demonstrate that antibody-retargeting (Ab-retargeting) is a feasible method to sensitize tumors to PD-1 immune checkpoint blockade. In therapeutic settings, Ab-retargeting greatly improves the outcome of intratumor application of an oncolytic adenovirus and facilitates long-term survival in treated animals when combined with PD-1 checkpoint inhibition. Tumor-directed retargeting of preexisting or virotherapy-induced antiviral antibodies therefore represents a promising strategy to fully exploit the immunotherapeutic potential of oncolytic virotherapy and checkpoint inhibition.
Collapse
Affiliation(s)
- Julia Niemann
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Norman Woller
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Jennifer Brooks
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Bettina Fleischmann-Mundt
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Nikolas T Martin
- Institute for Clinical Biochemistry, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, K1H 8L6, Canada
| | - Arnold Kloos
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
- Department of Experimental Hemato-Oncology, Hannover Medical School, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Sarah Knocke
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Amanda M Ernst
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Michael P Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Stefan Kubicka
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
- Cancer Center Reutlingen, District Hospital, Reutlingen, Germany
| | - Thomas C Wirth
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Rita Gerardy-Schahn
- Institute for Clinical Biochemistry, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany
| | - Florian Kühnel
- Department of Gastroenterology, Hepatology and Endocrinology, Medical School Hannover, Carl Neuberg Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
61
|
Human Adenovirus Serotype 5 Is Sensitive to IgM-Independent Neutralization In Vitro and In Vivo. Viruses 2019; 11:v11070616. [PMID: 31284434 PMCID: PMC6669743 DOI: 10.3390/v11070616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 06/23/2019] [Accepted: 07/03/2019] [Indexed: 01/03/2023] Open
Abstract
Human adenovirus 5 (HAdV-5) is used as a vector in gene therapy clinical trials, hence its interactions with the host immune system have been widely studied. Previous studies have demonstrated that HAdV-5 binds specifically to murine coagulation factor X (mFX), inhibiting IgM and complement-mediated neutralization. Here, we examined the physical binding of immune components to HAdV-5 by nanoparticle tracking analysis, neutralization assays, mass spectrometry analysis and in vivo experiments. We observed that purified mouse Immunoglobulin M (IgM) antibodies bound to HAdV-5 only in the presence of complement components. Active serum components were demonstrated to bind to HAdV-5 in the presence or absence of mFX, indicating that immune molecules and mFX might bind to different sites. Since binding of mFX to HAdV-5 blocks the neutralization cascade, these findings suggested that not all complement-binding sites may be involved in virion neutralization. Furthermore, the data obtained from serum neutralization experiments suggested that immune molecules other than IgM and IgG may trigger activation of the complement cascade in vitro. In vivo experiments were conducted in immunocompetent C57BL/6 or immuno-deficient Rag2-/- mice. HAdV-5T* (a mutant HAdV-5 unable to bind to human or mFX) was neutralized to some extent in both mouse models, suggesting that murine immunoglobulins were not required for neutralization of HAdV-5 in vivo. Liquid Chromatography-Mass Spectrometry (LC-MS/MS) analysis of HAdV-5 and HAdV-5T* after exposure to murine sera showed stable binding of C3 and C4b in the absence of mFX. In summary, these results suggest that HAdV-5 neutralization can be mediated by both the classical and alternative pathways and that, in the absence of immunoglobulins, the complement cascade can be activated by direct binding of C3 to the virion.
Collapse
|
62
|
Gentile CM, Borovjagin AV, Richter JR, Jani AH, Wu H, Zinn KR, Warram JM. Genetic strategy to decrease complement activation with adenoviral therapies. PLoS One 2019; 14:e0215226. [PMID: 31026285 PMCID: PMC6485611 DOI: 10.1371/journal.pone.0215226] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 03/28/2019] [Indexed: 11/22/2022] Open
Abstract
Background A major obstacle to using recombinant adenoviral vectors in gene therapy is the natural ability of human adenovirus to activate the classical and alternate complement pathways. These innate immune responses contribute to hepatic adenoviral uptake following systemic delivery and enhance the humoral immune responses associated with adenoviral infection. Methods A recombinant Ad5 vector was genetically modified to display a peptide sequence (“rH17d’”), a known inhibitor of the classical complement pathway. The replication-defective vectors Ad5.HVR2-rH17d’ and Ad5.HVR5-rH17d’ were constructed by engineering the rH17d’ peptide into the hypervariable region (HVR)-2 or HVR5 of their major capsid protein hexon. Control Ad5 vectors were created by incorporation of a 6-histidine (His6)-insert in either HVR2 or HVR5 (Ad5.HVR2-His6 and Ad5.HVR5-His6, respectively). All vectors encoded CMV promoter-controlled firefly luciferase (Luc). The four vectors were evaluated in TIB76 mouse liver cells and immunocompetent mice to compare infectivity and liver sequestration, respectively. Results In vitro studies demonstrated that preincubation of all the Ad5 vectors with fresh serum significantly increased their gene transfer relative to preincubation with PBS except Ad5.HVR5-rH17d’, whose infectivity of liver cells showed no serum-mediated enhancement. In line with that, mice injected with Ad5.HVR2-rH17d’ or Ad5.HVR5-rH17d’ showed significantly lower luciferase expression levels in the liver as compared to the respective control vectors, whereas efficiency of tumor transduction by rH17d’ and His6 vectors following their intratumoral injection was similar. Conclusions Displaying a complement-inhibiting peptide on the Ad5 capsid surface by genetic modification of the hexon protein could be a suitable strategy for reducing Ad5 liver tropism (Ad5 sequestration by liver), which may be applicable to other gene therapy vectors with natural liver tropism.
Collapse
Affiliation(s)
- Christopher M. Gentile
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Anton V. Borovjagin
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Jillian R. Richter
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Aditi H. Jani
- University School of Medicine at University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Hongju Wu
- Department of Medicine, Tulane University, Tulane, Louisiana, United States of America
| | - Kurt R. Zinn
- Department of Radiology, Michigan State University, East Lansing, Michigan, United States of America
| | - Jason M. Warram
- Department of Otolaryngology, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
63
|
Sapre AA, Yong G, Yeh YS, Ruff LE, Plaut JS, Sayar Z, Agarwal A, Martinez J, Nguyen TN, Liu YT, Messmer BT, Esener SC, Fischer JM. Silica cloaking of adenovirus enhances gene delivery while reducing immunogenicity. J Control Release 2019; 297:48-59. [DOI: 10.1016/j.jconrel.2019.01.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 01/08/2019] [Accepted: 01/24/2019] [Indexed: 02/06/2023]
|
64
|
Characterization of a novel species of adenovirus from Japanese microbat and role of CXADR as its entry factor. Sci Rep 2019; 9:573. [PMID: 30679679 PMCID: PMC6345744 DOI: 10.1038/s41598-018-37224-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/04/2018] [Indexed: 01/16/2023] Open
Abstract
Recently, bat adenoviruses (BtAdVs) of genus Mastadenovirus have been isolated from various bat species, some of them displaying a wide host range in cell culture. In this study, we isolated two BtAdVs from Japanese wild microbats. While one isolate was classified as Bat mastadenovirus A, the other was phylogenetically independent of other BtAdVs. It was rather related to, but serologically different from, canine adenoviruses. We propose that the latter, isolated from Asian parti-colored bat, should be assigned to a novel species of Bat mastadenovirus. Both isolates replicated in various mammalian cell lines, implying their wide cell tropism. To gain insight into cell tropism of these BtAdVs, we investigated the coxsackievirus and adenovirus receptor (CXADR) for virus entry to the cells. We prepared CXADR-knockout canine kidney cells and found that replication of BtAdVs was significantly hampered in these cells. For confirmation, their replication in canine CXADR-addback cells was rescued to the levels with the original cells. We also found that viral replication was corrected in human or bat CXADR-transduced cells to similar levels as in canine CXADR-addback cells. These results suggest that BtAdVs were able to use several mammalian-derived CXADRs as entry factors.
Collapse
|
65
|
Mitra B, Thapa RJ, Guo H, Block TM. Host functions used by hepatitis B virus to complete its life cycle: Implications for developing host-targeting agents to treat chronic hepatitis B. Antiviral Res 2018; 158:185-198. [PMID: 30145242 PMCID: PMC6193490 DOI: 10.1016/j.antiviral.2018.08.014] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 02/06/2023]
Abstract
Similar to other mammalian viruses, the life cycle of hepatitis B virus (HBV) is heavily dependent upon and regulated by cellular (host) functions. These cellular functions can be generally placed in to two categories: (a) intrinsic host restriction factors and innate defenses, which must be evaded or repressed by the virus; and (b) gene products that provide functions necessary for the virus to complete its life cycle. Some of these functions may apply to all viruses, but some may be specific to HBV. In certain cases, the virus may depend upon the host function much more than does the host itself. Knowing which host functions regulate the different steps of a virus' life cycle, can lead to new antiviral targets and help in developing novel treatment strategies, in addition to improving a fundamental understanding of viral pathogenesis. Therefore, in this review we will discuss known host factors which influence key steps of HBV life cycle, and further elucidate therapeutic interventions targeting host-HBV interactions.
Collapse
Affiliation(s)
- Bidisha Mitra
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Haitao Guo
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | |
Collapse
|
66
|
Pol JG, Lévesque S, Workenhe ST, Gujar S, Le Boeuf F, Clements DR, Fahrner JE, Fend L, Bell JC, Mossman KL, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. Oncoimmunology 2018; 7:e1503032. [PMID: 30524901 PMCID: PMC6279343 DOI: 10.1080/2162402x.2018.1503032] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/15/2018] [Indexed: 02/08/2023] Open
Abstract
Oncolytic viruses selectively target and kill cancer cells in an immunogenic fashion, thus supporting the establishment of therapeutically relevant tumor-specific immune responses. In 2015, the US Food and Drug Administration (FDA) approved the oncolytic herpes simplex virus T-VEC for use in advanced melanoma patients. Since then, a plethora of trials has been initiated to assess the safety and efficacy of multiple oncolytic viruses in patients affected with various malignancies. Here, we summarize recent preclinical and clinical progress in the field of oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G. Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Sarah Lévesque
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Samuel T. Workenhe
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, NS, Canada
- Department of Biology, Dalhousie University, NS, Canada
- Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada
| | - Fabrice Le Boeuf
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - Jean-Eudes Fahrner
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Transgene S.A., Illkirch-Graffenstaden, France
| | | | - John C. Bell
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Karen L. Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jitka Fucikova
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
67
|
Hagedorn C, Kreppel F. Capsid Engineering of Adenovirus Vectors: Overcoming Early Vector-Host Interactions for Therapy. Hum Gene Ther 2018; 28:820-832. [PMID: 28854810 DOI: 10.1089/hum.2017.139] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Adenovirus-based vectors comprise the most frequently used vector type in clinical studies to date. Both intense lab research and insights from the clinical trials reveal the importance of a comprehensive understanding of vector-host interactions. Especially for systemic intravenous adenovirus vector delivery, it is paramount to develop safe and efficacious vectors. Very early vector-host interactions that take place in blood long before the first cell is being transduced are phenomena triggered by the surface, shape, and size of the adenovirus vector particles. Not surprisingly, a multitude of different technologies ranging from genetics to chemistry has been developed to alter the adenovirus vector surface. In this review, we discuss the most important technologies and evaluate them for their suitability to overcome hurdles imposed by early vector-host interactions.
Collapse
Affiliation(s)
- Claudia Hagedorn
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University , Witten, Germany
| | - Florian Kreppel
- Chair of Biochemistry and Molecular Medicine, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University , Witten, Germany
| |
Collapse
|
68
|
Nattress CB, Halldén G. Advances in oncolytic adenovirus therapy for pancreatic cancer. Cancer Lett 2018; 434:56-69. [PMID: 29981812 DOI: 10.1016/j.canlet.2018.07.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 02/06/2023]
Abstract
Survival rates for pancreatic cancer patients have remained unchanged for the last four decades. The most aggressive, and most common, type of pancreatic cancer is pancreatic ductal adenocarcinoma (PDAC), which has the lowest 5-year survival rate of all cancers globally. The poor prognosis is typically due to late presentation of often non-specific symptoms and rapid development of resistance to all current therapeutics, including the standard-of-care cytotoxic drug gemcitabine. While early surgical intervention can significantly prolong patient survival, there are few treatment options for late-stage non-resectable metastatic disease, resulting in mostly palliative care. In addition, a defining feature of pancreatic cancer is the immunosuppressive and impenetrable desmoplastic stroma that blocks access to tumour cells by therapeutic drugs. The limited effectiveness of conventional chemotherapeutics reveals an urgent need to develop novel therapies with different mechanisms of action for this malignancy. An emerging alternative to current therapeutics is oncolytic adenoviruses; these engineered biological agents have proven efficacy and tumour-selectivity in preclinical pancreatic cancer models, including models of drug-resistant cancer. Safety of oncolytic adenoviral mutants has been extensively assessed in clinical trials with only limited toxicity to normal healthy tissue being reported. Promising efficacy in combination with gemcitabine was demonstrated in preclinical and clinical studies. A recent surge in novel adenoviral mutants entering clinical trials for pancreatic cancer indicates improved efficacy through activation of the host anti-tumour responses. The potential for adenoviruses to synergise with chemotherapeutics, activate anti-tumour immune responses, and contribute to stromal dissemination render these mutants highly attractive candidates for improved patient outcomes. Currently, momentum is gathering towards the development of systemically-deliverable mutants that are able to overcome anti-viral host immune responses, erythrocyte binding and hepatic uptake, to promote elimination of primary and metastatic lesions. This review will cover the key components of pancreatic cancer oncogenesis; novel oncolytic adenoviruses; clinical trials; and the current progress in overcoming the challenges of systemic delivery.
Collapse
Affiliation(s)
- Callum Baird Nattress
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, United Kingdom
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, United Kingdom.
| |
Collapse
|
69
|
Baker AT, Aguirre-Hernández C, Halldén G, Parker AL. Designer Oncolytic Adenovirus: Coming of Age. Cancers (Basel) 2018; 10:E201. [PMID: 29904022 PMCID: PMC6025169 DOI: 10.3390/cancers10060201] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Revised: 06/06/2018] [Accepted: 06/11/2018] [Indexed: 12/26/2022] Open
Abstract
The licensing of talimogene laherparepvec (T-Vec) represented a landmark moment for oncolytic virotherapy, since it provided unequivocal evidence for the long-touted potential of genetically modified replicating viruses as anti-cancer agents. Whilst T-Vec is promising as a locally delivered virotherapy, especially in combination with immune-checkpoint inhibitors, the quest continues for a virus capable of specific tumour cell killing via systemic administration. One candidate is oncolytic adenovirus (Ad); it’s double stranded DNA genome is easily manipulated and a wide range of strategies and technologies have been employed to empower the vector with improved pharmacokinetics and tumour targeting ability. As well characterised clinical and experimental agents, we have detailed knowledge of adenoviruses’ mechanisms of pathogenicity, supported by detailed virological studies and in vivo interactions. In this review we highlight the strides made in the engineering of bespoke adenoviral vectors to specifically infect, replicate within, and destroy tumour cells. We discuss how mutations in genes regulating adenoviral replication after cell entry can be used to restrict replication to the tumour, and summarise how detailed knowledge of viral capsid interactions enable rational modification to eliminate native tropisms, and simultaneously promote active uptake by cancerous tissues. We argue that these designer-viruses, exploiting the viruses natural mechanisms and regulated at every level of replication, represent the ideal platforms for local overexpression of therapeutic transgenes such as immunomodulatory agents. Where T-Vec has paved the way, Ad-based vectors now follow. The era of designer oncolytic virotherapies looks decidedly as though it will soon become a reality.
Collapse
Affiliation(s)
- Alexander T Baker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| | - Carmen Aguirre-Hernández
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Alan L Parker
- Division of Cancer and Genetics, Cardiff University School of Medicine, Cardiff CF14 4XN, UK.
| |
Collapse
|
70
|
Man YKS, Davies JA, Coughlan L, Pantelidou C, Blázquez-Moreno A, Marshall JF, Parker AL, Halldén G. The Novel Oncolytic Adenoviral Mutant Ad5-3Δ-A20T Retargeted to αvβ6 Integrins Efficiently Eliminates Pancreatic Cancer Cells. Mol Cancer Ther 2018; 17:575-587. [PMID: 29367266 DOI: 10.1158/1535-7163.mct-17-0671] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/27/2017] [Accepted: 11/30/2017] [Indexed: 12/13/2022]
Abstract
Metastatic pancreatic ductal adenocarcinomas (PDAC) are incurable due to the rapid development of resistance to all current therapeutics. Oncolytic adenoviral mutants have emerged as a promising new strategy that negates such resistance. In contrast to normal tissue, the majority of PDACs express the αvβ6 integrin receptor. To exploit this feature, we modified our previously reported oncolytic adenovirus, AdΔΔ, to selectively target αvβ6 integrins to facilitate systemic delivery. Structural modifications to AdΔΔ include the expression of the small but potent αvβ6-binding peptide, A20FMDV2, and ablation of binding to the native coxsackie and adenovirus receptor (CAR) within the fiber knob region. The resultant mutant, Ad5-3Δ-A20T, infected and killed αvβ6 integrin-expressing cells more effectively than the parental wild-type (Ad5wt) virus and AdΔΔ. Viral uptake through αvβ6 integrins rather than native viral receptors (CAR, αvβ3 and αvβ5 integrins) promoted viral propagation and spread. Superior efficacy of Ad5-3Δ-A20T compared with Ad5wt was demonstrated in 3D organotypic cocultures, and similar potency between the two viruses was observed in Suit-2 in vivo models. Importantly, Ad5-3Δ-A20T infected pancreatic stellate cells at low levels, which may further facilitate viral spread and cancer cell elimination either as a single agent or in combination with the chemotherapy drug, gemcitabine. We demonstrate that Ad5-3Δ-A20T is highly selective for αvβ6 integrin-expressing pancreatic cancer cells, and with further development, this new and exciting strategy can potentially be extended to improve the systemic delivery of adenoviruses to pancreatic cancer patients. Mol Cancer Ther; 17(2); 575-87. ©2018 AACR.
Collapse
Affiliation(s)
- Y K Stella Man
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, United Kingdom
| | - James A Davies
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Lynda Coughlan
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Alfonso Blázquez-Moreno
- Department of Immunology and Oncology, Centro Nacional de Biotecnología-Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - John F Marshall
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of London, United Kingdom
| | - Alan L Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary University of London, United Kingdom.
| |
Collapse
|
71
|
Findlay JS, Cook GP, Blair GE. Blood Coagulation Factor X Exerts Differential Effects on Adenovirus Entry into Human Lymphocytes. Viruses 2018; 10:v10010020. [PMID: 29301346 PMCID: PMC5795433 DOI: 10.3390/v10010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 12/29/2017] [Accepted: 12/30/2017] [Indexed: 12/27/2022] Open
Abstract
It has been proposed that blood coagulation factors, principally factor X (FX), enhance the uptake of human adenovirus type 5 (Ad5) into cultured epithelial cells by bridging the viral hexon capsid protein and cell-surface heparan sulphate proteoglycans (HSPGs). We studied the effects of FX on Ad transduction of lymphoid cell lines (NK92MI, a natural killer cell line; Daudi, a B-cell line and Jurkat, a T-cell line) as well as primary peripheral blood lymphocytes (PBL) and HeLa epithelial cells using either replication-deficient Ad5, or a derivative in which the Ad5 fiber was replaced with that of another Ad type, Ad35, termed Ad5F35. PBL and NK92MI were resistant to Ad5 transduction. Transduction of Jurkat and Daudi cells by Ad5 was reduced by FX but without discernible effects on cell-surface Ad5 binding. FX reduced virus binding and transduction of all lymphoid cell lines by Ad5F35, as well as transduction of the T- and Natural Killer (NK)-cell populations of PBL. Flow cytometry analysis showed that all lymphoid cell lines were negative for HSPG components, in contrast to HeLa cells. FX reduced transduction of an HSPG-negative mutant Chinese hamster ovary cell line (CHOpgsA745) by Ad5 and Ad5F35, with Ad5F35 binding also being reduced by FX. These results point to fiber-dependent differences (Ad5 versus Ad35 fiber) in Ad binding to and transduction of human lymphoid and epithelial cells in the presence of FX.
Collapse
Affiliation(s)
- James S Findlay
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| | - Graham P Cook
- Leeds Institute of Cancer and Pathology, University of Leeds, St. James's University Hospital, Leeds LS9 7TF, UK.
| | - G Eric Blair
- School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK.
| |
Collapse
|
72
|
Nidetz NF, Gallagher TM, Wiethoff CM. Inhibition of type I interferon responses by adenovirus serotype-dependent Gas6 binding. Virology 2017; 515:150-157. [PMID: 29288958 DOI: 10.1016/j.virol.2017.12.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/14/2017] [Accepted: 12/15/2017] [Indexed: 10/18/2022]
Abstract
The clinical use of many adenovirus vaccine vectors (AdVs) is limited by the presence of pre-existing antibodies in human populations, which prevent common AdVs from transducing cells and expressing immunogenic gene products. Rare serotype AdVs, such as HAdV-28D can bypass pre-existing immunity. However, rare AdVs stimulate high-levels of type I interferon (IFN), which suppresses antigenic gene expression and therefore limits immunogenicity. Recent studies identified Gas6 as a factor that connects enveloped viruses to host-cell receptor tyrosine kinases, in turn generating signaling cascades that antagonize type I IFN responses. We discovered that Gas6 bound to the fiber proteins of common AdV serotypes, such as HAdV-5C, with a higher affinity than rare HAd-28D fibers. AdV-associated Gas6 suppressed IFN production by common AdVs and enhanced long-term expression of AdV encoded genes. We hypothesize that rare AdV serotypes might be engineered to include Gas6 binding motifs, thereby generating novel vectors that are more effective.
Collapse
Affiliation(s)
- Natalie F Nidetz
- Loyola University Chicago, 2016 S. First Avenue, Maywood, IL 60153, USA.
| | - Tom M Gallagher
- Loyola University Chicago, 2016 S. First Avenue, Maywood, IL 60153, USA.
| | | |
Collapse
|
73
|
Targeting polysialic acid-abundant cancers using oncolytic adenoviruses with fibers fused to active bacteriophage borne endosialidase. Biomaterials 2017; 158:86-94. [PMID: 29304405 DOI: 10.1016/j.biomaterials.2017.12.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/29/2017] [Accepted: 12/10/2017] [Indexed: 11/24/2022]
Abstract
Genetic replacement of adenoviral fiber knobs by ligands that enable tumor specific targeting of oncolytic adenoviruses is challenging because the fiber knob contributes to virus assembly. Here, we present a novel concept by describing stable recombinant adenoviruses with tumor specific infection mode. The fiber knob was replaced by endosialidaseNF (endoNF), the tailspike protein of bacteriophage K1F. EndoNF recognizes polysialic acid, an oncofetal antigen characteristic for high malignant tumors of neuroendocrine origin. An intramolecular chaperone contained in endoNF warrants folding and compensates for the knob function in virus assembly. Obtained recombinant viruses demonstrated polysialic acid dependent infection modes, strong oncolytic capacity with polysialic acid positive cells in culture and a high potential to inhibit tumor growth in a therapeutic mouse model of subcutaneous neuroblastoma. With a single genetic manipulation we achieved ablation of the fiber knob, introduction of a tumor specific ligand, and folding control over the chimeric fiber construct.
Collapse
|
74
|
Duffy MR, Alonso-Padilla J, John L, Chandra N, Khan S, Ballmann MZ, Lipiec A, Heemskerk E, Custers J, Arnberg N, Havenga M, Baker AH, Lemckert A. Generation and characterization of a novel candidate gene therapy and vaccination vector based on human species D adenovirus type 56. J Gen Virol 2017; 99:135-147. [PMID: 29154744 DOI: 10.1099/jgv.0.000978] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The vectorization of rare human adenovirus (HAdV) types will widen our knowledge of this family and their interaction with cells, tissues and organs. In this study we focus on HAdV-56, a member of human Ad species D, and create ease-of-use cloning systems to generate recombinant HAdV-56 vectors carrying foreign genes. We present in vitro transduction profiles for HAdV-56 in direct comparison to the most commonly used HAdV-5-based vector. In vivo characterizations demonstrate that when it is delivered intravenously (i.v.) HAdV-56 mainly targets the spleen and, to a lesser extent, the lungs, whilst largely bypassing liver transduction in mice. HAdV-56 triggered robust inflammatory and cellular immune responses, with higher induction of IFNγ, TNFα, IL5, IL6, IP10, MCP1 and MIG1 compared to HAdV-5 following i.v. administration. We also investigated its potential as a vaccine vector candidate by performing prime immunizations in mice with HAdV-56 encoding luciferase (HAdV-56-Luc). Direct comparisons were made to HAdV-26, a highly potent human vaccine vector currently in phase II clinical trials. HAdV-56-Luc induced luciferase 'antigen'-specific IFNγ-producing cells and anti-HAdV-56 neutralizing antibodies in Balb/c mice, demonstrating a near identical profile to that of HAdV-26. Taken together, the data presented provides further insight into human Ad receptor/co-receptor usage, and the first report on HAdV-56 vectors and their potential for gene therapy and vaccine applications.
Collapse
Affiliation(s)
- Margaret R Duffy
- Batavia Biosciences BV, Leiden, The Netherlands.,Present address: Department of Oncology, University of Oxford, Oxford, UK
| | - Julio Alonso-Padilla
- Institute of Cardiovascular and Medical Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Present address: Barcelona Institute for Global Health (ISGlobal), Centre for Research in International Health (CRESIB), Hospital Clinic de Barcelona -University of Barcelona, Barcelona, Spain
| | - Lijo John
- Division of Virology, Department of Clinical Microbiology, Umeå University, Sweden
| | - Naresh Chandra
- Division of Virology, Department of Clinical Microbiology, Umeå University, Sweden
| | - Selina Khan
- Viral Vaccine Discovery and Early Development, Janssen Vaccines and Prevention BV, Leiden, The Netherlands
| | | | | | | | - Jerome Custers
- Viral Vaccine Discovery and Early Development, Janssen Vaccines and Prevention BV, Leiden, The Netherlands
| | - Niklas Arnberg
- Division of Virology, Department of Clinical Microbiology, Umeå University, Sweden
| | | | - Andrew H Baker
- Present address: Centre for Cardiovascular Sciences, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, UK.,Institute of Cardiovascular and Medical Sciences, College of Medicine, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | | |
Collapse
|
75
|
|
76
|
Nguyen TV, Barry ME, Turner MA, Crosby CM, Trujillo MA, Morris JC, Barry MA. Comparison of Liver Detargeting Strategies for Systemic Therapy with Oncolytic Adenovirus Serotype 5. Biomedicines 2017; 5:E46. [PMID: 28796161 PMCID: PMC5618304 DOI: 10.3390/biomedicines5030046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 08/02/2017] [Accepted: 08/04/2017] [Indexed: 12/01/2022] Open
Abstract
Oncolytic viruses would ideally be of use for systemic therapy to treat disseminated cancer. To do this safely, this may require multiple layers of cancer specificity. The pharmacology and specificity of oncolytic adenoviruses can be modified by (1) physical retargeting, (2) physical detargeting, (3) chemical shielding, or (4) by modifying the ability of viral early gene products to selectively activate in cancer versus normal cells. We explored the utility of these approaches with oncolytic adenovirus serotype 5 (Ad5) in immunocompetent Syrian hamsters bearing subcutaneous HaK tumors. After a single intravenous injection to reach the distant tumors, the physically hepatocyte-detargeted virus Ad5-hexon-BAP was more effective than conditionally replicating Ad5-dl1101/07 with mutations in its E1A protein. When these control or Ad5 treated animals were treated a second time by intratumoral injection, prior exposure to Ad5 did not affect tumor growth, suggesting that anti-Ad immunity neither prevented treatment nor amplified anti-tumor immune responses. Ad5-dl1101/07 was next chemically shielded with polyethylene glycol (PEG). While 5 kDa of PEG blunted pro-inflammatory IL-6 production induced by Ad5-dl1101/07, this shielding reduced Ad oncolytic activity.
Collapse
Affiliation(s)
- Tien V Nguyen
- Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902, USA.
| | - Mary E Barry
- Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902, USA.
| | - Mallory A Turner
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN 55902, USA.
| | - Catherine M Crosby
- Virology and Gene Therapy Graduate Program, Mayo Clinic, Rochester, MN 55902, USA.
| | | | - John C Morris
- Department of Endocrinology, Mayo Clinic, Rochester, MN 55902, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902, USA.
| | - Michael A Barry
- Department of Internal Medicine, Division of Infectious Diseases, Translational Immunovirology and Biodefense Program, Mayo Clinic, Rochester, MN 55902, USA.
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55902, USA.
- Department of Immunology, Mayo Clinic, Rochester, MN 55902, USA.
| |
Collapse
|
77
|
Key Role of the Scavenger Receptor MARCO in Mediating Adenovirus Infection and Subsequent Innate Responses of Macrophages. mBio 2017; 8:mBio.00670-17. [PMID: 28765216 PMCID: PMC5539421 DOI: 10.1128/mbio.00670-17] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The scavenger receptor MARCO is expressed in several subsets of naive tissue-resident macrophages and has been shown to participate in the recognition of various bacterial pathogens. However, the role of MARCO in antiviral defense is largely unexplored. Here, we investigated whether MARCO might be involved in the innate sensing of infection with adenovirus and recombinant adenoviral vectors by macrophages, which elicit vigorous immune responses in vivo. Using cells derived from mice, we show that adenovirus infection is significantly more efficient in MARCO-positive alveolar macrophages (AMs) and in AM-like primary macrophage lines (Max Planck Institute cells) than in MARCO-negative bone marrow-derived macrophages. Using antibodies blocking ligand binding to MARCO, as well as gene-deficient and MARCO-transfected cells, we show that MARCO mediates the rapid adenovirus transduction of macrophages. By enhancing adenovirus infection, MARCO contributes to efficient innate virus recognition through the cytoplasmic DNA sensor cGAS. This leads to strong proinflammatory responses, including the production of interleukin-6 (IL-6), alpha/beta interferon, and mature IL-1α. These findings contribute to the understanding of viral pathogenesis in macrophages and may open new possibilities for the development of tools to influence the outcome of infection with adenovirus or adenovirus vectors. Macrophages play crucial roles in inflammation and defense against infection. Several macrophage subtypes have been identified with differing abilities to respond to infection with both natural adenoviruses and recombinant adenoviral vectors. Adenoviruses are important respiratory pathogens that elicit vigorous innate responses in vitro and in vivo. The cell surface receptors mediating macrophage type-specific adenovirus sensing are largely unknown. The scavenger receptor MARCO is expressed on some subsets of naive tissue-resident macrophages, including lung alveolar macrophages. Its role in antiviral macrophage responses is largely unexplored. Here, we studied whether the differential expression of MARCO might contribute to the various susceptibilities of macrophage subtypes to adenovirus. We demonstrate that MARCO significantly enhances adenovirus infection and innate responses in macrophages. These results help to understand adenoviral pathogenesis and may open new possibilities to influence the outcome of infection with adenoviruses or adenovirus vectors.
Collapse
|
78
|
Combination of p53-DC vaccine and rAd-p53 gene therapy induced CTLs cytotoxic against p53-deleted human prostate cancer cells in vitro. Cancer Gene Ther 2017. [PMID: 28621316 DOI: 10.1038/cgt.2017.21] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recently, the US FDA approved sipuleucel-T, which is composed of autologous DCs stimulated with a recombinant fusion protein of prostatic acid phosphatase (PAP) and granulocyte-macrophage colony-stimulating factor (GM-CSF), as the first immunotherapeutic agent for metastatic castration resistant prostate cancer (mCRPC). However, sipuleucel-T demonstrated only modest efficacy in mCPRC patients. Researchers are now investigating the potential of p53 protein as a tumor-associated antigen (TAA) loaded in DC-based cancer vaccine. Approximately half of all tumors overexpress p53, and up to 20% of prostate cancer cells overexpresses p53. In this study, we evaluated the feasibility of combining p53-DC vaccine and rAd-p53 gene therapy, using the p53-overexpressing and non-expressing prostate cancer cells in vitro. We successfully generated the p53-DC vaccine by culturing autologous DCs infected with rAd-p53. This p53-DC vaccine can differentiate CTLs specifically cytotoxic to p53-overexpressing prostate cancer cells. In addition, rAd-p53 infection can induce overexpression of p53 and thus the cytotoxicity of CTLs differentiated by the p53-DC vaccine in p53 non-expressing prostate cancer cells. These findings suggest that this combination therapy using p53-DC vaccine and rAd-p53 gene therapy together may represent a new paradigm for the treatment of mCRPC.
Collapse
|
79
|
MicroRNA miR-27 Inhibits Adenovirus Infection by Suppressing the Expression of SNAP25 and TXN2. J Virol 2017; 91:JVI.00159-17. [PMID: 28356525 DOI: 10.1128/jvi.00159-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Accepted: 03/22/2017] [Indexed: 01/14/2023] Open
Abstract
Recent studies have reported that host microRNAs (miRNAs) regulate infections by several types of viruses via various mechanisms and that inhibition of the miRNA processing factors enhances or prevents viral infection. However, it has not been clarified whether these effects of miRNAs extend to adenovirus (Ad) infection. Here we show that miR-27a and -b efficiently inhibit infection with an Ad via the downregulation of SNAP25 and TXN2, which are members of the SNARE proteins and the thioredoxin family, respectively. Approximately 80% reductions in Ad genomic copy number were found in cells transfected with miR-27a/b mimics, whereas there were approximately 2.5- to 5-fold larger copy numbers of the Ad genome following transfection with miR-27a/b inhibitors. Microarray gene expression analysis and in silico analysis demonstrated that SNAP25 and TXN2 are target genes of miR-27a/b. A reporter assay using plasmids containing the 3' untranslated regions of the SNAP25 and TXN2 genes showed that miR-27a/b directly suppressed SNAP25 and TXN2 expression through posttranscriptional gene silencing. Knockdown of SNAP25 led to a significant inhibition of Ad entry into cells. Knockdown of TXN2 induced cell cycle arrest at G1 phase, leading to a reduction in Ad replication. In addition, overexpression of Ad-encoded small noncoding RNAs (VA-RNAs) restored the miR-27a/b-mediated reduction in infection level with a VA-RNA-lacking Ad mutant due to the VA-RNA-mediated inhibition of miR-27a/b expression. These results indicate that miR-27a and -b suppress SNAP25 and TXN2 expression via posttranscriptional gene silencing, leading to efficient suppression of Ad infection.IMPORTANCE Adenovirus (Ad) is widely used as a platform for replication-incompetent Ad vectors (Adv) and replication-competent oncolytic Ad (OAd) in gene therapy and virotherapy. Regulation of Ad infection is highly important for efficient gene therapies using both Adv and OAd. In this study, we demonstrate that miR-27a and -b, which are widely expressed in host cells, suppress SNAP25 and TXN2 expression through posttranscriptional gene silencing. Suppression of SNAP25 and TXN2 expression leads to inhibition of Ad entry into cells and to cell cycle arrest, respectively, leading to efficient suppression of Ad infection. Our findings provide important clues to the improvement of gene therapies using both Adv and OAd.
Collapse
|
80
|
Defining a Novel Role for the Coxsackievirus and Adenovirus Receptor in Human Adenovirus Serotype 5 Transduction In Vitro in the Presence of Mouse Serum. J Virol 2017; 91:JVI.02487-16. [PMID: 28381574 PMCID: PMC5446653 DOI: 10.1128/jvi.02487-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 03/24/2017] [Indexed: 01/02/2023] Open
Abstract
Human adenoviral serotype 5 (HAdV-5) vectors have predominantly hepatic tropism when delivered intravascularly, resulting in immune activation and toxicity. Coagulation factor X (FX) binding to HAdV-5 mediates liver transduction and provides protection from virion neutralization in mice. FX is dispensable for liver transduction in mice lacking IgM antibodies or complement, suggesting that alternative transduction pathways exist. To identify novel factor(s) mediating HAdV-5 FX-independent entry, we investigated HAdV-5 transduction in vitro in the presence of serum from immunocompetent C57BL/6 or immunocompromised mice lacking IgM antibodies (Rag 2-/- and NOD-scid-gamma [NSG]). Sera from all three mouse strains enhanced HAdV-5 transduction of A549 cells. While inhibition of HAdV-5-FX interaction with FX-binding protein (X-bp) inhibited transduction in the presence of C57BL/6 serum, it had negligible effect on the enhanced transduction observed in the presence of Rag 2-/- or NSG serum. Rag 2-/- serum also enhanced transduction of the FX binding-deficient HAdV-5HVR5*HVR7*E451Q (AdT*). Interestingly, Rag 2-/- serum enhanced HAdV-5 transduction in a FX-independent manner in CHO-CAR and SKOV3-CAR cells (CHO or SKOV3 cells transfected to stably express human coxsackievirus and adenovirus receptor [CAR]). Additionally, blockade of CAR with soluble HAdV-5 fiber knob inhibited mouse serum-enhanced transduction in A549 cells, suggesting a potential role for CAR. Transduction of HAdV-5 KO1 and HAdV-5/F35 (CAR binding deficient) in the presence of Rag 2-/- serum was equivalent to that of HAdV-5, indicating that direct interaction between HAdV-5 and CAR is not required. These data suggest that FX may protect HAdV-5 from neutralization but has minimal contribution to HAdV-5 transduction in the presence of immunocompromised mouse serum. Alternatively, transduction occurs via an unidentified mouse serum protein capable of bridging HAdV-5 to CAR.IMPORTANCE The intravascular administration of HAdV-5 vectors can result in acute liver toxicity, transaminitis, thrombocytopenia, and injury to the vascular endothelium, illustrating challenges yet to overcome for HAdV-5-mediated systemic gene therapy. The finding that CAR and potentially an unidentified factor present in mouse serum might be important mediators of HAdV-5 transduction highlights that a better understanding of the complex biology defining the interplay between adenovirus immune recognition and cellular uptake mechanisms is still required. These findings are important to inform future optimization and development of HAdV-5-based adenoviral vectors for gene therapy.
Collapse
|
81
|
Yoo SY, Badrinath N, Woo HY, Heo J. Oncolytic Virus-Based Immunotherapies for Hepatocellular Carcinoma. Mediators Inflamm 2017; 2017:5198798. [PMID: 28512387 PMCID: PMC5415860 DOI: 10.1155/2017/5198798] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/08/2017] [Indexed: 02/07/2023] Open
Abstract
Hepatocellular carcinoma is highly refractory cancer which is resistant to conventional chemotherapy and radiotherapy, carrying a dismal prognosis. Although many anticancer drugs have been developed for treating HCC, sorafenib is the only effective treatment, but it only prolongs survival duration for about 3 months. Recently, oncolytic virotherapy has shown promising results in treating HCCs and the effects can be more enhanced by adopting immune modulatory molecules. This review discusses the current status of treating HCC and the effective strategy of oncolytic virus-based immunotherapy for the treatment of HCCs.
Collapse
Affiliation(s)
- So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
- Department of Internal Medicine, College of Medicine, Pusan National University and Medical Research Institute, Yangsan 50612, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Narayanasamy Badrinath
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Republic of Korea
- Research Institute for Convergence of Biomedical Science and Technology, Pusan National University Yangsan Hospital, Yangsan 50612, Republic of Korea
| | - Hyun Young Woo
- Department of Internal Medicine, College of Medicine, Pusan National University and Medical Research Institute, Yangsan 50612, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| | - Jeong Heo
- Department of Internal Medicine, College of Medicine, Pusan National University and Medical Research Institute, Yangsan 50612, Republic of Korea
- Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Republic of Korea
| |
Collapse
|
82
|
High Plasma Lipid Levels Reduce Efficacy of Adenovirus-Mediated Gene Therapy. Sci Rep 2017; 7:386. [PMID: 28341860 PMCID: PMC5428218 DOI: 10.1038/s41598-017-00376-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 02/21/2017] [Indexed: 11/08/2022] Open
Abstract
Adenoviruses are very efficient vectors for delivering therapeutic genes in preclinical and clinical trials. However, randomized controlled human trials have often been lacking clear clinically relevant results. We hypothesized that high lipid levels and specific lipoproteins could significantly decrease adenoviral transduction efficiency in vivo. Here we demonstrate that mice on a high fat diet have lower transgene expression compared to mice on a regular chow. In addition, on a high fat diet, ApoE-/- mice have much higher plasma transgene levels compared to LDLR-deficient mice. We also found that specific lipoprotein receptors play an important role in adenoviral transduction. These findings suggest that high plasma lipid levels, especially apoE-containing lipoproteins, reduce efficacy of adenoviral transduction in mice, which implies that high cholesterol levels in humans could be protective against viral infections and also lead to insufficient transgene expression in clinical trials using adenoviral vectors.
Collapse
|
83
|
Chen J, Gao P, Yuan S, Li R, Ni A, Chu L, Ding L, Sun Y, Liu XY, Duan Y. Oncolytic Adenovirus Complexes Coated with Lipids and Calcium Phosphate for Cancer Gene Therapy. ACS NANO 2016; 10:11548-11560. [PMID: 27977128 DOI: 10.1021/acsnano.6b06182] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Oncolytic adenovirus (OncoAd) is a promising therapeutic agent for treating cancer. However, the therapeutic potential of OncoAd is hindered by hepatic sequestration and the host immune response in vivo. Here, we constructed a PEG/Lipids/calcium phosphate (CaP)-OncoAd (PLC-OncoAd) delivery system for ZD55-IL-24, an oncolytic adenovirus that carries the IL-24 gene. The negatively charged PLC-ZD55-IL-24 were disperse and resisted serum-induced aggregation. Compared to naked ZD55-IL-24, the systemic administration of PLC-ZD55-IL-24 in BALB/c mice resulted in reduced liver sequestration and systemic toxicity and evaded the innate immune response. In addition, masking the surface of OncoAd protected it from neutralization by pre-existing neutralizing antibody. PLC-OncoAd achieved efficient targeted delivery in Huh-7-bearing nude mice, and intravenous administration of a high dose of PLC-ZD55-IL-24 increased therapeutic efficacy without inducing toxicity. The developed PLC-OncoAd delivery system represents a promising improvement for oncolytic adenovirus-based cancer gene therapy in vivo.
Collapse
Affiliation(s)
- Jianhua Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| | - Pei Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| | - Sujing Yuan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Rongxin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| | - Aimin Ni
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Liang Chu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Li Ding
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| |
Collapse
|
84
|
Yumul R, Richter M, Lu ZZ, Saydaminova K, Wang H, Wang CHK, Carter D, Lieber A. Epithelial Junction Opener Improves Oncolytic Adenovirus Therapy in Mouse Tumor Models. Hum Gene Ther 2016; 27:325-37. [PMID: 26993072 DOI: 10.1089/hum.2016.022] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
A central resistance mechanism in solid tumors is the maintenance of epithelial junctions between malignant cells that prevent drug penetration into the tumor. Human adenoviruses (Ads) have evolved mechanisms to breach epithelial barriers. For example, during Ad serotype 3 (Ad3) infection of epithelial tumor cells, massive amounts of subviral penton-dodecahedral particles (PtDd) are produced and released from infected cells to trigger the transient opening of epithelial junctions, thus facilitating lateral virus spread. We show here that an Ad3 mutant that is disabled for PtDd production is significantly less effective in killing of epithelial human xenograft tumors than the wild-type Ad3 virus. Intratumoral spread and therapeutic effect of the Ad3 mutant was enhanced by co-administration of a small recombinant protein (JO; produced in Escherichia coli) that incorporated the minimal junction opening domains of PtDd. We then demonstrated that co-administration of JO with replication-competent Ads that do not produce PtDd (Ad5, Ad35) resulted in greater attenuation of tumor growth than virus injection alone. Furthermore, we genetically modified a conditionally replicating Ad5-based oncolytic Ad (Ad5Δ24) to express a secreted form of JO upon replication in tumor cells. The JO-expressing virus had a significantly greater antitumor effect than the unmodified AdΔ24 version. Our findings indicate that epithelial junctions limit the efficacy of oncolytic Ads and that this problem can be address by co-injection or expression of JO. JO has also the potential for improving cancer therapy with other types of oncolytic viruses.
Collapse
Affiliation(s)
- Roma Yumul
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington
| | - Maximilian Richter
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington
| | - Zhuo-Zhuang Lu
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington.,2 National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention , Beijing, PR China
| | - Kamola Saydaminova
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington
| | - Hongjie Wang
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington
| | | | - Darrick Carter
- 4 Compliment Corp. , Seattle, Washington.,5 PAI Life Sciences Inc. , Seattle, Washington
| | - André Lieber
- 1 Division of Medical Genetics, University of Washington , Seattle, Washington.,4 Compliment Corp. , Seattle, Washington.,6 Department of Pathology, University of Washington , Seattle, Washington
| |
Collapse
|
85
|
Dai HJ, Li DW, Wang YX, Sun AJ, Lu YX, Ding X, Zhang M, Song YG, Huang XD. Induction of heat shock protein 27 by bicyclol attenuates d-galactosamine/lipopolysaccharide-induced liver injury. Eur J Pharmacol 2016; 791:482-490. [DOI: 10.1016/j.ejphar.2016.09.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 02/07/2023]
|
86
|
In vivo transduction of primitive mobilized hematopoietic stem cells after intravenous injection of integrating adenovirus vectors. Blood 2016; 128:2206-2217. [PMID: 27554082 DOI: 10.1182/blood-2016-04-711580] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 08/10/2016] [Indexed: 12/31/2022] Open
Abstract
Current protocols for hematopoietic stem/progenitor cell (HSPC) gene therapy, involving the transplantation of ex vivo genetically modified HSPCs are complex and not without risk for the patient. We developed a new approach for in vivo HSPC transduction that does not require myeloablation and transplantation. It involves subcutaneous injections of granulocyte-colony-stimulating factor/AMD3100 to mobilize HSPCs from the bone marrow (BM) into the peripheral blood stream and the IV injection of an integrating, helper-dependent adenovirus (HD-Ad5/35++) vector system. These vectors target CD46, a receptor that is uniformly expressed on HSPCs. We demonstrated in human CD46 transgenic mice and immunodeficient mice with engrafted human CD34+ cells that HSPCs transduced in the periphery home back to the BM where they stably express the transgene. In hCD46 transgenic mice, we showed that our in vivo HSPC transduction approach allows for the stable transduction of primitive HSPCs. Twenty weeks after in vivo transduction, green fluorescent protein (GFP) marking in BM HSPCs (Lin-Sca1+Kit- cells) in most of the mice was in the range of 5% to 10%. The percentage of GFP-expressing primitive HSPCs capable of forming multilineage progenitor colonies (colony-forming units [CFUs]) increased from 4% of all CFUs at week 4 to 16% at week 12, indicating transduction and expansion of long-term surviving HSPCs. Our approach was well tolerated, did not result in significant transduction of nonhematopoietic tissues, and was not associated with genotoxicty. The ability to stably genetically modify HSPCs without the need of myeloablative conditioning is relevant for a broader clinical application of gene therapy.
Collapse
|
87
|
Abstract
Prostate cancer is a leading cause of cancer-related death and morbidity in men in the Western world. Tumor progression is dependent on functioning androgen receptor signaling, and initial administration of antiandrogens and hormone therapy (androgen-deprivation therapy) prevent growth and spread. Tumors frequently develop escape mechanisms to androgen-deprivation therapy and progress to castration-resistant late-stage metastatic disease that, in turn, inevitably leads to resistance to all current therapeutics, including chemotherapy. In spite of the recent development of more effective inhibitors of androgen–androgen receptor signaling such as enzalutamide and abiraterone, patient survival benefits are still limited. Oncolytic adenoviruses have proven efficacy in prostate cancer cells and cause regression of tumors in preclinical models of numerous drug-resistant cancers. Data from clinical trials demonstrate that adenoviral mutants have limited toxicity to normal tissues and are safe when administered to patients with various solid cancers, including prostate cancer. While efficacy in response to adenovirus administration alone is marginal, findings from early-phase trials targeting local-ized and metastatic prostate cancer suggest improved efficacy in combination with cytotoxic drugs and radiation therapy. Here, we review recent progress in the development of multimodal oncolytic adenoviruses as biological therapeutics to improve on tumor elimination in prostate cancer patients. These optimized mutants target cancer cells by several mechanisms including viral lysis and by expression of cytotoxic transgenes and immune-stimulatory factors that activate the host immune system to destroy both infected and noninfected prostate cancer cells. Additional modifications of the viral capsid proteins may support future systemic delivery of oncolytic adenoviruses.
Collapse
Affiliation(s)
- Katrina Sweeney
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, London, UK
| | - Gunnel Halldén
- Centre for Molecular Oncology, Barts Cancer Institute, Queen Mary, University of London, London, UK
| |
Collapse
|
88
|
Krutzke L, Prill JM, Engler T, Schmidt CQ, Xu Z, Byrnes AP, Simmet T, Kreppel F. Substitution of blood coagulation factor X-binding to Ad5 by position-specific PEGylation: Preventing vector clearance and preserving infectivity. J Control Release 2016; 235:379-392. [PMID: 27302248 DOI: 10.1016/j.jconrel.2016.06.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 06/09/2016] [Accepted: 06/10/2016] [Indexed: 01/19/2023]
Abstract
The biodistribution of adenovirus type 5 (Ad5) vector particles is heavily influenced by interaction of the particles with plasma proteins, including coagulation factor X (FX), which binds specifically to the major Ad5 capsid protein hexon. FX mediates hepatocyte transduction by intravenously-injected Ad5 vectors and shields vector particles from neutralization by natural antibodies and complement. In mice, mutant Ad5 vectors that are ablated for FX-binding become detargeted from hepatocytes, which is desirable for certain applications, but unfortunately such FX-nonbinding vectors also become sensitive to neutralization by mouse plasma proteins. To improve the properties of Ad5 vectors for systemic delivery, we developed a strategy to replace the natural FX shield by a site-specific chemical polyethylene glycol shield. Coupling of polyethylene glycol to a specific site in hexon hypervariable region 1 yielded vector particles that were protected from neutralization by natural antibodies and complement although they were unable to bind FX. These vector particles evaded macrophages in vitro and showed significantly improved pharmacokinetics and hepatocyte transduction in vivo. Thus, site-specific shielding of Ad5 vectors with polyethylene glycol rendered vectors FX-independent and greatly improved their properties for systemic gene therapy.
Collapse
Affiliation(s)
- L Krutzke
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | - J M Prill
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | - T Engler
- Department of Gene Therapy, Ulm University, Ulm, Germany
| | - C Q Schmidt
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - Z Xu
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - A P Byrnes
- Division of Cellular and Gene Therapies, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - T Simmet
- Institute of Pharmacology of Natural Products and Clinical Pharmacology, Ulm University, Ulm, Germany
| | - F Kreppel
- Department of Gene Therapy, Ulm University, Ulm, Germany.
| |
Collapse
|
89
|
Diminished Innate Antiviral Response to Adenovirus Vectors in cGAS/STING-Deficient Mice Minimally Impacts Adaptive Immunity. J Virol 2016; 90:5915-27. [PMID: 27076643 DOI: 10.1128/jvi.00500-16] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/09/2016] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED Infection by adenovirus, a nonenveloped DNA virus, induces antiviral innate and adaptive immune responses. Studies of transformed human and murine cell lines using short hairpin RNA (shRNA) knockdown strategies identified cyclic guanine adenine synthase (cGAS) as a pattern recognition receptor (PRR) that contributes to the antiadenovirus response. Here we demonstrate how the cGAS/STING cascade influences the antiviral innate and adaptive immune responses in a murine knockout model. Using knockout bone marrow-derived dendritic cells (BMDCs) and bone marrow-derived macrophages (BMMOs), we determined that cGAS and STING are essential to the induction of the antiadenovirus response in these antigen-presenting cells (APCs) in vitro We next determined how the cGAS/STING cascade impacts the antiviral response following systemic administration of a recombinant adenovirus type 5 vector (rAd5V). Infection of cGAS(-/-) and STING(-/-) mice results in a compromised early antiviral innate response compared to that in wild-type (WT) controls: significantly lower levels of beta interferon (IFN-β) secretion, low levels of proinflammatory chemokine induction, and reduced levels of antiviral transcript induction in hepatic tissue. At 24 h postinfection, levels of viral DNA and reporter gene expression in the liver were similar in all strains. At 28 days postinfection, clearance of infected hepatocytes in cGAS or STING knockout mice was comparable to that in WT C57BL/6 mice. Levels of neutralizing anti-Ad5V antibody were modestly reduced in infected cGAS mice. These data support a dominant role for the cGAS/STING cascade in the early innate antiviral inflammatory response to adenovirus vectors. However, loss of the cGAS/STING pathway did not affect viral clearance, and cGAS deficiency had a modest influence on the magnitude of the antiviral humoral immune response to adenovirus infections. IMPORTANCE The detection of viral infection by host sentinel immune cells contributes to the activation of a complex and varied antiviral innate and adaptive immune response, which limits virus replication, spread, and susceptibility to infection. In this study, we have characterized how the cGAS/STING DNA-sensing cascade contributes to early detection of adenovirus infections. cGAS influences APC activation and early innate antiviral inflammatory immune responses, but adaptive immune pathways associated with virus clearance and anti-Ad antibody production were minimally influenced by the loss of the cGAS PRR signaling cascade.
Collapse
|
90
|
VanderVeen N, Raja N, Yi E, Appelman H, Ng P, Palmer D, Zamler D, Dzaman M, Lowenstein PR, Castro MG. Preclinical Efficacy and Safety Profile of Allometrically Scaled Doses of Doxycycline Used to Turn "On" Therapeutic Transgene Expression from High-Capacity Adenoviral Vectors in a Glioma Model. Hum Gene Ther Methods 2016; 27:98-111. [PMID: 27056322 PMCID: PMC4926229 DOI: 10.1089/hgtb.2015.168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Accepted: 03/29/2016] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is the most commonly occurring primary brain cancer in adults, in whom its highly infiltrative cells prevent total surgical resection, often leading to tumor recurrence and patient death. Our group has discovered a gene therapy approach for GBM that utilizes high-capacity "gutless" adenoviral vectors encoding regulatable therapeutic transgenes. The herpes simplex type 1-thymidine kinase (TK) actively kills dividing tumor cells in the brain when in the presence of the prodrug, ganciclovir (GCV), whereas the FMS-like tyrosine kinase 3 ligand (Flt3L) is an immune-stimulatory molecule under tight regulation by a tetracycline-inducible "Tet-On" activation system that induces anti-GBM immunity. As a prelude to a phase I clinical trial, we evaluated the safety and efficacy of Food and Drug Administration (FDA)-approved doses of the tetracycline doxycycline (DOX) allometrically scaled for rats. DOX initiates the expression of Flt3L, which has been shown to recruit dendritic cells to the brain tumor microenvironment-an integral first step in the development of antitumor immunity. The data revealed a highly safe profile surrounding these human-equivalent doses of DOX under an identical therapeutic window as proposed in the clinical trial. This was confirmed through a neuropathological analysis, liver and kidney histopathology, detection of neutralizing antibodies, and systemic toxicities in the blood. Interestingly, we observed a significant survival advantage in rats with GBM receiving the 300 mg/day equivalent dosage of DOX versus the 200 mg/day equivalent. Additionally, rats rejected "recurrent" brain tumor threats implanted 90 days after their primary brain tumors. We also show that DOX detection within the plasma can be an indicator of optimal dosing of DOX to attain therapeutic levels. This work has significant clinical relevance for an ongoing phase I clinical trial in humans with primary GBM and for other therapeutic approaches using Tet-On transactivation system in humans.
Collapse
Affiliation(s)
- Nathan VanderVeen
- Department of Neurosurgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Nicholas Raja
- Department of Neurosurgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Elizabeth Yi
- Department of Neurosurgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Henry Appelman
- Department of Pathology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Philip Ng
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Donna Palmer
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Daniel Zamler
- Department of Neurosurgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Marta Dzaman
- Department of Neurosurgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Pedro R. Lowenstein
- Department of Neurosurgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| | - Maria G. Castro
- Department of Neurosurgery, The University of Michigan Medical School, Ann Arbor, Michigan
- Department of Cell and Developmental Biology, The University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
91
|
Othman ER, Curiel DT, Hussein M, Abdelaal II, Fetih AN, Al-Hendy A. Enhancing Adenoviral-Mediated Gene Transfer and Expression to Endometrial Cells. Reprod Sci 2016; 23:1109-15. [PMID: 26865542 DOI: 10.1177/1933719116630420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Our aim was to screen a panel of modified adenoviral gene transfer vectors to identify those which can sustain high gene expression in human endometrial cells. METHODS Normal endometrial stromal cell cultures were established from endometrial lining of hysterectomy specimens performed for benign gynecologic indications. Human endometrial stromal cells were transfected by modified adenoviruses expressing luciferase reporter gene. Luciferase activity mediated by each virus was expressed as a percentage of adenovirus serotype 5 (Ad5-CMV-luc) activity. The 2-tailed Student t test was used to compare data. RESULTS At a multiplicity of infection (MOI) of 10 pfu/cell, of the transductionally modified adenoviruses, adenovirus-RGD (Ad-RGD-luc) mediated highest level of endometrial cell transduction with transgene expression around 4 times higher when compared to Ad5 (P < .001). Of the transcriptionally targeted adenoviruses, adenovirus under secretory leukocyte protease inhibitor promoter (Ad-SLPI-luc) and adenovirus under heparanase promoter (Ad-heparanase-luc)-mediated luciferase activation were 5.8- and 4.3-folds higher than Ad5-CMV-luc, respectively (P = .02 and .03, respectively). At MOI of 50 pfu/cell, Ad-RGD-luc and AD-SLPI-luc mediated significantly higher gene transfer efficiency compared to Ad5-CMV-luc (P values < .001, for each virus). Ad-heparanase-luc achieved higher gene activity, but difference was not significant (P = .1). Ad-SLPI-luc, at low viral dose (10 pfu/ cell), mediated gene expression effect comparable to Ad5-CMV-luc at a high dose (50 pfu/cell), with no significant difference. CONCLUSIONS We conclude that when compared to the wild-type adenovirus, Ad-RGD-luc, Ad-SLPI-luc, and Ad-heparanase-luc mediate higher reporter gene activity in endometrial cells and can work as effective gene transfer vectors in gene therapy applications to the endometrium.
Collapse
Affiliation(s)
- Essam R Othman
- OB-GYN Department, Assiut University, Assiut, Egypt Center of Excellence of Stem Cells and Regenerative Medicine CESCRM, Assiut University, Assiut, Egypt
| | - David T Curiel
- Division of Cancer Biology, Department of Radiation Oncology, Washington University Medical School, Washington, DC, USA
| | | | | | | | - Ayman Al-Hendy
- OB-GYN Department, Georgia Regents University, Medical College of Georgia, Augusta, GA, USA
| |
Collapse
|
92
|
Jonsson-Schmunk K, Wonganan P, Choi JH, Callahan SM, Croyle MA. Integrin Receptors Play a Key Role in the Regulation of Hepatic CYP3A. ACTA ACUST UNITED AC 2016; 44:758-70. [PMID: 26868618 DOI: 10.1124/dmd.115.068874] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 02/10/2016] [Indexed: 12/21/2022]
Abstract
Landmark studies describing the effect of microbial infection on the expression and activity of hepatic CYP3A used bacterial lipopolysaccharide as a model antigen. Our efforts to determine whether these findings were translatable to viral infections led us to observations suggesting that engagement of integrin receptors is key in the initiation of processes responsible for changes in hepatic CYP3A4 during infection and inflammation. Studies outlined in this article were designed to evaluate whether engagement of integrins, receptors commonly used by a variety of microbes to enter cellular targets, is vital in the regulation of CYP3A in the presence and absence of virus infection. Mice infected with a recombinant adenovirus (AdlacZ) experienced a 70% reduction in hepatic CYP3A catalytic activity. Infection with a mutant virus with integrin-binding arginine-glycine-aspartic acid (RGD) sequences deleted from the penton base protein of the virus capsid (AdΔRGD) did not alter CYP3A activity. CYP3A mRNA and protein levels in AdlacZ-treated animals were also suppressed, whereas those of mice given AdΔRGD were not significantly different from uninfected control mice. Silencing of the integrinβ-subunit reverted adenovirus-mediated CYP3A4 suppression in vitro. Silencing of theα-subunit did not. Suppression of integrin subunits had a profound effect on nuclear receptors pregnane X receptor and constitutive androstane receptor, whereas retinoid X receptorαwas largely unaffected. To our knowledge, this is the first time that extracellular receptors, like integrins, have been indicated in the regulation of CYP3A. This finding has several implications owing to the important role of integrins in normal physiologic process and in many disease states.
Collapse
Affiliation(s)
- Kristina Jonsson-Schmunk
- Division of Pharmaceutics, College of Pharmacy (K.J.-S., P.W., J.H.C., S.M.C., M.A.C.), and Center for Infectious Disease (M.A.C.), The University of Texas at Austin, Austin, Texas
| | - Piynauch Wonganan
- Division of Pharmaceutics, College of Pharmacy (K.J.-S., P.W., J.H.C., S.M.C., M.A.C.), and Center for Infectious Disease (M.A.C.), The University of Texas at Austin, Austin, Texas
| | - Jin Huk Choi
- Division of Pharmaceutics, College of Pharmacy (K.J.-S., P.W., J.H.C., S.M.C., M.A.C.), and Center for Infectious Disease (M.A.C.), The University of Texas at Austin, Austin, Texas
| | - Shellie M Callahan
- Division of Pharmaceutics, College of Pharmacy (K.J.-S., P.W., J.H.C., S.M.C., M.A.C.), and Center for Infectious Disease (M.A.C.), The University of Texas at Austin, Austin, Texas
| | - Maria A Croyle
- Division of Pharmaceutics, College of Pharmacy (K.J.-S., P.W., J.H.C., S.M.C., M.A.C.), and Center for Infectious Disease (M.A.C.), The University of Texas at Austin, Austin, Texas
| |
Collapse
|
93
|
Evaluation of polymer shielding for adenovirus serotype 6 (Ad6) for systemic virotherapy against human prostate cancers. MOLECULAR THERAPY-ONCOLYTICS 2016; 3:S2372-7705(16)30029-8. [PMID: 26900598 PMCID: PMC4758940 DOI: 10.1038/mto.2015.21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Oncolytic viruses hold promise as “self-amplifying” cancer therapies wherein a virally killed cell can produce thousands of new viral “drugs” that can kill more cancer cells. Adenoviruses (Ads) are one family of oncolytic viruses. Most human studies have used human Ad serotype 5 (Ad5). Unfortunately, most patients are already immune to Ad5 increasing the likelihood that the agent will be neutralized if used as a cancer therapy. In this work, lower seroprevalence Ad6 was tested as a systemic therapy for prostate cancer. Ad5 and Ad6 were injected intravenously a single time in nude mice bearing human prostate tumors, and toxicity and efficacy were assessed. Ad6 was chemically shielded with polyethylene glycol (PEG) to test if this would further improve its pharmacology. Ad6 produced 30-fold lower liver damage and less toxicity than Ad5. Ad6 significantly repressed the growth of androgen-resistant human DU145 prostate tumors and androgen-sensitive LNCaP tumors after single intravenous injection. PEGylation did not change virus distribution, but blunted liver damage and cytokine production by Ad6. PEGylated Ad6 eradicated LNCaP tumors and maintained body mass, but lost potency against the more challenging DU145 tumors. These and other data suggest that low seroprevalent Ad6 has better efficacy and safety than the benchmark oncolytic virus Ad5 for systemic therapy of prostate cancer. These data also indicate that PEGylation may improve Ad6 safety, but that this shielding may reduce oncolytic efficacy after intravenous treatment.
Collapse
|
94
|
Abstract
Human adenovirus (Ad) has been used extensively to develop gene transfer vectors for vaccine and gene therapy applications. A major factor limiting the efficacy of the current generation of Ad vectors is their inability to accomplish specific gene delivery to the cells of interest. Transductional targeting strategies seek to redirect virus binding to the appropriate cellular receptor to increase infection efficiency in selected cell types to achieve therapeutic intervention. These efforts mainly focused on incorporating targeting ligands by means of chemical conjugation or genetic modification of Ad capsid proteins and using bispecific adapter molecules to mediate virus recognition of target cells. This review summarizes current progress in Ad tropism modification maneuvers that embody genetic capsid modification and adapter-based approaches that have encouraging implications for further development of advanced vectors suitable for clinical translation.
Collapse
|
95
|
Adenoviral Vector Vaccines Antigen Transgene. ADENOVIRAL VECTORS FOR GENE THERAPY 2016. [PMCID: PMC7150117 DOI: 10.1016/b978-0-12-800276-6.00021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In the past decade adenovirus-based vaccines have progressed from preclinical studies, which universally showed the vectors’ high immunogenicity, to testing in humans. Clinical trials showed that adenovirus vectors are well tolerated by humans. They induce robust immune responses that can be expanded by booster immunization. The effect of preexisting neutralizing antibodies on vectors’ immunogenicity appears to be less severe than was observed in experimental animals and can readily be circumvented by using vectors to which most humans lack neutralizing antibodies. Additional clinical studies are needed to firmly establish the efficacy of adenoviral vector vaccines.
Collapse
|
96
|
Fan G, Fan M, Wang Q, Jiang J, Wan Y, Gong T, Zhang Z, Sun X. Bio-inspired polymer envelopes around adenoviral vectors to reduce immunogenicity and improve in vivo kinetics. Acta Biomater 2016; 30:94-105. [PMID: 26546972 DOI: 10.1016/j.actbio.2015.11.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 10/27/2015] [Accepted: 11/03/2015] [Indexed: 10/22/2022]
Abstract
Adenoviral vectors have attracted substantial interest for systemic tumor gene therapy, but further work is needed to reduce their immunogenicity and alter their biodistribution before they can be used in the clinic. Here we describe a bio-inspired, cleavable PEGylated β-cyclodextrin-polyethyleneimine conjugate (CDPCP) that spontaneously coats adenovirus in solution. This cleavable PEG coating reduces the innate and adaptive immunogenicity of adenovirus particles, as well as improves their biodistribution away from the liver and into the tumor. Insertion of a matrix metalloproteinase substrate sequence into the conjugate allows PEG cleavage at the tumor site, simultaneously reducing liver biodistribution and increasing transgene expression in tumors, thereby avoiding the "PEG dilemma". Cationic β-cyclodextrin-PEI not only provides electrostatic attraction to promote envelope attachment to the viral capsid, but it also improves vector internalization and transduction after PEG cleavage. These results suggest that CDPCP may help expand the use of adenoviral vectors in cancer gene therapy. STATEMENT OF SIGNIFICANCE The synthesized β-cyclodextrin-PEI-MMP-cleavable-PEG polymer (CDPCP), held great potential for gene therapy when applied for adenovirus coating. The β-cyclodextrin-PEI provided a powerful electrostatic attraction to attach the whole polymer onto the viral capsid, while the MMPs-cleavable PEG reduced innate and adaptive immunogenicity and improved the biodistribution of adenovirus vectors due to the tumor-specific enzyme triggered PEG cleavage. More importantly, an ingenious cooperation between the two components could solve the PEG dilemma. The CDPCP/Ad complexes exhibited a comprehensive and valued profile to be a candidate vector for future tumor gene therapy, we believe the current investigation on this kind of biomaterial may be of particular interest to the readership of Acta biomaterialia.
Collapse
|
97
|
Ermert D, Blom AM. C4b-binding protein: The good, the bad and the deadly. Novel functions of an old friend. Immunol Lett 2015; 169:82-92. [PMID: 26658464 DOI: 10.1016/j.imlet.2015.11.014] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/29/2023]
Abstract
C4b-binding protein (C4BP) is best known as a potent soluble inhibitor of the classical and lectin pathways of the complement system. This large 500 kDa multimeric plasma glycoprotein is expressed mainly in the liver but also in lung and pancreas. It consists of several identical 75 kDa α-chains and often also one 40 kDa β-chain, both of which are mainly composed of complement control protein (CCP) domains. Structure-function studies revealed that one crucial binding site responsible for inhibition of complement is located to CCP1-3 of the α-chain. Binding of anticoagulant protein S to the CCP1 of the β-chain provides C4BP with the ability to strongly bind apoptotic and necrotic cells in order to prevent inflammation arising from activation of complement by these cells. Further, C4BP interacts strongly with various types of amyloid and enhances fibrillation of islet amyloid polypeptide secreted from pancreatic beta cells, which may attenuate pro-inflammatory and cytotoxic effects of this amyloid. Full deficiency of C4BP has not been identified but non-synonymous alterations in its sequence have been found in haemolytic uremic syndrome and recurrent pregnancy loss. Furthermore, C4BP is bound by several bacterial pathogens, notably Streptococcus pyogenes, which due to inhibition of complement and enhancement of bacterial adhesion to endothelial cells provides these bacteria with a survival advantage in the host. Thus, depending on the context, C4BP has a protective or detrimental role in the organism.
Collapse
Affiliation(s)
- David Ermert
- Lund University, Department of Translational Medicine, Division of Medical Protein Chemistry, Inga Marie Nilssons Street 53, Malmö, 20502, Sweden.
| | - Anna M Blom
- Lund University, Department of Translational Medicine, Division of Medical Protein Chemistry, Inga Marie Nilssons Street 53, Malmö, 20502, Sweden.
| |
Collapse
|
98
|
Uusi-Kerttula H, Hulin-Curtis S, Davies J, Parker AL. Oncolytic Adenovirus: Strategies and Insights for Vector Design and Immuno-Oncolytic Applications. Viruses 2015; 7:6009-42. [PMID: 26610547 PMCID: PMC4664994 DOI: 10.3390/v7112923] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/13/2015] [Accepted: 11/17/2015] [Indexed: 02/06/2023] Open
Abstract
Adenoviruses (Ad) are commonly used both experimentally and clinically, including oncolytic virotherapy applications. In the clinical area, efficacy is frequently hampered by the high rates of neutralizing immunity, estimated as high as 90% in some populations that promote vector clearance and limit bioavailability for tumor targeting following systemic delivery. Active tumor targeting is also hampered by the ubiquitous nature of the Ad5 receptor, hCAR, as well as the lack of highly tumor-selective targeting ligands and suitable targeting strategies. Furthermore, significant off-target interactions between the viral vector and cellular and proteinaceous components of the bloodstream have been documented that promote uptake into non-target cells and determine dose-limiting toxicities. Novel strategies are therefore needed to overcome the obstacles that prevent efficacious Ad deployment for wider clinical applications. The use of less seroprevalent Ad serotypes, non-human serotypes, capsid pseudotyping, chemical shielding and genetic masking by heterologous peptide incorporation are all potential strategies to achieve efficient vector escape from humoral immune recognition. Conversely, selective vector arming with immunostimulatory agents can be utilized to enhance their oncolytic potential by activation of cancer-specific immune responses against the malignant tissues. This review presents recent advantages and pitfalls occurring in the field of adenoviral oncolytic therapies.
Collapse
Affiliation(s)
- Hanni Uusi-Kerttula
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Sarah Hulin-Curtis
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - James Davies
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | - Alan L Parker
- Institute of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
99
|
Hepatocyte Heparan Sulfate Is Required for Adeno-Associated Virus 2 but Dispensable for Adenovirus 5 Liver Transduction In Vivo. J Virol 2015; 90:412-20. [PMID: 26491162 DOI: 10.1128/jvi.01939-15] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022] Open
Abstract
UNLABELLED Adeno-associated virus 2 (AAV2) and adenovirus 5 (Ad5) are promising gene therapy vectors. Both display liver tropism and are currently thought to enter hepatocytes in vivo through cell surface heparan sulfate proteoglycans (HSPGs). To test directly this hypothesis, we created mice that lack Ext1, an enzyme required for heparan sulfate biosynthesis, in hepatocytes. Ext1(HEP) mutant mice exhibit an 8-fold reduction of heparan sulfate in primary hepatocytes and a 5-fold reduction of heparan sulfate in whole liver tissue. Conditional hepatocyte Ext1 gene deletion greatly reduced AAV2 liver transduction following intravenous injection. Ad5 transduction requires blood coagulation factor X (FX); FX binds to the Ad5 capsid hexon protein and bridges the virus to HSPGs on the cell surface. Ad5.FX transduction was abrogated in primary hepatocytes from Ext1(HEP) mice. However, in contrast to the case with AAV2, Ad5 transduction was not significantly reduced in the livers of Ext1(HEP) mice. FX remained essential for Ad5 transduction in vivo in Ext1(HEP) mice. We conclude that while AAV2 requires HSPGs for entry into mouse hepatocytes, HSPGs are dispensable for Ad5 hepatocyte transduction in vivo. This study reopens the question of how adenovirus enters cells in vivo. IMPORTANCE Our understanding of how viruses enter cells, and how they can be used as therapeutic vectors to manage disease, begins with identification of the cell surface receptors to which viruses bind and which mediate viral entry. Both adeno-associated virus 2 and adenovirus 5 are currently thought to enter hepatocytes in vivo through heparan sulfate proteoglycans (HSPGs). However, direct evidence for these conclusions is lacking. Experiments presented herein, in which hepatic heparan sulfate synthesis was genetically abolished, demonstrated that HSPGs are not likely to function as hepatocyte Ad5 receptors in vivo. The data also demonstrate that HSPGs are required for hepatocyte transduction by AAV2. These results reopen the question of the identity of the Ad5 receptor in vivo and emphasize the necessity of demonstrating the nature of the receptor by genetic means, both for understanding Ad5 entry into cells in vivo and for optimization of Ad5 vectors as therapeutic agents.
Collapse
|
100
|
|