51
|
Wood TE, Howard SA, Förster A, Nolan LM, Manoli E, Bullen NP, Yau HCL, Hachani A, Hayward RD, Whitney JC, Vollmer W, Freemont PS, Filloux A. The Pseudomonas aeruginosa T6SS Delivers a Periplasmic Toxin that Disrupts Bacterial Cell Morphology. Cell Rep 2020; 29:187-201.e7. [PMID: 31577948 PMCID: PMC6899460 DOI: 10.1016/j.celrep.2019.08.094] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 07/02/2019] [Accepted: 08/27/2019] [Indexed: 01/10/2023] Open
Abstract
The type VI secretion system (T6SS) is crucial in interbacterial competition and is a virulence determinant of many Gram-negative bacteria. Several T6SS effectors are covalently fused to secreted T6SS structural components such as the VgrG spike for delivery into target cells. In Pseudomonas aeruginosa, the VgrG2b effector was previously proposed to mediate bacterial internalization into eukaryotic cells. In this work, we find that the VgrG2b C-terminal domain (VgrG2bC-ter) elicits toxicity in the bacterial periplasm, counteracted by a cognate immunity protein. We resolve the structure of VgrG2bC-ter and confirm it is a member of the zinc-metallopeptidase family of enzymes. We show that this effector causes membrane blebbing at midcell, which suggests a distinct type of T6SS-mediated growth inhibition through interference with cell division, mimicking the impact of β-lactam antibiotics. Our study introduces a further effector family to the T6SS arsenal and demonstrates that VgrG2b can target both prokaryotic and eukaryotic cells. The structure of the VgrG2b C-terminal domain presents a metallopeptidase fold VgrG2b exerts antibacterial activity in the periplasmic space Toxicity of VgrG2b is counteracted by a cognate periplasmic immunity protein VgrG2bC-ter-intoxicated prey cells bleb at the midcell and lyse
Collapse
Affiliation(s)
- Thomas E Wood
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Sophie A Howard
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Andreas Förster
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Laura M Nolan
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Eleni Manoli
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Nathan P Bullen
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Hamish C L Yau
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Abderrahman Hachani
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK
| | - Richard D Hayward
- Division of Microbiology and Parasitology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, UK
| | - John C Whitney
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4L8, Canada
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Paul S Freemont
- Section of Structural Biology, Department of Medicine, Imperial College London, London SW7 2AZ, UK
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
52
|
Hernandez RE, Gallegos‐Monterrosa R, Coulthurst SJ. Type
VI
secretion system effector proteins: Effective weapons for bacterial competitiveness. Cell Microbiol 2020; 22:e13241. [DOI: 10.1111/cmi.13241] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Ruth E. Hernandez
- Division of Molecular Microbiology, School of Life SciencesUniversity of Dundee Dundee UK
| | | | - Sarah J. Coulthurst
- Division of Molecular Microbiology, School of Life SciencesUniversity of Dundee Dundee UK
| |
Collapse
|
53
|
Vazquez-Lopez J, Navarro-Garcia F. In silico Analyses of Core Proteins and Putative Effector and Immunity Proteins for T6SS in Enterohemorrhagic E. coli. Front Cell Infect Microbiol 2020; 10:195. [PMID: 32432054 PMCID: PMC7216683 DOI: 10.3389/fcimb.2020.00195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/14/2020] [Indexed: 12/29/2022] Open
Abstract
Shiga-toxin-producing Escherichia coli (STEC) has become an important pathogen that can cause diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS) in humans. Recent reports show that the type VI secretion system (T6SS) from EHEC is required to produce infection in a murine model and its expression has been related to a higher prevalence of HUS. In this work, we use bioinformatics analyses to identify the core genes of the T6SS and compared the differences between these components among the two published genomes for EHEC O157:H7 strain EDL933. Prototype strain EDL933 was further compared with other O157:H7 genomes. Unlike other typical T6SS effectors found in E. coli, we identified that there are several rhs family genes in EHEC, which could serve as T6SS effectors. In-silico and PCR analyses of the differences between rhs genes in the two existing genomes, allowed us to determine that the most recently published genome is more reliable to study the rhs genes. Analyzing the putative tridimensional structure of Rhs proteins, as well as the motifs found in their C-terminal end, allowed us to predict their possible functions. A phylogenetic analysis showed that the orphan rhs genes are more closely related between them than the rhs genes belonging to vgrG islands and that they are divided into three clades. Analyses of the downstream region of the rhs genes for identifying hypothetical immunity proteins showed that every gene has an associated small ORF (129-609 nucleotides). These genes could serve as immunity proteins as they had several interaction motifs as well as structural homology with other known immunity proteins. Our findings highlight the relevance of the T6SS in EHEC as well as the possible function of the Rhs effectors of EHEC O157:H7 during pathogenesis and bacterial competition, and the identification of novel effectors for the T6SS using a structural approach.
Collapse
Affiliation(s)
- Jaime Vazquez-Lopez
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| |
Collapse
|
54
|
Bleves S, Galán JE, Llosa M. Bacterial injection machines: Evolutionary diverse but functionally convergent. Cell Microbiol 2020; 22:e13157. [PMID: 31891220 PMCID: PMC7138736 DOI: 10.1111/cmi.13157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 12/19/2019] [Indexed: 12/23/2022]
Abstract
Many human pathogens use Type III, Type IV, and Type VI secretion systems to deliver effectors into their target cells. The contribution of these secretion systems to microbial virulence was the main focus of a workshop organised by the International University of Andalusia in Spain. The meeting addressed structure-function, substrate recruitment, and translocation processes, which differ widely on the different secretion machineries, as well as the nature of the translocated effectors and their roles in subverting the host cell. An excellent panel of worldwide speakers presented the state of the art of the field, highlighting the involvement of bacterial secretion in human disease and discussing mechanistic aspects of bacterial pathogenicity, which can provide the bases for the development of novel antivirulence strategies.
Collapse
Affiliation(s)
- Sophie Bleves
- LISM (Laboratoire d’Ingénierie des Systèmes Macromoléculaires-UMR7255), IMM (Institut de Microbiologie de la Méditerranée), Aix-Marseille Univ and CNRS, Marseille, France
| | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, USA
| | - Matxalen Llosa
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), Universidad de Cantabria-CSIC-SODERCAN, Santander, Spain
| |
Collapse
|
55
|
Wettstadt S, Filloux A. Manipulating the type VI secretion system spike to shuttle passenger proteins. PLoS One 2020; 15:e0228941. [PMID: 32101557 PMCID: PMC7043769 DOI: 10.1371/journal.pone.0228941] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 01/27/2020] [Indexed: 12/21/2022] Open
Abstract
The type VI secretion system (T6SS) is a contractile injection apparatus that translocates a spike loaded with various effectors directly into eukaryotic or prokaryotic target cells. Pseudomonas aeruginosa can load either one of its three T6SSs with a variety of toxic bullets using different but specific modes. The T6SS spike, which punctures the bacterial cell envelope allowing effector transport, consists of a torch-like VgrG trimer on which sits a PAAR protein sharpening the VgrG tip. VgrG itself sits on the Hcp tube and all elements, packed into a T6SS sheath, are propelled out of the cell and into target cells. On occasion, effectors are covalent extensions of VgrG, PAAR or Hcp proteins, which are then coined "evolved" components as opposed to canonical. Here, we show how various passenger domains could be fused to the C terminus of a canonical VgrG, VgrG1a from P. aeruginosa, and be sent into the bacterial culture supernatant. There is no restriction on the passenger type, although the efficacy may vary greatly, since we used either an unrelated T6SS protein, β-lactamase, a covalent extension of an "evolved" VgrG, VgrG2b, or a Hcp-dependent T6SS toxin, Tse2. Our data further highlights an exceptional modularity/flexibility for loading the T6SS nano-weapon. Refining the parameters to optimize delivery of passenger proteins of interest would have attractive medical and industrial applications. This may for example involve engineering the T6SS as a delivery system to shuttle toxins into either bacterial pathogens or tumour cells which would be an original approach in the fight against antimicrobial resistant bacteria or cancer.
Collapse
Affiliation(s)
- Sarah Wettstadt
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
56
|
Wood TE, Howard SA, Wettstadt S, Filloux A. PAAR proteins act as the 'sorting hat' of the type VI secretion system. MICROBIOLOGY-SGM 2020; 165:1203-1218. [PMID: 31380737 PMCID: PMC7376260 DOI: 10.1099/mic.0.000842] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacteria exist in polymicrobial environments and compete to prevail in a niche. The type VI secretion system (T6SS) is a nanomachine employed by Gram-negative bacteria to deliver effector proteins into target cells. Consequently, T6SS-positive bacteria produce a wealth of antibacterial effector proteins to promote their survival among a prokaryotic community. These toxins are loaded onto the VgrG–PAAR spike and Hcp tube of the T6SS apparatus and recent work has started to document the specificity of effectors for certain spike components. Pseudomonas aeruginosa encodes several PAAR proteins, whose roles have been poorly investigated. Here we describe a phospholipase family antibacterial effector immunity pair from Pseudomonas aeruginosa and demonstrate that a specific PAAR protein is necessary for the delivery of the effector and its cognate VgrG. Furthermore, the PAAR protein appears to restrict the delivery of other phospholipase effectors that utilise distinct VgrG proteins. We provide further evidence for competition for PAAR protein recruitment to the T6SS apparatus, which determines the identities of the delivered effectors.
Collapse
Affiliation(s)
- Thomas E Wood
- Present address: Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.,Present address: Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Cambridge, MA, USA.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, London, SW7 2AZ, UK
| | - Sophie A Howard
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, London, SW7 2AZ, UK
| | - Sarah Wettstadt
- Present address: Department of Environmental Protection, Estación Experimental de Zaidín - Consejo Superior de Investigaciones Científicas, Granada, Spain.,MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, London, SW7 2AZ, UK
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College, London, London, SW7 2AZ, UK
| |
Collapse
|
57
|
Abstract
Symbiotic bacteria use diverse strategies to compete for host colonization sites. However, little is known about the environmental cues that modulate interbacterial competition as they transition between free-living and host-associated lifestyles. We used the mutualistic relationship between Eupyrmna scolopes squid and Vibrio fischeri bacteria to investigate how intraspecific competition is regulated as symbionts move from the seawater to a host-like environment. We recently reported that V. fischeri uses a type VI secretion system (T6SS) for intraspecific competition during host colonization. Here, we investigated how environmental viscosity impacts T6SS-mediated competition by using a liquid hydrogel medium that mimics the viscous host environment. Our data demonstrate that although the T6SS is functionally inactive when cells are grown under low-viscosity liquid conditions similar to those found in seawater, exposure to a host-like high-viscosity hydrogel enhances T6SS expression and sheath formation, activates T6SS-mediated killing in as little as 30 min, and promotes the coaggregation of competing genotypes. Finally, the use of mass spectrometry-based proteomics revealed insights into how cells may prepare for T6SS competition during this habitat transition. These findings, which establish the use of a new hydrogel culture condition for studying T6SS interactions, indicate that V. fischeri rapidly responds to the physical environment to activate the competitive mechanisms used during host colonization.IMPORTANCE Bacteria often engage in interference competition to gain access to an ecological niche, such as a host. However, little is known about how the physical environment experienced by free-living or host-associated bacteria influences such competition. We used the bioluminescent squid symbiont Vibrio fischeri to study how environmental viscosity impacts bacterial competition. Our results suggest that upon transition from a planktonic environment to a host-like environment, V. fischeri cells activate their type VI secretion system, a contact-dependent interbacterial nanoweapon, to eliminate natural competitors. This work shows that competitor cells form aggregates under host-like conditions, thereby facilitating the contact required for killing, and reveals how V. fischeri regulates a key competitive mechanism in response to the physical environment.
Collapse
|
58
|
Lopez J, Ly PM, Feldman MF. The Tip of the VgrG Spike Is Essential to Functional Type VI Secretion System Assembly in Acinetobacter baumannii. mBio 2020; 11:e02761-19. [PMID: 31937641 PMCID: PMC6960284 DOI: 10.1128/mbio.02761-19] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 11/25/2019] [Indexed: 12/11/2022] Open
Abstract
The type VI secretion system (T6SS) is a critical weapon in bacterial warfare between Gram-negative bacteria. Although invaluable for niche establishment, this machine represents an energetic burden to its host bacterium. Acinetobacter baumannii is an opportunistic pathogen that poses a serious threat to public health due to its high rates of multidrug resistance. In some A. baumannii strains, the T6SS is transcriptionally downregulated by large multidrug resistance plasmids. Other strains, such as the clinical isolate AbCAN2, express T6SS-related genes but lack T6SS activity under laboratory conditions, despite not harboring these plasmids. This suggests that alternative mechanisms exist to repress the T6SS. Here, we used a transposon mutagenesis approach in AbCAN2 to identify novel T6SS repressors. Our screen revealed that the T6SS of this strain is inhibited by a homolog of VgrG, an essential structural component of all T6SSs reported to date. We named this protein inhibitory VgrG (VgrGi). Biochemical and in silico analyses demonstrated that the unprecedented inhibitory capability of VgrGi is due to a single amino acid mutation in a widely conserved C-terminal domain of unknown function, DUF2345. We also show that unlike in other bacteria, the C terminus of VgrG is essential for functional T6SS assembly in A. baumannii Our study provides insight into the architectural requirements underlying functional assembly of the T6SS of A. baumannii We propose that T6SS-inactivating point mutations are beneficial to the host bacterium, since they eliminate the energy cost associated with maintaining a functional T6SS, which appears to be unnecessary for A. baumannii virulence.IMPORTANCE Despite the clinical relevance of A. baumannii, little is known about its fundamental biology. Here, we show that a single amino acid mutation in VgrG, a critical T6SS structural protein, abrogates T6SS function. Given that this mutation was found in a clinical isolate, we propose that the T6SS of A. baumannii is probably not involved in virulence; this idea is supported by multiple genomic analyses showing that the majority of clinical A. baumannii strains lack proteins essential to the T6SS. We also show that, unlike in other species, the C terminus of VgrG is a unique architectural requirement for functional T6SS assembly in A. baumannii, suggesting that over evolutionary time, bacteria have developed changes to their T6SS architecture, leading to specialized systems.
Collapse
Affiliation(s)
- Juvenal Lopez
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Pek Man Ly
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
59
|
Margalit A, Kavanagh K, Carolan JC. Characterization of the Proteomic Response of A549 Cells Following Sequential Exposure to Aspergillus fumigatus and Pseudomonas aeruginosa. J Proteome Res 2020; 19:279-291. [PMID: 31693381 DOI: 10.1021/acs.jproteome.9b00520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aspergillus fumigatus and Pseudomonas aeruginosa are the most prevalent fungal and bacterial pathogens associated with cystic-fibrosis-related infections, respectively. P. aeruginosa eventually predominates as the primary pathogen, though it is unknown why this is the case. Label-free quantitative proteomics was employed to investigate the cellular response of the alveolar epithelial cell line, A549, to coexposure of A. fumigatus and P. aeruginosa. These studies revealed a significant increase in the rate of P. aeruginosa proliferation where A. fumigatus was present. Shotgun proteomics performed on A549 cells exposed to either A. fumigatus or P. aeruginosa or to A. fumigatus and P. aeruginosa sequentially revealed distinct changes to the host cell proteome in response to either or both pathogens. While key signatures of infection were retained among all pathogen-exposed groups, including changes in mitochondrial activity and energy output, the relative abundance of proteins associated with endocytosis, phagosomes, and lysosomes was decreased in sequentially exposed cells compared to cells exposed to either pathogen. Our findings indicate that A. fumigatus renders A549 cells unable to internalize bacteria, thus providing an environment in which P. aeruginosa can proliferate. This research provides novel insights into the whole-cell proteomic response of A549 cells to A. fumigatus and P. aeruginosa and highlights distinct differences in the proteome following sequential exposure to both pathogens, which may explain why P. aeruginosa can predominate.
Collapse
Affiliation(s)
- Anatte Margalit
- Department of Biology , Maynooth University , Maynooth, Co. Kildare W23F2H6 , Ireland
| | - Kevin Kavanagh
- Department of Biology , Maynooth University , Maynooth, Co. Kildare W23F2H6 , Ireland
| | - James C Carolan
- Department of Biology , Maynooth University , Maynooth, Co. Kildare W23F2H6 , Ireland
| |
Collapse
|
60
|
Hu YY, Liu CX, Liu P, Wu ZY, Zhang YD, Xiong XS, Li XY. Regulation of gene expression of hcp, a core gene of the type VI secretion system in Acinetobacter baumannii causing respiratory tract infection. J Med Microbiol 2019; 67:945-951. [PMID: 29771233 DOI: 10.1099/jmm.0.000753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose. The objective of the current study was to investigate whether hcp plays a role in the process of Acinetobacter baumannii infection and to examine clinically relevant factors that may affect hcp expression.Methodology. Seventy-seven A. baumannii isolates from patients with a respiratory infection at the Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University (Wenzhou, China) were included in this study. PCR was performed to screen for the presence of hcp. Quantitative real time polymerase chain reaction (qRT-PCR) was carried out to examine the expression of hcp.Results. A total of 77.9 % (60 of 77) of the A. baumannii clinical isolates possessed the hcp gene. Expression of hcp was found to be strain-specific and associated with the infection status. Higher gene expression of hcp was found for invasive A. baumannii isolates causing an infection relative to the colonization group, and for the same strain at a post-infection status compared with that prior to infection. Acid environment was also found to be a trigger of hcp gene expression.Conclusion. The type VI secretion system and hcp predominate in A. baumannii causing respiratory infections. Expression of hcp is regulated by the infection status and acid environment, and might play a role in the process of triggering infection by the colonizer.
Collapse
Affiliation(s)
- Yin-Yin Hu
- Department of Clinical Laboratory, Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Cai-Xia Liu
- Department of Clinical Laboratory, Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Peng Liu
- Department of Clinical Laboratory, Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Zhuo-Ying Wu
- Department of Clinical Laboratory, Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Ya-Dong Zhang
- Department of Hepatobiliary Surgery, Affiliated Qingdao Municipal Hospital of Qingdao University, Qingdao, PR China
| | - Xiao-Shun Xiong
- Department of Clinical Laboratory, Second Affiliated Hospital of Nanchang University, Nanchang, PR China
| | - Xiang-Yang Li
- Department of Clinical Laboratory, Second Affiliated Hospital and Yuying Childrens Hospital of Wenzhou Medical University, Wenzhou, PR China
| |
Collapse
|
61
|
Han Y, Wang T, Chen G, Pu Q, Liu Q, Zhang Y, Xu L, Wu M, Liang H. A Pseudomonas aeruginosa type VI secretion system regulated by CueR facilitates copper acquisition. PLoS Pathog 2019; 15:e1008198. [PMID: 31790504 PMCID: PMC6907878 DOI: 10.1371/journal.ppat.1008198] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Revised: 12/12/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022] Open
Abstract
The type VI secretion system (T6SS) is widely distributed in Gram-negative bacteria, whose function is known to translocate substrates to eukaryotic and prokaryotic target cells to cause host damage or as a weapon for interbacterial competition. Pseudomonas aeruginosa encodes three distinct T6SS clusters (H1-, H2-, and H3-T6SS). The H1-T6SS-dependent substrates have been identified and well characterized; however, only limited information is available for the H2- and H3-T6SSs since relatively fewer substrates for them have yet been established. Here, we obtained P. aeruginosa H2-T6SS-dependent secretomes and further characterized the H2-T6SS-dependent copper (Cu2+)-binding effector azurin (Azu). Our data showed that both azu and H2-T6SS were repressed by CueR and were induced by low concentrations of Cu2+. We also identified the Azu-interacting partner OprC, a Cu2+-specific TonB-dependent outer membrane transporter. Similar to H2-T6SS genes and azu, expression of oprC was directly regulated by CueR and was induced by low Cu2+. In addition, the Azu-OprC-mediated Cu2+ transport system is critical for P. aeruginosa cells in bacterial competition and virulence. Our findings provide insights for understanding the diverse functions of T6SSs and the role of metal ions for P. aeruginosa in bacteria-bacteria competition. The type VI secretion system (T6SS) is a specific macromolecular protein export apparatus, and widely distributed in Gram-negative bacteria. T6SS plays an important role in anti-bacterial competition or delivers effector proteins to both eukaryotic and prokaryotic cells. In the present study, we performed secretomes analysis and identified 21 substrates of P. aeruginosa H2-T6SS-dependent. Specifically, we report a Cu2+-scavenging pathway consisting of a copper transporter, OprC, and a type VI secretion system (H2-T6SS)-secreted Cu2+-binding protein, Azu. Both of them are under control of the transcriptional regulator CueR. Indeed, the Azu-OprC-mediated Cu2+ transport system is critical for P. aeruginosa cells in bacterial competition and virulence. These findings exemplify how P. aeruginosa deploys this metal system to adapt to the complex environment during evolution.
Collapse
Affiliation(s)
- Yuying Han
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| | - Tietao Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| | - Gukui Chen
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| | - Qinqin Pu
- Department of Basic Science, School of Medicine and Health Science, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Qiong Liu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, GuangDong, China
| | - Yani Zhang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
| | - Linghui Xu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, GuangDong, China
| | - Min Wu
- Department of Basic Science, School of Medicine and Health Science, University of North Dakota, Grand Forks, North Dakota, United States of America
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Sciences, Northwest University, Xi'an, ShaanXi, China
- * E-mail:
| |
Collapse
|
62
|
Fleiszig SMJ, Kroken AR, Nieto V, Grosser MR, Wan SJ, Metruccio MME, Evans DJ. Contact lens-related corneal infection: Intrinsic resistance and its compromise. Prog Retin Eye Res 2019; 76:100804. [PMID: 31756497 DOI: 10.1016/j.preteyeres.2019.100804] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
Contact lenses represent a widely utilized form of vision correction with more than 140 million wearers worldwide. Although generally well-tolerated, contact lenses can cause corneal infection (microbial keratitis), with an approximate annualized incidence ranging from ~2 to ~20 cases per 10,000 wearers, and sometimes resulting in permanent vision loss. Research suggests that the pathogenesis of contact lens-associated microbial keratitis is complex and multifactorial, likely requiring multiple conspiring factors that compromise the intrinsic resistance of a healthy cornea to infection. Here, we outline our perspective of the mechanisms by which contact lens wear sometimes renders the cornea susceptible to infection, focusing primarily on our own research efforts during the past three decades. This has included studies of host factors underlying the constitutive barrier function of the healthy cornea, its response to bacterial challenge when intrinsic resistance is not compromised, pathogen virulence mechanisms, and the effects of contact lens wear that alter the outcome of host-microbe interactions. For almost all of this work, we have utilized the bacterium Pseudomonas aeruginosa because it is the leading cause of lens-related microbial keratitis. While not yet common among corneal isolates, clinical isolates of P. aeruginosa have emerged that are resistant to virtually all currently available antibiotics, leading the United States CDC (Centers for Disease Control) to add P. aeruginosa to its list of most serious threats. Compounding this concern, the development of advanced contact lenses for biosensing and augmented reality, together with the escalating incidence of myopia, could portent an epidemic of vision-threatening corneal infections in the future. Thankfully, technological advances in genomics, proteomics, metabolomics and imaging combined with emerging models of contact lens-associated P. aeruginosa infection hold promise for solving the problem - and possibly life-threatening infections impacting other tissues.
Collapse
Affiliation(s)
- Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, CA, USA; Graduate Group in Vision Science, University of California, Berkeley, CA, USA; Graduate Groups in Microbiology and Infectious Diseases & Immunity, University of California, Berkeley, CA, USA.
| | - Abby R Kroken
- School of Optometry, University of California, Berkeley, CA, USA
| | - Vincent Nieto
- School of Optometry, University of California, Berkeley, CA, USA
| | | | - Stephanie J Wan
- Graduate Group in Vision Science, University of California, Berkeley, CA, USA
| | | | - David J Evans
- School of Optometry, University of California, Berkeley, CA, USA; College of Pharmacy, Touro University California, Vallejo, CA, USA
| |
Collapse
|
63
|
Barrios-Villa E, Martínez de la Peña CF, Lozano-Zaraín P, Cevallos MA, Torres C, Torres AG, Rocha-Gracia RDC. Comparative genomics of a subset of Adherent/Invasive Escherichia coli strains isolated from individuals without inflammatory bowel disease. Genomics 2019; 112:1813-1820. [PMID: 31689478 DOI: 10.1016/j.ygeno.2019.10.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/05/2019] [Accepted: 10/22/2019] [Indexed: 02/07/2023]
Abstract
There is increased evidence demonstrating the association between Crohn's Disease (CD), a type of Inflammatory Bowel Disease (IBD), and non-diarrheagenic Adherent/Invasive Escherichia coli (AIEC) isolates. AIEC strains are phenotypically characterized by their adhesion, invasion and intra-macrophage survival capabilities. In the present study, the genomes of five AIEC strains isolated from individuals without IBD (four from healthy donors and one from peritoneal liquid) were sequenced and compared with AIEC prototype strains (LF82 and NRG857c), and with extra-intestinal uropathogenic strain (UPEC CFT073). Non-IBD-AIEC strains showed an Average Nucleotide Identity up to 98% compared with control strains. Blast identities of the five non-IBD-AIEC strains were higher when compared to AIEC and UPEC reference strains than with another E. coli pathotypes, suggesting a relationship between them. The SNPs phylogeny grouped the five non-IBD-AIEC strains in one separated cluster, which indicates the emergence of these strains apart from the AIEC group. Additionally, four genomic islands not previously reported in AIEC strains were identified. An incomplete Type VI secretion system was found in non-IBD-AIEC strains; however, the Type II secretion system was complete. Several groups of genes reported in AIEC strains were searched in the five non-IBD-AIEC strains, and the presence of fimA, fliC, fuhD, chuA, irp2 and cvaC were confirmed. Other virulence factors were detected in non-IBD-AIEC strains, which were absent in AIEC reference strains, including EhaG, non-fimbrial adhesin 1, PapG, F17D-G, YehA/D, FeuC, IucD, CbtA, VgrG-1, Cnf1 and HlyE. Based on the differences in virulence determinants and SNPs, it is plausible to suggest that non-IBD AIEC strains belong to a different pathotype.
Collapse
Affiliation(s)
- Edwin Barrios-Villa
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Claudia Fabiola Martínez de la Peña
- Posgrado en Microbiología, Laboratorio de Biología Molecular de Enteropatógenos, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Patricia Lozano-Zaraín
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Carmen Torres
- Área de Bioquímica y Biología Molecular, Universidad de La Rioja, Logroño, Spain
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - Rosa Del Carmen Rocha-Gracia
- Posgrado en Microbiología, Laboratorio de Microbiología Hospitalaria y de la Comunidad, Centro de Investigaciones en Ciencias Microbiológicas, Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico.
| |
Collapse
|
64
|
Sana TG, Lomas R, Gimenez MR, Laubier A, Soscia C, Chauvet C, Conesa A, Voulhoux R, Ize B, Bleves S. Differential Modulation of Quorum Sensing Signaling through QslA in Pseudomonas aeruginosa Strains PAO1 and PA14. J Bacteriol 2019; 201:e00362-19. [PMID: 31405911 PMCID: PMC6779463 DOI: 10.1128/jb.00362-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 08/06/2019] [Indexed: 11/20/2022] Open
Abstract
Two clinical isolates of the opportunist pathogen Pseudomonas aeruginosa named PAO1 and PA14 are commonly studied in research laboratories. Despite the isolates being closely related, PA14 exhibits increased virulence compared to that of PAO1 in various models. To determine which players are responsible for the hypervirulence phenotype of the PA14 strain, we elected a transcriptomic approach through RNA sequencing. We found 2,029 genes that are differentially expressed between the two strains, including several genes that are involved with or regulated by quorum sensing (QS), known to control most of the virulence factors in P. aeruginosa Among them, we chose to focus our study on QslA, an antiactivator of QS whose expression was barely detectable in the PA14 strain according our data. We hypothesized that lack of expression of qslA in PA14 could be responsible for higher QS expression in the PA14 strain, possibly explaining its hypervirulence phenotype. After confirming that QslA protein was highly produced in PAO1 but not in the PA14 strain, we obtained evidence showing that a PAO1 deletion strain of qslA has faster QS gene expression kinetics than PA14. Moreover, known virulence factors activated by QS, such as (i) pyocyanin production, (ii) H2-T6SS (type VI secretion system) gene expression, and (iii) Xcp-T2SS (type II secretion system) machinery production and secretion, were all lower in PAO1 than in PA14, due to higher qslA expression. However, biofilm formation and cytotoxicity toward macrophages, although increased in PA14 compared to PAO1, were independent of QslA control. Together, our findings implicated differential qslA expression as a major determinant of virulence factor expression in P. aeruginosa strains PAO1 and PA14.IMPORTANCEPseudomonas aeruginosa is an opportunistic pathogen responsible for acute nosocomial infections and chronic pulmonary infections. P. aeruginosa strain PA14 is known to be hypervirulent in different hosts. Despite several studies in the field, the underlining molecular mechanisms sustaining this phenotype remain enigmatic. Here we provide evidence that the PA14 strain has faster quorum sensing (QS) kinetics than the PAO1 strain, due to the lack of QslA expression, an antiactivator of QS. QS is a major regulator of virulence factors in P. aeruginosa; therefore, we propose that the hypervirulent phenotype of the PA14 strain is, at least partially, due to the lack of QslA expression. This mechanism could be of great importance, as it could be conserved among other P. aeruginosa isolates.
Collapse
Affiliation(s)
- T G Sana
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - R Lomas
- Genomics of Gene Expression Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - M R Gimenez
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - A Laubier
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - C Soscia
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - C Chauvet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - A Conesa
- Microbiology and Cell Science, IFAS, Genetics Insitute, University of Florida, Gainesville, Florida, USA
| | - R Voulhoux
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - B Ize
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| | - S Bleves
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University and CNRS, Marseille, France
| |
Collapse
|
65
|
Lewis JM, Deveson Lucas D, Harper M, Boyce JD. Systematic Identification and Analysis of Acinetobacter baumannii Type VI Secretion System Effector and Immunity Components. Front Microbiol 2019; 10:2440. [PMID: 31736890 PMCID: PMC6833914 DOI: 10.3389/fmicb.2019.02440] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
Many Gram-negative bacteria use a type VI secretion system (T6SS) for microbial warfare and/or host manipulation. Acinetobacter baumannii is an important nosocomial pathogen and many A. baumannii strains utilize a T6SS to deliver toxic effector proteins to surrounding bacterial cells. These toxic effectors are usually delivered together with VgrG proteins, which form part of the T6SS tip complex. All previously identified A. baumannii T6SS effectors are encoded within a three- or four-gene locus that also encodes a cognate VgrG and immunity protein, and sometimes a chaperone. In order to characterize the diversity and distribution of T6SS effectors and immunity proteins in this species, we first identified all vgrG genes in 97 A. baumannii strains via the presence of the highly conserved VgrG domain. Most strains encoded between two and four different VgrG proteins. We then analyzed the regions downstream of the identified vgrG genes and identified more than 240 putative effectors. The presence of conserved domains in these effectors suggested a range of functions, including peptidoglycan hydrolases, lipases, nucleases, and nucleic acid deaminases. However, 10 of the effector groups had no functionally characterized domains. Phylogenetic analysis of these putative effectors revealed that they clustered into 32 distinct groups that appear to have been acquired from a diverse set of ancestors. Corresponding immunity proteins were identified for all but two of the effector groups. Effectors from eight of the 32 groups contained N-terminal rearrangement hotspot (RHS) domains. The C-terminal regions of these RHS proteins, which are predicted to confer the toxic effector function, were very diverse, but the N-terminal RHS domains clustered into just two groups. While the majority of A. baumannii strains contained an RHS type effector, no strains encoded two RHS effectors with similar N-terminal sequences, suggesting that the presence of similar N-terminal RHS domains leads to competitive exclusion. Together, these analyses define the extreme diversity of T6SS effectors within A. baumannii and, as many have unknown functions, future detailed characterization of these effectors may lead to the identification of proteins with novel antibacterial properties.
Collapse
Affiliation(s)
- Jessica M Lewis
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Deanna Deveson Lucas
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Marina Harper
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - John D Boyce
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| |
Collapse
|
66
|
Chen WD, Lai LJ, Hsu WH, Huang TY. Vibrio cholerae non-O1 - the first reported case of keratitis in a healthy patient. BMC Infect Dis 2019; 19:916. [PMID: 31664927 PMCID: PMC6820971 DOI: 10.1186/s12879-019-4475-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 09/13/2019] [Indexed: 11/10/2022] Open
Abstract
Background Vibrio cholerae non-O1 is a virulent pathogen that causes significant morbidity and mortality in humans. Herein, we report a case of corneal ulcer caused by this pathogen. Case presentation A 59-year-old fisherman with no systemic history was struck in the right eye by a marine shrimp and developed keratitis. Corneal scrapping culture revealed the presence of the V. cholerae non-O1, and its identification was confirmed by Analytical Profile Index 20E system and polymerase chain reaction. He was successfully treated with topical levofloxacin (0.3%) and fortified amikacin (12.5 mg/mL) for 2 weeks. The visual acuity recovered to 20/25 after treatment without complications. Conclusions This is the first case report of keratitis caused by V. cholerae non-O1 strain. Ocular injury by marine creatures and contaminated seawater can contribute to severe corneal ulcer. Early diagnosis can be achieved by meticulous history taking and a comprehensive laboratory workup. Simultaneously, an effective antibiotic therapy can lead to a positive outcome.
Collapse
Affiliation(s)
- Wei-Dar Chen
- Department of Ophthalmology, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Li-Ju Lai
- Department of Ophthalmology, Chang Gung Memorial Hospital, Chiayi, Taiwan.,Department of Chinese Medicine, School of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Hsiu Hsu
- Department of Chinese Medicine, School of Medicine, Chang Gung University, Taoyuan, Taiwan.,Department of Orthopedics, Chang Gung Memorial Hospital, Chiayi, Taiwan
| | - Tsung-Yu Huang
- Division of Infectious Diseases, Department of Internal Medicine, Chang Gung Memorial Hospital, Chiayi, Taiwan. .,Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
67
|
Navarro-Garcia F, Ruiz-Perez F, Cataldi Á, Larzábal M. Type VI Secretion System in Pathogenic Escherichia coli: Structure, Role in Virulence, and Acquisition. Front Microbiol 2019; 10:1965. [PMID: 31543869 PMCID: PMC6730261 DOI: 10.3389/fmicb.2019.01965] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/09/2019] [Indexed: 12/18/2022] Open
Abstract
Bacterial pathogens utilize a myriad of mechanisms to invade mammalian hosts, damage tissue sites, and evade the immune system. One essential strategy of Gram-negative bacteria is the secretion of virulence factors through both inner and outer membranes to reach a potential target. Most secretion systems are harbored in mobile elements including transposons, plasmids, pathogenicity islands, and phages, and Escherichia coli is one of the more versatile bacteria adopting this genetic information by horizontal gene transfer. Additionally, E. coli is a bacterial species with members of the commensal intestinal microbiota and pathogens associated with numerous types of infections such as intestinal, urinary, and systemic in humans and other animals. T6SS cluster plasticity suggests evolutionarily divergent systems were acquired horizontally. T6SS is a secretion nanomachine that is extended through the bacterial double membrane; from this apparatus, substrates are conveyed straight from the cytoplasm of the bacterium into a target cell or to the extracellular space. This nanomachine consists of three main complexes: proteins in the inner membrane that are T4SS component-like, the baseplate complex, and the tail complex, which are formed by components evolutionarily related to contractile bacteriophage tails. Advances in the T6SS understanding include the functional and structural characterization of at least 13 subunits (so-called core components), which are thought to comprise the minimal apparatus. So far, the main role of T6SS is on bacterial competition by using it to kill neighboring non-immune bacteria for which antibacterial proteins are secreted directly into the periplasm of the bacterial target after cell-cell contact. Interestingly, a few T6SSs have been associated directly to pathogenesis, e.g., roles in biofilm formation and macrophage survival. Here, we focus on the advances on T6SS from the perspective of E. coli pathotypes with emphasis in the secretion apparatus architecture, the mechanisms of pathogenicity of effector proteins, and the events of lateral gene transfer that led to its spread.
Collapse
Affiliation(s)
- Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Mexico City, Mexico
| | - Fernando Ruiz-Perez
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, United States
| | - Ángel Cataldi
- Laboratorio de Escherichia coli, Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Buenos Aires, Argentina
| | - Mariano Larzábal
- Laboratorio de Escherichia coli, Instituto de Agrobiotecnología y Biología Molecular (IABIMO) INTA-CONICET, Buenos Aires, Argentina
| |
Collapse
|
68
|
Wettstadt S, Wood TE, Fecht S, Filloux A. Delivery of the Pseudomonas aeruginosa Phospholipase Effectors PldA and PldB in a VgrG- and H2-T6SS-Dependent Manner. Front Microbiol 2019; 10:1718. [PMID: 31417515 PMCID: PMC6684961 DOI: 10.3389/fmicb.2019.01718] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/11/2019] [Indexed: 11/13/2022] Open
Abstract
The bacterial pathogen Pseudomonas aeruginosa uses three type VI secretion systems (T6SSs) to drive a multitude of effector proteins into eukaryotic or prokaryotic target cells. The T6SS is a supramolecular nanomachine, involving a set of 13 core proteins, which resembles the contractile tail of bacteriophages and whose tip is considered as a puncturing device helping to cross membranes. Effectors can attach directly to the T6SS spike which is composed of a VgrG (valine-glycine-rich proteins) trimer, of which P. aeruginosa produces several. We have previously shown that the master regulator RsmA controls the expression of all three T6SS gene clusters (H1-, H2- and H3-T6SS) and a range of remote vgrG and effector genes. We also demonstrated that specific interactions between VgrGs and various T6SS effectors are prerequisite for effector delivery in a process we called "à la carte delivery." Here, we provide an in-depth description on how the two H2-T6SS-dependent effectors PldA and PldB are delivered via their cognate VgrGs, VgrG4b and VgrG5, respectively. We show that specific recognition of the VgrG C terminus is required and effector specificity can be swapped by exchanging these C-terminal domains. Importantly, we established that effector recognition by a cognate VgrG is not always sufficient to achieve successful secretion, but it is crucial to provide effector stability. This study highlights the complexity of effector adaptation to the T6SS nanomachine and shows how the VgrG tip can possibly be manipulated to achieve effector delivery.
Collapse
Affiliation(s)
- Sarah Wettstadt
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Thomas E Wood
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Selina Fecht
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection, Department of Life Sciences, Imperial College London, London, United Kingdom
| |
Collapse
|
69
|
Cherrak Y, Flaugnatti N, Durand E, Journet L, Cascales E. Structure and Activity of the Type VI Secretion System. Microbiol Spectr 2019; 7:10.1128/microbiolspec.psib-0031-2019. [PMID: 31298206 PMCID: PMC10957189 DOI: 10.1128/microbiolspec.psib-0031-2019] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Indexed: 12/16/2022] Open
Abstract
The type VI secretion system (T6SS) is a multiprotein machine that uses a spring-like mechanism to inject effectors into target cells. The injection apparatus is composed of a baseplate on which is built a contractile tail tube/sheath complex. The inner tube, topped by the spike complex, is propelled outside of the cell by the contraction of the sheath. The injection system is anchored to the cell envelope and oriented towards the cell exterior by a trans-envelope complex. Effectors delivered by the T6SS are loaded within the inner tube or on the spike complex and can target prokaryotic and/or eukaryotic cells. Here we summarize the structure, assembly, and mechanism of action of the T6SS. We also review the function of effectors and their mode of recruitment and delivery.
Collapse
Affiliation(s)
- Yassine Cherrak
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
- Y.C. and N.F. contributed equally to this review
| | - Nicolas Flaugnatti
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
- Y.C. and N.F. contributed equally to this review
- Present address: Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Eric Durand
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
| | - Laure Journet
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Université, CNRS, UMR 7255, 13402 Marseille Cedex 20, France
| |
Collapse
|
70
|
Berni B, Soscia C, Djermoun S, Ize B, Bleves S. A Type VI Secretion System Trans-Kingdom Effector Is Required for the Delivery of a Novel Antibacterial Toxin in Pseudomonas aeruginosa. Front Microbiol 2019; 10:1218. [PMID: 31231326 PMCID: PMC6560169 DOI: 10.3389/fmicb.2019.01218] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 05/15/2019] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa has evolved multiple strategies to disarm and take advantage of its host. For this purpose, this opportunist pathogen has particularly developed protein secretion in the surrounding medium or injection into host cells. Among this, the type VI secretion system (T6SS) is utilized to deliver effectors into eukaryotic host as well as target bacteria. It assembles into a contractile bacteriophage tail-like structure that functions like a crossbow, injecting an arrow loaded with effectors into the target cell. The repertoire of T6SS antibacterial effectors of P. aeruginosa is remarkably broad to promote environmental adaptation and survival in various bacterial communities, and presumably in the eukaryotic host too. Here, we report the discovery of a novel pair of antibacterial effector and immunity of P. aeruginosa, Tle3 and Tli3. Tli3 neutralizes the toxicity of Tle3 in the periplasm to protect from fratricide intoxication. The characterization of the secretion mechanism of Tle3 indicates that it requires a cytoplasmic adaptor, Tla3, to be targeted and loaded onto the VgrG2b spike and thus delivered by the H2-T6SS machinery. Tla3 is different from the other adaptors discovered so far and defines a novel family among T6SS with a DUF2875. Interestingly, this led us to discover that VgrG2b that we previously characterized as an anti-eukaryotic effector possesses an antibacterial activity as well, as it is toxic towards Escherichia coli. Excitingly Tli3 can counteract VgrG2b toxicity. VgrG2b is thus a novel trans-kingdom effector targeting both bacteria and eukaryotes. VgrG2b represents an interesting target for fighting against P. aeruginosa in the environment and in the context of host infection.
Collapse
Affiliation(s)
| | | | | | | | - Sophie Bleves
- LISM, IMM (Institut de Microbiologie de la Méditerranée), CNRS and Aix-Marseille Univ, Marseille, France
| |
Collapse
|
71
|
Vibrio parahaemolyticus RhsP represents a widespread group of pro-effectors for type VI secretion systems. Nat Commun 2018; 9:3899. [PMID: 30254227 PMCID: PMC6156420 DOI: 10.1038/s41467-018-06201-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 08/20/2018] [Indexed: 12/31/2022] Open
Abstract
Type VI secretion systems (T6SSs) translocate effector proteins, such as Rhs toxins, to eukaryotic cells or prokaryotic competitors. All T6SS Rhs-type effectors characterized thus far contain a PAAR motif or a similar structure. Here, we describe a T6SS-dependent delivery mechanism for a subset of Rhs proteins that lack a PAAR motif. We show that the N-terminal Rhs domain of protein RhsP (or VP1517) from Vibrio parahaemolyticus inhibits the activity of the C-terminal DNase domain. Upon auto-proteolysis, the Rhs fragment remains inside the cells, and the C-terminal region interacts with PAAR2 and is secreted by T6SS2; therefore, RhsP acts as a pro-effector. Furthermore, we show that RhsP contributes to the control of certain “social cheaters” (opaR mutants). Genes encoding proteins with similar Rhs and PAAR-interacting domains, but diverse C-terminal regions, are widely distributed among Vibrio species. It is unclear how Rhs toxins lacking a PAAR motif are secreted by Type VI secretion systems. Here, the authors show for one of these proteins that the mechanism requires removal of an N-terminal fragment by auto-proteolysis, followed by interaction with a PAAR protein and then secretion.
Collapse
|
72
|
Bacterial symbionts use a type VI secretion system to eliminate competitors in their natural host. Proc Natl Acad Sci U S A 2018; 115:E8528-E8537. [PMID: 30127013 PMCID: PMC6130350 DOI: 10.1073/pnas.1808302115] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Competition among cooccurring bacteria can change the structure and function of a microbial community. However, little is known about the molecular mechanisms that impact such interactions in vivo. We used the association between bioluminescent bacteria and their squid host to study how environmentally transmitted bacteria compete for a limited number of host colonization sites. Our work suggests that Vibrio fischeri use a type VI secretion system, acting as a contact-dependent interbacterial “weapon,” to eliminate competing strains from cooccupying sites in the host. This work illuminates a mechanism by which strain-specific differences drive closely related bacteria to engage in lethal battles as they establish a beneficial symbiosis, revealing how genetic variation among potential colonizers directly impacts the spatial structure of the host-associated population. Intraspecific competition describes the negative interaction that occurs when different populations of the same species attempt to fill the same niche. Such competition is predicted to occur among host-associated bacteria but has been challenging to study in natural biological systems. Although many bioluminescent Vibrio fischeri strains exist in seawater, only a few strains are found in the light-organ crypts of an individual wild-caught Euprymna scolopes squid, suggesting a possible role for intraspecific competition during early colonization. Using a culture-based assay to investigate the interactions of different V. fischeri strains, we found “lethal” and “nonlethal” isolates that could kill or not kill the well-studied light-organ isolate ES114, respectively. The killing phenotype of these lethal strains required a type VI secretion system (T6SS) encoded in a 50-kb genomic island. Multiple lethal and nonlethal strains could be cultured from the light organs of individual wild-caught adult squid. Although lethal strains eliminate nonlethal strains in vitro, two lethal strains could coexist in interspersed microcolonies that formed in a T6SS-dependent manner. This coexistence was destabilized upon physical mixing, resulting in one lethal strain consistently eliminating the other. When juvenile squid were coinoculated with lethal and nonlethal strains, they occupied different crypts, yet they were observed to coexist within crypts when T6SS function was disrupted. These findings, using a combination of natural isolates and experimental approaches in vitro and in the animal host, reveal the importance of T6SS in spatially separating strains during the establishment of host colonization in a natural symbiosis.
Collapse
|
73
|
Yang X, Pan J, Wang Y, Shen X. Type VI Secretion Systems Present New Insights on Pathogenic Yersinia. Front Cell Infect Microbiol 2018; 8:260. [PMID: 30109217 PMCID: PMC6079546 DOI: 10.3389/fcimb.2018.00260] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022] Open
Abstract
The type VI secretion system (T6SS) is a versatile secretion system widely distributed in Gram-negative bacteria that delivers multiple effector proteins into either prokaryotic or eukaryotic cells, or into the extracellular milieu. T6SS participates in various physiological processes including bacterial competition, host infection, and stress response. Three pathogenic Yersinia species, namely Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica, possess different copies of T6SSs with distinct biological functions. This review summarizes the pathogenic, antibacterial, and stress-resistant roles of T6SS in Yersinia and the ion-transporting ability in Y. pseudotuberculosis. In addition, the T6SS-related effectors and regulators identified in Yersinia are discussed.
Collapse
Affiliation(s)
- Xiaobing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Junfeng Pan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yao Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
74
|
Timmis K. Environmental microbiology - the next 20 years: bioconnectivity and meta'omics 2.0. Environ Microbiol 2018; 20:1949-1954. [PMID: 29750400 DOI: 10.1111/1462-2920.14236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kenneth Timmis
- Institute of Microbiology, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
75
|
Shimizu T, Otonari S, Suzuki J, Uda A, Watanabe K, Watarai M. Expression of Francisella pathogenicity island protein intracellular growth locus E (IglE) in mammalian cells is involved in intracellular trafficking, possibly through microtubule organizing center. Microbiologyopen 2018; 8:e00684. [PMID: 29978561 PMCID: PMC6460260 DOI: 10.1002/mbo3.684] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 06/07/2018] [Accepted: 06/09/2018] [Indexed: 01/01/2023] Open
Abstract
Francisella tularensis is the causative agent of the infectious disease tularemia and is designated a category A bioterrorism agent. The type VI secretion system encoded by the Francisella pathogenicity island (FPI) is necessary for intracellular growth; however, the functions of FPI proteins are largely unknown. In this study, we found that the FPI protein intracellular growth locus E (IglE) showed a unique localization pattern compared to other FPI proteins. Deleting iglE from Francisella tularensis subsp. novicida (F. novicida) decreased intracellular growth. Immunoprecipitation and pull‐down assays revealed that IglE was associated with β‐tubulin. Additionally, GFP‐fused IglE colocalized with microtubule organizing centers (MTOCs) in 293T cells. The iglE deletion mutant was transferred with dynein toward MTOCs and packed into lysosome‐localizing areas. Conversely, the wild‐type F. novicida exhibited intracellular growth distant from MTOCs. In addition, IglE expressed in 293T cells colocalized with dynein. These results suggest that IglE helps to prevent dynein‐ and MTOC‐mediated intracellular trafficking in host cells to inhibit the transport of F. novicida toward lysosomes.
Collapse
Affiliation(s)
- Takashi Shimizu
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Shiho Otonari
- Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Jin Suzuki
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Akihiko Uda
- Department of Veterinary Science, National Institute of Infectious Diseases, Shinjuku, Japan
| | - Kenta Watanabe
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| | - Masahisa Watarai
- The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Joint Faculty of Veterinary Medicine, Laboratory of Veterinary Public Health, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
76
|
The Impact of ExoS on Pseudomonas aeruginosa Internalization by Epithelial Cells Is Independent of fleQ and Correlates with Bistability of Type Three Secretion System Gene Expression. mBio 2018; 9:mBio.00668-18. [PMID: 29717012 PMCID: PMC5930308 DOI: 10.1128/mbio.00668-18] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is internalized into multiple types of epithelial cell in vitro and in vivo and yet is often regarded as an exclusively extracellular pathogen. Paradoxically, ExoS, a type three secretion system (T3SS) effector, has antiphagocytic activities but is required for intracellular survival of P. aeruginosa and its occupation of bleb niches in epithelial cells. Here, we addressed mechanisms for this dichotomy using invasive (ExoS-expressing) P. aeruginosa and corresponding effector-null isogenic T3SS mutants, effector-null mutants of cytotoxic P. aeruginosa with and without ExoS transformation, antibiotic exclusion assays, and imaging using a T3SS-GFP reporter. Except for effector-null PA103, all strains were internalized while encoding ExoS. Intracellular bacteria showed T3SS activation that continued in replicating daughter cells. Correcting the fleQ mutation in effector-null PA103 promoted internalization by >10-fold with or without ExoS. Conversely, mutating fleQ in PAO1 reduced internalization by >10-fold, also with or without ExoS. Effector-null PA103 remained less well internalized than PAO1 matched for fleQ status, but only with ExoS expression, suggesting additional differences between these strains. Quantifying T3SS activation using GFP fluorescence and quantitative reverse transcription-PCR (qRT-PCR) showed that T3SS expression was hyperinducible for strain PA103ΔexoUT versus other isolates and was unrelated to fleQ status. These findings support the principle that P. aeruginosa is not exclusively an extracellular pathogen, with internalization influenced by the relative proportions of T3SS-positive and T3SS-negative bacteria in the population during host cell interaction. These data also challenge current thinking about T3SS effector delivery into host cells and suggest that T3SS bistability is an important consideration in studying P. aeruginosa pathogenesis. P. aeruginosa is often referred to as an extracellular pathogen, despite its demonstrated capacity to invade and survive within host cells. Fueling the confusion, P. aeruginosa encodes T3SS effectors with anti-internalization activity that, paradoxically, play critical roles in intracellular survival. Here, we sought to address why ExoS does not prevent internalization of the P. aeruginosa strains that natively encode it. Results showed that ExoS exerted unusually strong anti-internalization activity under conditions of expression in the effector-null background of strain PA103, often used to study T3SS effector activity. Inhibition of internalization was associated with T3SS hyperinducibility and ExoS delivery. PA103 fleQ mutation, preventing flagellar assembly, further reduced internalization but did so independently of ExoS. The results revealed intracellular T3SS expression by all strains and suggested that T3SS bistability influences P. aeruginosa internalization. These findings reconcile controversies in the literature surrounding P. aeruginosa internalization and support the principle that P. aeruginosa is not exclusively an extracellular pathogen.
Collapse
|
77
|
Effector⁻Immunity Pairs Provide the T6SS Nanomachine its Offensive and Defensive Capabilities. Molecules 2018; 23:molecules23051009. [PMID: 29701633 PMCID: PMC6099711 DOI: 10.3390/molecules23051009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/13/2018] [Accepted: 04/23/2018] [Indexed: 01/23/2023] Open
Abstract
Type VI protein secretion systems (T6SSs) are specialized transport apparatus which can target both eukaryotic and prokaryotic cells and play key roles in host⁻pathogen⁻microbiota interactions. Therefore, T6SSs have attracted much attention as a research topic during the past ten years. In this review, we particularly summarized the T6SS antibacterial function, which involves an interesting offensive and defensive mechanism of the effector⁻immunity (E⁻I) pairs. The three main categories of effectors that target the cell wall, membranes, and nucleic acids during bacterial interaction, along with their corresponding immunity proteins are presented. We also discuss structural analyses of several effectors and E⁻I pairs, which explain the offensive and defensive mechanisms underpinning T6SS function during bacterial competition for niche-space, as well as the bioinformatics, proteomics, and protein⁻protein interaction (PPI) methods used to identify and characterize T6SS mediated E⁻I pairs. Additionally, we described PPI methods for verifying E⁻I pairs.
Collapse
|
78
|
A type VI secretion system effector delivery mechanism dependent on PAAR and a chaperone–co-chaperone complex. Nat Microbiol 2018; 3:632-640. [DOI: 10.1038/s41564-018-0144-4] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 03/09/2018] [Indexed: 01/11/2023]
|
79
|
Curran CS, Bolig T, Torabi-Parizi P. Mechanisms and Targeted Therapies for Pseudomonas aeruginosa Lung Infection. Am J Respir Crit Care Med 2018; 197:708-727. [PMID: 29087211 PMCID: PMC5855068 DOI: 10.1164/rccm.201705-1043so] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is a complex gram-negative facultative anaerobe replete with a variety of arsenals to activate, modify, and destroy host defense mechanisms. The microbe is a common cause of nosocomial infections and an antibiotic-resistant priority pathogen. In the lung, P. aeruginosa disrupts upper and lower airway homeostasis by damaging the epithelium and evading innate and adaptive immune responses. The biology of these interactions is essential to understand P. aeruginosa pathogenesis. P. aeruginosa interacts directly with host cells via flagella, pili, lipoproteins, lipopolysaccharides, and the type III secretion system localized in the outer membrane. P. aeruginosa quorum-sensing molecules regulate the release of soluble factors that enhance the spread of infection. These characteristics of P. aeruginosa differentially affect lung epithelial, innate, and adaptive immune cells involved in the production of mediators and the recruitment of additional immune cell subsets. Pathogen interactions with individual host cells and in the context of host acute lung infection are discussed to reveal pathways that may be targeted therapeutically.
Collapse
Affiliation(s)
- Colleen S Curran
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Thomas Bolig
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Parizad Torabi-Parizi
- Critical Care Medicine Department, Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
80
|
Abstract
Background Like many members of the Enterobacteriaceae family, Yersinia ruckeri has the ability to invade non professional phagocytic cells. Intracellular location is advantageous for the bacterium because it shields it from the immune system and can help it cross epithelial membranes and gain entry into the host. In the present manuscript, we report on our investigation regarding the mechanisms of Y. ruckeri’s invasion of host cells. Results A gentamycin assay was applied to two isolates, belonging to both the biotype 1 (ATCC 29473) and biotype 2 (A7959–11) and using several cell culture types: Atlantic Salmon Kidney, Salmon Head Kidney and, Chinook salmon embryos cells at both low and high passage numbers. Varying degrees of sensitivity to Y. ruckeri infection were found between the cell types and the biotype 1 strain was found to be more invasive than the non-motile biotype 2 isolate. Furthermore, the effect of six chemical compounds (Cytochalasin D, TAE 226, vinblastine, genistein, colchicine and, N-acetylcysteine), known to interfere with bacterial invasion strategies, were investigated. All of these compounds had a significant impact on the ability of the bacterium to invade host cells. Changes in the concentration of bacterial cells over time were investigated and the results suggested that neither isolate could survive intracellularly for sustained periods. Conclusions These results suggest that Y. ruckeri can gain entrance into host cells through several mechanisms, and might take advantage of both the actin and microtubule cytoskeletal systems.
Collapse
|
81
|
Liu L, Li T, Cheng XJ, Peng CT, Li CC, He LH, Ju SM, Wang NY, Ye TH, Lian M, Xiao QJ, Song YJ, Zhu YB, Yu LT, Wang ZL, Bao R. Structural and functional studies on Pseudomonas aeruginosa DspI: implications for its role in DSF biosynthesis. Sci Rep 2018; 8:3928. [PMID: 29500457 PMCID: PMC5834635 DOI: 10.1038/s41598-018-22300-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/15/2018] [Indexed: 02/05/2023] Open
Abstract
DspI, a putative enoyl-coenzyme A (CoA) hydratase/isomerase, was proposed to be involved in the synthesis of cis-2-decenoic acid (CDA), a quorum sensing (QS) signal molecule in the pathogen Pseudomonas aeruginosa (P. aeruginosa). The present study provided a structural basis for the dehydration reaction mechanism of DspI during CDA synthesis. Structural analysis reveals that Glu126, Glu146, Cys127, Cys131 and Cys154 are important for its enzymatic function. Moreover, we show that the deletion of dspI results in a remarkable decreased in the pyoverdine production, flagella-dependent swarming motility, and biofilm dispersion as well as attenuated virulence in P. aeruginosa PA14. This study thus unravels the mechanism of DspI in diffusible signal factor (DSF) CDA biosynthesis, providing vital information for developing inhibitors that interfere with DSF associated pathogenicity in P. aeruginosa.
Collapse
Affiliation(s)
- Li Liu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
- Department of Dermatology, Southwest Medical University, affiliated hospital, Luzhou, China
| | - Tao Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xing-Jun Cheng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Cui-Ting Peng
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Chang-Cheng Li
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Li-Hui He
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Si-Min Ju
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ning-Yu Wang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Ting-Hong Ye
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Mao Lian
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Qing-Jie Xiao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ying-Jie Song
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yi-Bo Zhu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Luo-Ting Yu
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhen-Ling Wang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| | - Rui Bao
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
82
|
Chassaing B, Cascales E. Antibacterial Weapons: Targeted Destruction in the Microbiota. Trends Microbiol 2018; 26:329-338. [PMID: 29452951 DOI: 10.1016/j.tim.2018.01.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 01/18/2018] [Accepted: 01/23/2018] [Indexed: 01/18/2023]
Abstract
The intestinal microbiota plays an important role in health, particularly in promoting intestinal metabolic capacity and in maturing the immune system. The intestinal microbiota also mediates colonization resistance against pathogenic bacteria, hence protecting the host from infections. In addition, some bacterial pathogens deliver toxins that target phylogenetically related or distinct bacterial species in order to outcompete and establish within the microbiota. The most widely distributed weapons include bacteriocins, as well as contact-dependent growth inhibition and type VI secretion systems. In this review, we discuss important advances about the impact of such antibacterial systems on shaping the intestinal microbiota.
Collapse
Affiliation(s)
- Benoit Chassaing
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA; Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA.
| | - Eric Cascales
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires (LISM), Institut de Microbiologie de la Méditerranée (IMM), Aix-Marseille Univ - Centre National de la Recherche Scientifique (CNRS) UMR7255, Marseille, France.
| |
Collapse
|
83
|
Dortet L, Lombardi C, Cretin F, Dessen A, Filloux A. Pore-forming activity of the Pseudomonas aeruginosa type III secretion system translocon alters the host epigenome. Nat Microbiol 2018; 3:378-386. [PMID: 29403015 DOI: 10.1038/s41564-018-0109-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/21/2017] [Indexed: 12/13/2022]
Abstract
Recent studies highlight that bacterial pathogens can reprogram target cells by influencing epigenetic factors. The type III secretion system (T3SS) is a bacterial nanomachine that resembles a syringe on the bacterial surface. The T3SS 'needle' delivers translocon proteins into eukaryotic cell membranes, subsequently allowing injection of bacterial effectors into the cytosol. Here we show that Pseudomonas aeruginosa induces early T3SS-dependent dephosphorylation and deacetylation of histone H3 in eukaryotic cells. This is not triggered by any of the P. aeruginosa T3SS effectors, but results from the insertion of the PopB-PopD translocon into the membrane. This suggests that the P. aeruginosa translocon is a genuine T3SS effector acting as a pore-forming toxin. We visualized the translocon plugged into the host cell membrane after the bacterium has left the site of contact, and demonstrate that subsequent ion exchange through this pore is responsible for histone H3 modifications and host cell subversion.
Collapse
Affiliation(s)
- Laurent Dortet
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK.,EA7361 'Structure, dynamic, function and expression of broad spectrum β-lactamases', Faculty of Medicine, Paris-Sud University, LabEx Lermit, Le Kremlin-Bicêtre, France
| | - Charlotte Lombardi
- Institut de Biologie Structurale (IBS), University Grenoble-Alpes, CEA, CNRS, Bacterial Pathogenesis Group, Grenoble, France
| | - François Cretin
- University Grenoble-Alpes, Bacterial Pathogenesis and Cellular Responses, CNRS-ERL5261, U1036_S, INSERM, Biosciences and Biotechnology Institute of Grenoble, CEA-Grenoble, Grenoble, France
| | - Andréa Dessen
- Institut de Biologie Structurale (IBS), University Grenoble-Alpes, CEA, CNRS, Bacterial Pathogenesis Group, Grenoble, France.,Brazilian Biosciences National Laboratory (LNBio), CNPEM, São Paulo, Brazil
| | - Alain Filloux
- MRC Centre for Molecular Microbiology and Infection, Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
84
|
Golovkine G, Reboud E, Huber P. Pseudomonas aeruginosa Takes a Multi-Target Approach to Achieve Junction Breach. Front Cell Infect Microbiol 2018; 7:532. [PMID: 29379773 PMCID: PMC5770805 DOI: 10.3389/fcimb.2017.00532] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/20/2017] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen which uses a number of strategies to cross epithelial and endothelial barriers at cell–cell junctions. In this review, we describe how the coordinated actions of P. aeruginosa's virulence factors trigger various molecular mechanisms to disarm the junctional gate responsible for tissue integrity.
Collapse
Affiliation(s)
- Guillaume Golovkine
- Centre National de la Recherche Scientifique ERL5261, CEA BIG-BCI, Institut National de la Santé et de la Recherche Médicale UMR1036, Université Grenoble Alpes, Grenoble, France
| | - Emeline Reboud
- Centre National de la Recherche Scientifique ERL5261, CEA BIG-BCI, Institut National de la Santé et de la Recherche Médicale UMR1036, Université Grenoble Alpes, Grenoble, France
| | - Philippe Huber
- Centre National de la Recherche Scientifique ERL5261, CEA BIG-BCI, Institut National de la Santé et de la Recherche Médicale UMR1036, Université Grenoble Alpes, Grenoble, France
| |
Collapse
|
85
|
Peng CT, Liu L, Li CC, He LH, Li T, Shen YL, Gao C, Wang NY, Xia Y, Zhu YB, Song YJ, Lei Q, Yu LT, Bao R. Structure-Function Relationship of Aminopeptidase P from Pseudomonas aeruginosa. Front Microbiol 2017; 8:2385. [PMID: 29259588 PMCID: PMC5723419 DOI: 10.3389/fmicb.2017.02385] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/20/2017] [Indexed: 02/05/2023] Open
Abstract
PepP is a virulence-associated gene in Pseudomonas aeruginosa, making it an attractive target for anti-P. aeruginosa drug development. The encoded protein, aminopeptidases P (Pa-PepP), is a type of X-prolyl peptidase that possesses diverse biological functions. The crystal structure verified its canonical pita-bread fold and functional tetrameric assembly, and the functional studies measured the influences of different metal ions on the activity. A trimetal manganese cluster was observed at the active site, elucidating the mechanism of inhibition by metal ions. Additionally, a loop extending from the active site appeared to be important for specific large-substrate binding. Based on the structural comparison and bacterial invasion assays, we showed that this non-conserved surface loop was critical for P. aeruginosa virulence. Taken together, these findings can extend our understanding of the catalytic mechanism and virulence-related functions of Pa-PepP and provide a solid foundation for the design of specific inhibitors against pathogenic-bacterial infections.
Collapse
Affiliation(s)
- Cui-Ting Peng
- Pharmaceutical and Biological Engineering Department, School of Chemical Engineering, Sichuan University, Chengdu, China,Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Li Liu
- Pharmaceutical and Biological Engineering Department, School of Chemical Engineering, Sichuan University, Chengdu, China,Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Chang-Cheng Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Li-Hui He
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Tao Li
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ya-Lin Shen
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Chao Gao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ning-Yu Wang
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China,School of Life Sciences and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yong Xia
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Yi-Bo Zhu
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Ying-Jie Song
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Qian Lei
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China
| | - Luo-Ting Yu
- Pharmaceutical and Biological Engineering Department, School of Chemical Engineering, Sichuan University, Chengdu, China,Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China,*Correspondence: Rui Bao, Luo-Ting Yu,
| | - Rui Bao
- Center of Infectious Diseases, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, China,*Correspondence: Rui Bao, Luo-Ting Yu,
| |
Collapse
|
86
|
Abstract
The human gut is home to trillions of bacteria and provides the scaffold for one of the most complex microbial ecosystems in nature. Inflammatory bowel diseases, such as Crohn's disease, involve a compositional shift in the microbial constituents of this ecosystem with a marked expansion of Enterobacteriaceae, particularly Escherichia coli. Adherent-invasive E. coli (AIEC) strains are frequently isolated from the biopsies of Crohn's patients, where their ability to elicit inflammation suggests a possible role in Crohn's pathology. Here, we consider the origins of the AIEC pathovar and discuss how risk factors associated with Crohn's disease might influence AIEC colonization dynamics within the host to alter the overall disease potential of the microbial community.
Collapse
Affiliation(s)
- Wael Elhenawy
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Alexander Oberc
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada
| | - Brian K. Coombes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada,Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, ON, Canada,CONTACT Brian K. Coombes , Department of Biochemistry and Biomedical Sciences, McMaster University, MDCL 2319, Hamilton, ON Canada L8S 4K1
| |
Collapse
|
87
|
Ilyas B, Tsai CN, Coombes BK. Evolution of Salmonella-Host Cell Interactions through a Dynamic Bacterial Genome. Front Cell Infect Microbiol 2017; 7:428. [PMID: 29034217 PMCID: PMC5626846 DOI: 10.3389/fcimb.2017.00428] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/19/2017] [Indexed: 11/13/2022] Open
Abstract
Salmonella Typhimurium has a broad arsenal of genes that are tightly regulated and coordinated to facilitate adaptation to the various host environments it colonizes. The genome of Salmonella Typhimurium has undergone multiple gene acquisition events and has accrued changes in non-coding DNA that have undergone selection by regulatory evolution. Together, at least 17 horizontally acquired pathogenicity islands (SPIs), prophage-associated genes, and changes in core genome regulation contribute to the virulence program of Salmonella. Here, we review the latest understanding of these elements and their contributions to pathogenesis, emphasizing the regulatory circuitry that controls niche-specific gene expression. In addition to an overview of the importance of SPI-1 and SPI-2 to host invasion and colonization, we describe the recently characterized contributions of other SPIs, including the antibacterial activity of SPI-6 and adhesion and invasion mediated by SPI-4. We further discuss how these fitness traits have been integrated into the regulatory circuitry of the bacterial cell through cis-regulatory evolution and by a careful balance of silencing and counter-silencing by regulatory proteins. Detailed understanding of regulatory evolution within Salmonella is uncovering novel aspects of infection biology that relate to host-pathogen interactions and evasion of host immunity.
Collapse
Affiliation(s)
- Bushra Ilyas
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Caressa N Tsai
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON, Canada.,Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| | - Brian K Coombes
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
88
|
Cystic Fibrosis Transmembrane Conductance Regulator Reduces Microtubule-Dependent Campylobacter jejuni Invasion. Infect Immun 2017; 85:IAI.00311-17. [PMID: 28784926 DOI: 10.1128/iai.00311-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 07/29/2017] [Indexed: 02/08/2023] Open
Abstract
Campylobacterjejuni is a foodborne pathogen that induces gastroenteritis. Invasion and adhesion are essential in the process of C. jejuni infection leading to gastroenteritis. The mucosal layer plays a key role in the system of defense against efficient invasion and adhesion by bacteria, which is modulated by several ion channels and transporters mediated by water flux in the intestine. The cystic fibrosis transmembrane conductance regulator (CFTR) plays the main role in water flux in the intestine, and it is closely associated with bacterial clearance. We previously reported that C. jejuni infection suppresses CFTR channel activity in intestinal epithelial cells; however, the mechanism and importance of this suppression are unclear. This study sought to elucidate the role of CFTR in C. jejuni infection. Using HEK293 cells that stably express wild-type and mutated CFTR, we found that CFTR attenuated C. jejuni invasion and that it was not involved in bacterial adhesion or intracellular survival but was associated with microtubule-dependent intracellular transport. Moreover, we revealed that CFTR attenuated the function of the microtubule motor protein, which caused inhibition of C. jejuni invasion, but did not affect microtubule stability. Meanwhile, the CFTR mutant G551D-CFTR, which had defects in channel activity, suppressed C. jejuni invasion, whereas the ΔF508-CFTR mutant, which had defects in maturation, did not suppress C. jejuni invasion, suggesting that CFTR suppression of C. jejuni invasion is related to CFTR maturation but not channel activity. When these findings are taken together, it may be seen that mature CFTR inhibits C. jejuni invasion by regulating microtubule-mediated pathways. We suggest that CFTR plays a critical role in cellular defenses against C. jejuni invasion and that suppression of CFTR may be an initial step in promoting cell invasion during C. jejuni infection.
Collapse
|
89
|
Gallique M, Bouteiller M, Merieau A. The Type VI Secretion System: A Dynamic System for Bacterial Communication? Front Microbiol 2017; 8:1454. [PMID: 28804481 PMCID: PMC5532429 DOI: 10.3389/fmicb.2017.01454] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/18/2017] [Indexed: 11/13/2022] Open
Abstract
Numerous studies in Gram-negative bacteria have focused on the Type VISecretion Systems (T6SSs), Quorum Sensing (QS), and social behavior, such as in biofilms. These interconnected mechanisms are important for bacterial survival; T6SSs allow bacteria to battle other cells, QS is devoted to the perception of bacterial cell density, and biofilm formation is essentially controlled by QS. Here, we review data concerning T6SS dynamics and T6SS–QS cross-talk that suggest the existence of inter-bacterial communication via T6SSs.
Collapse
Affiliation(s)
- Mathias Gallique
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, l'Institut Universitaire de Technologie d'Evreux (IUT), Université de Rouen, Normandy UniversityEvreux, France
| | - Mathilde Bouteiller
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, l'Institut Universitaire de Technologie d'Evreux (IUT), Université de Rouen, Normandy UniversityEvreux, France
| | - Annabelle Merieau
- Laboratoire de Microbiologie Signaux et Microenvironnement EA 4312, l'Institut Universitaire de Technologie d'Evreux (IUT), Université de Rouen, Normandy UniversityEvreux, France
| |
Collapse
|
90
|
Lien YW, Lai EM. Type VI Secretion Effectors: Methodologies and Biology. Front Cell Infect Microbiol 2017; 7:254. [PMID: 28664151 PMCID: PMC5471719 DOI: 10.3389/fcimb.2017.00254] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/31/2017] [Indexed: 12/26/2022] Open
Abstract
The type VI secretion system (T6SS) is a nanomachine deployed by many Gram-negative bacteria as a weapon against eukaryotic hosts or prokaryotic competitors. It assembles into a bacteriophage tail-like structure that can transport effector proteins into the environment or target cells for competitive survival or pathogenesis. T6SS effectors have been identified by a variety of approaches, including knowledge/hypothesis-dependent and discovery-driven approaches. Here, we review and discuss the methods that have been used to identify T6SS effectors and the biological and biochemical functions of known effectors. On the basis of the nature and transport mechanisms of T6SS effectors, we further propose potential strategies that may be applicable to identify new T6SS effectors.
Collapse
Affiliation(s)
- Yun-Wei Lien
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan.,Department of Plant Pathology and Microbiology, National Taiwan UniversityTaipei, Taiwan
| | - Erh-Min Lai
- Institute of Plant and Microbial Biology, Academia SinicaTaipei, Taiwan.,Department of Plant Pathology and Microbiology, National Taiwan UniversityTaipei, Taiwan
| |
Collapse
|
91
|
Abstract
Biologics are a promising new class of drugs based on complex macromolecules such as proteins and nucleic acids. However, delivery of these macromolecules into the cytoplasm of target cells remains a significant challenge. Here we present one potential solution: bacterial nanomachines that have evolved over millions of years to efficiently deliver proteins and nucleic acids across cell membranes and between cells. In this review, we provide a brief overview of the different bacterial systems capable of direct delivery into the eukaryotic cytoplasm and the medical applications for which they are being investigated, along with a perspective on the future directions of this exciting field.
Collapse
|
92
|
Viala JPM, Bouveret E. Protein-Protein Interaction: Tandem Affinity Purification in Bacteria. Methods Mol Biol 2017; 1615:221-232. [PMID: 28667616 DOI: 10.1007/978-1-4939-7033-9_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of protein-protein interaction networks can lead to the unveiling of protein complex(es) forming cellular machinerie(s) or reveal component proteins of a specific cellular pathway. Deciphering protein-protein interaction networks therefore contributes to a deeper understanding of how cells function. Here we describe the protocol to perform tandem affinity purification (TAP) in bacteria, which enables the identification of the partners of a bait protein under native conditions. This method consists in two sequential steps of affinity purification using two different tags. For that purpose, the bait protein is translationally fused to the TAP tag, which consists of a calmodulin binding peptide (CBP) and two immunoglobulin G (IgG) binding domains of Staphylococcus aureus protein A (ProtA) that are separated by the tobacco etch virus (TEV) protease cleavage site. After the first round of purification based on the binding of ProtA to IgG coated beads, TEV protease cleavage releases CBP-tagged bait-protein along with its partners for a second round of purification on calmodulin affinity resin and leaves behind protein contaminants bound to IgG. Creating the TAP-tag translational fusion at the chromosomal locus allows detection of protein interactions occurring in physiological conditions.
Collapse
Affiliation(s)
- Julie P M Viala
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University-CNRS, 31 Chemin Joseph Aiguier, 13009, Marseille, France.
| | - Emmanuelle Bouveret
- Laboratoire d'Ingénierie des Systèmes Macromoléculaires, UMR7255, Institut de Microbiologie de la Méditerranée, Aix-Marseille University-CNRS, 31 Chemin Joseph Aiguier, 13009, Marseille, France
| |
Collapse
|
93
|
Capasso D, Pepe MV, Rossello J, Lepanto P, Arias P, Salzman V, Kierbel A. Elimination of Pseudomonas aeruginosa through Efferocytosis upon Binding to Apoptotic Cells. PLoS Pathog 2016; 12:e1006068. [PMID: 27977793 PMCID: PMC5158079 DOI: 10.1371/journal.ppat.1006068] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/15/2016] [Indexed: 02/03/2023] Open
Abstract
For opportunistic pathogens such as Pseudomonas aeruginosa, the mucosal barrier represents a formidable challenge. Infections develop only in patients with altered epithelial barriers. Here, we showed that P. aeruginosa interacts with a polarized epithelium, adhering almost exclusively at sites of multi-cellular junctions. In these sites, numerous bacteria attach to an extruded apoptotic cell or apoptotic body. This dead cell tropism is independent of the type of cell death, as P. aeruginosa also binds to necrotic cells. We further showed that P. aeruginosa is internalized through efferocytosis, a process in which surrounding epithelial cells engulf and dispose of extruded apoptotic cells. Intracellularly, along with apoptotic cell debris, P. aeruginosa inhabits an efferocytic phagosome that acquires lysosomal features, and is finally killed. We propose that elimination of P. aeruginosa through efferocytosis is part of a host defense mechanism. Our findings could be relevant for the study of cystic fibrosis, which is characterized by an exacerbated number of apoptotic cells and ineffective efferocytosis. Pseudomonas aeruginosa is an opportunistic pathogen that infects vulnerable patients, such as those with cystic fibrosis or hospitalized in intensive care units. An advance towards understanding infections caused by P. aeruginosa would be to fully elucidate the mechanisms that operate in the bacteria-epithelial barrier interplay. Here, we showed that P. aeruginosa exhibits a remarkable tropism towards dead cells. As bacteria interact with a polarized epithelium, they attach and aggregate almost exclusively on apoptotic cells extruded from the epithelium, while the rest of the surface seems reluctant to bacterial adhesion. We further showed that P. aeruginosa is internalized by epithelial cells surrounding the infected apoptotic cell through efferocytosis, a process in which apoptotic cells are engulfed and disposed of by other cells. Bacteria are eliminated intracellularly. Our findings may help to understand why contexts such as cystic fibrosis, where apoptotic cells are unusually produced and efferocytosis fails, favor P. aeruginosa colonization.
Collapse
Affiliation(s)
- Darío Capasso
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | - María Victoria Pepe
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | | | | | - Paula Arias
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | - Valentina Salzman
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
| | - Arlinet Kierbel
- Instituto de Investigaciones Biotecnológicas Dr. Rodolfo A. Ugalde (IIB-INTECH), Universidad Nacional de San Martín, Consejo Nacional de Investigaciones Científicas y Técnicas (UNSAM-CONICET), San Martín, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
94
|
Esculentin-1a-Derived Peptides Promote Clearance of Pseudomonas aeruginosa Internalized in Bronchial Cells of Cystic Fibrosis Patients and Lung Cell Migration: Biochemical Properties and a Plausible Mode of Action. Antimicrob Agents Chemother 2016; 60:7252-7262. [PMID: 27671059 DOI: 10.1128/aac.00904-16] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 09/16/2016] [Indexed: 01/17/2023] Open
Abstract
Pseudomonas aeruginosa is the major microorganism colonizing the respiratory epithelium in cystic fibrosis (CF) sufferers. The widespread use of available antibiotics has drastically reduced their efficacy, and antimicrobial peptides (AMPs) are a promising alternative. Among them, the frog skin-derived AMPs, i.e., Esc(1-21) and its diastereomer, Esc(1-21)-1c, have recently shown potent activity against free-living and sessile forms of P. aeruginosa Importantly, this pathogen also escapes antibiotics treatment by invading airway epithelial cells. Here, we demonstrate that both AMPs kill Pseudomonas once internalized into bronchial cells which express either the functional or the ΔF508 mutant of the CF transmembrane conductance regulator. A higher efficacy is displayed by Esc(1-21)-1c (90% killing at 15 μM in 1 h). We also show the peptides' ability to stimulate migration of these cells and restore the induction of cell migration that is inhibited by Pseudomonas lipopolysaccharide when used at concentrations mimicking lung infection. This property of AMPs was not investigated before. Our findings suggest new therapeutics that not only eliminate bacteria but also can promote reepithelialization of the injured infected tissue. Confocal microscopy indicated that both peptides are intracellularly localized with a different distribution. Biochemical analyses highlighted that Esc(1-21)-1c is significantly more resistant than the all-l peptide to bacterial and human elastase, which is abundant in CF lungs. Besides proposing a plausible mechanism underlying the properties of the two AMPs, we discuss the data with regard to differences between them and suggest Esc(1-21)-1c as a candidate for the development of a new multifunctional drug against Pseudomonas respiratory infections.
Collapse
|
95
|
Structure and specificity of the Type VI secretion system ClpV-TssC interaction in enteroaggregative Escherichia coli. Sci Rep 2016; 6:34405. [PMID: 27698444 PMCID: PMC5048182 DOI: 10.1038/srep34405] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/13/2016] [Indexed: 11/08/2022] Open
Abstract
The Type VI secretion system (T6SS) is a versatile machine that delivers toxins into either eukaryotic or bacterial cells. It thus represents a key player in bacterial pathogenesis and inter-bacterial competition. Schematically, the T6SS can be viewed as a contractile tail structure anchored to the cell envelope. The contraction of the tail sheath propels the inner tube loaded with effectors towards the target cell. The components of the contracted tail sheath are then recycled by the ClpV AAA+ ATPase for a new cycle of tail elongation. The T6SS is widespread in Gram-negative bacteria and most of their genomes carry several copies of T6SS gene clusters, which might be activated in different conditions. Here, we show that the ClpV ATPases encoded within the two T6SS gene clusters of enteroaggregative Escherichia coli are not interchangeable and specifically participate to the activity of their cognate T6SS. Here we show that this specificity is dictated by interaction between the ClpV N-terminal domains and the N-terminal helices of their cognate TssC1 proteins. We also present the crystal structure of the ClpV1 N-terminal domain, alone or in complex with the TssC1 N-terminal peptide, highlighting the commonalities and diversities in the recruitment of ClpV to contracted sheaths.
Collapse
|
96
|
Bleves S. Game of Trans-Kingdom Effectors. Trends Microbiol 2016; 24:773-774. [PMID: 27554788 DOI: 10.1016/j.tim.2016.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/15/2016] [Indexed: 10/21/2022]
Abstract
TplE, a type VI secreted (phospho)lipase, has been identified as the third trans-kingdom effector of Pseudomonas aeruginosa, targeting both prokaryotic and eukaryotic hosts. Indeed, TplE triggers the killing of bacterial competitors and promotes autophagy in epithelial cells once localized to the endoplasmic reticulum.
Collapse
Affiliation(s)
- Sophie Bleves
- Aix-Marseille Univ, CNRS, LISM, Laboratoire d'Ingénierie des Systèmes Macromoléculaires-UMR7255, Institut de Microbiologie de la Méditerranée, Marseille, France.
| |
Collapse
|
97
|
Salmonella Typhimurium utilizes a T6SS-mediated antibacterial weapon to establish in the host gut. Proc Natl Acad Sci U S A 2016; 113:E5044-51. [PMID: 27503894 DOI: 10.1073/pnas.1608858113] [Citation(s) in RCA: 246] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The mammalian gastrointestinal tract is colonized by a high-density polymicrobial community where bacteria compete for niches and resources. One key competition strategy includes cell contact-dependent mechanisms of interbacterial antagonism, such as the type VI secretion system (T6SS), a multiprotein needle-like apparatus that injects effector proteins into prokaryotic and/or eukaryotic target cells. However, the contribution of T6SS antibacterial activity during pathogen invasion of the gut has not been demonstrated. We report that successful establishment in the gut by the enteropathogenic bacterium Salmonella enterica serovar Typhimurium requires a T6SS encoded within Salmonella pathogenicity island-6 (SPI-6). In an in vitro setting, we demonstrate that bile salts increase SPI-6 antibacterial activity and that S Typhimurium kills commensal bacteria in a T6SS-dependent manner. Furthermore, we provide evidence that one of the two T6SS nanotube subunits, Hcp1, is required for killing Klebsiella oxytoca in vitro and that this activity is mediated by the specific interaction of Hcp1 with the antibacterial amidase Tae4. Finally, we show that K. oxytoca is killed in the host gut in an Hcp1-dependent manner and that the T6SS antibacterial activity is essential for Salmonella to establish infection within the host gut. Our findings provide an example of pathogen T6SS-dependent killing of commensal bacteria as a mechanism to successfully colonize the host gut.
Collapse
|
98
|
The Pseudomonas aeruginosa Type VI Secretion PGAP1-like Effector Induces Host Autophagy by Activating Endoplasmic Reticulum Stress. Cell Rep 2016; 16:1502-1509. [DOI: 10.1016/j.celrep.2016.07.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 05/26/2016] [Accepted: 07/01/2016] [Indexed: 01/09/2023] Open
|
99
|
VgrG and PAAR Proteins Define Distinct Versions of a Functional Type VI Secretion System. PLoS Pathog 2016; 12:e1005735. [PMID: 27352036 PMCID: PMC4924876 DOI: 10.1371/journal.ppat.1005735] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 06/08/2016] [Indexed: 01/19/2023] Open
Abstract
The Type VI secretion system (T6SS) is widespread among bacterial pathogens and acts as an effective weapon against competitor bacteria and eukaryotic hosts by delivering toxic effector proteins directly into target cells. The T6SS utilises a bacteriophage-like contractile machinery to expel a puncturing device based on a tube of Hcp topped with a VgrG spike, which can be extended by a final tip from a PAAR domain-containing protein. Effector proteins are believed to be delivered by specifically associating with particular Hcp, VgrG or PAAR proteins, either covalently ('specialised') or non-covalently ('cargo' effectors). Here we used the T6SS of the opportunistic pathogen Serratia marcescens, together with integratecd genetic, proteomic and biochemical approaches, to elucidate the role of specific VgrG and PAAR homologues in T6SS function and effector specificity, revealing new aspects and unexpected subtleties in effector delivery by the T6SS. We identified effectors, both cargo and specialised, absolutely dependent on a particular VgrG for delivery to target cells, and discovered that other cargo effectors can show a preference for a particular VgrG. The presence of at least one PAAR protein was found to be essential for T6SS function, consistent with designation as a 'core' T6SS component. We showed that specific VgrG-PAAR combinations are required to assemble a functional T6SS and that the three distinct VgrG-PAAR assemblies in S. marcescens exhibit distinct effector specificity and efficiency. Unexpectedly, we discovered that two different PAAR-containing Rhs proteins can functionally pair with the same VgrG protein. Showing that accessory EagR proteins are involved in these interactions, native VgrG-Rhs-EagR complexes were isolated and specific interactions between EagR and cognate Rhs proteins identified. This study defines an essential yet flexible role for PAAR proteins in the T6SS and highlights the existence of distinct versions of the machinery with differential effector specificity and efficiency of target cell delivery.
Collapse
|
100
|
Planamente S, Salih O, Manoli E, Albesa-Jové D, Freemont PS, Filloux A. TssA forms a gp6-like ring attached to the type VI secretion sheath. EMBO J 2016; 35:1613-27. [PMID: 27288401 PMCID: PMC4969574 DOI: 10.15252/embj.201694024] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 05/23/2016] [Indexed: 12/17/2022] Open
Abstract
The type VI secretion system (T6SS) is a supra‐molecular bacterial complex that resembles phage tails. It is a killing machine which fires toxins into target cells upon contraction of its TssBC sheath. Here, we show that TssA1 is a T6SS component forming dodecameric ring structures whose dimensions match those of the TssBC sheath and which can accommodate the inner Hcp tube. The TssA1 ring complex binds the T6SS sheath and impacts its behaviour in vivo. In the phage, the first disc of the gp18 sheath sits on a baseplate wherein gp6 is a dodecameric ring. We found remarkable sequence and structural similarities between TssA1 and gp6 C‐termini, and propose that TssA1 could be a baseplate component of the T6SS. Furthermore, we identified similarities between TssK1 and gp8, the former interacting with TssA1 while the latter is found in the outer radius of the gp6 ring. These observations, combined with similarities between TssF and gp6N‐terminus or TssG and gp53, lead us to propose a comparative model between the phage baseplate and the T6SS.
Collapse
Affiliation(s)
- Sara Planamente
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, UK
| | - Osman Salih
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
| | - Eleni Manoli
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, UK
| | - David Albesa-Jové
- Unidad de Biofísica, Departamento de Bioquímica, Consejo Superior de Investigaciones Científicas - Universidad del País Vasco/Euskal Herriko Unibertsitatea (CSIC-UPV/EHU) Universidad del País Vasco, Leioa, Bizkaia, Spain Structural Biology Unit, CIC bioGUNE Bizkaia Technology Park, Derio, Spain
| | - Paul S Freemont
- Section of Structural Biology, Department of Medicine, Imperial College London, London, UK
| | - Alain Filloux
- MRC Centre for Molecular Bacteriology and Infection (CMBI), Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|