51
|
Guanidine-Containing Antifungal Agents against Human-Relevant Fungal Pathogens (2004-2022)-A Review. J Fungi (Basel) 2022; 8:jof8101085. [PMID: 36294650 PMCID: PMC9605545 DOI: 10.3390/jof8101085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/10/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2022] Open
Abstract
The guanidine moiety is typically a highly basic group, and can be found in a wide variety of drugs, such as zanamivir (Relenza) and metformin (Fortamet), as well as in biologically active compounds for numerous disease areas, including central nervous system (CNS) diseases and chemotherapeutics. This review will focus on antifungal agents which contain at least one guanidine group, for the treatment of human-related fungal pathogens, described in the literature between 2004 and 2022. These compounds include small molecules, steroids, polymers, metal complexes, sesquiterpenes, natural products, and polypeptides. It shall be made clear that a diverse range of guanidine-containing derivatives have been published in the literature and have antifungal activity, including efficacy in in vivo experiments.
Collapse
|
52
|
Kang SJ, Nam SH, Lee BJ. Engineering Approaches for the Development of Antimicrobial Peptide-Based Antibiotics. Antibiotics (Basel) 2022; 11:antibiotics11101338. [PMID: 36289996 PMCID: PMC9599025 DOI: 10.3390/antibiotics11101338] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 11/07/2022] Open
Abstract
Antimicrobial peptides (AMPs) have received increasing attention as potential alternatives for future antibiotics because of the rise of multidrug-resistant (MDR) bacteria. AMPs are small cationic peptides with broad-spectrum antibiotic activities and different action mechanisms to those of traditional antibiotics. Despite the desirable advantages of developing peptide-based antimicrobial agents, the clinical applications of AMPs are still limited because of their enzymatic degradation, toxicity, and selectivity. In this review, structural modifications, such as amino acid substitution, stapling, cyclization of peptides, and hybrid AMPs with conventional antibiotics or other peptides, will be presented. Additionally, nanodelivery systems using metals or lipids to deliver AMPs will be discussed based on the structural properties and action mechanisms of AMPs.
Collapse
Affiliation(s)
- Su-Jin Kang
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea
| | - So Hee Nam
- College of Pharmacy, Dongduk Women’s University, Seoul 02748, Korea
| | - Bong-Jin Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-7869
| |
Collapse
|
53
|
Ongpipattanakul C, Desormeaux EK, DiCaprio A, van der Donk WA, Mitchell DA, Nair SK. Mechanism of Action of Ribosomally Synthesized and Post-Translationally Modified Peptides. Chem Rev 2022; 122:14722-14814. [PMID: 36049139 PMCID: PMC9897510 DOI: 10.1021/acs.chemrev.2c00210] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ribosomally synthesized and post-translationally modified peptides (RiPPs) are a natural product class that has undergone significant expansion due to the rapid growth in genome sequencing data and recognition that they are made by biosynthetic pathways that share many characteristic features. Their mode of actions cover a wide range of biological processes and include binding to membranes, receptors, enzymes, lipids, RNA, and metals as well as use as cofactors and signaling molecules. This review covers the currently known modes of action (MOA) of RiPPs. In turn, the mechanisms by which these molecules interact with their natural targets provide a rich set of molecular paradigms that can be used for the design or evolution of new or improved activities given the relative ease of engineering RiPPs. In this review, coverage is limited to RiPPs originating from bacteria.
Collapse
Affiliation(s)
- Chayanid Ongpipattanakul
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Emily K. Desormeaux
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Adam DiCaprio
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - Wilfred A. van der Donk
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Howard Hughes Medical Institute, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Douglas A. Mitchell
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| | - Satish K. Nair
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
- Departments of Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, USA
| |
Collapse
|
54
|
Zupin L, dos Santos-Silva CA, Al Mughrbi ARH, Vilela LMB, Benko-Iseppon AM, Crovella S. Bioactive Antimicrobial Peptides: A New Weapon to Counteract Zoonosis. Microorganisms 2022; 10:1591. [PMID: 36014009 PMCID: PMC9414035 DOI: 10.3390/microorganisms10081591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/16/2022] Open
Abstract
Zoonoses have recently become the center of attention of the general population and scientific community. Notably, more than 30 new human pathogens have been identified in the last 30 years, 75% of which can be classified as zoonosis. The complete eradication of such types of infections is far out of reach, considering the limited understanding of animal determinants in zoonoses and their causes of emergence. Therefore, efforts must be doubled in examining the spread, persistence, and pathogenicity of zoonosis and studying possible clinical interventions and antimicrobial drug development. The search for antimicrobial bioactive compounds has assumed great emphasis, considering the emergence of multi-drug-resistant microorganisms. Among the biomolecules of emerging scientific interest are antimicrobial peptides (AMPs), potent biomolecules that can potentially act as important weapons against infectious diseases. Moreover, synthetic AMPs are easily tailored (bioinformatically) to target specific features of the pathogens to hijack, inducing no or very low resistance. Although very promising, previous studies on SAMPs' efficacy are still at their early stages. Indeed, further studies and better characterization on their mechanism of action with in vitro and in vivo assays are needed so as to proceed to their clinical application on human beings.
Collapse
Affiliation(s)
- Luisa Zupin
- Institute for Maternal and Child Health—IRCCS Burlo Garofolo, 34137 Trieste, Italy
| | | | | | - Livia Maria Batista Vilela
- Centro de Biociências, Departamento de Genética, Universidade Federal de Pernambuco, Recife 50670-420, Brazil
| | - Ana Maria Benko-Iseppon
- Centro de Biociências, Departamento de Genética, Universidade Federal de Pernambuco, Recife 50670-420, Brazil
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| |
Collapse
|
55
|
Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. FRONTIERS IN ORAL HEALTH 2022; 3:958480. [PMID: 35979535 PMCID: PMC9376388 DOI: 10.3389/froh.2022.958480] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates the importance and vulnerability of the mucosal epithelial barrier against infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial barrier, providing immunity against microbes. In primitive life forms, AMPs protect the integument and the gut against pathogenic microbes. AMPs have also evolved in humans and other mammals to enhance newer, complex innate and adaptive immunity to favor the persistence of commensals over pathogenic microbes. The canonical AMPs are helictical peptides that form lethal pores in microbial membranes. In higher life forms, this type of AMP is exemplified by the defensin family of AMPs. In epithelial tissues, defensins, and calprotectin (complex of S100A8 and S100A9) have evolved to work cooperatively. The mechanisms of action differ. Unlike defensins, calprotectin sequesters essential trace metals from microbes, which inhibits growth. This review focuses on defensins and calprotectin as AMPs that appear to work cooperatively to fortify the epithelial barrier against infection. The antimicrobial spectrum is broad with overlap between the two AMPs. In mice, experimental models highlight the contribution of both AMPs to candidiasis as a fungal infection and periodontitis resulting from bacterial dysbiosis. These AMPs appear to contribute to innate immunity in humans, protecting the commensal microflora and restricting the emergence of pathobionts and pathogens. A striking example in human innate immunity is that elevated serum calprotectin protects against neonatal sepsis. Calprotectin is also remarkable because of functional differences when localized in epithelial and neutrophil cytoplasm or released into the extracellular environment. In the cytoplasm, calprotectin appears to protect against invasive pathogens. Extracellularly, calprotectin can engage pathogen-recognition receptors to activate innate immune and proinflammatory mechanisms. In inflamed epithelial and other tissue spaces, calprotectin, DNA, and histones are released from degranulated neutrophils to form insoluble antimicrobial barriers termed neutrophil extracellular traps. Hence, calprotectin and other AMPs use several strategies to provide microbial control and stimulate innate immunity.
Collapse
Affiliation(s)
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
56
|
Gong Y, Li H, Wu F, Li Y, Zhang S. Fungicidal Activity of AP10W, a Short Peptide Derived from AP-2 Complex Subunit mu-A, In Vitro and In Vivo. Biomolecules 2022; 12:biom12070965. [PMID: 35883521 PMCID: PMC9313395 DOI: 10.3390/biom12070965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/01/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
With the increase in the incidence of fungal infections, and the restrictions of existing antifungal drugs, the development of novel antifungal agents is urgent. Here we prove that AP10W, a short peptide derived from AP-2 complex subunit mu-A, displays conspicuous antifungal activities against the main fungal pathogens of human infections Candida albicans and Aspergillus fumigatus. We also show that AP10W suppresses the fungal biofilm formation, and reduces the pre-established fungal biofilms. AP10W appears to exert its fungicidal activity through a mode of combined actions, including interaction with the fungal cell walls via laminarin, mannan and chitin, enhancement of cell wall permeabilization, induction of membrane depolarization, and increase in intracellular ROS generation. Importantly, we demonstrate that AP10W exhibits little toxicity towards mammalian fibroblasts, and effectively promotes the healing of wounded skins infected by C. albicans. These together indicate that AP10W is a new member of fungicidal agents. It also suggests that AP10W has a considerable potential for future development as a novel antifungal drug.
Collapse
Affiliation(s)
- Yi Gong
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (Y.G.); (H.L.); (F.W.); (Y.L.)
| | - Haoyi Li
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (Y.G.); (H.L.); (F.W.); (Y.L.)
| | - Fei Wu
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (Y.G.); (H.L.); (F.W.); (Y.L.)
| | - Yishuai Li
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (Y.G.); (H.L.); (F.W.); (Y.L.)
| | - Shicui Zhang
- Department of Marine Biology, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, China; (Y.G.); (H.L.); (F.W.); (Y.L.)
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266003, China
- Correspondence:
| |
Collapse
|
57
|
Bansal S, Vu K, Liu R, Ajena Y, Xiao W, Menon SM, Bennett A, Gelli A, Lam KS. Discovery and Characterization of a Potent Antifungal Peptide through One-Bead, One-Compound Combinatorial Library Screening. ACS Infect Dis 2022; 8:1291-1302. [PMID: 35700987 DOI: 10.1021/acsinfecdis.2c00019] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This work describes the discovery of a bead-bound membrane-active peptide (MAP), LBF127, that selectively binds fungal giant unilamellar vesicles (GUVs) over mammalian GUVs. LBF127 was re-synthesized in solution form and demonstrated to have antifungal activity with limited hemolytic activity and cytotoxicity against mammalian cells. Through systematic structure-activity relationship studies, including N- and C-terminal truncation, alanine-walk, and d-amino acid substitution, an optimized peptide, K-oLBF127, with higher potency, less hemolytic activity, and cytotoxicity emerged. Compared to the parent peptide, K-oLBF127 is shorter by three amino acids and has a lysine at the N-terminus to confer an additional positive charge. K-oLBF127 was found to have improved selectivity toward the fungal membrane over mammalian membranes by 2-fold compared to LBF127. Further characterizations revealed that, while K-oLBF127 exhibits a spectrum of antifungal activity similar to that of the original peptide, it has lower hemolytic activity and cytotoxicity against mammalian cells. Mice infected with Cryptococcus neoformans and treated with K-oLBF127 (16 mg/kg) for 48 h had significantly lower lung fungal burden compared to untreated animals, consistent with K-oLBF127 being active in vivo. Our study demonstrates the success of the one-bead, one-compound high-throughput strategy and sequential screening at identifying MAPs with strong antifungal activities.
Collapse
Affiliation(s)
- Shivani Bansal
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California 95817, United States
- Department of Chemistry, University of California, Davis, California 95616, United States
| | - Kiem Vu
- Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California 95616, United States
| | - Ruiwu Liu
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California 95817, United States
| | - Yousif Ajena
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California 95817, United States
| | - Wenwu Xiao
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California 95817, United States
| | - Suvidha M Menon
- Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California 95616, United States
| | - Amelia Bennett
- Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California 95616, United States
| | - Angie Gelli
- Department of Pharmacology, University of California, Davis, School of Medicine, Davis, California 95616, United States
| | - Kit S Lam
- Department of Biochemistry and Molecular Medicine, University of California, Davis, School of Medicine, Sacramento, California 95817, United States
- Department of Chemistry, University of California, Davis, California 95616, United States
| |
Collapse
|
58
|
Molecular Mapping of Antifungal Mechanisms Accessing Biomaterials and New Agents to Target Oral Candidiasis. Int J Mol Sci 2022; 23:ijms23147520. [PMID: 35886869 PMCID: PMC9320712 DOI: 10.3390/ijms23147520] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 02/04/2023] Open
Abstract
Oral candidiasis has a high rate of development, especially in immunocompromised patients. Immunosuppressive and cytotoxic therapies in hospitalized HIV and cancer patients are known to induce the poor management of adverse reactions, where local and systemic candidiasis become highly resistant to conventional antifungal therapy. The development of oral candidiasis is triggered by several mechanisms that determine oral epithelium imbalances, resulting in poor local defense and a delayed immune system response. As a result, pathogenic fungi colonies disseminate and form resistant biofilms, promoting serious challenges in initiating a proper therapeutic protocol. Hence, this study of the literature aimed to discuss possibilities and new trends through antifungal therapy for buccal drug administration. A large number of studies explored the antifungal activity of new agents or synergic components that may enhance the effect of classic drugs. It was of significant interest to find connections between smart biomaterials and their activity, to find molecular responses and mechanisms that can conquer the multidrug resistance of fungi strains, and to transpose them into a molecular map. Overall, attention is focused on the nanocolloids domain, nanoparticles, nanocomposite synthesis, and the design of polymeric platforms to satisfy sustained antifungal activity and high biocompatibility with the oral mucosa.
Collapse
|
59
|
Sharma K, Aaghaz S, Maurya IK, Rudramurthy SM, Singh S, Kumar V, Tikoo K, Jain R. Antifungal evaluation and mechanistic investigations of membrane active short synthetic peptides-based amphiphiles. Bioorg Chem 2022; 127:106002. [DOI: 10.1016/j.bioorg.2022.106002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 12/26/2022]
|
60
|
Lima RM, Rathod BB, Tiricz H, Howan DHO, Al Bouni MA, Jenei S, Tímár E, Endre G, Tóth GK, Kondorosi É. Legume Plant Peptides as Sources of Novel Antimicrobial Molecules Against Human Pathogens. Front Mol Biosci 2022; 9:870460. [PMID: 35755814 PMCID: PMC9218685 DOI: 10.3389/fmolb.2022.870460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 05/18/2022] [Indexed: 12/22/2022] Open
Abstract
Antimicrobial peptides are prominent components of the plant immune system acting against a wide variety of pathogens. Legume plants from the inverted repeat lacking clade (IRLC) have evolved a unique gene family encoding nodule-specific cysteine-rich NCR peptides acting in the symbiotic cells of root nodules, where they convert their bacterial endosymbionts into non-cultivable, polyploid nitrogen-fixing cells. NCRs are usually 30–50 amino acids long peptides having a characteristic pattern of 4 or 6 cysteines and highly divergent amino acid composition. While the function of NCRs is largely unknown, antimicrobial activity has been demonstrated for a few cationic Medicago truncatula NCR peptides against bacterial and fungal pathogens. The advantages of these plant peptides are their broad antimicrobial spectrum, fast killing modes of actions, multiple bacterial targets, and low propensity to develop resistance to them and no or low cytotoxicity to human cells. In the IRLC legumes, the number of NCR genes varies from a few to several hundred and it is possible that altogether hundreds of thousands of different NCR peptides exist. Due to the need for new antimicrobial agents, we investigated the antimicrobial potential of 104 synthetic NCR peptides from M. truncatula, M. sativa, Pisum sativum, Galega orientalis and Cicer arietinum against eight human pathogens, including ESKAPE bacteria. 50 NCRs showed antimicrobial activity with differences in the antimicrobial spectrum and effectivity. The most active peptides eliminated bacteria at concentrations from 0.8 to 3.1 μM. High isoelectric point and positive net charge were important but not the only determinants of their antimicrobial activity. Testing the activity of shorter peptide derivatives against Acinetobacter baumannii and Candida albicans led to identification of regions responsible for the antimicrobial activity and provided insight into their potential modes of action. This work provides highly potent lead molecules without hemolytic activity on human blood cells for novel antimicrobial drugs to fight against pathogens.
Collapse
Affiliation(s)
- Rui M Lima
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | | | - Hilda Tiricz
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | - Dian H O Howan
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | | | - Sándor Jenei
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | - Edit Tímár
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | - Gabriella Endre
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| | - Gábor K Tóth
- Department of Medical Chemistry, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - Éva Kondorosi
- Institute of Plant Biology, Biological Research Centre, ELKH, Szeged, Hungary
| |
Collapse
|
61
|
Li Z, Jing X, Yuan Y, Shui Y, Li S, Zhao Z, Deng B, Zhang W. In vitro and in vivo Activity of Phibilin Against Candida albicans. Front Microbiol 2022; 13:862834. [PMID: 35633688 PMCID: PMC9130856 DOI: 10.3389/fmicb.2022.862834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
The increase in the occurrence of antifungal-resistant Candida albicans infections necessitates more research to explore alternative effective and safe agents against this fungus. In this work, Phibilin, a new antimicrobial peptide obtained from Philomycus bilineatus and used in traditional Chinese medicine, effectively inhibits the growth and activities of C. albicans, including the clinical resistant strains. Phibilin is a fungicidal antimicrobial peptide that exhibited its antimicrobial effect against C. albicans mainly by disrupting the membrane and interacting with the DNA of the fungi. In particular, Phibilin induces the necrosis of C. albicans via the ROS-related pathway. Moreover, this antifungal compound inhibited the biofilm formation of C. albicans by preventing the development of hyphae in a dose-dependent manner. Furthermore, Phibilin and clotrimazole displayed a synergistic effect in inhibiting the growth of the fungi. In the mouse cutaneous infection model, Phibilin significantly inhibited the formation of skin abscesses and decreased the counts of C. albicans cells in the infected area. Overall, Phibilin is potentially an effective agent against skin infections caused by C. albicans.
Collapse
Affiliation(s)
- Zhongjie Li
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Xiaoyuan Jing
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yaping Yuan
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yingbin Shui
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Shasha Li
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Zhuoran Zhao
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Bo Deng
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Wenlu Zhang
- School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
62
|
Li Z, Shen F, Song L, Zhang S. Antifungal Activity of NP20 Derived from Amphioxus Midkine/Pleiotrophin Homolog Against Aspergillus niger and Aspergillus fumigatus. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:614-625. [PMID: 35610324 DOI: 10.1007/s10126-022-10131-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
With the emergence of antifungal resistance, systematic infections with Aspergillus are becoming the major cause of the clinical morbidity. The development of novel antifungal agents with high efficacy, low drug tolerance, and few side effects is urgent. In response to that need, we have identified NP20. Here we demonstrate clearly that NP20 has antifungal activity, capable of killing the spores of Aspergillus niger and Aspergillus fumigatus as well as causing direct damage to the surface, membrane, cytoplasm, organelle, and nucleus of the fungal spores. Interestingly, NP20 is active under temperature stress and a wide range of pH. Subsequently, MTT assay, assay for binding of NP20 to fungal cell wall components, membrane depolarization assay, confocal microscopy, ROS assay, DNA replication, and protein synthesis assay are performed to clarify the mechanisms underlying NP20 against Aspergillus. The results show that NP20 can bind with and pass through the fungal cell wall, and then interfere with the lipid membrane. Moreover, NP20 can induce intracellular ROS production, DNA fragmentation, and protein synthesis inhibition of the fungal cells. These together indicate that NP20 is a novel antifungal peptide, which has considerable potential for future development as novel peptide antibiotics against Aspergillus.
Collapse
Affiliation(s)
- Zhi Li
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Room 320, 5 Yushan Road, Darwin Building, Qingdao, 266003, China
| | - Fangwang Shen
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Room 320, 5 Yushan Road, Darwin Building, Qingdao, 266003, China
| | - Lili Song
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Room 320, 5 Yushan Road, Darwin Building, Qingdao, 266003, China
| | - Shicui Zhang
- Laboratory for Evolution & Development, Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Room 320, 5 Yushan Road, Darwin Building, Qingdao, 266003, China.
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266003, China.
| |
Collapse
|
63
|
Sethi L, Sherpa T, Kumari K, Dey N. Further Characterization of MUAS35SCP and FUAS35SCP Recombinant Promoters and Their Implication in Translational Research. Mol Biotechnol 2022; 64:1356-1366. [PMID: 35641838 DOI: 10.1007/s12033-022-00513-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/11/2022] [Indexed: 11/24/2022]
Abstract
Recombinant promoters are of high value in translational research. Earlier, we developed two recombinant promoters, namely MUAS35SCP and FUAS35SCP, and their transcriptional activities were found to be stronger than that of the most widely used CaMV35S promoter in dicot plants. Presently, we are reporting constitutive expression of both GUS and GFP reporters under the control of these promoters in several monocots, including rice, wheat, and pearl millet. We observed that these promoters could express the reporter genes constitutively, and their expression abilities were almost equal to that of the CaMV35S2 promoter. Plant-derived enriched PaDef (Persea americana var. drymifolia defensin) and NsDef2 (Nigella sativa L. defensin 2) antimicrobial peptides expressed under the control of these promoters arrest the growth of devastating phytopathogens like Pseudomonas syringae, Rhodococcus fascians, and Alternaria alternata. We observed that plant-derived NsDef2 and PaDef under control of these promoters showed approximately 80-90% inhibitory activity against Pseudomonas syringae. Hence, these promoters were constitutive and universal, as they can drive the expression of transgenes in both dicot and monocot plants. Alongside, these promoters could become a valuable tool for raising genetically modified plants with in-built resistance toward phytopathogens.
Collapse
Affiliation(s)
- Lini Sethi
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Tsheten Sherpa
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Khushbu Kumari
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.,Regional Centre for Biotechnology, National Capital Region Biotech Science Cluster, Faridabad, Haryana (NCR Delhi), 121001, India
| | - Nrisingha Dey
- Division of Plant and Microbial Biotechnology, Institute of Life Sciences, NALCO Square, Chandrasekharpur, Bhubaneswar, Odisha, 751023, India.
| |
Collapse
|
64
|
Zhang X, Wang M, Zhu X, Peng Y, Fu T, Hu CH, Cai J, Liao G. Development of Lipo-γ-AA Peptides as Potent Antifungal Agents. J Med Chem 2022; 65:8029-8039. [PMID: 35637173 DOI: 10.1021/acs.jmedchem.2c00595] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The emergence of drug-resistant fungal pathogens poses great threats to an increasing number of vulnerable populations worldwide, and the need for novel antifungal agents is imperative. In this work, a series of lipo-γ-AA peptides were synthesized and evaluated for their biological activities. One lead, MW5, exhibited potent and broad-spectrum antifungal activity. In addition, MW5 potently boosted the efficacy of fluconazole against clinical azole-resistant Candida isolates. Mechanistic investigation showed that the lead compound disrupted the cell membrane, significantly boosted the production of reactive oxygen species, and undermined the function of the efflux pump, thus resensitizing drug-resistant Candida albicans to fluconazole. Notably, coadministration of MW5 and fluconazole exhibited potent in vivo antifungal activity in a murine model of mucocutaneous candidiasis. Our results demonstrated that lipo-γ-AA peptides have great promise for use alone or in combination to combat drug-resistant Candida infections.
Collapse
Affiliation(s)
- Xing Zhang
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Minghui Wang
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Xiaodi Zhu
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Yan Peng
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Tiwei Fu
- Chongqing Medical University Stomatology College, Chongqing Key Laboratory for Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing 401147, PR China
| | - Chang-Hua Hu
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| | - Jianfeng Cai
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Guojian Liao
- College of Pharmaceutical Sciences, Medical Research Institute, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
65
|
Fusarium fruiting body microbiome member Pantoea agglomerans inhibits fungal pathogenesis by targeting lipid rafts. Nat Microbiol 2022; 7:831-843. [PMID: 35618775 DOI: 10.1038/s41564-022-01131-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/22/2022] [Indexed: 12/13/2022]
Abstract
Plant-pathogenic fungi form intimate interactions with their associated bacterial microbiota during their entire life cycle. However, little is known about the structure, functions and interaction mechanisms of bacterial communities associated with fungal fruiting bodies (perithecia). Here we examined the bacterial microbiome of perithecia formed by Fusarium graminearum, the major pathogenic fungus causing Fusarium head blight in cereals. A total of 111 shared bacterial taxa were identified in the microbiome of 65 perithecium samples collected from 13 geographic locations. Within a representative culture collection, 113 isolates exhibited antagonistic activity against F. graminearum, with Pantoea agglomerans ZJU23 being the most efficient in reducing fungal growth and infectivity. Herbicolin A was identified as the key antifungal compound secreted by ZJU23. Genetic and chemical approaches led to the discovery of its biosynthetic gene cluster. Herbicolin A showed potent in vitro and in planta efficacy towards various fungal pathogens and fungicide-resistant isolates, and exerted a fungus-specific mode of action by directly binding and disrupting ergosterol-containing lipid rafts. Furthermore, herbicolin A exhibited substantially higher activity (between 5- and 141-fold higher) against the human opportunistic fungal pathogens Aspergillus fumigatus and Candida albicans in comparison with the clinically used fungicides amphotericin B and fluconazole. Its mode of action, which is distinct from that of other antifungal drugs, and its efficacy make herbicolin A a promising antifungal drug to combat devastating fungal pathogens, both in agricultural and clinical settings.
Collapse
|
66
|
Wang Q, Pan L, Han Y, Zhou Z. Antimicrobial Mechanisms of Enterocin CHQS Against Candida albicans. Curr Microbiol 2022; 79:191. [PMID: 35552837 DOI: 10.1007/s00284-022-02878-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
Abstract
Candida albicans is the most common fungal pathogen in hospital-acquired infections, which is extremely harmful to health. The increasing fungal infections is requiring the rapid development of novel antifungal agents. In this study, the antimicrobial activity of CHQS, an enterocin isolated from Enterococcus faecalis TG2 against C. albicans was confirmed by the minimum inhibitory concentration, minimum fungicidal concentration, and time-kill curve. Aniline blue and calcofluor white staining methods showed that CHQS remarkably affected β-1,3-glucan and chitin cell wall components and made cell wall more vulnerable. The C. albicans cell wall rupture and intracellular vacuolation were observed by TEM and SEM. Moreover, CHQS induced the accumulation of intracellular reactive oxygen species and decreased mitochondrial membrane potential. These results suggested that CHQS might have a complex multi-target antimicrobial mechanism against C. albicans. In addition, the use of CHQS combined with amphotericin B showed synergistic antimicrobial effects against C. albicans. In conclusion, enterocin CHQS, a natural product with antimicrobial effect, might has a bright future for the development of new antifungal drugs.
Collapse
Affiliation(s)
- Qi Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Lei Pan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Ye Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| | - Zhijiang Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
| |
Collapse
|
67
|
Li X, Zuo S, Wang B, Zhang K, Wang Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022; 27:2675. [PMID: 35566025 PMCID: PMC9104849 DOI: 10.3390/molecules27092675] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 12/16/2022] Open
Abstract
Antimicrobial peptides are a type of small-molecule peptide that widely exist in nature and are components of the innate immunity of almost all living things. They play an important role in resisting foreign invading microorganisms. Antimicrobial peptides have a wide range of antibacterial activities against bacteria, fungi, viruses and other microorganisms. They are active against traditional antibiotic-resistant strains and do not easily induce the development of drug resistance. Therefore, they have become a hot spot of medical research and are expected to become a new substitute for fighting microbial infection and represent a new method for treating drug-resistant bacteria. This review briefly introduces the source and structural characteristics of antimicrobial peptides and describes those that have been used against common clinical microorganisms (bacteria, fungi, viruses, and especially coronaviruses), focusing on their antimicrobial mechanism of action and clinical application prospects.
Collapse
Affiliation(s)
- Xin Li
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Siyao Zuo
- Department of Dermatology and Venereology, First Hospital of Jilin University, Changchun 130021, China;
| | - Bin Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Kaiyu Zhang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| | - Yang Wang
- Department of Infectious Diseases, First Hospital of Jilin University, Changchun 130021, China; (X.L.); (B.W.)
| |
Collapse
|
68
|
Sun CQ, Peng J, Yang LB, Jiao ZL, Zhou LX, Tao RY, Zhu LJ, Tian ZQ, Huang MJ, Guo G. A Cecropin-4 Derived Peptide C18 Inhibits Candida albicans by Disturbing Mitochondrial Function. Front Microbiol 2022; 13:872322. [PMID: 35531288 PMCID: PMC9075107 DOI: 10.3389/fmicb.2022.872322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/14/2022] [Indexed: 12/18/2022] Open
Abstract
Global burden of fungal infections and related health risk has accelerated at an incredible pace, and multidrug resistance emergency aggravates the need for the development of new effective strategies. Candida albicans is clinically the most ubiquitous pathogenic fungus that leads to high incidence and mortality in immunocompromised patients. Antimicrobial peptides (AMPs), in this context, represent promising alternatives having potential to be exploited for improving human health. In our previous studies, a Cecropin-4-derived peptide named C18 was found to possess a broader antibacterial spectrum after modification and exhibit significant antifungal activity against C. albicans. In this study, C18 shows antifungal activity against C. albicans or non-albicans Candida species with a minimum inhibitory concentration (MIC) at 4∼32 μg/ml, and clinical isolates of fluconazole (FLZ)-resistance C. tropicalis were highly susceptible to C18 with MIC value of 8 or 16 μg/ml. Additionally, C18 is superior to FLZ for killing planktonic C. albicans from inhibitory and killing kinetic curves. Moreover, C18 could attenuate the virulence of C. albicans, which includes damaging the cell structure, retarding hyphae transition, and inhibiting biofilm formation. Intriguingly, in the Galleria mellonella model with C. albicans infection, C18 could improve the survival rate of G. mellonella larvae to 70% and reduce C. albicans load from 5.01 × 107 to 5.62 × 104 CFU. For mechanistic action of C18, the level of reactive oxygen species (ROS) generation and cytosolic Ca2 + increased in the presence of C18, which is closely associated with mitochondrial dysfunction. Meanwhile, mitochondrial membrane potential (△Ψm) loss and ATP depletion of C. albicans occurred with the treatment of C18. We hypothesized that C18 might inhibit C. albicans via triggering mitochondrial dysfunction driven by ROS generation and Ca2 + accumulation. Our observation provides a basis for future research to explore the antifungal strategies and presents C18 as an attractive therapeutic candidate to be developed to treat candidiasis.
Collapse
Affiliation(s)
- Chao-Qin Sun
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Center of Laboratory Medicine, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Peng
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Ministry of Education, Guiyang, China
| | - Long-Bing Yang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Zheng-Long Jiao
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
| | - Luo-Xiong Zhou
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Ministry of Education, Guiyang, China
| | - Ru-Yu Tao
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guizhou Medical University, Kaili, China
| | - Li-Juan Zhu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Zhu-Qing Tian
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Ming-Jiao Huang
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Ministry of Education, Guiyang, China
- Translational Medicine Research Center, Guizhou Medical University, Guiyang, China
- *Correspondence: Guo Guo,
| |
Collapse
|
69
|
Watson A, Agius J, Ackerly D, Beddoe T, Helbig K. The Role of Anti-Viral Effector Molecules in Mollusc Hemolymph. Biomolecules 2022; 12:345. [PMID: 35327536 PMCID: PMC8945852 DOI: 10.3390/biom12030345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Molluscs are major contributors to the international and Australian aquaculture industries, however, their immune systems remain poorly understood due to limited access to draft genomes and evidence of divergences from model organisms. As invertebrates, molluscs lack adaptive immune systems or 'memory', and rely solely on innate immunity for antimicrobial defence. Hemolymph, the circulatory fluid of invertebrates, contains hemocytes which secrete effector molecules with immune regulatory functions. Interactions between mollusc effector molecules and bacterial and fungal pathogens have been well documented, however, there is limited knowledge of their roles against viruses, which cause high mortality and significant production losses in these species. Of the major effector molecules, only the direct acting protein dicer-2 and the antimicrobial peptides (AMPs) hemocyanin and myticin-C have shown antiviral activity. A better understanding of these effector molecules may allow for the manipulation of mollusc proteomes to enhance antiviral and overall antimicrobial defence to prevent future outbreaks and minimize economic outbreaks. Moreover, effector molecule research may yield the description and production of novel antimicrobial treatments for a broad host range of animal species.
Collapse
Affiliation(s)
- Angus Watson
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| | - Jacinta Agius
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| | - Danielle Ackerly
- Department of Animal, Plant and Soil Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Karla Helbig
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| |
Collapse
|
70
|
Lim EJ, Leng EGT, Tram NDT, Periayah MH, Ee PLR, Barkham TMS, Poh ZS, Verma NK, Lakshminarayanan R. Rationalisation of Antifungal Properties of α-Helical Pore-Forming Peptide, Mastoparan B. Molecules 2022; 27:molecules27041438. [PMID: 35209228 PMCID: PMC8879275 DOI: 10.3390/molecules27041438] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/03/2022] [Accepted: 02/14/2022] [Indexed: 01/27/2023] Open
Abstract
The high mortality associated with invasive fungal infections, narrow spectrum of available antifungals, and increasing evolution of antifungal resistance necessitate the development of alternative therapies. Host defense peptides are regarded as the first line of defense against microbial invasion in both vertebrates and invertebrates. In this work, we investigated the effectiveness of four naturally occurring pore-forming antimicrobial peptides (melittin, magainin 2, cecropin A, and mastoparan B) against a panel of clinically relevant pathogens, including Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. We present data on the antifungal activities of the four pore-forming peptides, assessed with descriptive statistics, and their cytocompatibility with cultured human cells. Among the four peptides, mastoparan B (MB) displayed potent antifungal activity, whereas cecropin A was the least potent. We show that MB susceptibility of phylogenetically distant non-candida albicans can vary and be described by different intrinsic physicochemical parameters of pore-forming α-helical peptides. These findings have potential therapeutic implications for the design and development of safe antifungal peptide-based drugs.
Collapse
Affiliation(s)
- Edward Jianyang Lim
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore; (E.J.L.); (E.G.T.L.); (M.H.P.)
| | - Eunice Goh Tze Leng
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore; (E.J.L.); (E.G.T.L.); (M.H.P.)
| | - Nhan Dai Thien Tram
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; (N.D.T.T.); (P.L.R.E.)
| | - Mercy Halleluyah Periayah
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore; (E.J.L.); (E.G.T.L.); (M.H.P.)
| | - Pui Lai Rachel Ee
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; (N.D.T.T.); (P.L.R.E.)
| | | | - Zhi Sheng Poh
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore;
| | - Navin Kumar Verma
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore; (E.J.L.); (E.G.T.L.); (M.H.P.)
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore, Clinical Sciences Building, 11 Mandalay Road, Singapore 308232, Singapore;
- National Skin Centre, 1 Mandalay Road, Singapore 308205, Singapore
- Correspondence: (N.K.V.); (R.L.)
| | - Rajamani Lakshminarayanan
- Ocular Infections and Anti-Microbials Research Group, Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore 169856, Singapore; (E.J.L.); (E.G.T.L.); (M.H.P.)
- Department of Pharmacy, National University of Singapore, 18 Science Drive 4, Singapore 117543, Singapore; (N.D.T.T.); (P.L.R.E.)
- Academic Clinical Program in Ophthalmology and Visual Sciences Academic Clinical Program, Duke-NUS Medical School, Singapore 169857, Singapore
- Correspondence: (N.K.V.); (R.L.)
| |
Collapse
|
71
|
Bellavita R, Maione A, Merlino F, Siciliano A, Dardano P, De Stefano L, Galdiero S, Galdiero E, Grieco P, Falanga A. Antifungal and Antibiofilm Activity of Cyclic Temporin L Peptide Analogues against Albicans and Non-Albicans Candida Species. Pharmaceutics 2022; 14:pharmaceutics14020454. [PMID: 35214187 PMCID: PMC8877061 DOI: 10.3390/pharmaceutics14020454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/04/2022] [Accepted: 02/15/2022] [Indexed: 12/13/2022] Open
Abstract
Temporins are one of the largest families of antimicrobial peptides with both anti-inflammatory and antimicrobial activity. Herein, for a panel of cyclic temporin L isoform analogues, the antifungal and antibiofilm activities were determined against representative Candida strains, including C. albicans, C. glabrata, C. auris, C. parapsilosis and C. tropicalis. The outcomes indicated a significant anti-candida activity against planktonic and biofilm growth for four peptides (3, 7, 15 and 16). The absence of toxicity up to high concentrations and survival after infection were assessed in vivo by using Galleria mellonella larvae, and the correlation between conformation and cytotoxicity was investigated by fluorescence assays and circular dichroism (CD). By combining fluorescence spectroscopy, CD, dynamic light scattering, confocal and atomic force microscopy, the mode of action of four analogues was hypothesized. The results pinpointed that peptide 3 emerged as a non-toxic compound showing a potent antibiofilm activity and represents a promising compound for biomedical applications.
Collapse
Affiliation(s)
- Rosa Bellavita
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy; (R.B.); (F.M.); (S.G.)
| | - Angela Maione
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (A.M.); (A.S.)
| | - Francesco Merlino
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy; (R.B.); (F.M.); (S.G.)
| | - Antonietta Siciliano
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (A.M.); (A.S.)
| | - Principia Dardano
- Institute of Applied Sciences and Intelligent Systems, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Naples, Italy; (P.D.); (L.D.S.)
| | - Luca De Stefano
- Institute of Applied Sciences and Intelligent Systems, Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Naples, Italy; (P.D.); (L.D.S.)
| | - Stefania Galdiero
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy; (R.B.); (F.M.); (S.G.)
| | - Emilia Galdiero
- Department of Biology, University of Naples ‘Federico II’, Via Cinthia, 80126 Naples, Italy; (A.M.); (A.S.)
- Correspondence: (E.G.); (P.G.); (A.F.); Tel.: +39-081-679182 (E.G.); +39-081-678620 (P.G.); +39-081-2534503 (A.F.)
| | - Paolo Grieco
- Department of Pharmacy, School of Medicine, University of Naples ‘Federico II’, Via Domenico Montesano 49, 80131 Naples, Italy; (R.B.); (F.M.); (S.G.)
- Correspondence: (E.G.); (P.G.); (A.F.); Tel.: +39-081-679182 (E.G.); +39-081-678620 (P.G.); +39-081-2534503 (A.F.)
| | - Annarita Falanga
- Department of Agricultural Science, University of Naples ‘Federico II’, Via Università 100, 80055 Portici, Italy
- Correspondence: (E.G.); (P.G.); (A.F.); Tel.: +39-081-679182 (E.G.); +39-081-678620 (P.G.); +39-081-2534503 (A.F.)
| |
Collapse
|
72
|
Bugli F, Massaro F, Buonocore F, Saraceni PR, Borocci S, Ceccacci F, Bombelli C, Di Vito M, Marchitiello R, Mariotti M, Torelli R, Sanguinetti M, Porcelli F. Design and Characterization of Myristoylated and Non-Myristoylated Peptides Effective against Candida spp. Clinical Isolates. Int J Mol Sci 2022; 23:2164. [PMID: 35216297 PMCID: PMC8875392 DOI: 10.3390/ijms23042164] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/10/2022] [Accepted: 02/12/2022] [Indexed: 01/08/2023] Open
Abstract
The increasing resistance of fungi to antibiotics is a severe challenge in public health, and newly effective drugs are required. Promising potential medications are lipopeptides, linear antimicrobial peptides (AMPs) conjugated to a lipid tail, usually at the N-terminus. In this paper, we investigated the in vitro and in vivo antifungal activity of three short myristoylated and non-myristoylated peptides derived from a mutant of the AMP Chionodracine. We determined their interaction with anionic and zwitterionic membrane-mimicking vesicles and their structure during this interaction. We then investigated their cytotoxic and hemolytic activity against mammalian cells. Lipidated peptides showed a broad spectrum of activity against a relevant panel of pathogen fungi belonging to Candida spp., including the multidrug-resistant C. auris. The antifungal activity was also observed vs. biofilms of C. albicans, C. tropicalis, and C. auris. Finally, a pilot efficacy study was conducted on the in vivo model consisting of Galleria mellonella larvae. Treatment with the most-promising myristoylated peptide was effective in counteracting the infection from C. auris and C. albicans and the death of the larvae. Therefore, this myristoylated peptide is a potential candidate to develop antifungal agents against human fungal pathogens.
Collapse
Affiliation(s)
- Francesca Bugli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (M.D.V.); (R.M.); (M.M.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy;
| | - Federica Massaro
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.M.); (F.B.); (P.R.S.); (S.B.)
| | - Francesco Buonocore
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.M.); (F.B.); (P.R.S.); (S.B.)
| | - Paolo Roberto Saraceni
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.M.); (F.B.); (P.R.S.); (S.B.)
| | - Stefano Borocci
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.M.); (F.B.); (P.R.S.); (S.B.)
- CNR—Institute for Biological Systems, Area Della Ricerca di Roma 1, SP35d 9, 00010 Montelibretti, Italy
| | - Francesca Ceccacci
- CNR—Institute For Biological Systems, Sede Secondaria di Roma-Meccanismi di Reazione, c/o Università La Sapienza, 00185 Rome, Italy; (F.C.); (C.B.)
| | - Cecilia Bombelli
- CNR—Institute For Biological Systems, Sede Secondaria di Roma-Meccanismi di Reazione, c/o Università La Sapienza, 00185 Rome, Italy; (F.C.); (C.B.)
| | - Maura Di Vito
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (M.D.V.); (R.M.); (M.M.)
| | - Rosalba Marchitiello
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (M.D.V.); (R.M.); (M.M.)
| | - Melinda Mariotti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (M.D.V.); (R.M.); (M.M.)
| | - Riccardo Torelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy;
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.B.); (M.D.V.); (R.M.); (M.M.)
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A, Gemelli IRCCS, 00168 Rome, Italy;
| | - Fernando Porcelli
- Department for Innovation in Biological, Agrofood and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (F.M.); (F.B.); (P.R.S.); (S.B.)
| |
Collapse
|
73
|
Prihatna C, Pramudito TE, Arifin AR, Nguyen TKN, Purnamasari MI, Suwanto A. Antifungal Peptides from a Burkholderia Strain Suppress Basal Stem Rot Disease of Oil Palm. PHYTOPATHOLOGY 2022; 112:238-248. [PMID: 34156264 DOI: 10.1094/phyto-11-20-0529-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Basal stem rot (BSR) is the most common disease of oil palm (Elaeis guineensis) in Southeast Asia. BSR is caused by a white-rot fungus Ganoderma boninense. The disease is difficult to manage. Therefore, development of novel and environmentally safe approaches to control the disease is important. Species of Burkholderia are known to have diverse lifestyles, some of which can benefit plants by suppressing diseases or increasing plant growth. In the present study, antifungal peptides produced by a bacterial strain isolated from the rhizosphere of an oil palm tree, Burkholderia sp. strain CP01, exhibited strong growth inhibition on G. boninense. A loss-of-function mutant of CP01 was generated, and it has enabled the identification of a 1.2-kDa peptide and its variants as the active antifungal compounds. High-resolution mass spectrometry revealed six analogous compounds with monoisotopic masses similar to the previously reported cyclic lipopeptides occidiofungin and burkholdine. The antifungal compounds of CP01 were secreted into media, and we sought to use CP01 culture extract without living cells to control BSR disease. Glasshouse experiments showed that CP01 culture extract suppressed BSR disease in oil palm seedlings. The ability of CP01 to produce an antifungal substance and suppress plant disease suggests its potential applications as a biofungicide in agriculture.
Collapse
Affiliation(s)
- Cahya Prihatna
- Research and Development for Biotechnology, PT Wilmar Benih Indonesia, Bekasi, Jawa Barat, Indonesia 17530
| | - Theodorus Eko Pramudito
- Research and Development for Biotechnology, PT Wilmar Benih Indonesia, Bekasi, Jawa Barat, Indonesia 17530
- Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Tangerang, Indonesia 15345
| | - Arild Ranlym Arifin
- Research and Development for Biotechnology, PT Wilmar Benih Indonesia, Bekasi, Jawa Barat, Indonesia 17530
| | | | - Maria Indah Purnamasari
- Research and Development for Biotechnology, PT Wilmar Benih Indonesia, Bekasi, Jawa Barat, Indonesia 17530
| | - Antonius Suwanto
- Department of Biology, Faculty of Mathematics and Natural Sciences, IPB University. Bogor, Jawa Barat, Indonesia 16680
| |
Collapse
|
74
|
Hu Y, Jo H, DeGrado WF, Wang J. Brilacidin, a COVID‐19 Drug Candidate, demonstrates broad‐spectrum antiviral activity against human coronaviruses OC43, 229E and NL63 through targeting both the virus and the host cell. J Med Virol 2022; 94:2188-2200. [PMID: 35080027 PMCID: PMC8930451 DOI: 10.1002/jmv.27616] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/17/2022]
Abstract
Brilacidin, a mimetic of host defense peptides (HDPs), is currently in Phase 2 clinical trial as an antibiotic drug candidate. A recent study reported that brilacidin has antiviral activity against severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) by inactivating the virus. In this study, we discovered an additional mechanism of action of brilacidin by targeting heparan sulfate proteoglycans (HSPGs) on the host cell surface. Brilacidin, but not acetyl brilacidin, inhibits the entry of SARS‐CoV‐2 pseudovirus into multiple cell lines, and heparin, an HSPG mimetic, abolishes the inhibitory activity of brilacidin on SARS‐CoV‐2 pseudovirus cell entry. In addition, we found that brilacidin has broad‐spectrum antiviral activity against multiple human coronaviruses (HCoVs) including HCoV‐229E, HCoV‐OC43, and HCoV‐NL63. Mechanistic studies revealed that brilacidin has a dual antiviral mechanism of action including virucidal activity and binding to coronavirus attachment factor HSPGs on the host cell surface. Brilacidin partially loses its antiviral activity when heparin was included in the cell cultures, supporting the host‐targeting mechanism. Drug combination therapy showed that brilacidin has a strong synergistic effect with remdesivir against HCoV‐OC43 in cell culture. Taken together, this study provides appealing findings for the translational potential of brilacidin as a broad‐spectrum antiviral for coronaviruses including SARS‐CoV‐2. Brilacidin has broad‐spectrum antiviral activity against multiple human coronaviruses (HCoVs) including HCoV‐229E, HCoV‐OC43, and HCoV‐NL63 Brilacidin, but not acetyl brilacidin, inhibits the entry of SARS‐CoV‐2 pseudovirus into multiple cell lines Heparin, an heparan sulfate proteoglycans (HSPG) mimetic, abolishes the inhibitory activity of brilacidin on SARS‐CoV‐2 pseudovirus cell entry Brilacidin has a dual antiviral mechanism of action including virucidal activity and binding to coronavirus attachment factor HSPGs on the host cell surface.
Collapse
Affiliation(s)
- Yanmei Hu
- Department of Pharmacology and ToxicologyCollege of Pharmacy, The University of ArizonaTucsonArizona85721United States
| | - Hyunil Jo
- Department of Pharmaceutical ChemistrySchool of PharmacyUniversity of California, San FranciscoCalifornia94158United States
| | - William F. DeGrado
- Department of Pharmaceutical ChemistrySchool of PharmacyUniversity of California, San FranciscoCalifornia94158United States
| | - Jun Wang
- Department of Pharmacology and ToxicologyCollege of Pharmacy, The University of ArizonaTucsonArizona85721United States
| |
Collapse
|
75
|
Deshayes C, Arafath MN, Apaire-Marchais V, Roger E. Drug Delivery Systems for the Oral Administration of Antimicrobial Peptides: Promising Tools to Treat Infectious Diseases. FRONTIERS IN MEDICAL TECHNOLOGY 2022; 3:778645. [PMID: 35146486 PMCID: PMC8821882 DOI: 10.3389/fmedt.2021.778645] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial peptides (AMPs) have a great potential to face the global expansion of antimicrobial resistance (AMR) associated to the development of multidrug-resistant (MDR) pathogens. AMPs are usually composed of 10–50 amino acids with a broad structural diversity and present a range of antimicrobial activities. Unfortunately, even if the oral route is the most convenient one, currently approved therapeutic AMPs are mostly administrated by the intravenous route. Thus, the development of novel drug delivery systems (DDSs) represents a promising opportunity to protect AMPs from chemical and enzymatic degradation through the gastrointestinal tract and to increase intestinal permeability leading to high bioavailability. In this review, the classification and properties as well as mechanisms of the AMPs used in infectiology are first described. Then, the different pharmaceutical forms existing in the market for oral administration are presented. Finally, the formulation technologies, including microparticle- and nanoparticle-based DDSs, used to improve the oral bioavailability of AMPs are reviewed.
Collapse
Affiliation(s)
| | | | | | - Emilie Roger
- University of Angers, INSERM, CNRS, MINT, SFR ICAT, Angers, France
- *Correspondence: Emilie Roger
| |
Collapse
|
76
|
Vanzolini T, Bruschi M, Rinaldi AC, Magnani M, Fraternale A. Multitalented Synthetic Antimicrobial Peptides and Their Antibacterial, Antifungal and Antiviral Mechanisms. Int J Mol Sci 2022; 23:545. [PMID: 35008974 PMCID: PMC8745555 DOI: 10.3390/ijms23010545] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/22/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Despite the great strides in healthcare during the last century, some challenges still remained unanswered. The development of multi-drug resistant bacteria, the alarming growth of fungal infections, the emerging/re-emerging of viral diseases are yet a worldwide threat. Since the discovery of natural antimicrobial peptides able to broadly hit several pathogens, peptide-based therapeutics have been under the lenses of the researchers. This review aims to focus on synthetic peptides and elucidate their multifaceted mechanisms of action as antiviral, antibacterial and antifungal agents. Antimicrobial peptides generally affect highly preserved structures, e.g., the phospholipid membrane via pore formation or other constitutive targets like peptidoglycans in Gram-negative and Gram-positive bacteria, and glucan in the fungal cell wall. Additionally, some peptides are particularly active on biofilm destabilizing the microbial communities. They can also act intracellularly, e.g., on protein biosynthesis or DNA replication. Their intracellular properties are extended upon viral infection since peptides can influence several steps along the virus life cycle starting from viral receptor-cell interaction to the budding. Besides their mode of action, improvements in manufacturing to increase their half-life and performances are also taken into consideration together with advantages and impairments in the clinical usage. Thus far, the progress of new synthetic peptide-based approaches is making them a promising tool to counteract emerging infections.
Collapse
Affiliation(s)
- Tania Vanzolini
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (T.V.); (M.M.); (A.F.)
| | - Michela Bruschi
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (T.V.); (M.M.); (A.F.)
| | - Andrea C. Rinaldi
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, CA, Italy;
| | - Mauro Magnani
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (T.V.); (M.M.); (A.F.)
| | - Alessandra Fraternale
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, 61029 Urbino, PU, Italy; (T.V.); (M.M.); (A.F.)
| |
Collapse
|
77
|
Amirova M, Bagirova S, Azizova U, Guliyeva S. The Main Directions of Antimicrobial Peptides Use and Synthesis Overview. Health (London) 2022. [DOI: 10.4236/health.2022.148060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
78
|
Tian T, Xie W, Liu L, Fan S, Zhang H, Qin Z, Yang C. Industrial application of antimicrobial peptides based on their biological activity and structure-activity relationship. Crit Rev Food Sci Nutr 2021:1-16. [PMID: 34955061 DOI: 10.1080/10408398.2021.2019673] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Last several years, a rapid increase in drug resistance to traditional antibiotics has driven the emergence and development of antimicrobial peptides (AMPs). AMPs have also gained considerable attention from scientists due to their high potency in combatting infectious pathogens. A subset of analogues and their derivatives with specific targets have been successfully designed based on natural peptide patterns. In this review, scientific knowledge on the mechanisms of action related to biological activity and structure-activity relationship (SAR) of AMPs are summarized, and the biological applications in several important fields are critically discussed. SAR shows that the positive charge, secondary structure, special amino acid residues, hydrophobicity, and helicity of AMPs are closely related to their biological activities. The combination of nanotechnology, bioinformatics, and genetic engineering can accelerate to achieve the application of AMPs as effective, safe, economical, and nonresistant antimicrobial agents in medicine, the food and feed industries, and agriculture in coming years. Given the intense interest in AMPs, further investigations are needed in the future to evaluate the specific structure and function that make their use favorable in several industries. This review may provide a comprehensive reference for future studies on chemical modifications, mechanistic exploration, and applications of AMPs.
Collapse
Affiliation(s)
- Tiantian Tian
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Wansheng Xie
- Hainan Center for Drug and Medical Device Evaluation and Service, Hainan Provincial Drug Administration, Haikou, Hainan, China
| | - Luxuan Liu
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Siting Fan
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Heqian Zhang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China
| | - Chao Yang
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, Guangdong 519087, China.,State Key Laboratory of Quality Research in Chinese Medicine/Macau Institute for Applied research in Medicine and Health, University of Science and Technology, Taipa, Macao, China
| |
Collapse
|
79
|
Antifungal Peptides and Proteins to Control Toxigenic Fungi and Mycotoxin Biosynthesis. Int J Mol Sci 2021; 22:ijms222413261. [PMID: 34948059 PMCID: PMC8703302 DOI: 10.3390/ijms222413261] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
The global challenge to prevent fungal spoilage and mycotoxin contamination on food and feed requires the development of new antifungal strategies. Antimicrobial peptides and proteins (AMPs) with antifungal activity are gaining much interest as natural antifungal compounds due to their properties such as structure diversity and function, antifungal spectrum, mechanism of action, high stability and the availability of biotechnological production methods. Given their multistep mode of action, the development of fungal resistance to AMPs is presumed to be slow or delayed compared to conventional fungicides. Interestingly, AMPs also accomplish important biological functions other than antifungal activity, including anti-mycotoxin biosynthesis activity, which opens novel aspects for their future use in agriculture and food industry to fight mycotoxin contamination. AMPs can reach intracellular targets and exert their activity by mechanisms other than membrane permeabilization. The mechanisms through which AMPs affect mycotoxin production are varied and complex, ranging from oxidative stress to specific inhibition of enzymatic components of mycotoxin biosynthetic pathways. This review presents natural and synthetic antifungal AMPs from different origins which are effective against mycotoxin-producing fungi, and aims at summarizing current knowledge concerning their additional effects on mycotoxin biosynthesis. Antifungal AMPs properties and mechanisms of action are also discussed.
Collapse
|
80
|
Roca-Couso R, Flores-Félix JD, Rivas R. Mechanisms of Action of Microbial Biocontrol Agents against Botrytis cinerea. J Fungi (Basel) 2021; 7:1045. [PMID: 34947027 PMCID: PMC8707566 DOI: 10.3390/jof7121045] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 01/20/2023] Open
Abstract
Botrytis cinerea is a phytopathogenic fungus responsible for economic losses from USD 10 to 100 billion worldwide. It affects more than 1400 plant species, thus becoming one of the main threats to the agriculture systems. The application of fungicides has for years been an efficient way to control this disease. However, fungicides have negative environmental consequences that have changed popular opinion and clarified the need for more sustainable solutions. Biopesticides are products formulated based on microorganisms (bacteria or fungi) with antifungal activity through various mechanisms. This review gathers the most important mechanisms of antifungal activities and the microorganisms that possess them. Among the different modes of action, there are included the production of diffusible molecules, both antimicrobial molecules and siderophores; production of volatile organic compounds; production of hydrolytic enzymes; and other mechanisms, such as the competition and induction of systemic resistance, triggering an interaction at different levels and inhibition based on complex systems for the production of molecules and regulation of crop biology. Such a variety of mechanisms results in a powerful weapon against B. cinerea; some of them have been tested and are already used in the agricultural production with satisfactory results.
Collapse
Affiliation(s)
- Rocío Roca-Couso
- Department of Microbiology and Genetics, Edificio Departamental de Biología, University of Salamanca, 37007 Salamanca, Spain;
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
| | - José David Flores-Félix
- CICS-UBI–Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal
| | - Raúl Rivas
- Department of Microbiology and Genetics, Edificio Departamental de Biología, University of Salamanca, 37007 Salamanca, Spain;
- Institute for Agribiotechnology Research (CIALE), 37185 Salamanca, Spain
- Associated Unit, University of Salamanca-CSIC (IRNASA), 37008 Salamanca, Spain
| |
Collapse
|
81
|
Lyapina I, Ivanov V, Fesenko I. Peptidome: Chaos or Inevitability. Int J Mol Sci 2021; 22:13128. [PMID: 34884929 PMCID: PMC8658490 DOI: 10.3390/ijms222313128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Thousands of naturally occurring peptides differing in their origin, abundance and possible functions have been identified in the tissue and biological fluids of vertebrates, insects, fungi, plants and bacteria. These peptide pools are referred to as intracellular or extracellular peptidomes, and besides a small proportion of well-characterized peptide hormones and defense peptides, are poorly characterized. However, a growing body of evidence suggests that unknown bioactive peptides are hidden in the peptidomes of different organisms. In this review, we present a comprehensive overview of the mechanisms of generation and properties of peptidomes across different organisms. Based on their origin, we propose three large peptide groups-functional protein "degradome", small open reading frame (smORF)-encoded peptides (smORFome) and specific precursor-derived peptides. The composition of peptide pools identified by mass-spectrometry analysis in human cells, plants, yeast and bacteria is compared and discussed. The functions of different peptide groups, for example the role of the "degradome" in promoting defense signaling, are also considered.
Collapse
Affiliation(s)
| | | | - Igor Fesenko
- Department of Functional Genomics and Proteomics of Plants, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, 117997 Moscow, Russia; (I.L.); (V.I.)
| |
Collapse
|
82
|
The Antimicrobial Peptide MK58911-NH 2 Acts on Planktonic, Biofilm, and Intramacrophage Cells of Cryptococcus neoformans. Antimicrob Agents Chemother 2021; 65:e0090421. [PMID: 34516241 PMCID: PMC8597745 DOI: 10.1128/aac.00904-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cryptococcosis is associated with high rates of morbidity and mortality, especially in AIDS patients. Its treatment is carried out by combining amphotericin B and azoles or flucytosine, which causes unavoidable toxicity issues in the host. Thus, the urgency in obtaining new antifungals drives the search for antimicrobial peptides (AMPs). This study aimed to extend the understanding of the mechanism of action of an AMP analog from wasp peptide toxins, MK58911-NH2, on Cryptococcus neoformans. We also evaluated if MK58911-NH2 can act on cryptococcal cells in macrophages, biofilms, and an immersion zebrafish model of infection. Finally, we investigated the structure-antifungal action and the toxicity relationship of MK58911-NH2 fragments and a derivative of this peptide (MH58911-NH2). The results demonstrated that MK58911-NH2 did not alter the fluorescence intensity of the cell wall-binding dye calcofluor white or the capsule-binding dye 18b7 antibody-fluorescein isothiocyanate (FITC) in C. neoformans but rather reduced the number and size of fungal cells. This activity reduced the fungal burden of C. neoformans in both macrophages and zebrafish embryos as well as within biofilms. Three fragments of the MK58911-NH2 peptide showed no activity against Cryptococcus and not toxicity in lung cells. The derivative peptide MH58911-NH2, in which the lysine residues of MK58911-NH2 were replaced by histidines, reduced the activity against extracellular and intracellular C. neoformans. On the other hand, it was active against biofilms and showed reduced toxicity. In summary, these results showed that peptide MK58911-NH2 could be a promising agent against cryptococcosis. This work also opens a perspective for the verification of the antifungal activity of other derivatives.
Collapse
|
83
|
Seyedjavadi SS, Khani S, Goudarzi M, Zare-Zardini H, Shams-Ghahfarokhi M, Jamzivar F, Razzaghi-Abyaneh M. Characterization, Biological Activity, and Mechanism of Action of a Plant-Based Novel Antifungal Peptide, Cc-AFP1, Isolated From Carum carvi. Front Cell Infect Microbiol 2021; 11:743346. [PMID: 34708005 PMCID: PMC8544420 DOI: 10.3389/fcimb.2021.743346] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 09/08/2021] [Indexed: 11/13/2022] Open
Abstract
Due to the increasing rate of invasive fungal infections and emerging antifungal resistance, development of novel antifungal drugs has been an urgent necessity. Antifungal peptides (AFPs) have recently attracted attention due to their unique ability to evade drug-resistant fungal pathogens. In this study, a novel AFP, Cc-AFP1, with a molecular weight of ~3.759 kDa, was isolated from Carum carvi L., purified by ammonium sulfate precipitation and reversed-phase HPLC and finally identified by sequence analysis using Edman degradation. Peptide sequence analysis revealed a fragment of 36 amino acid residues as RVCFRPVAPYLGVGVSGAVRDQIGVKLGSVYKGPRG for Cc-AFP1 with a net charge of +5 and a hydrophobicity ratio of 38%. The antifungal activity of Cc-AFP1 was confirmed against Aspergillus species with MIC values in the range of 8–16 µg/ml. Cc-AFP1 had less than 5% hemolytic activity at 8–16 µg/ml on human red blood cells with no obvious cytotoxicity against the HEK293 cell line. Stability analysis showed that the activity of Cc-AFP1 was maintained at different temperatures (20°C to 80°C) and pH (8 to 10). The results of a propidium iodide uptake and transmission electron microscopy showed that the antifungal activity of Cc-AFP1 could be attributed to alteration in the fungal cell membrane permeability. Taken together, these results indicate that Cc-AFP1 may be an attractive molecule to develop as a novel antifungal agent combating fungal infections cause by Aspergillus species.
Collapse
Affiliation(s)
| | - Soghra Khani
- Department of Mycology, Pasteur Institute of Iran, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hadi Zare-Zardini
- Hematology and Oncology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Department of Biomedical Engineering, Meybod University, Meybod, Iran
| | | | | | | |
Collapse
|
84
|
Bin Hafeez A, Jiang X, Bergen PJ, Zhu Y. Antimicrobial Peptides: An Update on Classifications and Databases. Int J Mol Sci 2021; 22:11691. [PMID: 34769122 PMCID: PMC8583803 DOI: 10.3390/ijms222111691] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 02/06/2023] Open
Abstract
Antimicrobial peptides (AMPs) are distributed across all kingdoms of life and are an indispensable component of host defenses. They consist of predominantly short cationic peptides with a wide variety of structures and targets. Given the ever-emerging resistance of various pathogens to existing antimicrobial therapies, AMPs have recently attracted extensive interest as potential therapeutic agents. As the discovery of new AMPs has increased, many databases specializing in AMPs have been developed to collect both fundamental and pharmacological information. In this review, we summarize the sources, structures, modes of action, and classifications of AMPs. Additionally, we examine current AMP databases, compare valuable computational tools used to predict antimicrobial activity and mechanisms of action, and highlight new machine learning approaches that can be employed to improve AMP activity to combat global antimicrobial resistance.
Collapse
Affiliation(s)
- Ahmer Bin Hafeez
- Centre of Biotechnology and Microbiology, University of Peshawar, Peshawar 25120, Pakistan;
| | - Xukai Jiang
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
- National Glycoengineering Research Center, Shandong University, Qingdao 266237, China
| | - Phillip J. Bergen
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| | - Yan Zhu
- Infection and Immunity Program, Department of Microbiology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (X.J.); (P.J.B.)
| |
Collapse
|
85
|
Therapeutic Effect of an Antibody-Derived Peptide in a Galleria mellonella Model of Systemic Candidiasis. Int J Mol Sci 2021; 22:ijms222010904. [PMID: 34681564 PMCID: PMC8536055 DOI: 10.3390/ijms222010904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/26/2021] [Accepted: 10/04/2021] [Indexed: 11/17/2022] Open
Abstract
The synthetic peptide T11F (TCRVDHRGLTF), with sequence identical to a fragment of the constant region of human IgM, and most of its alanine-substituted derivatives proved to possess a significant candidacidal activity in vitro. In this study, the therapeutic efficacy of T11F, D5A, the derivative most active in vitro, and F11A, characterized by a different conformation, was investigated in Galleria mellonella larvae infected with Candida albicans. A single injection of F11A and D5A derivatives, in contrast with T11F, led to a significant increase in survival of larvae injected with a lethal inoculum of C. albicans cells, in comparison with infected animals treated with saline. Peptide modulation of host immunity upon C. albicans infection was determined by hemocyte analysis and larval histology, highlighting a different immune stimulation by the studied peptides. F11A, particularly, was the most active in eliciting nodule formation, melanization and fat body activation, leading to a better control of yeast infection. Overall, the obtained data suggest a double role for F11A, able to simultaneously target the fungus and the host immune system, resulting in a more efficient pathogen clearance.
Collapse
|
86
|
Tunsagool P, Ploypetch S, Jaresitthikunchai J, Roytrakul S, Choowongkomon K, Rattanasrisomporn J. Efficacy of cyclic lipopeptides obtained from Bacillus subtilis to inhibit the growth of Microsporum canis isolated from cats. Heliyon 2021; 7:e07980. [PMID: 34585007 PMCID: PMC8450251 DOI: 10.1016/j.heliyon.2021.e07980] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/14/2021] [Accepted: 09/08/2021] [Indexed: 01/29/2023] Open
Abstract
Background and aim Microsporum canis (M. canis) is a dermatophyte fungal pathogen that causes ringworms. Cats are considered to be a dominant reservoir host enabling M. canis transmission to humans. The concerns of dermatophyte resistance were raised among the usage of antifungal drugs to treat the ringworm. This study aimed to evaluate the fungal activity of cyclic lipopeptides (CLPs) obtained from Bacillus subtilis (B. subtilis) as an alternative method for the inhibition of M. canis growth. Materials and methods The culture plate of M. canis from confirmed cats with ringworm infection was provided. The purification of CLP extract, fengycin, iturin A, and surfactin was carried out from B. subtilis by preparative thin-layer chromatography (PTLC) coupled with solid-phase extraction (SPE) methods. Half-maximal effective concentration (EC50) and agar well diffusion assays were performed to determine the efficacy of Bacillus CLP extract, fengycin, iturin A, and surfactin to inhibit the growth of M. canis isolated from cats. Results All purified Bacillus substances displayed antifungal activity to control the growth of M. canis when compared with 80% ethanol (control). EC50 values for CLP extract, fengycin, iturin A, and surfactin were 0.23, 0.05, 0.17, and 0.08 mg/mL, respectively. In agar well diffusion assay, the ability of CLP extract, fengycin, iturin A, and surfactin on fungal inhibition had no statistically significant difference at 24 and 48 h after treatment (p < 0.05). However, CLP extract showed a statistically significant difference on M. canis inhibition at 62.21% followed by surfactin with 59.04% at 72 h after treatment. Conclusion In vitro, Bacillus CLPs revealed an inhibitory effect on M. canis growth which is a zoonotic pathogen that causes ringworms. This study suggests an alternative approach to control the growth of M. canis using substances obtained from B. subtilis as a biomedicine agent with antifungal activity.
Collapse
Affiliation(s)
- Paiboon Tunsagool
- Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, Bangkok, 10900, Thailand
| | - Sekkarin Ploypetch
- Department of Clinical Sciences and Public Health, Faculty of Veterinary Science, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Janthima Jaresitthikunchai
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Sittiruk Roytrakul
- Functional Ingredients and Food Innovation Research Group, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, 12120, Thailand
| | - Kiattawee Choowongkomon
- Department of Biochemistry, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
| | - Jatuporn Rattanasrisomporn
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Kasetsart University, Bangkok, 10900, Thailand
| |
Collapse
|
87
|
Mao X, Ma J, Jiao C, Tang N, Zhao X, Wang D, Zhang Y, Ye Z, Xu C, Jiang J, Wu S, Cui X, Zhang H, Qiu X. Faecalibacterium prausnitzii Attenuates DSS-Induced Colitis by Inhibiting the Colonization and Pathogenicity of Candida albicans. Mol Nutr Food Res 2021; 65:e2100433. [PMID: 34558816 DOI: 10.1002/mnfr.202100433] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/12/2021] [Indexed: 11/12/2022]
Abstract
SCOPE Intestinal commensal microbiota interactions play critical roles in the inflammatory bowel disease (IBD) development. Candida albicans (CA) can aggravate intestinal inflammation; however, whether Faecalibacterium prausnitzii (FP) can antagonize CA is unknown. METHODS AND RESULTS CA are co-cultured with bacteria (FP and Escherichia coli (EC)), bacterial supernatant, and bacterial medium, respectively. Then, the CA hyphae-specific genes' expression and CA cells' morphology are investigated. The Nod-like receptor pyrin-containing protein 6 (NLRP6) inflammasome, inflammatory cytokines, and antimicrobial peptides (AMPs) production are evaluated in intestinal epithelial cells pre-treated with bacteria, bacterial med, and bacterial supernatant and exposed without or with CA. Both bacteria significantly prohibit CA numbers, while only FP and FP supernatant prohibit the transformation and virulence factors (extracellular phospholipase, secreted aspartyl proteinase, and hemolysin) secretion of CA in a co-culture system compared with media controls. Further, FP and FP supernatant promote the production of the NLRP6 inflammasome, interleukin (IL)-1β, IL-18, and antibacterial peptides (β-defensin (BD)-2 and BD-3) and inhibit in vitro and in vivo CA growth and pathogenicity, and alleviate DSS-colitis in mice, while EC do not show the similar effect. CONCLUSION FP improve intestinal inflammation by inhibiting CA reproduction, colonization, and pathogenicity and inducing AMP secretion in the gut. This study uncovers new relationships between intestinal microbes and fungi in IBD patients.
Collapse
Affiliation(s)
- Xiaqiong Mao
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingjing Ma
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chunhua Jiao
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Nana Tang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaojing Zhao
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Di Wang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Zhang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Ziping Ye
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Chenjing Xu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jingyue Jiang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shasha Wu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiufang Cui
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hongjie Zhang
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyun Qiu
- Department of Gastroenterology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
88
|
Rush TA, Shrestha HK, Gopalakrishnan Meena M, Spangler MK, Ellis JC, Labbé JL, Abraham PE. Bioprospecting Trichoderma: A Systematic Roadmap to Screen Genomes and Natural Products for Biocontrol Applications. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:716511. [PMID: 37744103 PMCID: PMC10512312 DOI: 10.3389/ffunb.2021.716511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/10/2021] [Indexed: 09/26/2023]
Abstract
Natural products derived from microbes are crucial innovations that would help in reaching sustainability development goals worldwide while achieving bioeconomic growth. Trichoderma species are well-studied model fungal organisms used for their biocontrol properties with great potential to alleviate the use of agrochemicals in agriculture. However, identifying and characterizing effective natural products in novel species or strains as biological control products remains a meticulous process with many known challenges to be navigated. Integration of recent advancements in various "omics" technologies, next generation biodesign, machine learning, and artificial intelligence approaches could greatly advance bioprospecting goals. Herein, we propose a roadmap for assessing the potential impact of already known or newly discovered Trichoderma species for biocontrol applications. By screening publicly available Trichoderma genome sequences, we first highlight the prevalence of putative biosynthetic gene clusters and antimicrobial peptides among genomes as an initial step toward predicting which organisms could increase the diversity of natural products. Next, we discuss high-throughput methods for screening organisms to discover and characterize natural products and how these findings impact both fundamental and applied research fields.
Collapse
Affiliation(s)
- Tomás A. Rush
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Him K. Shrestha
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | | | - Margaret K. Spangler
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - J. Christopher Ellis
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
| | - Jesse L. Labbé
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| | - Paul E. Abraham
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, TN, United States
- Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, Knoxville, TN, United States
| |
Collapse
|
89
|
Jadi PK, Sharma P, Bhogapurapu B, Roy S. Alternative Therapeutic Interventions: Antimicrobial Peptides and Small Molecules to Treat Microbial Keratitis. Front Chem 2021; 9:694998. [PMID: 34458234 PMCID: PMC8386189 DOI: 10.3389/fchem.2021.694998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/02/2021] [Indexed: 01/10/2023] Open
Abstract
Microbial keratitis is a leading cause of blindness worldwide and results in unilateral vision loss in an estimated 2 million people per year. Bacteria and fungus are two main etiological agents that cause corneal ulcers. Although antibiotics and antifungals are commonly used to treat corneal infections, a clear trend with increasing resistance to these antimicrobials is emerging at rapid pace. Extensive research has been carried out to determine alternative therapeutic interventions, and antimicrobial peptides (AMPs) are increasingly recognized for their clinical potential in treating infections. Small molecules targeted against virulence factors of the pathogens and natural compounds are also explored to meet the challenges and growing demand for therapeutic agents. Here we review the potential of AMPs, small molecules, and natural compounds as alternative therapeutic interventions for the treatment of corneal infections to combat antimicrobial resistance. Additionally, we have also discussed about the different formats of drug delivery systems for optimal administration of drugs to treat microbial keratitis.
Collapse
Affiliation(s)
- Praveen Kumar Jadi
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Prerana Sharma
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
- Department of Animal Sciences, University of Hyderabad, Hyderabad, India
| | - Bharathi Bhogapurapu
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| | - Sanhita Roy
- Prof, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad, India
| |
Collapse
|
90
|
Khan F, Bamunuarachchi NI, Tabassum N, Jo DM, Khan MM, Kim YM. Suppression of hyphal formation and virulence of Candida albicans by natural and synthetic compounds. BIOFOULING 2021; 37:626-655. [PMID: 34284656 DOI: 10.1080/08927014.2021.1948538] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Candida albicans undergoes a morphological yeast-to-hyphal transition during infection, which plays a significant role in its pathogenesis. The filamentous morphology of the hyphal form has been identified as a virulence factor as it facilitates surface adherence, intertwining with biofilm, invasion, and damage to host tissues and organs. Hence, inhibition of filamentation in addition to biofilm formation is considered a viable strategy against C. albicans infections. Furthermore, a good understanding of the signaling pathways involved in response to environmental cues driving hyphal growth is also critical to an understanding of C. albicans pathogenicity and to develop novel therapies. In this review, first the clinical significance and transcriptional control of C. albicans hyphal morphogenesis are addressed. Then, various strategies employed to suppress filamentation, prevent biofilm formation, and reduce virulence are discussed. These strategies include the inhibition of C. albicans filament formation using natural or synthetic compounds, and their combination with other agents or nanoformulations.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
| | - Nilushi Indika Bamunuarachchi
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
- Department of Fisheries and Marine Sciences, Ocean University of Sri Lanka, Tangalle, Sri Lanka
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, South Korea
| | - Du-Min Jo
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| | - Mohammad Mansoob Khan
- Chemical Sciences, Faculty of Science, University Brunei Darussalam, Gadong, Brunei Darussalam
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, South Korea
- Department of Food Science and Technology, Pukyong National University, Busan, South Korea
| |
Collapse
|
91
|
Heinilä LMP, Fewer DP, Jokela JK, Wahlsten M, Ouyang X, Permi P, Jortikka A, Sivonen K. The structure and biosynthesis of heinamides A1-A3 and B1-B5, antifungal members of the laxaphycin lipopeptide family. Org Biomol Chem 2021; 19:5577-5588. [PMID: 34085692 DOI: 10.1039/d1ob00772f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Laxaphycins are a family of cyclic lipopeptides with synergistic antifungal and antiproliferative activities. They are produced by multiple cyanobacterial genera and comprise two sets of structurally unrelated 11- and 12-residue macrocyclic lipopeptides. Here, we report the discovery of new antifungal laxaphycins from Nostoc sp. UHCC 0702, which we name heinamides, through antimicrobial bioactivity screening. We characterized the chemical structures of eight heinamide structural variants A1-A3 and B1-B5. These variants contain the rare non-proteinogenic amino acids 3-hydroxy-4-methylproline, 4-hydroxyproline, 3-hydroxy-d-leucine, dehydrobutyrine, 5-hydroxyl β-amino octanoic acid, and O-carbamoyl-homoserine. We obtained an 8.6-Mb complete genome sequence from Nostoc sp. UHCC 0702 and identified the 93 kb heinamide biosynthetic gene cluster. The structurally distinct heinamides A1-A3 and B1-B5 variants are synthesized using an unusual branching biosynthetic pathway. The heinamide biosynthetic pathway also encodes several enzymes that supply non-proteinogenic amino acids to the heinamide synthetase. Through heterologous expression, we showed that (2S,4R)-4-hydroxy-l-proline is supplied through the action of a novel enzyme LxaN, which hydroxylates l-proline. 11- and 12-residue heinamides have the characteristic synergistic activity of laxaphycins against Aspergillus flavus FBCC 2467. Structural and genetic information of heinamides may prove useful in future discovery of natural products and drug development.
Collapse
Affiliation(s)
| | - David Peter Fewer
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Jouni Kalevi Jokela
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Matti Wahlsten
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Xiaodan Ouyang
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Perttu Permi
- Department of Chemistry, University of Jyväskylä, Jyväskylä, Finland and Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Anna Jortikka
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| | - Kaarina Sivonen
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
92
|
Moretta A, Scieuzo C, Petrone AM, Salvia R, Manniello MD, Franco A, Lucchetti D, Vassallo A, Vogel H, Sgambato A, Falabella P. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front Cell Infect Microbiol 2021; 11:668632. [PMID: 34195099 PMCID: PMC8238046 DOI: 10.3389/fcimb.2021.668632] [Citation(s) in RCA: 210] [Impact Index Per Article: 70.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/10/2021] [Indexed: 12/14/2022] Open
Abstract
Antibiotics are essential drugs used to treat pathogenic bacteria, but their prolonged use contributes to the development and spread of drug-resistant microorganisms. Antibiotic resistance is a serious challenge and has led to the need for new alternative molecules less prone to bacterial resistance. Antimicrobial peptides (AMPs) have aroused great interest as potential next-generation antibiotics, since they are bioactive small proteins, naturally produced by all living organisms, and representing the first line of defense against fungi, viruses and bacteria. AMPs are commonly classified according to their sources, which are represented by microorganisms, plants and animals, as well as to their secondary structure, their biosynthesis and their mechanism of action. They find application in different fields such as agriculture, food industry and medicine, on which we focused our attention in this review. Particularly, we examined AMP potential applicability in wound healing, skin infections and metabolic syndrome, considering their ability to act as potential Angiotensin-Converting Enzyme I and pancreatic lipase inhibitory peptides as well as antioxidant peptides. Moreover, we argued about the pharmacokinetic and pharmacodynamic approaches to develop new antibiotics, the drug development strategies and the formulation approaches which need to be taken into account in developing clinically suitable AMP applications.
Collapse
Affiliation(s)
- Antonio Moretta
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Carmen Scieuzo
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | | | - Rosanna Salvia
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | | | - Antonio Franco
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| | - Donatella Lucchetti
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Vassallo
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - Heiko Vogel
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Alessandro Sgambato
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Rome, Italy
- Centro di Riferimento Oncologico della Basilicata (IRCCS-CROB), Rionero in Vulture, Italy
| | - Patrizia Falabella
- Department of Sciences, University of Basilicata, Potenza, Italy
- Spinoff XFlies s.r.l, University of Basilicata, Potenza, Italy
| |
Collapse
|
93
|
Hong MJ, Kim MK, Park Y. Comparative Antimicrobial Activity of Hp404 Peptide and Its Analogs against Acinetobacter baumannii. Int J Mol Sci 2021; 22:ijms22115540. [PMID: 34073939 PMCID: PMC8197367 DOI: 10.3390/ijms22115540] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/07/2021] [Accepted: 05/19/2021] [Indexed: 12/24/2022] Open
Abstract
An amphipathic α-helical peptide, Hp1404, was isolated from the venomous gland of the scorpion Heterometrus petersii. Hp1404 exhibits antimicrobial activity against methicillin-resistant Staphylococcus aureus but is cytotoxic. In this study, we designed antimicrobial peptides by substituting amino acids at the 14 C-terminal residues of Hp1404 to reduce toxicity and improve antibacterial activity. The analog peptides, which had an amphipathic α-helical structure, were active against gram-positive and gram-negative bacteria, particularly multidrug-resistant Acinetobacter baumannii, and showed lower cytotoxicity than Hp1404. N-phenyl-1-naphthylamine uptake and DisC3-5 assays demonstrated that the peptides kill bacteria by effectively permeating the outer and cytoplasmic membranes. Additionally, the analog peptides inhibited biofilm formation largely than Hp1404 at low concentrations. These results suggest that the analog peptides of Hp1404 can be used as therapeutic agents against A. baumannii infection.
Collapse
Affiliation(s)
- Min Ji Hong
- Department of Biomedical Sciences, Chosun University, Gwangju 61452, Korea; (M.J.H.); (M.K.K.)
| | - Min Kyung Kim
- Department of Biomedical Sciences, Chosun University, Gwangju 61452, Korea; (M.J.H.); (M.K.K.)
| | - Yoonkyung Park
- Department of Biomedical Sciences, Chosun University, Gwangju 61452, Korea; (M.J.H.); (M.K.K.)
- Research Center for Proteineous Materials, Chosun University, Gwangju 61452, Korea
- Correspondence: ; Tel.: +82-62-230-6854; Fax: +82-62-225-6758
| |
Collapse
|
94
|
Seyedjavadi SS, Khani S, Amani J, Halabian R, Goudarzi M, Hosseini HM, Eslamifar A, Shams-Ghahfarokhi M, Imani Fooladi AA, Razzaghi-Abyaneh M. Design, Dimerization, and Recombinant Production of MCh-AMP1-Derived Peptide in Escherichia coli and Evaluation of Its Antifungal Activity and Cytotoxicity. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:638595. [PMID: 37744143 PMCID: PMC10512307 DOI: 10.3389/ffunb.2021.638595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 03/08/2021] [Indexed: 09/26/2023]
Abstract
Fungal species resistant to current antifungal agents are considered as a serious threat to human health, the dilemma that has dragged attentions toward other sources of antifungals such as antimicrobial peptides (AMPs). In order to improve biological activity of a recently described antifungal peptide MCh-AMP1 from Matricaria chamomilla flowers, MCh-AMP1dimer (DiMCh-AMP1), containing 61 amino acid residues connected by flexible linker (GPDGSGPDESGPDES), was designed and expressed in Escherichia coli, and its structure was analyzed using bioinformatics tools. DiMCh-AMP1 synthetic gene was cloned into pET-28a expression vector, which was then used to transform E. coli BL21 (DE3) strain. His-tag purification was achieved using metal-chelate affinity chromatography. Because there is no methionine residue in the DiMCh-AMP1 sequence, cyanogen bromide was successfully used to separate the target product from the tag. Reverse-phase high-performance liquid chromatography was used as the final step of purification. Results showed that recombinant peptide was produced in considerable amounts (0.9 mg/L) with improved antifungal activity toward both yeasts and molds compared to its monomeric counterpart. The minimum inhibition concentration and minimum fungicidal concentration values of DiMCh-AMP1 against Candida and Aspergillus species were reported in the range of 1.67-6.66 μM and 3.33-26.64 μM, respectively. Our results showed that while antifungal activity of dimerized peptide was improved considerably, its cytotoxicity was decreased, implying that DiMCh-AMP1 could be a potential candidate to design an effective antifungal agent against pathogenic yeasts and molds.
Collapse
Affiliation(s)
| | - Soghra Khani
- Department of Mycology, Pasteur Institute of Iran, Tehran, Iran
| | - Jafar Amani
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Raheleh Halabian
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Mahmoodzadeh Hosseini
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Eslamifar
- Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | | | - Abbas Ali Imani Fooladi
- Applied Microbiology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
95
|
Struyfs C, Cammue BPA, Thevissen K. Membrane-Interacting Antifungal Peptides. Front Cell Dev Biol 2021; 9:649875. [PMID: 33912564 PMCID: PMC8074791 DOI: 10.3389/fcell.2021.649875] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/09/2021] [Indexed: 12/17/2022] Open
Abstract
The incidence of invasive fungal infections is increasing worldwide, resulting in more than 1.6 million deaths every year. Due to growing antifungal drug resistance and the limited number of currently used antimycotics, there is a clear need for novel antifungal strategies. In this context, great potential is attributed to antimicrobial peptides (AMPs) that are part of the innate immune system of organisms. These peptides are known for their broad-spectrum activity that can be directed toward bacteria, fungi, viruses, and/or even cancer cells. Some AMPs act via rapid physical disruption of microbial cell membranes at high concentrations causing cell leakage and cell death. However, more complex mechanisms are also observed, such as interaction with specific lipids, production of reactive oxygen species, programmed cell death, and autophagy. This review summarizes the structure and mode of action of antifungal AMPs, thereby focusing on their interaction with fungal membranes.
Collapse
Affiliation(s)
- Caroline Struyfs
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Bruno P A Cammue
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Karin Thevissen
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| |
Collapse
|
96
|
Pangeni S, Prajapati JD, Bafna J, Nilam M, Nau WM, Kleinekathöfer U, Winterhalter M. Permeation eines 5.1‐kDa‐Peptides durch einen Proteinkanal: Molekulare Basis der Translokation von Protamin durch CymA aus
Klebsiella Oxytoca
**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202016943] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sushil Pangeni
- Department of Life Sciences and Chemistry Jacobs University 28759 Bremen Deutschland
| | | | - Jayesh Bafna
- Department of Life Sciences and Chemistry Jacobs University 28759 Bremen Deutschland
| | - Mohamed Nilam
- Department of Life Sciences and Chemistry Jacobs University 28759 Bremen Deutschland
| | - Werner M. Nau
- Department of Life Sciences and Chemistry Jacobs University 28759 Bremen Deutschland
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences Jacobs University Bremen 28759 Bremen Deutschland
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry Jacobs University 28759 Bremen Deutschland
| |
Collapse
|
97
|
Pangeni S, Prajapati JD, Bafna J, Nilam M, Nau WM, Kleinekathöfer U, Winterhalter M. Large-Peptide Permeation Through a Membrane Channel: Understanding Protamine Translocation Through CymA from Klebsiella Oxytoca*. Angew Chem Int Ed Engl 2021; 60:8089-8094. [PMID: 33580541 PMCID: PMC8049027 DOI: 10.1002/anie.202016943] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Indexed: 12/13/2022]
Abstract
Quantifying the passage of the large peptide protamine (Ptm) across CymA, a passive channel for cyclodextrin uptake, is in the focus of this study. Using a reporter-pair-based fluorescence membrane assay we detected the entry of Ptm into liposomes containing CymA. The kinetics of the Ptm entry was independent of its concentration suggesting that the permeation through CymA is the rate-limiting factor. Furthermore, we reconstituted single CymA channels into planar lipid bilayers and recorded the ion current fluctuations in the presence of Ptm. To this end, we were able to resolve the voltage-dependent entry of single Ptm peptide molecules into the channel. Extrapolation to zero voltage revealed about 1-2 events per second and long dwell times, in agreement with the liposome study. Applied-field and steered molecular dynamics simulations added an atomistic view of the permeation events. It can be concluded that a concentration gradient of 1 μm Ptm leads to a translocation rate of about one molecule per second and per channel.
Collapse
Affiliation(s)
- Sushil Pangeni
- Department of Life Sciences and ChemistryJacobs University28759BremenGermany
| | | | - Jayesh Bafna
- Department of Life Sciences and ChemistryJacobs University28759BremenGermany
| | - Mohamed Nilam
- Department of Life Sciences and ChemistryJacobs University28759BremenGermany
| | - Werner M. Nau
- Department of Life Sciences and ChemistryJacobs University28759BremenGermany
| | | | | |
Collapse
|
98
|
Szerencsés B, Gácser A, Endre G, Domonkos I, Tiricz H, Vágvölgyi C, Szolomajer J, Howan DHO, Tóth GK, Pfeiffer I, Kondorosi É. Symbiotic NCR Peptide Fragments Affect the Viability, Morphology and Biofilm Formation of Candida Species. Int J Mol Sci 2021; 22:ijms22073666. [PMID: 33915930 PMCID: PMC8037406 DOI: 10.3390/ijms22073666] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 03/27/2021] [Accepted: 03/28/2021] [Indexed: 11/16/2022] Open
Abstract
The increasing rate of fungal infections causes global problems not only in human healthcare but agriculture as well. To combat fungal pathogens limited numbers of antifungal agents are available therefore alternative drugs are needed. Antimicrobial peptides are potent candidates because of their broad activity spectrum and their diverse mode of actions. The model legume Medicago truncatula produces >700 nodule specific cysteine-rich (NCR) peptides in symbiosis and many of them have in vitro antimicrobial activities without considerable toxicity on human cells. In this work we demonstrate the anticandidal activity of the NCR335 and NCR169 peptide derivatives against five Candida species by using the micro-dilution method, measuring inhibition of biofilm formation with the XTT (2,3-Bis-(2-Methoxy-4-Nitro-5-Sulfophenyl)-2H-Tetrazolium-5-Carboxanilide) assay, and assessing the morphological change of dimorphic Candida species by microscopy. We show that both the N- and C-terminal regions of NCR335 possess anticandidal activity as well as the C-terminal sequence of NCR169. The active peptides inhibit biofilm formation and the yeast-hypha transformation. Combined treatment of C. auris with peptides and fluconazole revealed synergistic interactions and reduced 2-8-fold the minimal inhibitory concentrations. Our results demonstrate that shortening NCR peptides can even enhance and broaden their anticandidal activity and therapeutic potential.
Collapse
Affiliation(s)
- Bettina Szerencsés
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (B.S.); (A.G.); (C.V.)
| | - Attila Gácser
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (B.S.); (A.G.); (C.V.)
| | - Gabriella Endre
- Biological Research Centre, Institute of Plant Biology, H-6726 Szeged, Hungary; (G.E.); (I.D.); (H.T.)
| | - Ildikó Domonkos
- Biological Research Centre, Institute of Plant Biology, H-6726 Szeged, Hungary; (G.E.); (I.D.); (H.T.)
| | - Hilda Tiricz
- Biological Research Centre, Institute of Plant Biology, H-6726 Szeged, Hungary; (G.E.); (I.D.); (H.T.)
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (B.S.); (A.G.); (C.V.)
| | - János Szolomajer
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (J.S.); (D.H.O.H.); (G.K.T.)
| | - Dian H. O. Howan
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (J.S.); (D.H.O.H.); (G.K.T.)
| | - Gábor K. Tóth
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Hungary; (J.S.); (D.H.O.H.); (G.K.T.)
- MTA-SZTE Biomimetic Systems Research Group, University of Szeged, H-6720 Szeged, Hungary
| | - Ilona Pfeiffer
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary; (B.S.); (A.G.); (C.V.)
- Correspondence: (I.P.); (É.K.)
| | - Éva Kondorosi
- Biological Research Centre, Institute of Plant Biology, H-6726 Szeged, Hungary; (G.E.); (I.D.); (H.T.)
- Correspondence: (I.P.); (É.K.)
| |
Collapse
|
99
|
Van Dyck K, Pinto RM, Pully D, Van Dijck P. Microbial Interkingdom Biofilms and the Quest for Novel Therapeutic Strategies. Microorganisms 2021; 9:412. [PMID: 33671126 PMCID: PMC7921918 DOI: 10.3390/microorganisms9020412] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 02/06/2023] Open
Abstract
Fungal and bacterial species interact with each other within polymicrobial biofilm communities in various niches of the human body. Interactions between these species can greatly affect human health and disease. Diseases caused by polymicrobial biofilms pose a major challenge in clinical settings because of their enhanced virulence and increased drug tolerance. Therefore, different approaches are being explored to treat fungal-bacterial biofilm infections. This review focuses on the main mechanisms involved in polymicrobial drug tolerance and the implications of the polymicrobial nature for the therapeutic treatment by highlighting clinically relevant fungal-bacterial interactions. Furthermore, innovative treatment strategies which specifically target polymicrobial biofilms are discussed.
Collapse
Affiliation(s)
- Katrien Van Dyck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| | - Rita M. Pinto
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade Do Porto, 4050-313 Porto, Portugal
| | - Durgasruthi Pully
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
| | - Patrick Van Dijck
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, 3001 Leuven, Belgium; (K.V.D.); (R.M.P.); (D.P.)
- VIB—KU Leuven Center for Microbiology, 3001 Leuven, Belgium
| |
Collapse
|