51
|
Local inhibition of elastase reduces EMILIN1 cleavage reactivating lymphatic vessel function in a mouse lymphoedema model. Clin Sci (Lond) 2016; 130:1221-36. [PMID: 26920215 PMCID: PMC4888021 DOI: 10.1042/cs20160064] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/26/2016] [Indexed: 01/03/2023]
Abstract
Lymphatic vasculature critically depends on the connections of lymphatic endothelial cells with the extracellular matrix (ECM), which are mediated by anchoring filaments (AFs). The ECM protein EMILIN1 is a component of AFs and is involved in the regulation of lymphatic vessel functions: accordingly, Emilin1−/− mice display lymphatic vascular morphological alterations, leading to functional defects such as mild lymphoedema, lymph leakage and compromised lymph drainage. In the present study, using a mouse post-surgical tail lymphoedema model, we show that the acute phase of acquired lymphoedema correlates with EMILIN1 degradation due to neutrophil elastase (NE) released by infiltrating neutrophils. As a consequence, the intercellular junctions of lymphatic endothelial cells are weakened and drainage to regional lymph nodes is severely affected. The local administration of sivelestat, a specific NE inhibitor, prevents EMILIN1 degradation and reduces lymphoedema, restoring a normal lymphatic functionality. The finding that, in human secondary lymphoedema samples, we also detected cleaved EMILIN1 with the typical bands of an NE-dependent pattern of fragmentation establishes a rationale for a powerful strategy that targets NE inhibition. In conclusion, the attempts to block EMILIN1 degradation locally represent the basis for a novel ‘ECM’ pharmacological approach to assessing new lymphoedema treatments.
Collapse
|
52
|
Padmanabhan Iyer R, Chiao YA, Flynn ER, Hakala K, Cates CA, Weintraub ST, de Castro Brás LE. Matrix metalloproteinase-9-dependent mechanisms of reduced contractility and increased stiffness in the aging heart. Proteomics Clin Appl 2015; 10:92-107. [PMID: 26415707 DOI: 10.1002/prca.201500038] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/12/2015] [Accepted: 09/22/2015] [Indexed: 12/23/2022]
Abstract
PURPOSE Matrix metalloproteinases (MMPs) collectively degrade all extracellular matrix (ECM) proteins. Of the MMPs, MMP-9 has the strongest link to the development of cardiac dysfunction. Aging associates with increased MMP-9 expression in the left ventricle (LV) and reduced cardiac function. We investigated the effect of MMP-9 deletion on the cardiac ECM in aged animals. EXPERIMENTAL DESIGN We used male and female middle-aged (10- to16-month old) and old (20- to 24-month old) wild-type (WT) and MMP-9 null mice (n = 6/genotype/age). LVs were decellularized to remove highly abundant mitochondrial proteins that could mask identification of relative lower abundant components, analyzed by shotgun proteomics, and proteins of interest validated by immunoblot. RESULTS Elastin microfibril interface-located protein 1 (EMILIN-1) decreased with age in WT (p < 0.05), but not in MMP-9 null. EMILIN-1 promotes integrin-dependent cell adhesion and EMILIN-1 deficiency has been associated with vascular stiffening. Talin-2, a cytoskeletal protein, was elevated with age in WT (p < 0.05), and MMP-9 deficiency blunted this increase. Talin-2 is highly expressed in adult cardiac myocytes, transduces mechanical force to the ECM, and is activated by increases in substrate stiffness. Our results suggest that MMP-9 deletion may reduce age-related myocardial stiffness, which may explain improved cardiac function in MMP-9 null animals. CONCLUSIONS We identified age-related changes in the cardiac proteome that are MMP-9 dependent, suggesting MMP-9 as a possible therapeutic target for the aging patient.
Collapse
Affiliation(s)
- Rugmani Padmanabhan Iyer
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, Jackson, MS, USA
| | - Ying Ann Chiao
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Elizabeth R Flynn
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, Jackson, MS, USA
| | - Kevin Hakala
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Courtney A Cates
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology and Biophysics, Mississippi Center for Heart Research, Jackson, MS, USA
| | - Susan T Weintraub
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Biochemistry, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Lisandra E de Castro Brás
- San Antonio Cardiovascular Proteomics Center, San Antonio, TX, USA.,Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, NC, USA
| |
Collapse
|
53
|
Capuano A, Bucciotti F, Farwell KD, Tippin Davis B, Mroske C, Hulick PJ, Weissman SM, Gao Q, Spessotto P, Colombatti A, Doliana R. Diagnostic Exome Sequencing Identifies a Novel Gene, EMILIN1, Associated with Autosomal-Dominant Hereditary Connective Tissue Disease. Hum Mutat 2015; 37:84-97. [PMID: 26462740 PMCID: PMC4738430 DOI: 10.1002/humu.22920] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 10/05/2015] [Indexed: 12/31/2022]
Abstract
Heritable connective tissue diseases are a highly heterogeneous family of over 200 disorders that affect the extracellular matrix. While the genetic basis of several disorders is established, the etiology has not been discovered for a large portion of patients, likely due to rare yet undiscovered disease genes. By performing trio‐exome sequencing of a 55‐year‐old male proband presenting with multiple symptoms indicative of a connective disorder, we identified a heterozygous missense alteration in exon 1 of the Elastin Microfibril Interfacer 1 (EMILIN1) gene, c.64G>A (p.A22T). The proband presented with ascending and descending aortic aneurysms, bilateral lower leg and foot sensorimotor peripheral neuropathy, arthropathy, and increased skin elasticity. Sanger sequencing confirmed that the EMILIN1 alteration, which maps around the signal peptide cleavage site, segregated with disease in the affected proband, mother, and son. The impaired secretion of EMILIN‐1 in cells transfected with the mutant p.A22T coincided with abnormal protein accumulation within the endoplasmic reticulum. In skin biopsy of the proband, we detected less EMILIN‐1 with disorganized and abnormal coarse fibrils, aggregated deposits underneath the epidermis basal lamina, and dermal cells apoptosis. These findings collectively suggest that EMILIN1 may represent a new disease gene associated with an autosomal‐dominant connective tissue disorder.
Collapse
Affiliation(s)
- Alessandra Capuano
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, 33081, Italy
| | - Francesco Bucciotti
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, 33081, Italy
| | | | | | | | - Peter J Hulick
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, Illinois, 60201
| | - Scott M Weissman
- Center for Medical Genetics, NorthShore University HealthSystem, Evanston, Illinois, 60201
| | - Qingshen Gao
- NorthShore Research Institute, NorthShore University HealthSystem, Evanston, Illinois, 60201
| | - Paola Spessotto
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, 33081, Italy
| | - Alfonso Colombatti
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, 33081, Italy
| | - Roberto Doliana
- Department of Translational Research, CRO-IRCCS National Cancer Institute, Aviano, 33081, Italy
| |
Collapse
|
54
|
Huang JL, Woolf AS, Kolatsi-Joannou M, Baluk P, Sandford RN, Peters DJM, McDonald DM, Price KL, Winyard PJD, Long DA. Vascular Endothelial Growth Factor C for Polycystic Kidney Diseases. J Am Soc Nephrol 2015; 27:69-77. [PMID: 26038530 DOI: 10.1681/asn.2014090856] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Accepted: 03/11/2015] [Indexed: 12/29/2022] Open
Abstract
Polycystic kidney diseases (PKD) are genetic disorders characterized by progressive epithelial cyst growth leading to destruction of normally functioning renal tissue. Current therapies have focused on the cyst epithelium, and little is known about how the blood and lymphatic microvasculature modulates cystogenesis. Hypomorphic Pkd1(nl/nl) mice were examined, showing that cystogenesis was associated with a disorganized pericystic network of vessels expressing platelet/endothelial cell adhesion molecule 1 and vascular endothelial growth factor receptor 3 (VEGFR3). The major ligand for VEGFR3 is VEGFC, and there were lower levels of Vegfc mRNA within the kidneys during the early stages of cystogenesis in 7-day-old Pkd1(nl/nl) mice. Seven-day-old mice were treated with exogenous VEGFC for 2 weeks on the premise that this would remodel both the VEGFR3(+) pericystic vascular network and larger renal lymphatics that may also affect the severity of PKD. Treatment with VEGFC enhanced VEGFR3 phosphorylation in the kidney, normalized the pattern of the pericystic network of vessels, and widened the large lymphatics in Pkd1(nl/nl) mice. These effects were associated with significant reductions in cystic disease, BUN and serum creatinine levels. Furthermore, VEGFC administration reduced M2 macrophage pericystic infiltrate, which has been implicated in the progression of PKD. VEGFC administration also improved cystic disease in Cys1(cpk/cpk) mice, a model of autosomal recessive PKD, leading to a modest but significant increase in lifespan. Overall, this study highlights VEGFC as a potential new treatment for some aspects of PKD, with the possibility for synergy with current epithelially targeted approaches.
Collapse
Affiliation(s)
- Jennifer L Huang
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, United Kingdom
| | - Adrian S Woolf
- Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, United Kingdom
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, United Kingdom
| | - Peter Baluk
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, University of California, San Francisco, California
| | - Richard N Sandford
- Academic Department of Medical Genetics, University of Cambridge School of Clinical Medicine, Cambridge, United Kingdom; and
| | - Dorien J M Peters
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Donald M McDonald
- Cardiovascular Research Institute, Comprehensive Cancer Center, and Department of Anatomy, University of California, San Francisco, California
| | - Karen L Price
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, United Kingdom
| | - Paul J D Winyard
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, United Kingdom
| | - David A Long
- Developmental Biology and Cancer Programme, UCL Institute of Child Health, London, United Kingdom;
| |
Collapse
|
55
|
Bot S, Andreuzzi E, Capuano A, Schiavinato A, Colombatti A, Doliana R. Multiple-interactions among EMILIN1 and EMILIN2 N- and C-terminal domains. Matrix Biol 2015; 41:44-55. [DOI: 10.1016/j.matbio.2014.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 10/24/2014] [Accepted: 10/26/2014] [Indexed: 10/24/2022]
|
56
|
Szél E, Kemény L, Groma G, Szolnoky G. Pathophysiological dilemmas of lipedema. Med Hypotheses 2014; 83:599-606. [DOI: 10.1016/j.mehy.2014.08.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 08/01/2014] [Accepted: 08/11/2014] [Indexed: 12/31/2022]
|
57
|
Bazigou E, Wilson JT, Moore JE. Primary and secondary lymphatic valve development: molecular, functional and mechanical insights. Microvasc Res 2014; 96:38-45. [PMID: 25086182 DOI: 10.1016/j.mvr.2014.07.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/17/2014] [Accepted: 07/22/2014] [Indexed: 01/27/2023]
Abstract
Fluid homeostasis in vertebrates critically relies on the lymphatic system forming a hierarchical network of lymphatic capillaries and collecting lymphatics, for the efficient drainage and transport of extravasated fluid back to the cardiovascular system. Blind-ended lymphatic capillaries employ specialized junctions and anchoring filaments to encourage a unidirectional flow of the interstitial fluid into the initial lymphatic vessels, whereas collecting lymphatics are responsible for the active propulsion of the lymph to the venous circulation via the combined action of lymphatic muscle cells and intraluminal valves. Here we describe recent findings on molecular and physical factors regulating the development and maturation of these two types of valves and examine their role in tissue-fluid homeostasis.
Collapse
Affiliation(s)
- Eleni Bazigou
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK.
| | - John T Wilson
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - James E Moore
- Department of Bioengineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| |
Collapse
|
58
|
Tissue-engineered lymphatic graft for the treatment of lymphedema. J Surg Res 2014; 192:544-54. [PMID: 25248852 DOI: 10.1016/j.jss.2014.07.059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/11/2014] [Accepted: 07/23/2014] [Indexed: 12/24/2022]
Abstract
BACKGROUND Lymphedema is a chronic debilitating condition and curative treatment is yet to be found. Tissue engineering approach, which combines cellular components, scaffold, and molecular signals hold great potential in the treatment of secondary lymphedema with the advent of lymphatic graft to reconstruct damaged collecting lymphatic vessel. This review highlights the ideal characteristics of lymphatic graft, the limitation and challenges faced, and the approaches in developing tissue-engineered lymphatic graft. METHODS Literature on tissue engineering of lymphatic system and lymphatic tissue biology was reviewed. RESULTS The prime challenge in the design and manufacturing of this graft is producing endothelialized conduit with intraluminal valves. Suitable scaffold material is needed to ensure stability and functionality of the construct. Endothelialization of the construct can be enhanced via biofunctionalization and nanotopography, which mimics extracellular matrix. Nanocomposite polymers with improved performance over existing biomaterials are likely to benefit the development of lymphatic graft. CONCLUSIONS With the in-depth understanding of tissue engineering, nanotechnology, and improved knowledge on the biology of lymphatic regeneration, the aspiration to develop successful lymphatic graft is well achievable.
Collapse
|
59
|
Park DY, Lee J, Park I, Choi D, Lee S, Song S, Hwang Y, Hong KY, Nakaoka Y, Makinen T, Kim P, Alitalo K, Hong YK, Koh GY. Lymphatic regulator PROX1 determines Schlemm's canal integrity and identity. J Clin Invest 2014; 124:3960-74. [PMID: 25061877 DOI: 10.1172/jci75392] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/30/2014] [Indexed: 12/30/2022] Open
Abstract
Schlemm's canal (SC) is a specialized vascular structure in the eye that functions to drain aqueous humor from the intraocular chamber into systemic circulation. Dysfunction of SC has been proposed to underlie increased aqueous humor outflow (AHO) resistance, which leads to elevated ocular pressure, a factor for glaucoma development in humans. Here, using lymphatic and blood vasculature reporter mice, we determined that SC, which originates from blood vessels during the postnatal period, acquires lymphatic identity through upregulation of prospero homeobox protein 1 (PROX1), the master regulator of lymphatic development. SC expressed lymphatic valve markers FOXC2 and integrin α9 and exhibited continuous vascular endothelial-cadherin (VE-cadherin) junctions and basement membrane, similar to collecting lymphatics. SC notably lacked luminal valves and expression of the lymphatic endothelial cell markers podoplanin and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1). Using an ocular puncture model, we determined that reduced AHO altered the fate of SC both during development and under pathologic conditions; however, alteration of VEGF-C/VEGFR3 signaling did not modulate SC integrity and identity. Intriguingly, PROX1 expression levels linearly correlated with SC functionality. For example, PROX1 expression was reduced or undetectable under pathogenic conditions and in deteriorated SCs. Collectively, our data indicate that PROX1 is an accurate and reliable biosensor of SC integrity and identity.
Collapse
|
60
|
Chen H, Griffin C, Xia L, Srinivasan RS. Molecular and cellular mechanisms of lymphatic vascular maturation. Microvasc Res 2014; 96:16-22. [PMID: 24928499 DOI: 10.1016/j.mvr.2014.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 06/03/2014] [Indexed: 01/24/2023]
Abstract
Lymphatic vasculature is necessary for maintaining fluid homeostasis in vertebrates. During embryogenesis lymphatic endothelial cells originate from the veins as a homogeneous population. These cells undergo a series of changes at the morphological and molecular levels to become mature lymphatic vasculature that consists of lymphatic capillaries, collecting lymphatic vessels and valves. In this article we summarize our current knowledge about these steps and highlight some black boxes that require further clarification.
Collapse
Affiliation(s)
- Hong Chen
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Courtney Griffin
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA
| | - Lijun Xia
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA.
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, 825 NE 13th Street, Oklahoma City, OK 73104, USA.
| |
Collapse
|
61
|
Pivetta E, Danussi C, Wassermann B, Modica TME, Del Bel Belluz L, Canzonieri V, Colombatti A, Spessotto P. Neutrophil elastase-dependent cleavage compromises the tumor suppressor role of EMILIN1. Matrix Biol 2014; 34:22-32. [PMID: 24513040 DOI: 10.1016/j.matbio.2014.01.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/31/2014] [Accepted: 01/31/2014] [Indexed: 12/20/2022]
Abstract
Proteolysis of the extracellular matrix (ECM) is a key event in tumor growth and progression. The breakdown of ECM can lead to the generation of bioactive fragments that promote cell growth and spread. EMILIN1, a multidomain glycoprotein expressed in several tissues, exerts a crucial regulatory function through the engagement of α4/α9 integrins. Unlike the majority of ECM molecules that elicit a proliferative program, the signals emitting from EMILIN1 engaged by α4/α9β1 integrins are antiproliferative. In this study, aimed to demonstrate if the suppressor role of EMILIN1 was related to its structural integrity, we tested the possibility that EMILIN1 could be specifically cleaved. Among the proteolytic enzymes released in the tumor microenvironment we showed that neutrophil elastase cleaved EMILIN1 in three/four major fragments. The consequence of this proteolytic process was the impairment of its anti-proliferative role. Accordingly, EMILIN1 was digested in sarcomas and ovarian cancers. Sarcoma specimens were infiltrated by neutrophils (PMNs) and stained positively for elastase. The present findings highlight the peculiar activity of PMN elastase in disabling EMILIN1 suppressor function.
Collapse
Affiliation(s)
- Eliana Pivetta
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Carla Danussi
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Bruna Wassermann
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | | | - Lisa Del Bel Belluz
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Vincenzo Canzonieri
- Division of Pathology, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy
| | - Alfonso Colombatti
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy; Department of Medical and Biomedical Sciences, University of Udine, Italy; MATI (Microgravity, Ageing, Training, Immobility) Excellence Center, University of Udine, Italy
| | - Paola Spessotto
- Experimental Oncology 2, CRO, IRCCS, National Cancer Institute, Aviano, PN, Italy.
| |
Collapse
|
62
|
Planas-Paz L, Lammert E. Mechanosensing in developing lymphatic vessels. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2014; 214:23-40. [PMID: 24276884 DOI: 10.1007/978-3-7091-1646-3_3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The lymphatic vasculature is responsible for fluid homeostasis, transport of immune cells, inflammatory molecules, and dietary lipids. It is composed of a network of lymphatic capillaries that drain into collecting lymphatic vessels and ultimately bring fluid back to the blood circulation. Lymphatic endothelial cells (LECs) that line lymphatic capillaries present loose overlapping intercellular junctions and anchoring filaments that support fluid drainage. When interstitial fluid accumulates within tissues, the extracellular matrix (ECM) swells and pulls the anchoring filaments. This results in opening of the LEC junctions and permits interstitial fluid uptake. The absorbed fluid is then transported within collecting lymphatic vessels, which exhibit intraluminal valves that prevent lymph backflow and smooth muscle cells that sequentially contract to propel lymph.Mechanotransduction involves translation of mechanical stimuli into biological responses. LECs have been shown to sense and respond to changes in ECM stiffness, fluid pressure-induced cell stretch, and fluid flow-induced shear stress. How these signals influence LEC function and lymphatic vessel growth can be investigated by using different mechanotransduction assays in vitro and to some extent in vivo.In this chapter, we will focus on the mechanical forces that regulate lymphatic vessel expansion during embryonic development and possibly secondary lymphedema. In mouse embryos, it has been recently shown that the amount of interstitial fluid determines the extent of lymphatic vessel expansion via a mechanosensory complex formed by β1 integrin and vascular endothelial growth factor receptor-3 (VEGFR3). This model might as well apply to secondary lymphedema.
Collapse
Affiliation(s)
- Lara Planas-Paz
- Institute of Metabolic Physiology, Heinrich-Heine University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | | |
Collapse
|
63
|
Lutter S, Makinen T. Regulation of Lymphatic Vasculature by Extracellular Matrix. DEVELOPMENTAL ASPECTS OF THE LYMPHATIC VASCULAR SYSTEM 2014; 214:55-65. [DOI: 10.1007/978-3-7091-1646-3_5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
64
|
Planas-Paz L, Lammert E. Mechanical forces in lymphatic vascular development and disease. Cell Mol Life Sci 2013; 70:4341-54. [PMID: 23665871 PMCID: PMC11113353 DOI: 10.1007/s00018-013-1358-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 04/26/2013] [Accepted: 04/29/2013] [Indexed: 12/11/2022]
Abstract
The lymphatic vasculature is essential for fluid homeostasis and transport of immune cells, inflammatory molecules, and dietary lipids. It is composed of a hierarchical network of blind-ended lymphatic capillaries and collecting lymphatic vessels, both lined by lymphatic endothelial cells (LECs). The low hydrostatic pressure in lymphatic capillaries, their loose intercellular junctions, and attachment to the surrounding extracellular matrix (ECM) permit passage of extravasated blood plasma from the interstitium into the lumen of the lymphatic capillaries. It is generally thought that interstitial fluid accumulation leads to a swelling of the ECM, to which the LECs of lymphatic capillaries adhere, for example via anchoring filaments. As a result, LECs are pulled away from the vascular lumen, the junctions open, and fluid enters the lymphatic vasculature. The collecting lymphatic vessels then gather the plasma fluid from the capillaries and carry it through the lymph nodes to the blood circulation. The collecting vessels contain intraluminal bicuspid valves that prevent fluid backflow, and are embraced by smooth muscle cells that contribute to fluid transport. Although the lymphatic vessels are regular subject to mechanical strain, our knowledge of its influence on lymphatic development and pathologies is scarce. Here, we discuss the mechanical forces and molecular mechanisms regulating lymphatic vascular growth and maturation in the developing mouse embryo. We also consider how the lymphatic vasculature might be affected by similar mechanomechanisms in two pathological processes, namely cancer cell dissemination and secondary lymphedema.
Collapse
Affiliation(s)
- Lara Planas-Paz
- Institute of Metabolic Physiology, Heinrich-Heine University, Universitätsstrasse 1, 40225, Düsseldorf, Germany,
| | | |
Collapse
|
65
|
EMILIN1/α9β1 integrin interaction is crucial in lymphatic valve formation and maintenance. Mol Cell Biol 2013; 33:4381-94. [PMID: 24019067 DOI: 10.1128/mcb.00872-13] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lymphatic vasculature plays a crucial role in the maintenance of tissue interstitial fluid balance. The role of functional collecting lymphatic vessels in lymph transport has been recently highlighted in pathologies leading to lymphedema, for which treatments are currently unavailable. Intraluminal valves are of paramount importance in this process. However, valve formation and maturation have not been entirely elucidated yet, in particular, the role played by the extracellular matrix (ECM). We hypothesized that EMILIN1, an ECM multidomain glycoprotein, regulates lymphatic valve formation and maintenance. Using a mouse knockout model, we show that in the absence of EMILIN1, mice exhibit defects in lymphatic valve structure and in lymph flow. By applying morphometric in vitro and in vivo functional assays, we conclude that this impaired phenotype depends on the lack of α9β1 integrin engagement, the specific lymphatic endothelial cell receptor for EMILIN1, and the ensuing derangement of cell proliferation and migration. Our data demonstrate a fundamental role for EMILIN1-integrin α9 interaction in lymphatic vasculature, especially in lymphatic valve formation and maintenance, and underline the importance of this ECM component in displaying a regulatory function in proliferation and acting as a "guiding" molecule in migration of lymphatic endothelial cells.
Collapse
|
66
|
Martinez-Corral I, Makinen T. Regulation of lymphatic vascular morphogenesis: Implications for pathological (tumor) lymphangiogenesis. Exp Cell Res 2013; 319:1618-25. [DOI: 10.1016/j.yexcr.2013.01.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 01/26/2013] [Indexed: 11/24/2022]
|
67
|
Lim HY, Thiam CH, Yeo KP, Bisoendial R, Hii CS, McGrath KCY, Tan KW, Heather A, Alexander JSJ, Angeli V. Lymphatic vessels are essential for the removal of cholesterol from peripheral tissues by SR-BI-mediated transport of HDL. Cell Metab 2013; 17:671-84. [PMID: 23663736 DOI: 10.1016/j.cmet.2013.04.002] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 11/06/2012] [Accepted: 04/01/2013] [Indexed: 01/05/2023]
Abstract
Removal of cholesterol from peripheral tissues to the bloodstream via reverse cholesterol transport (RCT) is a process of major biological importance. Here we demonstrate that lymphatic drainage is required for RCT. We have previously shown that hypercholesterolemia in mice is associated with impaired lymphatic drainage and increased lipid accumulation in peripheral tissues. We now show that restoration of lymphatic drainage in these mice significantly improves cholesterol clearance. Conversely, obstruction of lymphatic vessels in wild-type mice significantly impairs RCT. Finally, we demonstrate using silencing RNA interference, neutralizing antibody, and transgenic mice that removal of cholesterol by lymphatic vessels is dependent on the uptake and transcytosis of HDL by scavenger receptor class B type I expressed on lymphatic endothelium. Collectively, this study challenges the current view that lymphatic endothelium is a passive exchange barrier for cholesterol transport and provides further evidence for its interplay with lipid biology in health and disease.
Collapse
Affiliation(s)
- Hwee Ying Lim
- Department of Microbiology, Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Republic of Singapore
| | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Iwasaki T, Takeda Y, Maruyama K, Yokosaki Y, Tsujino K, Tetsumoto S, Kuhara H, Nakanishi K, Otani Y, Jin Y, Kohmo S, Hirata H, Takahashi R, Suzuki M, Inoue K, Nagatomo I, Goya S, Kijima T, Kumagai T, Tachibana I, Kawase I, Kumanogoh A. Deletion of tetraspanin CD9 diminishes lymphangiogenesis in vivo and in vitro. J Biol Chem 2012; 288:2118-31. [PMID: 23223239 DOI: 10.1074/jbc.m112.424291] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Tetraspanins have emerged as key players in malignancy and inflammatory diseases, yet little is known about their roles in angiogenesis, and nothing is known about their involvement in lymphangiogenesis. We found here that tetraspanins are abundantly expressed in human lymphatic endothelial cells (LEC). After intrathoracic tumor implantation, metastasis to lymph nodes was diminished and accompanied by decreased angiogenesis and lymphangiogenesis in tetraspanin CD9-KO mice. Moreover, lymphangiomas induced in CD9-KO mice were less pronounced with decreased lymphangiogenesis compared with those in wild-type mice. Although mouse LEC isolated from CD9-KO mice showed normal adhesion, lymphangiogenesis was markedly impaired in several assays (migration, proliferation, and cable formation) in vitro and in the lymphatic ring assay ex vivo. Consistent with these findings in mouse LEC, knocking down CD9 in human LEC also produced decreased migration, proliferation, and cable formation. Immunoprecipitation analysis demonstrated that deletion of CD9 in LEC diminished formation of functional complexes between VEGF receptor-3 and integrins (α5 and α9). Therefore, knocking down CD9 in LEC attenuated VEGF receptor-3 signaling, as well as downstream signaling such as Erk and p38 upon VEGF-C stimulation. Finally, double deletion of CD9/CD81 in mice caused abnormal development of lymphatic vasculature in the trachea and diaphragm, suggesting that CD9 and a closely related tetraspanin CD81 coordinately play an essential role in physiological lymphangiogenesis. In conclusion, tetraspanin CD9 modulates molecular organization of integrins in LEC, thereby supporting several functions required for lymphangiogenesis.
Collapse
Affiliation(s)
- Takeo Iwasaki
- Department of Respiratory Medicine, Allergy and Rheumatic Diseases, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Danussi C, Petrucco A, Wassermann B, Modica TME, Pivetta E, Del Bel Belluz L, Colombatti A, Spessotto P. An EMILIN1-negative microenvironment promotes tumor cell proliferation and lymph node invasion. Cancer Prev Res (Phila) 2012; 5:1131-43. [PMID: 22827975 DOI: 10.1158/1940-6207.capr-12-0076-t] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The evidence that EMILIN1 (Elastic Microfibril Interface Located proteIN) deficiency in Emilin1(-/-) mice caused dermal and epidermal hyperproliferation and an abnormal lymphatic phenotype prompted us to hypothesize the involvement of this extracellular matrix component in tumor development and in lymphatic metastasis. Using the 12-dimethylbenz(α)anthracene/12-O-tetradecanoylphorbol-13-acetate (DMBA/TPA) two-stage model of skin carcinogenesis, we found that Emilin1(-/-) mice presented an accelerated formation, a higher incidence, and the development of a larger number of tumors compared with their wild-type littermates. EMILIN1-negative tumors showed more Ki67-positive proliferating cells and higher levels of pErk1/2. In these tumors, PTEN expression was lower. Emilin1(-/-) mice displayed enhanced lymphangiogenesis both in the tumor and in the sentinel lymph nodes. Accordingly, tumor growth and lymph node metastasis of transplanted syngenic tumors were also increased in Emilin1(-/-) mice. In vitro transmigration assays through lymphatic endothelial cells showed that EMILIN1 deficiency greatly facilitated tumor cell trafficking. Overall, these data established that EMILIN1 exerts a protective role in tumor growth, in tumor lymphatic vessel formation, as well as in metastatic spread to lymph nodes and reinforced the importance of its presence in the microenvironment to determine the tumor phenotype.
Collapse
Affiliation(s)
- Carla Danussi
- Experimental Oncology 2, CROO-IRCCS, National Cancer Institute, Aviano, Via Franco Gallini, 2, Aviano 33081, Italy
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Zhang N, Yang Y, Cheng L, Zhang XM, Zhang S, Wang W, Liu SY, Wang SY, Wang RB, Xu WJ, Dai L, Yan N, Fan P, Dai LX, Tian HW, Liu L, Deng HX. Combination of Caspy2 and IP-10 gene therapy significantly improves therapeutic efficacy against murine malignant neoplasm growth and metastasis. Hum Gene Ther 2012; 23:837-46. [PMID: 22548488 DOI: 10.1089/hum.2011.136] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
It has been shown that Caspy2, a zebrafish active caspase, can efficiently suppress the growth of malignant tumor. The present study was designed to test whether combined gene therapy with IP-10, a potent antitumor chemokine, and Caspy2 would improve therapy efficacy. Recombinant plasmid expressing both Caspy2 and IP-10 genes was mixed with DOTAP-cholesterol nanoparticles. Immunocompetent mice bearing CT26 colon carcinoma, B16-F10 melanoma, and 4T1 breast carcinoma were treated with the complex. We found that the combined gene therapy more efficiently inhibited tumor growth, while efficiently prolonging the survival of tumor-bearing animals, compared with monotherapy. Moreover, a significant reduction in spontaneous lung metastasis could be observed in the 4T1 breast carcinoma model. Infiltration of CD8(+) T lymphocytes was also observed. In addition, apoptotic cells were widely detected by TUNEL assay and caspase-3 immunostaining in coadministered tumor tissues. The combination treatment also successfully inhibited angiogenesis and tumor cell proliferation as assessed by CD31 and Ki-67 immunostaining, respectively. Furthermore, depletion of CD8(+) T lymphocytes could significantly abrogate the antitumor activity, whereas the depletion of CD4(+) cells or natural killer cells showed partial abrogation. Rechallenged CT26 tumors were rejected in all of the surviving mice treated by combination therapy. Our results suggest that combined therapy with Caspy2 and IP-10 can significantly enhance antitumor activity by acting as an immune response initiator, apoptosis inducer, and angiogenesis inhibitor, which may be important for further applications in clinical cancer therapy.
Collapse
Affiliation(s)
- Na Zhang
- State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Høye AM, Couchman JR, Wewer UM, Fukami K, Yoneda A. The newcomer in the integrin family: integrin α9 in biology and cancer. Adv Biol Regul 2012; 52:326-339. [PMID: 22781746 DOI: 10.1016/j.jbior.2012.03.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 03/23/2012] [Indexed: 06/01/2023]
Abstract
Integrins are heterodimeric transmembrane receptors regulating cell-cell and cell-extracellular matrix interactions. Of the 24 integrin heterodimers identified in humans, α9β1 integrin is one of the least studied. α9, together with α4, comprise a more recent evolutionary sub-family of integrins that is only found in vertebrates. Since α9 was thought to have similar functions as α4, due to many shared ligands, it was a rather overlooked integrin until recently, when its importance for survival after birth was highlighted upon investigation of the α9 knockout mouse. α9β1 is expressed on a wide variety of cell types, interacts with many ligands for example fibronectin, tenascin-C and ADAM12, and has been shown to have important functions in processes such as cell adhesion and migration, lung development, lymphatic and venous valve development, and in wound healing. This has sparked an interest to investigate α9β1-mediated signaling and its regulation. This review gives an overview of the recent progress in α9β1-mediated biological and pathological processes, and discusses its potential as a target for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Anette M Høye
- Department of Biomedical Sciences, The Faculty of Health and Medical Sciences, and Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen Biocenter, Ole Maaløes Vej 5, Copenhagen N 2200, Denmark
| | | | | | | | | |
Collapse
|
72
|
Tumor lymphangiogenesis as a potential therapeutic target. JOURNAL OF ONCOLOGY 2012; 2012:204946. [PMID: 22481918 PMCID: PMC3307004 DOI: 10.1155/2012/204946] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/10/2011] [Accepted: 10/31/2011] [Indexed: 12/18/2022]
Abstract
Metastasis the spread of cancer cells to distant organs, is the main cause of death for cancer patients. Metastasis is often mediated by lymphatic vessels that invade the primary tumor, and an early sign of metastasis is the presence of cancer cells in the regional lymph node (the first lymph node colonized by metastasizing cancer cells from a primary tumor). Understanding the interplay between tumorigenesis and lymphangiogenesis (the formation of lymphatic vessels associated with tumor growth) will provide us with new insights into mechanisms that modulate metastatic spread. In the long term, these insights will help to define new molecular targets that could be used to block lymphatic vessel-mediated metastasis and increase patient survival. Here, we review the molecular mechanisms of embryonic lymphangiogenesis and those that are recapitulated in tumor lymphangiogenesis, with a view to identifying potential targets for therapies designed to suppress tumor lymphangiogenesis and hence metastasis.
Collapse
|
73
|
Integrins and their extracellular matrix ligands in lymphangiogenesis and lymph node metastasis. Int J Cell Biol 2012; 2012:853703. [PMID: 22505936 PMCID: PMC3296286 DOI: 10.1155/2012/853703] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/27/2011] [Accepted: 11/01/2011] [Indexed: 12/17/2022] Open
Abstract
In the 1970s, the late Judah Folkman postulated that tumors grow proportionately to their blood supply and that tumor angiogenesis removed this limitation promoting growth and metastasis. Work over the past 40 years, varying from molecular examination to clinical trials, verified this hypothesis and identified a host of therapeutic targets to limit tumor angiogenesis, including the integrin family of extracellular matrix receptors. However, the propensity for some tumors to spread through lymphatics suggests that lymphangiogenesis plays a similarly important role. Lymphangiogenesis inhibitors reduce lymph node metastasis, the leading indicator of poor prognosis, whereas inducing lymphangiogenesis promotes lymph node metastasis even in cancers not prone to lymphatic dissemination. Recent works highlight a role for integrins in lymphangiogenesis and suggest that integrin inhibitors may serve as therapeutic targets to limit lymphangiogenesis and lymph node metastasis. This review discusses the current literature on integrin-matrix interactions in lymphatic vessel development and lymphangiogenesis and highlights our current knowledge on how specific integrins regulate tumor lymphangiogenesis.
Collapse
|
74
|
Schiavinato A, Becker AKA, Zanetti M, Corallo D, Milanetto M, Bizzotto D, Bressan G, Guljelmovic M, Paulsson M, Wagener R, Braghetta P, Bonaldo P. EMILIN-3, peculiar member of elastin microfibril interface-located protein (EMILIN) family, has distinct expression pattern, forms oligomeric assemblies, and serves as transforming growth factor β (TGF-β) antagonist. J Biol Chem 2012; 287:11498-515. [PMID: 22334695 DOI: 10.1074/jbc.m111.303578] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
EMILIN-3 is a glycoprotein of the extracellular matrix belonging to a family that contains a characteristic N-terminal cysteine-rich EMI domain. Currently, EMILIN-3 is the least characterized member of the elastin microfibril interface-located protein (EMILIN)/Multimerin family. Using RNA, immunohistochemical, and protein chemistry approaches, we carried out a detailed characterization of the expression and biochemical properties of EMILIN-3 in mouse. During embryonic and postnatal development, EMILIN-3 showed a peculiar and dynamic pattern of gene expression and protein distribution. EMILIN-3 mRNA was first detected at E8.5-E9.5 in the tail bud and in the primitive gut, and at later stages it became abundant in the developing gonads and osteogenic mesenchyme. Interestingly and in contrast to other EMILIN/Multimerin genes, EMILIN-3 was not found in the cardiovascular system. Despite the absence of the globular C1q domain, immunoprecipitation and Western blot analyses demonstrated that EMILIN-3 forms disulfide-bonded homotrimers and higher order oligomers. Circular dichroism spectroscopy indicated that the most C-terminal part of EMILIN-3 has a substantial α-helical content and forms coiled coil structures involved in EMILIN-3 homo-oligomerization. Transfection experiments with recombinant constructs showed that the EMI domain contributes to the higher order self-assembly but was dispensable for homotrimer formation. EMILIN-3 was found to bind heparin with high affinity, a property mediated by the EMI domain, thus revealing a new function for this domain that may contribute to the interaction of EMILIN-3 with other extracellular matrix and/or cell surface molecules. Finally, in vitro experiments showed that EMILIN-3 is able to function as an extracellular regulator of the activity of TGF-β ligands.
Collapse
Affiliation(s)
- Alvise Schiavinato
- Department of Biomedical Sciences, University of Padova, I-35121 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Colombatti A, Spessotto P, Doliana R, Mongiat M, Bressan GM, Esposito G. The EMILIN/Multimerin family. Front Immunol 2012; 2:93. [PMID: 22566882 PMCID: PMC3342094 DOI: 10.3389/fimmu.2011.00093] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Accepted: 12/21/2011] [Indexed: 01/12/2023] Open
Abstract
Elastin microfibrillar interface proteins (EMILINs) and Multimerins (EMILIN1, EMILIN2, Multimerin1, and Multimerin2) constitute a four member family that in addition to the shared C-terminus gC1q domain typical of the gC1q/TNF superfamily members contain a N-terminus unique cysteine-rich EMI domain. These glycoproteins are homotrimeric and assemble into high molecular weight multimers. They are predominantly expressed in the extracellular matrix and contribute to several cellular functions in part associated with the gC1q domain and in part not yet assigned nor linked to other specific regions of the sequence. Among the latter is the control of arterial blood pressure, the inhibition of Bacillus anthracis cell cytotoxicity, the promotion of cell death, the proangiogenic function, and a role in platelet hemostasis. The focus of this review is to highlight the multiplicity of functions and domains of the EMILIN/Multimerin family with a particular emphasis on the regulatory role played by the ligand-receptor interactions of the gC1q domain. EMILIN1 is the most extensively studied member both from the structural and functional point of view. The structure of the gC1q of EMILIN1 solved by NMR highlights unique characteristics compared to other gC1q domains: it shows a marked decrease of the contact surface of the trimeric assembly and while conserving the jelly-roll topology with two β-sheets of antiparallel strands it presents a nine-stranded β-sandwich fold instead of the usual 10-stranded fold. This is likely due to the insertion of nine residues that disrupt the ordered strand organization and forma a highly dynamic protruding loop. In this loop the residue E933 is the site of interaction between gC1q and the α4β1 and α9β1 integrins, and contrary to integrin occupancy that usually upregulates cell growth, when gC1q is ligated by the integrin the cells reduce their proliferative activity.
Collapse
Affiliation(s)
- Alfonso Colombatti
- Experimental Oncology 2, Centro di Riferimento Oncologico, Istituto di Ricerca e Cura a Carattere Scientifico Aviano, Italy.
| | | | | | | | | | | |
Collapse
|
76
|
Danussi C, Petrucco A, Wassermann B, Pivetta E, Modica TME, Del Bel Belluz L, Colombatti A, Spessotto P. EMILIN1-α4/α9 integrin interaction inhibits dermal fibroblast and keratinocyte proliferation. ACTA ACUST UNITED AC 2011; 195:131-45. [PMID: 21949412 PMCID: PMC3187715 DOI: 10.1083/jcb.201008013] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The α4/α9 integrins directly engage the ECM glycoprotein EMILIN1 to inhibit skin cell proliferation upstream of TGF-β signaling. EMILIN1 promotes α4β1 integrin–dependent cell adhesion and migration and reduces pro–transforming growth factor–β processing. A knockout mouse model was used to unravel EMILIN1 functions in skin where the protein was abundantly expressed in the dermal stroma and where EMILIN1-positive fibrils reached the basal keratinocyte layer. Loss of EMILIN1 caused dermal and epidermal hyperproliferation and accelerated wound closure. We identified the direct engagement of EMILIN1 to α4β1 and α9β1 integrins as the mechanism underlying the homeostatic role exerted by EMILIN1. The lack of EMILIN1–α4/α9 integrin interaction was accompanied by activation of PI3K/Akt and Erk1/2 pathways as a result of the reduction of PTEN. The down-regulation of PTEN empowered Erk1/2 phosphorylation that in turn inhibited Smad2 signaling by phosphorylation of residues Ser245/250/255. These results highlight the important regulatory role of an extracellular matrix component in skin proliferation. In addition, EMILIN1 is identified as a novel ligand for keratinocyte α9β1 integrin, suggesting prospective roles for this receptor–ligand pair in skin homeostasis.
Collapse
Affiliation(s)
- Carla Danussi
- Division of Experimental Oncology 2, Centro di Riferimento Oncologico, Istituto di Ricovero e Cura a Carattere Scientifico, National Cancer Institute, 33081 Aviano, Italy
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Schulte-Merker S, Sabine A, Petrova TV. Lymphatic vascular morphogenesis in development, physiology, and disease. ACTA ACUST UNITED AC 2011; 193:607-18. [PMID: 21576390 PMCID: PMC3166860 DOI: 10.1083/jcb.201012094] [Citation(s) in RCA: 287] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The lymphatic vasculature constitutes a highly specialized part of the vascular system that is essential for the maintenance of interstitial fluid balance, uptake of dietary fat, and immune response. Recently, there has been an increased awareness of the importance of lymphatic vessels in many common pathological conditions, such as tumor cell dissemination and chronic inflammation. Studies of embryonic development and genetically engineered animal models coupled with the discovery of mutations underlying human lymphedema syndromes have contributed to our understanding of mechanisms regulating normal and pathological lymphatic morphogenesis. It is now crucial to use this knowledge for the development of novel therapies for human diseases.
Collapse
Affiliation(s)
- Stefan Schulte-Merker
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, and University Medical Centre, 3584 CT Utrecht, Netherlands
| | | | | |
Collapse
|
78
|
Alexander JS, Ganta VC, Jordan PA, Witte MH. Gastrointestinal lymphatics in health and disease. ACTA ACUST UNITED AC 2011; 17:315-35. [PMID: 20022228 DOI: 10.1016/j.pathophys.2009.09.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Revised: 09/28/2009] [Accepted: 09/28/2009] [Indexed: 12/17/2022]
Abstract
Lymphatics perform essential transport and immune regulatory functions to maintain homeostasis in the gastrointestinal (GI) system. Although blood and lymphatic vessels function as parallel and integrated systems, our understanding of lymphatic structure, regulation and functioning lags far behind that of the blood vascular system. This chapter reviews lymphatic flow, differences in lymphangiogenic and hemangiogenic factors, lymphatic fate determinants and structural features, and examines how altered molecular signaling influences lymphatic function in organs of the GI system. Innate errors in lymphatic development frequently disturb GI functioning and physiology. Expansion of lymphatics, a prominent feature of GI inflammation, may also play an important role in tissue restitution following injury. Destruction or dysregulation of lymphatics, following injury, surgery or chronic inflammation also exacerbates GI disease activity. Understanding the physiological roles played by GI lymphatics is essential to elucidating their underlying contributions to forms of congenital and acquired forms of GI pathology, and will provide novel approaches for therapy.
Collapse
Affiliation(s)
- J S Alexander
- Louisiana State University Health Sciences Center-Shreveport, Molecular and Cellular Physiology, Shreveport, LA, United States
| | | | | | | |
Collapse
|
79
|
Sa Q, Hoover-Plow JL. EMILIN2 (Elastin microfibril interface located protein), potential modifier of thrombosis. Thromb J 2011; 9:9. [PMID: 21569335 PMCID: PMC3113922 DOI: 10.1186/1477-9560-9-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 05/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Elastin microfibril interface located protein 2 (EMILIN2) is an extracellular glycoprotein associated with cardiovascular development. While other EMILIN proteins are reported to play a role in elastogenesis and coagulation, little is known about EMILIN2 function in the cardiovascular system. The objective of this study was to determine whether EMILIN2 could play a role in thrombosis. RESULTS EMILIN2 mRNA was expressed in 8 wk old C57BL/6J mice in lung, heart, aorta and bone marrow, with the highest expression in bone marrow. In mouse cells, EMILIN2 mRNA expression in macrophages was higher than expression in endothelial cells and fibroblasts. EMILIN2 was identified with cells and extracellular matrix by immunohistochemistry in the carotid and aorta. After carotid ferric chloride injury, EMILIN2 was abundantly expressed in the thrombus and inhibition of EMILIN2 increased platelet de-aggregation after ADP-stimulated platelet aggregation. CONCLUSIONS These results suggest EMILIN2 could play a role in thrombosis as a constituent of the vessel wall and/or a component of the thrombus.
Collapse
Affiliation(s)
- Qila Sa
- Joseph J, Jacobs Center For Thrombosis and Vascular Biology, Department of Cardiovascular Medicine and Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | | |
Collapse
|
80
|
Lymphangiogenesis in post-natal tissue remodeling: lymphatic endothelial cell connection with its environment. Mol Aspects Med 2011; 32:146-58. [PMID: 21549745 DOI: 10.1016/j.mam.2011.04.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 04/15/2011] [Indexed: 11/23/2022]
Abstract
The main physiological function of the lymphatic vasculature is to maintain tissue fluid homeostasis. Lymphangiogenesis or de novo lymphatic formation is closely associated with tissue inflammation in adults (i.e. wound healing, allograft rejection, tumor metastasis). Until recently, research on lymphangiogenesis focused mainly on growth factor/growth factor-receptor pathways governing this process. One of the lymphatic vessel features is the incomplete or absence of basement membrane. This close association of endothelial cells with the underlying interstitial matrix suggests that cell-matrix interactions play an important role in lymphangiogenesis and lymphatic functions. However, the exploration of interaction between extracellular matrix (ECM) components and lymphatic endothelial cells is in its infancy. Herein, we describe ECM-cell and cell-cell interactions on lymphatic system function and their modification occurring in pathologies including cancer metastasis.
Collapse
|
81
|
Affiliation(s)
- Camilla Norrmén
- From the Molecular/Cancer Biology Laboratory, Research Programs Unit, Institute for Molecular Medicine Finland and Helsinki University Hospital, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (C.N., T.T., K.A.), and Division of Experimental Oncology and Department of Biochemistry, CePO, University of Lausanne and CHUV, Epalinges, Switzerland (T.V.P.)
| | - Tuomas Tammela
- From the Molecular/Cancer Biology Laboratory, Research Programs Unit, Institute for Molecular Medicine Finland and Helsinki University Hospital, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (C.N., T.T., K.A.), and Division of Experimental Oncology and Department of Biochemistry, CePO, University of Lausanne and CHUV, Epalinges, Switzerland (T.V.P.)
| | - Tatiana V. Petrova
- From the Molecular/Cancer Biology Laboratory, Research Programs Unit, Institute for Molecular Medicine Finland and Helsinki University Hospital, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (C.N., T.T., K.A.), and Division of Experimental Oncology and Department of Biochemistry, CePO, University of Lausanne and CHUV, Epalinges, Switzerland (T.V.P.)
| | - Kari Alitalo
- From the Molecular/Cancer Biology Laboratory, Research Programs Unit, Institute for Molecular Medicine Finland and Helsinki University Hospital, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland (C.N., T.T., K.A.), and Division of Experimental Oncology and Department of Biochemistry, CePO, University of Lausanne and CHUV, Epalinges, Switzerland (T.V.P.)
| |
Collapse
|
82
|
Protein profile of exosomes from trabecular meshwork cells. J Proteomics 2011; 74:796-804. [PMID: 21362503 DOI: 10.1016/j.jprot.2011.02.024] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/31/2011] [Accepted: 02/18/2011] [Indexed: 01/06/2023]
Abstract
To better understand the role of exosomes in the trabecular meshwork (TM), the site of intraocular pressure control, the exosome proteome from primary cultures of human TM cell monolayers was analyzed. Exosomes were purified from urine and conditioned media from primary cultures of human TM cell monolayers and subjected to a two dimensional HPLC separation and MS/MS analyses using the MudPIT strategy. Spectra were searched against a human protein database using Sequest. Protein profiles were compared to each other and the Exocarta database and the presence of specific protein markers confirmed by Western blot analyses of exosomes from aqueous humor and human TM cell strains (n=5) that were untreated, or exposed to dexamethasone and/or ionomycin. TM cell exosomes contained 108 of the 143 most represented exosome proteins in ExoCarta, including previously characterized markers such as membrane organizing and tetraspanin proteins. Several cell-specific proteins in TM exosomes were identified including myocilin, emilin-1 and neuropilin-1. All TM exosome proteins had flotation densities on sucrose gradients and release responses to ionomycin typical for exosomes. Taken together, TM exosomes have a characteristic exosome protein profile plus contain unique proteins, including the glaucoma-causing protein, myocilin; suggesting a role for exosomes in the control of intraocular pressure.
Collapse
|
83
|
Laco F, Grant MH, Flint DJ, Black RA. Cellular Trans-Differentiation and Morphogenesis Toward the Lymphatic Lineage in Regenerative Medicine. Stem Cells Dev 2011; 20:181-95. [DOI: 10.1089/scd.2009.0527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Filip Laco
- Department of Bioengineering, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Mary Helen Grant
- Department of Bioengineering, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - David J. Flint
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, United Kingdom
| | - Richard A. Black
- Department of Bioengineering, University of Strathclyde, Glasgow, Scotland, United Kingdom
| |
Collapse
|
84
|
Hemmen K, Reinl T, Buttler K, Behler F, Dieken H, Jänsch L, Wilting J, Weich HA. High-resolution mass spectrometric analysis of the secretome from mouse lung endothelial progenitor cells. Angiogenesis 2011; 14:163-72. [PMID: 21234671 DOI: 10.1007/s10456-011-9200-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Accepted: 01/05/2011] [Indexed: 01/24/2023]
Abstract
Recently, we isolated and characterized resident endothelial progenitor cells from the lungs of adult mice. These cells have a high proliferation potential, are not transformed and can differentiate into blood- and lymph-vascular endothelial cells under in vitro and in vivo conditions. Here we studied the secretome of these cells by nanoflow liquid chromatographic mass spectrometry (LC-MS). For analysis, 3-day conditioned serum-free media were used. We found 133 proteins belonging to the categories of membrane-bound or secreted proteins. Thereby, several of the membrane-bound proteins also existed as released variants. Thirty-five proteins from this group are well known as endothelial cell- or angiogenesis-related proteins. The MS analysis of the secretome was supplemented and confirmed by fluorescence activated cell sorting analyses, ELISA measurements and immunocytological studies of selected proteins. The secretome data presented in this study provides a platform for the in-depth analysis of endothelial progenitor cells and characterizes potential cellular markers and signaling components in hem- and lymphangiogenesis.
Collapse
Affiliation(s)
- Katherina Hemmen
- Department of Gene Regulation, HZI, Build. D, Inhoffenstr. 7, 38124, Braunschweig, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
85
|
Wiig H, Keskin D, Kalluri R. Interaction between the extracellular matrix and lymphatics: consequences for lymphangiogenesis and lymphatic function. Matrix Biol 2010; 29:645-56. [PMID: 20727409 PMCID: PMC3992865 DOI: 10.1016/j.matbio.2010.08.001] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 08/03/2010] [Accepted: 08/03/2010] [Indexed: 12/19/2022]
Abstract
The lymphatic system is important for body fluid balance as well as immunological surveillance. Due to the identification of new molecular markers during the last decade, there has been a recent dramatic increase in our knowledge on the molecular mechanisms involved in lymphatic vessel growth (lymphangiogenesis) and lymphatic function. Here we review data showing that although it is often overlooked, the extracellular matrix plays an important role in the generation of new lymphatic vessels as a response to physiological and pathological stimuli. Extracellular matrix-lymphatic interactions as well as biophysical characteristics of the stroma have consequences for tumor formation, growth and metastasis. During the recent years, anti-lymphangiogenesis has emerged as an additional therapeutic modality to the clinically applied anti-angiogenesis strategy. Oppositely, enhancement of lymphangiogenesis in situations of lymph accumulation is seen as a promising strategy to a set of conditions where few therapeutic avenues are available. Knowledge on the interaction between the extracellular matrix and the lymphatics may enhance our understanding of the underlying mechanisms and may ultimately lead to better therapies for conditions where reduced or increased lymphatic function is the therapeutic target.
Collapse
Affiliation(s)
- Helge Wiig
- Division of Matrix Biology, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, United States
| | | | | |
Collapse
|
86
|
The extracellular matrix glycoprotein elastin microfibril interface located protein 2: a dual role in the tumor microenvironment. Neoplasia 2010; 12:294-304. [PMID: 20360940 DOI: 10.1593/neo.91930] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 01/26/2010] [Accepted: 01/27/2010] [Indexed: 12/22/2022] Open
Abstract
We have recently reported that elastin microfibril interface located protein 2 (EMILIN2), an extracellular matrix (ECM) glycoprotein, triggers cell death through a direct binding to death receptors. EMILIN2 thus influences cell viability through a mechanism that is unique for an ECM molecule. In the present work, we report an additional function for this molecule. First, we identify the region responsible for the proapoptotic effects, a 90-amino acid residue-long coiled-coil fragment toward the N-terminus of the molecule. The fragment recapitulates EMILIN2 proapoptotic mechanisms. In addition, using either the full molecule or the active fragment, for the first time, we demonstrate a significant antitumoral effect in vivo, likely due to a decrease in tumor cell viability. Unexpectedly, tumors treated with EMILIN2 or the deletion mutant display a significant increase of tumor angiogenesis. In view of this novel finding, the cotreatment of the growing tumors with an antiangiogenic drug led, in most cases, to a complete regression of tumor growth. These results grant further support to recent findings that pinpoint the microenvironment as an important regulator of cell fate under both physiological and pathological conditions and disclose the possibility of using EMILIN2 fragments as potent antineoplastic tools for cancer treatment.
Collapse
|
87
|
Abstract
Netrin-4, a laminin-related secreted protein is an axon guidance cue recently shown essential outside of the nervous system, regulating mammary and lung morphogenesis as well as blood vascular development. Here, we show that Netrin-4, at physiologic doses, induces proliferation, migration, adhesion, tube formation and survival of human lymphatic endothelial cells in vitro comparable to well-characterized lymphangiogenic factors fibroblast growth factor-2 (FGF-2), hepatocyte growth factor (HGF), vascular endothelial growth factor-A (VEGF-A), and vascular endothelial growth factor-C (VEGF-C). Netrin-4 stimulates phosphorylation of intracellular signaling components Akt, Erk and S6, and their specific inhibition antagonizes Netrin-4-induced proliferation. Although Netrin receptors Unc5B and neogenin, are expressed by human lymphatic endothelial cells, suppression of either or both does not suppress Netrin-4-promoted in vitro effects. In vivo, Netrin-4 induces growth of lymphatic and blood vessels in the skin of transgenic mice and in breast tumors. Its overexpression in human and mouse mammary carcinoma cancer cells leads to enhanced metastasis. Finally, Netrin-4 stimulates in vitro and in vivo lymphatic permeability by activating small GTPases and Src family kinases/FAK, and down-regulating tight junction proteins. Together, these data provide evidence that Netrin-4 is a lymphangiogenic factor contributing to tumor dissemination and represents a potential target to inhibit metastasis formation.
Collapse
|
88
|
Difference in abundance of blood and lymphatic capillaries in the murine epididymis. Med Mol Morphol 2010; 43:37-42. [DOI: 10.1007/s00795-009-0473-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2009] [Accepted: 09/18/2009] [Indexed: 01/17/2023]
|
89
|
Abstract
The growth of lymphatic vessels (lymphangiogenesis) is actively involved in a number of pathological processes including tissue inflammation and tumor dissemination but is insufficient in patients suffering from lymphedema, a debilitating condition characterized by chronic tissue edema and impaired immunity. The recent explosion of knowledge on the molecular mechanisms governing lymphangiogenesis provides new possibilities to treat these diseases.
Collapse
Affiliation(s)
- Tuomas Tammela
- Molecular/Cancer Biology Laboratory and Haartman Institute, University of Helsinki, Finland
| | | |
Collapse
|
90
|
|
91
|
Abstract
The lymphatic system is essential for fluid homeostasis, immune responses, and fat absorption, and is involved in many pathological processes, including tumor metastasis and lymphedema. Despite its importance, progress in understanding the origins and early development of this system has been hampered by lack of defining molecular markers and difficulties in observing lymphatic cells in vivo and performing genetic and experimental manipulation of the lymphatic system. Recent identification of new molecular markers, new genes with important functional roles in lymphatic development, and new experimental models for studying lymphangiogenesis has begun to yield important insights into the emergence and assembly of this important tissue. This review focuses on the mechanisms regulating development of the lymphatic vasculature during embryogenesis.
Collapse
Affiliation(s)
- Matthew G Butler
- Laboratory of Molecular Genetics, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
92
|
Wen J, Fu AF, Chen LJ, Xie XJ, Yang GL, Chen XC, Wang YS, Li J, Chen P, Tang MH, Shao XM, Lu Y, Zhao X, Wei YQ. Liposomal honokiol inhibits VEGF-D-induced lymphangiogenesis and metastasis in xenograft tumor model. Int J Cancer 2009; 124:2709-18. [PMID: 19219913 DOI: 10.1002/ijc.24244] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Lymph nodes metastasis of tumor could be a crucial early step in the metastatic process. Induction of tumor lymphangiogenesis by vascular endothelial growth factor-D may play an important role in promoting tumor metastasis to regional lymph nodes and these processes can be inhibited by inactivation of the VEGFR-3 signaling pathway. Honokiol has been reported to possess potent antiangiogenesis and antitumor properties in several cell lines and xenograft tumor models. However, its role in tumor-associated lymphangiogenesis and lymphatic metastasis remains unclear. Here, we established lymph node metastasis models by injecting overexpressing VEGF-D Lewis lung carcinoma cells into C57BL/6 mice to explore the effect of honokiol on tumor-associated lymphangiogenesis and related lymph node metastasis. The underlying mechanisms were systematically investigated in vitro and in vivo. In in vivo study, liposomal honokiol significantly inhibited the tumor-associated lymphangiogenesis and metastasis in Lewis lung carcinoma model. A remarkable delay of tumor growth and prolonged life span were also observed. In in vitro study, honokiol inhibited VEGF-D-induced survival, proliferation and tube-formation of both human umbilical vein endothelial cells (HUVECs) and lymphatic vascular endothelial cells (HLECs). Western blotting analysis showed that liposomal honokiol-inhibited Akt and MAPK phosphorylation in 2 endothelial cells, and downregulated expressions of VEGFR-2 of human vascular endothelial cells and VEGFR-3 of lymphatic endothelial cells. Thus, we identified for the first time that honokiol provided therapeutic benefit not only by direct effects on tumor cells and antiangiogenesis but also by inhibiting lymphangiogenesis and metastasis via the VEGFR-3 pathway. The present findings may be of importance to investigate the molecular mechanisms underlying the spread of cancer via the lymphatics and explore the therapeutical strategy of honokiol on antilymphangiogenesis and antimetastasis.
Collapse
Affiliation(s)
- Jing Wen
- State Key Laboratory of Biotherapy, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
The lymphatic vascular system has an important role in the regulation of tissue pressure, immune surveillance and the absorption of dietary fat in the intestine. There is growing evidence that the lymphatic system also contributes to a number of diseases, such as lymphedema, cancer metastasis and different inflammatory disorders. The discovery of various molecular markers allowing the distinction of blood and lymphatic vessels, together with the availability of a increasing number of in vitro and in vivo models to study various aspects of lymphatic biology, has enabled tremendous progress in research into the development and function of the lymphatic system. This review discusses recent advances in our understanding of the embryonic development of the lymphatic vasculature, the molecular mechanisms mediating lymphangiogenesis in the adult, the role of lymphangiogenesis in chronic inflammation and lymphatic cancer metastasis, and the emerging importance of the lymphatic vasculature as a therapeutic target.
Collapse
Affiliation(s)
- Leah N Cueni
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
94
|
Cao J. Preparation and Characterization of a Novel Monoclonal Antibody Specific to Peptide VEHVVADAGAFLRH. Hybridoma (Larchmt) 2009; 28:59-62. [DOI: 10.1089/hyb.2008.0073] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jun Cao
- Department of Orthodontics, Qindu Stomatology College Affiliated with the Fourth Military Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
95
|
Verdone G, Corazza A, Colebrooke SA, Cicero D, Eliseo T, Boyd J, Doliana R, Fogolari F, Viglino P, Colombatti A, Campbell ID, Esposito G. NMR-based homology model for the solution structure of the C-terminal globular domain of EMILIN1. JOURNAL OF BIOMOLECULAR NMR 2009; 43:79-96. [PMID: 19023665 DOI: 10.1007/s10858-008-9290-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 10/30/2008] [Accepted: 11/03/2008] [Indexed: 05/27/2023]
Abstract
EMILIN1 is a glycoprotein of elastic tissues that has been recently linked to the pathogenesis of hypertension. The protein is formed by different independently folded structural domains whose role has been partially elucidated. In this paper the solution structure, inferred from NMR-based homology modelling of the C-terminal trimeric globular C1q domain (gC1q) of EMILIN1, is reported. The high molecular weight and the homotrimeric structure of the protein required the combined use of highly deuterated (15)N, (13)C-labelled samples and TROSY experiments. Starting from a homology model, the protein structure was refined using heteronuclear residual dipolar couplings, chemical shift patterns, NOEs and H-exchange data. Analysis of the gC1q domain structure of EMILIN1 shows that each protomer of the trimer adopts a nine-stranded beta sandwich folding topology which is related to the conformation observed for other proteins of the family. Distinguishing features, however, include a missing edge-strand and an unstructured 19-residue loop. Although the current data do not allow this loop to be precisely defined, the available evidence is consistent with a flexible segment that protrudes from each subunit of the globular trimeric assembly and plays a key role in inter-molecular interactions between the EMILIN1 gC1q homotrimer and its integrin receptor alpha4beta1.
Collapse
Affiliation(s)
- Giuliana Verdone
- Dipartimento di Scienze e Tecnologie Biomediche-MATI Centre of Excellence, Università di Udine, P. le Kolbe, 4-33100, Udine, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Developmental and pathological lymphangiogenesis: from models to human disease. Histochem Cell Biol 2008; 130:1063-78. [PMID: 18946678 DOI: 10.1007/s00418-008-0525-5] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2008] [Indexed: 12/21/2022]
Abstract
The lymphatic vascular system, the body's second vascular system present in vertebrates, has emerged in recent years as a crucial player in normal and pathological processes. It participates in the maintenance of normal tissue fluid balance, the immune functions of cellular and antigen trafficking and absorption of fatty acids and lipid-soluble vitamins in the gut. Recent scientific discoveries have highlighted the role of lymphatic system in a number of pathologic conditions, including lymphedema, inflammatory diseases, and tumor metastasis. Development of genetically modified animal models, identification of lymphatic endothelial specific markers and regulators coupled with technological advances such as high-resolution imaging and genome-wide approaches have been instrumental in understanding the major steps controlling growth and remodeling of lymphatic vessels. This review highlights the recent insights and developments in the field of lymphatic vascular biology.
Collapse
|
97
|
Lymphatic endothelium in health and disease. Cell Tissue Res 2008; 335:97-108. [DOI: 10.1007/s00441-008-0644-2] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2008] [Accepted: 05/13/2008] [Indexed: 12/22/2022]
|