51
|
Pappa KI, Lygirou V, Kontostathi G, Zoidakis J, Makridakis M, Vougas K, Daskalakis G, Polyzos A, Anagnou NP. Proteomic Analysis of Normal and Cancer Cervical Cell Lines Reveals Deregulation of Cytoskeleton-associated Proteins. Cancer Genomics Proteomics 2018. [PMID: 28647699 DOI: 10.21873/cgp.20036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Both HPV-positive and -negative cervical cancers are primarily associated with features of cell cycle and cytoskeletal disruption; however, the actual biological processes affected remain elusive. To this end, we systematically characterized the intracellular proteomic profiles of four distinct and informative cervical cell lines. MATERIALS AND METHODS Cell extracts from a normal cervical (HCK1T) and three cervical cancer cell lines, one HPV-negative (C33A), and two HPV-positive, SiHa (HPV16+) and HeLa (HPV18+), were analyzed by 2-dimensional electrophoresis and differentially expressed proteins were identified by MALDI-TOF mass spectrometry, while differential expression was confirmed by western blot analysis. RESULTS In total, 113 proteins were found differentially expressed between the normal and the cervical cancer lines. Bioinformatics analysis revealed the actin cytoskeleton signaling pathway to be significantly affected, while up-regulation of cofilin-1, an actin depolymerizing factor, was documented and further validated by western blotting. Furthermore, two-way comparisons among the four cell lines, revealed a set of 18 informative differentially expressed proteins. CONCLUSION These novel identified proteins provide the impetus for further functional studies to dissect the mechanisms operating in the two distinct pathways of cervical carcinogenesis.
Collapse
Affiliation(s)
- Kalliopi I Pappa
- First Department of Obstetrics and Gynecology, University of Athens School of Medicine, Alexandra Hospital, Athens, Greece .,Cell and Gene Therapy Laboratory, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Vasiliki Lygirou
- Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.,Laboratory of Biology, University of Athens School of Medicine, Athens, Greece
| | - Georgia Kontostathi
- Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.,Laboratory of Biology, University of Athens School of Medicine, Athens, Greece
| | - Jerome Zoidakis
- Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Manousos Makridakis
- Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Konstantinos Vougas
- Biotechnology Division, Centre of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - George Daskalakis
- First Department of Obstetrics and Gynecology, University of Athens School of Medicine, Alexandra Hospital, Athens, Greece
| | - Alexander Polyzos
- Institute of Molecular Biology, Genetics and Biotechnology, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece
| | - Nicholas P Anagnou
- Cell and Gene Therapy Laboratory, Centre of Basic Research II, Biomedical Research Foundation of the Academy of Athens (BRFAA), Athens, Greece.,Laboratory of Biology, University of Athens School of Medicine, Athens, Greece
| |
Collapse
|
52
|
Ding X, Zheng Y, Wang Z, Zhang W, Dong Y, Chen W, Li J, Chu W, Zhang W, Zhong Y, Mao L, Song X, Wu Y. Expression and oncogenic properties of membranous Notch1 in oral leukoplakia and oral squamous cell carcinoma. Oncol Rep 2018; 39:2584-2594. [PMID: 29620248 PMCID: PMC5983926 DOI: 10.3892/or.2018.6335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 03/16/2018] [Indexed: 01/07/2023] Open
Abstract
Notch1 signaling is essential for tissue development and tumor progression. This signaling pathway has also been implicated in oral leukoplakia (OL) and oral squamous cell carcinoma (OSCC). However, the role of Notch1 expression in OL and its malignant transformation is unknown. This study aimed to examine the Notch1 expression patterns by immunohistochemistry (IHC) in a cohort of 78 Chinese patients with OL and to analyze the relationship between the patterns and progression of OL to OSCC. Strong Notch1 staining was observed in 10 (13%) of the 78 OL patients, but it was not associated with any of the clinicopathological parameters. However, we observed membranous Notch1 expression in 24 (31%) of the OL samples. Membranous Notch1 expression was significantly associated with the severity of dysplasia (P<0.001) and development of OSCC (P=0.003). By multivariate analysis, membranous Notch1 expression was found to be the only independent factor for OSCC development in the patient population (P=0.019). Among the 24 patients with membranous Notch1 expression, 11 (46%) developed OSCC compared to 8 (15%) of the 54 patients without such expression (P=0.001, determined by log‑rank test). Furthermore, we established a 4‑nitroquinoline‑1‑oxide (4NQO)‑induced murine OSCC model and studied the Notch1 expression patterns in different stages of carcinogenesis. We observed that the extent of expression of membranous Notch1 increased during carcinogenesis. These data indicated a relationship between membranous Notch1 expression and OSCC risk in patients with OL and suggested that membranous Notch1 served as a biomarker for assessing OSCC risk.
Collapse
Affiliation(s)
- Xu Ding
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yang Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhao Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yibo Dong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wantao Chen
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai 200011, P.R. China
| | - Jiang Li
- Department of Oral and Maxillofacial Surgery, Ninth People's Hospital, Shanghai 200011, P.R. China
| | - Weiming Chu
- Department of Stomatology, Northern Jiangsu People's Hospital, Jiangsu 225001, P.R. China
| | - Wei Zhang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yi Zhong
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Li Mao
- Department of Oncology and Diagnostic Sciences, University of Maryland School of Dentistry, University of Maryland, Baltimore, MD 21201, USA
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Yunong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
53
|
Abstract
Cellular senescence, previously thought of as an autonomous tumour suppressor mechanism, is emerging as a phenotype and effector present throughout the life of an organism from embryogenesis to senile decline. Senescent cells have powerful non-autonomous effects upon multiple players within their microenvironment mainly through their secretory phenotype. How senescent cells co-ordinate numerous, sometimes functionally contrasting outputs through their secretome had previously been unclear. The Notch pathway, originally identified for its involvement in Drosophila wing development, has more recently been found to underpin diverse effects in human cancer. Here we discuss recent findings that suggest that Notch is intimately involved in the development of senescence and how it acts to co-ordinate the composition and functional effects of the senescence secretome. We also highlight the complex physical and functional interplay between Notch and p53, critical to both senescence and cancer. Understanding the interplay between Notch, p53 and senescence could allow us develop the therapeutics of the future for cancer and ageing.
Collapse
Affiliation(s)
- Matthew Hoare
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- Department of Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
| | - Masashi Narita
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
| |
Collapse
|
54
|
Natsuizaka M, Whelan KA, Kagawa S, Tanaka K, Giroux V, Chandramouleeswaran PM, Long A, Sahu V, Darling DS, Que J, Yang Y, Katz JP, Wileyto EP, Basu D, Kita Y, Natsugoe S, Naganuma S, Klein-Szanto AJ, Diehl JA, Bass AJ, Wong KK, Rustgi AK, Nakagawa H. Interplay between Notch1 and Notch3 promotes EMT and tumor initiation in squamous cell carcinoma. Nat Commun 2017; 8:1758. [PMID: 29170450 PMCID: PMC5700926 DOI: 10.1038/s41467-017-01500-9] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/21/2017] [Indexed: 12/15/2022] Open
Abstract
Notch1 transactivates Notch3 to drive terminal differentiation in stratified squamous epithelia. Notch1 and other Notch receptor paralogs cooperate to act as a tumor suppressor in squamous cell carcinomas (SCCs). However, Notch1 can be stochastically activated to promote carcinogenesis in murine models of SCC. Activated form of Notch1 promotes xenograft tumor growth when expressed ectopically. Here, we demonstrate that Notch1 activation and epithelial–mesenchymal transition (EMT) are coupled to promote SCC tumor initiation in concert with transforming growth factor (TGF)-β present in the tumor microenvironment. We find that TGFβ activates the transcription factor ZEB1 to repress Notch3, thereby limiting terminal differentiation. Concurrently, TGFβ drives Notch1-mediated EMT to generate tumor initiating cells characterized by high CD44 expression. Moreover, Notch1 is activated in a small subset of SCC cells at the invasive tumor front and predicts for poor prognosis of esophageal SCC, shedding light upon the tumor promoting oncogenic aspect of Notch1 in SCC. Notch receptors can exert different roles in cancer. In this manuscript, the authors reveal that Notch1 activation and EMT promote tumor initiation and cancer cell heterogeneity in squamous cell carcinoma, while the repression of Notch3 by ZEB1 limits Notch1-induced differentiation, permitting Notch1-mediated EMT.
Collapse
Affiliation(s)
- Mitsuteru Natsuizaka
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Gastroenterology and Hepatology, Hokkaido University Graduate School of Medicine, Sapporo, Hokkaido, 060-8638, Japan
| | - Kelly A Whelan
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Shingo Kagawa
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of General Surgery, Chiba University Graduate School of Medicine, Chiba, Chiba, 260-0856, Japan
| | - Koji Tanaka
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Surgery, Gastroenterological Surgery, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan
| | - Veronique Giroux
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Prasanna M Chandramouleeswaran
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Apple Long
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Varun Sahu
- Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Douglas S Darling
- Department of Oral Immunology and Infectious Diseases, and Center for Genetics and Molecular Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Jianwen Que
- Department of Medicine, Division of Digestive and Liver Diseases, Columbia University, New York, NY, 10032, USA
| | - Yizeng Yang
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jonathan P Katz
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.,Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - E Paul Wileyto
- Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Devraj Basu
- Abramson Cancer Center, Philadelphia, PA, 19104, USA.,University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.,Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yoshiaki Kita
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520, Japan
| | - Shoji Natsugoe
- Department of Digestive Surgery, Breast and Thyroid Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, 890-8520, Japan
| | - Seiji Naganuma
- Department of Pathology, Kochi Medical School, Nankoku-shi, Kochi, 783-8505, Japan
| | - Andres J Klein-Szanto
- Histopathology Facility and Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - J Alan Diehl
- Department of Biochemistry and Molecular Biology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Adam J Bass
- Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Kwok-Kin Wong
- Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA. .,Division of Hematology and Medical Oncology, New York University, New York, NY, 10016, USA.
| | - Anil K Rustgi
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hiroshi Nakagawa
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA.
| |
Collapse
|
55
|
Urbanek K, Lesiak M, Krakowian D, Koryciak-Komarska H, Likus W, Czekaj P, Kusz D, Sieroń AL. Notch signaling pathway and gene expression profiles during early in vitro differentiation of liver-derived mesenchymal stromal cells to osteoblasts. J Transl Med 2017; 97:1225-1234. [PMID: 28805807 DOI: 10.1038/labinvest.2017.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/21/2017] [Indexed: 12/16/2022] Open
Abstract
Notch signaling is a key signaling pathway for cell proliferation and differentiation. Therefore, we formulated a working hypothesis that Notch signaling can be used to detect early osteoblastic differentiation of mesenchymal stromal cells. Changes in expression and distribution of Notch 1, 2, 3, and Delta1 in the cytoplasm and nuclei of rat liver-derived mesenchymal stromal cells differentiating into osteoblasts were investigated, together with the displacement of intracellular domains (ICDs) of the receptors. In addition, an oligonucleotide microarray was used to determine the expression of genes known to be linked to selected signaling pathways. Statistically significant changes in the number of cells expressing Notch1, Notch2, and Delta1, but not Notch3, and their activated forms were detected within 24 h of culture under osteogenic conditions. Although the number of cells expressing Notch3 remained unchanged, the number of cells with the activated receptor was significantly elevated. The number of cells positive for Notch3 was higher than that for the other Notch receptors even after 48 h of differentiation; however, a smaller fraction of cells contained activated Notch3. Culture mineralization was detected on day 4 of differentiation, and all analyzed receptors were present in the cells at that time, but only Delta1 was activated in twice as many cells than that before differentiation. Thus, the three analyzed receptors and ligand can serve as markers of very early stages of osteogenesis in stromal cells. These early changes in activation of the Notch signaling pathway were correlated with the transcription of several genes linked to osteogenesis, such as Bmps, Mmps, and Egfr, and with the regulation of cell cycle and apoptosis.
Collapse
Affiliation(s)
- Ksymena Urbanek
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Marta Lesiak
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Daniel Krakowian
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Halina Koryciak-Komarska
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Wirginia Likus
- Department of Anatomy, School of Health Science in Katowice, Medical University of Silesia, Katowice, Poland
| | - Piotr Czekaj
- Department of Cytophysiology, Chair of Histology and Embryology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Damian Kusz
- Department of Orthopaedics and Traumatology, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Aleksander L Sieroń
- Department of Molecular Biology and Genetics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| |
Collapse
|
56
|
Kranjec C, Holleywood C, Libert D, Griffin H, Mahmood R, Isaacson E, Doorbar J. Modulation of basal cell fate during productive and transforming HPV-16 infection is mediated by progressive E6-driven depletion of Notch. J Pathol 2017; 242:448-462. [PMID: 28497579 PMCID: PMC5601300 DOI: 10.1002/path.4917] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 04/13/2017] [Accepted: 04/24/2017] [Indexed: 11/10/2022]
Abstract
In stratified epithelia such as the epidermis, homeostasis is maintained by the proliferation of cells in the lower epithelial layers and the concomitant loss of differentiated cells from the epithelial surface. These differentiating keratinocytes progressively stratify and form a self‐regenerating multi‐layered barrier that protects the underlying dermis. In such tissue, the continual loss and replacement of differentiated cells also limits the accumulation of oncogenic mutations within the tissue. Inactivating mutations in key driver genes, such as TP53 and NOTCH1, reduce the proportion of differentiating cells allowing for the long‐term persistence of expanding mutant clones in the tissue. Here we show that through the expression of E6, HPV‐16 prevents the early fate commitment of human keratinocytes towards differentiation and confers a strong growth advantage to human keratinocytes. When E6 is expressed either alone or with E7, it promotes keratinocyte proliferation at high cell densities, through the combined inactivation of p53 and Notch1. In organotypic raft culture, the activity of E6 is restricted to the basal layer of the epithelium and is enhanced during the progression from productive to abortive or transforming HPV‐16 infection. Consistent with this, the expression of p53 and cleaved Notch1 becomes progressively more disrupted, and is associated with increased basal cell density and reduced commitment to differentiation. The expression of cleaved Notch1 is similarly disrupted also in HPV‐16‐positive cervical lesions, depending on neoplastic grade. When taken together, these data depict an important role of high‐risk E6 in promoting the persistence of infected keratinocytes in the basal and parabasal layers through the inactivation of gene products that are commonly mutated in non‐HPV‐associated neoplastic squamous epithelia. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Christian Kranjec
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK.,The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Christina Holleywood
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Diane Libert
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Heather Griffin
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK.,The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Radma Mahmood
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - Erin Isaacson
- The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, UK.,The Francis Crick Institute Mill Hill Laboratory, The Ridgeway, Mill Hill, London, UK
| |
Collapse
|
57
|
Yoshimatsu Y, Nakahara T, Tanaka K, Inagawa Y, Narisawa-Saito M, Yugawa T, Ohno SI, Fujita M, Nakagama H, Kiyono T. Roles of the PDZ-binding motif of HPV 16 E6 protein in oncogenic transformation of human cervical keratinocytes. Cancer Sci 2017; 108:1303-1309. [PMID: 28440909 PMCID: PMC5497797 DOI: 10.1111/cas.13264] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/17/2017] [Accepted: 04/19/2017] [Indexed: 01/08/2023] Open
Abstract
The high-risk human papillomavirus E6 proteins have been shown to interact with and lead to degradation of PDZ-domain-containing proteins through its carboxy-terminal motif. This PDZ-binding motif plays important roles in transformation of cultured cells and carcinogenesis of E6-transgenic mice. However, its biological effects on the natural host cells have not been elucidated. We have examined its roles in an in vitro carcinogenesis model for cervical cancer, in which E6 and E7 together with activated HRAS (HRASG12V ) can induce tumorigenic transformation of normal human cervical keratinocytes. In this model, E6Δ151 mutant, which is defective in binding to PDZ domains, almost lost tumorigenic ability, whereas E6SAT mutant, which is defective in p53 degradation showed activity close to wild-type E6. Interestingly, we found decreased expression of PAR3 in E6-expressing cells independently of E6AP, which has not been previously recognized. Therefore, we knocked down several PDZ-domain containing proteins including PAR3 in human cervical keratinocytes expressing E7, HRASG12V and E6Δ151 to examine whether depletion of these proteins can restore the tumorigenic ability. Single knockdown of SCRIB, MAGI1 or PAR3 significantly but partially restored the tumorigenic ability. The combinatorial knockdown of SCRIB and MAGI1 cooperatively restored the tumorigenic ability, and additional depletion of PAR3 further enhanced the tumorigenic ability surpassing that induced by wild-type E6. These data highlight the importance of the carboxy-terminal motif of the E6 protein and downregulation of PAR3 in tumorigenic transformation of human cervical keratinocytes.
Collapse
Affiliation(s)
- Yuki Yoshimatsu
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan.,Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Tomomi Nakahara
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Katsuyuki Tanaka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Yuki Inagawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Mako Narisawa-Saito
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Takashi Yugawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Shin-Ichi Ohno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Masatoshi Fujita
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan.,Department of Cellular Biochemistry, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Hitoshi Nakagama
- Department of Pathology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.,National Cancer Center, Tokyo, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
58
|
The interplay between histone deacetylases and rho kinases is important for cancer and neurodegeneration. Cytokine Growth Factor Rev 2017; 37:29-45. [PMID: 28606734 DOI: 10.1016/j.cytogfr.2017.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/18/2017] [Accepted: 05/21/2017] [Indexed: 12/24/2022]
Abstract
Rho associated coiled-coil containing kinases (ROCKs) respond to defined extra- and intracellular stimuli to control cell migration, cell proliferation, and apoptosis. Histone deacetylases (HDACs) are epigenetic modifiers that regulate nuclear and cytoplasmic signaling through the deacetylation of histones and non-histone proteins. ROCK and HDAC functions are important compounds of basic and applied research interests. Recent evidence suggests a physiologically important interplay between HDACs and ROCKs in various cells and organisms. Here we summarize the crosstalk between these enzymatic families and its implications for cancer and neurodegeneration.
Collapse
|
59
|
Egawa N, Wang Q, Griffin HM, Murakami I, Jackson D, Mahmood R, Doorbar J. HPV16 and 18 genome amplification show different E4-dependence, with 16E4 enhancing E1 nuclear accumulation and replicative efficiency via its cell cycle arrest and kinase activation functions. PLoS Pathog 2017; 13:e1006282. [PMID: 28306742 PMCID: PMC5371391 DOI: 10.1371/journal.ppat.1006282] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/29/2017] [Accepted: 03/08/2017] [Indexed: 12/03/2022] Open
Abstract
To clarify E1^E4’s role during high-risk HPV infection, the E4 proteins of HPV16 and 18 were compared side by side using an isogenic keratinocyte differentiation model. While no effect on cell proliferation or viral genome copy number was observed during the early phase of either virus life cycle, time-course experiments showed that viral genome amplification and L1 expression were differently affected upon differentiation, with HPV16 showing a much clearer E4 dependency. Although E4 loss never completely abolished genome amplification, its more obvious contribution in HPV16 focused our efforts on 16E4. As previously suggested, in the context of the virus life cycle, 16E4s G2-arrest capability was found to contribute to both genome amplification success and L1 accumulation. Loss of 16E4 also lead to a reduced maintenance of ERK, JNK and p38MAPK activity throughout the genome amplifying cell layers, with 16E4 (but not 18E4) co-localizing precisely with activated cytoplasmic JNK in both wild type raft tissue, and HPV16-induced patient biopsy tissue. When 16E1 was co-expressed with E4, as occurs during genome amplification in vivo, the E1 replication helicase accumulated preferentially in the nucleus, and in transient replication assays, E4 stimulated viral genome amplification. Interestingly, a 16E1 mutant deficient in its regulatory phosphorylation sites no longer accumulated in the nucleus following E4 co-expression. E4-mediated stabilisation of 16E2 was also apparent, with E2 levels declining in organotypic raft culture when 16E4 was absent. These results suggest that 16E4-mediated enhancement of genome amplification involves its cell cycle inhibition and cellular kinase activation functions, with E4 modifying the activity and function of viral replication proteins including E1. These activities of 16E4, and the different kinase patterns seen here with HPV18, 31 and 45, may reflect natural differences in the biology and tropisms of these viruses, as well as differences in E4 function. In HPV induced lesions, the most abundant protein expressed in the productive stage of viral life cycle is E1^E4 (E4), with its expression being coincident with viral genome amplification. To clarify the role of E4 in the high-risk HPV life cycle, we carried out a comparative analysis of E4 function in HPV16 and 18 using an isogenic keratinocyte cell-line background. Our results show that E1^E4 contributes to virus genome replication efficiency and life cycle completion rather than being essential. These effects were seen more dramatically with HPV16. The difference between HPV16 and HPV18 in our system suggests important tropism differences between these viruses. HPV16 E4’s contribution to the virus life cycle is mediated by several activities, including its G2 arrest function, as well as its role in activating members of the MAPK pathway, including ERK, p38, and most notably pJNK. These 16 E4 functions facilitated the nuclear localization of the E1 virus helicase and enhanced E1/E2 dependent viral genome amplification as well as stabilising E2. We suspect that the massive accumulation of E4 in the upper epithelial layers may however underlie a more critical role for E4 post-genome amplification.
Collapse
Affiliation(s)
- Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Qian Wang
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Heather M. Griffin
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Isao Murakami
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Deborah Jackson
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - Radma Mahmood
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
- Francis Crick Institute, Mill Hill Laboratory, The Ridgeway, Mill Hill, London, United Kingdom
- * E-mail:
| |
Collapse
|
60
|
Cervical Cancer Cell Line Secretome Highlights the Roles of Transforming Growth Factor-Beta-Induced Protein ig-h3, Peroxiredoxin-2, and NRF2 on Cervical Carcinogenesis. BIOMED RESEARCH INTERNATIONAL 2017; 2017:4180703. [PMID: 28261610 PMCID: PMC5316418 DOI: 10.1155/2017/4180703] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 11/16/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023]
Abstract
Cancer cells acquire unique secretome compositions that contribute to tumor development and metastasis. The aim of our study was to elucidate the biological processes involved in cervical cancer, by performing a proteomic analysis of the secretome from the following informative cervical cell lines: SiHa (HPV16+), HeLa (HPV18+), C33A (HPV-), and HCK1T (normal). Proteins were analyzed by 2D gel electrophoresis coupled to MALDI-TOF-MS. Enrichment of secreted proteins with characteristic profiles for each cell line was followed by the identification of differentially expressed proteins. Particularly, transforming growth factor-beta-induced protein ig-h3 (Beta ig-h3) and peroxiredoxin-2 (PRDX2) overexpression in the secretome of cancer cell lines was detected and confirmed by Western blot. Bioinformatics analysis identified the transcription factor NRF2 as a regulator of differentially expressed proteins in the cervical cancer secretome. NRF2 levels were measured by both Western blot and Multiple Reaction Monitoring (MRM) in the total cell extract of the four cell lines. NRF2 was upregulated in SiHa and C33A compared to HCK1T. In conclusion, the secreted proteins identified in cervical cancer cell lines indicate that aberrant NRF2-mediated oxidative stress response (OSR) is a prominent feature of cervical carcinogenesis.
Collapse
|
61
|
Egawa N, Doorbar J. The low-risk papillomaviruses. Virus Res 2016; 231:119-127. [PMID: 28040475 DOI: 10.1016/j.virusres.2016.12.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/20/2016] [Accepted: 12/21/2016] [Indexed: 02/07/2023]
Abstract
Human Papillomavirus (HPV) research has been dominated by the study of a subset of Alpha papillomaviruses that together cause almost 5% of human cancers worldwide, with the focus being on the two most prominent of these (HPV16 and 18). These viruses are referred to as 'high-risk' (hrHPV), to distinguish them from the over 200 prevalent HPV types that more commonly cause only benign epithelial lesions. The 'low-risk' (lrHPV) term used to describe this group belies their cumulative morbidity. Persistent laryngeal papillomas, which occur rarely in children and adults, require regular surgical de-bulking to allow breathing. Such infections are not curable, and despite being caused by HPV11 (a lrHPV) are associated with 1-3% risk of cancer progression if not resolved. Similarly, the ubiquitous Beta HPV types, which commonly cause asymptomatic infections at cutaneous sites, can sometimes cause debilitating papillomatosis with associated cancer risk. Recalcitrant genital warts, which affect 1 in 200 young adults in the general population, and even the ubiquitous common warts and verrucas that most of us at some time experience, cannot be reliably eradicated, with treatment strategies advancing little over the last 100 years. The review highlights molecular similarities between high and low-risk HPV types, and focuses on the different pathways that the two groups use to ensure persistent infection and adequate virus shedding from the epithelial surface. Understanding the normal patterns of viral gene expression that underlie lesion formation, and which also prevent loss of the infected basal cells in established lesions, are particularly important when considering new treatment options. Finally, the common requirement for deregulated viral gene expression and genome persistence in development of cancers, unites both high and low-risk HPV types, and when considered alongside viral protein functions, provides us with a working understanding of the mechanisms that underlie HPV-associated pathology.
Collapse
Affiliation(s)
- Nagayasu Egawa
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge, UK
| | - John Doorbar
- Department of Pathology, Tennis Court Road, University of Cambridge, Cambridge, UK.
| |
Collapse
|
62
|
Targeting Notch3 in Hepatocellular Carcinoma: Molecular Mechanisms and Therapeutic Perspectives. Int J Mol Sci 2016; 18:ijms18010056. [PMID: 28036048 PMCID: PMC5297691 DOI: 10.3390/ijms18010056] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/12/2016] [Accepted: 12/16/2016] [Indexed: 12/15/2022] Open
Abstract
The Notch signaling pathway is a very conserved system that controls embryonic cell fate decisions and the maintenance of adult stem cells through cell to cell communication. Accumulating evidence support the relevance of Notch signaling in different human diseases and it is one of the most commonly activated signaling pathways in cancer. This review focuses mainly on the role of Notch3 signaling in hepatocellular carcinoma and its potential therapeutic applications against this malignancy. In this regard, the crosstalk between Notch and p53 may play an important role.
Collapse
|
63
|
Regulation of the epithelial to mesenchymal transition and metastasis by Raf kinase inhibitory protein-dependent Notch1 activity. Oncotarget 2016; 7:4632-46. [PMID: 26716415 PMCID: PMC4826232 DOI: 10.18632/oncotarget.6728] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2015] [Accepted: 11/26/2015] [Indexed: 01/15/2023] Open
Abstract
Raf kinase inhibitory protein (RKIP), an endogenous inhibitor of the extracellular signal-regulated kinase (ERK) pathway, has been implicated as a suppressor of metastasis and a prognostic marker in cancers. However, how RKIP acts as a suppressor during metastasis is not fully understood. Here, we show that RKIP activity in cervical and stomach cancer is inversely correlated with endogenous levels of the Notch1 intracellular domain (NICD), which stimulates the epithelial to mesenchymal transition (EMT) and metastasis. The levels of RKIP were significantly decreased in tumor tissues compared to normal tissues, whereas NICD levels were increased. Overexpression of RKIP in several cell lines resulted in a dramatic decrease of NICD and subsequent inhibition of several mesenchymal markers, such as vimentin, N-cadherin, and Snail. In contrast, knockdown of RKIP exhibited opposite results both in vitro and in vivo using mouse models. Nevertheless, knockdown of Notch1 in cancer cells had no effect on the expression of RKIP, suggesting that RKIP is likely an upstream regulator of the Notch1 pathway. We also found that RKIP directly interacts with Notch1 but has no influence on the intracellular level of the γ-secretase complex that is necessary for Notch1 activation. These data suggest that RKIP plays a distinct role in activation of Notch1 during EMT and metastasis, providing a new target for cancer treatment.
Collapse
|
64
|
Kivelä R, Salmela I, Nguyen YH, Petrova TV, Koistinen HA, Wiener Z, Alitalo K. The transcription factor Prox1 is essential for satellite cell differentiation and muscle fibre-type regulation. Nat Commun 2016; 7:13124. [PMID: 27731315 PMCID: PMC5064023 DOI: 10.1038/ncomms13124] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 09/05/2016] [Indexed: 02/06/2023] Open
Abstract
The remarkable adaptive and regenerative capacity of skeletal muscle is regulated by several transcription factors and pathways. Here we show that the transcription factor Prox1 is an important regulator of myoblast differentiation and of slow muscle fibre type. In both rodent and human skeletal muscles Prox1 is specifically expressed in slow muscle fibres and in muscle stem cells called satellite cells. Prox1 activates the NFAT signalling pathway and is necessary and sufficient for the maintenance of the gene program of slow muscle fibre type. Using lineage-tracing we show that Prox1-positive satellite cells differentiate into muscle fibres. Furthermore, we provide evidence that Prox1 is a critical transcription factor for the differentiation of myoblasts via bi-directional crosstalk with Notch1. These results identify Prox1 as an essential transcription factor that regulates skeletal muscle phenotype and myoblast differentiation by interacting with the NFAT and Notch pathways. Skeletal muscle has remarkable adaptive and regenerative capacity. Here the authors show that the transcription factor Prox1 is necessary for maintenance of slow muscle fibre types via activation of NFAT signalling, and for myoblast differentiation via cross-talk with the Notch signalling pathway.
Collapse
Affiliation(s)
- Riikka Kivelä
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland.,Translational Cancer Biology Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, Helsinki 00014, Finland
| | - Ida Salmela
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland.,Translational Cancer Biology Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, Helsinki 00014, Finland
| | - Yen Hoang Nguyen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, Helsinki 00290, Finland.,Department of Medicine and Abdominal Center: Endocrinology, University of Helsinki and Helsinki University Central Hospital, Haartmaninkatu 4, P.O. Box 340, Helsinki 00029, Finland
| | - Tatiana V Petrova
- Department of Fundamental Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne (UNIL), and Division of Experimental Pathology, Institute of Pathology, CHUV, CH-1066 Epalinges, Switzerland
| | - Heikki A Koistinen
- Minerva Foundation Institute for Medical Research, Biomedicum Helsinki 2U, Tukholmankatu 8, Helsinki 00290, Finland.,Department of Medicine and Abdominal Center: Endocrinology, University of Helsinki and Helsinki University Central Hospital, Haartmaninkatu 4, P.O. Box 340, Helsinki 00029, Finland
| | - Zoltan Wiener
- Translational Cancer Biology Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, Helsinki 00014, Finland
| | - Kari Alitalo
- Wihuri Research Institute, Biomedicum Helsinki, Haartmaninkatu 8, Helsinki 00290, Finland.,Translational Cancer Biology Program, Faculty of Medicine, University of Helsinki, P.O. Box 63, Helsinki 00014, Finland
| |
Collapse
|
65
|
Kranjec C, Doorbar J. Human papillomavirus infection and induction of neoplasia: a matter of fitness. Curr Opin Virol 2016; 20:129-136. [PMID: 27600900 DOI: 10.1016/j.coviro.2016.08.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/13/2016] [Accepted: 08/16/2016] [Indexed: 01/21/2023]
Abstract
The aetiologic association between infection with certain human papillomavirus (HPV) types, high-grade squamous neoplasia, and cancer at different epithelial sites is well established. In this review we briefly discuss recent breakthroughs in the regulation of squamous epithelia in homeostasis and disease, and provide a view of how these discoveries modify our understanding of how HPV-induced neoplasia in squamous epithelia is triggered. Taken together, these observations highlight how HPVs have evolved the ability to inactivate the products of genes that are frequently mutated in non-HPV-associated pre-neoplasia and squamous cell carcinoma of sun-exposed skin, and introduce a Darwinian model of clonal evolution of HPV-infected cells. These concepts are considered against our current understanding of transformation zones where HPV-associated cancers occur more frequently, and other sites of non-productive (or abortive) HPV infection.
Collapse
Affiliation(s)
- Christian Kranjec
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK
| | - John Doorbar
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| |
Collapse
|
66
|
Lauriol J, Cabrera JR, Roy A, Keith K, Hough SM, Damilano F, Wang B, Segarra GC, Flessa ME, Miller LE, Das S, Bronson R, Lee KH, Kontaridis MI. Developmental SHP2 dysfunction underlies cardiac hypertrophy in Noonan syndrome with multiple lentigines. J Clin Invest 2016; 126:2989-3005. [PMID: 27348588 PMCID: PMC4966304 DOI: 10.1172/jci80396] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 05/09/2016] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic cardiomyopathy is a common cause of mortality in congenital heart disease (CHD). Many gene abnormalities are associated with cardiac hypertrophy, but their function in cardiac development is not well understood. Loss-of-function mutations in PTPN11, which encodes the protein tyrosine phosphatase (PTP) SHP2, are implicated in CHD and cause Noonan syndrome with multiple lentigines (NSML), a condition that often presents with cardiac hypertrophic defects. Here, we found that NSML-associated hypertrophy stems from aberrant signaling mechanisms originating in developing endocardium. Trabeculation and valvular hyperplasia were diminished in hearts of embryonic mice expressing a human NSML-associated variant of SHP2, and these defects were recapitulated in mice expressing NSML-associated SHP2 specifically in endothelial, but not myocardial or neural crest, cells. In contrast, mice with myocardial- but not endothelial-specific NSML SHP2 expression developed ventricular septal defects, suggesting that NSML-associated mutations have both cell-autonomous and nonautonomous functions in cardiac development. However, only endothelial-specific expression of NSML-associated SHP2 induced adult-onset cardiac hypertrophy. Further, embryos expressing the NSML-associated SHP2 mutation exhibited aberrant AKT activity and decreased downstream forkhead box P1 (FOXP1)/FGF and NOTCH1/EPHB2 signaling, indicating that SHP2 is required for regulating reciprocal crosstalk between developing endocardium and myocardium. Together, our data provide functional and disease-based evidence that aberrant SHP2 signaling during cardiac development leads to CHD and adult-onset heart hypertrophy.
Collapse
Affiliation(s)
- Jessica Lauriol
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Janel R. Cabrera
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Ashbeel Roy
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Kimberly Keith
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Sara M. Hough
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Federico Damilano
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Bonnie Wang
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Gabriel C. Segarra
- Department of Pediatrics and Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Meaghan E. Flessa
- Department of Pediatrics and Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Lauren E. Miller
- Department of Pediatrics and Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Saumya Das
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | | | - Kyu-Ho Lee
- Department of Pediatrics and Department of Obstetrics and Gynecology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Maria I. Kontaridis
- Department of Medicine, Division of Cardiology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
67
|
Zhang M, Biswas S, Qin X, Gong W, Deng W, Yu H. Does Notch play a tumor suppressor role across diverse squamous cell carcinomas? Cancer Med 2016; 5:2048-60. [PMID: 27228302 PMCID: PMC4884632 DOI: 10.1002/cam4.731] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 02/21/2016] [Accepted: 03/14/2016] [Indexed: 12/19/2022] Open
Abstract
The role of Notch pathway in tumorigenesis is highly variable. It can be tumor suppressive or pro‐oncogenic, typically depending on the cellular context. Squamous cell carcinoma (SCC) is a cancer of the squamous cell, which can occur in diverse human tissues. SCCs are one of the most frequent human malignancies for which the pathologic mechanisms remain elusive. Recent genomic analysis of diverse SCCs identified marked levels of mutations in NOTCH1, implicating Notch signaling pathways in the pathogenesis of SCCs. In this review, evidences highlighting NOTCH's role in different types of SCCs are summarized. Moreover, based on accumulating structural information of the NOTCH receptor, the functional consequences of NOTCH1 gene mutations identified from diverse SCCs are analyzed, emphasizing loss of function of Notch in these cancers. Finally, we discuss the convergent view on an intriguing possibility that Notch may function as tumor suppressor in SCCs across different tissues. These mechanistic insights into Notch signaling pathways will help to guide the research of SCCs and development of therapeutic strategies for these cancers.
Collapse
Affiliation(s)
- Min Zhang
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China.,Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California
| | - Sangita Biswas
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California
| | - Xin Qin
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Wenrong Gong
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei, China
| | - Wenbing Deng
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, California
| | - Hongjun Yu
- Department of Biology, Brookhaven National Lab, NewYork
| |
Collapse
|
68
|
Luo X, Jin R, Wang F, Jia B, Luan K, Cheng FW, Li L, Sun LD, Yang S, Zhang SQ, Zhang XJ. Interleukin-15 inhibits the expression of differentiation markers induced by Ca2+in keratinocytes. Exp Dermatol 2016; 25:544-7. [PMID: 26914593 DOI: 10.1111/exd.12992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Xin Luo
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Rui Jin
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Fang Wang
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Bo Jia
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Kang Luan
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Feng-Wei Cheng
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Lei Li
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
| | - Liang-Dan Sun
- Institute of Dermatology at the 1st Hospital; Anhui Medical University; Hefei Anhui China
| | - Sen Yang
- Institute of Dermatology at the 1st Hospital; Anhui Medical University; Hefei Anhui China
| | - Sheng-Quan Zhang
- Department of Biochemistry and Molecular Biology; Anhui Medical University; Hefei Anhui China
- Institute of Dermatology at the 1st Hospital; Anhui Medical University; Hefei Anhui China
| | - Xue-Jun Zhang
- Institute of Dermatology at the 1st Hospital; Anhui Medical University; Hefei Anhui China
| |
Collapse
|
69
|
Dotto GP, Rustgi AK. Squamous Cell Cancers: A Unified Perspective on Biology and Genetics. Cancer Cell 2016; 29:622-637. [PMID: 27165741 PMCID: PMC4870309 DOI: 10.1016/j.ccell.2016.04.004] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 01/20/2016] [Accepted: 04/07/2016] [Indexed: 01/11/2023]
Abstract
Squamous cell carcinomas (SCCs) represent the most frequent human solid tumors and are a major cause of cancer mortality. These highly heterogeneous tumors arise from closely interconnected epithelial cell populations with intrinsic self-renewal potential inversely related to the stratified differentiation program. SCCs can also originate from simple or pseudo-stratified epithelia through activation of quiescent cells and/or a switch in cell-fate determination. Here, we focus on specific determinants implicated in the development of SCCs by recent large-scale genomic, genetic, and epigenetic studies, and complementary functional analysis. The evidence indicates that SCCs from various body sites, while clinically treated as separate entities, have common determinants, pointing to a unified perspective of the disease and potential new avenues for prevention and treatment.
Collapse
Affiliation(s)
- G Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges 1066, Switzerland; Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, MA 02129, USA.
| | - Anil K Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
70
|
Cantrell MA, Ebelt ND, Pfefferle AD, Perou CM, Van Den Berg CL. c-Jun N-terminal kinase 2 prevents luminal cell commitment in normal mammary glands and tumors by inhibiting p53/Notch1 and breast cancer gene 1 expression. Oncotarget 2016; 6:11863-81. [PMID: 25970777 PMCID: PMC4494910 DOI: 10.18632/oncotarget.3787] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 04/13/2015] [Indexed: 12/19/2022] Open
Abstract
Breast cancer is a heterogeneous disease with several subtypes carrying unique prognoses. Patients with differentiated luminal tumors experience better outcomes, while effective treatments are unavailable for poorly differentiated tumors, including the basal-like subtype. Mechanisms governing mammary tumor subtype generation could prove critical to developing better treatments. C-Jun N-terminal kinase 2 (JNK2) is important in mammary tumorigenesis and tumor progression. Using a variety of mouse models, human breast cancer cell lines and tumor expression data, studies herein support that JNK2 inhibits cell differentiation in normal and cancer-derived mammary cells. JNK2 prevents precocious pubertal mammary development and inhibits Notch-dependent expansion of luminal cell populations. Likewise, JNK2 suppresses luminal populations in a p53-competent Polyoma Middle T-antigen tumor model where jnk2 knockout causes p53-dependent upregulation of Notch1 transcription. In a p53 knockout model, JNK2 restricts luminal populations independently of Notch1, by suppressing Brca1 expression and promoting epithelial to mesenchymal transition. JNK2 also inhibits estrogen receptor (ER) expression and confers resistance to fulvestrant, an ER inhibitor, while stimulating tumor progression. These data suggest that therapies inhibiting JNK2 in breast cancer may promote tumor differentiation, improve endocrine therapy response, and inhibit metastasis.
Collapse
Affiliation(s)
- Michael A Cantrell
- Institute of Cellular & Molecular Biology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| | - Nancy D Ebelt
- Institute of Cellular & Molecular Biology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| | - Adam D Pfefferle
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Charles M Perou
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA.,Department of Genetics, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC 27599, USA
| | - Carla Lynn Van Den Berg
- Institute of Cellular & Molecular Biology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA.,Division of Pharmacology &Toxicology, College of Pharmacy, University of Texas at Austin, Dell Pediatric Research Institute, Austin, TX 78723, USA
| |
Collapse
|
71
|
Belleudi F, Nanni M, Raffa S, Torrisi MR. HPV16 E5 deregulates the autophagic process in human keratinocytes. Oncotarget 2016; 6:9370-86. [PMID: 25826082 PMCID: PMC4496223 DOI: 10.18632/oncotarget.3326] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 02/09/2015] [Indexed: 11/25/2022] Open
Abstract
Autophagy plays key roles during host defense against pathogens, but viruses have evolved strategies to block the process or to exploit it for replication and successful infection. The E5 oncoprotein of human papillomavirus type 16 (HPV16 E5) perturbs epithelial homeostasis down-regulating the expression of the keratinocyte growth factor receptor (KGFR/FGFR2b), whose signaling induces autophagy. Here we investigated the possible effects of 16E5 on autophagy in human keratinocytes expressing the viral protein. The 16E5 presence strongly inhibited the autophagic process, while forced expression and activation of KGFR counteracted this effect, demonstrating that the viral protein and the receptor exert opposite and interplaying roles not only on epithelial differentiation, but also in the control of autophagy. In W12 cells, silencing of the 16E5 gene in the context of the viral full length genome confirmed its role on autophagy inhibition. Finally, molecular approaches showed that the viral protein interferes with the transcriptional regulation of autophagy also through the impairment of p53 function, indicating that 16E5 uses parallel mechanisms for autophagy impairment. Overall our results further support the hypothesis that a transcriptional crosstalk among 16E5 and KGFR might be the crucial molecular driver of epithelial deregulation during early steps of HPV infection and transformation.
Collapse
Affiliation(s)
- Francesca Belleudi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy
| | - Monica Nanni
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy
| | - Salvatore Raffa
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy.,Azienda Ospedaliera S. Andrea, Rome, Italy
| | - Maria Rosaria Torrisi
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Medicina Clinica e Molecolare, Sapienza Università di Roma, Rome, Italy.,Azienda Ospedaliera S. Andrea, Rome, Italy
| |
Collapse
|
72
|
Elango T, Thirupathi A, Subramanian S, Dayalan H, Gnanaraj P. Methotrexate normalized keratinocyte activation cycle by overturning abnormal keratins as well as deregulated inflammatory mediators in psoriatic patients. Clin Chim Acta 2015; 451:329-37. [DOI: 10.1016/j.cca.2015.10.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 11/30/2022]
|
73
|
Abstract
The predominant function of the tumor suppressor p53 is transcriptional regulation. It is generally accepted that p53-dependent transcriptional activation occurs by binding to a specific recognition site in promoters of target genes. Additionally, several models for p53-dependent transcriptional repression have been postulated. Here, we evaluate these models based on a computational meta-analysis of genome-wide data. Surprisingly, several major models of p53-dependent gene regulation are implausible. Meta-analysis of large-scale data is unable to confirm reports on directly repressed p53 target genes and falsifies models of direct repression. This notion is supported by experimental re-analysis of representative genes reported as directly repressed by p53. Therefore, p53 is not a direct repressor of transcription, but solely activates its target genes. Moreover, models based on interference of p53 with activating transcription factors as well as models based on the function of ncRNAs are also not supported by the meta-analysis. As an alternative to models of direct repression, the meta-analysis leads to the conclusion that p53 represses transcription indirectly by activation of the p53-p21-DREAM/RB pathway.
Collapse
Key Words
- CDE, cell cycle-dependent element
- CDKN1A
- CHR, cell cycle genes homology region
- ChIP, chromatin immunoprecipitation
- DREAM complex
- DREAM, DP, RB-like, E2F4, and MuvB complex
- E2F/RB complex
- HPV, human papilloma virus
- NF-Y, Nuclear factor Y
- cdk, cyclin-dependent kinase
- genome-wide meta-analysis
- p53
Collapse
Affiliation(s)
- Martin Fischer
- a Molecular Oncology; Medical School ; University of Leipzig ; Leipzig , Germany
| | | | | |
Collapse
|
74
|
Gupta S, Gupta S. Role of human papillomavirus in oral squamous cell carcinoma and oral potentially malignant disorders: A review of the literature. Indian J Dent 2015; 6:91-8. [PMID: 26097339 PMCID: PMC4455162 DOI: 10.4103/0975-962x.155877] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Human papillomaviruses (HPVs) are epitheliotropic viruses with an affinity for keratinocytes and are principally found in the anogenital tract, urethra, skin, larynx, tracheobronchial and oral mucosa. On the basis of high, but variable frequency of HPV in oral squamous cell carcinoma (OSCC), malignant potential of HPV infection has been hypothesized but not definitely confirmed. The aim of this review was to highlight the genomic structure and possible mechanism of infection and carcinogenesis by HPV in the oral mucosa and to review the frequency of HPV prevalence in OSCC and oral potentially malignant disorders. A computer database search was performed through the use of PubMed from 1994 to 2014. Search keywords used were: HPV and oral cancer, HPV and oral leukoplakia, HPV and oral lichen planus, HPV and OSCC, HPV and verrucous carcinoma, HPV and proliferative verrucous leukoplakia, HPV and oral papilloma.
Collapse
Affiliation(s)
- Shikha Gupta
- Department of Oral Medicine and Radiology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| | - Sunita Gupta
- Department of Oral Medicine and Radiology, Maulana Azad Institute of Dental Sciences, New Delhi, India
| |
Collapse
|
75
|
Zanetti A, Affatato R, Centritto F, Fratelli M, Kurosaki M, Barzago MM, Bolis M, Terao M, Garattini E, Paroni G. All-trans-retinoic Acid Modulates the Plasticity and Inhibits the Motility of Breast Cancer Cells: ROLE OF NOTCH1 AND TRANSFORMING GROWTH FACTOR (TGFβ). J Biol Chem 2015; 290:17690-17709. [PMID: 26018078 DOI: 10.1074/jbc.m115.638510] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Indexed: 01/06/2023] Open
Abstract
All-trans-retinoic acid (ATRA) is a natural compound proposed for the treatment/chemoprevention of breast cancer. Increasing evidence indicates that aberrant regulation of epithelial-to-mesenchymal transition (EMT) is a determinant of the cancer cell invasive and metastatic behavior. The effects of ATRA on EMT are largely unknown. In HER2-positive SKBR3 and UACC812 cells, showing co-amplification of the ERBB2 and RARA genes, ATRA activates a RARα-dependent epithelial differentiation program. In SKBR3 cells, this causes the formation/reorganization of adherens and tight junctions. Epithelial differentiation and augmented cell-cell contacts underlie the anti-migratory action exerted by the retinoid in cells exposed to the EMT-inducing factors EGF and heregulin-β1. Down-regulation of NOTCH1, an emerging EMT modulator, is involved in the inhibition of motility by ATRA. Indeed, the retinoid blocks NOTCH1 up-regulation by EGF and/or heregulin-β1. Pharmacological inhibition of γ-secretase and NOTCH1 processing also abrogates SKBR3 cell migration. Stimulation of TGFβ contributes to the anti-migratory effect of ATRA. The retinoid switches TGFβ from an EMT-inducing and pro-migratory determinant to an anti-migratory mediator. Inhibition of the NOTCH1 pathway not only plays a role in the anti-migratory action of ATRA; it is relevant also for the anti-proliferative activity of the retinoid in HCC1599 breast cancer cells, which are addicted to NOTCH1 for growth/viability. This effect is enhanced by the combination of ATRA and the γ-secretase inhibitor N-(N-(3,5-difluorophenacetyl)-l-alanyl)-S-phenylglycine t-butyl ester, supporting the concept that the two compounds act at the transcriptional and post-translational levels along the NOTCH1 pathway.
Collapse
Affiliation(s)
- Adriana Zanetti
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Roberta Affatato
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Floriana Centritto
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Maddalena Fratelli
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Mami Kurosaki
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Maria Monica Barzago
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Marco Bolis
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Mineko Terao
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Enrico Garattini
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy
| | - Gabriela Paroni
- Laboratory of Molecular Biology, Istituto di Ricerche Farmacologiche Mario Negri, Via La Masa 19, 20156 Milano, Italy.
| |
Collapse
|
76
|
Simón R, Aparicio R, Housden BE, Bray S, Busturia A. Drosophila p53 controls Notch expression and balances apoptosis and proliferation. Apoptosis 2015; 19:1430-43. [PMID: 24858703 DOI: 10.1007/s10495-014-1000-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A balance between cell proliferation and apoptosis is important for normal development and tissue homeostasis. Under stress conditions, the conserved tumor suppressor and transcription factor Dp53 induces apoptosis to contribute to the maintenance of homeostasis. However, in some cases Dp53-induced apoptosis results in the proliferation of surrounding non-apoptotic cells. To gain insight into the Dp53 function in the control of apoptosis and proliferation, we studied the interaction between the Drosophila Dp53 and Notch genes. We present evidence that simultaneous reduction of Dp53 and Notch function synergistically increases the wing phenotype of Notch heterozygous mutant flies. Further, we found that a Notch cis-regulatory element is responsive to loss and gain of Dp53 function and that over-expression of Dp53 up-regulates Notch mRNA and protein expression. These findings suggest not only that Dp53 and Notch act together to control wing development but also indicate that Dp53 transcriptionally regulates Notch expression. Moreover, using Notch gain and loss of function mutations we examined the relevance of Dp53 and Notch interactions in the process of Dp53-apoptosis induced proliferation. Results show that proliferation induced by Dp53 over-expression is dependent on Notch, thus identifying Notch as a new player in Dp53-induced proliferation. Interestingly, we found that Dp53-induced Notch activation and proliferation occurs even under conditions where apoptosis was inhibited. Our findings highlight the conservation between flies and vertebrates of the Dp53 and Notch cross-talk and suggest that Dp53 has a dual role regulating cell death and proliferation gene networks to control the homeostatic balance between apoptosis and proliferation.
Collapse
Affiliation(s)
- Rocío Simón
- Centro de Biología Molecular "Severo Ochoa", CSIC-UAM, c) Nicolás Cabrera 1, 28049, Madrid, Spain
| | | | | | | | | |
Collapse
|
77
|
Abstract
The canonical role of p53 in preserving genome integrity and limiting carcinogenesis has been well established. In the presence of acute DNA-damage, oncogene deregulation and other forms of cellular stress, p53 orchestrates a myriad of pleiotropic processes to repair cellular damages and maintain homeostasis. Beside these well-studied functions of p53, recent studies in Drosophila have unraveled intriguing roles of Dmp53 in promoting cell division in apoptosis-induced proliferation, enhancing fitness and proliferation of the winner cell in cell competition and coordinating growth at the organ and organismal level in the presence of stress. In this review, we describe these new functions of Dmp53 and discuss their relevance in the context of carcinogenesis.
Collapse
Affiliation(s)
- Bertrand Mollereau
- Laboratory of Molecular Biology of the Cell, UMR5239 CNRS/Ecole Normale Supérieure de Lyon, UMS 3444 Biosciences Lyon Gerland, University of Lyon, Lyon, France,
| | | |
Collapse
|
78
|
Nakahara T, Tanaka K, Ohno SI, Egawa N, Yugawa T, Kiyono T. Activation of NF-κB by human papillomavirus 16 E1 limits E1-dependent viral replication through degradation of E1. J Virol 2015; 89:5040-59. [PMID: 25717108 PMCID: PMC4403482 DOI: 10.1128/jvi.00389-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 02/14/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED NF-κB is a family of transcription factors that regulate gene expression involved in many processes, such as the inflammatory response and cancer progression. Little is known about associations of NF-κB with the human papillomavirus (HPV) life cycle. We have developed a tissue culture system to conditionally induce E1-dependent replication of the human papillomavirus 16 (HPV16) genome in human cervical keratinocytes and found that expression of HPV16 E1, a viral helicase, results in reduction of IκBα and subsequent activation of NF-κB in a manner dependent on helicase activity. Exogenous expression of a degradation-resistant mutant of IκBα, which inhibits the activation of NF-κB, enhanced E1-dependent replication of the viral genome. Wortmannin, a broad inhibitor of phosphoinositide 3-kinases (PI3Ks), and, to a lesser extent, VE-822, an ATR kinase inhibitor, but not KU55933, an ATM kinase inhibitor, suppressed the activation of NF-κB and augmented E1-dependent replication of the HPV16 genome. Interestingly, the enhancement of E1-dependent replication of the viral genome was associated with increased stability of E1 in the presence of wortmannin as well as the IκBα mutant. Collectively, we propose that expression of E1 induces NF-κB activation at least in part through the ATR-dependent DNA damage response and that NF-κB in turn limits E1-dependent replication of HPV16 through degradation of E1, so that E1 and NF-κB may constitute a negative feedback loop. IMPORTANCE A major risk factor in human papillomavirus (HPV)-associated cancers is persistent infection with high-risk HPVs. To eradicate viruses from infected tissue, it is important to understand molecular mechanisms underlying the establishment and maintenance of persistent infection. In this study, we obtained evidence that human papillomavirus 16 (HPV16) E1, a viral DNA helicase essential for amplification of the viral genomes, induces NF-κB activation and that this limits E1-dependent genome replication of HPV16. These results suggest that NF-κB mediates a negative feedback loop to regulate HPV replication and that this feedback loop could be associated with control of the viral copy numbers. We could thus show for the first time that NF-κB activity is involved in the establishment and maintenance of persistent HPV infection.
Collapse
Affiliation(s)
- Tomomi Nakahara
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Katsuyuki Tanaka
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Shin-ichi Ohno
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Nagayasu Egawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Takashi Yugawa
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| | - Tohru Kiyono
- Division of Carcinogenesis and Cancer Prevention, National Cancer Center Research Institute, Tokyo, Japan
| |
Collapse
|
79
|
Kagawa S, Natsuizaka M, Whelan KA, Facompre N, Naganuma S, Ohashi S, Kinugasa H, Egloff AM, Basu D, Gimotty PA, Klein-Szanto AJ, Bass A, Wong KK, Diehl JA, Rustgi AK, Nakagawa H. Cellular senescence checkpoint function determines differential Notch1-dependent oncogenic and tumor-suppressor activities. Oncogene 2015; 34:2347-59. [PMID: 24931169 PMCID: PMC4268095 DOI: 10.1038/onc.2014.169] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Revised: 03/27/2014] [Accepted: 04/14/2014] [Indexed: 12/12/2022]
Abstract
Notch activity regulates tumor biology in a context-dependent and complex manner. Notch may act as an oncogene or a tumor-suppressor gene even within the same tumor type. Recently, Notch signaling has been implicated in cellular senescence. Yet, it remains unclear as to how cellular senescence checkpoint functions may interact with Notch-mediated oncogenic and tumor-suppressor activities. Herein, we used genetically engineered human esophageal keratinocytes and esophageal squamous cell carcinoma cells to delineate the functional consequences of Notch activation and inhibition along with pharmacological intervention and RNA interference experiments. When expressed in a tetracycline-inducible manner, the ectopically expressed activated form of Notch1 (ICN1) displayed oncogene-like characteristics inducing cellular senescence corroborated by the induction of G0/G1 cell-cycle arrest, Rb dephosphorylation, flat and enlarged cell morphology and senescence-associated β-galactosidase activity. Notch-induced senescence involves canonical CSL/RBPJ-dependent transcriptional activity and the p16(INK4A)-Rb pathway. Loss of p16(INK4A) or the presence of human papilloma virus (HPV) E6/E7 oncogene products not only prevented ICN1 from inducing senescence but permitted ICN1 to facilitate anchorage-independent colony formation and xenograft tumor growth with increased cell proliferation and reduced squamous-cell differentiation. Moreover, Notch1 appears to mediate replicative senescence as well as transforming growth factor-β-induced cellular senescence in non-transformed cells and that HPV E6/E7 targets Notch1 for inactivation to prevent senescence, revealing a tumor-suppressor attribute of endogenous Notch1. In aggregate, cellular senescence checkpoint functions may influence dichotomous Notch activities in the neoplastic context.
Collapse
Affiliation(s)
- Shingo Kagawa
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mitsuteru Natsuizaka
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Gastroenterology and Hepatology, Hokkaido University, Sapporo, Japan
| | - Kelly A. Whelan
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicole Facompre
- Departments of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
- Wistar Institute, Philadelphia, Pennsylvania
| | - Seiji Naganuma
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Pathology, Kochi University Medical School, Kochi, Japan
| | - Shinya Ohashi
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Therapeutic Oncology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hideaki Kinugasa
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Gastroenterology and Hepatology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Ann Marie Egloff
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Devraj Basu
- Departments of Otorhinolaryngology-Head and Neck Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
- Wistar Institute, Philadelphia, Pennsylvania
| | - Phyllis A. Gimotty
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Division of Biostatistics, Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Adam Bass
- Department of Medicine, Harvard Medical School, Boston, MA
- Division of Cellular and Molecular Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - Kwok-Kin Wong
- Department of Medicine, Harvard Medical School, Boston, MA
- Division of Cellular and Molecular Oncology, Dana-Farber Cancer Institute, Boston, MA
| | - J. Alan Diehl
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Anil K. Rustgi
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hiroshi Nakagawa
- Gastroenterology Division, Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Cancer Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
80
|
Kunnimalaiyaan S, Trevino J, Tsai S, Gamblin TC, Kunnimalaiyaan M. Xanthohumol-Mediated Suppression of Notch1 Signaling Is Associated with Antitumor Activity in Human Pancreatic Cancer Cells. Mol Cancer Ther 2015; 14:1395-403. [PMID: 25887885 DOI: 10.1158/1535-7163.mct-14-0915] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 04/06/2015] [Indexed: 12/22/2022]
Abstract
Pancreatic cancer remains a lethal disease with limited treatment options. At the time of diagnosis, approximately 80% of these patients present with unresectable tumors caused by either locally advanced lesions or progressive metastatic growth. Therefore, development of novel treatment strategies and new therapeutics is needed. Xanthohumol (XN) has emerged as a potential compound that inhibits various types of cancer, but the molecular mechanism underlying the effects of XN remains unclear. In the present study, we have assessed the efficacy of XN on pancreatic cancer cell lines (AsPC-1, PANC-1, L3.6pl, MiaPaCa-2, 512, and 651) against cell growth in real time and using colony-forming assays. Treatment with XN resulted in reduction in cellular proliferation in a dose- and time-dependent manner. The growth suppression effect of XN in pancreatic cancer cell lines is due to increased apoptosis via the inhibition of the Notch1 signaling pathway, as evidenced by reduction in Notch1, HES-1, and survivin both at mRNA as well as protein levels. Notch1 promoter reporter analysis after XN treatment indicated that XN downregulates Notch promoter activity. Importantly, overexpression of active Notch1 in XN-treated pancreatic cancer cells resulted in negation of growth suppression. Taken together, these findings demonstrate, for the first time, that the growth suppressive effect of XN in pancreatic cancer cells is mainly mediated by Notch1 reduction.
Collapse
Affiliation(s)
- Selvi Kunnimalaiyaan
- Division of Surgical Oncology and Medical College of Wisconsin Cancer Center, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jose Trevino
- Department of Surgery, Section of Pancreatobiliary Surgery, University of Florida-Gainesville, Gainesville, Florida
| | - Susan Tsai
- Division of Surgical Oncology and Medical College of Wisconsin Cancer Center, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - T Clark Gamblin
- Division of Surgical Oncology and Medical College of Wisconsin Cancer Center, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Muthusamy Kunnimalaiyaan
- Division of Surgical Oncology and Medical College of Wisconsin Cancer Center, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin.
| |
Collapse
|
81
|
Martin A, Salvador F, Moreno-Bueno G, Floristán A, Ruiz-Herguido C, Cuevas EP, Morales S, Santos V, Csiszar K, Dubus P, Haigh JJ, Bigas A, Portillo F, Cano A. Lysyl oxidase-like 2 represses Notch1 expression in the skin to promote squamous cell carcinoma progression. EMBO J 2015; 34:1090-109. [PMID: 25759215 DOI: 10.15252/embj.201489975] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 02/05/2015] [Indexed: 01/01/2023] Open
Abstract
Lysyl oxidase-like 2 (LOXL2) is involved in a wide range of physiological and pathological processes, including fibrosis and tumor progression, implicating intracellular and extracellular functions. To explore the specific in vivo role of LOXL2 in physiological and tumor contexts, we generated conditional gain- and loss-of-function mouse models. Germ-line deletion of Loxl2 promotes lethality in half of newborn mice mainly associated to congenital heart defects, while Loxl2 overexpression triggers male sterility due to epididymal dysfunction caused by epithelial disorganization, fibrosis and acute inflammation. Remarkably, when challenged to chemical skin carcinogenesis, Loxl2-overexpressing mice increased tumor burden and malignant progression, while Loxl2-deficient mice exhibit the opposite phenotypes. Loxl2 levels in premalignant tumors negatively correlate with expression of epidermal differentiation markers and components of the Notch1 pathway. We show that LOXL2 is a direct repressor of NOTCH1. Additionally, we identify an exclusive expression pattern between LOXL2 and members of the canonical NOTCH1 pathway in human HNSCC. Our data identify for the first time novel LOXL2 roles in tissue homeostasis and support it as a target for SCC therapy.
Collapse
Affiliation(s)
- Alberto Martin
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Fernando Salvador
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Gema Moreno-Bueno
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain Fundación MD Anderson International Madrid, Madrid, Spain
| | - Alfredo Floristán
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
| | | | - Eva P Cuevas
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Saleta Morales
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Vanesa Santos
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Katalin Csiszar
- John A Burns School of Medicine, University of Hawaii, Honolulu HI, USA
| | - Pierre Dubus
- Histologie et pathologie moléculaire des tumeurs, Universitie Bordeaux, Bordeaux, France
| | - Jody J Haigh
- Australian Centre for Blood Diseases, Monash University, Melbourne, Vic., Australia
| | - Anna Bigas
- Institut Hospital del Mar d'Investigacions Médiques (IMIM), Barcelona, Spain
| | - Francisco Portillo
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
| | - Amparo Cano
- Departamento de Bioquímica, UAM, Instituto de Investigaciones Biomédicas "Alberto Sols" CSIC-UAM, IdiPAZ, Madrid, Spain
| |
Collapse
|
82
|
Ramakrishnan S, Partricia S, Mathan G. Overview of high-risk HPV's 16 and 18 infected cervical cancer: Pathogenesis to prevention. Biomed Pharmacother 2015; 70:103-10. [DOI: 10.1016/j.biopha.2014.12.041] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 12/30/2014] [Indexed: 11/15/2022] Open
|
83
|
Vliet-Gregg PA, Hamilton JR, Katzenellenbogen RA. Human papillomavirus 16E6 and NFX1-123 potentiate Notch signaling and differentiation without activating cellular arrest. Virology 2015; 478:50-60. [PMID: 25723053 DOI: 10.1016/j.virol.2015.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 12/04/2014] [Accepted: 02/03/2015] [Indexed: 12/29/2022]
Abstract
High-risk human papillomavirus (HR HPV) oncoproteins bind host cell proteins to dysregulate and uncouple apoptosis, senescence, differentiation, and growth. These pathways are important for both the viral life cycle and cancer development. HR HPV16 E6 (16E6) interacts with the cellular protein NFX1-123, and they collaboratively increase the growth and differentiation master regulator, Notch1. In 16E6 expressing keratinocytes (16E6 HFKs), the Notch canonical pathway genes Hes1 and Hes5 were increased with overexpression of NFX1-123, and their expression was directly linked to the activation or blockade of the Notch1 receptor. Keratinocyte differentiation genes Keratin 1 and Keratin 10 were also increased, but in contrast their upregulation was only indirectly associated with Notch1 receptor stimulation and was fully unlinked to growth arrest, increased p21(Waf1/CIP1), or decreased proliferative factor Ki67. This leads to a model of 16E6, NFX1-123, and Notch1 differently regulating canonical and differentiation pathways and entirely uncoupling cellular arrest from increased differentiation.
Collapse
Affiliation(s)
- Portia A Vliet-Gregg
- Center for Global Infectious Disease Research, Seattle Children׳s Research Institute, 1900 Ninth Ave., Seattle, WA 98101, USA
| | - Jennifer R Hamilton
- Center for Global Infectious Disease Research, Seattle Children׳s Research Institute, 1900 Ninth Ave., Seattle, WA 98101, USA
| | - Rachel A Katzenellenbogen
- Center for Global Infectious Disease Research, Seattle Children׳s Research Institute, 1900 Ninth Ave., Seattle, WA 98101, USA; Department of Pediatrics, Division of Adolescent Medicine, University of Washington, Seattle WA, USA.
| |
Collapse
|
84
|
Rettig EM, Chung CH, Bishop JA, Howard JD, Sharma R, Li RJ, Douville C, Karchin R, Izumchenko E, Sidransky D, Koch W, Califano J, Agrawal N, Fakhry C. Cleaved NOTCH1 Expression Pattern in Head and Neck Squamous Cell Carcinoma Is Associated with NOTCH1 Mutation, HPV Status, and High-Risk Features. Cancer Prev Res (Phila) 2015; 8:287-95. [PMID: 25633867 DOI: 10.1158/1940-6207.capr-14-0366] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 01/15/2015] [Indexed: 12/21/2022]
Abstract
The Notch pathway is frequently altered in head and neck squamous cell carcinomas (HNSCC); however, the clinical significance of NOTCH1 dysregulation is poorly understood. This study was designed to characterize expression of the transcriptionally active NOTCH1 intracellular domain (NICD1) in HNSCCs and evaluate its association with NOTCH1 mutation status and clinical parameters. IHC for NICD1 was performed on 79 previously sequenced archival HNSCCs with known NOTCH1 mutation status. Three distinct immunohistochemical staining patterns were identified: positive/peripheral (47%), positive/nonperipheral (34%), and negative (19%). NICD1 expression was associated with NOTCH1 mutation status (P < 0.001). Most NOTCH1-wild-type tumors were peripheral (55%), whereas mutated NOTCH1 tumors were most commonly negative (47%). Nonperipheral tumors were more likely than peripheral tumors to have extracapsular spread [adjusted odds ratio (aOR), 16.01; 95% confidence interval (CI), 1.92-133.46; P = 0.010] and poor differentiation (aOR, 5.27; 95% CI, 0.90-30.86; P = 0.066). Negative staining tumors tended to be poorly differentiated (aOR, 24.71; 95% CI, 1.53-399.33; P = 0.024) and were less likely to be human papillomavirus (HPV) positive (aOR, 0.043; 95% CI, 0.001-1.59; P = 0.087). NOTCH1 mutagenesis was significantly associated with HPV status, with NOTCH1-wild-type tumors more likely to be HPV positive than NOTCH1-mutated tumors (aOR, 19.06; 95% CI, 1.31-276.15; P = 0.031). TP53 disruptive mutations were not associated with NICD1 expression or NOTCH1 mutation. In conclusion, NICD1 is expressed in three distinct patterns in HNSCC that are significantly associated with high-risk features. These findings further support a dual role for NOTCH1 as both tumor suppressor and oncogene in HNSCC. Further research is necessary to clarify the role of NOTCH1 in HNSCC and understand the clinical and therapeutic implications therein.
Collapse
MESH Headings
- Biomarkers, Tumor
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Carcinoma, Squamous Cell/virology
- Female
- Follow-Up Studies
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Head and Neck Neoplasms/virology
- Humans
- Immunoenzyme Techniques
- Male
- Middle Aged
- Mutation/genetics
- Neoplasm Invasiveness
- Neoplasm Recurrence, Local/genetics
- Neoplasm Recurrence, Local/metabolism
- Neoplasm Recurrence, Local/pathology
- Neoplasm Recurrence, Local/virology
- Neoplasm Staging
- Papillomaviridae/genetics
- Papillomavirus Infections/genetics
- Papillomavirus Infections/metabolism
- Papillomavirus Infections/pathology
- Papillomavirus Infections/virology
- Prognosis
- Receptor, Notch1/genetics
- Receptor, Notch1/metabolism
- Retrospective Studies
- Risk Factors
- Tumor Suppressor Protein p53
Collapse
Affiliation(s)
- Eleni M Rettig
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christine H Chung
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. Sidney Kimmel Comprehensive Cancer Center, Baltimore, Maryland. Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Justin A Bishop
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins Medicine, Baltimore, Maryland
| | - Jason D Howard
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Rajni Sharma
- Department of Pathology, Johns Hopkins School of Medicine, Johns Hopkins Medicine, Baltimore, Maryland
| | - Ryan J Li
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Christopher Douville
- Johns Hopkins Institute for Computational Medicine and Department of Biomedical Engineering, Baltimore, Maryland
| | - Rachel Karchin
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland. Johns Hopkins Institute for Computational Medicine and Department of Biomedical Engineering, Baltimore, Maryland
| | - Evgeny Izumchenko
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - David Sidransky
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wayne Koch
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Joseph Califano
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. Milton J. Dance Jr. Head and Neck Center, Greater Baltimore Medical Center, Baltimore, Maryland
| | - Nishant Agrawal
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. Johns Hopkins University School of Medicine Ludwig Center for Cancer Genetics and Therapeutics, Baltimore, Maryland.
| | - Carole Fakhry
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland. Milton J. Dance Jr. Head and Neck Center, Greater Baltimore Medical Center, Baltimore, Maryland. Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.
| |
Collapse
|
85
|
TIMP3 controls cell fate to confer hepatocellular carcinoma resistance. Oncogene 2014; 34:4098-108. [PMID: 25347747 DOI: 10.1038/onc.2014.339] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 08/29/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Inflammation enables human cancers and is a critical promoter of hepatocellular carcinoma (HCC). TIMP3 (Tissue inhibitor of metalloproteinase 3), a natural metalloproteinase inhibitor, controls cytokine and growth factor bioavailability to keep inflammation in check and regulate cell survival in the liver. TIMP3 is also found silenced in human cancers. We therefore tested whether Timp3 affects HCC predisposition. Remarkably, genetic loss of Timp3 protected from carcinogen-induced HCC through the immediate engagement of several tumor suppressor pathways, while tumor necrosis factor (TNF) signaling was dispensable for this protection. All wild-type mice developed HCC by 12 months, whereas HCC incidence was reduced to 33% at 12 months and 57% at 15 months in Timp3 null mice. Upon acute carcinogen treatment the deficient livers exhibited greater cytokine expression, but lower cell death and higher hepatocyte senescence. We found that precocious activation of p53, p38 and Notch preceded senescence and hepatic cell differentiation, and these events were conserved throughout tumorigenesis. Timp3-deficient mouse embryo fibroblasts also responded to carcinogen by favoring senescence over apoptosis. We conclude that Timp3 status determines p53, p38 and Notch coactivation to instruct hepatic cell fate and transformation and uncover mechanisms that are protective even within a pro-inflammatory microenvironment.
Collapse
|
86
|
Detrimental effects of Notch1 signaling activated by cadmium in renal proximal tubular epithelial cells. Cell Death Dis 2014; 5:e1378. [PMID: 25118938 PMCID: PMC4454314 DOI: 10.1038/cddis.2014.339] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 01/10/2023]
Abstract
We examined the roles of Notch1 signaling and its cross-talk with other signaling pathways, including p53 and phosphatidylinositol-3-kinase (PI3K)/Akt, in cadmium-induced cellular damage in HK-2 human renal proximal tubular epithelial cells. Following exposure to cadmium chloride (CdCl2), the level of Notch intracellular domain (NICD), the cleaved form of the Notch1 receptor, was increased and accumulated in the nuclear fraction. Knockdown of Notch1 with siRNA or treatment with the γ-secretase inhibitor, DAPT (N-[N-(3,5-difluorophenacetyl-L-alanyl)]-S-phenylglycine t-butyl ester), prevented CdCl2-induced morphological change of HK-2 cells and reduction of cell viability. Knockdown of Jagged1 or Jagged2, the ligands of the Notch1 receptor, partially suppressed cadmium cytotoxicity. Inhibition of p53 activity with pifithrin-α or inhibition of PI3K with LY294002 suppressed CdCl2-induced cellular damage and elevation of Notch1-NICD. In addition, treatment with the epidermal growth factor receptor (EGFR) inhibitor, AG1478, and the insulin-like growth factor-1 receptor inhibitor, PPP, suppressed both Notch1-NICD accumulation and Akt phosphorylation in HK-2 cells exposed to CdCl2. However, knockdown of Notch1 did not affect CdCl2-induced p53 accumulation and phosphorylation but suppressed phosphorylation of EGFR, Akt, and p70 S6 kinase. Depletion of Notch1 suppressed CdCl2-induced reduction of E-cadherin expression and elevation of Snail expression. Furthermore, treatment with SB216763, an inhibitor of glycogen synthase kinase-3, suppressed the potency of LY294002 treatment to reduce Snail expression in HK-2 cells exposed to CdCl2. Knockdown of Snail with siRNA partially prevented HK-2 cells from CdCl2-induced reduction of E-cadherin expression and cellular damage. These results suggest that cadmium exposure induces the activation of Notch1 signaling in renal proximal tubular cells with cooperative activation by the p53 and PI3K/Akt signaling pathways; the resultant expression of Snail, a repressor of E-cadherin expression, might lead to cellular damage by decreasing cell-cell adhesion.
Collapse
|
87
|
Melnik BC. Does therapeutic intervention in atopic dermatitis normalize epidermal Notch deficiency? Exp Dermatol 2014; 23:696-700. [DOI: 10.1111/exd.12460] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory; University of Osnabrück; Osnabrück Germany
| |
Collapse
|
88
|
Brooks YS, Ostano P, Jo SH, Dai J, Getsios S, Dziunycz P, Hofbauer GFL, Cerveny K, Chiorino G, Lefort K, Dotto GP. Multifactorial ERβ and NOTCH1 control of squamous differentiation and cancer. J Clin Invest 2014; 124:2260-76. [PMID: 24743148 DOI: 10.1172/jci72718] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 02/10/2014] [Indexed: 12/19/2022] Open
Abstract
Downmodulation or loss-of-function mutations of the gene encoding NOTCH1 are associated with dysfunctional squamous cell differentiation and development of squamous cell carcinoma (SCC) in skin and internal organs. While NOTCH1 receptor activation has been well characterized, little is known about how NOTCH1 gene transcription is regulated. Using bioinformatics and functional screening approaches, we identified several regulators of the NOTCH1 gene in keratinocytes, with the transcription factors DLX5 and EGR3 and estrogen receptor β (ERβ) directly controlling its expression in differentiation. DLX5 and ERG3 are required for RNA polymerase II (PolII) recruitment to the NOTCH1 locus, while ERβ controls NOTCH1 transcription through RNA PolII pause release. Expression of several identified NOTCH1 regulators, including ERβ, is frequently compromised in skin, head and neck, and lung SCCs and SCC-derived cell lines. Furthermore, a keratinocyte ERβ-dependent program of gene expression is subverted in SCCs from various body sites, and there are consistent differences in mutation and gene-expression signatures of head and neck and lung SCCs in female versus male patients. Experimentally increased ERβ expression or treatment with ERβ agonists inhibited proliferation of SCC cells and promoted NOTCH1 expression and squamous differentiation both in vitro and in mouse xenotransplants. Our data identify a link between transcriptional control of NOTCH1 expression and the estrogen response in keratinocytes, with implications for differentiation therapy of squamous cancer.
Collapse
MESH Headings
- Animals
- Carcinoma, Squamous Cell/genetics
- Carcinoma, Squamous Cell/metabolism
- Carcinoma, Squamous Cell/pathology
- Cell Differentiation
- Cell Line, Tumor
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Female
- Gene Expression Regulation, Neoplastic
- Genetic Loci
- Head and Neck Neoplasms/genetics
- Head and Neck Neoplasms/metabolism
- Head and Neck Neoplasms/pathology
- Heterografts
- Humans
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Male
- Mice
- Mice, Inbred NOD
- Mice, SCID
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Neoplasm Transplantation
- RNA Polymerase II/genetics
- RNA Polymerase II/metabolism
- Receptor, Notch1/biosynthesis
- Receptor, Notch1/genetics
- Transcription, Genetic/genetics
Collapse
|
89
|
Fischer B, Metzger M, Richardson R, Knyphausen P, Ramezani T, Franzen R, Schmelzer E, Bloch W, Carney TJ, Hammerschmidt M. p53 and TAp63 promote keratinocyte proliferation and differentiation in breeding tubercles of the zebrafish. PLoS Genet 2014; 10:e1004048. [PMID: 24415949 PMCID: PMC3886889 DOI: 10.1371/journal.pgen.1004048] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 11/04/2013] [Indexed: 11/18/2022] Open
Abstract
p63 is a multi-isoform member of the p53 family of transcription factors. There is compelling genetic evidence that ΔNp63 isoforms are needed for keratinocyte proliferation and stemness in the developing vertebrate epidermis. However, the role of TAp63 isoforms is not fully understood, and TAp63 knockout mice display normal epidermal development. Here, we show that zebrafish mutants specifically lacking TAp63 isoforms, or p53, display compromised development of breeding tubercles, epidermal appendages which according to our analyses display more advanced stratification and keratinization than regular epidermis, including continuous desquamation and renewal of superficial cells by derivatives of basal keratinocytes. Defects are further enhanced in TAp63/p53 double mutants, pointing to partially redundant roles of the two related factors. Molecular analyses, treatments with chemical inhibitors and epistasis studies further reveal the existence of a linear TAp63/p53->Notch->caspase 3 pathway required both for enhanced proliferation of keratinocytes at the base of the tubercles and their subsequent differentiation in upper layers. Together, these studies identify the zebrafish breeding tubercles as specific epidermal structures sharing crucial features with the cornified mammalian epidermis. In addition, they unravel essential roles of TAp63 and p53 to promote both keratinocyte proliferation and their terminal differentiation by promoting Notch signalling and caspase 3 activity, ensuring formation and proper homeostasis of this self-renewing stratified epithelium. The mammalian epidermis is a stratified self-renewing epithelium, in which cell loss at the surface is properly balanced by cell proliferation in basal layers to ensure tissue homeostasis. But how is this balance genetically controlled? Here, we address this question in zebrafish breeding tubercles, epidermal appendages in which keratinocytes undergo more advanced differentiation processes than in regular fish epidermis, sharing crucial features with the cornified mammalian skin. We identify a linear pathway consisting of the transcription factor p53 and its close relative TAp63, which activate Notch signalling and thereby caspase 3 to promote terminal differentiation and eventual shedding of keratinocytes in upper tubercle layers, while at the same time employing non-cell autonomous mechanisms to promote keratinocyte proliferation at the tubercle base, thereby ensuring proper development and homeostasis of this self-renewing tissue. Such a two-fold function of the pathway is consistent with the formerly reported dual role of a caspase during wing regeneration in the fruitfly. Our findings will help to better understand the seemingly contrary effects described for TAp63 in different mammalian systems, while demonstrating partial functional redundancy between p53 and TAp63 during epidermal development in fish.
Collapse
Affiliation(s)
- Boris Fischer
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Manuel Metzger
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Rebecca Richardson
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Philipp Knyphausen
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Thomas Ramezani
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
| | - Rainer Franzen
- Cell Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Elmon Schmelzer
- Cell Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine, German Sport University Cologne, Cologne, Germany
| | | | - Matthias Hammerschmidt
- Institute of Developmental Biology, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
- * E-mail:
| |
Collapse
|
90
|
|
91
|
NFX1-123 and human papillomavirus 16E6 increase Notch expression in keratinocytes. J Virol 2013; 87:13741-50. [PMID: 24109236 DOI: 10.1128/jvi.02582-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The high-risk human papillomavirus (HR HPV) E6 oncoprotein binds host cell proteins to dysregulate multiple regulatory pathways, including apoptosis and senescence. HR HPV16 E6 (16E6) interacts with the cellular protein NFX1-123, and together they posttranscriptionally increase hTERT expression, the catalytic subunit of telomerase. NFX1-123 interacts with hTERT mRNA and stabilizes it, leading to greater telomerase activity and the avoidance of cellular senescence. Little is known regarding what other transcripts are dependent on or augmented by the association of NFX1-123 with 16E6. Microarray analysis revealed enhanced expression of Notch1 mRNA in 16E6-expressing keratinocytes when NFX1-123 was overexpressed. A moderate increase in Notch1 mRNA was seen with overexpression of NFX1-123 alone, but with 16E6 coexpression the increase in Notch1 was enhanced. The PAM2 motif and R3H protein domains in NFX1-123, which were important for increased hTERT expression, were also important in the augmentation of Notch1 expression by 16E6. These findings identify a second gene coregulated by 16E6 and NFX1-123 and the protein motifs in NFX1-123 that are important for this effect.
Collapse
|
92
|
Buckley NE, Nic An tSaoir CB, Blayney JK, Oram LC, Crawford NT, D’Costa ZC, Quinn JE, Kennedy RD, Harkin DP, Mullan PB. BRCA1 is a key regulator of breast differentiation through activation of Notch signalling with implications for anti-endocrine treatment of breast cancers. Nucleic Acids Res 2013; 41:8601-14. [PMID: 23863842 PMCID: PMC3794588 DOI: 10.1093/nar/gkt626] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 06/24/2013] [Accepted: 06/26/2013] [Indexed: 12/17/2022] Open
Abstract
Here, we show for the first time, that the familial breast/ovarian cancer susceptibility gene BRCA1 activates the Notch pathway in breast cells by transcriptional upregulation of Notch ligands and receptors in both normal and cancer cells. We demonstrate through chromatin immunoprecipitation assays that BRCA1 is localized to a conserved intronic enhancer region within the Notch ligand Jagged-1 (JAG1) gene, an event requiring ΔNp63. We propose that this BRCA1/ΔNp63-mediated induction of JAG1 may be important the regulation of breast stem/precursor cells, as knockdown of all three proteins resulted in increased tumoursphere growth and increased activity of stem cell markers such as Aldehyde Dehydrogenase 1 (ALDH1). Knockdown of Notch1 and JAG1 phenocopied BRCA1 knockdown resulting in the loss of Estrogen Receptor-α (ER-α) expression and other luminal markers. A Notch mimetic peptide could activate an ER-α promoter reporter in a BRCA1-dependent manner, whereas Notch inhibition using a γ-secretase inhibitor reversed this process. We demonstrate that inhibition of Notch signalling resulted in decreased sensitivity to the anti-estrogen drug Tamoxifen but increased expression of markers associated with basal-like breast cancer. Together, these findings suggest that BRCA1 transcriptional upregulation of Notch signalling is a key event in the normal differentiation process in breast tissue.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Paul B. Mullan
- Centre for Cancer Research and Cell Biology, Queen’s University Belfast, 97 Lisburn Road, Belfast BT7 9BL, UK
| |
Collapse
|
93
|
Noncanonical NOTCH signaling limits self-renewal of human epithelial and induced pluripotent stem cells through ROCK activation. Mol Cell Biol 2013; 33:4434-47. [PMID: 24019071 DOI: 10.1128/mcb.00577-13] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NOTCH plays essential roles in cell fate specification during embryonic development and in adult tissue maintenance. In keratinocytes, it is a key inducer of differentiation. ROCK, an effector of the small GTPase Rho, is also implicated in keratinocyte differentiation, and its inhibition efficiently potentiates immortalization of human keratinocytes and greatly improves survival of dissociated human pluripotent stem cells. However, the molecular basis for ROCK activation is not fully established in these contexts. Here we provide evidence that intracellular forms of NOTCH1 trigger the immediate activation of ROCK1 independent of its transcriptional activity, promoting differentiation and resulting in decreased clonogenicity of normal human keratinocytes. Knockdown of NOTCH1 abrogated ROCK1 activation and conferred sustained clonogenicity upon differentiation stimuli. Treatment with a ROCK inhibitor, Y-27632, or ROCK1 silencing substantially rescued the growth defect induced by activated NOTCH1. Furthermore, we revealed that impaired self-renewal of human induced pluripotent stem cells upon dissociation is, at least in part, attributable to NOTCH-dependent ROCK activation. Thus, the present study unveils a novel NOTCH-ROCK pathway critical for cellular differentiation and loss of self-renewal capacity in a subset of immature cells.
Collapse
|
94
|
Assessing interactions between the association of common genetic variant at 1p11 (rs11249433) and hormone receptor status with breast cancer risk. PLoS One 2013; 8:e72487. [PMID: 23977306 PMCID: PMC3745461 DOI: 10.1371/journal.pone.0072487] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 07/10/2013] [Indexed: 02/07/2023] Open
Abstract
Background The association between rs11249433 polymorphism on 1p11 and breast cancer (BC) has been widely evaluated since it was first identified through genome-wide association approach. However, the results have been inconclusive. To investigate this inconsistency, we performed a meta-analysis of all available studies dealing with the relationship between the 1p11-rs11249433 polymorphism and BC. Methods Databases including Pubmed, SCOPUS, ISI web of knowledge, Embase and Cochrane databases were searched to find relevant studies. Odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of association. The random-effects model was applied, addressing heterogeneity and publication bias. Results A total of 15 articles involving 90,291 cases and 137,525 controls were included. In a combined analysis, the summary per-allele odds ratio (OR) for BC of 1p11-rs11249433 polymorphism was 1.09 (95% CI: 1.06–1.12; P<10−5). Significant associations were also observed under dominant and recessive genetic models. In the subgroup analysis by ethnicity, significantly increased risks were found in Caucasians; whereas no significant associations were found among Asians and Africans. In addition, our data indicate that 1p11-rs11249433 polymorphism is involved in BC susceptibility and confer its effect primarily in estrogen receptor-positive and progesterone receptor-positive tumors. Conclusions In conclusion, this meta-analysis demonstrated that the G allele of 1p11-rs11249433 is a risk factor associated with increased breast cancer susceptibility, but these associations vary in different ethnic populations.
Collapse
|
95
|
Bae YH, Ryu JH, Park HJ, Kim KR, Wee HJ, Lee OH, Jang HO, Bae MK, Kim KW, Bae SK. Mutant p53-Notch1 Signaling Axis Is Involved in Curcumin-Induced Apoptosis of Breast Cancer Cells. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2013; 17:291-7. [PMID: 23946688 PMCID: PMC3741485 DOI: 10.4196/kjpp.2013.17.4.291] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 05/15/2013] [Accepted: 05/28/2013] [Indexed: 01/30/2023]
Abstract
Notch1 has been reported to be highly expressed in triple-negative and other subtypes of breast cancer. Mutant p53 (R280K) is overexpressed in MDA-MB-231 triple-negative human breast cancer cells. The present study aimed to determine whether the mutant p53 can be a potent transcriptional activator of the Notch1 in MDA-MB-231 cells, and explore the role of this mutant p53-Notch1 axis in curcumin-induced apoptosis. We found that curcumin treatment resulted in an induction of apoptosis in MDA-MB-231 cells, together with downregulation of Notch1 and its downstream target, Hes1. This reduction in Notch1 expression was determined to be due to the decreased activity of endogenous mutant p53. We confirmed the suppressive effect of curcumin on Notch1 transcription by performing a Notch1 promoter-driven reporter assay and identified a putative p53-binding site in the Notch1 promoter by EMSA and chromatin immunoprecipitation analysis. Overexpression of mutant p53 increased Notch1 promoter activity, whereas knockdown of mutant p53 by small interfering RNA suppressed Notch1 expression, leading to the induction of cellular apoptosis. Moreover, curcumin-induced apoptosis was further enhanced by the knockdown of Notch1 or mutant p53, but it was decreased by the overexpression of active Notch1. Taken together, our results demonstrate, for the first time, that Notch1 is a transcriptional target of mutant p53 in breast cancer cells and suggest that the targeting of mutant p53 and/or Notch1 may be combined with a chemotherapeutic strategy to improve the response of breast cancer cells to curcumin.
Collapse
Affiliation(s)
- Yun-Hee Bae
- Department of Dental Pharmacology, School of Dentistry, Yangsan Campus of Pusan National University, Yangsan 626-870, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
A miR-34a-SIRT6 axis in the squamous cell differentiation network. EMBO J 2013; 32:2248-63. [PMID: 23860128 DOI: 10.1038/emboj.2013.156] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 06/17/2013] [Indexed: 01/15/2023] Open
Abstract
Squamous cell carcinomas (SCCs) are highly heterogeneous tumours, resulting from deranged expression of genes involved in squamous cell differentiation. Here we report that microRNA-34a (miR-34a) functions as a novel node in the squamous cell differentiation network, with SIRT6 as a critical target. miR-34a expression increases with keratinocyte differentiation, while it is suppressed in skin and oral SCCs, SCC cell lines, and aberrantly differentiating primary human keratinocytes (HKCs). Expression of this miRNA is restored in SCC cells, in parallel with differentiation, by reversion of genomic DNA methylation or wild-type p53 expression. In normal HKCs, the pro-differentiation effects of increased p53 activity or UVB exposure are miR-34a-dependent, and increased miR-34a levels are sufficient to induce differentiation of these cells both in vitro and in vivo. SIRT6, a sirtuin family member not previously connected with miR-34a function, is a direct target of this miRNA in HKCs, and SIRT6 down-modulation is sufficient to reproduce the miR-34a pro-differentiation effects. The findings are of likely biological significance, as SIRT6 is oppositely expressed to miR-34a in normal keratinocytes and keratinocyte-derived tumours.
Collapse
|
97
|
HER2 stabilizes survivin while concomitantly down-regulating survivin gene transcription by suppressing Notch cleavage. Biochem J 2013; 451:123-34. [PMID: 23323858 DOI: 10.1042/bj20121716] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In breast cancer, the HER2 (human epidermal growth factor receptor 2) receptor tyrosine kinase is associated with extremely poor prognosis and survival. Notch signalling has a key role in cell-fate decisions, especially in cancer-initiating cells. The Notch intracellular domain produced by Notch cleavage is translocated to the nucleus where it activates transcription of target genes. To determine the combinatory effect of HER2 and Notch signalling in breast cancer, we investigated the effect of HER2 on Notch-induced cellular phenomena. We found the down-regulation of Notch-dependent transcriptional activity by HER2 overexpression. Also, the HER2/ERK (extracellular-signal-regulated kinase) signal pathway down-regulated the activity of γ-secretase. When we examined the protein level of Notch target genes in HER2-overexpressing cells, we observed that the level of survivin, downstream of Notch, increased in HER2 cells. We found that activation of ERK resulted in a decrease in XAF1 [XIAP (X-linked inhibitor of apoptosis)-associated factor 1] which reduced the formation of the XIAP-XAF1 E3 ligase complex to ubiquitinate survivin. In addition, Thr(34) of survivin was shown to be the most important residue in determining survivin stability upon phosphorylation after HER2/Akt/CDK1 (cyclin-dependent kinase 1)-cyclin B1 signalling. The results of the present study show the combinatorial effects of HER2 and Notch during breast oncogenesis.
Collapse
|
98
|
Fukuda R, Suico MA, Koyama K, Omachi K, Kai Y, Matsuyama S, Mitsutake K, Taura M, Morino-Koga S, Shuto T, Kai H. Mild electrical stimulation at 0.1-ms pulse width induces p53 protein phosphorylation and G2 arrest in human epithelial cells. J Biol Chem 2013; 288:16117-26. [PMID: 23599430 DOI: 10.1074/jbc.m112.442442] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Exogenous low-intensity electrical stimulation has been used for treatment of various intractable diseases despite the dearth of information on the molecular underpinnings of its effects. Our work and that of others have demonstrated that applied electrical stimulation at physiological strength or mild electrical stimulation (MES) activates the PI3K-Akt pathway, but whether MES activates other molecules remains unknown. Considering that MES is a form of physiological stress, we hypothesized that it can activate the tumor suppressor p53, which is a key modulator of the cell cycle and apoptosis in response to cell stresses. The potential response of p53 to an applied electrical current of low intensity has not been investigated. Here, we show that p53 was transiently phosphorylated at Ser-15 in epithelial cells treated with an imperceptible voltage (1 V/cm) and a 0.1-ms pulse width. MES-induced p53 phosphorylation was inhibited by pretreatment with a p38 MAPK inhibitor and transfection of dominant-negative mutants of p38, MKK3b, and MKK6b, implying the involvement of the p38 MAPK signaling pathway. Furthermore, MES treatment enhanced p53 transcriptional function and increased the expression of p53 target genes p21, BAX, PUMA, NOXA, and IRF9. Importantly, MES treatment triggered G2 cell cycle arrest, but not cell apoptosis. MES treatment had no effect on the cell cycle in HCT116 p53(-/-) cells, suggesting a dependence on p53. These findings identify some molecular targets of electrical stimulation and incorporate the p38-p53 signaling pathway among the transduction pathways that MES affects.
Collapse
Affiliation(s)
- Ryosuke Fukuda
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto 862-0973, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Joly-Tonetti N, Viñuelas J, Gandrillon O, Lamartine J. Differential miRNA expression profiles in proliferating or differentiated keratinocytes in response to gamma irradiation. BMC Genomics 2013; 14:184. [PMID: 23496899 PMCID: PMC3610249 DOI: 10.1186/1471-2164-14-184] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Accepted: 03/08/2013] [Indexed: 11/23/2022] Open
Abstract
Background MicroRNAs (miRNAs), a group of short non-coding RNAs that negatively regulate gene expression, have recently emerged as potential modulators of cellular response to ionizing radiations both in vitro and in vivo in various cell types and tissues. However, in epidermal cells, the involvement of the miRNA machinery in the cellular response to ionizing radiations remains to be clarified. Indeed, understanding the mechanisms of cutaneous radiosensitivity is an important issue since skin is the most exposed organ to ionizing radiations and among the most sensitive. Results We settled up an expression study of miRNAs in primary human skin keratinocytes using a microfluidic system of qPCR assay, which permits to assess the expression of almost 700 annotated miRNAs. The keratinocytes were cultured to a proliferative or a differentiated state mimicking basal or suprabasal layers of human epidermis. These cells were irradiated at 10 mGy or 6 Gy and RNA was extracted 3 hours after irradiation. We found that proliferative cells irradiated at 6 Gy display a global fall of miRNA expression whereas differentiated cells exposed to the same dose display a global increase of miRNAs expression. We identified twenty miRNAs weakly but significantly modulated after 6 Gy irradiation, whereas only 2 miRNAs were modulated after low-dose irradiation in proliferating cells. To go further into the biological meaning of this miRNA response, we over-expressed some of the responding miRNA in proliferating cells: we observed a significant decrease of cell viability 72 hours after irradiation. Functional annotation of their predicted targets revealed that G-protein related pathways might be regulated by these responding miRNAs. Conclusions Our results reveal that human primary keratinocytes exposed to ionizing irradiation expressed a miRNA pattern strongly related to the differentiation status of irradiated cells. We also demonstrate that some miRNAs play a role in the radiation response to ensure the short-term survival of irradiated keratinocytes.
Collapse
|
100
|
Yao Y, Wang L, Zhang H, Wang H, Zhao X, Zhang Y, Zhang L, Fan X, Qian G, Hu JF, Ge S. A novel anticancer therapy that simultaneously targets aberrant p53 and Notch activities in tumors. PLoS One 2012; 7:e46627. [PMID: 23071601 PMCID: PMC3468572 DOI: 10.1371/journal.pone.0046627] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 09/07/2012] [Indexed: 12/17/2022] Open
Abstract
Notch signaling pathway plays an important role in tumorigenesis by maintaining the activity of self-renewal of cancer stem cells, and therefore, it is hypothesized that interference of Notch signaling may inhibit tumor formation and progression. H101 is a recombinant oncolytic adenovirus that is cytolytic in cells lacking intact p53, but it is unable to eradicate caner stem cells. In this study, we tested a new strategy of tumor gene therapy by combining a Notch1-siRNA with H101 oncolytic adenovirus. In HeLa-S3 tumor cells, the combined therapy blocked the Notch pathway and induced apoptosis in tumors that are p53-inactive. In nude mice bearing xenograft tumors derived from HeLa-S3 cells, the combination of H101/Notch1-siRNA therapies inhibited tumor growth. Moreover, Notch1-siRNA increased Hexon gene expression at both the transcriptional and the translational levels, and promoted H101 replication in tumors, thereby enhancing the oncolytic activity of H101. These data demonstrate the feasibility to combine H101 p53-targted oncolysis and anti-Notch siRNA activities as a novel anti-cancer therapy.
Collapse
Affiliation(s)
- Yuting Yao
- Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Li Wang
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - He Zhang
- Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
- VA Palo Alto Health Care System, Stanford University Medical School, Palo Alto, California, United States of America
| | - Haibo Wang
- Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xiaoping Zhao
- Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Yidan Zhang
- Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Leilei Zhang
- Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Xianqun Fan
- Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| | - Guanxiang Qian
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- * E-mail: (J-FH); (SG); (SG); (JH)
| | - Ji-Fan Hu
- VA Palo Alto Health Care System, Stanford University Medical School, Palo Alto, California, United States of America
- * E-mail: (J-FH); (SG); (SG); (JH)
| | - Shengfang Ge
- Ninth People’s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People’s Republic of China
- Department of Biochemistry and Molecular Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
- * E-mail: (J-FH); (SG); (SG); (JH)
| |
Collapse
|