51
|
Leach C, Shenolikar S, Brautigan DL. Phosphorylation of phosphatase inhibitor-2 at centrosomes during mitosis. J Biol Chem 2003; 278:26015-20. [PMID: 12697755 DOI: 10.1074/jbc.m300782200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibitor-2 (I-2) is a regulator of protein phosphatase type-1 (PP1), known to be phosphorylated in vitro by multiple kinases. In particular Thr72 is a Thr-Pro phosphorylation site conserved from yeast to human, but there is no evidence that this phosphorylation responds to any physiological signals. Here, we used electrophoretic mobility shift and immunoblotting with a site-specific phospho-Thr72 antibody to establish Thr72 phosphorylation in HeLa cells and show a 25-fold increase in phosphorylation during mitosis. Mass spectrometry demonstrated I-2 in actively growing HeLa cells was also phosphorylated at three other sites, Ser120, Ser121, and an additional Ser located between residues 70 and 90. In vitro kinase assays using recombinant I-2 as a substrate showed that the Thr72 kinase(s) was activated during mitosis, and sensitivity to kinase inhibitors indicated that the principal I-2 Thr72 kinase was not GSK3 but instead a member of the cyclin-dependent protein kinase family. Immunocytochemistry confirmed Thr72 phosphorylation of I-2 during mitosis, with peak intensity at prophase, and revealed subcellular concentration of the phospho-Thr72 I-2 at centrosomes. Together, the data show dynamic changes in I-2 phosphorylation during mitosis and localization of phosphorylated I-2 at centrosomes, suggesting involvement in mammalian cell division.
Collapse
Affiliation(s)
- Craig Leach
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
52
|
Abstract
Retinoblastoma gene (Rb) is the prototype of tumor suppressors. Germline mutation in the retinoblastoma gene is susceptible to cancer and reintroduction of wild-type Rb is able to suppress neoplastic phenotypes. The fundamental cellular functions of Rb in the control of cell growth and differentiation are important for its tumor suppression. In general, cancer susceptibility caused by inactivation of a tumor suppressor gene results from genome instability. Accordingly, Rb may function in the maintenance of chromosome stability by influencing mitotic progression, faithful chromosome segregation, and structural remodeling of mitotic chromosomes. Rb is also implicated in the regulation of replication machinery and in the control of cell cycle checkpoints in response to DNA damage, further supporting such a role for Rb. Moreover, the mechanistic basis for Rb-mediated transcriptional repression has revealed its connection to global chromatin remodeling. It is likely that Rb suppresses tumor formation by virtue of its multiple biological activities, and a theme throughout its multiple cellular functions is its central role in controlling activities that involve chromatin remodeling. A model in which Rb controls global genome fluidity is thus proposed. Finally, a recent study provides direct evidence indicating that loss of Rb function leads to genome instability. Therefore, tumor suppressors have a common role in the maintenance of genome stability, and such a role may be pivotal for their functions in tumor suppression.
Collapse
Affiliation(s)
- Lei Zheng
- Department of Molecular Medicine/Institute of Biotechnology, University of Texas Health Science Center at San Antonio, 78245, USA
| | | |
Collapse
|
53
|
Ke YW, Dou Z, Zhang J, Yao XB. Function and regulation of Aurora/Ipl1p kinase family in cell division. Cell Res 2003; 13:69-81. [PMID: 12737516 DOI: 10.1038/sj.cr.7290152] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
During mitosis, the parent cell distributes its genetic materials equally into two daughter cells through chromosome segregation, a complex movements orchestrated by mitotic kinases and its effector proteins. Faithful chromosome segregation and cytokinesis ensure that each daughter cell receives a full copy of genetic materials of parent cell. Defects in these processes can lead to aneuploidy or polyploidy. Aurora/Ipl1p family, a class of conserved serine/threonine kinases, plays key roles in chromosome segregation and cytokinesis. This article highlights the function and regulation of Aurora/Ipl1p family in mitosis and provides potential links between aberrant regulation of Aurora/Ipl1p kinases and pathogenesis of human cancer.
Collapse
Affiliation(s)
- Yu Wen Ke
- Laboratory for Cell Dynamics, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | | | |
Collapse
|
54
|
Tan YSH, Morcos PA, Cannon JF. Pho85 phosphorylates the Glc7 protein phosphatase regulator Glc8 in vivo. J Biol Chem 2003; 278:147-53. [PMID: 12407105 DOI: 10.1074/jbc.m208058200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The budding yeast Glc7 serine/threonine protein phosphatase-1 is regulated by Glc8, the yeast ortholog of mammalian phosphatase inhibitor-2. In this work, we demonstrated that similarly to inhibitor-2, Glc8 function is regulated by phosphorylation. The cyclin-dependent protein kinase, Pho85, in conjunction with the related cyclins Pcl6 and Pcl7 comprise the major Glc8 kinase in vivo and in vitro. Several glc7 mutations are dependent on the presence of Glc8 for viability. For example, glc7 alleles R121K, R142H, and R198D are lethal in combination with a glc8 deletion. We found that glc7-R121K is lethal in combination with a pho85 deletion. This finding indicates that Pho85 is the sole Glc8 kinase in vivo. Furthermore, glc7-R121K is also lethal when combined with deletions of pcl6, plc7, pcl8, and pcl10, indicating that these related cyclins redundantly activate Pho85 for Glc8 phosphorylation in vivo. In vitro kinase assays and genetic results indicate that Pho85 cyclins Pcl6 and Pcl7 comprise the predominant Glc8 kinase.
Collapse
Affiliation(s)
- Yves S H Tan
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, USA
| | | | | |
Collapse
|
55
|
Wang H, Brautigan DL. A novel transmembrane Ser/Thr kinase complexes with protein phosphatase-1 and inhibitor-2. J Biol Chem 2002; 277:49605-12. [PMID: 12393858 DOI: 10.1074/jbc.m209335200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein kinases and protein phosphatases exert coordinated control over many essential cellular processes. Here, we describe the cloning and characterization of a novel human transmembrane protein KPI-2 (Kinase/Phosphatase/Inhibitor-2) that was identified by yeast two-hybrid using protein phosphatase inhibitor-2 (Inh2) as bait. KPI-2 mRNA was predominantly expressed in skeletal muscle. KPI-2 is a 1503-residue protein with two predicted transmembrane helices at the N terminus, a kinase domain, followed by a C-terminal domain. The transmembrane helices were sufficient for targeting proteins to the membrane. KPI-2 kinase domain has about 60% identity with its closest relative, a tyrosine kinase. However, it only exhibited serine/threonine kinase activity in autophosphorylation reactions or with added substrates. KPI-2 kinase domain phosphorylated protein phosphatase-1 (PP1C) at Thr(320), which attenuated PP1C activity. KPI-2 C-terminal domain directly associated with PP1C, and this required a VTF motif. Inh2 associated with KPI-2 C-terminal domain with and without PP1C. Thus, KPI-2 is a kinase with sites to associate with PP1C and Inh2 to form a regulatory complex that is localized to membranes.
Collapse
Affiliation(s)
- Hong Wang
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville, VA 22908-0577, USA
| | | |
Collapse
|
56
|
Chang JS, Henry K, Wolf BL, Geli M, Lemmon SK. Protein phosphatase-1 binding to scd5p is important for regulation of actin organization and endocytosis in yeast. J Biol Chem 2002; 277:48002-8. [PMID: 12356757 DOI: 10.1074/jbc.m208471200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
SCD5, an essential gene, encodes a protein important for endocytosis and actin organization in yeast. Previous two-hybrid screens showed that Scd5p interacts with Glc7p, a yeast Ser/Thr-specific protein phosphatase-1 (PP1) that participates in a variety of cellular processes. PP1 substrate specificity in vivo is regulated by association with different regulatory or targeting subunits, many of which have a consensus PP1-binding site ((V/I)XF, with a basic residue at the -1 or -2 position). Scd5p contains two of these potential PP1-binding motifs: KVDF (amino acids 240-243) and KKVRF (amino acids 272-276). Deletion analysis mapped the PP1-binding domain to a region of Scd5p containing these motifs. Therefore, the consequence of mutating these two potential PP1-binding sites was examined. Although mutation of KVDF had no effect, alteration of KKVRF dramatically reduced Scd5p interaction with Glc7p and resulted in temperature-sensitive growth. Furthermore, this mutation caused defects in fluid phase and receptor-mediated endocytosis and actin organization. Overexpression of GLC7 suppressed the temperature-sensitive growth of the KKVRF mutant and partially rescued the actin organization phenotype. These results provide evidence that Scd5p is a PP1 targeting subunit for regulation of actin organization and endocytosis or that Scd5p is a PP1 substrate, which regulates the function of Scd5p in these processes.
Collapse
Affiliation(s)
- Ji Suk Chang
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | | | | | | | |
Collapse
|
57
|
Eto M, Elliott E, Prickett TD, Brautigan DL. Inhibitor-2 regulates protein phosphatase-1 complexed with NimA-related kinase to induce centrosome separation. J Biol Chem 2002; 277:44013-20. [PMID: 12221103 DOI: 10.1074/jbc.m208035200] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Centrosome separation is regulated by balance of in situ protein kinase/phosphatase activities during the cell cycle. The mammalian NimA-related kinase Nek2 forms a complex with the catalytic subunit of protein phosphatase-1 (PP1C). This complex is located at centrosomes and has been implicated in regulation of the cycle of duplication and separation. Inhibitor-2 (Inh2) is an inhibitor protein specific for PP1C, and its expression level fluctuates during the cell cycle. Here we report cellular regulation of the Nek2.PP1C complex by Inh2. PP1C-binding segments of Nek2 were isolated by yeast two-hybrid screening using Inh2 bait. Inh2 indirectly associates with Nek2 via PP1C, which binds to both proteins, forming a bridged heterotrimeric complex. Double Ala mutation of the PP1C-binding site (KVHF) in Nek2 eliminated both PP1C and Inh2 interactions in both a yeast conjugation assay and an in vitro binding assay. The kinase activity of Nek2.PP1C was enhanced 2-fold by addition of recombinant Inh2, with EC(50) = 10 nm. Immunofluorescence showed concentration of endogenous Inh2 at centrosomes and in a region surrounding the centrosomes. Transient expression of wild-type Inh2 increased by 5-fold dispersed/split centrosomes in fibroblasts, mimicking the phenotype produced by overexpression of Nek2. Deletion of the Inh2 C-terminal domain yielded Inh2-(1-118), which failed to interact with or activate the Nek2.PP1C complex, suggesting that the C-terminal region of Inh2 is required for regulation of the Nek2.PP1C complex. Thus, Inh2 can enhance the kinase activity of the Nek2.PP1C complex via inhibition of phosphatase activity to initiate centrosome separation.
Collapse
Affiliation(s)
- Masumi Eto
- Center for Cell Signaling, University of Virginia School of Medicine, Charlottesville 22908, USA.
| | | | | | | |
Collapse
|
58
|
Cheeseman IM, Anderson S, Jwa M, Green EM, Kang JS, Yates JR, Chan CSM, Drubin DG, Barnes G. Phospho-regulation of kinetochore-microtubule attachments by the Aurora kinase Ipl1p. Cell 2002; 111:163-72. [PMID: 12408861 DOI: 10.1016/s0092-8674(02)00973-x] [Citation(s) in RCA: 490] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The Aurora kinase Ipl1p plays a crucial role in regulating kinetochore-microtubule attachments in budding yeast, but the underlying basis for this regulation is not known. To identify Ipl1p targets, we first purified 28 kinetochore proteins from yeast protein extracts. These studies identified five previously uncharacterized kinetochore proteins and defined two additional kinetochore subcomplexes. We then used mass spectrometry to identify 18 phosphorylation sites in 7 of these 28 proteins. Ten of these phosphorylation sites are targeted directly by Ipl1p, allowing us to identify a consensus phosphorylation site for an Aurora kinase. Our systematic mutational analysis of the Ipl1p phosphorylation sites demonstrated that the essential microtubule binding protein Dam1p is a key Ipl1p target for regulating kinetochore-microtubule attachments in vivo.
Collapse
Affiliation(s)
- Iain M Cheeseman
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Kiat LS, Hui KM, Gopalan G. Aurora-A kinase interacting protein (AIP), a novel negative regulator of human Aurora-A kinase. J Biol Chem 2002; 277:45558-65. [PMID: 12244051 DOI: 10.1074/jbc.m206820200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aurora kinases have evolved as a new family of mitotic centrosome- and microtubule-associated kinases that regulate the structure and function of centrosomes and spindle. One of its members, Aurora-A, is a potential oncogene. Overexpression of Aurora-A is also implicated in defective centrosome duplication and segregation, leading to aneuploidy and tumorigenesis in various cancer cell types. However, the regulatory pathways for mammalian Aurora-A are not well understood. Exploiting the lethal phenotype associated with the overexpression of Aurora-A in yeast, we performed a dosage suppressor screen in yeast and report here the identification of a novel negative regulator of Aurora-A, named AIP (Aurora-A kinase Interacting Protein). AIP is a ubiquitously expressed nuclear protein that interacts specifically with human Aurora-A in vivo. Ectopic expression of AIP with Aurora-A in NIH 3T3 and COS cells results in the down-regulation of ectopically expressed Aurora-A protein levels, and this down-regulation is demonstrated to be the result of destabilization of Aurora-A through a proteasome-dependent protein degradation pathway. A noninteracting deletion mutant of AIP does not down-regulate Aurora-A protein, suggesting that the interaction is important for the protein degradation. AIP could therefore be a potential useful target gene for anti-tumor drugs.
Collapse
Affiliation(s)
- Lim Shen Kiat
- Division of Cellular and Molecular Research, National Cancer Centre, Singapore 169610
| | | | | |
Collapse
|
60
|
Nigavekar SS, Tan YSH, Cannon JF. Glc8 is a glucose-repressible activator of Glc7 protein phosphatase-1. Arch Biochem Biophys 2002; 404:71-9. [PMID: 12127071 DOI: 10.1016/s0003-9861(02)00231-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Regulation of Glc7 type 1 protein phosphatase stability and activity was studied in budding yeast. We found that the Glc7 protein has a half-life of over 180min, which is sufficient for several generations. Glc7 protein stability was constant during the cell cycle and in batch culture growth. Furthermore, deletion of regulatory subunit Gac1, Reg1, Reg2, Sds22, or Glc8 had no influence on Glc7 protein half-life. The activity of Glc7 assayed as okadaic acid-resistant phosphorylase phosphatase activity was constant during the cell cycle. Deletion of the aforementioned regulatory subunits revealed that only Glc8 deletion had a significant effect in reducing Glc7 activity. Glc7 activity was induced during stationary phase in a Glc8-dependent manner. In addition, extracellular glucose repressed the induction of Glc7 activity. These results are consistent with glucose repression of Glc8 expression and favor the role of Glc8 as a major Glc7 activator.
Collapse
Affiliation(s)
- Shraddha S Nigavekar
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia 65212, USA
| | | | | |
Collapse
|
61
|
Kang J, Cheeseman IM, Kallstrom G, Velmurugan S, Barnes G, Chan CS. Functional cooperation of Dam1, Ipl1, and the inner centromere protein (INCENP)-related protein Sli15 during chromosome segregation. J Cell Biol 2001; 155:763-74. [PMID: 11724818 PMCID: PMC2150868 DOI: 10.1083/jcb.200105029] [Citation(s) in RCA: 137] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have shown previously that Ipl1 and Sli15 are required for chromosome segregation in Saccharomyces cerevisiae. Sli15 associates directly with the Ipl1 protein kinase and these two proteins colocalize to the mitotic spindle. We show here that Sli15 stimulates the in vitro, and likely in vivo, kinase activity of Ipl1, and Sli15 facilitates the association of Ipl1 with the mitotic spindle. The Ipl1-binding and -stimulating activities of Sli15 both reside within a region containing homology to the metazoan inner centromere protein (INCENP). Ipl1 and Sli15 also bind to Dam1, a microtubule-binding protein required for mitotic spindle integrity and kinetochore function. Sli15 and Dam1 are most likely physiological targets of Ipl1 since Ipl1 can phosphorylate both proteins efficiently in vitro, and the in vivo phosphorylation of both proteins is reduced in ipl1 mutants. Some dam1 mutations exacerbate the phenotype of ipl1 and sli15 mutants, thus providing evidence that Dam1 interactions with Ipl1-Sli15 are functionally important in vivo. Similar to Dam1, Ipl1 and Sli15 each bind to microtubules directly in vitro, and they are associated with yeast centromeric DNA in vivo. Given their dual association with microtubules and kinetochores, Ipl1, Sli15, and Dam1 may play crucial roles in regulating chromosome-spindle interactions or in the movement of kinetochores along microtubules.
Collapse
Affiliation(s)
- J Kang
- Section of Molecular Genetics and Microbiology, Institute for Cellular and Molecular Biology, The University of Texas, Austin, TX 78712, USA
| | | | | | | | | | | |
Collapse
|
62
|
Uren AG, Wong L, Pakusch M, Fowler KJ, Burrows FJ, Vaux DL, Choo KH. Survivin and the inner centromere protein INCENP show similar cell-cycle localization and gene knockout phenotype. Curr Biol 2000; 10:1319-28. [PMID: 11084331 DOI: 10.1016/s0960-9822(00)00769-7] [Citation(s) in RCA: 423] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND Survivin is a mammalian protein that carries a motif typical of the inhibitor of apoptosis (IAP)proteins, first identified in baculoviruses. Although baculoviral IAP proteins regulate cell death, the yeast Survivin homolog Bir1 is involved in cell division. To determine the function of Survivin in mammals, we analyzed the pattern of localization of Survivin protein during the cell cycle, and deleted its gene by homologous recombination in mice. RESULTS In human cells, Survivin appeared first on centromeres bound to a novel para-polar axis during prophase/metaphase, relocated to the spindle midzone during anaphase/telophase, and disappeared at the end of telophase. In the mouse, Survivin was required for mitosis during development. Null embryos showed disrupted microtubule formation, became polyploid, and failed to survive beyond 4.5days post coitum. This phenotype, and the cell-cycle localization of Survivin, resembled closely those of INCENP. Because the yeast homolog of INCENP, Sli15, regulates the Aurora kinase homolog Ipl1p, and the yeast Survivin homolog Bir1 binds to Ndc10p, a substrate of Ipl1p, yeast Survivin, INCENP and Aurora homologs function in concert during cell division. CONCLUSIONS In vertebrates, Survivin and INCENP have related roles in mitosis, coordinating events such as microtubule organization, cleavage-furrow formation and cytokinesis. Like their yeast homologs Bir1 and Sli15, they may also act together with the Aurora kinase.
Collapse
Affiliation(s)
- A G Uren
- The Walter and Eliza Hall Institute of Medical Research, Post Office Royal Melbourne Hospital, 3050,., Victoria, Australia
| | | | | | | | | | | | | |
Collapse
|
63
|
Kingsbury TJ, Cunningham KW. A conserved family of calcineurin regulators. Genes Dev 2000; 14:1595-604. [PMID: 10887154 PMCID: PMC316734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
The protein phosphatase calcineurin mediates many cellular responses to calcium signals. Using a genetic screen in yeast, we identified a new family of proteins conserved in fungi and animals that inhibit calcineurin function when overexpressed. Overexpression of the yeast protein Rcn1p or the human homologs DSCR1 or ZAKI-4 inhibited two independent functions of calcineurin in yeast: The activation of the transcription factor Tcn1p and the inhibition of the H(+)/Ca(2+) exchanger Vcx1p. Purified recombinant Rcn1p and DSCR1 bound calcineurin in vitro and inhibited its protein phosphatase activity. Signaling via calmodulin, calcineurin, and Tcn1p induced Rcn1p expression, suggesting that Rcn1p operates as an endogenous feedback inhibitor of calcineurin. Surprisingly, rcn1 null mutants exhibited phenotypes similar to those of Rcn1p-overexpressing cells. This effect may be due to lower expression of calcineurin in rcn1 mutants during signaling conditions. Thus, Rcn1p levels may fine-tune calcineurin signaling in yeast. The structural and functional conservation between Rcn1p and DSCR1 suggests that the mammalian Rcn1p-related proteins, termed calcipressins, will modulate calcineurin signaling in humans and potentially contribute to disorders such as Down Syndrome.
Collapse
Affiliation(s)
- T J Kingsbury
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | | |
Collapse
|
64
|
Abstract
The protein phosphatase calcineurin mediates many cellular responses to calcium signals. Using a genetic screen in yeast, we identified a new family of proteins conserved in fungi and animals that inhibit calcineurin function when overexpressed. Overexpression of the yeast protein Rcn1p or the human homologs DSCR1 or ZAKI-4 inhibited two independent functions of calcineurin in yeast: The activation of the transcription factor Tcn1p and the inhibition of the H+/Ca2+ exchanger Vcx1p. Purified recombinant Rcn1p and DSCR1 bound calcineurin in vitro and inhibited its protein phosphatase activity. Signaling via calmodulin, calcineurin, and Tcn1p induced Rcn1p expression, suggesting that Rcn1p operates as an endogenous feedback inhibitor of calcineurin. Surprisingly, rcn1 null mutants exhibited phenotypes similar to those of Rcn1p-overexpressing cells. This effect may be due to lower expression of calcineurin in rcn1 mutants during signaling conditions. Thus, Rcn1p levels may fine-tune calcineurin signaling in yeast. The structural and functional conservation between Rcn1p and DSCR1 suggests that the mammalian Rcn1p-related proteins, termed calcipressins, will modulate calcineurin signaling in humans and potentially contribute to disorders such as Down Syndrome.
Collapse
|
65
|
Connor JH, Frederick D, Huang HB, Yang J, Helps NR, Cohen PT, Nairn AC, DePaoli-Roach A, Tatchell K, Shenolikar S. Cellular mechanisms regulating protein phosphatase-1. A key functional interaction between inhibitor-2 and the type 1 protein phosphatase catalytic subunit. J Biol Chem 2000; 275:18670-5. [PMID: 10748125 DOI: 10.1074/jbc.m909312199] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibitor-1 (I-1) and inhibitor-2 (I-2) selectively inhibit type 1 protein serine/threonine phosphatases (PP1). To define the molecular basis for PP1 inhibition by I-1 and I-2 charged-to-alanine substitutions in the Saccharomyces cerevisiae, PP1 catalytic subunit (GLC7), were analyzed. Two PP1 mutants, E53A/E55A and K165A/E166A/K167A, showed reduced sensitivity to I-2 when compared with wild-type PP1. Both mutants were effectively inhibited by I-1. Two-hybrid analysis and coprecipitation or pull-down assays established that wild-type and mutant PP1 catalytic subunits bound I-2 in an identical manner and suggested a role for the mutated amino acids in enzyme inhibition. Inhibition of wild-type and mutant PP1 enzymes by full-length I-2(1-204), I-2(1-114), and I-2(36-204) indicated that the mutant enzymes were impaired in their interaction with the N-terminal 35 amino acids of I-2. Site-directed mutagenesis of amino acids near the N terminus of I-2 and competition for PP1 binding by a synthetic peptide encompassing an I-2 N-terminal sequence suggested that a PP1 domain composed of amino acids Glu-53, Glu-55, Asp-165, Glu-166, and Lys-167 interacts with the N terminus of I-2. This defined a novel regulatory interaction between I-2 and PP1 that determines I-2 potency and perhaps selectivity as a PP1 inhibitor.
Collapse
Affiliation(s)
- J H Connor
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Zheng J, Khalil M, Cannon JF. Glc7p protein phosphatase inhibits expression of glutamine-fructose-6-phosphate transaminase from GFA1. J Biol Chem 2000; 275:18070-8. [PMID: 10764753 DOI: 10.1074/jbc.m000918200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Inhibitor-1 (I-1) is a specific inhibitor of protein phosphatase-1 (PP1). We assayed the ability of I-1 to inhibit Saccharomyces cerevisiae PP1, Glc7p, in vivo. Glc7p like other PP1 catalytic subunits associates with a variety of noncatalytic subunits, and Glc7p holoenzymes perform distinct physiological roles. Our results show that I-1 inhibits Glc7p holoenzymes that regulate transcription and mitosis, but holoenzymes responsible for meiosis and glycogen metabolism were unaffected. Additionally, we exploited a genetic screen for mutants that were dependent on I-1 to grow. This scheme can identify processes that are negatively regulated by Glc7p-catalyzed dephosphorylation. In this paper I-1-dependent gfa1 mutations were analyzed in detail. GFA1 encodes glutamine-fructose-6-phosphate transaminase. One or more phosphorylated proteins activate GFA1 transcription because the pheromone response and Pkc1p/mitogen-activated protein kinase pathways positively regulate GFA1 transcription. Our findings show that an I-1-sensitive Glc7p holoenzyme reduces GFA1 transcription. Therefore, GFA1 is a member of a growing list of genes that are negatively regulated by Glc7p dephosphorylation.
Collapse
Affiliation(s)
- J Zheng
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, USA
| | | | | |
Collapse
|
67
|
Venturi GM, Bloecher A, Williams-Hart T, Tatchell K. Genetic interactions between GLC7, PPZ1 and PPZ2 in saccharomyces cerevisiae. Genetics 2000; 155:69-83. [PMID: 10790385 PMCID: PMC1461071 DOI: 10.1093/genetics/155.1.69] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
GLC7 encodes an essential serine/threonine protein type I phosphatase in Saccharomyces cerevisiae. Three other phosphatases (Ppz1p, Ppz2p, and Sal6p) share >59% identity in their catalytic region with Glc7p. ppz1 ppz2 null mutants have no apparent growth defect on rich media. However, null alleles of PPZ1 and PPZ2, in combination with mutant alleles of GLC7, confer a range of growth defects varying from slow growth to lethality. These results indicate that Glc7p, Ppz1p, and Ppz2p may have overlapping functions. To determine if this overlap extends to interaction with targeting subunits, Glc7p-binding proteins were tested for interaction in the two-hybrid system with the functional catalytic domain of Ppz1p. Ppz1p interacts strongly with a number of Glc7p regulatory subunits, including Glc8p, a protein that shares homology with mammalian PP1 inhibitor I2. Genetic data suggest that Glc8p positively affects both Glc7p and Ppz1p functions. Together our data suggest that Ppz1p and Ppz2p may have overlapping functions with Glc7p and that all three phosphatases may act through common regulatory proteins.
Collapse
Affiliation(s)
- G M Venturi
- Department of Biochemistry and Molecular Biology, Louisiana State University Medical Center, Shreveport, Louisiana 71130, USA
| | | | | | | |
Collapse
|
68
|
Hong G, Trumbly RJ, Reimann EM, Schlender KK. Sds22p is a subunit of a stable isolatable form of protein phosphatase 1 (Glc7p) from Saccharomyces cerevisiae. Arch Biochem Biophys 2000; 376:288-98. [PMID: 10775415 DOI: 10.1006/abbi.2000.1715] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Protein phosphatase 1 (PP1) is one of the major protein phosphatases in eukaryotic cells. PP1 activity is believed to be controlled by the interaction of PP1 catalytic subunit with various regulatory subunits. The essential gene GLC7 encodes the PP1 catalytic subunit in Saccharomyces cerevisiae. In this study, full-length GLC7(1-312), C-terminal deletion mutants, and C-terminally poly-his tagged mutants were constructed and expressed in a GLC7 knockout strain of S. cerevisiae. Viability studies of the GLC7 knockout strains carrying the plasmids expressing GLC7 C-terminal deletion mutants and their tagged forms showed that the mutants 1-295 and 1-304 were functional, whereas the mutant 1-245 was not. The C-terminally poly-his tagged Glc7p with and without an N-terminal hemagglutinin (HA) tag was partially purified by immobilized Ni(2+) affinity chromatography and further analyzed by gel filtration and ion exchange chromatography. Phosphatase activity assays, SDS-PAGE, and Western blot analyses of the chromatographic fractions suggested that the Glc7p associated with regulatory subunits in vivo. A 40-kDa protein was copurified with tagged Glc7p through several chromatographic procedures. Monoclonal antibody against the HA tag coimmunoprecipitated the tagged Glc7p and the 40-kDa protein. This protein was further purified by a reverse phase HPLC column. Analysis by CNBr digestion, peptide sequencing, and electrospray mass spectrometry showed that this 40-kDa protein is Sds22p, one of the proteins proposed to be a regulatory subunit of Glc7. These results demonstrate that Sds22p forms a complex with Glc7p and that Sds22p:Glc7p is a stable isolatable form of yeast PP1.
Collapse
Affiliation(s)
- G Hong
- Department of Biochemistry and Molecular Biology, Department of Pharmacology, Medical College of Ohio, 3035 Arlington Avenue, Toledo, Ohio 43614-5804, USA
| | | | | | | |
Collapse
|
69
|
Bischoff JR, Plowman GD. The Aurora/Ipl1p kinase family: regulators of chromosome segregation and cytokinesis. Trends Cell Biol 1999; 9:454-9. [PMID: 10511710 DOI: 10.1016/s0962-8924(99)01658-x] [Citation(s) in RCA: 263] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Members of the Aurora/Ipl1p family of mitotically regulated serine/threonine kinases are emerging as key regulators of chromosome segregation and cytokinesis. Proper chromosome segregation and cytokinesis ensure that each daughter cell receives the full complement of genetic material. Defects in these processes can lead to aneuploidy and the propagation of genetic abnormalities. This review discusses the Aurora/Ipl1p kinases in terms of their protein structure and proposed function in mitotic cells and also the potential role of aurora2 in human cancer.
Collapse
Affiliation(s)
- J R Bischoff
- SUGEN, 230 East Grand Avenue, South San Francisco, CA 94080-4811, USA.
| | | |
Collapse
|
70
|
Peters C, Andrews PD, Stark MJ, Cesaro-Tadic S, Glatz A, Podtelejnikov A, Mann M, Mayer A. Control of the terminal step of intracellular membrane fusion by protein phosphatase 1. Science 1999; 285:1084-7. [PMID: 10446058 DOI: 10.1126/science.285.5430.1084] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Intracellular membrane fusion is crucial for the biogenesis and maintenance of cellular compartments, for vesicular traffic between them, and for exo- and endocytosis. Parts of the molecular machinery underlying this process have been identified, but most of these components operate in mutual recognition of the membranes. Here it is shown that protein phosphatase 1 (PP1) is essential for bilayer mixing, the last step of membrane fusion. PP1 was also identified in a complex that contained calmodulin, the second known factor implicated in the regulation of bilayer mixing. The PP1-calmodulin complex was required at multiple sites of intracellular trafficking; hence, PP1 may be a general factor controlling membrane bilayer mixing.
Collapse
Affiliation(s)
- C Peters
- Friedrich-Miescher-Laboratorium, Spemannstrasse 37-39, 72076 Tübingen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Kim JH, Kang JS, Chan CS. Sli15 associates with the ipl1 protein kinase to promote proper chromosome segregation in Saccharomyces cerevisiae. J Biophys Biochem Cytol 1999; 145:1381-94. [PMID: 10385519 PMCID: PMC2133162 DOI: 10.1083/jcb.145.7.1381] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
The conserved Ipl1 protein kinase is essential for proper chromosome segregation and thus cell viability in the budding yeast Saccharomyces cerevisiae. Its human homologue has been implicated in the tumorigenesis of diverse forms of cancer. We show here that sister chromatids that have separated from each other are not properly segregated to opposite poles of ipl1-2 cells. Failures in chromosome segregation are often associated with abnormal distribution of the spindle pole-associated Nuf2-GFP protein, thus suggesting a link between potential spindle pole defects and chromosome missegregation in ipl1 mutant cells. A small fraction of ipl1-2 cells also appears to be defective in nuclear migration or bipolar spindle formation. Ipl1 associates, probably directly, with the novel and essential Sli15 protein in vivo, and both proteins are localized to the mitotic spindle. Conditional sli15 mutant cells have cytological phenotypes very similar to those of ipl1 cells, and the ipl1-2 mutation exhibits synthetic lethal genetic interaction with sli15 mutations. sli15 mutant phenotype, like ipl1 mutant phenotype, is partially suppressed by perturbations that reduce protein phosphatase 1 function. These genetic and biochemical studies indicate that Sli15 associates with Ipl1 to promote its function in chromosome segregation.
Collapse
Affiliation(s)
- J H Kim
- Department of Microbiology and Institute for Cellular and Molecular Biology, The University of Texas, Austin, Texas 78712, USA
| | | | | |
Collapse
|
72
|
Huang HB, Horiuchi A, Watanabe T, Shih SR, Tsay HJ, Li HC, Greengard P, Nairn AC. Characterization of the inhibition of protein phosphatase-1 by DARPP-32 and inhibitor-2. J Biol Chem 1999; 274:7870-8. [PMID: 10075680 DOI: 10.1074/jbc.274.12.7870] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospho-DARPP-32 (where DARPP-32 is dopamine- and cAMP-regulated phosphoprotein, Mr 32,000), its homolog, phospho-inhibitor-1, and inhibitor-2 are potent inhibitors (IC50 approximately 1 nM) of the catalytic subunit of protein phosphatase-1 (PP1). Our previous studies have indicated that a region encompassing residues 6-11 (RKKIQF) and phospho-Thr-34, of phospho-DARPP-32, interacts with PP1. However, little is known about specific regions of inhibitor-2 that interact with PP1. We have now characterized in detail the interaction of phospho-DARPP-32 and inhibitor-2 with PP1. Mutagenesis studies indicate that within DARPP-32 Phe-11 and Ile-9 play critical roles, with Lys-7 playing a lesser role in inhibition of PP1. Pro-33 and Pro-35 are also important, as is the number of amino acids between residues 7 and 11 and phospho-Thr-34. For inhibitor-2, deletion of amino acids 1-8 (I2-(9-204)) or 100-204 (I2-(1-99)) had little effect on the ability of the mutant proteins to inhibit PP1. Further deletion of residues 9-13 (I2-(14-204)) resulted in a large decrease in inhibitory potency (IC50 approximately 800 nM), whereas further COOH-terminal deletion (I2-(1-84)) caused a moderate decrease in inhibitory potency (IC50 approximately 10 nM). Within residues 9-13 (PIKGI), mutagenesis indicated that Ile-10, Lys-11, and Ile-13 play critical roles. The peptide I2-(6-20) antagonized the inhibition of PP-1 by inhibitor-2 but had no effect on inhibition by phospho-DARPP-32. In contrast, the peptide D32-(6-38) antagonized the inhibition of PP1 by phospho-DARPP-32, inhibitor-2, and I2-(1-120) but not I2-(85-204). These results indicate that distinct amino acid motifs contained within the NH2 termini of phospho-DARPP-32 (KKIQF, where italics indicate important residues) and inhibitor-2 (IKGI) are critical for inhibition of PP1. Moreover, residues 14-84 of inhibitor-2 and residues 6-38 of phospho-DARPP-32 share elements that are important for interaction with PP1.
Collapse
Affiliation(s)
- H B Huang
- Institute of Biochemistry, Tzu Chi College of Medicine and Humanities, Hualien 970, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Helps NR, Vergidou C, Gaskell T, Cohen PT. Characterisation of a novel Drosophila melanogaster testis specific PP1 inhibitor related to mammalian inhibitor-2: identification of the site of interaction with PP1. FEBS Lett 1998; 438:131-6. [PMID: 9821974 DOI: 10.1016/s0014-5793(98)01286-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
A novel Drosophila melanogaster protein, termed inhibitor-t, that bears 41% sequence similarity to human protein phosphatase inhibitor-2 has been identified using human protein phosphatase 1 (PP1) in the yeast two hybrid system. Inhibitor-t mRNA is detected in adult males, larvae and pupae and the 184 amino acid thermostable protein located only in testis. The gene for inhibitor-t maps to cytological location 86F1 on the third chromosome. Bacterially expressed inhibitor-t specifically inhibits both mammalian and D. melanogaster PP1 catalytic subunits with an IC50 of approximately 200 nM. A motif -FEX1X2RK-, conserved between inhibitor-t, inhibitor-2 and its Saccharomyces cerevisiae homologue Glc8, is demonstrated to be required for binding to PP1.
Collapse
Affiliation(s)
- N R Helps
- Department of Biochemistry, University of Dundee, UK.
| | | | | | | |
Collapse
|
74
|
Ramaswamy NT, Li L, Khalil M, Cannon JF. Regulation of yeast glycogen metabolism and sporulation by Glc7p protein phosphatase. Genetics 1998; 149:57-72. [PMID: 9584086 PMCID: PMC1460142 DOI: 10.1093/genetics/149.1.57] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Glc7p is an essential serine/threonine type 1 protein phosphatase (PP1) from the yeast Saccharomyces cerevisiae, which has a role in many processes including cell cycle progression, sporulation, glycogen accumulation, translation initiation, and glucose repression. Two hallmarks of PP1 enzymes are very high amino acid sequence conservation and association of the catalytic subunit with a variety of noncatalytic, regulatory subunits. We tested the hypothesis that PP1 sequence conservation was the result of each PP1 residue playing a role in multiple intermolecular interactions. Analysis of 24 glc7 mutants, isolated primarily by their glycogen accumulation traits, revealed that every mutated Glc7p residue altered many noncatalytic subunit affinities and conferred unselected sporulation traits to various degrees. Furthermore, quantitative analysis showed that Glc7p affinity for the glycogen-binding noncatalytic subunit Gac1p was not the only parameter that determines the glycogen accumulation by a glc7 mutant. Sds22p is one Glc7p noncatalytic subunit that is essential for mitotic growth. Surprisingly, several mutant Glc7p proteins had undetectable affinity for Sds22p, yet grew apparently normally. The characterization of glc7 diploid sporulation revealed that Glc7p has at least two meiotic roles. Premeiotic DNA synthesis was undetectable in glc7 mutants with the poorest sporulation. In the glc7 diploids examined, expression of the meiotic inducer IME1 was proportional to the glc7 diploid sporulation frequency. Moreover, IME1 hyperexpression could not suppress glc7 sporulation traits. The Glc7p/Gip1p holoenzyme may participate in completion of meiotic divisions or spore packaging because meiotic dyads predominate when some glc7 diploids sporulate.
Collapse
Affiliation(s)
- N T Ramaswamy
- Department of Molecular Microbiology and Immunology, University of Missouri, Columbia, Missouri 65212, USA
| | | | | | | |
Collapse
|
75
|
Abstract
Since the isolation of the first yeast protein phosphatase genes in 1989, much progress has been made in understanding this important group of proteins. Yeast contain genes encoding all the major types of protein phosphatase found in higher eukaryotes and the ability to use genetic approaches will complement the wealth of biochemical information available from other systems. This review will summarize recent progress in understanding the structure, function and regulation of the PPP family of protein serine-threonine phosphatases, concentrating on the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- M J Stark
- Department of Biochemistry, University of Dundee, UK
| |
Collapse
|
76
|
Baker SH, Frederick DL, Bloecher A, Tatchell K. Alanine-scanning mutagenesis of protein phosphatase type 1 in the yeast Saccharomyces cerevisiae. Genetics 1997; 145:615-26. [PMID: 9055072 PMCID: PMC1207847 DOI: 10.1093/genetics/145.3.615] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Protein phosphatase type 1, encoded by GLC7 in Saccharomyces cerevisiae, is an essential serine/threonine phosphatase implicated in the regulation of a diverse array of physiological functions. We constructed and examined 20 mutant alleles of GLC7 in which codons encoding clusters of charged residues were changed to alanine codons. Three of 20 mutant alleles alter residues in the active site of the phosphatase and are unable to rescue the lethality of a glc7::LEU2 disruption. The 17 alleles that support growth confer a range of mutant traits including cell cycle arrest, 2-deoxyglucose resistance, altered levels of glycogen, sensitivity to high salt, and sporulation defects. For some traits, such as 2-deoxyglucose resistance and cell cycle arrest, the mutated residues map to specific regions of the protein whereas the mutated residues in glycogen-deficient mutants and sporulation-defective mutants are more widely distributed over the protein surface. Many mutants have complex phenotypes, each displaying a diverse range of defects. The wide range of phenotypes identified from the collection of mutant alleles is consistent with the hypothesis that Glc7p-binding proteins, which are thought to regulate the specificity of Glc7p, have overlapping binding sites on the surface of Glc7p. This could account for the high level of sequence conservation found among type 1 protein phosphatases from different species.
Collapse
Affiliation(s)
- S H Baker
- Department of Microbiology, North Carolina State University, Raleigh 27695, USA
| | | | | | | |
Collapse
|
77
|
Deshaies RJ. Phosphorylation and proteolysis: partners in the regulation of cell division in budding yeast. Curr Opin Genet Dev 1997; 7:7-16. [PMID: 9024629 DOI: 10.1016/s0959-437x(97)80103-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The budding yeast cell cycle oscillates between states of low and high cyclin B/cyclin-dependent kinase (CLB/CDK) activity. Remarkably, the two transitions that link these states are governed by ubiquitin-mediated proteolysis. The transition from low to high CLB activity is triggered by degradation of the CLB/CDK inhibitor SIC1, and the complementary excursion is propelled by the proteolytic destruction of CLBs. The extracellular environment controls this two-state circuit by regulating G1 cyclin/CDK activity, which is directly required for SIC1 proteolysis. Thus, stable oscillations of chromosome replication and segregation in budding yeast are propagated by the interplay between protein phosphorylation and protein degradation.
Collapse
Affiliation(s)
- R J Deshaies
- Division of Biology, California Institute of Technology, Pasadena California, 91125 USA.
| |
Collapse
|
78
|
Abstract
Since the isolation of the first yeast protein phosphatase genes in 1989, much progress has been made in understanding this important group of proteins. Yeast contain genes encoding all the major types of protein phosphatase found in higher eukaryotes and the ability to use genetic approaches will complement the wealth of biochemical information available from other systems. This review will summarize recent progress in understanding the structure, function and regulation of the PPP family of protein serine-threonine phosphatases, concentrating on the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- M J Stark
- Department of Biochemistry, University of Dundee, UK
| |
Collapse
|
79
|
MacKintosh C, Garton AJ, McDonnell A, Barford D, Cohen PT, Tonks NK, Cohen P. Further evidence that inhibitor-2 acts like a chaperone to fold PP1 into its native conformation. FEBS Lett 1996; 397:235-8. [PMID: 8955354 DOI: 10.1016/s0014-5793(96)01175-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The gamma1-isoform of protein phosphatase-1 expressed in Escherichia coli (PP1gamma) and the native PP1 catalytic subunit (PP1C) isolated from skeletal muscle dephosphorylated Ser-14 of glycogen phosphorylase at comparable rates. In contrast, PP1gamma dephosphorylated several tyrosine-phosphorylated proteins at similar rates to authentic protein tyrosine phosphatases (PTPases), but native PP1C was almost inactive towards these substrates. The phosphorylase phosphatase (PhP) and PTPase activities of PP1gamma were inhibited by vanadate with IC50 values (30-100 microM) comparable to authentic PTPases, whereas the PhP activity of native PP1C was insensitive to vanadate. PP1gamma lost its PTPase activity, and its PhP activity became insensitive to vanadate, after interaction with inhibitor-2, followed by the reversible phosphorylation of inhibitor-2 at Thr-72. These findings support and extend the hypothesis that inhibitor-2 functions like a chaperone to fold PP1 into its native conformation, and suggest that the correct folding of PP1 may be critical to prevent the uncontrolled dephosphorylation of cellular phosphotyrosine residues.
Collapse
Affiliation(s)
- C MacKintosh
- MRC Protein Phosphorylation Unit, Department of Biochemistry, University of Dundee, UK.
| | | | | | | | | | | | | |
Collapse
|
80
|
Frederick DL, Tatchell K. The REG2 gene of Saccharomyces cerevisiae encodes a type 1 protein phosphatase-binding protein that functions with Reg1p and the Snf1 protein kinase to regulate growth. Mol Cell Biol 1996; 16:2922-31. [PMID: 8649403 PMCID: PMC231286 DOI: 10.1128/mcb.16.6.2922] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The GLC7 gene of Saccharomyces cerevisiae encodes the catalytic subunit of type 1 protein phosphatase (PP1) and is essential for cell growth. We have isolated a previously uncharacterized gene, REG2, on the basis of its ability to interact with Glc7p in the two-hybrid system. Reg2p interacts with Glc7p in vivo, and epitope-tagged derivatives of Reg2p and Glc7p coimmunoprecipitate from cell extracts. The predicted protein product of the REG2 gene is similar to Reg1p, a protein believed to direct PP1 activity in the glucose repression pathway. Mutants with a deletion of reg1 display a mild slow-growth defect, while reg2 mutants exhibit a wild-type phenotype. However, mutants with deletions of both reg1 and reg2 exhibit a severe growth defect. Overexpression of REG2 complements the slow-growth defect of a reg1 mutant but does not complement defects in glycogen accumulation or glucose repression, two traits also associated with a reg1 deletion. These results indicate that REG1 has a unique role in the glucose repression pathway but acts together with REG2 to regulate some as yet uncharacterized function important for growth. The growth defect of a reg1 reg2 double mutant is alleviated by a loss-of-function mutation in the SNF1-encoded protein kinase. The snf1 mutation also suppresses the glucose repression defects of reg1. Together, our data are consistent with a model in which Reg1p and Reg2p control the activity of PP1 toward substrates that are phosphorylated by the Snf1p kinase.
Collapse
Affiliation(s)
- D L Frederick
- Department of Genetics, North Carolina State University, Raleigh 27695, USA
| | | |
Collapse
|