51
|
Sambri V, Marangoni A, Eyer C, Reichhuber C, Soutschek E, Negosanti M, D'Antuono A, Cevenini R. Western immunoblotting with five Treponema pallidum recombinant antigens for serologic diagnosis of syphilis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2001; 8:534-9. [PMID: 11329453 PMCID: PMC96096 DOI: 10.1128/cdli.8.3.534-539.2001] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Five immunodominant Treponema pallidum recombinant polypeptides (rTpN47, rTmpA, rTpN37, rTpN17, and rTpN15) were blotted onto strips, and 450 sera (200 from blood donors, 200 from syphilis patients, and 50 potentially cross-reactive) were tested to evaluate the diagnostic performance of recombinant Western blotting (recWB) in comparison with in-house whole-cell lysate antigen-based immunoblotting (wclWB) and T. pallidum hemagglutination (MHA-TP) for the laboratory diagnosis of syphilis. None of the serum specimens from blood donors or from potential cross-reactors gave a positive result when evaluated by recWB, wclWB, or MHA-TP. The evaluation of the immunoglobulin G immune response by recWB in sera from patients with different stages of syphilis showed that rTmpA was the most frequently identified antigen (95%), whereas only 41% of the specimens were reactive to rTpN37. The remaining recombinant polypeptides were recognized as follows: rTpN47, 92.5%; rTpN17, 89.5%; and rTpN15, 67.5%. The agreement between recWB and MHA-TP was 95.0% (100% with sera from patients with latent and late disease), and the concordance between wclWB and MHA-TP was 92.0%. The overall concordance between recWB and wclWB was 97.5% (100% with sera from patients with secondary and late syphilis and 94.6 and 98.6% with sera from patients with primary and latent syphilis, respectively). The overall sensitivity of recWB was 98.8% and the specificity was 97.1% with MHA-TP as the reference method. These values for sensitivity and specificity were slightly superior to those calculated for wclWB (sensitivity, 97.1%, and specificity, 96.1%). With wclWB as the standard test, the sensitivity and specificity of recWB were 98.9 and 99.3%, respectively. These findings suggest that the five recombinant polypeptides used in this study could be used as substitutes for the whole-cell lysate T. pallidum antigens and that this newly developed recWB test is a good, easy-to-use confirmatory method for the detection of syphilis antibodies in serum.
Collapse
Affiliation(s)
- V Sambri
- Section of Microbiology, DMCSS, University of Bologna, St. Orsola Hospital, Bologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Izard J, Samsonoff WA, Limberger RJ. Cytoplasmic filament-deficient mutant of Treponema denticola has pleiotropic defects. J Bacteriol 2001; 183:1078-84. [PMID: 11208807 PMCID: PMC94976 DOI: 10.1128/jb.183.3.1078-1084.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Treponema denticola, a ribbon-like structure of cytoplasmic filaments spans the cytoplasm at all stages of the cell division process. Insertional inactivation was used as a first step to determine the function of the cytoplasmic filaments. A suicide plasmid was constructed that contained part of cfpA and a nonpolar erythromycin resistance cassette (ermF and ermAM) inserted near the beginning of the gene. The plasmid was electroporated into T. denticola, and double-crossover recombinants which had the chromosomal copy of cfpA insertionally inactivated were selected. Immunoblotting and electron microscopy confirmed the lack of cytoplasmic filaments. The mutant was further analyzed by dark-field microscopy to determine cell morphology and by the binding of two fluorescent dyes to DNA to assess the distribution of cellular nucleic acids. The cytoplasmic filament protein-deficient mutant exhibited pleiotropic defects, including highly condensed chromosomal DNA, compared to the homogeneous distribution of the DNA throughout the cytoplasm in a wild-type cell. Moreover, chains of cells are formed by the cytoplasmic filament-deficient mutant, and those cells show reduced spreading in agarose, which may be due to the abnormal cell length. The chains of cells and the highly condensed chromosomal DNA suggest that the cytoplasmic filaments may be involved in chromosome structure, segregation, or the cell division process in Treponema.
Collapse
Affiliation(s)
- J Izard
- Wadsworth Center, David Axelrod Institute for Public Health, New York State Department of Health, Albany, New York 12201-2002, USA.
| | | | | |
Collapse
|
53
|
Backhouse JL, Nesteroff SI. Treponema pallidum western blot: comparison with the FTA-ABS test as a confirmatory test for syphilis. Diagn Microbiol Infect Dis 2001; 39:9-14. [PMID: 11173185 DOI: 10.1016/s0732-8893(00)00213-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We developed a Treponema pallidum Western blot and compared the results with Treponema pallidum particle agglutination (TPPA) and fluorescent treponemal antibody absorption (FTA-ABS) tests. The Western blot was deemed reactive if the serum reacted with at least three major antigenic bands (TpN47, TpN44.5, TpN17, TpN15). The sensitivities of the Western blot, TPPA and FTA-ABS, were all 100% and the specificities of the Western blot, TPPA and FTA-ABS were 100%, 100% and 94.5% respectively. In 52 problem sera, reactive in only one treponemal test, the agreement between the Western blot and TPPA (61.5%) was significantly better than between Western blot and FTA-ABS (38.5%). The individual sensitivities and specificities of TpN47, TpN44.5, TpN17, TpN15 were 100%, 100%, 96%, 100% and 20%, 96%, 100%, 100% respectively. We conclude that the Western blot is a useful additional confirmatory test or alternative to the FTA-ABS and that a more sensitive and specific criterion for the Western blot would be reactivity with TpN15 and two of the three other major antigens.
Collapse
Affiliation(s)
- J L Backhouse
- Centre for Infectious Diseases and Microbiology Laboratory Services, Institute of Clinical Pathology and Medical Research (ICPMR), NSW 2145, Westmead, Australia.
| | | |
Collapse
|
54
|
Li C, Corum L, Morgan D, Rosey EL, Stanton TB, Charon NW. The spirochete FlaA periplasmic flagellar sheath protein impacts flagellar helicity. J Bacteriol 2000; 182:6698-706. [PMID: 11073915 PMCID: PMC111413 DOI: 10.1128/jb.182.23.6698-6706.2000] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Spirochete periplasmic flagella (PFs), including those from Brachyspira (Serpulina), Spirochaeta, Treponema, and Leptospira spp., have a unique structure. In most spirochete species, the periplasmic flagellar filaments consist of a core of at least three proteins (FlaB1, FlaB2, and FlaB3) and a sheath protein (FlaA). Each of these proteins is encoded by a separate gene. Using Brachyspira hyodysenteriae as a model system for analyzing PF function by allelic exchange mutagenesis, we analyzed purified PFs from previously constructed flaA::cat, flaA::kan, and flaB1::kan mutants and newly constructed flaB2::cat and flaB3::cat mutants. We investigated whether any of these mutants had a loss of motility and altered PF structure. As formerly found with flaA::cat, flaA::kan, and flaB1::kan mutants, flaB2::cat and flaB3::cat mutants were still motile, but all were less motile than the wild-type strain, using a swarm-plate assay. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis indicated that each mutation resulted in the specific loss of the cognate gene product in the assembled purified PFs. Consistent with these results, Northern blot analysis indicated that each flagellar filament gene was monocistronic. In contrast to previous results that analyzed PFs attached to disrupted cells, purified PFs from a flaA::cat mutant were significantly thinner (19.6 nm) than those of the wild-type strain and flaB1::kan, flaB2::cat, and flaB3::cat mutants (24 to 25 nm). These results provide supportive genetic evidence that FlaA forms a sheath around the FlaB core. Using high-magnification dark-field microscopy, we also found that flaA::cat and flaA::kan mutants produced PFs with a smaller helix pitch and helix diameter compared to the wild-type strain and flaB mutants. These results indicate that the interaction of FlaA with the FlaB core impacts periplasmic flagellar helical morphology.
Collapse
Affiliation(s)
- C Li
- Department of Microbiology and Immunology, Health Sciences Center, West Virginia University, Morgantown, West Virginia 26506-9177, USA
| | | | | | | | | | | |
Collapse
|
55
|
Stamm LV, Bergen HL. The sequence-variable, single-copy tprK gene of Treponema pallidum Nichols strain UNC and Street strain 14 encodes heterogeneous TprK proteins. Infect Immun 2000; 68:6482-6. [PMID: 11035764 PMCID: PMC97738 DOI: 10.1128/iai.68.11.6482-6486.2000] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Syphilis is a chronic infection with early relapses that are hypothesized to result from the emergence of phenotypic variants of Treponema pallidum. Recent studies demonstrated that TprK, a target of protective immunity, is heterogeneous in several T. pallidum strains, but not in Nichols strain Seattle (A. Centurion-Lara, C. Godornes, C. Castro, W. C. Van Voorhis, and S. A. Lukehart, Infect. Immun. 68:824-831, 2000). Analysis of PCR-amplified tprK from Nichols strain UNC and Street strain 14 treponemes showed that TprK has seven regions of intrastrain heterogeneity resulting from amino acid substitutions, insertions, and deletions. In contrast, analysis of PCR-amplified tprJ showed little intrastrain or interstrain heterogeneity. Reverse transcriptase PCR analysis demonstrated that mRNA transcripts representing unique polymorphic TprK proteins are present during syphilitic infection. Southern hybridization confirmed that Nichols strain UNC and Street strain 14 each contain a single copy of tprK, indicating that intrastrain heterogeneity is due to the presence of multiple treponemal subpopulations which contain a variant form of tprK.
Collapse
Affiliation(s)
- L V Stamm
- Program in Infectious Diseases, Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, North Carolina 27599-7400, USA.
| | | |
Collapse
|
56
|
Sander A, Zagrosek A, Bredt W, Schiltz E, Piémont Y, Lanz C, Dehio C. Characterization of Bartonella clarridgeiae flagellin (FlaA) and detection of antiflagellin antibodies in patients with lymphadenopathy. J Clin Microbiol 2000; 38:2943-8. [PMID: 10921956 PMCID: PMC87154 DOI: 10.1128/jcm.38.8.2943-2948.2000] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/1999] [Accepted: 05/29/2000] [Indexed: 11/20/2022] Open
Abstract
Cat scratch disease (CSD) is a frequent clinical outcome of Bartonella henselae infection in humans. Recently, two case reports indicated Bartonella clarridgeiae as an additional causative agent of CSD. Both pathogens have been isolated from domestic cats, which are considered to be their natural reservoir. B. clarridgeiae and B. henselae can be distinguished phenotypically by the presence or absence of flagella, respectively. Separation of the protein content of purified flagella of B. clarridgeiae by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis indicated that the flagellar filament is mainly composed of a polypeptide with a mass of 41 kDa. N-terminal sequencing of 20 amino acids of this protein revealed a perfect match to the N-terminal sequence of flagellin (FlaA) as deduced from the sequence of the flaA gene cloned from B. clarridgeiae. The flagellin of B. clarridgeiae is closely related to flagellins of Bartonella bacilliformis and several Bartonella-related bacteria. Since flagellar proteins are often immunodominant antigens, we investigated whether antibodies specific for the FlaA protein of B. clarridgeiae are found in patients with CSD or lymphadenopathy. Immunoblotting with 724 sera of patients suffering from lymphadenopathy and 100 healthy controls indicated specific FlaA antibodies in 3.9% of the patients' sera but in none of the controls. B. clarridgeiae FlaA is thus antigenic and expressed in vivo, providing a valuable tool for serological testing. Our results further indicate that B. clarridgeiae might be a possible etiologic agent of CSD or lymphadenopathy. However, it remains to be clarified whether antibodies to the FlaA protein of B. clarridgeiae are a useful indicator of acute infection.
Collapse
Affiliation(s)
- A Sander
- Institute for Medical Microbiology and Hygiene, University of Freiburg, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
57
|
Affiliation(s)
- David A Haake
- Division of Infectious Diseases, 111F, Veterans Affairs Greater Los Angeles Health Care System, Los Angeles, CA 90073, USA and Department of Medicine, UCLA School of Medicine, Los Angeles, CA 90095, USA1
| |
Collapse
|
58
|
Marangoni A, Sambri V, Storni E, D'Antuono A, Negosanti M, Cevenini R. Treponema pallidum surface immunofluorescence assay for serologic diagnosis of syphilis. CLINICAL AND DIAGNOSTIC LABORATORY IMMUNOLOGY 2000; 7:417-21. [PMID: 10799455 PMCID: PMC95888 DOI: 10.1128/cdli.7.3.417-421.2000] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A surface immunofluorescence assay (SIFA) using live spirochetes was analyzed and compared with Western blot (WB), fluorescent treponemal antibody absorption (FTA-ABS), microhemagglutination (MHA-TP), and Treponema pallidum immobilization (TPI) assays for detecting serum antibodies to T. pallidum in patients with syphilis, in disease controls, and in healthy subjects. SIFA and WB were 99% sensitive (99 of 100 positive specimens) and specific (140 of 140 negative specimens); FTA-ABS showed a sensitivity and a specificity of 90 and 89% (90 of 100 positive and 125 of 140 negative specimens), respectively. MHA-TP showed a sensitivity of 84% (84 of 100 positive specimens) and a specificity of 98.5% (138 of 140 negative specimens). Finally, TPI had a sensitivity of 52% (52 of 100 positive specimens) and a specificity of 100% (140 of 140 negative specimens). The T. pallidum SIFA was therefore highly specific, showing no equivocal reactivities with control sera, and sensitive. The results suggest the possible use of SIFA as a confirmatory test in the serologic diagnosis of syphilis.
Collapse
Affiliation(s)
- A Marangoni
- Sezione di Microbiologia, DMCSS, University of Bologna, St. Orsola Hospital, 40138 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
59
|
Schmidt BL, Edjlalipour M, Luger A. Comparative evaluation of nine different enzyme-linked immunosorbent assays for determination of antibodies against Treponema pallidum in patients with primary syphilis. J Clin Microbiol 2000; 38:1279-82. [PMID: 10699042 PMCID: PMC88607 DOI: 10.1128/jcm.38.3.1279-1282.2000] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nine different enzyme-linked immunosorbent assays (ELISAs) with a sonicate or recombinant proteins of Treponema pallidum as antigen have been evaluated comparatively by testing 52 highly selected sera from patients with primary syphilis, all negative in the microhemagglutination test for T. pallidum (MHA-TP). Eight tests exhibited greater sensitivity (48.5 to 76.9%) than the commonly used Venereal Disease Research Laboratory test (44.2%). Higher sensitivity could be related to (i) the volume and dilution of the serum, (ii) the design of the assay (capture and competitive tests showed higher sensitivity than sandwich-based assays), and (iii) the ability to detected specific immunoglobulin M antibodies. The specificity of the ICE Syphilis and the Enzygnost Syphilis tests was 99.5 and 99.8%, respectively, as determined by routine testing of 2, 053 unselected sera in comparison with the MHA-TP test. ELISAs tested offered high sensitivity in patients with primary syphilis; however, recommendations to use these tests as screening assays do need further data on specificity and reactivity in late stages of the disease.
Collapse
Affiliation(s)
- B L Schmidt
- Ludwig Boltzmann Institute of Dermato-Venerological Serodiagnostics, Department of Dermatology, Hospital of the City of Vienna, Lainz, A-1130 Vienna, Austria.
| | | | | |
Collapse
|
60
|
|
61
|
SYPHILIS. Sex Transm Dis 2000. [DOI: 10.1016/b978-012663330-6/50018-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
62
|
Izard J, Samsonoff WA, Kinoshita MB, Limberger RJ. Genetic and structural analyses of cytoplasmic filaments of wild-type Treponema phagedenis and a flagellar filament-deficient mutant. J Bacteriol 1999; 181:6739-46. [PMID: 10542176 PMCID: PMC94139 DOI: 10.1128/jb.181.21.6739-6746.1999] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Unique cytoplasmic filaments are found in the treponeme genus of spirochete bacteria. Their function is unknown, but their location underneath the periplasmic flagellar filaments (PFF) suggests a role in motility and/or cell structure. To better understand these unique structures, the gene coding for the cytoplasmic filaments, cfpA, was identified in various treponemal species. Treponema phagedenis cfpA was 2,037 nucleotides long, and the encoded polypeptide showed 78 to 100% amino acid sequence identity with the partial sequence of CfpA from T. denticola, T. vincentii, and T. pallidum subsp. pertenue. Wild-type T. phagedenis and a PFF-deficient isolate were analyzed by electron microscopy to assess the structural relationship of the cytoplasmic filaments and the PFF. The number of cytoplasmic filaments per cell of T. phagedenis (mean, 5.7) was compared with the number of PFF at each end of the cell (mean, 4.7); the results suggest that there is no direct one-to-one correlation at the cell end. Moreover, a structural link between these structures could not be demonstrated. The cytoplasmic filaments were also analyzed by electron microscopy at different stages of cell growth; this analysis revealed that they are cleaved before or during septum formation and before the nascent formation of PFF. A PFF-deficient mutant of T. phagedenis possessed cytoplasmic filaments similar to those of the wild type, suggesting that intact PFF are not required for their assembly and regulation. The extensive conservation of CfpA among pathogenic spirochetes suggests an important function, and structural analysis suggests that it is unlikely that the cytoplasmic filaments and the flagellar apparatus are physically linked.
Collapse
Affiliation(s)
- J Izard
- David Axelrod Institute for Public Health, Wadsworth Center, New York State Department of Health, Albany, New York 12201-2002, USA.
| | | | | | | |
Collapse
|
63
|
Riviere GR, Smith KS, Willis SG, Riviere KH. Phenotypic and genotypic heterogeneity among cultivable pathogen-related oral spirochetes and Treponema vincentii. J Clin Microbiol 1999; 37:3676-80. [PMID: 10523573 PMCID: PMC85722 DOI: 10.1128/jcm.37.11.3676-3680.1999] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent findings challenge the assumption that pathogen-related oral spirochetes (PROS) are related to Treponema pallidum. Treponema vincentii, grown in OMIZ-Pat media, cross-reacted with monoclonal antibody H9-2 against T. pallidum, and cultivable PROS had 16S rRNA gene sequences similar to those of T. vincentii (C.-B. Choi, C. Wyss, and U. B. Göbel. J. Clin. Microbiol. 34:1922-1925, 1996). Aims of the present study were to determine whether antigen phenotypes of oral treponemas were influenced by growth conditions and to evaluate the genetic relatedness of cultivable PROS to T. pallidum and T. vincentii. Results show that three T. pallidum monoclonal antibodies (H9-1, H9-2, and F5) cross-reacted with whole cells from four Treponema species grown in modified OMIZ-Pat medium, but not with treponemas grown in NOS medium. Only H9-2 reacted in immunoblots with reduced proteins from cultivable PROS and T. vincentii. Three of five PROS isolates were amplified by T. vincentii-specific PCR, and one was amplified by Treponema medium-specific PCR. None were amplified by T. pallidum-specific PCR. Three of five PROS isolates had 16S ribosomal DNA restriction fragment length polymorphism patterns identical to that of T. vincentii, and the patterns of two isolates resembled that of T. medium. Arbitrarily primed-PCR profiles from whole genomic DNA were distinct among five PROS isolates and two T. vincentii strains. Thus, PROS isolates represent a heterogeneous group of treponemas that share some 16S rRNA gene sequences with T. vincentii and T. medium, but not with T. pallidum. It is proposed that the PROS nomenclature be dropped.
Collapse
Affiliation(s)
- G R Riviere
- Department of Pediatric Dentistry, School of Dentistry, Oregon Health Sciences University, Portland, Oregon 97201-3097, USA.
| | | | | | | |
Collapse
|
64
|
Blanco DR, Champion CI, Lewinski MA, Shang ES, Simkins SG, Miller JN, Lovett MA. Immunization with Treponema pallidum Outer Membrane Vesicles Induces High-Titer Complement-Dependent Treponemicidal Activity and Aggregation of T. pallidum Rare Outer Membrane Proteins (TROMPs). THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.5.2741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
The purpose of this study was to determine whether immunization with purified outer membrane vesicles (OMV) from Treponema pallidum (T.p.) could elicit Abs capable of killing this organism. It is well established that the immunization of rabbits or mice with killed T.p. or with recombinant T.p. Ags has failed to generate serum killing activity comparable with that of infection-derived immunity. Because of the small amount of T.p. OMV obtainable, a single mouse was immunized with purified OMV. The mouse anti-OMV serum and infection-derived immune rabbit serum (IRS) were compared by reactivities on two-dimensional T.p. immunoblots and by the T.p. immobilization test, a complement-dependent killing assay. Whereas IRS detected >40 Ags, the anti-OMV serum identified only 6 Ags corresponding to proteins identified previously in the outer membrane. T.p. immobilization testing showed that IRS had a 100% killing titer of 1:44 and a 50% killing titer of 1:662. By comparison, the mouse anti-OMV serum had a significantly greater 100% killing titer of 1:1,408 and a 50% killing titer of 1:16,896. Absorption of the anti-OMV serum to remove Ab against outer membrane-associated lipoproteins did not change the 100% killing titer. Freeze-fracture analysis of T.p. incubated in IRS or anti-OMV serum showed that T.p. rare membrane-spanning outer membrane proteins were aggregated. This is the first demonstration of high-titer killing Abs resulting from immunization with defined T.p. molecules; our study indicates that the targets for these Abs are T.p. rare outer membrane proteins.
Collapse
Affiliation(s)
- David R. Blanco
- *Microbiology, Immunology, and Molecular Genetics and
- †Medicine, School of Medicine, University of California, Los Angeles, CA 90024
| | | | - Michael A. Lewinski
- ‡Department of Infectious Diseases, Quest Diagnostics, Inc., San Juan Capistrano, CA 92690; and
| | | | - Stephen G. Simkins
- §Hybridoma Facility, Department of Microbiology, Pathology, and Parasitology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606
| | | | - Michael A. Lovett
- *Microbiology, Immunology, and Molecular Genetics and
- †Medicine, School of Medicine, University of California, Los Angeles, CA 90024
| |
Collapse
|
65
|
Blanco DR, Whitelegge JP, Miller JN, Lovett MA. Demonstration by mass spectrometry that purified native Treponema pallidum rare outer membrane protein 1 (Tromp1) has a cleaved signal peptide. J Bacteriol 1999; 181:5094-8. [PMID: 10438785 PMCID: PMC94002 DOI: 10.1128/jb.181.16.5094-5098.1999] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Purified native Tromp1 was subjected to mass spectrometric analysis in order to determine conclusively whether this protein possesses a cleaved or uncleaved signal peptide. The molecular masses of Tromp1, three Treponema pallidum lipoproteins, and a bovine serum albumin (BSA) control were determined by matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass spectrometry. The molecular masses of all of the T. pallidum lipoproteins and BSA were within 0.7% of their respective calculated masses. The molecular mass of Tromp1 was 31,510 Da, which is consistent with a signal-less form of Tromp1, given a calculated mass of unprocessed Tromp1 of 33, 571 Da, a difference of 2,061 Da (a 6.5% difference). Purified native Tromp1 was also subjected to MALDI-TOF analysis in comparison to recombinant Tromp1 following cyanogen bromide cleavage, which further confirmed the identity of Tromp1 and showed that native Tromp1 was not degraded at the carboxy terminus. These studies confirm that Tromp1 is processed and does not contain an uncleaved signal peptide as previously reported.
Collapse
Affiliation(s)
- D R Blanco
- Department of Microbiology, Immunology, and Molecular Genetics, University of California at Los Angeles, Los Angeles, California 90095, USA.
| | | | | | | |
Collapse
|
66
|
Millikan DS, Felbeck H, Stein JL. Identification and characterization of a flagellin gene from the endosymbiont of the hydrothermal vent tubeworm Riftia pachyptila. Appl Environ Microbiol 1999; 65:3129-33. [PMID: 10388713 PMCID: PMC91466 DOI: 10.1128/aem.65.7.3129-3133.1999] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial endosymbionts of the hydrothermal vent tubeworm Riftia pachyptila play a key role in providing their host with fixed carbon. Results of prior research suggest that the symbionts are selected from an environmental bacterial population, although a free-living form has been neither cultured from nor identified in the hydrothermal vent environment. To begin to assess the free-living potential of the symbiont, we cloned and characterized a flagellin gene from a symbiont fosmid library. The symbiont fliC gene has a high degree of homology with other bacterial flagellin genes in the amino- and carboxy-terminal regions, while the central region was found to be nonconserved. A sequence that was homologous to that of a consensus sigma28 RNA polymerase recognition site lay upstream of the proposed translational start site. The symbiont protein was expressed in Escherichia coli, and flagella were observed by electron microscopy. A 30,000-Mr protein subunit was identified in whole-cell extracts by Western blot analysis. These results provide the first direct evidence of a motile free-living stage of a chemoautotrophic symbiont and support the hypothesis that the symbiont of R. pachyptila is acquired with each new host generation.
Collapse
Affiliation(s)
- D S Millikan
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093-0202, USA
| | | | | |
Collapse
|
67
|
Heuner K, Choi BK, Schade R, Moter A, Otto A, Göbel UB. Cloning and characterization of a gene (mspA) encoding the major sheath protein of Treponema maltophilum ATCC 51939(T). J Bacteriol 1999; 181:1025-9. [PMID: 9922270 PMCID: PMC93473 DOI: 10.1128/jb.181.3.1025-1029.1999] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The major sheath protein-encoding gene (mspA) of the oral spirochete Treponema maltophilum ATCC 51939(T) was cloned by screening a genomic library with an anti-outer membrane fraction antibody. The mspA gene encodes a precursor protein of 575 amino acids with a predicted molecular mass of 62.3 kDa, including a signal peptide of 19 amino acids. The native MspA formed a heat-modifiable, detergent- and trypsin-stable complex which is associated with the outer membrane. Hybridization with an mspA-specific probe showed no cross-reactivity with the msp gene from Treponema denticola.
Collapse
Affiliation(s)
- K Heuner
- Institut für Mikrobiologie und Hygiene, Universitätsklinikum Charité, Humboldt-Universität zu Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
68
|
Wyss C. Flagellins, but not endoflagellar sheath proteins, of Treponema pallidum and of pathogen-related oral spirochetes are glycosylated. Infect Immun 1998; 66:5751-4. [PMID: 9826350 PMCID: PMC108726 DOI: 10.1128/iai.66.12.5751-5754.1998] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycosylation of the flagellar core proteins (FlaBs) was detected in Treponema pallidum Nichols and in the type or reference strains of seven oral Treponema species. In several nonmotile strains of oral treponemes, the FlaBs were undetectable by both antibody and glycan staining. In contrast, a spontaneous low-motility variant of T. vincenti poundi-related strain RitzA, OMZ 305A, lacked the flagellar sheath protein (FlaA) and the two glycan-staining FlaB bands of the wild type, but antibody labeling revealed a novel FlaB band with a lower relative molecular weight. A ca. 38-kDa component of isolated endoflagella of T. vincentii OMZ 800 was identified on Western blots as FlaA by monoclonal antibody (MAb) H9-2, which specifically labels the 37-kDa FlaA protein of T. pallidum. Glycan and H9-2 labeling patterns similar to those of T. pallidum were observed in whole-cell extracts of T. medium G7201 and of 10 strains classified as T. vincentii and as two T. vincentii-related taxons. These four groups were thus identified as cultivable pathogen (T. pallidum)-related oral spirochetes as defined by labeling with MAb H9-2. No H9-2 MAb-reactive component could be detected in T. amylovorum, T. denticola, T. maltophilum, T. pectinovorum, and the three subspecies of T. socranskii.
Collapse
Affiliation(s)
- C Wyss
- Institut für Orale Mikrobiologie und Allgemeine Immunologie, Zentrum für Zahn-, Mund- und Kieferheilkunde der Universität Z urich, CH-8028 Zürich, Switzerland.
| |
Collapse
|
69
|
Fraser CM, Norris SJ, Weinstock GM, White O, Sutton GG, Dodson R, Gwinn M, Hickey EK, Clayton R, Ketchum KA, Sodergren E, Hardham JM, McLeod MP, Salzberg S, Peterson J, Khalak H, Richardson D, Howell JK, Chidambaram M, Utterback T, McDonald L, Artiach P, Bowman C, Cotton MD, Fujii C, Garland S, Hatch B, Horst K, Roberts K, Sandusky M, Weidman J, Smith HO, Venter JC. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 1998; 281:375-88. [PMID: 9665876 DOI: 10.1126/science.281.5375.375] [Citation(s) in RCA: 697] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The complete genome sequence of Treponema pallidum was determined and shown to be 1,138,006 base pairs containing 1041 predicted coding sequences (open reading frames). Systems for DNA replication, transcription, translation, and repair are intact, but catabolic and biosynthetic activities are minimized. The number of identifiable transporters is small, and no phosphoenolpyruvate:phosphotransferase carbohydrate transporters were found. Potential virulence factors include a family of 12 potential membrane proteins and several putative hemolysins. Comparison of the T. pallidum genome sequence with that of another pathogenic spirochete, Borrelia burgdorferi, the agent of Lyme disease, identified unique and common genes and substantiates the considerable diversity observed among pathogenic spirochetes.
Collapse
Affiliation(s)
- C M Fraser
- Institute for Genomic Research, Rockville, MD 20850, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Greene SR, Stamm LV. Molecular characterization of Treponema pallidum mcp2, a putative chemotaxis protein gene. Infect Immun 1998; 66:2999-3002. [PMID: 9596781 PMCID: PMC108303 DOI: 10.1128/iai.66.6.2999-3002.1998] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/1998] [Accepted: 03/20/1998] [Indexed: 02/07/2023] Open
Abstract
The nucleotide sequence of the Treponema pallidum mcp2 gene was determined. mcp2 encodes a 45.8-kDa protein whose deduced amino acid sequence has significant homology with the C-terminal region of bacterial methyl-accepting chemotaxis proteins (MCPs). The Mcp2 N terminus lacks the hydrophobic transmembrane regions present in most MCPs. An Mcp2 fusion protein was strongly reactive with antibody (HC23) to the highly conserved domain of MCPs and with rabbit syphilitic serum. Antibody HC23 reacted with six T. pallidum proteins, including a 45-kDa protein that may correspond to Mcp2. This protein was present in the aqueous phase from T. pallidum cells that were solubilized with Triton X-114 and phase partitioned.
Collapse
Affiliation(s)
- S R Greene
- Program in Infectious Diseases, Department of Epidemiology, School of Public Health, University of North Carolina, Chapel Hill, North Carolina 27599-7400, USA
| | | |
Collapse
|
71
|
Ge Y, Li C, Corum L, Slaughter CA, Charon NW. Structure and expression of the FlaA periplasmic flagellar protein of Borrelia burgdorferi. J Bacteriol 1998; 180:2418-25. [PMID: 9573194 PMCID: PMC107184 DOI: 10.1128/jb.180.9.2418-2425.1998] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/1997] [Accepted: 03/03/1998] [Indexed: 02/07/2023] Open
Abstract
The spirochete which causes Lyme disease, Borrelia burgdorferi, has many features common to other spirochete species. Outermost is a membrane sheath, and within this sheath are the cell cylinder and periplasmic flagella (PFs). The PFs are subterminally attached to the cell cylinder and overlap in the center of the cell. Most descriptions of the B. burgdorferi flagellar filaments indicate that these organelles consist of only one flagellin protein (FlaB). In contrast, the PFs from other spirochete species are comprised of an outer layer of FlaA and a core of FlaB. We recently found that a flaA homolog was expressed in B. burgdorferi and that it mapped in a fla/che operon. These results led us to analyze the PFs and FlaA of B. burgdorferi in detail. Using Triton X-100 to remove the outer membrane and isolate the PFs, we found that the 38.0-kDa FlaA protein purified with the PFs in association with the 41.0-kDa FlaB protein. On the other hand, purifying the PFs by using Sarkosyl resulted in no FlaA in the isolated PFs. Sarkosyl has been used by others to purify B. burgdorferi PFs, and our results explain in part their failure to find FlaA. Unlike other spirochetes, B. burgdorferi FlaA was expressed at a lower level than FlaB. In characterizing FlaA, we found that it was posttranslationally modified by glycosylation, and thus it resembles its counterpart from Serpulina hyodysenteriae. We also tested if FlaA was synthesized in a spontaneously occurring PF mutant of B. burgdorferi (HB19Fla-). Although this mutant still synthesized flaA message in amounts similar to the wild-type amounts, it failed to synthesize FlaA protein. These results suggest that, in agreement with data found for FlaB and other spirochete flagellar proteins, FlaA is likely to be regulated on the translational level. Western blot analysis using Treponema pallidum anti-FlaA serum indicated that FlaA was antigenically well conserved in several spirochete species. Taken together, the results indicate that both FlaA and FlaB comprise the PFs of B. burgdorferi and that they are regulated differently from flagellin proteins of other bacteria.
Collapse
Affiliation(s)
- Y Ge
- Department of Microbiology and Immunology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown 26506-9177, USA
| | | | | | | | | |
Collapse
|
72
|
Young H, Moyes A, Seagar L, McMillan A. Novel recombinant-antigen enzyme immunoassay for serological diagnosis of syphilis. J Clin Microbiol 1998; 36:913-7. [PMID: 9542908 PMCID: PMC104660 DOI: 10.1128/jcm.36.4.913-917.1998] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Enzyme immunoassay (EIA) is an ideal method for screening large numbers of patients for syphilis. We evaluated a novel immune-capture EIA (ICE Syphilis; Murex Diagnostics) that uses three recombinant Treponema pallidum antigens (TpN15, TpN17, and TpN47) and compared the results with those obtained by the native T. pallidum antigen EIA (Captia SelectSyph-G; Centocor) that we currently use for the serodiagnosis of syphilis. Specificity was evaluated by screening 1,184 unselected serum specimens in parallel by the ICE Syphilis and SelectSyph-G assays, while sensitivity was tested with a panel of 101 serum specimens containing antitreponemal antibodies (treated and untreated) from patients with various stages of infection. The specificity of the ICE Syphilis EIA (99.8%) on screening was significantly higher (P < 0.02) than that of the SelectSyph-G EIA (99.2%). The sensitivity of the ICE Syphilis EIA was significantly higher (P < 0.01) than that of the SelectSyph-G EIA on both initial (99 versus 91.4%) and repeat (100 versus 92.4%) testing. The ICE Syphilis EIA was also significantly more sensitive (P < 0.01) than the fluorescent treponemal antibody-abs (92.4%) but not the T. pallidum hemagglutination assay (97.1%). Sera containing antitreponemal antibodies gave a much higher antibody index (absorbance of test serum/kit cutoff) by the ICE Syphilis EIA than by the SelectSyph-G EIA. This combined with the overall high sensitivity makes the ICE Syphilis EIA an ideal test for excluding or detecting treponemal infection in human immunodeficiency virus (HIV)-infected patients. The ICE Syphilis EIA was positive with sera from all 15 HIV-infected patients in the study, whereas sera from 3 HIV-infected patients were negative by the SelectSyph-G EIA. We conclude that the high sensitivity and specificity of the ICE Syphilis EIA and its suitability for automation make it an ideal screening test.
Collapse
Affiliation(s)
- H Young
- Department of Medical Microbiology, Edinburgh University Medical School, Scotland, United Kingdom.
| | | | | | | |
Collapse
|
73
|
Fenno JC, McBride BC. Virulence Factors of Oral Treponemes. Anaerobe 1998; 4:1-17. [PMID: 16887619 DOI: 10.1006/anae.1997.0131] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/1997] [Accepted: 10/20/1997] [Indexed: 11/22/2022]
Affiliation(s)
- J C Fenno
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
74
|
Shevchenko DV, Akins DR, Robinson EJ, Li M, Shevchenko OV, Radolf JD. Identification of homologs for thioredoxin, peptidyl prolyl cis-trans isomerase, and glycerophosphodiester phosphodiesterase in outer membrane fractions from Treponema pallidum, the syphilis spirochete. Infect Immun 1997; 65:4179-89. [PMID: 9317025 PMCID: PMC175601 DOI: 10.1128/iai.65.10.4179-4189.1997] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In this study, we characterized candidate rare outer membrane (OM) proteins with apparent molecular masses of 19, 27, 38, and 38.5 kDa, which had been identified previously in OM fractions from Treponema pallidum (J. D. Radolf et al., Infect. Immun. 63:4244-4252, 1995). Using N-terminal and internal amino acid sequences, a probe for the 19-kDa candidate was PCR amplified and used to screen a T. pallidum genomic library in Lambda Zap II. The corresponding gene (tlp) encoded a homolog for periplasmic thioredoxin-like proteins (Tlp), which reduce c-type cytochromes. A degenerate oligonucleotide derived from the N terminus of the 27-kDa protein was used to PCR amplify a duplex probe from a T. pallidum genomic library in pBluescript II SK+. With this probe, the corresponding gene (ppiB) was identified and found to code for a presumptive periplasmic cyclophilin B-type peptidyl prolyl cis-trans isomerase (PpiB). We postulate that PpiB assists the folding of proteins within the T. pallidum periplasmic space. The N terminus of the 38-kDa candidate was blocked to Edman degradation. However, internal sequence data revealed that it was basic membrane protein (Bmp), a previously characterized, signal peptidase I-processed protein. Triton X-114 phase partitioning revealed that despite its name, Bmp is hydrophilic and therefore likely to be periplasmic. The final candidate was also blocked to Edman degradation; as before, a duplex probe was PCR amplified with degenerate primers derived from internal sequences. The corresponding gene (glpQ) coded for a presumptively lipid-modified homolog of glycerophosphodiester phosphodiesterase (GlpQ). Based upon findings with other treponemal lipoproteins, the hydrophilic GlpQ polypeptide is thought to be anchored by N-terminal lipids to the periplasmic leaflet(s) of the cytoplasmic membrane and/or OM. The discovery of T. pallidum periplasmic proteins with potentially defined functions provides fresh insights into a poorly understood aspect of treponemal physiology. At the same time, however, these findings also raise important issues regarding the use of OM preparations for identifying rare OM proteins of T. pallidum.
Collapse
Affiliation(s)
- D V Shevchenko
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | |
Collapse
|
75
|
Winstanley C, Morgan JAW. The bacterial flagellin gene as a biomarker for detection, population genetics and epidemiological analysis. MICROBIOLOGY (READING, ENGLAND) 1997; 143 ( Pt 10):3071-3084. [PMID: 9353913 DOI: 10.1099/00221287-143-10-3071] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Craig Winstanley
- Biosciences Group, School of Natural and Environmental Sciences, Coventry University, Priory Street, Coventry CV1 5FB, UK
| | - J Alun W Morgan
- Horticulture Research International, Wellesbourne, Warwickshire CV35 9EF, UK
| |
Collapse
|
76
|
Akins DR, Robinson E, Shevchenko D, Elkins C, Cox DL, Radolf JD. Tromp1, a putative rare outer membrane protein, is anchored by an uncleaved signal sequence to the Treponema pallidum cytoplasmic membrane. J Bacteriol 1997; 179:5076-86. [PMID: 9260949 PMCID: PMC179365 DOI: 10.1128/jb.179.16.5076-5086.1997] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Treponema pallidum rare outer membrane protein 1 (Tromp1) has extensive sequence homology with substrate-binding proteins of ATP-binding cassette transporters. Because such proteins typically are periplasmic or cytoplasmic membrane associated, experiments were conducted to clarify Tromp1's physicochemical properties and cellular location in T. pallidum. Comparison of the sodium dodecyl sulfate-polyacrylamide gel electrophoresis mobilities of (i) native Tromp1 and Tromp1 synthesized by coupled in vitro transcription-translation and (ii) native Tromp1 and recombinant Tromp1 lacking the N-terminal signal sequence revealed that the native protein is not processed. Other studies demonstrated that recombinant Tromp1 lacks three basic porin-like properties: (i) the ability to form aqueous channels in liposomes which permit the influx of small hydrophilic solutes, (ii) an extensive beta-sheet secondary structure, and (iii) amphiphilicity. Subsurface localization of native Tromp1 was demonstrated by immunofluorescence analysis of treponemes encapsulated in gel microdroplets, while opsonization assays failed to detect surface-exposed Tromp1. Incubation of motile treponemes with 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)-diazarine, a photoactivatable, lipophilic probe, also did not result in the detection of Tromp1 within the outer membranes of intact treponemes but, instead, resulted in the labeling of a basic 30.5-kDa presumptive outer membrane protein. Finally, analysis of fractionated treponemes revealed that native Tromp1 is associated predominantly with cell cylinders. These findings comprise a body of evidence that Tromp1 actually is anchored by an uncleaved signal sequence to the periplasmic face of the T. pallidum cytoplasmic membrane, where it likely subserves a transport-related function.
Collapse
Affiliation(s)
- D R Akins
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | |
Collapse
|
77
|
Ge Y, Charon NW. FlaA, a putative flagellar outer sheath protein, is not an immunodominant antigen associated with Lyme disease. Infect Immun 1997; 65:2992-5. [PMID: 9199479 PMCID: PMC175421 DOI: 10.1128/iai.65.7.2992-2995.1997] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
FlaA was recently found to be associated with flagellar filaments of Borrelia burgdorferi. We tested whether antibodies to this protein are a good indicator of infection, as antibodies to FlaA proteins in other spirochetal infections show an increase in titer. Although overproduction of intact FlaA was highly toxic to Escherichia coli, truncated proteins which lacked the N-terminal signal sequence could be successfully overexpressed. Immunoblotting with sera from mammalian hosts infected with B. burgdorferi indicated that FlaA is not an immunodominant antigen in Lyme disease. However, sera from two patients reacted with both recombinant and native FlaA protein, suggesting that B. burgdorferi FlaA was antigenic and expressed in vivo.
Collapse
Affiliation(s)
- Y Ge
- Department of Microbiology and Immunology, West Virginia University, Morgantown 26506-9177, USA
| | | |
Collapse
|
78
|
Hagman KE, Porcella SF, Popova TG, Norgard MV. Evidence for a methyl-accepting chemotaxis protein gene (mcp1) that encodes a putative sensory transducer in virulent Treponema pallidum. Infect Immun 1997; 65:1701-9. [PMID: 9125550 PMCID: PMC175201 DOI: 10.1128/iai.65.5.1701-1709.1997] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The clinical and histopathological manifestations of syphilis and the invasive behavior of Treponema pallidum in tissue culture systems reflect the propensity for treponemes to migrate through skin, hematogenously disseminate, and invade targeted tissues. Treponemal motility is believed to be essential to this process and thereby an important facet of syphilis pathogenesis. By analogy with other bacterial pathogens, it is plausible that treponemal motility and tissue invasion are modulated by sensory transduction events associated with chemotactic responses. Recent studies have demonstrated the existence in T. pallidum of accessory molecules typically associated with sensory transduction events involving methyl-accepting chemotaxis proteins (MCPs). Intrinsic radiolabeling of T. pallidum in vitro with L-[methyl-3H] methionine revealed one methylated treponemal polypeptide with an apparent molecular mass of 64 kDa. A degenerate oligonucleotide probe corresponding to a highly conserved C-terminal domain within Bacillus subtilis and Escherichia coli MCPs was used in Southern blotting of T. pallidum DNA to identify and subsequently clone a putative T. pallidum MCP gene (mcp1). Computer analyses predicted a near-consensus promoter upstream of mcp1, and primer extension analysis employing T. pallidum RNA revealed a transcriptional initiation site. T. pallidum mcp1 encoded a 579-amino-acid (64.6-kDa) polypeptide which was highly homologous to at least 69 other known or putative sensory transducer proteins, with the highest degrees of homology existing between the C terminus of mcp1 and the C-terminal (signaling) domains of the other bacterial MCPs. Other salient features of Mcp1 included (i) six potential membrane-spanning domains at the N terminus, (ii) two predicted alpha-helical coiled coil regions containing at least three putative methylation sites, and (iii) homologies with two ligand-binding domains (LI-1 and LI-2) of the E. coli MCPs Trg and Tar. This study is the first to provide both metabolic and genetic evidence for an MCP sensory transducer in T. pallidum. The combined findings prompt key questions regarding the relationship(s) among sensory transduction, regulation of endoflagellar rotation, and chemotactic responses (in particular, the role of glucose) during virulence expression by T. pallidum.
Collapse
Affiliation(s)
- K E Hagman
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | |
Collapse
|
79
|
Shevchenko DV, Akins DR, Robinson E, Li M, Popova TG, Cox DL, Radolf JD. Molecular characterization and cellular localization of TpLRR, a processed leucine-rich repeat protein of Treponema pallidum, the syphilis spirochete. J Bacteriol 1997; 179:3188-95. [PMID: 9150213 PMCID: PMC179096 DOI: 10.1128/jb.179.10.3188-3195.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Automated Edman degradation was used to obtain N-terminal and internal amino acid sequences from a 26-kDa protein in isolated Treponema pallidum outer membranes (OMs). The resulting sequences enabled us to PCR amplify from T. pallidum DNA a 275-bp fragment of the corresponding gene. The complete nucleotide sequence of the gene was determined from fragments amplified by long-distance PCR. Primer extension verified the assigned translational start of the open reading frame (ORF) and putative upstream promoter elements. The ORF encoded a highly basic (pI 9.6) 26-kDa protein which contained an N-terminal 25-amino-acid leader peptide terminated by a signal peptidase I cleavage site. The mature protein contained seven tandemly spaced copies (as well as an eighth incomplete copy) of a leucine-rich repeat (LRR), a motif previously identified in a number of prokaryotic and eukaryotic proteins. Accordingly, the polypeptide was designated T. pallidum leucine-rich repeat protein (TpLRR). Although Triton X-114 phase partitioning showed that TpLRR was hydrophilic, cell localization studies showed that most of the antigen was associated with the peptidoglycan-cytoplasmic membrane complex rather than being freely soluble in the periplasmic space. Immunoblot studies showed that syphilis patients develop a weak antibody response to the antigen. Lastly, the lrr(T. pallidum) gene was mapped to a 60-kb SfiI-SpeI fragment of the T. pallidum chromosome which also contains the rrnA and flaA genes. The function(s) of TpLRR is currently unknown; however, protein-protein and/or protein-lipid interactions mediated by its LRR motifs may facilitate interactions between components of the T. pallidum cell envelope.
Collapse
Affiliation(s)
- D V Shevchenko
- Department of Internal Medicine, U.T. Southwestern Medical Center at Dallas, Texas 75235, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Centurion-Lara A, Arroll T, Castillo R, Shaffer JM, Castro C, Van Voorhis WC, Lukehart SA. Conservation of the 15-kilodalton lipoprotein among Treponema pallidum subspecies and strains and other pathogenic treponemes: genetic and antigenic analyses. Infect Immun 1997; 65:1440-4. [PMID: 9119485 PMCID: PMC175151 DOI: 10.1128/iai.65.4.1440-1444.1997] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The 15-kDa lipoprotein of Treponema pallidum is a major immunogen during natural syphilis infection in humans and experimental infection in other hosts. The humoral and cellular immune responses to this molecule appear late in infection as resistance to reinfection is developing. One therefore might hypothesize that this antigen is important for protective immunity. This possibility is explored by using both genetic and antigenic approaches. Limited or no cross-protection has been demonstrated between the T. pallidum subspecies and strains or between Treponema species. We therefore hypothesized that if the 15-kDa antigen was of major importance in protective immunity, it might be a likely site of antigenic diversity. To explore this possibility, the sequences of the open reading frames of the 15-kDa gene have been determined for Treponema pallidum subsp. pallidum (Nichols and Bal-3 strains), T. pallidum subsp. pertenue (Gauthier strain), T. pallidum subsp. endemicum (Bosnia strain), Treponema paraluiscuniculi (Cuniculi A, H, and K strains), and a little-characterized simian isolate of Treponema sp. (Fribourg-Blanc strain). No significant differences in DNA sequences of the genes for the coding region of the 15-kDa antigen were found among the different species and subspecies studied. In addition, all organisms showed expression of the 15-kDa antigen as determined by monoclonal antibody staining. The role of the 15-kDa antigen in protection against homologous infection with T. pallidum subsp. pallidum Nichols was examined in rabbits immunized with a purified recombinant 15-kDa fusion protein. No alteration in chancre development was observed in immunized, compared to unimmunized, rabbits, and the antisera induced by the immunization failed to enhance phagocytosis of T. pallidum subsp. pallidum by macrophages in vitro. These results do not support a major role for this antigen in protection against syphilis infection.
Collapse
Affiliation(s)
- A Centurion-Lara
- Department of Medicine, University of Washington, Seattle 98195, USA
| | | | | | | | | | | | | |
Collapse
|
81
|
Ruby JD, Li H, Kuramitsu H, Norris SJ, Goldstein SF, Buttle KF, Charon NW. Relationship of Treponema denticola periplasmic flagella to irregular cell morphology. J Bacteriol 1997; 179:1628-35. [PMID: 9045823 PMCID: PMC178876 DOI: 10.1128/jb.179.5.1628-1635.1997] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Treponema denticola is an anaerobic, motile, oral spirochete associated with periodontal disease. We found that the periplasmic flagella (PFs), which are located between the outer membrane sheath and cell cylinder, influence its morphology in a unique manner. In addition, the protein composition of the PFs was found to be quite complex and similar to those of other spirochetes. Dark-field microscopy revealed that most wild-type cells had an irregular twisted morphology, with both planar and helical regions, and a minority of cells had a regular right-handed helical shape. High-voltage electron microscopy indicated that the PFs, especially in those regions of the cell which were planar, wrapped around the cell body axis in a right-handed sense. In those regions of the cell which were helical or irregular, the PFs tended to lie along the cell axis. The PFs caused the cell to form the irregular shape, as two nonmotile, PF-deficient mutants (JR1 and HL51) were no longer irregular but were right-handed helices. JR1 was isolated as a spontaneously occurring nonmotile mutant, and HL51 was isolated as a site-directed mutant in the flagellar hook gene flgE. Consistent with these results is the finding that wild-type cells with their outer membrane sheath removed were also right-handed helices similar in shape to JR1 and HL51. Purified PFs were analyzed by two-dimensional gel electrophoresis, and several protein species were identified. Western blot analysis using antisera to Treponema pallidum PF proteins along with N-terminal amino acid sequence analysis indicated T. denticola PFs are composed of one class A sheath protein of 38 kDa (FlaA) and three class B proteins of 35 kDa (FlaB1 and FlaB2) and one of 34 kDa (FlaB3). The N-terminal amino acid sequences of the FlaA and FlaB proteins of T. denticola were most similar to those of T. pallidum and Treponema phagedenis. Because these proteins were present in markedly reduced amounts or were absent in HL51, PF synthesis is likely to be regulated in a hierarchy similar to that found for flagellar. synthesis in other bacteria.
Collapse
Affiliation(s)
- J D Ruby
- Department of Microbiology and Immunology, Robert C. Byrd Health Sciences Center, West Virginia University, Morgantown 26506-9177, USA
| | | | | | | | | | | | | |
Collapse
|
82
|
Abstract
Most investigators have assumed that the periplasmic flagella (PFs) of Borrelia burgdorferi are composed of only one flagellin protein. The PFs of most other spirochete species are complex: these PFs contain an outer sheath of FlaA proteins and a core filament of FlaB proteins. During an analysis of a chemotaxis gene cluster of B. burgdorferi 212, we were surprised to find a flaA gene homolog with a deduced polypeptide having 54 to 58% similarity to FlaA from other spirochetes. Like other FlaA proteins, B. burgdorferi FlaA has a conserved signal sequence at its N terminus. Based on reverse transcription-PCR and primer extension analysis, this flaA homolog and five chemotaxis genes constitute a motility-chemotaxis operon. Immunoblots using anti-FlaA serum from Treponema pallidum and a lysate of B. burgdorferi showed strong reactivity to a protein of 38.0 kDa, which is consistent with the expression of flaA in growing cells.
Collapse
Affiliation(s)
- Y Ge
- Department of Microbiology and Immunology, West Virginia University, Morgantown 26506-9177, USA
| | | |
Collapse
|
83
|
Porcella SF, Popova TG, Hagman KE, Penn CW, Radolf JD, Norgard MV. A mgl-like operon in Treponema pallidum, the syphilis spirochete. Gene X 1996; 177:115-21. [PMID: 8921855 DOI: 10.1016/0378-1119(96)00286-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A 38-kDa lipoprotein of Treponema pallidum subsp. pallidum (T. pallidum), the syphilis spirochete, previously was identified as a putative homolog of E. coli MglB [Becker et al. (1994) Infect. Immun. 62, 1381-1391]. In the present study, genome walking in regions adjacent to the T. pallidum 38-kDa lipoprotein gene has identified three contiguous genes (tp-mglB [formerly tpp38], tp-mglA, and tp-mglC) which appear to comprise a mgl-like operon in T. pallidum. A prominent transcript corresponding to tp-mglB, the first gene of the operon which encodes the carbohydrate receptor, is synthesized by T. pallidum along with lesser abundant transcript(s) corresponding to the entire T. pallidum mgl operon. An active promoter 135 bp upstream of tp-mglB is believed to direct mRNA synthesis for the operon. This is the first membrane protein-encoding operon of T. pallidum for which a putative function (glucose import) has been assigned. Furthermore, by analogy with E. coli MglB which interacts with the sensory transducer Trg to induce a chemotactic response, it is possible that T. pallidum also contains a homolog of E. coli Trg or other methyl-accepting chemotaxis proteins. The existence of a mgl operon in T. pallidum thus may have important implications with respect to T. pallidum survival, tissue dissemination, and sensory transduction during virulence expression.
Collapse
Affiliation(s)
- S F Porcella
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | |
Collapse
|
84
|
Rosey EL, Kennedy MJ, Yancey RJ. Dual flaA1 flaB1 mutant of Serpulina hyodysenteriae expressing periplasmic flagella is severely attenuated in a murine model of swine dysentery. Infect Immun 1996; 64:4154-62. [PMID: 8926083 PMCID: PMC174351 DOI: 10.1128/iai.64.10.4154-4162.1996] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The motility imparted by the periplasmic flagella (PF) of Serpulina hyodysenteriae is thought to play a pivotal role in the enteropathogenicity of this spirochete. The complex PF are composed of multiple class A and class B polypeptides. Isogenic strains containing specifically disrupted flaAl or flaB1 alleles remain capable of expressing PF, although such mutants display aberrant motility in vitro. To further examine the role that these proteins play in the maintenance of periplasmic flagellar structural integrity, motility, and fitness for intestinal colonization, we constructed a novel strain of S. hyodysenteriae which is deficient in both FlaA1 and FlaB1. To facilitate construction of this strain, a chloramphenicol gene cassette, with general application as a selectable marker in prokaryotes, was developed. The cloned flaAl and flaB1 genes were disrupted by replacement of internal fragments with chloramphenicol and kanamycin gene cassettes, respectively. The inactivated flagellar genes were introduced into S. hyodysenteriae, and allelic exchange at the targeted chromosomal flaA1 and flaB1 loci was verified by PCR analysis. Immunoblots or cell lysates with antiserum raised against purified FlaA or FlaB confirmed the absence of the corresponding sheath and core proteins in this dual flagellar mutant. These mutations selectively abolished the expression of the targeted genes without affecting the synthesis of other immunologically related FlaB proteins. The resulting flaA1 flaB1 mutant exhibited altered motility in vitro. Surprisingly, it was capable of assembling periplasmic flagella that were morphologically normal as evidenced by electron microscopy. The virulence of this strain was assessed in a murine model of swine dysentery by determining the incidence of cecal lesions and the persistence of S. hyodysenteriae in the gut. Mice challenged with the wild-type strain or a passage control strain showed a dose-related response to the challenge organism. The dual flagellar mutant was severely attenuated in murine challenge experiments, suggesting that the FlaA1 and FlaB1 proteins are dispensable for flagellar assembly but critical for normal flagellar function and colonization of mucosal surfaces of the gastrointestinal tract. This strain represents the first spirochete engineered to contain specifically defined mutations in more than one genetic locus.
Collapse
Affiliation(s)
- E L Rosey
- Veterinary Infectious Diseases, Pharmacia and Upjohn, Inc., Kalamazoo, Michigan 49001, USA.
| | | | | |
Collapse
|
85
|
Baughn RE, Demecs M, Taber LH, Musher DM. Epitope mapping of B-cell determinants on the 15-kilodalton lipoprotein of Treponema pallidum (Tpp15) with synthetic peptides. Infect Immun 1996; 64:2457-66. [PMID: 8698467 PMCID: PMC174098 DOI: 10.1128/iai.64.7.2457-2466.1996] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The antigenicity of the 15-kDa lipoprotein of Treponema pallidum (Tpp15 or TpN15) was comprehensively evaluated in epitope-scanning studies with overlapping deca- and octapeptides and polygonal rabbit and human infant immunoglobulins (Igs) and antisera. This approach enabled us to identify potentially important regions and to determine the optimal dilutions of Igs or antisera for use in further studies. IgM and IgG from both species were capable of recognizing multiple, continuous epitopes. A total of 13 peptides, principally clustered in the central regions of the protein, were recognized by all syphilitic sera and Ig fractions. On the basis of window analyses, frequency profiles, and alanine substitution studies, five heptapeptides were selected for mimetic studies. Two of these five immunodominant, continuous epitopes initially appeared to be species specific; however, antisera elicited against mimetics of all five epitopes were polyspecific, recognizing similar motifs on several other treponemal proteins, including those of avirulent organisms. The only mimetic which yielded positive reactions with infant IgM and syphilitic sera in the absence of cross-reactions with rabbit antisera to avirulent treponemes was the variant of the VMYASSG motif. These findings are relevant to the development of simple, inexpensive assays for the serodiagnosis of active syphilis.
Collapse
Affiliation(s)
- R E Baughn
- Department of Microbiology and Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
86
|
You Y, Elmore S, Colton LL, Mackenzie C, Stoops JK, Weinstock GM, Norris SJ. Characterization of the cytoplasmic filament protein gene (cfpA) of Treponema pallidum subsp. pallidum. J Bacteriol 1996; 178:3177-87. [PMID: 8655496 PMCID: PMC178068 DOI: 10.1128/jb.178.11.3177-3187.1996] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Treponema pallidum and other members of the genera Treponema, Spirochaeta, and Leptonema contain multiple cytoplasmic filaments that run the length of the organism just underneath the cytoplasmic membrane. These cytoplasmic filaments have a ribbon-like profile and consist of a major cytoplasmic filament protein subunit (CfpA, formerly called TpN83) with a relative molecular weight of approximately 80,000. Degenerate DNA primers based on N-terminal and CNBr cleavage fragment amino acid sequences of T. pallidum subsp. pallidum (Nichols) CfpA were utilized to amplify a fragment of the encoding gene (cfpA). A 6.8-kb EcoRI fragment containing all but the 5' end of cfpA was identified by hybridization with the resulting PCR product and cloned into Lambda ZAP II. The 5' region was obtained by inverse PCR, and the complete gene sequence was determined. The cfpA sequence contained a 2,034-nucleotide coding region, a putative promoter with consensus sequences (5'-TTTACA-3' for -35 and 5'-TACAAT-3' for -10) similar to the sigma70 recognition sequence of Escherichia coli and other organisms, and a putative ribosome-binding site (5'-AGGAG-3'). The deduced amino acid sequence of CfpA indicated a protein of 678 residues with a calculated molecular mass of 78.5 kDa and an estimated pI of 6.15. No significant homology to known proteins or structural motifs was found among known prokaryotic or eukaryotic sequences. Expression of a LacZ-CfpA fusion protein in E. coli was detrimental to survival and growth of the host strain and resulted in the formation of short, irregular filaments suggestive of partial self-assembly of CfpA. The cytoplasmic filaments of T. pallidum and other spirochetes appear to represent a unique form of prokaryotic intracytoplasmic inclusions.
Collapse
Affiliation(s)
- Y You
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston 77225, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Shang ES, Summers TA, Haake DA. Molecular cloning and sequence analysis of the gene encoding LipL41, a surface-exposed lipoprotein of pathogenic Leptospira species. Infect Immun 1996; 64:2322-30. [PMID: 8675344 PMCID: PMC174073 DOI: 10.1128/iai.64.6.2322-2330.1996] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
We report the cloning of the gene encoding a surface-exposed leptospiral lipoprotein, designated LipL41. In a previous study, a 41-kDa protein antigen was identified on the surface of Leptospira kirschneri (D. A. Haake, E. M. Walker, D. R. Blanco, C. A. Bolin, J. N. Miller, and M. A. Lovett, Infect. Immun. 59:1131-1140, 1991). We obtained the N-terminal amino acid sequence of a staphylococcal V8 proteolytic-digest fragment in order to design an oligonucleotide probe.A Lambda ZAP II library containing EcoRI fragments of L. kirschneri DNA was screened, and a 2.3-kb DNA fragment which contained the entire structural lipL41 gene was identified. The deduced amino acid sequence of LipL41 would encode a 355-amino-acid polypeptide with a 19-amino-acid signal peptide, followed by an L-X-Y-C lipoprotein signal peptidase cleavage site. A recombinant His6-LipL41 fusion protein was expressed in Escherichia coli in order to generate specific rabbit antiserum. LipL41 is solubilized by Triton X-114 extraction of L. kirschneri; phase separation results in partitioning of LipL41 exclusively into the detergent phase. At least eight proteins, including LipL41 and the other major Triton X-114 detergent phase proteins, are intrinsically labeled during incubation of L. kirschneri in media containing [3H] palmitate. Processing of LipL41 is inhibited by globomycin, a selective inhibitor of lipoprotein signal peptidase. Triton X-100 extracts of L. kirschneri contain immunoprecipitable OmpL1 (porin), LipL41, and another lipoprotein, LipL36. However, in contrast to LipL36, only LipL41 and OmpL1 were exposed on the surface of intact organisms. Immunoblot analysis of a panel of Leptospira species reveals that LipL41 expression is highly conserved among leptospiral pathogens.
Collapse
Affiliation(s)
- E S Shang
- Department of Microbiology & Immunology, UCLA School of Medicine, Los Angeles, California 90095, USA
| | | | | |
Collapse
|
88
|
Hardham JM, Frye JG, Stamm LV. Identification and sequences of the Treponema pallidum fliM', fliY, fliP, fliQ, fliR and flhB' genes. Gene X 1995; 166:57-64. [PMID: 8529894 DOI: 10.1016/0378-1119(95)00583-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Information regarding the biology and virulence attributes of Treponema pallidum (Tp) is limited due to the lack of genetic exchange mechanisms and the inability to continuously cultivate this spirochete. We have utilized TnphoA mutagenesis of a Tp genomic DNA library in Escherichia coli (Ec) to identify genes encoding exported proteins, a subset of which are likely to be important in treponemal pathogenesis. We report here the identification and nucleotide (nt) sequence of a 5-kb treponemal DNA insert that contains seven open reading frames (ORFs). The proteins encoded by six of these ORFs have homology with members of a newly described protein family involved in the biogenesis/assembly of flagella and the control of flagellar rotation in Ec, Salmonella typhimurium (St) and Bacillus subtilis (Bs). Certain members of this family are also involved in the export of virulence factors in Yersinia (Yr) spp., St and Shigella flexneri (Sf). We have named these six ORFs fliM', fliY, fliP, fliQ, fliR and flhB'. The operon containing these ORFs has been designated as the fla operon. We hypothesize that the protein products of these genes are involved in the biogenesis/assembly of flagella and the control of flagellar rotation in Tp.
Collapse
Affiliation(s)
- J M Hardham
- Department of Microbiology and Immunology, School of Medicine, University of North Carolina, Chapel Hill 27599, USA
| | | | | |
Collapse
|
89
|
Skare JT, Shang ES, Foley DM, Blanco DR, Champion CI, Mirzabekov T, Sokolov Y, Kagan BL, Miller JN, Lovett MA. Virulent strain associated outer membrane proteins of Borrelia burgdorferi. J Clin Invest 1995; 96:2380-92. [PMID: 7593626 PMCID: PMC185890 DOI: 10.1172/jci118295] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have isolated and purified outer membrane vesicles (OMV) from Borrelia burgdorferi strain B31 based on methods developed for isolation of Treponema pallidum OMV. Purified OMV exhibited distinct porin activities with conductances of 0.6 and 12.6 nano-Siemen and had no detectable beta-NADH oxidase activity indicating their outer membrane origin and their lack of inner membrane contamination, respectively. Hydrophobic proteins were identified by phase partitioning with Triton X-114. Most of these hydrophobic membrane proteins were not acylated, suggesting that they are outer membrane-spanning proteins. Identification of palmitate-labeled lipoproteins revealed that several were enriched in the OMV, several were enriched in the protoplasmic cylinder inner membrane fraction, and others were found exclusively associated with the inner membrane. The protein composition of OMV changed significantly with successive in vitro cultivation of strain B31. Using antiserum with specificity for virulent strain B31, we identified OMV antigens on the surface of the spirochete and identified proteins whose presence in OMV could be correlated with virulence and protective immunity in the rabbit Lyme disease model. These virulent strain associated outer membrane-spanning proteins may provide new insight into the pathogenesis of Lyme disease.
Collapse
Affiliation(s)
- J T Skare
- Department of Microbiology and Immunology, UCLA School of Medicine 90024, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Radolf JD, Robinson EJ, Bourell KW, Akins DR, Porcella SF, Weigel LM, Jones JD, Norgard MV. Characterization of outer membranes isolated from Treponema pallidum, the syphilis spirochete. Infect Immun 1995; 63:4244-52. [PMID: 7591054 PMCID: PMC173603 DOI: 10.1128/iai.63.11.4244-4252.1995] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Previous freeze-fracture electron microscopy (EM) studies have shown that the outer membrane (OM) of Treponema pallidum contains sparse transmembrane proteins. One strategy for molecular characterization of these rare OM proteins involves isolation of T. pallidum OMs. Here we describe a simple and extremely gentle method for OM isolation based upon isopycnic sucrose density gradient ultracentrifugation of treponemes following plasmolysis in 20% sucrose. Evidence that T. pallidum OMs were isolated included (i) the extremely low protein/lipid ratio of the putative OM fraction, (ii) a paucity of antigenic and/or biochemical markers for periplasmic, cytoplasmic membrane, and cytosolic compartments, and (iii) freeze-fracture EM demonstrating that the putative OMs contained intramembranous particles highly similar in size and density to those in native T. pallidum OMs. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis revealed that the OMs contained a relatively small number of treponemal proteins, including several which did not appear to correspond to previously characterized T. pallidum antigens. Interestingly, these candidate rare OM proteins reacted poorly with syphilitic sera as determined by both conventional immunoblotting and enhanced chemiluminescence. Compared with whole cells, T. pallidum OMs were deficient in cardiolipin, the major lipoidal antigen reactive with antibodies in syphilitic sera. Also noteworthy was that other lipoidal constituents of OMs, including the recently discovered glycolipids, did not react with human syphilitic sera. These latter observations suggest that the poor antigenicity of virulent T. pallidum is a function of both the lipid composition and the low protein content of its OM.
Collapse
Affiliation(s)
- J D Radolf
- Department of Internal Medicine, U.T. Southwestern Medical Center, Dallas 75235, USA
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Kopp PA, Schmitt M, Wellensiek HJ, Blobel H. Isolation and characterization of fibronectin-binding sites of Borrelia garinii N34. Infect Immun 1995; 63:3804-8. [PMID: 7558283 PMCID: PMC173534 DOI: 10.1128/iai.63.10.3804-3808.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Adherence of bacteria to host cell membranes is one of the initial steps of microbial pathogenicity. Numerous studies have suggested that fibronectin promotes this interaction in some bacterial species. In this study, we have examined the ability of Borrelia garinii to bind fibronectin. The binding of fibronectin to the spirochete was specific and saturable. Scatchard plot analysis of the binding data revealed two types of ligands on the spirochetal surface, one with high affinity and one with low affinity for fibronectin. The fibronectin-binding sites were solubilized from the surface of B. garinii N34 by lysozyme treatment. Fast protein liquid chromatography (FPLC) purification of the solubilized binding sites resulted in one band with a high fibronectin-binding activity and a molecular weight of ca. 147,000. FPLC-purified binding sites, fibronectin, and antibodies to fibronectin inhibited the adherence of the spirochete to epithelial cells competitively. These data provide strong support for the hypothesis that fibronectin-binding sites on the surface of B. garinii are involved in the adherence of the spirochete to their respective host cells.
Collapse
Affiliation(s)
- P A Kopp
- Institut für Bakteriologie und Immunologie, Justus-Liebig-Universität Giessen, Germany
| | | | | | | |
Collapse
|
92
|
Rosey EL, Kennedy MJ, Petrella DK, Ulrich RG, Yancey RJ. Inactivation of Serpulina hyodysenteriae flaA1 and flaB1 periplasmic flagellar genes by electroporation-mediated allelic exchange. J Bacteriol 1995; 177:5959-70. [PMID: 7592350 PMCID: PMC177425 DOI: 10.1128/jb.177.20.5959-5970.1995] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Serpulina hyodysenteriae, the etiologic agent of swine dysentery, contains complex periplasmic flagella which are composed of multiple class A and class B polypeptides. To examine the role these proteins play in flagellar synthesis, structure, and function and to develop strains which may provide insight into the importance of motility in the etiology of this pathogen, we constructed specific periplasmic flagellar mutations in S. hyodysenteriae B204. The cloned flaA1 and flaB1 genes were disrupted by replacement of internal fragments with chloramphenicol and/or kanamycin gene cassettes. Following delivery of these suicide plasmids into S. hyodysenteriae, homologous recombination and allelic exchange at the targeted chromosomal flaA1 and flaB1 genes was verified by PCR, sequence, and Southern analysis. The utility of a chloramphenicol resistance gene cassette for targeted gene disruption was demonstrated and found more amenable than kanamycin as a selective marker in S. hyodysenteriae. Immunoblots of cell lysates of the flagellar mutants with antiserum raised against purified FlaA or FlaB confirmed the absence of the corresponding sheath or core protein. Both mutations selectively abolished expression of the targeted gene without affecting synthesis of the other flagellar polypeptide. flaA1 and flaB1 mutant strains exhibited altered motility in vitro and were less efficient in movement through a liquid medium. Paradoxically, isogenic strains containing specifically disrupted flaA1 or flaB1 alleles were capable of assembling periplasmic flagella that were morphologically normal as evidenced by electron microscopy. This is the first report of specific inactivation of a motility-associated gene in spirochetes.
Collapse
Affiliation(s)
- E L Rosey
- Upjohn Company, Kalamazoo, Michigan 49001, USA
| | | | | | | | | |
Collapse
|
93
|
Radolf JD, Goldberg MS, Bourell K, Baker SI, Jones JD, Norgard MV. Characterization of outer membranes isolated from Borrelia burgdorferi, the Lyme disease spirochete. Infect Immun 1995; 63:2154-63. [PMID: 7768594 PMCID: PMC173280 DOI: 10.1128/iai.63.6.2154-2163.1995] [Citation(s) in RCA: 88] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The lack of methods for isolating Borrelia burgdorferi outer membranes (OMs) has hindered efforts to characterize borrelial surface-exposed proteins. Here we isolated OMs by immersion of motile spirochetes in hypertonic sucrose followed by isopycnic ultracentrifugation of the plasmolyzed cells. The unilamellar vesicles thus obtained were shown to be OMs by the following criteria: (i) they contained OspA and OspB; (ii) they did not contain flagellin, NADH oxidase activity, or the 60-kDa heat shock protein; and (iii) their morphology by freeze-fracture electron microscopy was identical to that of OMs of intact organisms. Consistent with previous studies which employed immunoelectron microscopy and detergent-based solubilization of B. burgdorferi OMs, only small proportions of the total cellular content of OspA or OspB were OM associated. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) fluorography of OMs from spirochetes metabolically radiolabeled with [3H]palmitate or 35S-amino acids demonstrated that the OMs contained both nonlipidated and lipidated proteins. This fractionation procedure was also used to isolate OMs from virulent and avirulent isolates of the well-characterized B. burgdorferi N40 strain. SDS-PAGE fluorography revealed that OMs from the two isolates differed with respect to both nonlipoprotein and lipoprotein constituents. When whole cells, protoplasmic cylinders, and OMs were immunoblotted against sera from mice persistently infected with B. burgdorferi N40, the majority of antibody reactivity was directed against intracellular proteins. The availability of isolated OMs should facilitate efforts to elucidate the complex relationship(s) between B. burgdorferi membrane composition and Lyme disease pathogenesis.
Collapse
Affiliation(s)
- J D Radolf
- Department of Internal Medicine, U.T. Southwestern Medical Center, Dallas 75235
| | | | | | | | | | | |
Collapse
|
94
|
Abstract
Two-dimensional electrophoresis is increasingly being used as an important tool for biological research although it continues to have few direct clinical applications. In the absence of simple systems to identify and quantify individual proteins or groups of proteins it is unlikely that clinical applications will increase. Measurement of some individual proteins, for example a single acute phase reactant, often yields as much clinically useful information as could be currently expected from quantitation of several proteins with the same physiological role. Cost-containment pressures within the clinical laboratory will prevent the technique from becoming widely used in the clinical laboratory until it can clearly demonstrate that it can produce clinically important and necessary information that can not be obtained by other means. We continue to believe that the technique's greatest potential lies in identifying a protein or proteins whose concentration can be correlated with a disease and whose concentration varies with the progress of the disease. Antibodies to such proteins can then be produced and used to quantify the disease-associated proteins by a simple procedure, such as nephelometry. In spite of our belief of the likely clinical application of the technique there appears to be no systematic use of two-dimensional electrophoresis for this purpose. With clinical specimens a few investigators still run gels of serum or urine from patients with apparently unusual disorders and compare them visually with gels from healthy individuals. Nevertheless, the technique continues to have considerable unmet promise for clinical applications.
Collapse
Affiliation(s)
- D S Young
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia 19104-4283, USA
| | | |
Collapse
|
95
|
Walker EM, Howell JK, You Y, Hoffmaster AR, Heath JD, Weinstock GM, Norris SJ. Physical map of the genome of Treponema pallidum subsp. pallidum (Nichols). J Bacteriol 1995; 177:1797-804. [PMID: 7896703 PMCID: PMC176808 DOI: 10.1128/jb.177.7.1797-1804.1995] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A physical map of the chromosome of Treponema pallidum subsp. pallidum (Nichols), the causative agent of syphilis, was constructed from restriction fragments produced by NotI, SfiI, and SrfI. These rare-cutting restriction endonucleases cleaved the T. pallidum genome into 16, 8, and 15 fragments, respectively. Summation of the physical lengths of the fragments indicates that the chromosome of T. pallidum subsp. pallidum is approximately 1,030 to 1,080 kbp in size. The physical map was constructed by hybridizing a variety of probes to Southern blots of single and double digests of T. pallidum genomic DNA separated by contour-clamped homogeneous electric field electrophoresis. Probes included cosmid clones constructed from T. pallidum subsp. pallidum genomic DNA, restriction fragments excised from gels, and selected genes. Physical mapping confirmed that the chromosome of T. pallidum subsp. pallidum is circular, as the SfiI and SrfI maps formed complete circles. A total of 13 genes, including those encoding five membrane lipoproteins (tpn47, tpn41, tpn29-35, tpn17, and tpn15), a putative outer membrane porin (tpn50), the flagellar sheath and hook proteins (flaA and flgE), the cytoplasmic filament protein (cfpA), 16S rRNA (rrnA), a major sigma factor (rpoD), and a homolog of cysteinyl-tRNA synthetase (cysS), have been localized in the physical map as a first step toward studying the genetic organization of this noncultivable pathogen.
Collapse
Affiliation(s)
- E M Walker
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston 77225
| | | | | | | | | | | | | |
Collapse
|
96
|
Larsen SA, Steiner BM, Rudolph AH. Laboratory diagnosis and interpretation of tests for syphilis. Clin Microbiol Rev 1995; 8:1-21. [PMID: 7704889 PMCID: PMC172846 DOI: 10.1128/cmr.8.1.1] [Citation(s) in RCA: 462] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The lack of a method for demonstrating the presence of Treponema pallidum by growth necessitates the use of alternative methods. Traditionally, these methods are divided into direct detection methods (animal inoculation, dark-field microscopy, etc.) and serologic tests for the presence of patient antibody against T. pallidum. Serologic methods are further divided into two classes. One class, the nontreponemal tests, detects antibodies to lipoidal antigens present in either the host or T. pallidum; examples are the Venereal Disease Research Laboratory and rapid plasma reagin and tests. Reactivity in these tests generally indicates host tissue damage that may not be specific for syphilis. Because these tests are easy and inexpensive to perform, they are commonly used for screening, and with proper clinical signs they are suggestive of syphilis. The other class of test, the treponemal tests, uses specific treponemal antigens. Confirmation of infection requires a reactive treponemal test. Examples of the treponemal tests are the microhemagglutination assay for antibodies to T. pallidum and the fluorescent treponemal antibody absorption test. These tests are more expensive and complicated to perform than the nontreponemal tests. On the horizon are a number of direct antigen, enzyme-linked immunosorbent assay, and PCR techniques. Several of these techniques have shown promise in clinical trials for the diagnosis of congenital syphilis and neurosyphilis that are presently difficult to diagnose.
Collapse
Affiliation(s)
- S A Larsen
- Division of Sexually Transmitted Diseases Laboratory Research, Centers for Disease Control and Prevention, Atlanta, Georgia 30333
| | | | | |
Collapse
|
97
|
|
98
|
Weigel LM, Radolf JD, Norgard MV. The 47-kDa major lipoprotein immunogen of Treponema pallidum is a penicillin-binding protein with carboxypeptidase activity. Proc Natl Acad Sci U S A 1994; 91:11611-5. [PMID: 7972112 PMCID: PMC45281 DOI: 10.1073/pnas.91.24.11611] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The recent model of Treponema pallidum molecular architecture proposes that the vast majority of the bacterium's integral membrane proteins are lipoprotein immunogens anchored in the cytoplasmic membrane while the outer membrane contains only a limited number of surface-exposed transmembrane proteins. This unique model explains, in part, the organism's remarkable ability to evade host immune defenses and establish persistent infection. Our strategy for refining this model involves demonstrating that the physiological functions of treponemal membrane proteins are consistent with their proposed cellular locations. In this study, we used an ampicillin-digoxigenin conjugate to demonstrate by chemiluminescence that the 47-kDa lipoprotein immunogen of T. pallidum (Tpp47) is a penicillin-binding protein. Reexamination of the Tpp47 primary sequence revealed the three amino acid motifs characteristic of penicillin-binding proteins. A recombinant, nonlipidated, soluble form of Tpp47 was used to demonstrate that Tpp47 is a zinc-dependent carboxypeptidase. Escherichia coli expressing Tpp47 was characterized by cell wall abnormalities consistent with altered peptidoglycan biosynthesis. Though the inability to cultivate T. pallidum in vitro and the lack of genetic exchange systems continue to impede treponemal research, this study advances strategies for utilizing E. coli molecular genetics as a means of elucidating the complex relationships between syphilis pathogenesis and T. pallidum membrane biology.
Collapse
Affiliation(s)
- L M Weigel
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas 75235-9048
| | | | | |
Collapse
|
99
|
Blanco DR, Reimann K, Skare J, Champion CI, Foley D, Exner MM, Hancock RE, Miller JN, Lovett MA. Isolation of the outer membranes from Treponema pallidum and Treponema vincentii. J Bacteriol 1994; 176:6088-99. [PMID: 7928971 PMCID: PMC196829 DOI: 10.1128/jb.176.19.6088-6099.1994] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The outer membranes from Treponema pallidum subsp. pallidum and Treponema vincentii were isolated by a novel method. Purified outer membranes from T. pallidum and T. vincentii following sucrose gradient centrifugation banded at 7 and 31% (wt/wt) sucrose, respectively. Freeze fracture electron microscopy of purified membrane vesicles from T. pallidum and T. vincentii revealed an extremely low density of protein particles; the particle density of T. pallidum was approximately six times less than that of T. vincentii. The great majority of T. vincentii lipopolysaccharide was found in the outer membrane preparation. The T. vincentii outer membrane also contained proteins of 55 and 65 kDa. 125I-penicillin V labeling demonstrated that t. pallidum penicillin-binding proteins were found exclusively with the protoplasmic cylinders and were not detectable with purified outer membrane material, indicating the absence of inner membrane contamination. Isolated T. pallidum outer membrane was devoid of the 19-kDa 4D protein and the normally abundant 47-kDa lipoprotein known to be associated with the cytoplasmic membrane; only trace amounts of the periplasmic endoflagella were detected. Proteins associated with the T. pallidum outer membrane were identified by one- and two-dimensional electrophoretic analysis using gold staining and immunoblotting. Small amounts of strongly antigenic 17- and 45-kDa proteins were detected and shown to correspond to previously identified lipoproteins which are found principally with the cytoplasmic membrane. Less antigenic proteins of 65, 31 (acidic pI), 31 (basic pI), and 28 kDa were identified. Compared with whole-organism preparations, the 65- and the more basic 31-kDa proteins were found to be highly enriched in the outer membrane preparation, indicating that they may represent the T. pallidum rare outer membrane proteins. Reconstitution of solubilized T. pallidum outer membrane into lipid bilayer membranes revealed porin activity with two estimated channel diameters of 0.35 and 0.68 nm based on the measured single-channel conductances in 1 M KCl of 0.40 and 0.76 nS, respectively.
Collapse
Affiliation(s)
- D R Blanco
- Department of Microbiology and Immunology, School of Medicine, University of California, Los Angeles 90024
| | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Simpson WJ, Cieplak W, Schrumpf ME, Barbour AG, Schwan TG. Nucleotide sequence and analysis of the gene in Borrelia burgdorferi encoding the immunogenic P39 antigen. FEMS Microbiol Lett 1994; 119:381-7. [PMID: 8050720 DOI: 10.1111/j.1574-6968.1994.tb06917.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The P39 antigen is a specific, highly conserved, and immunogenic protein of Lyme disease spirochetes, Borrelia burgdorferi sensu lato. The nucleotide sequence of the gene encoding this protein was determined and found to be the first of two tandemly arranged open reading frames located on the spirochete's chromosome. These two open reading frames were designated bmpA for the gene encoding P39 and bmpB for the gene encoding the putative protein ORF2 encoded by the second open reading frame. The nucleic acid sequence identity for the two open reading frames was 62% while their deduced amino acid sequences were 52% identical. Comparison to sequence data bases demonstrated that the deduced amino acid sequences of both P39 and ORF2 were homologous to TmpC, a putative outer or cytoplasmic membrane lipoprotein of the syphilis spirochete, Treponema pallidum.
Collapse
Affiliation(s)
- W J Simpson
- Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840
| | | | | | | | | |
Collapse
|