51
|
Kurata K, Hosono K, Hayashi T, Mizobuchi K, Katagiri S, Miyamichi D, Nishina S, Sato M, Azuma N, Nakano T, Hotta Y. X-linked Retinitis Pigmentosa in Japan: Clinical and Genetic Findings in Male Patients and Female Carriers. Int J Mol Sci 2019; 20:E1518. [PMID: 30917587 PMCID: PMC6470860 DOI: 10.3390/ijms20061518] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 03/23/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022] Open
Abstract
X-linked retinitis pigmentosa (XLRP) is a type of severe retinal dystrophy, and female carriers of XLRP demonstrate markedly variable clinical severity. In this study, we aimed to elucidate the clinical findings of male patients with and female carriers of XLRP in a Japanese cohort and demonstrate the genetic contribution. Twelve unrelated families (13 male patients, 15 female carriers) harboring pathogenic mutations in RPGR or RP2 were included, and comprehensive ophthalmic examinations were performed. To identify potential pathogenic mutations, targeted next-generation sequencing was employed. Consequently, we identified 11 pathogenic mutations, of which five were novel. Six and five mutations were detected in RPGR and RP2, respectively. Only one mutation was detected in ORF15. Affected male patients with RP2 mutations tended to have lower visual function than those with RPGR mutations. Female carriers demonstrated varying visual acuities and visual fields. Among the female carriers, 92% had electroretinographical abnormalities and 63% had a radial autofluorescent pattern, and the carriers who had higher myopia showed worse visual acuity and more severe retinal degeneration. Our results expand the knowledge of the clinical phenotypes of male patients with and female carriers of XLRP and suggest the possibility that RP2 mutations are relatively highly prevalent in Japan.
Collapse
Affiliation(s)
- Kentaro Kurata
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Katsuhiro Hosono
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan.
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan.
| | - Satoshi Katagiri
- Department of Ophthalmology, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan.
| | - Daisuke Miyamichi
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Sachiko Nishina
- Department of Ophthalmology and Laboratory for Visual Science, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| | - Miho Sato
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| | - Noriyuki Azuma
- Department of Ophthalmology and Laboratory for Visual Science, National Center for Child Health and Development, 2-10-1, Okura, Setagaya-ku, Tokyo 157-8535, Japan.
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, 3-19-18, Nishi-shimbashi, Minato-ku, Tokyo 105-8471, Japan.
| | - Yoshihiro Hotta
- Department of Ophthalmology, Hamamatsu University School of Medicine, 1-20-1, Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan.
| |
Collapse
|
52
|
Khan AO. Recessive pediatric-onset cone-rod dysfunction or dominant maculopathy in a consanguineous family harboring the peripherin mutation p.Arg220Gln. Ophthalmic Genet 2019; 40:60-63. [PMID: 30822235 DOI: 10.1080/13816810.2019.1579346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Heterozygous peripherin mutation is associated with a wide range of typically adult-onset retinal phenotypes which can include asymptomatic maculopathy. There are few reports of biallelic peripherin mutations, only one of which detailed the ophthalmic phenotype. This report documents the retinal phenotype associated with homozygosity for a known peripherin mutation (c.659G>A; p.Arg220Gln), highlights its similar appearance to what was described in the one previous report, and shows how examination of family members can be useful in genetic diagnosis. METHODS Retrospective case series. RESULTS A 13-year-old Emirati boy was referred for low vision. The parents felt he was blind at birth but noted improvement with time. Retinal examination was significant for central macula horizontal ovoid discoloration as was documented for young adults with homozygous peripherin mutations in the one previous report. Electroretinography revealed cone-rod dysfunction. Both asymptomatic parents were examined and found to have central macular abnormalities. Sanger sequencing of peripherin based on clinical features uncovered the pathogenic variant c.659G>A; p.Arg22Gln (NM_000322.4) in homozygosity in the child and in heterozygosity in each parent. Exome sequencing in the child excluded pathologic variants in other retinal dystrophy genes. CONCLUSIONS The experience with this family highlights clinical features suggestive for biallelic peripherin mutations, documents cone-rod dysfunction as associated with homozygosity for the p.Arg220Gln peripherin mutation, and is an example of how examination of family members can help to guide genetic testing.
Collapse
Affiliation(s)
- Arif O Khan
- a Eye Institute , Cleveland Clinic Abu Dhabi , Abu Dhabi , United Arab Emirates.,b Department of Ophthalmology , Cleveland Clinic Lerner College of Medicine of Case Western University , Cleveland , OH , USA
| |
Collapse
|
53
|
Birtel J, Gliem M, Mangold E, Müller PL, Holz FG, Neuhaus C, Lenzner S, Zahnleiter D, Betz C, Eisenberger T, Bolz HJ, Charbel Issa P. Next-generation sequencing identifies unexpected genotype-phenotype correlations in patients with retinitis pigmentosa. PLoS One 2018; 13:e0207958. [PMID: 30543658 PMCID: PMC6292620 DOI: 10.1371/journal.pone.0207958] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 11/08/2018] [Indexed: 12/13/2022] Open
Abstract
Retinitis pigmentosa (RP) is an inherited degenerative disease causing severe retinal dystrophy and visual impairment mainly with onset in infancy or adolescence. Targeted next-generation sequencing (NGS) has become an efficient tool to encounter the enormous genetic heterogeneity of diverse retinal dystrophies, including RP. To identify disease-causing mutations in unselected, consecutive RP patients, we conducted Sanger sequencing of genes commonly involved in the suspected genetic RP subtype, followed by targeted large-panel NGS if no mutation was identified, or NGS as primary analysis. A high (70%) detection rate of disease-causing mutations was achieved in a large cohort of 116 unrelated patients. About half (48%) of the solved RP cases were explained by mutations in four genes: RPGR, EYS, PRPF31 and USH2A. Overall, 110 different mutations distributed across 30 different genes were detected, and 46 of these mutations were novel. A molecular diagnosis was achieved in the majority (82–100%) of patients if the family history was suggestive for a particular mode of inheritance, but only in 60% in cases of sporadic RP. The diagnostic potential of extensive molecular analysis in a routine setting is also illustrated by the identification of unexpected genotype-phenotype correlations for RP patients with mutations in CRX, CEP290, RPGRIP1, MFSD8. Furthermore, we identified numerous mutations in autosomal dominant (PRPF31, PRPH2, CRX) and X-linked (RPGR) RP genes in patients with sporadic RP. Variants in RP2 and RPGR were also found in female RP patients with apparently sporadic or dominant disease. In summary, this study demonstrates that massively parallel sequencing of all known retinal dystrophy genes is a valuable diagnostic approach for RP patients.
Collapse
Affiliation(s)
- Johannes Birtel
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Martin Gliem
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | | | - Philipp L. Müller
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | - Frank G. Holz
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
| | | | | | | | - Christian Betz
- Bioscientia Center for Human Genetics, Ingelheim, Germany
| | | | - Hanno J. Bolz
- Bioscientia Center for Human Genetics, Ingelheim, Germany
- Institute of Human Genetics, University Hospital of Cologne, Cologne, Germany
| | - Peter Charbel Issa
- Department of Ophthalmology, University of Bonn, Bonn, Germany
- Center for Rare Diseases Bonn (ZSEB), University of Bonn, Bonn, Germany
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, and Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
54
|
Whole exome sequencing identifies mutations of multiple genes in a Chinese cohort of 95 sporadic probands with presumptive retinitis pigmentosa. JOURNAL OF BIO-X RESEARCH 2018. [DOI: 10.1097/jbr.0000000000000021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
55
|
Wiegering A, Rüther U, Gerhardt C. The ciliary protein Rpgrip1l in development and disease. Dev Biol 2018; 442:60-68. [DOI: 10.1016/j.ydbio.2018.07.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/13/2018] [Accepted: 07/28/2018] [Indexed: 12/28/2022]
|
56
|
Li S, Yang M, Liu W, Liu Y, Zhang L, Yang Y, Sundaresan P, Yang Z, Zhu X. Targeted Next-Generation Sequencing Reveals Novel RP1 Mutations in Autosomal Recessive Retinitis Pigmentosa. Genet Test Mol Biomarkers 2018; 22:109-114. [PMID: 29425069 DOI: 10.1089/gtmb.2017.0223] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is a group of rare inherited retinal dystrophies that result in a progressive loss of vision. Molecular diagnosis of RP is difficult due to its phenotypic and genetic heterogeneities. AIMS To investigate causative genetic mutations in a collection of RP cases: one Indian and two Chinese families with autosomal-recessive RP and two sporadic patients with RP. MATERIALS AND METHODS A total of 163 genes, which have previously been found to be involved in inherited retinal disorders, were selected for targeted next-generation sequencing (NGS). Stringent NGS data analyses followed by confirmation using Sanger sequencing and segregation analyses were applied to evaluate all identified pathogenic mutations. RESULTS Four novel frameshift mutations and two compound heterozygous mutations were identified in RP1. In addition, all mutations were found to co-segregate with the disease in the three familial cases; none of the mutations were detected in control samples. CONCLUSION This study expands the mutational spectrums of RP1 for RP.
Collapse
Affiliation(s)
- Shujin Li
- 1 Chengdu Institute of Biology , Chinese Academy of Sciences, Chengdu, P.R. China .,2 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China .,3 University of Chinese Academy of Sciences , Beijing, P.R. China
| | - Mu Yang
- 1 Chengdu Institute of Biology , Chinese Academy of Sciences, Chengdu, P.R. China .,2 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China .,3 University of Chinese Academy of Sciences , Beijing, P.R. China
| | - Wenjing Liu
- 2 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China
| | - Yuqing Liu
- 2 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China
| | - Lin Zhang
- 2 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China
| | - Yeming Yang
- 2 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China
| | - Periasamy Sundaresan
- 4 Department of Genetics, Aravind Medical Research Foundation, Aravind Eye Hospital , Madurai, Tamilnadu, India
| | - Zhenglin Yang
- 1 Chengdu Institute of Biology , Chinese Academy of Sciences, Chengdu, P.R. China .,2 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China
| | - Xianjun Zhu
- 2 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, P.R. China .,5 Institute of Laboratory Animal Sciences , Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, P.R. China .,6 Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan Translational Medicine Research Hospital , Chengdu, Sichuan, P.R. China
| |
Collapse
|
57
|
Duncan JL, Pierce EA, Laster AM, Daiger SP, Birch DG, Ash JD, Iannaccone A, Flannery JG, Sahel JA, Zack DJ, Zarbin MA. Inherited Retinal Degenerations: Current Landscape and Knowledge Gaps. Transl Vis Sci Technol 2018; 7:6. [PMID: 30034950 PMCID: PMC6052953 DOI: 10.1167/tvst.7.4.6] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/28/2018] [Indexed: 12/11/2022] Open
Affiliation(s)
- Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, CA, USA
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Amy M Laster
- Foundation Fighting Blindness, Columbia, MD, USA
| | - Stephen P Daiger
- Human Genetics Center, School of Public Health, and Ruiz Department of Ophthalmology and Visual Science, The University of Texas Health Science Center, Houston, TX, USA
| | - David G Birch
- Rose-Silverthorne Retinal Degenerations Laboratory, Retina Foundation of the Southwest, Dallas, TX, USA
| | - John D Ash
- Department of Ophthalmology, University of Florida, Gainesville, FL, USA
| | - Alessandro Iannaccone
- Center for Retinal Degenerations and Ophthalmic Genetic Diseases, Department of Ophthalmology, Duke University School of Medicine, Durham, NC, USA
| | - John G Flannery
- Vision Science, the Helen Wills Neuroscience Institute, the Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - José A Sahel
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Institut de la Vision-Sorbonne Université, Inserm, CNRS-Paris, France
| | - Donald J Zack
- Departments of Ophthalmology, Neuroscience, Molecular Biology and Genetics, and Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Marco A Zarbin
- Institute of Ophthalmology and Visual Science, Rutgers-New Jersey Medical School, Rutgers University, Newark, NJ, USA
| | | |
Collapse
|
58
|
Xie D, Peng K, Yi Q, Liu W, Yang Y, Sun K, Zhu X, Lu F. Targeted Next Generation Sequencing Revealed Novel PRPF31 Mutations in Autosomal Dominant Retinitis Pigmentosa. Genet Test Mol Biomarkers 2018; 22:425-432. [PMID: 29957067 DOI: 10.1089/gtmb.2018.0036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Retinitis pigmentosa (RP) is a rare type of inherited retinal dystrophy that can result in progressive vision loss. Molecular diagnosis of RP is challenging due to phenotypic and genotypic heterogeneities. AIMS This study aimed to identify the pathogenic mutations in two Chinese families with autosomal dominant RP (adRP) and in a patient with sporadic RP. MATERIALS AND METHODS Peripheral blood DNA samples were obtained from the participants. Targeted next generation sequencing (NGS) was applied to identify mutations in these patients. For pathogenic mutation analyses, stringent NGS data analyses and segregation analyses were applied. Primers were designed to validate the identified mutations by Sanger sequencing analyses. RESULTS A novel heterozygous insertion frameshift mutation c.1226_1227insA, p.T410Dfs*65, and a novel heterozygous stopgain mutation c.1015C>T, p.Q339* were identified in PRPF31. A known c.527 + 3A>G splicing mutation was identified in one of the adRP-074 families. All mutations were found to co-segregate with the disease, and none of these mutations were detected in 500 control samples. CONCLUSIONS Our data identified two new autosomal dominant mutations in PRPF31, expanding the mutational spectrum of this gene.
Collapse
Affiliation(s)
- Dan Xie
- 1 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, China .,2 Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan Translational Medicine Research Hospital , Chengdu, Sichuan, China
| | - Kun Peng
- 1 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, China .,2 Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan Translational Medicine Research Hospital , Chengdu, Sichuan, China
| | - Qian Yi
- 1 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, China .,2 Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan Translational Medicine Research Hospital , Chengdu, Sichuan, China
| | - Wenjinag Liu
- 1 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, China
| | - Yeming Yang
- 1 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, China
| | - Kuanxiang Sun
- 1 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, China
| | - Xianjun Zhu
- 1 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, China .,2 Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan Translational Medicine Research Hospital , Chengdu, Sichuan, China .,3 Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan Translational Medicine Research Hospital , Chengdu, Sichuan, China
| | - Fang Lu
- 1 Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China , Chengdu, Sichuan, China .,2 Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Sichuan Translational Medicine Research Hospital , Chengdu, Sichuan, China
| |
Collapse
|
59
|
Stunkel ML, Brodie SE, Cideciyan AV, Pfeifer WL, Kennedy EL, Stone EM, Jacobson SG, Drack AV. Expanded Retinal Disease Spectrum Associated With Autosomal Recessive Mutations in GUCY2D. Am J Ophthalmol 2018; 190:58-68. [PMID: 29559409 DOI: 10.1016/j.ajo.2018.03.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/06/2018] [Accepted: 03/11/2018] [Indexed: 11/17/2022]
Abstract
PURPOSE GUCY2D has been associated with autosomal recessive Leber congenital amaurosis and autosomal dominant cone-rod dystrophy. This report expands the phenotype of autosomal recessive mutations to congenital night blindness, which may slowly progress to mild retinitis pigmentosa. DESIGN Retrospective case series. METHODS Multicenter study of 5 patients (3 male, 2 female). RESULTS All patients presented with night blindness since childhood. Age at referral was 9-45 years. Length of follow-up was 1-7 years. Best-corrected visual acuity at presentation ranged from 20/15 to 20/30 and at most recent visit averaged 20/25. No patient had nystagmus or high refractive error. ISCEV standard electroretinography revealed nondetectable dark-adapted dim flash responses and reduced amplitude but not electronegative dark-adapted bright flash responses with similar waveforms to the reduced-amplitude light-adapted single flash responses. The 30 Hz flicker responses were relatively preserved. Macular optical coherence tomography revealed normal lamination in 3 patients, with abnormalities in 2. Goldmann visual fields were normal at presentation in children but constricted in 1 adult. One child showed loss of midperipheral fields over time. Fundus appearance was normal in childhood; the adult had sparse bone spicule-like pigmentation. Full-field stimulus testing (FST) revealed markedly decreased retinal sensitivity to light. Dark adaptation demonstrated lack of rod-cone break. Two patients had tritanopia. All 5 had compound heterozygous mutations in GUCY2D. Three of the 5 patients harbor the Arg768Trp mutation reported in GUCY2D-associated Leber congenital amaurosis. CONCLUSIONS Autosomal recessive GUCY2D mutations may cause congenital night blindness with normal acuity and refraction, and unique electroretinography. Progression to mild retinitis pigmentosa may occur.
Collapse
Affiliation(s)
- Maria L Stunkel
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Scott E Brodie
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Artur V Cideciyan
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wanda L Pfeifer
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Elizabeth L Kennedy
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Edwin M Stone
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA
| | - Samuel G Jacobson
- Scheie Eye Institute, Department of Ophthalmology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Arlene V Drack
- Institute for Vision Research, Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, USA.
| |
Collapse
|
60
|
Molecular Diagnosis of 34 Japanese Families with Leber Congenital Amaurosis Using Targeted Next Generation Sequencing. Sci Rep 2018; 8:8279. [PMID: 29844330 PMCID: PMC5974356 DOI: 10.1038/s41598-018-26524-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/14/2018] [Indexed: 02/07/2023] Open
Abstract
Leber congenital amaurosis (LCA) is a genetically and clinically heterogeneous disease, and represents the most severe form of inherited retinal dystrophy (IRD). The present study reports the mutation spectra and frequency of known LCA and IRD-associated genes in 34 Japanese families with LCA (including three families that were previously reported). A total of 74 LCA- and IRD-associated genes were analysed via targeted-next generation sequencing (TS), while recently discovered LCA-associated genes, as well as known variants not able to be screened using this approach, were evaluated via additional Sanger sequencing, long-range polymerase chain reaction, and/or copy number variation analyses. The results of these analyses revealed 30 potential pathogenic variants in 12 (nine LCA-associated and three other IRD-associated) genes among 19 of the 34 analysed families. The most frequently mutated genes were CRB1, NMNAT1, and RPGRIP1. The results also showed the mutation spectra and frequencies identified in the analysed Japanese population to be distinctly different from those previously identified for other ethnic backgrounds. Finally, the present study, which is the first to conduct a NGS-based molecular diagnosis of a large Japanese LCA cohort, achieved a detection rate of approximately 56%, indicating that TS is a valuable method for molecular diagnosis of LCA cases in the Japanese population.
Collapse
|
61
|
Chen X, Sheng X, Liu Y, Li Z, Sun X, Jiang C, Qi R, Yuan S, Wang X, Zhou G, Zhen Y, Xie P, Liu Q, Yan B, Zhao C. Distinct mutations with different inheritance mode caused similar retinal dystrophies in one family: a demonstration of the importance of genetic annotations in complicated pedigrees. J Transl Med 2018; 16:145. [PMID: 29843741 PMCID: PMC5975579 DOI: 10.1186/s12967-018-1522-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/17/2018] [Indexed: 12/03/2022] Open
Abstract
Background Retinitis pigmentosa (RP) is the most common form of inherited retinal dystrophy presenting remarkable genetic heterogeneity. Genetic annotations would help with better clinical assessments and benefit gene therapy, and therefore should be recommended for RP patients. This report reveals the disease causing mutations in two RP pedigrees with confusing inheritance patterns using whole exome sequencing (WES). Methods Twenty-five participants including eight patients from two families were recruited and received comprehensive ophthalmic evaluations. WES was applied for mutation identification. Bioinformatics annotations, intrafamilial co-segregation tests, and in silico analyses were subsequently conducted for mutation verification. Results All patients were clinically diagnosed with RP. The first family included two siblings born to parents with consanguineous marriage; however, no potential pathogenic variant was found shared by both patients. Further analysis revealed that the female patient carried a recurrent homozygous C8ORF37 p.W185*, while the male patient had hemizygous OFD1 p.T120A. The second family was found to segregate mutations in two genes, TULP1 and RP1. Two patients born to consanguineous marriage carried homozygous TULP1 p.R419W, while a recurrent heterozygous RP1 p.L762Yfs*17 was found in another four patients presenting an autosomal dominant inheritance pattern. Crystal structural analysis further indicated that the substitution from arginine to tryptophan at the highly conserved residue 419 of TULP1 could lead to the elimination of two hydrogen bonds between residue 419 and residues V488 and S534. All four genes, including C8ORF37, OFD1, TULP1 and RP1, have been previously implicated in RP etiology. Conclusions Our study demonstrates the coexistence of diverse inheritance modes and mutations affecting distinct disease causing genes in two RP families with consanguineous marriage. Our data provide novel insights into assessments of complicated pedigrees, reinforce the genetic complexity of RP, and highlight the need for extensive molecular evaluations in such challenging families with diverse inheritance modes and mutations. Electronic supplementary material The online version of this article (10.1186/s12967-018-1522-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xue Chen
- Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Xunlun Sheng
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Yani Liu
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Zili Li
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Xiantao Sun
- Department of Ophthalmology, Children's Hospital of Zhengzhou, Zhengzhou, China
| | - Chao Jiang
- Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Qi
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Shiqin Yuan
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Xuhui Wang
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Ge Zhou
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Yanyan Zhen
- Department of Ophthalmology, Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan, China
| | - Ping Xie
- Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Qinghuai Liu
- Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Biao Yan
- Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China.
| | - Chen Zhao
- Department of Ophthalmology, State Key Laboratory of Reproductive Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China. .,Department of Ophthalmology and Vision Science, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China. .,Key Laboratory of Myopia of State Health Ministry (Fudan University) and Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China. .,Department of Ophthalmology, Children's Hospital of Zhengzhou, Zhengzhou, China.
| |
Collapse
|
62
|
Zhang S, Li J, Li S, Yang Y, Yang M, Yang Z, Zhu X, Zhang L. Targeted next-generation sequencing reveals that a compound heterozygous mutation in phosphodiesterase 6a gene leads to retinitis pigmentosa in a Chinese family. Ophthalmic Genet 2018; 39:487-491. [PMID: 29693493 DOI: 10.1080/13816810.2018.1461912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Shanshan Zhang
- Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Jie Li
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shujin Li
- Institute of Chengdu Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yeming Yang
- Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Mu Yang
- Institute of Chengdu Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhenglin Yang
- Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Institute of Chengdu Biology, Chinese Academy of Sciences, Chengdu, China
- Center of Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xianjun Zhu
- Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Institute of Chengdu Biology, Chinese Academy of Sciences, Chengdu, China
- Center of Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lin Zhang
- Key Laboratory for Human Disease Gene Study, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Department of Ophthalmology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Center of Information in Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
63
|
Systematic evaluation of a targeted gene capture sequencing panel for molecular diagnosis of retinitis pigmentosa. PLoS One 2018; 13:e0185237. [PMID: 29641573 PMCID: PMC5894961 DOI: 10.1371/journal.pone.0185237] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 09/08/2017] [Indexed: 01/09/2023] Open
Abstract
Background Inherited eye diseases are major causes of vision loss in both children and adults. Inherited eye diseases are characterized by clinical variability and pronounced genetic heterogeneity. Genetic testing may provide an accurate diagnosis for ophthalmic genetic disorders and allow gene therapy for specific diseases. Methods A targeted gene capture panel was designed to capture exons of 283 inherited eye disease genes including 58 known causative retinitis pigmentosa (RP) genes. 180 samples were tested with this panel, 68 were previously tested by Sanger sequencing. Systematic evaluation of our method and comprehensive molecular diagnosis were carried on 99 RP patients. Results 96.85% targeted regions were covered by at least 20 folds, the accuracy of variants detection was 99.994%. In 4 of the 68 samples previously tested by Sanger sequencing, mutations of other diseases not consisting with the clinical diagnosis were detected by next-generation sequencing (NGS) not Sanger. Among the 99 RP patients, 64 (64.6%) were detected with pathogenic mutations, while in 3 patients, it was inconsistent between molecular diagnosis and their initial clinical diagnosis. After revisiting, one patient’s clinical diagnosis was reclassified. In addition, 3 patients were found carrying large deletions. Conclusions We have systematically evaluated our method and compared it with Sanger sequencing, and have identified a large number of novel mutations in a cohort of 99 RP patients. The results showed a sufficient accuracy of our method and suggested the importance of molecular diagnosis in clinical diagnosis.
Collapse
|
64
|
Katagiri S, Hayashi T, Mizobuchi K, Yoshitake K, Iwata T, Nakano T. Autosomal dominant retinitis pigmentosa with macular involvement associated with a disease haplotype that included a novel PRPH2 variant (p.Cys250Gly). Ophthalmic Genet 2018; 39:357-365. [DOI: 10.1080/13816810.2018.1459737] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Satoshi Katagiri
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Takaaki Hayashi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Ophthalmology, Katsushika Medical Center, The Jikei University School of Medicine, Tokyo, Japan
| | - Kei Mizobuchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazutoshi Yoshitake
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Takeshi Iwata
- National Institute of Sensory Organs, National Hospital Organization Tokyo Medical Center, Tokyo, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
65
|
Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci Rep 2018; 8:4824. [PMID: 29555955 PMCID: PMC5859282 DOI: 10.1038/s41598-018-22096-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/16/2018] [Indexed: 12/14/2022] Open
Abstract
Macular and cone/cone-rod dystrophies (MD/CCRD) demonstrate a broad genetic and phenotypic heterogeneity, with retinal alterations solely or predominantly involving the central retina. Targeted next-generation sequencing (NGS) is an efficient diagnostic tool for identifying mutations in patient with retinitis pigmentosa, which shows similar genetic heterogeneity. To detect the genetic causes of disease in patients with MD/CCRD, we implemented a two-tier procedure consisting of Sanger sequencing and targeted NGS including genes associated with clinically overlapping conditions. Disease-causing mutations were identified in 74% of 251 consecutive MD/CCRD patients (33% of the variants were novel). Mutations in ABCA4, PRPH2 and BEST1 accounted for 57% of disease cases. Further mutations were identified in CDHR1, GUCY2D, PROM1, CRX, GUCA1A, CERKL, MT-TL1, KIF11, RP1L1, MERTK, RDH5, CDH3, C1QTNF5, CRB1, JAG1, DRAM2, POC1B, NPHP1 and RPGR. We provide detailed illustrations of rare phenotypes, including autofluorescence and optical coherence tomography imaging. Targeted NGS also identified six potential novel genotype-phenotype correlations for FAM161A, INPP5E, MERTK, FBLN5, SEMA4A and IMPDH1. Clinical reassessment of genetically unsolved patients revealed subgroups with similar retinal phenotype, indicating a common molecular disease cause in each subgroup.
Collapse
|
66
|
Yang M, Li S, Liu W, Yang Y, Zhang L, Zhang S, Jiang Z, Yang Z, Zhu X. Targeted Next-Generation Sequencing Reveals a Novel Frameshift Mutation in the MERTK Gene in a Chinese Family with Retinitis Pigmentosa. Genet Test Mol Biomarkers 2018; 22:165-169. [PMID: 29437494 DOI: 10.1089/gtmb.2017.0248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Mu Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shujin Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Wenjing Liu
- Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yeming Yang
- Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Lin Zhang
- Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Shanshan Zhang
- Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhilin Jiang
- Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
- Center for Informatics Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenglin Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Center for Informatics Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xianjun Zhu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory for Human Disease Gene Study and Institute of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Institute of Laboratory Animal Sciences, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, China
- Center for Informatics Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
67
|
Astuti GDN, van den Born LI, Khan MI, Hamel CP, Bocquet B, Manes G, Quinodoz M, Ali M, Toomes C, McKibbin M, El-Asrag ME, Haer-Wigman L, Inglehearn CF, Black GCM, Hoyng CB, Cremers FPM, Roosing S. Identification of Inherited Retinal Disease-Associated Genetic Variants in 11 Candidate Genes. Genes (Basel) 2018; 9:genes9010021. [PMID: 29320387 PMCID: PMC5793174 DOI: 10.3390/genes9010021] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 12/31/2017] [Accepted: 01/03/2018] [Indexed: 01/09/2023] Open
Abstract
Inherited retinal diseases (IRDs) display an enormous genetic heterogeneity. Whole exome sequencing (WES) recently identified genes that were mutated in a small proportion of IRD cases. Consequently, finding a second case or family carrying pathogenic variants in the same candidate gene often is challenging. In this study, we searched for novel candidate IRD gene-associated variants in isolated IRD families, assessed their causality, and searched for novel genotype-phenotype correlations. Whole exome sequencing was performed in 11 probands affected with IRDs. Homozygosity mapping data was available for five cases. Variants with minor allele frequencies ≤ 0.5% in public databases were selected as candidate disease-causing variants. These variants were ranked based on their: (a) presence in a gene that was previously implicated in IRD; (b) minor allele frequency in the Exome Aggregation Consortium database (ExAC); (c) in silico pathogenicity assessment using the combined annotation dependent depletion (CADD) score; and (d) interaction of the corresponding protein with known IRD-associated proteins. Twelve unique variants were found in 11 different genes in 11 IRD probands. Novel autosomal recessive and dominant inheritance patterns were found for variants in Small Nuclear Ribonucleoprotein U5 Subunit 200 (SNRNP200) and Zinc Finger Protein 513 (ZNF513), respectively. Using our pathogenicity assessment, a variant in DEAH-Box Helicase 32 (DHX32) was the top ranked novel candidate gene to be associated with IRDs, followed by eight medium and lower ranked candidate genes. The identification of candidate disease-associated sequence variants in 11 single families underscores the notion that the previously identified IRD-associated genes collectively carry > 90% of the defects implicated in IRDs. To identify multiple patients or families with variants in the same gene and thereby provide extra proof for pathogenicity, worldwide data sharing is needed.
Collapse
Affiliation(s)
- Galuh D. N. Astuti
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Radboud Institute for Molecular Life Sciences, Radboud University, 6525 GA Nijmegen, The Netherlands
| | | | - M. Imran Khan
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
| | - Christian P. Hamel
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
- CHRU, Genetics of Sensory Diseases, 34295 Montpellier, France
| | - Béatrice Bocquet
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
- CHRU, Genetics of Sensory Diseases, 34295 Montpellier, France
| | - Gaël Manes
- Institut National de la Santé et de la Recherche Médicale, Institute for Neurosciences of Montpellier, 34080 Montpellier, France; (B.B.); (G.M.)
- University of Montpellier, 34090 Montpellier, France
| | - Mathieu Quinodoz
- Department of Computational Biology, Unit of Medical Genetics, University of Lausanne, 1015 Lausanne, Switzerland;
| | - Manir Ali
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Carmel Toomes
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Martin McKibbin
- Department of Ophthalmology, St. James’s University Hospital, LS9 7TF Leeds, UK;
| | - Mohammed E. El-Asrag
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
- Department of Zoology, Faculty of Science, Benha University, 13511 Benha, Egypt
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
| | - Chris F. Inglehearn
- Section of Ophthalmology & Neuroscience, Leeds Institute of Biomedical & Clinical Sciences, University of Leeds, St. James’s University Hospital, LS9 7TF Leeds, UK; (M.A.); (C.T.); (M.E.E.-A.); (C.F.I.)
| | - Graeme C. M. Black
- Centre for Genomic Medicine, St. Mary’s Hospital, Manchester Academic Health Science Centre, University of Manchester, M13 9PL Manchester, UK;
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, 6525 EX Nijmegen, The Netherlands;
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands; (G.D.N.A.); (M.I.K.); (L.H.-W.); (F.P.M.C.)
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, 6525 EN Nijmegen, The Netherlands
- Correspondence: ; Tel.: +31-(0)24-365-5266
| |
Collapse
|
68
|
Li S, Xi Q, Zhang X, Yu D, Li L, Jiang Z, Chen Q, Wang QK, Traboulsi EI. Identification of a mutation in CNNM4 by whole exome sequencing in an Amish family and functional link between CNNM4 and IQCB1. Mol Genet Genomics 2018; 293:699-710. [PMID: 29322253 DOI: 10.1007/s00438-018-1417-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 01/06/2018] [Indexed: 12/15/2022]
Abstract
We investigated an Amish family in which three siblings presented with an early-onset childhood retinal dystrophy inherited in an autosomal recessive fashion. Genome-wide linkage analysis identified significant linkage to marker D2S2216 on 2q11 with a two-point LOD score of 1.95 and a multi-point LOD score of 3.76. Whole exome sequencing was then performed for the three affected individuals and identified a homozygous nonsense mutation (c.C1813T, p.R605X) in the cyclin and CBS domain divalent metal cation transport mediator 4 (CNNM4) gene located within the 2p14-2q14 Jalili syndrome locus. The initial assessment and collection of the family were performed before the clinical delineation of Jalili syndrome. Another assessment was made after the discovery of the responsible gene and the dental abnormalities characteristic of Jalili syndrome were retrospectively identified. The p.R605X mutation represents the first probable founder mutation of Jalili syndrome identified in the Amish community. The molecular mechanism underlying Jalili syndrome is unknown. Here we show that CNNM4 interacts with IQCB1, which causes Leber congenital amaurosis (LCA) when mutated. A truncated CNNM4 protein starting at R605 significantly increased the rate of apoptosis, and significantly increased the interaction between CNNM4 and IQCB1. Mutation p.R605X may cause Jalili syndrome by a nonsense-mediated decay mechanism, affecting the function of IQCB1 and apoptosis, or both. Our data, for the first time, functionally link Jalili syndrome gene CNNM4 to LCA gene IQCB1, providing important insights into the molecular pathogenic mechanism of retinal dystrophy in Jalili syndrome.
Collapse
Affiliation(s)
- Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Quansheng Xi
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Xiaoyu Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Dong Yu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lin Li
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
| | - Zhenyang Jiang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qiuyun Chen
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44195, USA
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Department of Molecular Cardiology, Center for Cardiovascular Genetics, Cleveland Clinic Lerner Research Institute, Cleveland, OH, 44195, USA.
- Department of Molecular Medicine, Cleveland Clinic Lerner College of Medicine, Cleveland, USA.
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44195, USA.
| | - Elias I Traboulsi
- Center for Genetic Eye Diseases, Cleveland Clinic Cole Eye Institute, Cleveland, OH, 44195, USA.
| |
Collapse
|
69
|
Bryant L, Lozynska O, Maguire AM, Aleman TS, Bennett J. Prescreening whole exome sequencing results from patients with retinal degeneration for variants in genes associated with retinal degeneration. Clin Ophthalmol 2017; 12:49-63. [PMID: 29343940 PMCID: PMC5749571 DOI: 10.2147/opth.s147684] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Background Accurate clinical diagnosis and prognosis of retinal degeneration can be aided by the identification of the disease-causing genetic variant. It can confirm the clinical diagnosis as well as inform the clinician of the risk for potential involvement of other organs such as kidneys. It also aids in genetic counseling for affected individuals who want to have a child. Finally, knowledge of disease-causing variants informs laboratory investigators involved in translational research. With the advent of next-generation sequencing, identifying pathogenic mutations is becoming easier, especially the identification of novel pathogenic variants. Methods We used whole exome sequencing on a cohort of 69 patients with various forms of retinal degeneration and in whom screens for previously identified disease-causing variants had been inconclusive. All potential pathogenic variants were verified by Sanger sequencing and, when possible, segregation analysis of immediate relatives. Potential variants were identified by using a semi-masked approach in which rare variants in candidate genes were identified without knowledge of the clinical diagnosis (beyond "retinal degeneration") or inheritance pattern. After the initial list of genes was prioritized, genetic diagnosis and inheritance pattern were taken into account. Results We identified the likely pathogenic variants in 64% of the subjects. Seven percent had a single heterozygous mutation identified that would cause recessive disease and 13% had no obviously pathogenic variants and no family members available to perform segregation analysis. Eleven subjects are good candidates for novel gene discovery. Two de novo mutations were identified that resulted in dominant retinal degeneration. Conclusion Whole exome sequencing allows for thorough genetic analysis of candidate genes as well as novel gene discovery. It allows for an unbiased analysis of genetic variants to reduce the chance that the pathogenic mutation will be missed due to incomplete or inaccurate family history or analysis at the early stage of a syndromic form of retinal degeneration.
Collapse
Affiliation(s)
- Laura Bryant
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Olga Lozynska
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Albert M Maguire
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tomas S Aleman
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), FM Kirby Center for Molecular Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
70
|
Porto FBO, Jones EM, Branch J, Soens ZT, Maia IM, Sena IFG, Sampaio SAM, Simões RT, Chen R. Molecular Screening of 43 Brazilian Families Diagnosed with Leber Congenital Amaurosis or Early-Onset Severe Retinal Dystrophy. Genes (Basel) 2017; 8:genes8120355. [PMID: 29186038 PMCID: PMC5748673 DOI: 10.3390/genes8120355] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 12/17/2022] Open
Abstract
Leber congenital amaurosis (LCA) is a severe disease that leads to complete blindness in children, typically before the first year of life. Due to the clinical and genetic heterogeneity among LCA and other retinal diseases, providing patients with a molecular diagnosis is essential to assigning an accurate clinical diagnosis. Using our gene panel that targets 300 genes that are known to cause retinal disease, including 24 genes reported to cause LCA, we sequenced 43 unrelated probands with Brazilian ancestry. We identified 42 unique variants and were able to assign a molecular diagnosis to 30/43 (70%) Brazilian patients. Among these, 30 patients were initially diagnosed with LCA or a form of early-onset retinal dystrophy, 17 patients harbored mutations in LCA-associated genes, while 13 patients had mutations in genes that were reported to cause other diseases involving the retina.
Collapse
Affiliation(s)
- Fernanda B O Porto
- INRET Clínica e Centro de Pesquisa, Belo Horizonte, 30150290 Minas Gerais, Brazil.
- Centro Oftalmológico de Minas Gerais, COMG, Belo Horizonte, 30150290 Minas Gerais, Brazil.
| | - Evan M Jones
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Justin Branch
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Zachry T Soens
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Igor Mendes Maia
- Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, IEP/SCBH, Belo Horizonte, 30150290 Minas Gerais, Brazil.
| | - Isadora F G Sena
- Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, IEP/SCBH, Belo Horizonte, 30150290 Minas Gerais, Brazil.
| | - Shirley A M Sampaio
- INRET Clínica e Centro de Pesquisa, Belo Horizonte, 30150290 Minas Gerais, Brazil.
| | - Renata T Simões
- Instituto de Ensino e Pesquisa da Santa Casa de Belo Horizonte, IEP/SCBH, Belo Horizonte, 30150290 Minas Gerais, Brazil.
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA.
- Structural and Computational Biology & Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
71
|
Han J, Rim JH, Hwang IS, Kim J, Shin S, Lee ST, Choi JR. Diagnostic application of clinical exome sequencing in Leber congenital amaurosis. Mol Vis 2017; 23:649-659. [PMID: 28966547 PMCID: PMC5610811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Accepted: 09/18/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE Leber congenital amaurosis (LCA) is a hereditary retinal dystrophy with wide genetic heterogeneity. Next-generation sequencing (NGS) targeting multiple genes can be a good option for the diagnosis of LCA, and we tested a clinical exome panel in patients with LCA. METHODS A total of nine unrelated Korean patients with LCA were sequenced using the Illumina TruSight One panel, which targets 4,813 clinically associated genes, followed by confirmation using Sanger sequencing. Patients' clinical information and familial study results were obtained and used for comprehensive interpretation. RESULTS In all nine patients, we identified pathogenic variations in LCA-associated genes: NMNAT1 (n=3), GUCY2D (n=2), RPGRIP1 (n=2), CRX (n=1), and CEP290 or SPATA7. Six patients had one or two mutations in accordance with inheritance patterns, all consistent with clinical phenotypes. Two patients had only one pathogenic mutation in recessive genes (NMNAT1 and RPGRIP1), and the clinical features were specific to disorders associated with those genes. Six patients were solved for genetic causes, and it remains unclear for three patients with the clinical exome panel. With subsequent targeted panel sequencing with 113 genes associated with infantile nystagmus syndrome, a likely pathogenic allele in CEP290 was detected in one patient. Interestingly, one pathogenic variant (p.Arg237Cys) in NMNAT1 was present in three patients, and it had a high allele frequency (0.24%) in the general Korean population, suggesting that NMNAT1 could be a major gene responsible for LCA in Koreans. CONCLUSIONS We confirmed that a commercial clinical exome panel can be effectively used in the diagnosis of LCA. Careful interpretation and clinical correlation could promote the successful implementation of clinical exome panels in routine diagnoses of retinal dystrophies, including LCA.
Collapse
Affiliation(s)
- Jinu Han
- Department of Ophthalmology, Severance Hospital, Institute of Vision Research, Yonsei University College of Medicine, Seoul, Korea
| | - John Hoon Rim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - In Sik Hwang
- Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, Korea
| | - Jieun Kim
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Saeam Shin
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Tae Lee
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jong Rak Choi
- Department of Laboratory Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
72
|
Chelstowska S, Widjaja-Adhi MAK, Silvaroli JA, Golczak M. Impact of LCA-Associated E14L LRAT Mutation on Protein Stability and Retinoid Homeostasis. Biochemistry 2017; 56:4489-4499. [PMID: 28758396 PMCID: PMC5682948 DOI: 10.1021/acs.biochem.7b00451] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Vitamin A (all-trans-retinol) is metabolized to the visual chromophore (11-cis-retinal) in the eyes and to all-trans-retinoic acid, a hormone like compound, in most tissues. A key enzyme in retinoid metabolism is lecithin:retinol acyltransferase (LRAT), which catalyzes the esterification of vitamin A. The importance of LRAT is indicated by pathogenic missense and nonsense mutations, which cause devastating blinding diseases. Retinoid-based chromophore replacement therapy has been proposed as treatment for these types of blindness based on studies in LRAT null mice. Here, we analyzed the structural and biochemical basis for retinal pathology caused by mutations in the human LRAT gene. Most LRAT missense mutations associated with retinal degeneration are localized within the catalytic domain, whereas E14L substitution is localized in an N-terminal α-helix, which has been implicated in interaction with the phospholipid bilayer. To elucidate the biochemical consequences of this mutation, we determined LRAT(E14L)'s enzymatic properties, protein stability, and impact on ocular retinoid metabolism. Bicistronic expression of LRAT(E14L) and enhanced green fluorescence protein revealed instability and accelerated proteosomal degradation of this mutant isoform. Surprisingly, instability of LRAT(E14L) did not abrogate the production of the visual chromophore in a cell-based assay. Instead, expression of LRAT(E14L) led to a rapid increase in cellular levels of retinoic acid upon retinoid supplementation. Thus, our study unveils the potential role of retinoic acid in the pathology of a degenerative retinal disease with important implications for the use of retinoid-based therapeutics in affected patients.
Collapse
Affiliation(s)
- Sylwia Chelstowska
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Laboratory of Hematology and Flow Cytometry, Department of Hematology, Military Institute of Medicine, Warsaw 04141, Poland
| | | | - Josie A. Silvaroli
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Marcin Golczak
- Department of Pharmacology, Case Western Reserve University, Cleveland, Ohio 44106, United States
- Cleveland Center for Membrane and Structural Biology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
73
|
Motta FL, Salles MV, Costa KA, Filippelli-Silva R, Martin RP, Sallum JMF. The correlation between CRB1 variants and the clinical severity of Brazilian patients with different inherited retinal dystrophy phenotypes. Sci Rep 2017; 7:8654. [PMID: 28819299 PMCID: PMC5561187 DOI: 10.1038/s41598-017-09035-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022] Open
Abstract
Inherited retinal dystrophies are characterized by progressive retina degeneration and mutations in at least 250 genes have been associated as disease-causing. CRB1 is one of many genes analyzed in molecular diagnosis for inherited retinal dystrophy. Crumbs homolog-1 protein encoded by CRB1 is important for cell-to-cell contact, polarization of epithelial cells and the morphogenesis of photoreceptors. Pathogenic variants in CRB1 lead to a huge variety of phenotypes ranging from milder forms of inherited retinal dystrophy, such as retinitis pigmentosa to more severe phenotypes such as Leber congenital amaurosis. In this study, seven novel likely-pathogenic variants were identified: four missense variants (p.Leu479Pro, p.Ala921Pro, p.Cys948Arg and p.Asp1031Asn), two frameshift deletions (c.2536_2542del7 and c.3460_3461delTG) and one frameshift indel variant (c.276_294delinsTGAACACTGTAC). Furthermore, two patients with cone-rod dystrophy due to mutations in CRB1 were reported, supporting previous data, in which mutations in CRB1 can also cause cone-rod dystrophy. Finally, our data suggested there was a direct relation between phenotype severity and the mutation effect on protein functionality in 15 Brazilian CRB1 patients.
Collapse
Affiliation(s)
| | | | | | | | - Renan Paulo Martin
- Department of Biophysics, Federal University of Sao Paulo, Sao Paulo, Brazil
| | | |
Collapse
|
74
|
Ku CA, Hull S, Arno G, Vincent A, Carss K, Kayton R, Weeks D, Anderson GW, Geraets R, Parker C, Pearce DA, Michaelides M, MacLaren RE, Robson AG, Holder GE, Heon E, Raymond FL, Moore AT, Webster AR, Pennesi ME. Detailed Clinical Phenotype and Molecular Genetic Findings in CLN3-Associated Isolated Retinal Degeneration. JAMA Ophthalmol 2017; 135:749-760. [PMID: 28542676 DOI: 10.1001/jamaophthalmol.2017.1401] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Importance Mutations in genes traditionally associated with syndromic retinal disease are increasingly found to cause nonsyndromic inherited retinal degenerations. Mutations in CLN3 are classically associated with juvenile neuronal ceroid lipofuscinosis, a rare neurodegenerative disease with early retinal degeneration and progressive neurologic deterioration, but have recently also been identified in patients with nonsyndromic inherited retinal degenerations. To our knowledge, detailed clinical characterization of such cases has yet to be reported. Objective To provide detailed clinical, electrophysiologic, structural, and molecular genetic findings in nonsyndromic inherited retinal degenerations associated with CLN3 mutations. Design, Setting, and Participants A multi-institutional case series of 10 patients who presented with isolated nonsyndromic retinal disease and mutations in CLN3. Patient ages ranged from 16 to 70 years; duration of follow-up ranged from 3 to 29 years. Main Outcomes and Measures Longitudinal clinical evaluation, including full ophthalmic examination, multimodal retinal imaging, perimetry, and electrophysiology. Molecular analyses were performed using whole-genome sequencing or whole-exome sequencing. Electron microscopy studies of peripheral lymphocytes and CLN3 transcript analysis with polymerase chain reaction amplification were performed in a subset of patients. Results There were 7 females and 3 males in this case series, with a mean (range) age at last review of 37.1 (16-70) years. Of the 10 patients, 4 had a progressive late-onset rod-cone dystrophy, with a mean (range) age at onset of 29.7 (20-40) years, and 6 had an earlier onset rod-cone dystrophy, with a mean (range) age at onset of 12.1 (7-17) years. Ophthalmoscopic examination features included macular edema, mild intraretinal pigment migration, and widespread atrophy in advanced disease. Optical coherence tomography imaging demonstrated significant photoreceptor loss except in patients with late-onset disease who had a focal preservation of the ellipsoid zone and outer nuclear layer in the fovea. Electroretinography revealed a rod-cone pattern of dysfunction in 6 patients and were completely undetectable in 2 patients. Six novel CLN3 variants were identified in molecular analyses. Conclusions and Relevance This report describes detailed clinical, imaging, and genetic features of CLN3-associated nonsyndromic retinal degeneration. The age at onset and natural progression of retinal disease differs greatly between syndromic and nonsyndromic CLN3 disease, which may be associated with genotypic differences.
Collapse
Affiliation(s)
- Cristy A Ku
- Casey Eye Institute, Oregon Health & Science University, Portland
| | - Sarah Hull
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Gavin Arno
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - Keren Carss
- National Health Service Blood and Transplant Centre, Department of Haematology, University of Cambridge, Cambridge, England6National Institute for Health Research BioResource: Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, England
| | - Robert Kayton
- Pathology Department, Oregon Health & Science University, Portland
| | - Douglas Weeks
- Pathology Department, Oregon Health & Science University, Portland
| | - Glenn W Anderson
- Histopathology Department, Great Ormond Street Hospital for Children, London, England
| | - Ryan Geraets
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - Camille Parker
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota
| | - David A Pearce
- Sanford Children's Health Research Center, Sanford Research, Sioux Falls, South Dakota10Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls
| | - Michel Michaelides
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Robert E MacLaren
- Moorfields Eye Hospital, London, England11Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, England12Oxford University Hospitals National Health Service Foundation Trust, Oxford, England
| | - Anthony G Robson
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Graham E Holder
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, Hospital for Sick Children, University of Toronto, Toronto, Ontario, Canada
| | - F Lucy Raymond
- National Health Service Blood and Transplant Centre, Department of Haematology, University of Cambridge, Cambridge, England6National Institute for Health Research BioResource: Rare Diseases, Cambridge University Hospitals, Cambridge Biomedical Campus, Cambridge, England13Cambridge Institute for Medical Research, Department of Medical Genetics, University of Cambridge, Cambridge, England
| | - Anthony T Moore
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England14Department of Ophthalmology, University of California, San Francisco Medical School, San Francisco
| | - Andrew R Webster
- University College London Institute of Ophthalmology, London, England3Moorfields Eye Hospital, London, England
| | - Mark E Pennesi
- Casey Eye Institute, Oregon Health & Science University, Portland
| |
Collapse
|
75
|
Jones KD, Wheaton DK, Bowne SJ, Sullivan LS, Birch DG, Chen R, Daiger SP. Next-generation sequencing to solve complex inherited retinal dystrophy: A case series of multiple genes contributing to disease in extended families. Mol Vis 2017; 23:470-481. [PMID: 28761320 PMCID: PMC5524430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/18/2017] [Indexed: 11/09/2022] Open
Abstract
PURPOSE With recent availability of next-generation sequencing (NGS), it is becoming more common to pursue disease-targeted panel testing rather than traditional sequential gene-by-gene dideoxy sequencing. In this report, we describe using NGS to identify multiple disease-causing mutations that contribute concurrently or independently to retinal dystrophy in three relatively small families. METHODS Family members underwent comprehensive visual function evaluations, and genetic counseling including a detailed family history. A preliminary genetic inheritance pattern was assigned and updated as additional family members were tested. Family 1 (FAM1) and Family 2 (FAM2) were clinically diagnosed with retinitis pigmentosa (RP) and had a suspected autosomal dominant pedigree with non-penetrance (n.p.). Family 3 (FAM3) consisted of a large family with a diagnosis of RP and an overall dominant pedigree, but the proband had phenotypically cone-rod dystrophy. Initial genetic analysis was performed on one family member with traditional Sanger single gene sequencing and/or panel-based testing, and ultimately, retinal gene-targeted NGS was required to identify the underlying cause of disease for individuals within the three families. Results obtained in these families necessitated further genetic and clinical testing of additional family members to determine the complex genetic and phenotypic etiology of each family. RESULTS Genetic testing of FAM1 (n = 4 affected; 1 n.p.) identified a dominant mutation in RP1 (p.Arg677Ter) that was present for two of the four affected individuals but absent in the proband and the presumed non-penetrant individual. Retinal gene-targeted NGS in the fourth affected family member revealed compound heterozygous mutations in USH2A (p. Cys419Phe, p.Glu767Serfs*21). Genetic testing of FAM2 (n = 3 affected; 1 n.p.) identified three retinal dystrophy genes (PRPH2, PRPF8, and USH2A) with disease-causing mutations in varying combinations among the affected family members. Genetic testing of FAM3 (n = 7 affected) identified a mutation in PRPH2 (p.Pro216Leu) tracking with disease in six of the seven affected individuals. Additional retinal gene-targeted NGS testing determined that the proband also harbored a multiple exon deletion in the CRX gene likely accounting for her cone-rod phenotype; her son harbored only the mutation in CRX, not the familial mutation in PRPH2. CONCLUSIONS Multiple genes contributing to the retinal dystrophy genotypes within a family were discovered using retinal gene-targeted NGS. Families with noted examples of phenotypic variation or apparent non-penetrant individuals may offer a clue to suspect complex inheritance. Furthermore, this finding underscores that caution should be taken when attributing a single gene disease-causing mutation (or inheritance pattern) to a family as a whole. Identification of a disease-causing mutation in a proband, even with a clear inheritance pattern in hand, may not be sufficient for targeted, known mutation analysis in other family members.
Collapse
Affiliation(s)
| | - Dianna K. Wheaton
- Retina Foundation of the Southwest, Dallas, TX,Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Sara J. Bowne
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center (UTHealth), Houston, TX
| | - Lori S. Sullivan
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center (UTHealth), Houston, TX
| | - David G. Birch
- Retina Foundation of the Southwest, Dallas, TX,Ophthalmology, University of Texas Southwestern Medical Center, Dallas, TX
| | - Rui Chen
- Baylor College of Medicine, Houston, TX
| | - Stephen P. Daiger
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center (UTHealth), Houston, TX,Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, University of Texas Health Science Center Houston (UTHealth), Houston, TX
| |
Collapse
|
76
|
Roberts L, Ratnapriya R, du Plessis M, Chaitankar V, Ramesar RS, Swaroop A. Molecular Diagnosis of Inherited Retinal Diseases in Indigenous African Populations by Whole-Exome Sequencing. Invest Ophthalmol Vis Sci 2017; 57:6374-6381. [PMID: 27898983 PMCID: PMC5132076 DOI: 10.1167/iovs.16-19785] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Purpose A majority of genes associated with inherited retinal diseases (IRDs) have been identified in patients of European origin. Indigenous African populations exhibit rich genomic diversity, and evaluation of reported genetic mutations has yielded low returns so far. Our goal was to perform whole-exome sequencing (WES) to examine variants in known IRD genes in underrepresented African cohorts. Methods Whole-exome sequencing was performed on 56 samples from 16 families with diverse IRD phenotypes that had remained undiagnosed after screening for known mutations using genotyping-based microarrays (Asper Ophthalmics). Variants in reported IRD genes were identified using WES and validated by Sanger sequencing. Custom TaqMan assays were used to screen for identified mutations in 193 unrelated indigenous Africans with IRDs. Results A total of 3494 variants were identified in 217 known IRD genes, leading to the identification of seven different mutations (including six novel) in six genes (RHO, PRPF3, PRPF31, ABCA4, CERKL, and PDE6B) in six distinct families. TaqMan screening in additional probands revealed identical homozygous CERKL and PDE6B variants in four more patients. Conclusions This is the first report of WES of patients with IRDs in indigenous African populations. Our study identified genetic defects in almost 40% of the families analyzed, significantly enhancing the molecular diagnosis of IRD in South Africa. Thus, WES of understudied cohorts seems to present an effective strategy for determining novel mutations in heterogeneous retinal diseases.
Collapse
Affiliation(s)
- Lisa Roberts
- University of Cape Town/MRC Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rinki Ratnapriya
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Morné du Plessis
- University of Cape Town/MRC Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Vijender Chaitankar
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| | - Raj S Ramesar
- University of Cape Town/MRC Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland, United States
| |
Collapse
|
77
|
Bujakowska KM, Fernandez-Godino R, Place E, Consugar M, Navarro-Gomez D, White J, Bedoukian EC, Zhu X, Xie HM, Gai X, Leroy BP, Pierce EA. Copy-number variation is an important contributor to the genetic causality of inherited retinal degenerations. Genet Med 2017; 19:643-651. [PMID: 27735924 PMCID: PMC6377944 DOI: 10.1038/gim.2016.158] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 08/30/2016] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Despite substantial progress in sequencing, current strategies can genetically solve only approximately 55-60% of inherited retinal degeneration (IRD) cases. This can be partially attributed to elusive mutations in the known IRD genes, which are not easily identified by the targeted next-generation sequencing (NGS) or Sanger sequencing approaches. We hypothesized that copy-number variations (CNVs) are a major contributor to the elusive genetic causality of IRDs. METHODS Twenty-eight cases previously unsolved with a targeted NGS were investigated with whole-genome single-nucleotide polymorphism (SNP) and comparative genomic hybridization (CGH) arrays. RESULTS Deletions in the IRD genes were detected in 5 of 28 families, including a de novo deletion. We suggest that the de novo deletion occurred through nonallelic homologous recombination (NAHR) and we constructed a genomic map of NAHR-prone regions with overlapping IRD genes. In this article, we also report an unusual case of recessive retinitis pigmentosa due to compound heterozygous mutations in SNRNP200, a gene that is typically associated with the dominant form of this disease. CONCLUSIONS CNV mapping substantially increased the genetic diagnostic rate of IRDs, detecting genetic causality in 18% of previously unsolved cases. Extending the search to other structural variations will probably demonstrate an even higher contribution to genetic causality of IRDs.Genet Med advance online publication 13 October 2016.
Collapse
Affiliation(s)
- Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Rosario Fernandez-Godino
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emily Place
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Mark Consugar
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel Navarro-Gomez
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Joseph White
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| | - Emma C Bedoukian
- Ophthalmic Genetics &Visual Electrophysiology, Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Xiaosong Zhu
- Ophthalmic Genetics &Visual Electrophysiology, Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Hongbo M Xie
- Department of BioMedical Health Informatics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Xiaowu Gai
- Center for Personalized Medicine, Children's Hospital Los Angeles, Los Angeles, California, USA
| | - Bart P Leroy
- Ophthalmic Genetics &Visual Electrophysiology, Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Ophthalmology &Center for Medical Genetics, Ghent University Hospital &Ghent University, Ghent, Belgium
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
78
|
Garg A, Lee W, Sengillo JD, Allikmets R, Garg K, Tsang SH. Peripapillary sparing in RDH12-associated Leber congenital amaurosis. Ophthalmic Genet 2017; 38:575-579. [PMID: 28513254 DOI: 10.1080/13816810.2017.1323339] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
BACKGROUND Peripapillary sparing is a characteristic that is traditionally described as pathognomonic for Stargardt disease. MATERIALS AND METHODS We present a multimodal assessment of four Leber congenital amaurosis (LCA) cases with congenital macular atrophy and severely attenuated electroretinogram findings caused by bilallelic mutations in RDH12. RESULTS Fundus autofluorescence imaging revealed a general loss of retinal pigment epithelium across the macula except for the peripapillary region in both eyes of all patients. Spectral domain-optical coherence tomography confirmed relative preservation in this area along with retinal thinning and excavation throughout the rest of the macula. LCA was diagnosed based on clinical exam and retinal imaging, and subsequently confirmed with genetic testing. CONCLUSIONS Peripapillary sparing is a novel phenotypic feature of RDH12-associated LCA.
Collapse
Affiliation(s)
- Aakriti Garg
- a Department of Ophthalmology , College of Physicians and Surgeons, Columbia University , New York , New York , USA
| | - Winston Lee
- a Department of Ophthalmology , College of Physicians and Surgeons, Columbia University , New York , New York , USA.,b Department of Pathology and Cell Biology , College of Physicians and Surgeons, Columbia University , New York , New York , USA.,c Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory , Columbia University Medical Center , New York , New York , USA
| | - Jesse D Sengillo
- a Department of Ophthalmology , College of Physicians and Surgeons, Columbia University , New York , New York , USA.,c Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory , Columbia University Medical Center , New York , New York , USA.,d State University of New York Downstate Medical Center , Brooklyn , New York , USA
| | - Rando Allikmets
- a Department of Ophthalmology , College of Physicians and Surgeons, Columbia University , New York , New York , USA.,b Department of Pathology and Cell Biology , College of Physicians and Surgeons, Columbia University , New York , New York , USA
| | - Kartik Garg
- c Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory , Columbia University Medical Center , New York , New York , USA
| | - Stephen H Tsang
- a Department of Ophthalmology , College of Physicians and Surgeons, Columbia University , New York , New York , USA.,b Department of Pathology and Cell Biology , College of Physicians and Surgeons, Columbia University , New York , New York , USA.,c Jonas Children's Vision Care and Bernard & Shirlee Brown Glaucoma Laboratory , Columbia University Medical Center , New York , New York , USA
| |
Collapse
|
79
|
Mutation screening in genes known to be responsible for Retinitis Pigmentosa in 98 Small Han Chinese Families. Sci Rep 2017; 7:1948. [PMID: 28512305 PMCID: PMC5434011 DOI: 10.1038/s41598-017-00963-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 03/03/2017] [Indexed: 01/10/2023] Open
Abstract
Retinitis pigmentosa (RP) is highly heterogeneous in both clinical and genetic fields. Accurate mutation screening is very beneficial in improving clinical diagnosis and gene-specific treatment of RP patients. The reason for the difficulties in genetic diagnosis of RP is that the ethnic-specific mutation databases that contain both clinical and genetic information are largely insufficient. In this study, we recruited 98 small Han Chinese families clinically diagnosed as RP, including of 22 dominant, 19 recessive, 52 sporadic, and five X-linked. We then used whole exome sequencing (WES) analysis to detect mutations in the genes known for RP in 101 samples from these 98 families. In total, we identified 57 potential pathogenic mutations in 40 of the 98 (41%) families in 22 known RP genes, including 45 novel mutations. We detected mutations in 13 of the 22 (59%) typical autosomal dominant families, 8 of the 19 (42%) typical autosomal recessive families, 16 of the 52 (31%) sporadic small families, and four of the five (80%) X-linked families. Our results extended the mutation spectrum of known RP genes in Han Chinese, thus making a contribution to RP gene diagnosis and the pathogenetic study of RP genes.
Collapse
|
80
|
Wang X, Gregory-Evans K, Wasan KM, Sivak O, Shan X, Gregory-Evans CY. Efficacy of Postnatal In Vivo Nonsense Suppression Therapy in a Pax6 Mouse Model of Aniridia. MOLECULAR THERAPY. NUCLEIC ACIDS 2017. [PMID: 28624217 PMCID: PMC5440746 DOI: 10.1016/j.omtn.2017.05.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nonsense mutations leading to premature stop codons are common occurring in approximately 12% of all human genetic diseases. Thus, pharmacological nonsense mutation suppression strategies would be beneficial to a large number of patients if the drugs could be targeted to the affected tissues at the appropriate time. Here, we used nonsense suppression to manipulate Pax6 dosage at different developmental times in the eye of the small eye (Pax6Sey/+; G194X) mouse model of aniridia. Efficacy was assessed by functional assays for visual capacity, including electroretinography and optokinetic tracking (OKT), in addition to histological and biochemical studies. Malformation defects in the Pax6Sey/+ postnatal eye responded to topically delivered nonsense suppression in a dose- and time-dependent manner. Elevated levels of Mmp9, a direct downstream target of Pax6 in the cornea, were observed with the different treatment regimens. The lens capsule was particularly sensitive to Pax6 dosage, revealing a potential new role for Pax6 in lens capsule maintenance and development. The remarkable capacity of malformed ocular tissue to respond postnatally to Pax6 dosage in vivo demonstrates that the use of nonsense suppression could be a valuable therapeutic approach for blinding diseases caused by nonsense mutations.
Collapse
Affiliation(s)
- Xia Wang
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Kevin Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Kishor M Wasan
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada
| | - Olena Sivak
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Xianghong Shan
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Cheryl Y Gregory-Evans
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada.
| |
Collapse
|
81
|
Sullivan LS, Bowne SJ, Koboldt DC, Cadena EL, Heckenlively JR, Branham KE, Wheaton DH, Jones KD, Ruiz RS, Pennesi ME, Yang P, Davis-Boozer D, Northrup H, Gurevich VV, Chen R, Xu M, Li Y, Birch DG, Daiger SP. A Novel Dominant Mutation in SAG, the Arrestin-1 Gene, Is a Common Cause of Retinitis Pigmentosa in Hispanic Families in the Southwestern United States. Invest Ophthalmol Vis Sci 2017; 58:2774-2784. [PMID: 28549094 PMCID: PMC5455168 DOI: 10.1167/iovs.16-21341] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/23/2017] [Indexed: 01/22/2023] Open
Abstract
Purpose To identify the causes of autosomal dominant retinitis pigmentosa (adRP) in a cohort of families without mutations in known adRP genes and consequently to characterize a novel dominant-acting missense mutation in SAG. Methods Patients underwent ophthalmologic testing and were screened for mutations using targeted-capture and whole-exome next-generation sequencing. Confirmation and additional screening were done by Sanger sequencing. Haplotypes segregating with the mutation were determined using short tandem repeat and single nucleotide variant polymorphisms. Genealogies were established by interviews of family members. Results Eight families in a cohort of 300 adRP families, and four additional families, were found to have a novel heterozygous mutation in the SAG gene, c.440G>T; p.Cys147Phe. Patients exhibited symptoms of retinitis pigmentosa and none showed symptoms characteristic of Oguchi disease. All families are of Hispanic descent and most were ascertained in Texas or California. A single haplotype including the SAG mutation was identified in all families. The mutation dramatically alters a conserved amino acid, is extremely rare in global databases, and was not found in 4000+ exomes from Hispanic controls. Molecular modeling based on the crystal structure of bovine arrestin-1 predicts protein misfolding/instability. Conclusions This is the first dominant-acting mutation identified in SAG, a founder mutation possibly originating in Mexico several centuries ago. The phenotype is clearly adRP and is distinct from the previously reported phenotypes of recessive null mutations, that is, Oguchi disease and recessive RP. The mutation accounts for 3% of the 300 families in the adRP Cohort and 36% of Hispanic families in this cohort.
Collapse
Affiliation(s)
- Lori S. Sullivan
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States
| | - Sara J. Bowne
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States
| | | | - Elizabeth L. Cadena
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States
| | | | - Kari E. Branham
- Kellogg Eye Center, University of Michigan, Ann Arbor, Michigan, United States
| | | | - Kaylie D. Jones
- Retina Foundation of the Southwest, Dallas, Texas, United States
| | - Richard S. Ruiz
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, United States
| | - Mark E. Pennesi
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Paul Yang
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - David Davis-Boozer
- Casey Eye Institute, Oregon Health and Science University, Portland, Oregon, United States
| | - Hope Northrup
- Department of Pediatrics, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, United States
| | | | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Mingchu Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States
| | - David G. Birch
- Retina Foundation of the Southwest, Dallas, Texas, United States
| | - Stephen P. Daiger
- Human Genetics Center, School of Public Health, The University of Texas Health Science Center, Houston, Texas, United States
- Ruiz Department of Ophthalmology and Visual Science, McGovern Medical School, The University of Texas Health Science Center, Houston, Texas, United States
| |
Collapse
|
82
|
Pierrache LHM, Kimchi A, Ratnapriya R, Roberts L, Astuti GDN, Obolensky A, Beryozkin A, Tjon-Fo-Sang MJH, Schuil J, Klaver CCW, Bongers EMHF, Haer-Wigman L, Schalij N, Breuning MH, Fischer GM, Banin E, Ramesar RS, Swaroop A, van den Born LI, Sharon D, Cremers FPM. Whole-Exome Sequencing Identifies Biallelic IDH3A Variants as a Cause of Retinitis Pigmentosa Accompanied by Pseudocoloboma. Ophthalmology 2017; 124:992-1003. [PMID: 28412069 DOI: 10.1016/j.ophtha.2017.03.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 02/28/2017] [Accepted: 03/03/2017] [Indexed: 12/25/2022] Open
Abstract
PURPOSE To identify the genetic cause of and describe the phenotype in 4 families with autosomal recessive retinitis pigmentosa (arRP) that can be associated with pseudocoloboma. DESIGN Case series. PARTICIPANTS Seven patients from 4 unrelated families with arRP, among whom 3 patients had bilateral early-onset macular pseudocoloboma. METHODS We performed homozygosity mapping and whole-exome sequencing in 5 probands and 2 unaffected family members from 4 unrelated families. Subsequently, Sanger sequencing and segregation analysis were performed in additional family members. We reviewed the medical history of individuals carrying IDH3A variants and performed additional ophthalmic examinations, including full-field electroretinography, fundus photography, fundus autofluorescence imaging, and optical coherence tomography. MAIN OUTCOME MEASURES IDH3A variants, age at diagnosis, visual acuity, fundus appearance, visual field, and full-field electroretinography, fundus autofluorescence, and optical coherence tomography findings. RESULTS We identified 7 different variants in IDH3A in 4 unrelated families, that is, 5 missense, 1 nonsense, and 1 frameshift variant. All participants showed symptoms early in life, ranging from night blindness to decreased visual acuity, and were diagnosed between the ages of 1 and 11 years. Four participants with biallelic IDH3A variants displayed a typical arRP phenotype and 3 participants were diagnosed with arRP and pseudocoloboma of the macula. CONCLUSIONS IDH3A variants were identified as a novel cause of typical arRP in some individuals associated with macular pseudocoloboma. We observed both phenotypes in 2 siblings carrying the same compound heterozygous variants, which could be explained by variable disease expression and warrants caution when making assertions about genotype-phenotype correlations.
Collapse
Affiliation(s)
- Laurence H M Pierrache
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands; Rotterdam Ophthalmic Institute, Rotterdam, The Netherlands; Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Adva Kimchi
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Rinki Ratnapriya
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - Lisa Roberts
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Galuh D N Astuti
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands; Division of Human Genetics, Center for Biomedical Research, Faculty of Medicine, Diponegoro University, Semarang, Indonesia
| | - Alexey Obolensky
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | - Jose Schuil
- Bartiméus Institute for the Visually Impaired, Zeist, The Netherlands
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands; Department of Ophthalmology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ernie M H F Bongers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Lonneke Haer-Wigman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicoline Schalij
- Department of Ophthalmology, Leiden University Medical Center, Leiden, The Netherlands
| | - Martijn H Breuning
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - Gratia M Fischer
- Department of Ophthalmology, Dr. George Mukhari Academic Hospital, Sefako Makgatho Health Sciences University (SMU), Ga-Rankuwa, Pretoria, South Africa
| | - Eyal Banin
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Raj S Ramesar
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Anand Swaroop
- Neurobiology-Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, Maryland
| | - L Ingeborgh van den Born
- The Rotterdam Eye Hospital, Rotterdam, The Netherlands; Rotterdam Ophthalmic Institute, Rotterdam, The Netherlands
| | - Dror Sharon
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Frans P M Cremers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
83
|
Wang X, Feng Y, Li J, Zhang W, Wang J, Lewis RA, Wong LJ. Retinal Diseases Caused by Mutations in Genes Not Specifically Associated with the Clinical Diagnosis. PLoS One 2016; 11:e0165405. [PMID: 27788217 PMCID: PMC5082937 DOI: 10.1371/journal.pone.0165405] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 10/11/2016] [Indexed: 12/15/2022] Open
Abstract
Purpose When seeking a confirmed molecular diagnosis in the research setting, patients with one descriptive diagnosis of retinal disease could carry pathogenic variants in genes not specifically associated with that description. However, this event has not been evaluated systematically in clinical diagnostic laboratories that validate fully all target genes to minimize false negatives/positives. Methods We performed targeted next-generation sequencing analysis on 207 ocular disease-related genes for 42 patients whose DNA had been tested negative for disease-specific panels of genes known to be associated with retinitis pigmentosa, Leber congenital amaurosis, or exudative vitreoretinopathy. Results Pathogenic variants, including single nucleotide variations and copy number variations, were identified in 9 patients, including 6 with variants in syndromic retinal disease genes and 3 whose molecular diagnosis could not be distinguished easily from their submitted clinical diagnosis, accounting for 21% (9/42) of the unsolved cases. Conclusion Our study underscores the clinical and genetic heterogeneity of retinal disorders and provides valuable reference to estimate the fraction of clinical samples whose retinal disorders could be explained by genes not specifically associated with the corresponding clinical diagnosis. Our data suggest that sequencing a larger set of retinal disorder related genes can increase the molecular diagnostic yield, especially for clinically hard-to-distinguish cases.
Collapse
Affiliation(s)
- Xia Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Yanming Feng
- Baylor Genetics, Houston, Texas, United States of America
| | - Jianli Li
- Baylor Genetics, Houston, Texas, United States of America
| | - Wei Zhang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Jing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard A. Lewis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Lee-Jun Wong
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Baylor Genetics, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
84
|
Molecular Basis for Vitamin A Uptake and Storage in Vertebrates. Nutrients 2016; 8:nu8110676. [PMID: 27792183 PMCID: PMC5133064 DOI: 10.3390/nu8110676] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Revised: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 01/27/2023] Open
Abstract
The ability to store and distribute vitamin A inside the body is the main evolutionary adaptation that allows vertebrates to maintain retinoid functions during nutritional deficiencies and to acquire new metabolic pathways enabling light-independent production of 11-cis retinoids. These processes greatly depend on enzymes that esterify vitamin A as well as associated retinoid binding proteins. Although the significance of retinyl esters for vitamin A homeostasis is well established, until recently, the molecular basis for the retinol esterification enzymatic activity was unknown. In this review, we will look at retinoid absorption through the prism of current biochemical and structural studies on vitamin A esterifying enzymes. We describe molecular adaptations that enable retinoid storage and delineate mechanisms in which mutations found in selective proteins might influence vitamin A homeostasis in affected patients.
Collapse
|
85
|
Soens ZT, Li Y, Zhao L, Eblimit A, Dharmat R, Li Y, Chen Y, Naqeeb M, Fajardo N, Lopez I, Sun Z, Koenekoop RK, Chen R. Hypomorphic mutations identified in the candidate Leber congenital amaurosis gene CLUAP1. Genet Med 2016; 18:1044-51. [PMID: 26820066 PMCID: PMC4965339 DOI: 10.1038/gim.2015.205] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 12/04/2015] [Indexed: 12/11/2022] Open
Abstract
PURPOSE Leber congenital amaurosis (LCA) is an early-onset form of retinal degeneration. Six of the 22 known LCA genes encode photoreceptor ciliary proteins. Despite the identification of 22 LCA genes, the genetic basis of ~30% of LCA patients remains unknown. We sought to investigate the cause of disease in the remaining 30% by examining cilia-associated genes. METHODS Whole-exome sequencing was performed on an LCA cohort of 212 unsolved probands previously screened for mutations in known retinal-disease genes. Immunohistochemistry using mouse retinas was used to confirm protein localization and zebrafish were used to perform rescue experiments. RESULTS A homozygous nonsynonymous mutation was found in a single proband in CLUAP1, a gene required for ciliogenesis and cilia maintenance. Cluap1 knockout zebrafish exhibit photoreceptor cell death as early as 5 days after fertilization, and rescue experiments revealed that our proband's mutation is significantly hypomorphic. CONCLUSION Consistent with the knowledge that CLUAP1 plays an important role in cilia function and that cilia are critical to photoreceptor function, our results indicate that hypomorphic mutations in CLUAP1 can result in dysfunctional photoreceptors without systemic abnormalities. This is the first report linking mutations in CLUAP1 to human disease and establishes CLUAP1 as a candidate LCA gene.Genet Med 18 10, 1044-1051.
Collapse
Affiliation(s)
- Zachry T. Soens
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Yuanyuan Li
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Li Zhao
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
- Department of Structural and Computational Biology & Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, United States
| | - Aiden Eblimit
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Rachayata Dharmat
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Yiyun Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
| | - Mohammed Naqeeb
- Department of Ophthalmology, Um Al Qura University Medical School, Makkah, Saudi Arabia
| | - Norma Fajardo
- McGill Ocular Genetics Laboratory and Centre, Departments of Paediatric Surgery, Human Genetics and Ophthalmology, McGill University Health Centre, Montreal, QC H3H 1P3, Canada
| | - Irma Lopez
- McGill Ocular Genetics Laboratory and Centre, Departments of Paediatric Surgery, Human Genetics and Ophthalmology, McGill University Health Centre, Montreal, QC H3H 1P3, Canada
| | - Zhaoxia Sun
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, United States
| | - Robert K. Koenekoop
- McGill Ocular Genetics Laboratory and Centre, Departments of Paediatric Surgery, Human Genetics and Ophthalmology, McGill University Health Centre, Montreal, QC H3H 1P3, Canada
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, United States
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, United States
- Department of Structural and Computational Biology & Molecular Biophysics, Baylor College of Medicine, Houston, TX 77030, United States
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, United States
- Program of Developmental Biology, Baylor College of Medicine, Houston, TX 77030, United States
| |
Collapse
|
86
|
Wang SY, Zhang Q, Zhang X, Zhao PQ. Comprehensive analysis of genetic variations in strictly-defined Leber congenital amaurosis with whole-exome sequencing in Chinese. Int J Ophthalmol 2016; 9:1260-4. [PMID: 27672588 DOI: 10.18240/ijo.2016.09.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2016] [Accepted: 03/11/2016] [Indexed: 11/23/2022] Open
Abstract
AIM To make a comprehensive analysis of the potential pathogenic genes related with Leber congenital amaurosis (LCA) in Chinese. METHODS LCA subjects and their families were retrospectively collected from 2013 to 2015. Firstly, whole-exome sequencing was performed in patients who had underwent gene mutation screening with nothing found, and then homozygous sites was selected, candidate sites were annotated, and pathogenic analysis was conducted using softwares including Sorting Tolerant from Intolerant (SIFT), Polyphen-2, Mutation assessor, Condel, and Functional Analysis through Hidden Markov Models (FATHMM). Furthermore, Gene Ontology function and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses of pathogenic genes were performed followed by co-segregation analysis using Fisher exact Test. Sanger sequencing was used to validate single-nucleotide variations (SNVs). Expanded verification was performed in the rest patients. RESULTS Totally 51 LCA families with 53 patients and 24 family members were recruited. A total of 104 SNVs (66 LCA-related genes and 15 co-segregated genes) were submitted for expand verification. The frequencies of homozygous mutation of KRT12 and CYP1A1 were simultaneously observed in 3 families. Enrichment analysis showed that the potential pathogenic genes were mainly enriched in functions related to cell adhesion, biological adhesion, retinoid metabolic process, and eye development biological adhesion. Additionally, WFS1 and STAU2 had the highest homozygous frequencies. CONCLUSION LCA is a highly heterogeneous disease. Mutations in KRT12, CYP1A1, WFS1, and STAU2 may be involved in the development of LCA.
Collapse
Affiliation(s)
- Shi-Yuan Wang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qi Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Xiang Zhang
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Pei-Quan Zhao
- Department of Ophthalmology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
87
|
Ullah I, Kabir F, Iqbal M, Gottsch CBS, Naeem MA, Assir MZ, Khan SN, Akram J, Riazuddin S, Ayyagari R, Hejtmancik JF, Riazuddin SA. Pathogenic mutations in TULP1 responsible for retinitis pigmentosa identified in consanguineous familial cases. Mol Vis 2016; 22:797-815. [PMID: 27440997 PMCID: PMC4947966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 07/14/2016] [Indexed: 11/16/2022] Open
Abstract
PURPOSE To identify pathogenic mutations responsible for autosomal recessive retinitis pigmentosa (arRP) in consanguineous familial cases. METHODS Seven large familial cases with multiple individuals diagnosed with retinitis pigmentosa were included in the study. Affected individuals in these families underwent ophthalmic examinations to document the symptoms and confirm the initial diagnosis. Blood samples were collected from all participating members, and genomic DNA was extracted. An exclusion analysis with microsatellite markers spanning the TULP1 locus on chromosome 6p was performed, and two-point logarithm of odds (LOD) scores were calculated. All coding exons along with the exon-intron boundaries of TULP1 were sequenced bidirectionally. We constructed a single nucleotide polymorphism (SNP) haplotype for the four familial cases harboring the K489R allele and estimated the likelihood of a founder effect. RESULTS The ophthalmic examinations of the affected individuals in these familial cases were suggestive of RP. Exclusion analyses confirmed linkage to chromosome 6p harboring TULP1 with positive two-point LOD scores. Subsequent Sanger sequencing identified the single base pair substitution in exon14, c.1466A>G (p.K489R), in four families. Additionally, we identified a two-base deletion in exon 4, c.286_287delGA (p.E96Gfs77*); a homozygous splice site variant in intron 14, c.1495+4A>C; and a novel missense variation in exon 15, c.1561C>T (p.P521S). All mutations segregated with the disease phenotype in the respective families and were absent in ethnically matched control chromosomes. Haplotype analysis suggested (p<10(-6)) that affected individuals inherited the causal mutation from a common ancestor. CONCLUSIONS Pathogenic mutations in TULP1 are responsible for the RP phenotype in seven familial cases with a common ancestral mutation responsible for the disease phenotype in four of the seven families.
Collapse
Affiliation(s)
- Inayat Ullah
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Firoz Kabir
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Muhammad Iqbal
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | | | - Muhammad Asif Naeem
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Zaman Assir
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Shaheen N. Khan
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Javed Akram
- Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Sheikh Riazuddin
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan,Allama Iqbal Medical College, University of Health Sciences, Lahore, Pakistan,National Centre for Genetic Diseases, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| | - Radha Ayyagari
- Shiley Eye Institute, University of California, San Diego, CA
| | - J. Fielding Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, National Institutes of Health, Bethesda, MD
| | - S. Amer Riazuddin
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
88
|
Wang S, Zhang Q, Zhang X, Wang Z, Zhao P. Clinical and genetic characteristics of Leber congenital amaurosis with novel mutations in known genes based on a Chinese eastern coast Han population. Graefes Arch Clin Exp Ophthalmol 2016; 254:2227-2238. [PMID: 27422788 DOI: 10.1007/s00417-016-3428-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 05/31/2016] [Accepted: 06/22/2016] [Indexed: 11/26/2022] Open
Abstract
PURPOSE To study the genotype-phenotype characteristics of Leber congenital amaurosis (LCA) in the Chinese eastern coast Han population. METHODS Children with strictly defined LCA with novel mutations of known LCA genes identified by targeted next-generation sequencing (NGS) and a prediction of pathogenicity (in silico) were included in this study (2013-2015). Mutations were confirmed using Sanger sequencing and segregation analysis. The clinical findings were recorded, including visual function, refractive error, fundus changes, and electroretinograms (ERGs). Spectral-domain optical coherence tomography (SD-OCT) examination, fundus fluorescein angiography (FFA), and ultra-wide field scanning laser ophthalmoscopy (UWF SLO) were performed on children when available. RESULTS A total of 65 patients underwent NGS for mutation screening and 45 patients were identified as carrying known LCA genes. Of these, 36(80 %) children harbored novel mutations, and they were all from the eastern coast of China. A total of 50 novel variants were identified, which covered 15 known LCA genes. GUCY2D (17 %), CEP290 (14 %), NMNAT1 (14 %), AIPL1 (11 %) and RPGRIP1 (11 %) were the five most frequently mutated genes with novel mutations. A total of four (11 %) patients with AIPL1 mutations harbored the same novel mutated allele (c.C241T p.Q81X), which was homozygous in patients 1 and 2. Unusual manifestations were detected in patient 16 who had novel mutations in CRB1 with a dense proliferative membrane adhering to the posterior retina of the right eye with numerous fine glistening crystals spreading over the retina of both eyes. Ten (40 %) of the 25 available patients who underwent SD-OCT showed a normal macular appearance using fundus photography but an abnormal macular structure using OCT imaging, most of whom presented with a thickened fovea with maldevelopment of the inner and outer retinal laminae. CONCLUSIONS There may be a high frequency of AIPL1 novel mutations and a founder mutation of p.Q81X in the Chinese eastern coast Han population. Our findings of specific features in this population broaden the spectrum of novel mutations and the phenotype of LCA with ethnic and regional variations. Fundus multimodality imaging may help guide comprehensive assessments for patients with LCA.
Collapse
Affiliation(s)
- Shiyuan Wang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Qi Zhang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Xiang Zhang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Zhaoyang Wang
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China
| | - Peiquan Zhao
- Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kong Jiang Road, Shanghai, 200092, China.
| |
Collapse
|
89
|
Abstract
Retinitis pigmentosa is the most common form of hereditary retinal degeneration causing blindness. Great progress has been made in the identification of the causative genes. Gene diagnosis will soon become an affordable routine clinical test because of the wide application of next-generation sequencing. Gene-based therapy provides hope for curing the disease. Investigation into the molecular pathways from mutation to rod cell death may reveal targets for developing new treatment. Related progress with existing systematic review is briefly summarized so that readers may find the relevant references for in-depth reading. Future trends in the study of retinitis pigmentosa are also discussed.
Collapse
Affiliation(s)
- Qingjiong Zhang
- From the State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
90
|
Xu Y, Xiao X, Li S, Jia X, Xin W, Wang P, Sun W, Huang L, Guo X, Zhang Q. Molecular genetics of Leber congenital amaurosis in Chinese: New data from 66 probands and mutation overview of 159 probands. Exp Eye Res 2016; 149:93-99. [PMID: 27375279 DOI: 10.1016/j.exer.2016.06.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 04/28/2016] [Accepted: 06/27/2016] [Indexed: 10/21/2022]
Abstract
Leber congenital amaurosis (LCA) is the most severe form of inherited retinal dystrophy. We have previously performed a mutational analysis of the known LCA-associated genes in probands with LCA by both Sanger and whole exome sequencing. In this study, whole exome sequencing was carried out on 66 new probabds with LCA. In conjunction with these data, the present study provides a comprehensive analysis of the spectrum and frequency of all known genes associated with retinal dystrophy in a total of 159 Chinese probands with LCA. The known genes responsible for all forms hereditary retinal dystrophy were included based on information from RetNet. The candidate variants were filtered by bioinformatics analysis and confirmed by Sanger sequencing. Potentially causative mutations were further validated in available family members. Overall, a total of 118 putative pathogenic mutations from 23 genes were identified in 56.6% (90/159) of probands. These mutations were harbored in 13 LCA-associated genes and in ten genes related to other forms of retinal dystrophy. The most frequently mutated gene in probands with LCA was GUCY2D (10.7%, 17/159). A series of mutational analyses suggests that all known genes associated with retinal dystrophy account for 56.6% of Chinese patients with LCA. A comprehensive molecular genetic analysis of Chinese patients with LCA provides an overview of the spectrum and frequency of ethno-specific mutations of all known genes, as well as indications about other unknown genes in the remaining probands who lacked identified mutations.
Collapse
Affiliation(s)
- Yan Xu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xueshan Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Shiqiang Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiaoyun Jia
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wei Xin
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Panfeng Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Wenmin Sun
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Li Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Xiangming Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China
| | - Qingjiong Zhang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou 510060, China.
| |
Collapse
|
91
|
Improving the management of Inherited Retinal Dystrophies by targeted sequencing of a population-specific gene panel. Sci Rep 2016; 6:23910. [PMID: 27032803 PMCID: PMC4817143 DOI: 10.1038/srep23910] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 03/10/2016] [Indexed: 11/08/2022] Open
Abstract
Next-generation sequencing (NGS) has overcome important limitations to the molecular diagnosis of Inherited Retinal Dystrophies (IRD) such as the high clinical and genetic heterogeneity and the overlapping phenotypes. The purpose of this study was the identification of the genetic defect in 32 Spanish families with different forms of IRD. With that aim, we implemented a custom NGS panel comprising 64 IRD-associated genes in our population, and three disease-associated intronic regions. A total of 37 pathogenic mutations (14 novels) were found in 73% of IRD patients ranging from 50% for autosomal dominant cases, 75% for syndromic cases, 83% for autosomal recessive cases, and 100% for X-linked cases. Additionally, unexpected phenotype-genotype correlations were found in 6 probands, which led to the refinement of their clinical diagnoses. Furthermore, intra- and interfamilial phenotypic variability was observed in two cases. Moreover, two cases unsuccessfully analysed by exome sequencing were resolved by applying this panel. Our results demonstrate that this hypothesis-free approach based on frequently mutated, population-specific loci is highly cost-efficient for the routine diagnosis of this heterogeneous condition and allows the unbiased analysis of a miscellaneous cohort. The molecular information found here has aid clinical diagnosis and has improved genetic counselling and patient management.
Collapse
|
92
|
Ogino K, Oishi A, Oishi M, Gotoh N, Morooka S, Sugahara M, Hasegawa T, Miyata M, Yoshimura N. Efficacy of Column Scatter Plots for Presenting Retinitis Pigmentosa Phenotypes in a Japanese Cohort. Transl Vis Sci Technol 2016; 5:4. [PMID: 26966640 PMCID: PMC4782824 DOI: 10.1167/tvst.5.2.4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 01/27/2016] [Indexed: 11/25/2022] Open
Abstract
Purpose We evaluated the efficacy of column scatter plots to describe genotype–phenotype correlations in a Japanese cohort with retinitis pigmentosa (RP). Methods Clinical records of 121 patients with RP with identified causative mutations were reviewed. Visual acuity, central and peripheral visual fields, electroretinography (ERG), lens status, and measurements of optical coherence tomography were evaluated according to causative genes using column scatter plots. Values for three common genes (EYS, USH2A, and RHO) were compared statistically. Results All patients with PDE6B, PRPH2, and RPGR mutations, those 55 years old or younger with RP1L1 and USH2A mutations, and those 45 years old or younger with EYS and RHO mutations retained visual acuity of at least 0.1. All patients with RPGR mutations showed at least −20 dB mean deviation. Goldmann perimeter measures of 4/6 patients with RHO mutations showed remaining peripheral visual fields. Dark-adapted 0.01 and 3.0 ERGs were extinguished for most genes. Half of the patients with RHO RP maintained cone responses in light-adapted 3.0 and 3.0 flicker ERG. All patients with PRPH2, those 55 years old or younger with USH2A and RP1L1, and those 45 years old or younger with PDE6B and EYS mutations maintained subfoveal ellipsoid zones. No differences were identified between EYS and USH2A or RHO and USH2A. Conclusions Column scatter plots enabled comparisons of the associated severities and illustration of the ophthalmological measurements for every RP causative gene. Translational Relevance Analysis of mutations in specific genes may be helpful for determining visual prognoses in the clinical setting.
Collapse
Affiliation(s)
- Ken Ogino
- Department of Ophthalmology and Visual Sciences Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akio Oishi
- Department of Ophthalmology and Visual Sciences Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Maho Oishi
- Department of Ophthalmology and Visual Sciences Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Norimoto Gotoh
- Department of Ophthalmology and Visual Sciences Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Satoshi Morooka
- Department of Ophthalmology and Visual Sciences Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masako Sugahara
- Department of Ophthalmology and Visual Sciences Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomoko Hasegawa
- Department of Ophthalmology and Visual Sciences Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Manabu Miyata
- Department of Ophthalmology and Visual Sciences Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nagahisa Yoshimura
- Department of Ophthalmology and Visual Sciences Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
93
|
de Goede C, Yue WW, Yan G, Ariyaratnam S, Chandler KE, Downes L, Khan N, Mohan M, Lowe M, Banka S. Role of reverse phenotyping in interpretation of next generation sequencing data and a review of INPP5E related disorders. Eur J Paediatr Neurol 2016; 20:286-295. [PMID: 26748598 DOI: 10.1016/j.ejpn.2015.11.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 11/05/2015] [Accepted: 11/23/2015] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Next Generation Sequencing (NGS) is a useful tool in diagnosis of rare disorders but the interpretation of data can be challenging in clinical settings. We present results of extended studies on a family of multiple members with global developmental delay and learning disability, where another research group postulated the underlying cause to be a homozygous RABL6 missense variant. METHODS AND RESULTS Using data from the Exome Variant Server, we show that missense RABL6 variants are unlikely to cause early onset rare developmental disorder. Protein structural analysis, cellular functional studies and reverse phenotyping proved that the condition in this family is due to a homozygous INPP5E mutation. An in-depth review of mutational and phenotypic spectrum associated with INPP5E demonstrated that mutations in this gene lead to a range of cilliopathy-phenotypes. DISCUSSION We use this study as an example to demonstrate the importance of careful clinical evaluation of multiple family members, reverse phenotyping, considering the unknown phenotypic variability of rare diseases, utilizing publically available genomic databases and conducting appropriate bioinformatics and functional studies while interpreting results from NGS in uncertain cases. We emphasize that interpretation of NGS data is an iterative process and its dynamic nature should be explained to patients and families. Our study shows that developmental delay, intellectual disability, hypotonia and ocular motor apraxia are common in INPP5E-related disorders and considerable intra-familial phenotypic variability is possible. We have compiled the INPP5E mutational spectrum and provided novel insights into their molecular mechanisms.
Collapse
Affiliation(s)
- Christian de Goede
- Department of Paediatric Neurology, Royal Preston Hospital, Lancashire Teaching Hospitals NHS Foundation Trust, Preston, UK; Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Wyatt W Yue
- Structural Genomics Consortium, Old Road Campus Research Building, University of Oxford, Oxford, UK
| | - Guanhua Yan
- Faculty of Life Sciences, University of Manchester, UK
| | - Shyamala Ariyaratnam
- Department of Community and Neurodevelopmental Paediatrics, Royal Blackburn Hospital, East Lancashire Hospital NHS Trust, Blackburn, UK
| | - Kate E Chandler
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Laura Downes
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Nasaim Khan
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Meyyammai Mohan
- Department of Ophthalmology, Royal Blackburn Hospital, East Lancashire Hospital NHS Trust, Blackburn, UK
| | - Martin Lowe
- Faculty of Life Sciences, University of Manchester, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, St. Mary's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK; Manchester Centre for Genomic Medicine, Institute of Human Development, Faculty of Medical and Human Sciences, University of Manchester, Manchester, UK.
| |
Collapse
|
94
|
Matsui R, McGuigan Iii DB, Gruzensky ML, Aleman TS, Schwartz SB, Sumaroka A, Koenekoop RK, Cideciyan AV, Jacobson SG. SPATA7: Evolving phenotype from cone-rod dystrophy to retinitis pigmentosa. Ophthalmic Genet 2016; 37:333-8. [PMID: 26854980 DOI: 10.3109/13816810.2015.1130154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND SPATA7 mutations have been associated with different autosomal recessive retinal degeneration phenotypes. Long-term follow-up has not been described in detail. MATERIALS AND METHODS A Hispanic patient with SPATA7 mutations was evaluated serially over a 12-year period with kinetic and static chromatic perimetry, optical coherence tomography (OCT), and fundus autofluorescence (AF) imaging. Electroretinography (ERG) was performed at the initial visit. RESULTS The patient was homozygous for a mutation in SPATA7 (p.V458fs). At age 9, the ERG showed an abnormally reduced but preserved rod b-wave and no detectable cone signals. There were two islands of vision: a midperipheral island with greater cone than rod dysfunction and a central island with normal cone but no rod function. Serial measures of rod and cone vision and co-localized retinal structure showed that the midperipheral island slowly became undetectable. By age 21, only the central island and its cone function remained, but it had become more abnormal in structure and function. CONCLUSION The disease resulting from SPATA7 mutations in this patient initially presented as a cone-rod dystrophy (CRD), but changed over time into a phenotype more reminiscent of late-stage retinitis pigmentosa (RP). The differential diagnosis for both CRD and RP should include this rare molecular cause of autosomal retinal degeneration. An evolving phenotype complicates not only clinical diagnosis and patient counselling but also future strategies aimed at treating specific retinal regions.
Collapse
Affiliation(s)
- Rodrigo Matsui
- a Scheie Eye Institute, Department of Ophthalmology , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - David B McGuigan Iii
- a Scheie Eye Institute, Department of Ophthalmology , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Michaela L Gruzensky
- a Scheie Eye Institute, Department of Ophthalmology , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Tomas S Aleman
- a Scheie Eye Institute, Department of Ophthalmology , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Sharon B Schwartz
- a Scheie Eye Institute, Department of Ophthalmology , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Alexander Sumaroka
- a Scheie Eye Institute, Department of Ophthalmology , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Robert K Koenekoop
- b McGill Ocular Genetics Laboratory (MOGL), Departments of Paediatric Surgery, Human Genetics, and Ophthalmology , Montreal Children's Hospital, McGill University Health Center , Montreal , Quebec , Canada
| | - Artur V Cideciyan
- a Scheie Eye Institute, Department of Ophthalmology , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| | - Samuel G Jacobson
- a Scheie Eye Institute, Department of Ophthalmology , Perelman School of Medicine at the University of Pennsylvania , Philadelphia , Pennsylvania , USA
| |
Collapse
|
95
|
Xin W, Xiao X, Li S, Zhang Q. Late-onset CORD in a patient with RDH12 mutations identified by whole exome sequencing. Ophthalmic Genet 2016; 37:345-8. [PMID: 26848971 DOI: 10.3109/13816810.2015.1059457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Wei Xin
- a State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou , China
| | - Xueshan Xiao
- a State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou , China
| | - Shiqiang Li
- a State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou , China
| | - Qingjiong Zhang
- a State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou , China
| |
Collapse
|
96
|
Papadopoulos K, Wattanaarsakit P, Prasongchean W, Narain R. Gene therapies in clinical trials. POLYMERS AND NANOMATERIALS FOR GENE THERAPY 2016. [DOI: https:/doi.org/10.1016/b978-0-08-100520-0.00010-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
|
97
|
NGS-based Molecular diagnosis of 105 eyeGENE(®) probands with Retinitis Pigmentosa. Sci Rep 2015; 5:18287. [PMID: 26667666 PMCID: PMC4678898 DOI: 10.1038/srep18287] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/10/2015] [Indexed: 11/28/2022] Open
Abstract
The National Ophthalmic Disease Genotyping and Phenotyping Network (eyeGENE®) was established in an effort to facilitate basic and clinical research of human inherited eye disease. In order to provide high quality genetic testing to eyeGENE®’s enrolled patients which potentially aids clinical diagnosis and disease treatment, we carried out a pilot study and performed Next-generation sequencing (NGS) based molecular diagnosis for 105 Retinitis Pigmentosa (RP) patients randomly selected from the network. A custom capture panel was designed, which incorporated 195 known retinal disease genes, including 61 known RP genes. As a result, disease-causing mutations were identified in 52 out of 105 probands (solving rate of 49.5%). A total of 82 mutations were identified, and 48 of them were novel. Interestingly, for three probands the molecular diagnosis was inconsistent with the initial clinical diagnosis, while for five probands the molecular information suggested a different inheritance model other than that assigned by the physician. In conclusion, our study demonstrated that NGS target sequencing is efficient and sufficiently precise for molecular diagnosis of a highly heterogeneous patient cohort from eyeGENE®.
Collapse
|
98
|
De Leeneer K, Hellemans J, Steyaert W, Lefever S, Vereecke I, Debals E, Crombez B, Baetens M, Van Heetvelde M, Coppieters F, Vandesompele J, De Jaegher A, De Baere E, Coucke P, Claes K. Flexible, scalable, and efficient targeted resequencing on a benchtop sequencer for variant detection in clinical practice. Hum Mutat 2015; 36:379-87. [PMID: 25504618 DOI: 10.1002/humu.22739] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 12/02/2014] [Indexed: 12/30/2022]
Abstract
The release of benchtop next-generation sequencing (NGS) instruments has paved the way to implement the technology in clinical setting. The need for flexible, qualitative, and cost-efficient workflows is high. We used singleplex-PCR for highly efficient target enrichment, allowing us to reach the quality standards set in Sanger sequencing-based diagnostics. For the library preparation, a modified NexteraXT protocol was used, followed by sequencing on a MiSeq instrument. With an innovative pooling strategy, high flexibility, scalability, and cost-efficiency were obtained, independent of the availability of commercial kits. The approach was validated for ∼250 genes associated with monogenic disorders. An overall sensitivity (>99%) similar to Sanger sequencing was observed in combination with a positive predictive value of >98%. The distribution of coverage was highly uniform, guaranteeing a minimal number of gaps to be filled with alternative methods. ISO15189-accreditation was obtained for the workflow. A major asset of the singleplex PCR-based enrichment is that new targets can be easily implemented. Diagnostic laboratories have validated assays available ensuring that the proposed workflow can easily be adopted. Although our platform was optimized for constitutional variant detection of monogenic disease genes, it is now also used as a model for somatic mutation detection in acquired diseases.
Collapse
Affiliation(s)
- Kim De Leeneer
- Center for Medical Genetics Ghent, Ghent University, Ghent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Yang L, Cui H, Yin X, Dou H, Zhao L, Chen N, Zhang J, Zhang H, Li G, Ma Z. Dependable and Efficient Clinical Molecular Diagnosis of Chinese RP Patient with Targeted Exon Sequencing. PLoS One 2015; 10:e0140684. [PMID: 26496393 PMCID: PMC4619688 DOI: 10.1371/journal.pone.0140684] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 09/29/2015] [Indexed: 11/28/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most common inherited retinal disease. It is a clinically and genetically heterogeneous disorder, which is why it is particularly challenging to diagnose. The aim of this study was to establish a targeted next-generation sequencing (NGS) approach for the comprehensive, rapid, and cost-effective clinical molecular diagnosis of RP. A specific hereditary eye disease enrichment panel (HEDEP) based on exome capture technology was used to collect the protein coding regions of 371 targeted hereditary eye disease genes, followed by high-throughput sequencing on the Illumina HiSeq2000 platform. From a cohort of 34 Chinese RP families, 13 families were successfully diagnosed; thus, the method achieves a diagnostic rate of approximately 40%. Of 16 pathogenic mutations identified, 11 were novel. Our study demonstrates that targeted capture sequencing offers a rapid and effective method for the molecular diagnosis of RP, which helps to provide a more accurate clinical diagnosis and paves the way for genetic counseling, family planning, and future gene-targeted treatment.
Collapse
Affiliation(s)
- Liping Yang
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Hui Cui
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, P. R. China
| | - Xiaobei Yin
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, P. R. China
| | - Hongliang Dou
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Lin Zhao
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Ningning Chen
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Jinlu Zhang
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Huirong Zhang
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
| | - Genlin Li
- Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing, P. R. China
- * E-mail: (ZM); (GL)
| | - Zhizhong Ma
- Department of Ophthalmology, Peking University Third Hospital, Key Laboratory of Vision Loss and Restoration, Ministry of Education, Beijing, P. R. China
- * E-mail: (ZM); (GL)
| |
Collapse
|
100
|
Xu M, Yang L, Wang F, Li H, Wang X, Wang W, Ge Z, Wang K, Zhao L, Li H, Li Y, Sui R, Chen R. Mutations in human IFT140 cause non-syndromic retinal degeneration. Hum Genet 2015; 134:1069-78. [PMID: 26216056 PMCID: PMC4565766 DOI: 10.1007/s00439-015-1586-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 07/17/2015] [Indexed: 12/11/2022]
Abstract
Leber congenital amaurosis (LCA) and retinitis pigmentosa (RP) are two genetically heterogeneous retinal degenerative disorders. Despite the identification of a number of genes involved in LCA and RP, the genetic etiology remains unknown in many patients. In this study, we aimed to identify novel disease-causing genes of LCA and RP. Retinal capture sequencing was initially performed to screen mutations in known disease-causing genes in different cohorts of LCA and RP patients. For patients with negative results, we performed whole exome sequencing and applied a series of variant filtering strategies. Sanger sequencing was done to validate candidate causative IFT140 variants. Exome sequencing data analysis led to the identification of IFT140 variants in multiple unrelated non-syndromic LCA and RP cases. All the variants are extremely rare and predicted to be damaging. All the variants passed Sanger validation and segregation tests provided that the family members' DNA was available. The results expand the phenotype spectrum of IFT140 mutations to non-syndromic retinal degeneration, thus extending our understanding of intraflagellar transport and primary cilia biology in the retina. This work also improves the molecular diagnosis of retinal degenerative disease.
Collapse
Affiliation(s)
- Mingchu Xu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Lizhu Yang
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Feng Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Huajin Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xia Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Weichen Wang
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Zhongqi Ge
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Keqing Wang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Li Zhao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX, USA
| | - Hui Li
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Yumei Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Ruifang Sui
- Department of Ophthalmology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China.
| | - Rui Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA.
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA.
- The Verna and Marrs Mclean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.
- Structural and Computational Biology and Molecular Biophysics Graduate Program, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|