51
|
Gopisetty G, Thangarajan R. Mammalian mitochondrial ribosomal small subunit (MRPS) genes: A putative role in human disease. Gene 2016; 589:27-35. [PMID: 27170550 DOI: 10.1016/j.gene.2016.05.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Accepted: 05/06/2016] [Indexed: 12/25/2022]
Abstract
Mitochondria are prominently understood as power houses producing ATP the primary energy currency of the cell. However, mitochondria are also known to play an important role in apoptosis and autophagy, and mitochondrial dysregulation can lead to pathological outcomes. Mitochondria are known to contain 1500 proteins of which only 13 are coded by mitochondrial DNA and the rest are coded by nuclear genes. Protein synthesis in mitochondria involves mitochondrial ribosomes which are 55-60S particles and are composed of small 28S and large 39S subunits. A feature of mammalian mitoribosome which differentiate it from bacterial ribosomes is the increased protein content. The human mitochondrial ribosomal protein (MRP) gene family comprises of 30 genes which code for mitochondrial ribosomal small subunit and 50 genes for the large subunit. The present review focuses on the mitochondrial ribosomal small subunit genes (MRPS), presents an overview of the literature and data gleaned from publicly available gene and protein expression databases. The survey revealed aberrations in MRPS gene expression patterns in varied human diseases indicating a putative role in their etiology.
Collapse
Affiliation(s)
- Gopal Gopisetty
- Department of Molecular Oncology, Cancer Institute (WIA), Chennai, India
| | | |
Collapse
|
52
|
Emma F, Montini G, Parikh SM, Salviati L. Mitochondrial dysfunction in inherited renal disease and acute kidney injury. Nat Rev Nephrol 2016; 12:267-80. [PMID: 26804019 PMCID: PMC5469549 DOI: 10.1038/nrneph.2015.214] [Citation(s) in RCA: 249] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mitochondria are increasingly recognized as key players in genetic and acquired renal diseases. Most mitochondrial cytopathies that cause renal symptoms are characterized by tubular defects, but glomerular, tubulointerstitial and cystic diseases have also been described. For example, defects in coenzyme Q10 (CoQ10) biosynthesis and the mitochondrial DNA 3243 A>G mutation are important causes of focal segmental glomerulosclerosis in children and in adults, respectively. Although they sometimes present with isolated renal findings, mitochondrial diseases are frequently associated with symptoms related to central nervous system and neuromuscular involvement. They can result from mutations in nuclear genes that are inherited according to classic Mendelian rules or from mutations in mitochondrial DNA, which are transmitted according to more complex rules of mitochondrial genetics. Diagnosis of mitochondrial disorders involves clinical characterization of patients in combination with biochemical and genetic analyses. In particular, prompt diagnosis of CoQ10 biosynthesis defects is imperative because of their potentially reversible nature. In acute kidney injury (AKI), mitochondrial dysfunction contributes to the physiopathology of tissue injury, whereas mitochondrial biogenesis has an important role in the recovery of renal function. Potential therapies that target mitochondrial dysfunction or promote mitochondrial regeneration are being developed to limit renal damage during AKI and promote repair of injured tissue.
Collapse
Affiliation(s)
- Francesco Emma
- Division of Nephrology and Dialysis, Ospedale Pediatrico Bambino Gesù-IRCCS, Piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Giovanni Montini
- Pediatric Nephrology and Dialysis Unit, Department of Clinical Sciences and Community Health, University of Milan, Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico, Via della Commenda 9, Milano, Italy
| | - Samir M Parikh
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center and Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Woman and Child Health, University of Padova, Via Giustiniani 3, 35128, Padova, Italy
| |
Collapse
|
53
|
Abstract
Mitochondrial ribosomes (mitoribosomes) perform protein synthesis inside mitochondria, the organelles responsible for energy conversion and adenosine triphosphate production in eukaryotic cells. Throughout evolution, mitoribosomes have become functionally specialized for synthesizing mitochondrial membrane proteins, and this has been accompanied by large changes to their structure and composition. We review recent high-resolution structural data that have provided unprecedented insight into the structure and function of mitoribosomes in mammals and fungi.
Collapse
Affiliation(s)
- Basil J Greber
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland; .,*Present address: California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, California 94720-3220
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, CH-8093 Zurich, Switzerland;
| |
Collapse
|
54
|
Kemppainen E, George J, Garipler G, Tuomela T, Kiviranta E, Soga T, Dunn CD, Jacobs HT. Mitochondrial Dysfunction Plus High-Sugar Diet Provokes a Metabolic Crisis That Inhibits Growth. PLoS One 2016; 11:e0145836. [PMID: 26812173 PMCID: PMC4728084 DOI: 10.1371/journal.pone.0145836] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 11/04/2015] [Indexed: 11/18/2022] Open
Abstract
The Drosophila mutant tko25t exhibits a deficiency of mitochondrial protein synthesis, leading to a global insufficiency of respiration and oxidative phosphorylation. This entrains an organismal phenotype of developmental delay and sensitivity to seizures induced by mechanical stress. We found that the mutant phenotype is exacerbated in a dose-dependent fashion by high dietary sugar levels. tko25t larvae were found to exhibit severe metabolic abnormalities that were further accentuated by high-sugar diet. These include elevated pyruvate and lactate, decreased ATP and NADPH. Dietary pyruvate or lactate supplementation phenocopied the effects of high sugar. Based on tissue-specific rescue, the crucial tissue in which this metabolic crisis initiates is the gut. It is accompanied by down-regulation of the apparatus of cytosolic protein synthesis and secretion at both the RNA and post-translational levels, including a novel regulation of S6 kinase at the protein level.
Collapse
Affiliation(s)
- Esko Kemppainen
- BioMediTech and Tampere University Hospital, FI-33014, University of Tampere, Tampere, Finland
| | - Jack George
- BioMediTech and Tampere University Hospital, FI-33014, University of Tampere, Tampere, Finland
| | - Görkem Garipler
- BioMediTech and Tampere University Hospital, FI-33014, University of Tampere, Tampere, Finland
- Department of Molecular Biology and Genetics, Koç University, Sariyer, Istanbul, 34450, Turkey
| | - Tea Tuomela
- BioMediTech and Tampere University Hospital, FI-33014, University of Tampere, Tampere, Finland
| | - Essi Kiviranta
- BioMediTech and Tampere University Hospital, FI-33014, University of Tampere, Tampere, Finland
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997–0035, Japan
| | - Cory D. Dunn
- Department of Molecular Biology and Genetics, Koç University, Sariyer, Istanbul, 34450, Turkey
| | - Howard T. Jacobs
- BioMediTech and Tampere University Hospital, FI-33014, University of Tampere, Tampere, Finland
- Institute of Biotechnology, FI-00014, University of Helsinki, Helsinki, Finland
| |
Collapse
|
55
|
Richter-Dennerlein R, Dennerlein S, Rehling P. Integrating mitochondrial translation into the cellular context. Nat Rev Mol Cell Biol 2015; 16:586-92. [PMID: 26535422 DOI: 10.1038/nrm4051] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial-encoded subunits of the oxidative phosphorylation system assemble with nuclear-encoded subunits into enzymatic complexes. Recent findings showed that mitochondrial translation is linked to other mitochondrial functions, as well as to cellular processes. The supply of mitochondrial-encoded proteins is coordinated by the coupling of mitochondrial protein synthesis with assembly of respiratory chain complexes. MicroRNAs imported from the cytoplasm into mitochondria were, surprisingly, found to act as regulators of mitochondrial translation. In turn, translation in mitochondria controls cellular proliferation, and mitochondrial ribosomal subunits contribute to the cytoplasmic stress response. Thus, translation in mitochondria is apparently integrated into cellular processes.
Collapse
|
56
|
Brunel-Guitton C, Levtova A, Sasarman F. Mitochondrial Diseases and Cardiomyopathies. Can J Cardiol 2015; 31:1360-76. [DOI: 10.1016/j.cjca.2015.08.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/21/2015] [Accepted: 08/21/2015] [Indexed: 12/31/2022] Open
|
57
|
Yeo JHC, Skinner JPJ, Bird MJ, Formosa LE, Zhang JG, Kluck RM, Belz GT, Chong MMW. A Role for the Mitochondrial Protein Mrpl44 in Maintaining OXPHOS Capacity. PLoS One 2015. [PMID: 26221731 PMCID: PMC4519308 DOI: 10.1371/journal.pone.0134326] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We identified Mrpl44 in a search for mammalian proteins that contain RNase III domains. This protein was previously found in association with the mitochondrial ribosome of bovine liver extracts. However, the precise Mrpl44 localization had been unclear. Here, we show by immunofluorescence microscopy and subcellular fractionation that Mrpl44 is localized to the matrix of the mitochondria. We found that it can form multimers, and confirm that it is part of the large subunit of the mitochondrial ribosome. By manipulating its expression, we show that Mrpl44 may be important for regulating the expression of mtDNA-encoded genes. This was at the level of RNA expression and protein translation. This ultimately impacted ATP synthesis capability and respiratory capacity of cells. These findings indicate that Mrpl44 plays an important role in the regulation of the mitochondrial OXPHOS capacity.
Collapse
Affiliation(s)
- Janet H C Yeo
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia
| | | | - Matthew J Bird
- Murdoch Childrens Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville VIC, Australia
| | - Luke E Formosa
- Department of Biochemistry, La Trobe University, Bundoora, VIC, Australia
| | - Jian-Guo Zhang
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ruth M Kluck
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Mark M W Chong
- St. Vincent's Institute of Medical Research, Fitzroy, VIC, Australia; Department of Medicine (St Vincent's), University of Melbourne, Parkville VIC, Australia
| |
Collapse
|
58
|
Mayr JA, Haack TB, Freisinger P, Karall D, Makowski C, Koch J, Feichtinger RG, Zimmermann FA, Rolinski B, Ahting U, Meitinger T, Prokisch H, Sperl W. Spectrum of combined respiratory chain defects. J Inherit Metab Dis 2015; 38:629-40. [PMID: 25778941 PMCID: PMC4493854 DOI: 10.1007/s10545-015-9831-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 02/20/2015] [Accepted: 02/23/2015] [Indexed: 01/22/2023]
Abstract
Inherited disorders of mitochondrial energy metabolism form a large and heterogeneous group of metabolic diseases. More than 250 gene defects have been reported to date and this number continues to grow. Mitochondrial diseases can be grouped into (1) disorders of oxidative phosphorylation (OXPHOS) subunits and their assembly factors, (2) defects of mitochondrial DNA, RNA and protein synthesis, (3) defects in the substrate-generating upstream reactions of OXPHOS, (4) defects in relevant cofactors and (5) defects in mitochondrial homeostasis. Deficiency of more than one respiratory chain enzyme is a common finding. Combined defects are found in 49 % of the known disease-causing genes of mitochondrial energy metabolism and in 57 % of patients with OXPHOS defects identified in our diagnostic centre. Combined defects of complexes I, III, IV and V are typically due to deficiency of mitochondrial DNA replication, RNA metabolism or translation. Defects in cofactors can result in combined defects of various combinations, and defects of mitochondrial homeostasis can result in a generalised decrease of all OXPHOS enzymes. Noteworthy, identification of combined defects can be complicated by different degrees of severity of each affected enzyme. Furthermore, even defects of single respiratory chain enzymes can result in combined defects due to aberrant formation of respiratory chain supercomplexes. Combined OXPHOS defects have a great variety of clinical manifestations in terms of onset, course severity and tissue involvement. They can present as classical encephalomyopathy but also with hepatopathy, nephropathy, haematologic findings and Perrault syndrome in a subset of disorders.
Collapse
Affiliation(s)
- Johannes A Mayr
- Department of Paediatrics, Paracelsus Medical University, SALK Salzburg, Salzburg, 5020, Austria,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Isarangkul D, Wiyakrutta S, Kengkoom K, Reamtong O, Ampawong S. Mitochondrial and cytoskeletal alterations are involved in the pathogenesis of hydronephrosis in ICR/Mlac-hydro mice. Int J Clin Exp Med 2015; 8:9192-9204. [PMID: 26309577 PMCID: PMC4538032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 06/07/2015] [Indexed: 06/04/2023]
Abstract
The pathogenesis of congenital hydronephrosis in laboratory animals has been studied for many years, yet little is known about the underlying mechanism of this disease. In this study, we investigated a MS-based comparative proteomics approach to characterize the differently expressed proteins between kidney tissue samples of ICR/Mlac-hydro and wild-type mice. Interestingly, proteomic results exhibited several mitochondrial protein alterations especially the up-regulation of 60 kDa heat shock protein (Hsp60), stress-70 protein (GRP75) dysfunction, and down-regulation of voltage-dependent anion-selective channel protein 1 (VDAC-1). The results demonstrated that mitochondrial alteration may lead to inadequate energy-supply to maintain normal water reabsorption from the renal tubule, causing hydronephrosis. Moreover, the alteration of cytoskeleton proteins in the renal tubule, in particular the up-regulation of tubulin beta-4B chain (Tb4B) and N-myc downstream-regulated gene 1 protein (Ndr-1) may also be related due to their fundamental roles in maintaining cell morphology and tissue stability. In addition, cytoskeletal alterations may consequence to the reduction of glyceraldehydes-3-phosphate dehydrogenase (GAPDH), cytoplasmic enzyme, which modulates the capacity of structural proteins. Our findings highlight a number of target proteins that may play a crucial role in congenital hydronephrosis and emphasize that the disorder of mitochondria and cytoskeleton proteins may be involved.
Collapse
Affiliation(s)
- Duangnate Isarangkul
- Department of Microbiology, Faculty of Science, Mahidol University272, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Suthep Wiyakrutta
- Department of Microbiology, Faculty of Science, Mahidol University272, Rama VI Road, Ratchathewi, Bangkok 10400, Thailand
| | - Kanchana Kengkoom
- Office of Academic Services, National Laboratory Animal Center, Mahidol University999, Phutthamonthon 4 Road, Salaya, Phutthamonthon, Nakhon Pathom 73170, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetic, Faculty of Tropical Medicine, Mahidol University420/6, Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Sumate Ampawong
- Department of Tropical Pathology, Faculty of Tropical Medicine, Mahidol University420/6, Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| |
Collapse
|
60
|
De Silva D, Tu YT, Amunts A, Fontanesi F, Barrientos A. Mitochondrial ribosome assembly in health and disease. Cell Cycle 2015; 14:2226-50. [PMID: 26030272 DOI: 10.1080/15384101.2015.1053672] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The ribosome is a structurally and functionally conserved macromolecular machine universally responsible for catalyzing protein synthesis. Within eukaryotic cells, mitochondria contain their own ribosomes (mitoribosomes), which synthesize a handful of proteins, all essential for the biogenesis of the oxidative phosphorylation system. High-resolution cryo-EM structures of the yeast, porcine and human mitoribosomal subunits and of the entire human mitoribosome have uncovered a wealth of new information to illustrate their evolutionary divergence from their bacterial ancestors and their adaptation to synthesis of highly hydrophobic membrane proteins. With such structural data becoming available, one of the most important remaining questions is that of the mitoribosome assembly pathway and factors involved. The regulation of mitoribosome biogenesis is paramount to mitochondrial respiration, and thus to cell viability, growth and differentiation. Moreover, mutations affecting the rRNA and protein components produce severe human mitochondrial disorders. Despite its biological and biomedical significance, knowledge on mitoribosome biogenesis and its deviations from the much-studied bacterial ribosome assembly processes is scarce, especially the order of rRNA processing and assembly events and the regulatory factors required to achieve fully functional particles. This article focuses on summarizing the current available information on mitoribosome assembly pathway, factors that form the mitoribosome assembly machinery, and the effect of defective mitoribosome assembly on human health.
Collapse
Affiliation(s)
- Dasmanthie De Silva
- a Department of Biochemistry and Molecular Biology ; University of Miami Miller School of Medicine ; Miami , FL USA
| | | | | | | | | |
Collapse
|
61
|
Amunts A, Brown A, Toots J, Scheres SHW, Ramakrishnan V. Ribosome. The structure of the human mitochondrial ribosome. Science 2015; 348:95-98. [PMID: 25838379 PMCID: PMC4501431 DOI: 10.1126/science.aaa1193] [Citation(s) in RCA: 376] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 02/05/2015] [Indexed: 01/06/2023]
Abstract
The highly divergent ribosomes of human mitochondria (mitoribosomes) synthesize 13 essential proteins of oxidative phosphorylation complexes. We have determined the structure of the intact mitoribosome to 3.5 angstrom resolution by means of single-particle electron cryogenic microscopy. It reveals 80 extensively interconnected proteins, 36 of which are specific to mitochondria, and three ribosomal RNA molecules. The head domain of the small subunit, particularly the messenger (mRNA) channel, is highly remodeled. Many intersubunit bridges are specific to the mitoribosome, which adopts conformations involving ratcheting or rolling of the small subunit that are distinct from those seen in bacteria or eukaryotes. An intrinsic guanosine triphosphatase mediates a contact between the head and central protuberance. The structure provides a reference for analysis of mutations that cause severe pathologies and for future drug design.
Collapse
Affiliation(s)
- Alexey Amunts
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Alan Brown
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Jaan Toots
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Sjors H. W. Scheres
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
62
|
Greber BJ, Bieri P, Leibundgut M, Leitner A, Aebersold R, Boehringer D, Ban N. Ribosome. The complete structure of the 55S mammalian mitochondrial ribosome. Science 2015; 348:303-8. [PMID: 25837512 DOI: 10.1126/science.aaa3872] [Citation(s) in RCA: 297] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/06/2015] [Indexed: 01/10/2023]
Abstract
Mammalian mitochondrial ribosomes (mitoribosomes) synthesize mitochondrially encoded membrane proteins that are critical for mitochondrial function. Here we present the complete atomic structure of the porcine 55S mitoribosome at 3.8 angstrom resolution by cryo-electron microscopy and chemical cross-linking/mass spectrometry. The structure of the 28S subunit in the complex was resolved at 3.6 angstrom resolution by focused alignment, which allowed building of a detailed atomic structure including all of its 15 mitoribosomal-specific proteins. The structure reveals the intersubunit contacts in the 55S mitoribosome, the molecular architecture of the mitoribosomal messenger RNA (mRNA) binding channel and its interaction with transfer RNAs, and provides insight into the highly specialized mechanism of mRNA recruitment to the 28S subunit. Furthermore, the structure contributes to a mechanistic understanding of aminoglycoside ototoxicity.
Collapse
Affiliation(s)
- Basil J Greber
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Philipp Bieri
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Auguste-Piccard-Hof 1, ETH Zurich, CH-8093 Zurich, Switzerland. Faculty of Science, University of Zurich, CH-8057 Zurich, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
63
|
Mutation in MRPS34 compromises protein synthesis and causes mitochondrial dysfunction. PLoS Genet 2015; 11:e1005089. [PMID: 25816300 PMCID: PMC4376678 DOI: 10.1371/journal.pgen.1005089] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Accepted: 02/23/2015] [Indexed: 01/20/2023] Open
Abstract
The evolutionary divergence of mitochondrial ribosomes from their bacterial and cytoplasmic ancestors has resulted in reduced RNA content and the acquisition of mitochondria-specific proteins. The mitochondrial ribosomal protein of the small subunit 34 (MRPS34) is a mitochondria-specific ribosomal protein found only in chordates, whose function we investigated in mice carrying a homozygous mutation in the nuclear gene encoding this protein. The Mrps34 mutation causes a significant decrease of this protein, which we show is required for the stability of the 12S rRNA, the small ribosomal subunit and actively translating ribosomes. The synthesis of all 13 mitochondrially-encoded polypeptides is compromised in the mutant mice, resulting in reduced levels of mitochondrial proteins and complexes, which leads to decreased oxygen consumption and respiratory complex activity. The Mrps34 mutation causes tissue-specific molecular changes that result in heterogeneous pathology involving alterations in fractional shortening of the heart and pronounced liver dysfunction that is exacerbated with age. The defects in mitochondrial protein synthesis in the mutant mice are caused by destabilization of the small ribosomal subunit that affects the stability of the mitochondrial ribosome with age. Mitochondria make most of the energy required by eukaryotic cells and therefore they are essential for their normal function and survival. Mitochondrial function is regulated by both the mitochondrial and nuclear genome. Mutations in nuclear genes encoding mitochondrial proteins lead to mitochondrial dysfunction and consequently diminished energy production, a major symptom of metabolic and mitochondrial diseases. The molecular mechanisms that regulate mitochondrial gene expression and how dysfunction of these processes causes the pathologies observed in these diseases are not well understood. Messenger RNAs encoded by mitochondrial genomes are translated on mitochondrial ribosomes that have unique structure and protein composition. Mitochondrial ribosomes are a patchwork of core proteins that share homology with prokaryotic ribosomal proteins and mitochondria-specific proteins, which can be unique to different organisms. Mitochondria-specific ribosomal proteins have key roles in disease however their functions within mitochondria are not known. Here we show that a point mutation in a mammalian-specific ribosomal protein causes mitochondrial dysfunction, heart abnormalities and progressive liver disease. This mouse provides a valuable model to elucidate the pathogenic mechanisms and progression of metabolic diseases with age, while enabling a more thorough understanding of mitochondrial ribosomes and protein synthesis.
Collapse
|
64
|
Distelmaier F, Haack TB, Catarino CB, Gallenmüller C, Rodenburg RJ, Strom TM, Baertling F, Meitinger T, Mayatepek E, Prokisch H, Klopstock T. MRPL44 mutations cause a slowly progressive multisystem disease with childhood-onset hypertrophic cardiomyopathy. Neurogenetics 2015; 16:319-23. [DOI: 10.1007/s10048-015-0444-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/12/2015] [Indexed: 12/24/2022]
|
65
|
Brault V, Duchon A, Romestaing C, Sahun I, Pothion S, Karout M, Borel C, Dembele D, Bizot JC, Messaddeq N, Sharp AJ, Roussel D, Antonarakis SE, Dierssen M, Hérault Y. Opposite phenotypes of muscle strength and locomotor function in mouse models of partial trisomy and monosomy 21 for the proximal Hspa13-App region. PLoS Genet 2015; 11:e1005062. [PMID: 25803843 PMCID: PMC4372517 DOI: 10.1371/journal.pgen.1005062] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Accepted: 02/09/2015] [Indexed: 12/22/2022] Open
Abstract
The trisomy of human chromosome 21 (Hsa21), which causes Down syndrome (DS), is the most common viable human aneuploidy. In contrast to trisomy, the complete monosomy (M21) of Hsa21 is lethal, and only partial monosomy or mosaic monosomy of Hsa21 is seen. Both conditions lead to variable physiological abnormalities with constant intellectual disability, locomotor deficits, and altered muscle tone. To search for dosage-sensitive genes involved in DS and M21 phenotypes, we created two new mouse models: the Ts3Yah carrying a tandem duplication and the Ms3Yah carrying a deletion of the Hspa13-App interval syntenic with 21q11.2-q21.3. Here we report that the trisomy and the monosomy of this region alter locomotion, muscle strength, mass, and energetic balance. The expression profiling of skeletal muscles revealed global changes in the regulation of genes implicated in energetic metabolism, mitochondrial activity, and biogenesis. These genes are downregulated in Ts3Yah mice and upregulated in Ms3Yah mice. The shift in skeletal muscle metabolism correlates with a change in mitochondrial proliferation without an alteration in the respiratory function. However, the reactive oxygen species (ROS) production from mitochondrial complex I decreased in Ms3Yah mice, while the membrane permeability of Ts3Yah mitochondria slightly increased. Thus, we demonstrated how the Hspa13-App interval controls metabolic and mitochondrial phenotypes in muscles certainly as a consequence of change in dose of Gabpa, Nrip1, and Atp5j. Our results indicate that the copy number variation in the Hspa13-App region has a peripheral impact on locomotor activity by altering muscle function.
Collapse
Affiliation(s)
- Véronique Brault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Arnaud Duchon
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | | | - Ignasi Sahun
- Genes and Disease Program, Center for Genomic Regulation, Barcelona, Spain, and CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Stéphanie Pothion
- Transgenese et Archivage Animaux Modèles, TAAM, CNRS, UPS44, Orléans, France
| | - Mona Karout
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Christelle Borel
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
| | - Doulaye Dembele
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | | | - Nadia Messaddeq
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
| | - Andrew J. Sharp
- Department of Genetics and Genomic Sciences, Mount Sinai School of Medicine, New York, New York, United States of America
| | - Damien Roussel
- LEHNA, CNRS UMR502, Université de Lyon, Villeurbanne, France
| | - Stylianos E Antonarakis
- Department of Genetic Medicine and Development, University of Geneva Medical School, Geneva, Switzerland
- iGE3 Institute of Genetics and Genomics of Geneva, Geneva, Switzerland
| | - Mara Dierssen
- Genes and Disease Program, Center for Genomic Regulation, Barcelona, Spain, and CIBER de Enfermedades Raras (CIBERER), Barcelona, Spain
| | - Yann Hérault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, U964, Illkirch, France
- Université de Strasbourg, Illkirch, France
- Institut Clinique de la Souris, PHENOMIN, GIE CERBM, Illkirch, France
| |
Collapse
|
66
|
MRPS22 mutation causes fatal neonatal lactic acidosis with brain and heart abnormalities. Neurogenetics 2015; 16:237-40. [DOI: 10.1007/s10048-015-0440-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
|
67
|
Menezes MJ, Guo Y, Zhang J, Riley LG, Cooper ST, Thorburn DR, Li J, Dong D, Li Z, Glessner J, Davis RL, Sue CM, Alexander SI, Arbuckle S, Kirwan P, Keating BJ, Xu X, Hakonarson H, Christodoulou J. Mutation in mitochondrial ribosomal protein S7 (MRPS7) causes congenital sensorineural deafness, progressive hepatic and renal failure and lactic acidemia. Hum Mol Genet 2015; 24:2297-307. [DOI: 10.1093/hmg/ddu747] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
68
|
Finsterer J, Kothari S. Cardiac manifestations of primary mitochondrial disorders. Int J Cardiol 2014; 177:754-63. [PMID: 25465824 DOI: 10.1016/j.ijcard.2014.11.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/23/2014] [Accepted: 11/03/2014] [Indexed: 12/16/2022]
Abstract
OBJECTIVES One of the most frequently affected organs in mitochondrial disorders (MIDs), defined as hereditary diseases due to affection of the mitochondrial energy metabolism, is the heart. Cardiac involvement (CI) in MIDs has therapeutic and prognostic implications. This review aims at summarizing and discussing the various cardiac manifestations in MIDs. METHODS Data for this review were identified by searches of MEDLINE, Current Contents, and PubMed using appropriate search terms. RESULTS CI in MIDs may be classified according to various different criteria. In the present review cardiac abnormalities in MIDs are discussed according to their frequency with which they occur. CI in MIDs includes cardiomyopathy, arrhythmias, heart failure, pulmonary hypertension, dilation of the aortic root, pericardial effusion, coronary heart disease, autonomous nervous system dysfunction, congenital heart defects, or sudden cardiac death. The most frequent among the cardiomyopathies is hypertrophic cardiomyopathy, followed by dilated cardiomyopathy, and noncompaction. CONCLUSIONS CI in MID is more variable and prevalent than previously thought. All tissues of the heart may be variably affected. The most frequently affected tissue is the myocardium. MIDs should be included in the differential diagnoses of cardiac disease.
Collapse
|
69
|
Ahola S, Isohanni P, Euro L, Brilhante V, Palotie A, Pihko H, Lönnqvist T, Lehtonen T, Laine J, Tyynismaa H, Suomalainen A. Mitochondrial EFTs defects in juvenile-onset Leigh disease, ataxia, neuropathy, and optic atrophy. Neurology 2014; 83:743-51. [PMID: 25037205 DOI: 10.1212/wnl.0000000000000716] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE We report novel defects of mitochondrial translation elongation factor Ts (EFTs), with high carrier frequency in Finland and expand the manifestations of this disease group from infantile cardiomyopathy to juvenile neuropathy/encephalopathy disorders. METHODS DNA analysis, whole-exome analysis, protein biochemistry, and protein modeling. RESULTS We used whole-exome sequencing to find the genetic cause of infantile-onset mitochondrial cardiomyopathy, progressing to juvenile-onset Leigh syndrome, neuropathy, and optic atrophy in 2 siblings. We found novel compound heterozygous mutations, c.944G>A [p.C315Y] and c.856C>T [p.Q286X], in the TSFM gene encoding mitochondrial EFTs. The same p.Q286X variant was found as compound heterozygous with a splice site change in a patient from a second family, with juvenile-onset optic atrophy, peripheral neuropathy, and ataxia. Our molecular modeling predicted the coding-region mutations to cause protein instability, which was experimentally confirmed in cultured patient cells, with mitochondrial translation defect and lacking EFTs. Only a single TSFM mutation has been previously described in different populations, leading to an infantile fatal multisystem disorder with cardiomyopathy. Sequence data from 35,000 Finnish population controls indicated that the heterozygous carrier frequency of p.Q286X change was exceptionally high in Finland, 1:80, but no homozygotes were found in the population, in our mitochondrial disease patient collection, or in an intrauterine fetal death material, suggesting early developmental lethality of the homozygotes. CONCLUSIONS We show that in addition to early-onset cardiomyopathy, TSFM mutations should be considered in childhood and juvenile encephalopathies with optic and/or peripheral neuropathy, ataxia, or Leigh disease.
Collapse
Affiliation(s)
- Sofia Ahola
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Pirjo Isohanni
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Liliya Euro
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Virginia Brilhante
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Aarno Palotie
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Helena Pihko
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Tuula Lönnqvist
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Tanita Lehtonen
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Jukka Laine
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Henna Tyynismaa
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland
| | - Anu Suomalainen
- From the Research Programs Unit, Molecular Neurology, Biomedicum Helsinki (S.A., P.I., L.E., V.B., H.T., A.S.), Institute for Molecular Medicine Finland (A.P.), Department of Medical Genetics, Haartman Institute (H.T.), and Neuroscience Center (A.S.), University of Helsinki; Department of Child Neurology, Children's Hospital (P.I., H.P., T. Lönnqvist), and Department of Neurology (A.S.), Helsinki University Central Hospital, Finland; Analytic and Translational Genetics Unit, Department of Medicine (A.P.), and Psychiatric & Neurodevelopmental Genetics Unit, Department of Psychiatry (A.P.), Massachusetts General Hospital, Boston; Program in Medical and Population Genetics (A.P.), Broad Institute of MIT and Harvard, Cambridge, MA; and Department of Pathology (T. Lehtonen, J.L.), University of Turku, Finland.
| |
Collapse
|
70
|
Richman TR, Rackham O, Filipovska A. Mitochondria: Unusual features of the mammalian mitoribosome. Int J Biochem Cell Biol 2014; 53:115-20. [PMID: 24842111 DOI: 10.1016/j.biocel.2014.05.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 05/11/2014] [Indexed: 11/28/2022]
Abstract
Mitochondria are responsible for generating most of the energy required by the cell. The oxidative phosphorylation (OXPHOS) system that produces the energy is composed of nuclear and mitochondrial encoded polypeptides. The 13 polypeptides encoded by the mitochondrial genome are synthesized by mitochondrial ribosomes (mitoribosomes). The evolutionary divergence of mitoribosomes has seen a reduction in their rRNA content and an increase in ribosomal proteins compared to their bacterial and cytoplasmic counterparts. Recent advances in cryo-electron microscopy (cryo-EM) mapping have revealed not all of these proteins simply replace the roles of the rRNA and that many have new roles. The mitoribosome has unique features that include a gatelike structure at the mRNA entrance that may facilitate recruitment of leaderless mitochondrial mRNAs and also a polypeptide exit tunnel that has an unusual nascent-polypeptide exit mechanism. Defects in the mitochondrial translation machinery are a common contributor to multi-system disorders known as mitochondrial diseases for which currently there are no cures or effective treatments.
Collapse
Affiliation(s)
- Tara R Richman
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands, Western Australia 6009, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| |
Collapse
|
71
|
Genetics of mitochondrial respiratory chain deficiencies. Rev Neurol (Paris) 2014; 170:309-22. [DOI: 10.1016/j.neurol.2013.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/27/2013] [Indexed: 01/21/2023]
|
72
|
Haack TB, Gorza M, Danhauser K, Mayr JA, Haberberger B, Wieland T, Kremer L, Strecker V, Graf E, Memari Y, Ahting U, Kopajtich R, Wortmann SB, Rodenburg RJ, Kotzaeridou U, Hoffmann GF, Sperl W, Wittig I, Wilichowski E, Schottmann G, Schuelke M, Plecko B, Stephani U, Strom TM, Meitinger T, Prokisch H, Freisinger P. Phenotypic spectrum of eleven patients and five novel MTFMT mutations identified by exome sequencing and candidate gene screening. Mol Genet Metab 2014; 111:342-352. [PMID: 24461907 DOI: 10.1016/j.ymgme.2013.12.010] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
Defects of mitochondrial oxidative phosphorylation (OXPHOS) are associated with a wide range of clinical phenotypes and time courses. Combined OXPHOS deficiencies are mainly caused by mutations of nuclear genes that are involved in mitochondrial protein translation. Due to their genetic heterogeneity it is almost impossible to diagnose OXPHOS patients on clinical grounds alone. Hence next generation sequencing (NGS) provides a distinct advantage over candidate gene sequencing to discover the underlying genetic defect in a timely manner. One recent example is the identification of mutations in MTFMT that impair mitochondrial protein translation through decreased formylation of Met-tRNA(Met). Here we report the results of a combined exome sequencing and candidate gene screening study. We identified nine additional MTFMT patients from eight families who were affected with Leigh encephalopathy or white matter disease, microcephaly, mental retardation, ataxia, and muscular hypotonia. In four patients, the causal mutations were identified by exome sequencing followed by stringent bioinformatic filtering. In one index case, exome sequencing identified a single heterozygous mutation leading to Sanger sequencing which identified a second mutation in the non-covered first exon. High-resolution melting curve-based MTFMT screening in 350 OXPHPOS patients identified pathogenic mutations in another three index cases. Mutations in one of them were not covered by previous exome sequencing. All novel mutations predict a loss-of-function or result in a severe decrease in MTFMT protein in patients' fibroblasts accompanied by reduced steady-state levels of complex I and IV subunits. Being present in 11 out of 13 index cases the c.626C>T mutation is one of the most frequent disease alleles underlying OXPHOS disorders. We provide detailed clinical descriptions on eleven MTFMT patients and review five previously reported cases.
Collapse
Affiliation(s)
- Tobias B Haack
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Matteo Gorza
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Katharina Danhauser
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Johannes A Mayr
- Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Birgit Haberberger
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Thomas Wieland
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Laura Kremer
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Valentina Strecker
- Functional Proteomics, SFB 815 core unit, Faculty of Medicine, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Elisabeth Graf
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Yasin Memari
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom
| | - Uwe Ahting
- Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Robert Kopajtich
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Saskia B Wortmann
- Nijmegen Center for Mitochondrial Disorders, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - Richard J Rodenburg
- Nijmegen Center for Mitochondrial Disorders, Department of Pediatrics, Radboud University Nijmegen Medical Centre, Nijmegen 6500 HB, The Netherlands
| | - Urania Kotzaeridou
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital, 69120 Heidelberg, Germany
| | - Georg F Hoffmann
- Department of General Pediatrics, Division of Inherited Metabolic Diseases, University Children's Hospital, 69120 Heidelberg, Germany
| | - Wolfgang Sperl
- Department of Pediatrics, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Ilka Wittig
- Functional Proteomics, SFB 815 core unit, Faculty of Medicine, Goethe-University, 60590 Frankfurt am Main, Germany
| | - Ekkehard Wilichowski
- Department of Pediatrics and Pediatric Neurology, Universitätsmedizin Göttingen, 37075 Göttingen, Germany
| | - Gudrun Schottmann
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Markus Schuelke
- Department of Neuropediatrics and NeuroCure Clinical Research Center, Charité Universitätsmedizin Berlin, 13125 Berlin, Germany
| | - Barbara Plecko
- Department of Neurology, Kinderspital Zürich, Zürich, Switzerland
| | - Ulrich Stephani
- Department of Neuropediatrics, University Hospital, 24105 Kiel, Germany
| | - Tim M Strom
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Thomas Meitinger
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Holger Prokisch
- Institute of Human Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany; Institute of Human Genetics, Technische Universität München, 81675 Munich, Germany
| | - Peter Freisinger
- Department of Pediatrics, Inherited Metabolic Disease Centre, Klinikum Reutlingen, 72764 Reutlingen, Germany.
| |
Collapse
|
73
|
Boczonadi V, Horvath R. Mitochondria: impaired mitochondrial translation in human disease. Int J Biochem Cell Biol 2014; 48:77-84. [PMID: 24412566 PMCID: PMC3988845 DOI: 10.1016/j.biocel.2013.12.011] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2013] [Revised: 11/13/2013] [Accepted: 12/26/2013] [Indexed: 10/28/2022]
Abstract
Defects of the mitochondrial protein synthesis cause a subgroup of mitochondrial diseases, which are usually associated with decreased activities of multiple respiratory chain (RC) enzymes. The clinical presentations of these disorders are often disabling, progressive or fatal, affecting the brain, liver, skeletal muscle, heart and other organs. Currently there are no effective cures for these disorders and treatment is at best symptomatic. The diagnosis in patients with multiple respiratory chain complex defects is particularly difficult because of the massive number of nuclear genes potentially involved in intra-mitochondrial protein synthesis. Many of these genes are not yet linked to human disease. Whole exome sequencing rapidly changed the diagnosis of these patients by identifying the primary defect in DNA, and preventing the need for invasive and complex biochemical testing. Better understanding of the mitochondrial protein synthesis apparatus will help us to explore disease mechanisms and will provide clues for developing novel therapies.
Collapse
Affiliation(s)
- Veronika Boczonadi
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Rita Horvath
- Institute of Genetic Medicine, Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
74
|
Che R, Yuan Y, Huang S, Zhang A. Mitochondrial dysfunction in the pathophysiology of renal diseases. Am J Physiol Renal Physiol 2014; 306:F367-78. [PMID: 24305473 DOI: 10.1152/ajprenal.00571.2013] [Citation(s) in RCA: 291] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mitochondrial dysfunction has gained recognition as a contributing factor in many diseases. The kidney is a kind of organ with high energy demand, rich in mitochondria. As such, mitochondrial dysfunction in the kidney plays a critical role in the pathogenesis of kidney diseases. Despite the recognized importance mitochondria play in the pathogenesis of the diseases, there is limited understanding of various aspects of mitochondrial biology. This review examines the physiology and pathophysiology of mitochondria. It begins by discussing mitochondrial structure, mitochondrial DNA, mitochondrial reactive oxygen species production, mitochondrial dynamics, and mitophagy, before turning to inherited mitochondrial cytopathies in kidneys (inherited or sporadic mitochondrial DNA or nuclear DNA mutations in genes that affect mitochondrial function). Glomerular diseases, tubular defects, and other renal diseases are then discussed. Next, acquired mitochondrial dysfunction in kidney diseases is discussed, emphasizing the role of mitochondrial dysfunction in the pathogenesis of chronic kidney disease and acute kidney injury, as their prevalence is increasing. Finally, it summarizes the possible beneficial effects of mitochondrial-targeted therapeutic agents for treatment of mitochondrial dysfunction-mediated kidney injury-genetic therapies, antioxidants, thiazolidinediones, sirtuins, and resveratrol-as mitochondrial-based drugs may offer potential treatments for renal diseases.
Collapse
Affiliation(s)
- Ruochen Che
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China; and
| | - Yanggang Yuan
- Department of Nephrology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Songming Huang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China; and
| | - Aihua Zhang
- Department of Nephrology, Nanjing Children's Hospital, Affiliated with Nanjing Medical University, Nanjing, China
- Institute of Pediatrics, Nanjing Medical University, Nanjing, China; and
| |
Collapse
|
75
|
Abstract
Mitochondrial diseases can be related to mutations in either the nuclear or mitochondrial genome. Childhood presentations are commonly associated with renal tubular dysfunction, but renal involvement is less commonly reported outside of this age-group. Mitochondrial diseases are notable for the significant variability in their clinical presentation and the broad spectrum of genes implicated in their etiology. These features contribute to the challenges of establishing a definitive diagnosis and understanding the pathogenetic mechanisms leading to kidney involvement in these diseases. Here, we review the deoxyribonucleic acid variants in the mitochondrial and nuclear genomes that have been associated with a kidney phenotype, and examine some of the possible pathogenic mechanisms that may contribute to the expression of a renal phenotype.
Collapse
Affiliation(s)
- John F O'Toole
- Department of Internal Medicine, Division of Nephrology, MetroHealth Medical System, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| |
Collapse
|
76
|
Evolutionary conservation and expression of human RNA-binding proteins and their role in human genetic disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:1-55. [PMID: 25201102 DOI: 10.1007/978-1-4939-1221-6_1] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RNA-binding proteins (RBPs) are effectors and regulators of posttranscriptional gene regulation (PTGR). RBPs regulate stability, maturation, and turnover of all RNAs, often binding thousands of targets at many sites. The importance of RBPs is underscored by their dysregulation or mutations causing a variety of developmental and neurological diseases. This chapter globally discusses human RBPs and provides a brief introduction to their identification and RNA targets. We review RBPs based on common structural RNA-binding domains, study their evolutionary conservation and expression, and summarize disease associations of different RBP classes.
Collapse
|
77
|
Soiferman D, Ayalon O, Weissman S, Saada A. The effect of small molecules on nuclear-encoded translation diseases. Biochimie 2013; 100:184-91. [PMID: 24012549 DOI: 10.1016/j.biochi.2013.08.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/25/2013] [Indexed: 01/18/2023]
Abstract
The five complexes of the mitochondrial respiratory chain (MRC) supply most organs and tissues with ATP produced by oxidative phosphorylation (OXPHOS). Inherited mitochondrial diseases affecting OXPHOS dysfunction are heterogeneous; symptoms may present at any age and may affect a wide range of tissues, with many diseases giving rise to devastating multisystemic disorders resulting in neonatal death. Combined respiratory chain deficiency with normal complex II accounts for a third of all respiratory deficiencies; mutations in nuclear-encoded components of the mitochondrial translation machinery account for many cases. Although mutations have been identified in over 20 such genes and our understanding of the mitochondrial translation apparatus is increasing, to date no definitive cure for these disorders exists. We evaluated the effect of seven small molecules with reported therapeutic potential in fibroblasts of four patients with combined respiratory complex disorders, each harboring a known mutation in a different nuclear-encoded component of the mitochondrial translation machinery: EFTs, GFM1, MRPS22 and TRMU. Six mitochondrial parameters were screened as follows; growth in glucose-free medium, reactive oxygen species (ROS) production, ATP content, mitochondrial content, mitochondrial membrane potential and complex IV activity. It was clearly evident that each patient displayed an individual response and there was no universally beneficial compound. AICAR increased complex IV activity in GFM1 cells and increased ATP content in MRPS22 fibroblasts but was detrimental to TRMU, who benefitted from bezafibrate. Two antioxidants, ascorbate and N-acetylcysteine (NAC), significantly improved cell growth, ATP content and mitochondrial membrane potential and decreased levels of intracellular reactive oxygen species (ROS) in EFTs fibroblasts. This study presents an expanded repertoire of assays that can be performed using the microtiter screening system with a small number of patients' fibroblasts and highlights some therapeutic options while providing additional evidence for the importance of personalized medicine in mitochondrial disorders.
Collapse
Affiliation(s)
- Devorah Soiferman
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Oshrat Ayalon
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Sarah Weissman
- Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Ann Saada
- Monique and Jacques Roboh Department of Genetic Research, Hadassah-Hebrew University Medical Center, Jerusalem, Israel; Department of Genetics and Metabolic Diseases, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
78
|
Rackham O, Filipovska A. Supernumerary proteins of mitochondrial ribosomes. Biochim Biophys Acta Gen Subj 2013; 1840:1227-32. [PMID: 23958563 DOI: 10.1016/j.bbagen.2013.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 08/08/2013] [Accepted: 08/13/2013] [Indexed: 01/13/2023]
Abstract
BACKGROUND Messenger RNAs encoded by mitochondrial genomes are translated on mitochondrial ribosomes that have unique structure and protein composition compared to prokaryotic and cytoplasmic ribosomes. Mitochondrial ribosomes are a patchwork of core proteins that share homology with prokaryotic ribosomal proteins and new, supernumerary proteins that can be unique to different organisms. In mammals, there are specific supernumerary ribosomal proteins that are not present in other eukaryotes. SCOPE OF REVIEW Here we discuss the roles of supernumerary proteins in the regulation of mitochondrial gene expression and compare them among different eukaryotic systems. Furthermore, we consider if differences in the structure and organization of mitochondrial genomes may have contributed to the acquisition of mitochondrial ribosomal proteins with new functions. MAJOR CONCLUSIONS The distinct and diverse compositions of mitochondrial ribosomes illustrate the high evolutionary divergence found between mitochondrial genetic systems. GENERAL SIGNIFICANCE Elucidating the role of the organism-specific supernumerary proteins may provide a window into the regulation of mitochondrial gene expression through evolution in response to distinct evolutionary paths taken by mitochondria in different organisms. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Oliver Rackham
- Western Australian Institute for Medical Research, Western Australia 6000, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Western Australia 6009, Australia
| | - Aleksandra Filipovska
- Western Australian Institute for Medical Research, Western Australia 6000, Australia; School of Chemistry and Biochemistry, The University of Western Australia, Western Australia 6009, Australia.
| |
Collapse
|
79
|
Serre V, Rozanska A, Beinat M, Chretien D, Boddaert N, Munnich A, Rötig A, Chrzanowska-Lightowlers ZM. Mutations in mitochondrial ribosomal protein MRPL12 leads to growth retardation, neurological deterioration and mitochondrial translation deficiency. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1832:1304-12. [PMID: 23603806 PMCID: PMC3787750 DOI: 10.1016/j.bbadis.2013.04.014] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 03/25/2013] [Accepted: 04/10/2013] [Indexed: 12/11/2022]
Abstract
Multiple respiratory chain deficiencies represent a common cause of mitochondrial diseases and are associated with a wide range of clinical symptoms. We report a subject, born to consanguineous parents, with growth retardation and neurological deterioration. Multiple respiratory chain deficiency was found in muscle and fibroblasts of the subject as well as abnormal assembly of complexes I and IV. A microsatellite genotyping of the family members detected only one region of homozygosity on chromosome 17q24.2-q25.3 in which we focused our attention to genes involved in mitochondrial translation. We sequenced MRPL12, encoding the mitochondrial ribosomal protein L12 and identified a c.542C>T transition in exon 5 changing a highly conserved alanine into a valine (p.Ala181Val). This mutation resulted in a decreased steady-state level of MRPL12 protein, with altered integration into the large ribosomal subunit. Moreover, an overall mitochondrial translation defect was observed in the subject's fibroblasts with a significant reduction of synthesis of COXI, COXII and COXIII subunits. Modeling of MRPL12 shows Ala181 positioned in a helix potentially involved in an interface of interaction suggesting that the p.Ala181Val change might be predicted to alter interactions with the elongation factors. These results contrast with the eubacterial orthologues of human MRPL12, where L7/L12 proteins do not appear to have a selective effect on translation. Therefore, analysis of the mutated version found in the subject presented here suggests that the mammalian protein does not function in an entirely analogous manner to the eubacterial L7/L12 equivalent.
Collapse
Affiliation(s)
- Valérie Serre
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine and INSERM U781, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | - Agata Rozanska
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| | - Marine Beinat
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine and INSERM U781, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | - Dominique Chretien
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine and INSERM U781, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | - Nathalie Boddaert
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine and INSERM U781, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | - Arnold Munnich
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine and INSERM U781, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
| | - Agnès Rötig
- Université Paris Descartes-Sorbonne Paris Cité, Institut Imagine and INSERM U781, Hôpital Necker-Enfants Malades, 149 rue de Sèvres, 75015 Paris, France
- Department of Pediatrics, Hôpital Necker-Enfants-Malades, 149 rue de Sèvres, 75015 Paris, France
| | - Zofia M. Chrzanowska-Lightowlers
- Wellcome Trust Centre for Mitochondrial Research, Institute for Ageing and Health, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne, NE2 4HH, United Kingdom
| |
Collapse
|
80
|
Koc EC, Cimen H, Kumcuoglu B, Abu N, Akpinar G, Haque ME, Spremulli LL, Koc H. Identification and characterization of CHCHD1, AURKAIP1, and CRIF1 as new members of the mammalian mitochondrial ribosome. Front Physiol 2013; 4:183. [PMID: 23908630 PMCID: PMC3726836 DOI: 10.3389/fphys.2013.00183] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/26/2013] [Indexed: 11/17/2022] Open
Abstract
Defects in mitochondrial ribosomal proteins (MRPs) cause various diseases in humans. Because of the essential role of MRPs in synthesizing the essential subunits of oxidative phosphorylation (OXPHOS) complexes, identifying all of the protein components involved in the mitochondrial translational machinery is critical. Initially, we identified 79 MRPs; however, identifying MRPs with no clear homologs in bacteria and yeast mitochondria was challenging, due to limited availability of expressed sequence tags (ESTs) in the databases available at that time. With the improvement in genome sequencing and increased sensitivity of mass spectrometry (MS)-based technologies, we have established four previously known proteins as MRPs and have confirmed the identification of ICT1 (MRP58) as a ribosomal protein. The newly identified MRPs are MRPS37 (Coiled-coil-helix-coiled-coil-helix domain containing protein 1-CHCHD1), MRPS38 (Aurora kinase A interacting protein1, AURKAIP1), MRPS39 (Pentatricopeptide repeat-containing protein 3, PTCD3), in the small subunit and MRPL59 (CR-6 interacting factor 1, CRIF1) in the large subunit. Furthermore, we have demonstrated the essential roles of CHCHD1, AURKAIP1, and CRIF1in mitochondrial protein synthesis by siRNA knock-down studies, which had significant effects on the expression of mitochondrially encoded proteins.
Collapse
Affiliation(s)
- Emine C Koc
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine, Marshall University Huntington, WV, USA
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Abstract
INTRODUCTION In the last 10 years the field of mitochondrial genetics has widened, shifting the focus from rare sporadic, metabolic disease to the effects of mitochondrial DNA (mtDNA) variation in a growing spectrum of human disease. The aim of this review is to guide the reader through some key concepts regarding mitochondria before introducing both classic and emerging mitochondrial disorders. SOURCES OF DATA In this article, a review of the current mitochondrial genetics literature was conducted using PubMed (http://www.ncbi.nlm.nih.gov/pubmed/). In addition, this review makes use of a growing number of publically available databases including MITOMAP, a human mitochondrial genome database (www.mitomap.org), the Human DNA polymerase Gamma Mutation Database (http://tools.niehs.nih.gov/polg/) and PhyloTree.org (www.phylotree.org), a repository of global mtDNA variation. AREAS OF AGREEMENT The disruption in cellular energy, resulting from defects in mtDNA or defects in the nuclear-encoded genes responsible for mitochondrial maintenance, manifests in a growing number of human diseases. AREAS OF CONTROVERSY The exact mechanisms which govern the inheritance of mtDNA are hotly debated. GROWING POINTS Although still in the early stages, the development of in vitro genetic manipulation could see an end to the inheritance of the most severe mtDNA disease.
Collapse
Affiliation(s)
| | - Gavin Hudson
- Institute of Genetic Medicine, International Centre for Life, Newcastle University, Central Parkway, Newcastle upon Tyne NE1 3BZ, UK
| |
Collapse
|
82
|
Cardiomyopathy in neurological disorders. Cardiovasc Pathol 2013; 22:389-400. [PMID: 23433859 DOI: 10.1016/j.carpath.2012.12.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 12/26/2012] [Accepted: 12/30/2012] [Indexed: 12/13/2022] Open
Abstract
According to the American Heart Association, cardiomyopathies are classified as primary (solely or predominantly confined to heart muscle), secondary (those showing pathological myocardial involvement as part of a neuromuscular disorder) and those in which cardiomyopathy is the first/predominant manifestation of a neuromuscular disorder. Cardiomyopathies may be further classified as hypertrophic cardiomyopathy, dilated cardiomyopathy, restrictive cardiomyopathy, arrhythmogenic right ventricular cardiomyopathy, or unclassified cardiomyopathy (noncompaction, Takotsubo-cardiomyopathy). This review focuses on secondary cardiomyopathies and those in which cardiomyopathy is the predominant manifestation of a myopathy. Any of them may cause neurological disease, and any of them may be a manifestation of a neurological disorder. Neurological disease most frequently caused by cardiomyopathies is ischemic stroke, followed by transitory ischemic attack, syncope, or vertigo. Neurological disease, which most frequently manifests with cardiomyopathies are the neuromuscular disorders. Most commonly associated with cardiomyopathies are muscular dystrophies, myofibrillar myopathies, congenital myopathies and metabolic myopathies. Management of neurological disease caused by cardiomyopathies is not at variance from the same neurological disorders due to other causes. Management of secondary cardiomyopathies is not different from that of cardiomyopathies due to other causes either. Patients with neuromuscular disorders require early cardiologic investigations and close follow-ups, patients with cardiomyopathies require neurological investigation and avoidance of muscle toxic medication if a neuromuscular disorder is diagnosed. Which patients with cardiomyopathy profit most from primary stroke prevention is unsolved and requires further investigations.
Collapse
|
83
|
Kotani T, Akabane S, Takeyasu K, Ueda T, Takeuchi N. Human G-proteins, ObgH1 and Mtg1, associate with the large mitochondrial ribosome subunit and are involved in translation and assembly of respiratory complexes. Nucleic Acids Res 2013; 41:3713-22. [PMID: 23396448 PMCID: PMC3616715 DOI: 10.1093/nar/gkt079] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The bacterial homologues of ObgH1 and Mtg1, ObgE and RbgA, respectively, have been suggested to be involved in the assembly of large ribosomal subunits. We sought to elucidate the functions of ObgH1 and Mtg1 in ribosome biogenesis in human mitochondria. ObgH1 and Mtg1 are localized in mitochondria in association with the inner membrane, and are exposed on the matrix side. Mtg1 and ObgH1 specifically associate with the large subunit of the mitochondrial ribosome in GTP-dependent manner. The large ribosomal subunit stimulated the GTPase activity of Mtg1, whereas only the intrinsic GTPase activity was detectable with ObgH1. The knockdown of Mtg1 decreased the overall mitochondrial translation activity, and caused defects in the formation of respiratory complexes. On the other hand, the depletion of ObgH1 led to the specific activation of the translation of subunits of Complex V, and disrupted its proper formation. Our results suggested that Mtg1 and ObgH1 function with the large subunit of the mitochondrial ribosome, and are also involved in both the translation and assembly of respiratory complexes. The fine coordination of ribosome assembly, translation and respiratory complex formation in mammalian mitochondria is affirmed.
Collapse
Affiliation(s)
- Tetsuya Kotani
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5, Kashiwanoha, Kashiwa-shi, Chiba 277-8562, Japan
| | | | | | | | | |
Collapse
|
84
|
Navarro-Sastre A, Tort F, Garcia-Villoria J, Pons MR, Nascimento A, Colomer J, Campistol J, Yoldi ME, López-Gallardo E, Montoya J, Unceta M, Martinez MJ, Briones P, Ribes A. Mitochondrial DNA depletion syndrome: new descriptions and the use of citrate synthase as a helpful tool to better characterise the patients. Mol Genet Metab 2012; 107:409-15. [PMID: 22980518 DOI: 10.1016/j.ymgme.2012.08.018] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Accepted: 08/25/2012] [Indexed: 01/21/2023]
Abstract
Mitochondrial DNA depletion syndrome (MDS) is a clinically heterogeneous group of mitochondrial disorders characterised by a quantitative reduction of the mitochondrial DNA copy number. Three main clinical forms of MDS: myopathic, encephalomyopathic and hepatocerebral have been defined, although patients may present with other MDS associated clinical symptoms and signs that cover a wide spectrum of onset age and disease. We studied 52 paediatric individuals suspected to have MDS. These patients have been divided into three different groups, and the appropriate MDS genes have been screened according to their clinical and biochemical phenotypes. Mutational study of DGUOK, MPV17, SUCLA2, SUCLG1 and POLG allowed us to identify 3 novel mutations (c.1048G>A and c.1049G>T in SUCLA2 and c.531+4A>T in SUCLG1) and 7 already known mutations in 10 patients (8 families). Seventeen patients presented with mtDNA depletion in liver or muscle, but the cause of mtDNA depletion still remains unknown in 8 of them. When possible, we quantified mtDNA/nDNA and CS activity in the same tissue sample, providing an additional tool for the study of MDS. The ratio (mtDNA/nDNA)/CS has shed some light in the discrepant results between the mtDNA copy number and the enzymatic respiratory chain activities of some cases.
Collapse
Affiliation(s)
- Aleix Navarro-Sastre
- Division of Inborn Errors of Metabolism, Department of Biochemistry and Molecular Genetics, Hospital Clinic, Instituto de Investigación Biomédica Pi Sunyer, 08028 Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Garcia-Diaz B, Barros M, Sanna-Cherchi S, Emmanuele V, Akman H, Ferreiro-Barros C, Horvath R, Tadesse S, El Gharaby N, DiMauro S, De Vivo D, Shokr A, Hirano M, Quinzii C. Infantile encephaloneuromyopathy and defective mitochondrial translation are due to a homozygous RMND1 mutation. Am J Hum Genet 2012; 91:729-36. [PMID: 23022099 PMCID: PMC3484479 DOI: 10.1016/j.ajhg.2012.08.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Revised: 08/06/2012] [Accepted: 08/21/2012] [Indexed: 10/27/2022] Open
Abstract
Defects of mitochondrial protein synthesis are clinically and genetically heterogeneous. We previously described a male infant who was born to consanguineous parents and who presented with severe congenital encephalopathy, peripheral neuropathy, myopathy, and lactic acidosis associated with deficiencies of multiple mitochondrial respiratory-chain enzymes and defective mitochondrial translation. In this work, we have characterized four additional affected family members, performed homozygosity mapping, and identified a homozygous splicing mutation in the splice donor site of exon 2 (c.504+1G>A) of RMND1 (required for meiotic nuclear division-1) in the affected individuals. Fibroblasts from affected individuals expressed two aberrant transcripts and had decreased wild-type mRNA and deficiencies of mitochondrial respiratory-chain enzymes. The RMND1 mutation caused haploinsufficiency that was rescued by overexpression of the wild-type transcript in mutant fibroblasts; this overexpression increased the levels and activities of mitochondrial respiratory-chain proteins. Knockdown of RMND1 via shRNA recapitulated the biochemical defect of the mutant fibroblasts, further supporting a loss-of-function pathomechanism in this disease. RMND1 belongs to the sif2 family, an evolutionary conserved group of proteins that share the DUF155 domain, have unknown function, and have never been associated with human disease. We documented that the protein localizes to mitochondria in mammalian and yeast cells. Further studies are necessary for understanding the function of this protein in mitochondrial protein translation.
Collapse
Affiliation(s)
- Beatriz Garcia-Diaz
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Mario H. Barros
- Departament of Microbiology, Institute of Biomedical Sciences, Universidade de São Paulo, 05508-900 São Paulo, SP, Brazil
| | - Simone Sanna-Cherchi
- Division of Nephrology, Department of Medicine, Columbia University Medical Center, New York, NY 10032, USA
- Department of Medicine, St. Luke's-Roosevelt Hospital Center, New York, NY 10025, USA
| | - Valentina Emmanuele
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Hasan O. Akman
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | | | - Rita Horvath
- Mitochondrial Research Group, Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK
| | - Saba Tadesse
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Nader El Gharaby
- Department of Obstetrics and Gynecology, Bugshan General Hospital, P.O. Box 5860, Jeddah, Saudi Arabia
| | - Salvatore DiMauro
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Darryl C. De Vivo
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Aly Shokr
- Department of Obstetrics and Gynecology, Bugshan General Hospital, P.O. Box 5860, Jeddah, Saudi Arabia
| | - Michio Hirano
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Catarina M. Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
86
|
Burton RS, Barreto FS. A disproportionate role for mtDNA in Dobzhansky-Muller incompatibilities? Mol Ecol 2012; 21:4942-57. [PMID: 22994153 DOI: 10.1111/mec.12006] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 07/18/2012] [Accepted: 07/25/2012] [Indexed: 01/07/2023]
Abstract
Evolution in allopatric populations can lead to incompatibilities that result in reduced hybrid fitness and ultimately reproductive isolation upon secondary contact. The Dobzhansky-Muller (DM) model nicely accounts for the evolution of such incompatibilities. Although DM incompatibilities were originally conceived as resulting of interactions between nuclear genes, recent studies have documented cases where incompatibilities have arisen between nuclear and mitochondrial genomes (mtDNA). Although mtDNA comprises only a tiny component (typically <<0.01%) of an organism's genetic material, several features of mtDNA may lead to a disproportionate contribution to the evolution of hybrid incompatibilities: (i) essentially all functions of mtDNA require interaction with nuclear gene products. All mtDNA-encoded proteins are components of the oxidative phosphorylation (OXPHOS) system and all mtDNA-encoded RNAs are part of the mitochondrial protein synthetic machinery; both processes require interaction with nuclear-encoded proteins for function. (ii) Transcription and replication of mtDNA also involve mitonuclear interactions as nuclear-encoded proteins must bind to regulatory motifs in the mtDNA to initiate these processes. (iii) Although features of mtDNA vary amongst taxa, metazoan mtDNA is typically characterized by high nucleotide substitution rates, lack of recombination and reduced effective population sizes that collectively lead to increased chance fixation of mildly deleterious mutations. Combined, these features create an evolutionary dynamic where rapid mtDNA evolution favours compensatory nuclear gene evolution, ultimately leading to co-adaptation of mitochondrial and nuclear genomes. When previously isolated lineages hybridize in nature or in the lab, intergenomic co-adaptation is disrupted and hybrid breakdown is observed; the role of intergenomic co-adaptation in hybrid breakdown and speciation will generally be most pronounced when rates of mtDNA evolution are high or when restricted gene flow results in significant population differentiation.
Collapse
Affiliation(s)
- Ronald S Burton
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA 92093-0202, USA.
| | | |
Collapse
|
87
|
Pearce S, Nezich CL, Spinazzola A. Mitochondrial diseases: translation matters. Mol Cell Neurosci 2012; 55:1-12. [PMID: 22986124 DOI: 10.1016/j.mcn.2012.08.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Revised: 08/22/2012] [Accepted: 08/25/2012] [Indexed: 11/30/2022] Open
Abstract
Mitochondrial diseases comprise a heterogeneous group of disorders characterized by compromised energy production. Since the early days of mitochondrial medical genetics, it has been known that these can be caused by defects in mitochondrial protein synthesis. However, only in recent years have we begun to develop a broader picture of the array of proteins required for mitochondrial translation. With this new knowledge has come the realization that there are many more neurological and other, diseases attributable to impaired mitochondrial translation than previously thought. Perturbation of any part of this intricate machinery, from the primary sequence of transfer or ribosomal RNAs, to the proteolytic processing of ribosomal proteins, can cause mitochondrial dysfunction and disease. In this review we discuss the current understanding of the mechanisms and factors involved in mammalian mitochondrial translation, and the diverse pathologies resulting when it malfunctions. This article is part of a Special Issue entitled 'Mitochondrial function and dysfunction in neurodegeneration'.
Collapse
Affiliation(s)
- Sarah Pearce
- MRC Mitochondrial Biology Unit, Wellcome Trust-MRC Building, Hills Road Cambridge, CB2 0XY, UK
| | | | | |
Collapse
|
88
|
Abstract
Phenotypes relevant to oxidative phosphorylation (OXPHOS) in eukaryotes are jointly determined by nuclear and mitochondrial DNA (mtDNA). Thus, in humans, the variable clinical presentations of mitochondrial disease patients bearing the same primary mutation, whether in nuclear or mitochondrial DNA, have been attributed to putative genetic determinants carried in the “other” genome, though their identity and the molecular mechanism(s) by which they might act remain elusive. Here we demonstrate cytoplasmic suppression of the mitochondrial disease-like phenotype of the Drosophila melanogaster nuclear mutant tko25t, which includes developmental delay, seizure sensitivity, and defective male courtship. The tko25t strain carries a mutation in a mitoribosomal protein gene, causing OXPHOS deficiency due to defective intramitochondrial protein synthesis. Phenotypic suppression was associated with increased mtDNA copy number and increased mitochondrial biogenesis, as measured by the expression levels of porin voltage dependent anion channel and Spargel (PGC1α). Ubiquitous overexpression of Spargel in tko25t flies phenocopied the suppressor, identifying it as a key mechanistic target thereof. Suppressor-strain mtDNAs differed from related nonsuppressor strain mtDNAs by several coding-region polymorphisms and by length and sequence variation in the noncoding region (NCR), in which the origin of mtDNA replication is located. Cytoplasm from four of five originally Wolbachia-infected strains showed the same suppressor effect, whereas that from neither of two uninfected strains did so, suggesting that the stress of chronic Wolbachia infection may provide evolutionary selection for improved mitochondrial fitness under metabolic stress. Our findings provide a paradigm for understanding the role of mtDNA genotype in human disease.
Collapse
|
89
|
Sasarman F, Nishimura T, Thiffault I, Shoubridge EA. A novel mutation in YARS2 causes myopathy with lactic acidosis and sideroblastic anemia. Hum Mutat 2012; 33:1201-6. [PMID: 22504945 DOI: 10.1002/humu.22098] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 03/30/2012] [Indexed: 11/08/2022]
Abstract
Mutations in the mitochondrial aminoacyl-tRNA synthetases (ARSs) are associated with a strikingly broad range of clinical phenotypes, the molecular basis for which remains obscure. Here, we report a novel missense mutation (c.137G>A, p.Gly46Asp) in the catalytic domain of YARS2, which codes for the mitochondrial tyrosyl-tRNA synthetase, in a subject with myopathy, lactic acidosis, and sideroblastic anemia (MLASA). YARS2 was undetectable by immunoblot analysis in subject myoblasts, resulting in a generalized mitochondrial translation defect. Retroviral expression of a wild-type YARS2 complementary DNA completely rescued the translation defect. We previously demonstrated that the respiratory chain defect in this subject was only present in fully differentiated muscle, and we show here that this likely reflects an increased requirement for YARS2 as muscle cells differentiate. An additional, heterozygous mutation was detected in TRMU/MTU1, a gene encoding the mitochondrial 2-thiouridylase. Although subject myoblasts and myotubes contained half the normal levels of TRMU, thiolation of mitochondrial tRNAs was normal. YARS2 eluted as part of high-molecular-weight complexes of ∼250 kDa and 1 MDa by gel filtration. This study confirms mutations in YARS2 as a cause of MLASA and shows that, like some of the cytoplasmic ARSs, mitochondrial ARSs occur in high-molecular-weight complexes.
Collapse
Affiliation(s)
- Florin Sasarman
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | | | | | | |
Collapse
|
90
|
Galmiche L, Serre V, Beinat M, Zossou R, Assouline Z, Lebre AS, Chretien F, Shenhav R, Zeharia A, Saada A, Vedrenne V, Boddaert N, de Lonlay P, Rio M, Munnich A, Rötig A. Toward genotype phenotype correlations in GFM1 mutations. Mitochondrion 2012; 12:242-7. [DOI: 10.1016/j.mito.2011.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 09/07/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
|
91
|
Abstract
Mitochondria are essential organelles with multiple functions, the most well known being the production of adenosine triphosphate (ATP) through oxidative phosphorylation (OXPHOS). The mitochondrial diseases are defined by impairment of OXPHOS. They are a diverse group of diseases that can present in virtually any tissue in either adults or children. Here we review the main molecular mechanisms of mitochondrial diseases, as presently known. A number of disease-causing genetic defects, either in the nuclear genome or in the mitochondria's own genome, mitochondrial DNA (mtDNA), have been identified. The most classical genetic defect causing mitochondrial disease is a mutation in a gene encoding a structural OXPHOS subunit. However, mitochondrial diseases can also arise through impaired mtDNA maintenance, defects in mitochondrial translation factors, and various more indirect mechanisms. The putative consequences of mitochondrial dysfunction on a cellular level are discussed.
Collapse
Affiliation(s)
- Emil Ylikallio
- Research Programs Unit, Molecular Neurology, Biomedicum-Helsinki, University of Helsinki, Finland.
| | | |
Collapse
|
92
|
Abstract
Most mitochondrial cytopathies in infants are caused by mutations in nuclear genes encoding proteins targeted to the mitochondria rather than by primary mutations in the mitochondrial DNA. Over the past few years, the awareness of the number of disease-causing mutations in different nuclear genes has grown exponentially. These genes encode the various subunits of each respiratory chain complex, the ancillary proteins involved in the assembly of these subunits, proteins involved in mitochondrial DNA replication and maintenance, proteins involved in mitochondrial protein synthesis, and proteins involved in mitochondrial dynamics. This increased awareness has added a challenging dimension to the current diagnostic workup of mitochondrial cytopathies. The advent of new technologies such as next-generation sequencing should facilitate the resolution of this dilemma.
Collapse
Affiliation(s)
- Fernando Scaglia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
93
|
Christian BE, Spremulli LL. Mechanism of protein biosynthesis in mammalian mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2011; 1819:1035-54. [PMID: 22172991 DOI: 10.1016/j.bbagrm.2011.11.009] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2011] [Revised: 11/03/2011] [Accepted: 11/08/2011] [Indexed: 01/25/2023]
Abstract
Protein synthesis in mammalian mitochondria produces 13 proteins that are essential subunits of the oxidative phosphorylation complexes. This review provides a detailed outline of each phase of mitochondrial translation including initiation, elongation, termination, and ribosome recycling. The roles of essential proteins involved in each phase are described. All of the products of mitochondrial protein synthesis in mammals are inserted into the inner membrane. Several proteins that may help bind ribosomes to the membrane during translation are described, although much remains to be learned about this process. Mutations in mitochondrial or nuclear genes encoding components of the translation system often lead to severe deficiencies in oxidative phosphorylation, and a summary of these mutations is provided. This article is part of a Special Issue entitled: Mitochondrial Gene Expression.
Collapse
Affiliation(s)
- Brooke E Christian
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
94
|
Galmiche L, Serre V, Beinat M, Assouline Z, Lebre AS, Chretien D, Nietschke P, Benes V, Boddaert N, Sidi D, Brunelle F, Rio M, Munnich A, Rötig A. Exome sequencing identifies MRPL3 mutation in mitochondrial cardiomyopathy. Hum Mutat 2011; 32:1225-31. [DOI: 10.1002/humu.21562] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/21/2011] [Indexed: 12/29/2022]
|
95
|
Cardiomyopathy is associated with ribosomal protein gene haplo-insufficiency in Drosophila melanogaster. Genetics 2011; 189:861-70. [PMID: 21890737 DOI: 10.1534/genetics.111.131482] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The Minute syndrome in Drosophila melanogaster is characterized by delayed development, poor fertility, and short slender bristles. Many Minute loci correspond to disruptions of genes for cytoplasmic ribosomal proteins, and therefore the phenotype has been attributed to alterations in translational processes. Although protein translation is crucial for all cells in an organism, it is unclear why Minute mutations cause effects in specific tissues. To determine whether the heart is sensitive to haplo-insufficiency of genes encoding ribosomal proteins, we measured heart function of Minute mutants using optical coherence tomography. We found that cardiomyopathy is associated with the Minute syndrome caused by haplo-insufficiency of genes encoding cytoplasmic ribosomal proteins. While mutations of genes encoding non-Minute cytoplasmic ribosomal proteins are homozygous lethal, heterozygous deficiencies spanning these non-Minute genes did not cause a change in cardiac function. Deficiencies of genes for non-Minute mitochondrial ribosomal proteins also did not show abnormal cardiac function, with the exception of a heterozygous disruption of mRpS33. We demonstrate that cardiomyopathy is a common trait of the Minute syndrome caused by haplo-insufficiency of genes encoding cytoplasmic ribosomal proteins. In contrast, most cases of heterozygous deficiencies of genes encoding non-Minute ribosomal proteins have normal heart function in adult Drosophila.
Collapse
|
96
|
Rötig A. Human diseases with impaired mitochondrial protein synthesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1807:1198-205. [DOI: 10.1016/j.bbabio.2011.06.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 06/03/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
|
97
|
Neonatal cardiomyopathies and metabolic crises due to oxidative phosphorylation defects. Semin Fetal Neonatal Med 2011; 16:216-21. [PMID: 21606011 DOI: 10.1016/j.siny.2011.04.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Neonatal cardiomyopathies due to mitochondrial oxidative phosphorylation (OXPHOS) defects are extremely severe conditions which can be either isolated or included in a multi-organ disease, with or without metabolic crises, of which profound lactic acidosis is the prominent feature. Cardiomyopathy is more often hypertrophic than dilated. Antenatal manifestations such as fetal cardiomyopathy, arrhythmia and/or hydrops have been reported. Pathophysiological mechanisms are complex, going beyond ATP deficiency of the high-energy-consuming neonatal myocardium. Birth is a key metabolic period when the myocardium switches ATP production from anaerobic glycolysis to mitochondrial fatty acid oxidation and OXPHOS. Heart-specificity of the defect may be related to the specific localization of the defect, to the high myocardium dependency on OXPHOS, and/or to interaction between the primary genetic alteration and other factors such as modifier genes. Therapeutic options are limited but standardized diagnostic procedures are mandatory to confirm the OXPHOS defect and to identify its causal mutation, allowing genetic counseling and potential prenatal diagnosis.
Collapse
|
98
|
Emma F, Montini G, Salviati L, Dionisi-Vici C. Renal mitochondrial cytopathies. Int J Nephrol 2011; 2011:609213. [PMID: 21811680 PMCID: PMC3146993 DOI: 10.4061/2011/609213] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Accepted: 06/03/2011] [Indexed: 11/20/2022] Open
Abstract
Renal diseases in mitochondrial cytopathies are a group of rare diseases that are characterized by frequent multisystemic involvement and extreme variability of phenotype. Most frequently patients present a tubular defect that is consistent with complete De Toni-Debré-Fanconi syndrome in most severe forms. More rarely, patients present with chronic tubulointerstitial nephritis, cystic renal diseases, or primary glomerular involvement. In recent years, two clearly defined entities, namely 3243 A > G tRNA(LEU) mutations and coenzyme Q10 biosynthesis defects, have been described. The latter group is particularly important because it represents the only treatable renal mitochondrial defect. In this paper, the physiopathologic bases of mitochondrial cytopathies, the diagnostic approaches, and main characteristics of related renal diseases are summarized.
Collapse
Affiliation(s)
- Francesco Emma
- Division of Nephrology and Dialysis, Department of Nephrology and Urology, Bambino Gesù Children's Hospital and Research Institute, piazza Sant'Onofrio 4, 00165 Rome, Italy
| | - Giovanni Montini
- Nephrology and Dialysis Unit, Pediatric Department, Azienda Ospedaliera di Bologna, 40138 Bologna, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Pediatrics, University of Padova, 35128 Padova, Italy
| | - Carlo Dionisi-Vici
- Division of Metabolic Diseases, Department of Pediatric Medicine, Bambino Gesù Children's Hospital and Research Institute, 00165 Rome, Italy
| |
Collapse
|
99
|
Nogueira C, Carrozzo R, Vilarinho L, Santorelli FM. Infantile-onset disorders of mitochondrial replication and protein synthesis. J Child Neurol 2011; 26:866-75. [PMID: 21572058 DOI: 10.1177/0883073811402072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most inherited mitochondrial diseases in infants result from mutations in nuclear genes encoding proteins with specific functions targeted to the mitochondria rather than primary mutations in the mitochondrial DNA (mtDNA) itself. In the past decade, a growing number of syndromes associated with dysfunction resulting from tissue-specific depletion of mtDNA have been reported in infants. MtDNA depletion syndrome is transmitted as an autosomal recessive trait and causes respiratory chain dysfunction with prominent neurological, muscular, and hepatic involvement. Mendelian diseases characterized by defective mitochondrial protein synthesis and combined respiratory chain defects have also been described in infants and are associated with mutations in nuclear genes that encode components of the translational machinery. In the present work, we reviewed current knowledge of clinical phenotypes, their relative frequency, spectrum of mutations, and possible pathogenic mechanisms responsible for infantile disorders of oxidative metabolism involved in correct mtDNA maintenance and protein production.
Collapse
Affiliation(s)
- Célia Nogueira
- Department of Genetics, Centro de Genética Médica Jacinto de Magalhães/INSA, Porto, Portugal
| | | | | | | |
Collapse
|
100
|
Rodenburg RJT. Biochemical diagnosis of mitochondrial disorders. J Inherit Metab Dis 2011; 34:283-92. [PMID: 20440652 PMCID: PMC3063578 DOI: 10.1007/s10545-010-9081-y] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Revised: 03/16/2010] [Accepted: 03/17/2010] [Indexed: 11/04/2022]
Abstract
Establishing a diagnosis in patients with a suspected mitochondrial disorder is often a challenge. Both knowledge of the clinical spectrum of mitochondrial disorders and the number of identified disease-causing molecular genetic defects are continuously expanding. The diagnostic examination of patients requires a multi-disciplinary clinical and laboratory evaluation in which the biochemical examination of the mitochondrial functional state often plays a central role. In most cases, a muscle biopsy provides the best opportunity to examine mitochondrial function. In addition to activity measurements of individual oxidative phosphorylation enzymes, analysis of mitochondrial respiration, substrate oxidation, and ATP production rates is performed to obtain a detailed picture of the mitochondrial energy-generating system. On the basis of the compilation of clinical, biochemical, and other laboratory test results, candidate genes are selected for molecular genetic testing. In patients in whom an unknown genetic variant is identified, a compatible biochemical phenotype is often required to firmly establish the diagnosis. In addition to the current role of the biochemical analysis in the diagnostic examination of patients with a suspected mitochondria disorder, this report gives a future perspective on the biochemical diagnosis in view of both the expanding genotypes of mitochondrial disorders and the possibilities for high throughput molecular genetic diagnosis.
Collapse
Affiliation(s)
- Richard J T Rodenburg
- Nijmegen Center for Mitochondrial Disorders (NCMD), 656 Department of Pediatrics, Department of Laboratory Medicine, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands.
| |
Collapse
|