51
|
Xu R, Feng Z, Wang FS. Mesenchymal stem cell treatment for COVID-19. EBioMedicine 2022; 77:103920. [PMID: 35279630 PMCID: PMC8907937 DOI: 10.1016/j.ebiom.2022.103920] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 02/13/2022] [Accepted: 02/21/2022] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has caused a global pandemic since late 2019 that resulted in more than 360 million population infection. Among them, less than 7% of infected individuals develop severe or critical illness. Mass vaccination has been carried out, but reinfection and vaccine breakthrough cases still occur. Besides supportive and antiviral medications, much attention has been paid in immunotherapies that aim at reducing pathological changes in the lungs. Mesenchymal stem cells (MSCs) is used as an option because of their immunomodulatory, anti-inflammatory, and regenerative properties. As of January 16, 2022, when ClinicalTrials.gov was searched for "Mesenchymal stem cells and COVID-19," over 80 clinical trials were registered. MSC therapy was found to be safe and some effective in preclinical and clinical studies. Here, we summarize the major pathological characteristics of COVID-19 and provide scientific and rational evidence for the safety and possible effectiveness of MSCs in COVID-19 treatment.
Collapse
Affiliation(s)
- Ruonan Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
| | - Zhiqian Feng
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.
| |
Collapse
|
52
|
Wan F, Zhang H, Hu J, Chen L, Geng S, Kong L, Lu JJ. Mesenchymal Stem Cells Inhibits Migration and Vasculogenic Mimicry in Nasopharyngeal Carcinoma Via Exosomal MiR-125a. Front Oncol 2022; 12:781979. [PMID: 35251967 PMCID: PMC8892602 DOI: 10.3389/fonc.2022.781979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 01/19/2022] [Indexed: 11/27/2022] Open
Abstract
Vasculogenic mimicry (VM) is a kind of tumor vasculature providing blood supply for tumor growth, and the formation of VM is independent of vascular endothelial cells. Instead, VM structures are formed by differentiated tumor cells such as nasopharyngeal carcinoma cells. Recently, studies have shown that anti-angiogenic therapy failed to improve the overall survival for patients, namely, nasopharyngeal carcinoma patients. The existence of VM structure is probably one of the reasons for resistance for anti-angiogenic therapy. Therefore, it is important to study the mechanism for VM formation in nasopharyngeal carcinoma. In this study, the bioinformatic analysis revealed that microRNA-125a-3p (miR-125a) was highly expressed in normal nasopharyngeal epithelial tissue than in nasopharyngeal carcinoma. An in vitro study demonstrated that miR-125a plays an inhibitory role in nasopharyngeal carcinoma cell migration and VM formation, and further studies confirmed that TAZ is a direct downstream target for miR-125a. On this basis, we artificially engineered human mesenchymal stem cells (MSCs) to generate exosomes with high miR-125a expression. Treatment with these miR-125a-over-expressing exosomes attenuated the migration and VM formation in nasopharyngeal carcinoma cells. In addition, the inhibitory role of these exosomes on VM formation and migration in nasopharyngeal carcinoma was also confirmed in vivo. Overall, the current study shows that MSCs can be utilized to generate exosomes with high miR-125a level, which could be therapeutic nanoparticles targeting VM formation in nasopharyngeal carcinoma and used as a complement to anti-angiogenic therapy in the future.
Collapse
Affiliation(s)
- Fangzhu Wan
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Haojiong Zhang
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- Rui-jin Hospital, Shanghai Jiao-tong University School of Medicine, Shanghai, China
| | - Jiyi Hu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
| | - Li Chen
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Shikai Geng
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
| | - Lin Kong
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- *Correspondence: Jiade J. Lu, ; Lin Kong,
| | - Jiade J. Lu
- Shanghai Key Laboratory of Radiation Oncology (20dz2261000), Shanghai, China
- Shanghai Engineering Research Center of Proton and Heavy Ion Radiation Therapy, Shanghai, China
- Department of Radiation Oncology, Shanghai Proton and Heavy Ion Center, Shanghai, China
- *Correspondence: Jiade J. Lu, ; Lin Kong,
| |
Collapse
|
53
|
Keshtkar S, Kaviani M, Soleimanian S, Azarpira N, Asvar Z, Pakbaz S. Stem Cell-Derived Exosome as Potential Therapeutics for Microbial Diseases. Front Microbiol 2022; 12:786111. [PMID: 35237239 PMCID: PMC8882917 DOI: 10.3389/fmicb.2021.786111] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
Exosomes, as the smallest extracellular vesicles that carry a cargo of nucleic acids, lipids, and proteins and mediate intercellular communication, have attracted much attention in diagnosis and treatment in the field of medicine. The contents of exosomes vary depending on the cell type and physiological conditions. Among exosomes derived from several cell types, stem cell-derived exosomes (stem cell-Exo) are increasingly being explored due to their immunomodulatory properties, regenerative capacity, anti-inflammatory and anti-microbial functions. Administration of stem cell-Exo, as a cell-free therapy for various diseases, has gained great promise. Indeed, the advantages of exosomes secreted from stem cells outweigh those of their parent cells owing to their small size, high stability, less immunogenicity, no risk of tumorigenesis, and easier condition for storage. Recently, the use of stem cell-Exo has been proposed in the field of microbial diseases. Pathogens including bacteria, viruses, fungi, and parasites can cause various diseases in humans with acute and chronic complications, sometimes resulting in mortality. On the other hand, treatments based on antibiotics and other chemical compounds have many side effects and the strains become resistant to drugs in some cases. Hence, this review aimed to highlight the effect of stem cell-derived extracellular vesicles including stem cell-Exo on microbial diseases. Although most published studies are preclinical, the avenue of clinical application of stem cell-Exo is under way to reach clinical applications. The challenges ahead of this cell-free treatment that might be applied as a therapeutic alternative to stem cells for translation from bench to bed were emphasized, as well.
Collapse
Affiliation(s)
- Somayeh Keshtkar
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Kaviani
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Saeede Soleimanian
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Asvar
- Nanotechnology School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Pakbaz
- Department of Laboratory Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Pathology, University Health Network, Toronto, ON, Canada
| |
Collapse
|
54
|
Chaubey S, Bhandari V. Stem cells in neonatal diseases: An overview. Semin Fetal Neonatal Med 2022; 27:101325. [PMID: 35367186 DOI: 10.1016/j.siny.2022.101325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Preterm birth and its common complications are major causes of infant mortality and long-term morbidity. Despite great advances in understanding the pathogenesis of neonatal diseases and improvements in neonatal intensive care, effective therapies for the prevention or treatment for these conditions are still lacking. Stem cell (SC) therapy is rapidly emerging as a novel therapeutic tool for several diseases of the newborn with encouraging pre-clinical results that hold promise for translation to the bedside. The utility of different types of SCs in neonatal diseases is being explored. SC therapeutic efficacy is closely associated with its secretome-conditioned media and SC-derived extracellular vesicles, and a subsequent paracrine action in response to tissue injuries. In the current review, we summarize the pre-clinical and clinical studies of SCs and its secretome in diverse preterm and term birth-related diseases, thereby providing new insights for future therapies in neonatal medicine.
Collapse
Affiliation(s)
- Sushma Chaubey
- Department of Biomedical Engineering, Widener University, Chester, PA, 19013, USA.
| | - Vineet Bhandari
- Neonatology Research Laboratory, Department of Pediatrics, The Children's Regional Hospital at Cooper, Cooper Medical School of Rowan University, Suite Dorrance 755, One Cooper Plaza, Camden, NJ, 08103, USA.
| |
Collapse
|
55
|
Zohrabi M, Dehghan Marvast L, Izadi M, Mousavi SA, Aflatoonian B. Potential of Mesenchymal Stem Cell-Derived Exosomes as a Novel Treatment for Female Infertility Caused by Bacterial Infections. Front Microbiol 2022; 12:785649. [PMID: 35154028 PMCID: PMC8834364 DOI: 10.3389/fmicb.2021.785649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/08/2021] [Indexed: 12/29/2022] Open
Abstract
Neisseria gonorrhoeae and Chlamydia trachomatis are the most common causes of bacterial sexually transmitted diseases (STDs) with complications in women, including pelvic inflammatory disease (PID), ectopic pregnancy, and infertility. The main concern with these infections is that 70% of infected women are asymptomatic and these infections ascend to the upper female reproductive tract (FRT). Primary infection in epithelial cells creates a cascade of events that leads to secretion of pro-inflammatory cytokines that stimulate innate immunity. Production of various cytokines is damaging to mucosal barriers, and tissue destruction leads to ciliated epithelial destruction that is associated with tubal scarring and ultimately provides the conditions for infertility. Mesenchymal stem cells (MSCs) are known as tissue specific stem cells with limited self-renewal capacity and the ability to repair damaged tissues in a variety of pathological conditions due to their multipotential differentiation capacity. Moreover, MSCs secrete exosomes that contain bioactive factors such as proteins, lipids, chemokines, enzymes, cytokines, and immunomodulatory factors which have therapeutic properties to enhance recovery activity and modulate immune responses. Experimental studies have shown that local and systemic treatment of MSC-derived exosomes (MSC-Exos) suppresses the destructive immune response due to the delivery of immunomodulatory proteins. Interestingly, some recent data have indicated that MSC-Exos display strong antimicrobial effects, by the secretion of antimicrobial peptides and proteins (AMPs), and increase bacterial clearance by enhancing the phagocytic activity of host immune cells. Considering MSC-Exos can secrete different bioactive factors that can modulate the immune system and prevent infection, exosome therapy is considered as a new therapeutic method in the treatment of inflammatory and microbial diseases. Here we intend to review the possible application of MSC-Exos in female reproductive system bacterial diseases.
Collapse
Affiliation(s)
- Marzieh Zohrabi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Laleh Dehghan Marvast
- Andrology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahin Izadi
- Research and Clinical Center for Infertility, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Seyed Alireza Mousavi
- Infectious Diseases Research Center, Shahid Sadoughi Hospital, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Behrouz Aflatoonian
- Department of Reproductive Biology, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- Department of Advanced Medical Sciences and Technologies, School of Paramedicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
- *Correspondence: Behrouz Aflatoonian,
| |
Collapse
|
56
|
Hosseini NF, Dalirfardouei R, Aliramaei MR, Najafi R. Stem cells or their exosomes: which is preferred in COVID-19 treatment? Biotechnol Lett 2022; 44:159-177. [PMID: 35043287 PMCID: PMC8765836 DOI: 10.1007/s10529-021-03209-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 11/04/2021] [Indexed: 02/06/2023]
Abstract
It only took 8 months for the pneumonia caused by a previously unknown coronavirus to turn into a global pandemic of unprecedentedly far-reaching implications. Failure of the already discovered treatment measures opened up a new opportunity to evaluate the potentials of mesenchymal stem cells and their extracellular vesicles (EVs), exosomes in particular. Eventually, the initial success experienced after the use of MSCs in treating the new pneumonia by Lnge and his team backed up the idea of MSC-based therapies and pushed them closer to becoming a reality. However, MSC-related concerns regarding safety such as abnormal differentiation, spontaneous malignant and the formation of ectopic tissues have triggered the replacement of MSCs by their secreted exosomes. The issue has been further strengthened by the fact that the exosomes leave similar treatment impacts when compared to their parental cells. In recent years, much attention has been paid to the use of MSC-derived exosomes in the treatment of a variety of diseases. With a primary focus on COVID-19 and its current treatment methods, the present review looks into the potentials of MSCs and MSC-derived exosomes in battling the ongoing pandemic. Finally, the research will draw an analogy between exosomes and their parental cells, when it comes to the progresses and challenges in using exosomes as a large-scale treatment method.
Collapse
Affiliation(s)
- Nashmin Fayazi Hosseini
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Razieh Dalirfardouei
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Rezvan Najafi
- Research Center for Molecular Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
57
|
Wu X, Jin S, Ding C, Wang Y, He D, Liu Y. Mesenchymal Stem Cell-Derived Exosome Therapy of Microbial Diseases: From Bench to Bed. Front Microbiol 2022; 12:804813. [PMID: 35046923 PMCID: PMC8761948 DOI: 10.3389/fmicb.2021.804813] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Microbial diseases are a global health threat, leading to tremendous casualties and economic losses. The strategy to treat microbial diseases falls into two broad categories: pathogen-directed therapy (PDT) and host-directed therapy (HDT). As the typical PDT, antibiotics or antiviral drugs directly attack bacteria or viruses through discerning specific molecules. However, drug abuse could result in antimicrobial resistance and increase infectious disease morbidity. Recently, the exosome therapy, as a HDT, has attracted extensive attentions for its potential in limiting infectious complications and targeted drug delivery. Mesenchymal stem cell-derived exosomes (MSC-Exos) are the most broadly investigated. In this review, we mainly focus on the development and recent advances of the application of MSC-Exos on microbial diseases. The review starts with the difficulties and current strategies in antimicrobial treatments, followed by a comprehensive overview of exosomes in aspect of isolation, identification, contents, and applications. Then, the underlying mechanisms of the MSC-Exo therapy in microbial diseases are discussed in depth, mainly including immunomodulation, repression of excessive inflammation, and promotion of tissue regeneration. In addition, we highlight the latest progress in the clinical translation of the MSC-Exo therapy, by summarizing related clinical trials, routes of administration, and exosome modifications. This review will provide fundamental insights and future perspectives on MSC-Exo therapy in microbial diseases from bench to bedside.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology and National Center of Stomatology and National Clinical Research Center for Oral Diseases and National Engineering Laboratory for Digital and Material Technology of Stomatology and Beijing Key Laboratory of Digital Stomatology and Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health and NMPA Key Laboratory for Dental Materials, Beijing, China
| |
Collapse
|
58
|
Widowati W, Wargasetia T, Rahardja F, Gunanegara R, Priyandoko D, Gondokesumo M, Afifah E, Wijayanti C, Rizal R. Human Wharton’s jelly mesenchymal stem cells inhibit cytokine storm in acute respiratory distress syndrome in a rat model. Asian Pac J Trop Biomed 2022. [DOI: 10.4103/2221-1691.350182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
59
|
Zhang X, Ye L, Tang W, Ji Y, Zheng L, Chen Y, Ge Q, Huang C. Wnt/β-Catenin Participates in the Repair of Acute Respiratory Distress Syndrome-Associated Early Pulmonary Fibrosis via Mesenchymal Stem Cell Microvesicles. Drug Des Devel Ther 2022; 16:237-247. [PMID: 35082486 PMCID: PMC8784273 DOI: 10.2147/dddt.s344309] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 01/12/2022] [Indexed: 12/11/2022] Open
Abstract
Purpose The main aim of the present study was to establish whether mesenchymal stem cell microvesicles (MSC MVs) exert anti-fibrotic effects and investigate the mechanisms underlying these effects in a mouse model of acute respiratory distress syndrome (ARDS)-associated early pulmonary fibrosis. Methods An ARDS-associated pulmonary fibrosis model was established in mice by an intratracheal injection of lipopolysaccharide (LPS). At 1, 3, and 7 days after LPS-mediated injury, the lungs of mice treated with MSC MVs and untreated controls were carefully excised and fibrosis was assessed based on the extent of collagen deposition. In addition, the development of epithelial–mesenchymal transition (EMT) was evaluated based on loss of E-cadherin and zona occludens-1 (ZO-1) along with the acquisition of α-smooth muscle actin (α-SMA) and N-cadherin. Nuclear translocation and β-catenin expression analyses were also used to evaluate activation of the Wnt/β-catenin signaling pathway. Results Blue-stained collagen fibers were evident as early as 7 days after LPS injection. Treatment with MSC MVs suppressed pathological progression to a significant extent. MSC MVs markedly reversed the upregulation of N-cadherin and α-SMA and attenuated the downregulation of E-cadherin and ZO-1. The expression and nuclear translocation of β-catenin were clearly decreased on day 7 after MSC MV treatment. Conclusion Analyses indicated that MSC MVs could ameliorate ARDS-associated early pulmonary fibrosis via the suppression of EMT and might be related to Wnt/β-catenin transition signaling.
Collapse
Affiliation(s)
- Xingcai Zhang
- Department of Anesthesiology, Ningbo City First Hospital, Ningbo, Zhejiang, People’s Republic of China
| | - Lifang Ye
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People’s Republic of China
| | - Wan Tang
- Department of Anesthesiology, Ningbo City First Hospital, Ningbo, Zhejiang, People’s Republic of China
| | - Yiqin Ji
- Department of Anesthesiology, Ningbo City First Hospital, Ningbo, Zhejiang, People’s Republic of China
| | - Li Zheng
- Department of Anesthesiology, Ningbo City First Hospital, Ningbo, Zhejiang, People’s Republic of China
| | - Yijun Chen
- Department of Anesthesiology, Ningbo City First Hospital, Ningbo, Zhejiang, People’s Republic of China
| | - Qidong Ge
- Department of Breast Surgery, HuaMei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang, People’s Republic of China
| | - Changshun Huang
- Department of Anesthesiology, Ningbo City First Hospital, Ningbo, Zhejiang, People’s Republic of China
- Correspondence: Changshun Huang; Qidong Ge, Tel +86-574-87085521, Fax +86-574-87085588, Email ;
| |
Collapse
|
60
|
Current Status and Future Perspectives on Machine Perfusion: A Treatment Platform to Restore and Regenerate Injured Lungs Using Cell and Cytokine Adsorption Therapy. Cells 2021; 11:cells11010091. [PMID: 35011653 PMCID: PMC8750486 DOI: 10.3390/cells11010091] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/22/2021] [Accepted: 12/26/2021] [Indexed: 02/06/2023] Open
Abstract
Since its advent in the 1990′s, ex vivo lung perfusion (EVLP) has been studied and implemented as a tool to evaluate the quality of a donor organ prior to transplantation. It provides an invaluable window of opportunity for therapeutic intervention to render marginal lungs viable for transplantation. This ultimately aligns with the need of the lung transplant field to increase the number of available donor organs given critical shortages. As transplantation is the only option for patients with end-stage lung disease, advancements in technology are needed to decrease wait-list time and mortality. This review summarizes the results from the application of EVLP as a therapeutic intervention and focuses on the use of the platform with regard to cell therapies, cell product therapies, and cytokine filtration among other technologies. This review will summarize both the clinical and translational science being conducted in these aspects and will highlight the opportunities for EVLP to be developed as a powerful tool to increase the donor lung supply.
Collapse
|
61
|
Esquivel-Ruiz S, González-Rodríguez P, Lorente JA, Pérez-Vizcaíno F, Herrero R, Moreno L. Extracellular Vesicles and Alveolar Epithelial-Capillary Barrier Disruption in Acute Respiratory Distress Syndrome: Pathophysiological Role and Therapeutic Potential. Front Physiol 2021; 12:752287. [PMID: 34887773 PMCID: PMC8650589 DOI: 10.3389/fphys.2021.752287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/27/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) mediate intercellular communication by transferring genetic material, proteins and organelles between different cells types in both health and disease. Recent evidence suggests that these vesicles, more than simply diagnostic markers, are key mediators of the pathophysiology of acute respiratory distress syndrome (ARDS) and other lung diseases. In this review, we will discuss the contribution of EVs released by pulmonary structural cells (alveolar epithelial and endothelial cells) and immune cells in these diseases, with particular attention to their ability to modulate inflammation and alveolar-capillary barrier disruption, a hallmark of ARDS. EVs also offer a unique opportunity to develop new therapeutics for the treatment of ARDS. Evidences supporting the ability of stem cell-derived EVs to attenuate the lung injury and ongoing strategies to improve their therapeutic potential are also discussed.
Collapse
Affiliation(s)
- Sergio Esquivel-Ruiz
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Paloma González-Rodríguez
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - José A Lorente
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain.,Clinical Section, School of Medicine, European University of Madrid, Madrid, Spain
| | - Francisco Pérez-Vizcaíno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| | - Raquel Herrero
- Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain.,Department of Critical Care, Hospital Universitario de Getafe, Madrid, Spain
| | - Laura Moreno
- Department of Pharmacology and Toxicology, School of Medicine, University Complutense of Madrid, Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), Madrid, Spain.,Ciber de Enfermedades Respiratorias (CIBERES), Madrid, Spain
| |
Collapse
|
62
|
Mao GC, Gong CC, Wang Z, Sun MX, Pei ZP, Meng WQ, Cen JF, He XW, Lu Y, Xu QQ, Xiao K. BMSC-derived exosomes ameliorate sulfur mustard-induced acute lung injury by regulating the GPRC5A-YAP axis. Acta Pharmacol Sin 2021; 42:2082-2093. [PMID: 33654219 PMCID: PMC8633287 DOI: 10.1038/s41401-021-00625-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Sulfur mustard (SM) is a highly toxic chemical warfare agent that causes acute lung injury (ALI) and/or acute respiratory distress syndrome (ARDS). There are no effective therapeutic treatments or antidotes available currently to counteract its toxic effects. Our previous study shows that bone marrow-derived mesenchymal stromal cells (BMSCs) could exert therapeutic effects against SM-induced lung injury. In this study, we explored the therapeutic potential of BMSC-derived exosomes (BMSC-Exs) against ALI and the underlying mechanisms. ALI was induced in mice by injection of SM (30 mg/kg, sc) at their medial and dorsal surfaces. BMSC-Exs (20 μg/kg in 200 μL PBS, iv) were injected for a 5-day period after SM exposure. We showed that BMSC-Exs administration caused a protective effect against pulmonary edema. Using a lung epithelial cell barrier model, BMSC-Exs (10, 20, 40 μg) dose-dependently inhibited SM-induced cell apoptosis and promoted the recovery of epithelial barrier function by facilitating the expression and relocalization of junction proteins (E-cadherin, claudin-1, occludin, and ZO-1). We further demonstrated that BMSC-Exs protected against apoptosis and promoted the restoration of barrier function against SM through upregulating G protein-coupled receptor family C group 5 type A (GPRC5A), a retinoic acid target gene predominately expressed in the epithelial cells of the lung. Knockdown of GPRC5A reduced the antiapoptotic and barrier regeneration abilities of BMSC-Exs and diminished their therapeutic effects in vitro and in vivo. BMSC-Exs-caused upregulation of GPRC5A promoted the expression of Bcl-2 and junction proteins via regulating the YAP pathway. In summary, BMSC-Exs treatment exerts protective effects against SM-induced ALI by promoting alveolar epithelial barrier repair and may be an alternative approach to stem cell-based therapy.
Collapse
Affiliation(s)
- Guan-Chao Mao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Chu-Chu Gong
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhen Wang
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
- Department of Preventive Medicinne, School of Medicine, Hunan Normal University, Changsha, China
| | - Ming-Xue Sun
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Zhi-Peng Pei
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Wen-Qi Meng
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Jin-Feng Cen
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China
| | - Xiao-Wen He
- Origincell Technology Group Co., Ltd., Shanghai, 201203, China
| | - Ying Lu
- Department of Pharmaceutical Science, School of Pharmacy, Naval Medical University, Shanghai, 200433, China.
| | - Qing-Qiang Xu
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| | - Kai Xiao
- Lab of Toxicology and Pharmacology, Faculty of Naval Medicine, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
63
|
Zhang X, Ye L, Liang G, Tang W, Yao L, Huang C. Different microRNAs contribute to the protective effect of mesenchymal stem cell-derived microvesicles in LPS induced acute respiratory distress syndrome. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1702-1708. [PMID: 35432797 PMCID: PMC8976904 DOI: 10.22038/ijbms.2021.56433.12640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/27/2021] [Indexed: 11/29/2022]
Abstract
OBJECTIVES The present study aimed to determine whether bone marrow mesenchymal stem cell-derived microvesicles (MSC MVs) were effective in restoring lung tissue structure, and to assess the potential role of miRNAs in the pathogenesis and progression of acute respiratory distress syndrome (ARDS). MATERIALS AND METHODS ARDS was induced by lipopolysaccharide in male C57BL/6 mice. The degree of lung injury was assessed by histological analysis, lung's wet weight/body weight, and protein levels in the bronchoalveolar lavage fluid (BALF). Sequencing was performed on the BGISEQ-500 platform. Differentially expressed miRNAs (DEMs) were screened with the DEGseq software. The target genes of DEMs were predicted by iRNAhybrid, miRanda, and TargetScan. RESULTS Compared with LPS-injured mice, MSC MVs reduced lung water and total protein levels in the BALF, demonstrating a protective effect. 52 miRNAs were differentially expressed following treatment with MSC MVs in ARDS mice. Among them, miR-532-5p, miR-223-3p, and miR-744-5p were significantly regulated. Gene Ontology (GO) function and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses revealed the target genes were mainly located in the cell, organelle, and membrane. Furthermore, KEGG pathways such as ErbB, PI3K-Akt, Ras, MAPK, Toll, and Wnt signaling pathways were the most significant pathways enriched by the target genes. CONCLUSION MSC MVs treatment was involved in alleviating lung injury and promoting lung tissue repair by dysregulated miRNAs.
Collapse
Affiliation(s)
- Xingcai Zhang
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo 315010, Zhejiang, China
| | - Lifang Ye
- Department of Anesthesiology, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, Guangdong, China
| | - Guojin Liang
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo 315010, Zhejiang, China
| | - Wan Tang
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo 315010, Zhejiang, China
| | - Lifeng Yao
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo 315010, Zhejiang, China
| | - Changshun Huang
- Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo 315010, Zhejiang, China,Corresponding author: Changshun Huang. Department of Anesthesiology, Ningbo First Hospital, No. 59 Liuting Street, Haishu District, Ningbo 315010, Zhejiang, China. Tel/ Fax: +86-13957882779;
| |
Collapse
|
64
|
Lenzini S, Debnath K, Joshi JC, Wong SW, Srivastava K, Geng X, Cho IS, Song A, Bargi R, Lee JC, Mo GCH, Mehta D, Shin JW. Cell-Matrix Interactions Regulate Functional Extracellular Vesicle Secretion from Mesenchymal Stromal Cells. ACS NANO 2021; 15:17439-17452. [PMID: 34677951 PMCID: PMC9023614 DOI: 10.1021/acsnano.1c03231] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Extracellular vesicles (EVs) are cell-secreted particles with broad potential to treat tissue injuries by delivering cargo to program target cells. However, improving the yield of functional EVs on a per cell basis remains challenging due to an incomplete understanding of how microenvironmental cues regulate EV secretion at the nanoscale. We show that mesenchymal stromal cells (MSCs) seeded on engineered hydrogels that mimic the elasticity of soft tissues with a lower integrin ligand density secrete ∼10-fold more EVs per cell than MSCs seeded on a rigid plastic substrate, without compromising their therapeutic activity or cargo to resolve acute lung injury in mice. Mechanistically, intracellular CD63+ multivesicular bodies (MVBs) transport faster within MSCs on softer hydrogels, leading to an increased frequency of MVB fusion with the plasma membrane to secrete more EVs. Actin-related protein 2/3 complex but not myosin-II limits MVB transport and EV secretion from MSCs on hydrogels. The results provide a rational basis for biomaterial design to improve EV secretion while maintaining their functionality.
Collapse
|
65
|
Dunbar H, Weiss DJ, Rolandsson Enes S, Laffey JG, English K. The Inflammatory Lung Microenvironment; a Key Mediator in MSC Licensing. Cells 2021; 10:cells10112982. [PMID: 34831203 PMCID: PMC8616504 DOI: 10.3390/cells10112982] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 12/12/2022] Open
Abstract
Recent clinical trials of mesenchymal stromal cell (MSC) therapy for various inflammatory conditions have highlighted the significant benefit to patients who respond to MSC administration. Thus, there is strong interest in investigating MSC therapy in acute inflammatory lung conditions, such as acute respiratory distress syndrome (ARDS). Unfortunately, not all patients respond, and evidence now suggests that the differential disease microenvironment present across patients and sub-phenotypes of disease or across disease severities influences MSC licensing, function and therapeutic efficacy. Here, we discuss the importance of licensing MSCs and the need to better understand how the disease microenvironment influences MSC activation and therapeutic actions, in addition to the need for a patient-stratification approach.
Collapse
Affiliation(s)
- Hazel Dunbar
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Daniel J Weiss
- Department of Medicine, 226 Health Science Research Facility, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA;
| | - Sara Rolandsson Enes
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, 22100 Lund, Sweden;
| | - John G Laffey
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, Biomedical Sciences Building, National University of Ireland Galway, H91 W2TY Galway, Ireland;
- Department of Anaesthesia, Galway University Hospitals, SAOLTA University Health Group, H91 YR71 Galway, Ireland
| | - Karen English
- Department of Biology, Maynooth University, W23 F2H6 Maynooth, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
- Correspondence: ; Tel.: +353-1-7086290
| |
Collapse
|
66
|
Zhang X, Sugita S, Liu A, Naito Y, Hwang W, Qiu H, Sakamoto A, Sawa T, Matthay MA, Lee JW. Therapeutic effects of high molecular weight hyaluronic acid in severe Pseudomonas aeruginosa pneumonia in ex vivo perfused human lungs. Am J Physiol Lung Cell Mol Physiol 2021; 321:L827-L836. [PMID: 34524905 DOI: 10.1152/ajplung.00626.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We previously reported that extracellular vesicles (EVs) released during Escherichia coli (E. coli) bacterial pneumonia were inflammatory, and administration of high molecular weight hyaluronic acid (HMW HA) suppressed several indices of acute lung injury (ALI) from E. coli pneumonia by binding to these inflammatory EVs. The current study was undertaken to study the therapeutic effects of HMW HA in ex vivo perfused human lungs injured with Pseudomonas aeruginosa (PA)103 bacterial pneumonia. For lungs with baseline alveolar fluid clearance (AFC) <10%/h, HMW HA 1 or 2 mg was injected intravenously after 1 h (n = 4-9), and EVs released during PA pneumonia were collected from the perfusate over 6 h. For lungs with baseline AFC > 10%/h, HMW HA 2 mg was injected intravenously after 1 h (n = 6). In vitro experiments were conducted to evaluate the effects of HA on inflammation and bacterial phagocytosis. For lungs with AFC < 10%/h, administration of HMW HA intravenously significantly restored AFC and numerically decreased protein permeability and alveolar inflammation from PA103 pneumonia but had no effect on bacterial counts at 6 h. However, HMW HA improved bacterial phagocytosis by human monocytes and neutrophils and suppressed the inflammatory properties of EVs released during pneumonia on monocytes. For lungs with AFC > 10%/h, administration of HMW HA intravenously improved AFC from PA103 pneumonia but had no significant effects on protein permeability, inflammation, or bacterial counts. In the presence of impaired alveolar epithelial transport capacity, administration of HMW HA improved the resolution of pulmonary edema from Pseudomonas PA103 bacterial pneumonia.
Collapse
Affiliation(s)
- Xiwen Zhang
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China.,Departments of Anesthesiology, Medicine, and Cardiovascular Research Institute, University of California, San Francisco, California
| | - Shinji Sugita
- Department of Anesthesiology, Nippon Medical School, Tokyo, Japan.,Departments of Anesthesiology, Medicine, and Cardiovascular Research Institute, University of California, San Francisco, California
| | - Airan Liu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Yoshifumi Naito
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wonjung Hwang
- Departments of Anesthesiology, Medicine, and Cardiovascular Research Institute, University of California, San Francisco, California
| | - Haibo Qiu
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | | | - Teiji Sawa
- Department of Anesthesiology, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Michael A Matthay
- Departments of Anesthesiology, Medicine, and Cardiovascular Research Institute, University of California, San Francisco, California
| | - Jae-Woo Lee
- Departments of Anesthesiology, Medicine, and Cardiovascular Research Institute, University of California, San Francisco, California
| |
Collapse
|
67
|
Jiang Y, Li F, Li Y, Duan J, Di C, Zhu Y, Zhao J, Jia X, Qu J. CD69 mediates the protective role of adipose tissue-derived mesenchymal stem cells against Pseudomonas aeruginosa pulmonary infection. Clin Transl Med 2021; 11:e563. [PMID: 34841721 PMCID: PMC8567058 DOI: 10.1002/ctm2.563] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 08/15/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Our previous study shows that Adipose tissue-derived mesenchymal stem cells (ASCs) are a promising strategy for cell-based therapy against pulmonary infection with Pseudomonas aeruginosa (P. aeruginosa), but the underlying mechanisms remain unclear. METHODS cDNA microarray assay was performed to explore the transcriptome of ASCs primed by P. aeruginosa. Small interfering RNA (siRNA) was constructed to select the receptor candidates for P. aeruginosa recognition and granulocyte-macrophage colony-stimulating factor (GM-CSF) production in ASCs. The soluble protein chimeras containing the extracellular domain of human CD69 fused to the Fc region of human immunoglobulin IgG1 were used as a probe to validate the recognition of P. aeruginosa. The association between CD69 and extracellular regulated protein kinases 1/2 (ERK1/2) was explored via co-immunoprecipitation, siRNA, and inhibitor. The murine models of P. aeruginosa pneumonia treated with WT-ASCs, GM-CSF-/- -ASCs Cd69-/- -ASCs or Erk1-/- -ASCs were used to determine the role of GM-CSF, CD69, and ERK1 in ASCs against P. aeruginosa infection. RESULTS We showed that C-type lectin receptor CD69 mediated the protective effects of ASCs partly through GM-CSF. CD69 could specifically recognize P. aeruginosa and regulate GM-CSF secretion of ASCs. CD69 regulated the production of GM-CSF via ERK1 in ASCs after P. aeruginosa infection. Moreover, the Administration of ASCs with deficiency of CD69 or ERK1 completely blocked its protective effects in a murine model of P. aeruginosa pneumonia. CONCLUSIONS CD69 recognizes P. aeruginosa and further facilitates ERK1 activation, which plays a crucial role in ASCs-based therapy against P. aeruginosa pneumonia. CD69 may be a novel target molecule to improve ASCs-based therapy against P. aeruginosa infection.
Collapse
Affiliation(s)
- Yanshan Jiang
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Fan Li
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Yanan Li
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jielin Duan
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Caixia Di
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
| | - Yinggang Zhu
- Department of Pulmonary and Critical Care MedicineHuadong HospitalFudan UniversityShanghaiChina
| | - Jingya Zhao
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
| | - Xinming Jia
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghaiChina
| | - Jieming Qu
- Department of Respiratory and Critical Care MedicineRuijin Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghai200025China
- Institute of Respiratory DiseasesSchool of MedicineShanghai Jiao Tong UniversityShanghai200025China
- Shanghai Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghai200025China
| |
Collapse
|
68
|
Mesenchymal Stromal Cells: an Antimicrobial and Host-Directed Therapy for Complex Infectious Diseases. Clin Microbiol Rev 2021; 34:e0006421. [PMID: 34612662 DOI: 10.1128/cmr.00064-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
There is an urgent need for new antimicrobial strategies for treating complex infections and emerging pathogens. Human mesenchymal stromal cells (MSCs) are adult multipotent cells with antimicrobial properties, mediated through direct bactericidal activity and modulation of host innate and adaptive immune cells. More than 30 in vivo studies have reported on the use of human MSCs for the treatment of infectious diseases, with many more studies of animal MSCs in same-species models of infection. MSCs demonstrate potent antimicrobial effects against the major classes of human pathogens (bacteria, viruses, fungi, and parasites) across a wide range of infection models. Mechanistic studies have yielded important insight into their immunomodulatory and bactericidal activity, which can be enhanced through various forms of preconditioning. MSCs are being investigated in over 80 clinical trials for difficult-to-treat infectious diseases, including sepsis and pulmonary, intra-abdominal, cutaneous, and viral infections. Completed trials consistently report MSCs to be safe and well tolerated, with signals of efficacy against some infectious diseases. Although significant obstacles must be overcome to produce a standardized, affordable, clinical-grade cell therapy, these studies suggest that MSCs may have particular potential as an adjunct therapy in complex or resistant infections.
Collapse
|
69
|
Aboushanab SA, El-Far AH, Narala VR, Ragab RF, Kovaleva EG. Potential therapeutic interventions of plant-derived isoflavones against acute lung injury. Int Immunopharmacol 2021; 101:108204. [PMID: 34619497 DOI: 10.1016/j.intimp.2021.108204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/19/2021] [Accepted: 09/25/2021] [Indexed: 12/24/2022]
Abstract
Acute lung injury (ALI) is a life-threatening syndrome that possibly leads to high morbidity and mortality as no therapy exists. Several natural ingredients with negligible adverse effects have recently been investigated to possibly inhibit the inflammatory pathways associated with ALI at the molecular level. Isoflavones, as phytoestrogenic compounds, are naturally occurring bioactive compounds that represent the most abundant category of plant polyphenols (Leguminosae family). A broad range of therapeutic activities of isoflavones, including antioxidants, chemopreventive, anti-inflammatory, antiallergic and antibacterial potentials, have been extensively documented in the literature. Our review exclusively focuses on the possible anti-inflammatory, antioxidant role of botanicals'-derived isoflavones against ALI and their immunomodulatory effect in experimentally induced ALI. Despite the limited scope covering their molecular mechanisms, isoflavones substantially contributed to protecting from ALI via inhibiting toll-like receptor 4 (TLR4)/Myd88/NF-κB pathway and subsequent cytokines, chemokines, and adherent proteins. Nonetheless, future research is suggested to fill the gap in elucidating the protective roles of isoflavones to alleviate ALI concerning antioxidant potentials, inhibition of the inflammatory pathways, and associated molecular mechanisms.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| | - Ali H El-Far
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt; Scientific Chair of Yousef Abdullatif Jameel of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | | - Rokia F Ragab
- Department of Biochemistry, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, Egypt.
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the First President of Russia B. N. Yeltsin, 620002, 19 Mira Yekaterinburg, Russia.
| |
Collapse
|
70
|
Patel PM, Connolly MR, Coe TM, Calhoun A, Pollok F, Markmann JF, Burdorf L, Azimzadeh A, Madsen JC, Pierson RN. Minimizing Ischemia Reperfusion Injury in Xenotransplantation. Front Immunol 2021; 12:681504. [PMID: 34566955 PMCID: PMC8458821 DOI: 10.3389/fimmu.2021.681504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/21/2022] Open
Abstract
The recent dramatic advances in preventing "initial xenograft dysfunction" in pig-to-non-human primate heart transplantation achieved by minimizing ischemia suggests that ischemia reperfusion injury (IRI) plays an important role in cardiac xenotransplantation. Here we review the molecular, cellular, and immune mechanisms that characterize IRI and associated "primary graft dysfunction" in allotransplantation and consider how they correspond with "xeno-associated" injury mechanisms. Based on this analysis, we describe potential genetic modifications as well as novel technical strategies that may minimize IRI for heart and other organ xenografts and which could facilitate safe and effective clinical xenotransplantation.
Collapse
Affiliation(s)
- Parth M. Patel
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Margaret R. Connolly
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Taylor M. Coe
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Anthony Calhoun
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Franziska Pollok
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Anesthesiology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | - James F. Markmann
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Transplantation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Lars Burdorf
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Agnes Azimzadeh
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Joren C. Madsen
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Richard N. Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Surgery, Division of Cardiac Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| |
Collapse
|
71
|
Extracellular vesicles in acute respiratory distress syndrome: Recent developments from bench to bedside. Int Immunopharmacol 2021; 100:108118. [PMID: 34492532 DOI: 10.1016/j.intimp.2021.108118] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/26/2021] [Accepted: 08/29/2021] [Indexed: 12/19/2022]
Abstract
Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS), characterized by a large number of inflammatory cell aggregation and alveolar cell damage in pathophysiology, have extremely high morbidity and mortality in critically ill patients. In recent years, more and more studies have found that there are abundant extracellular vesicles (EVs) in animal models and patients with ALI/ARDS, and they play a critical role in the pathogenesis of lung injury. Clarifying the mechanisms of EVs in lung injury is of great significance in the diagnosis and treatment of ALI/ARDS. In this review, we will summarize the recent findings on the roles of EVs derived from different cells in ALI/ARDS, along with the formation, function, and related effects of EVs, and explore their potential clinical application for the diagnosis and treatment of ALI/ARDS.
Collapse
|
72
|
Hezam K, Mo R, Wang C, Liu Y, Li Z. Anti-inflammatory Effects of Mesenchymal Stem Cells and Their Secretomes in Pneumonia. Curr Pharm Biotechnol 2021; 23:1153-1167. [PMID: 34493193 DOI: 10.2174/1389201022666210907115126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
Mesenchymal stem cells (MSCs) are multipotent progenitor cells that play crucial roles in the microenvironment of injured tissues. The potential therapeutics of MSCs have attracted extensive attention for several diseases such as acute respiratory distress syndrome (ARDS) and novel coronavirus disease 2019 (COVID-19) pneumonia. MSC-extracellular vesicles have been isolated from MSC-conditioned media (MSC-CM) with similar functional effects as parent MSCs. The therapeutic role of MSCs can be achieved through the balance between the inflammatory and regenerative microenvironments. Clinical settings of MSCs and their extracellular vesicles remain promising for many diseases, such as ARDS and pneumonia. However, their clinical applications remain limited due to the cost of growing and storage facilities of MSCs with a lack of standardized MSC-CM. This review highlights the proposed role of MSCs in pulmonary diseases and discusses the recent advances of MSC application for pneumonia and other lung disorders.
Collapse
Affiliation(s)
- Kamal Hezam
- Nankai University School of Medicine, Tianjin. China
| | - Rigen Mo
- Nankai University School of Medicine, Tianjin. China
| | - Chen Wang
- Nankai University School of Medicine, Tianjin. China
| | - Yue Liu
- Nankai University School of Medicine, Tianjin. China
| | - Zongjin Li
- Nankai University School of Medicine, Tianjin. China
| |
Collapse
|
73
|
Jung AL, Schmeck B, Wiegand M, Bedenbender K, Benedikter BJ. The clinical role of host and bacterial-derived extracellular vesicles in pneumonia. Adv Drug Deliv Rev 2021; 176:113811. [PMID: 34022269 DOI: 10.1016/j.addr.2021.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/10/2021] [Accepted: 05/18/2021] [Indexed: 12/14/2022]
Abstract
Pneumonia is among the leading causes of morbidity and mortality worldwide. Due to constant evolution of respiratory bacteria and viruses, development of drug resistance and emerging pathogens, it constitutes a considerable health care threat. To enable development of novel strategies to control pneumonia, a better understanding of the complex mechanisms of interaction between host cells and infecting pathogens is vital. Here, we review the roles of host cell and bacterial-derived extracellular vesicles (EVs) in these interactions. We discuss clinical and experimental as well as pathogen-overarching and pathogen-specific evidence for common viral and bacterial elicitors of community- and hospital-acquired pneumonia. Finally, we highlight the potential of EVs for improved management of pneumonia patients and discuss the translational steps to be taken before they can be safely exploited as novel vaccines, biomarkers, or therapeutics in clinical practice.
Collapse
|
74
|
Kiaie N, Ghanavati SPM, Miremadi SS, Hadipour A, Aghdam RM. Mesenchymal Stem Cell-Derived Exosomes for COVID-19 Therapy, Preclinical and Clinical Evidence. Int J Stem Cells 2021; 14:252-261. [PMID: 34158414 PMCID: PMC8429942 DOI: 10.15283/ijsc20182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/31/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Since the emergence of the novel coronavirus, named COVID-19, researchers are looking for a treatment to stop the devastating pandemic. During these efforts, mesenchymal stem cells (MSCs), the potential next generation of therapeutic methods with wide application for diseases, have successfully controlled cytokine storm following the virus infection. However, the use of MSCs has been limited due to the ethical issues, immunogenicity, and genetic modifications. Therefore, exosomes were introduced as a suitable substitute for the MSCs. In the case of COVID-19 treatment, both MSCs and exosomes exert their beneficial effect mainly through the management of the cytokine storm. This study provided the underlying mechanisms for the effect of exosomes on COVID-19 treatment and presented several preclinical and clinical studies of exosomes for COVID-19 treatment.
Collapse
Affiliation(s)
- Nasim Kiaie
- School of Metallurgy & Materials Engineering, College of Engineering, University of Tehran, Tehran, Iran.,Research Center for Advanced Technologies in Cardiovascular Medicine, Tehran Heart Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Sara Sadat Miremadi
- Stem Cell & Regenerative Medicine Center of Excellence, Tehran University of Medical Sciences, Tehran, Iran
| | | | | |
Collapse
|
75
|
Panda B, Sharma Y, Gupta S, Mohanty S. Mesenchymal Stem Cell-Derived Exosomes as an Emerging Paradigm for Regenerative Therapy and Nano-Medicine: A Comprehensive Review. Life (Basel) 2021; 11:life11080784. [PMID: 34440528 PMCID: PMC8399916 DOI: 10.3390/life11080784] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal Stem Cells are potent therapeutic candidates in the field of regenerative medicine, owing to their immunomodulatory and differentiation potential. However, several complications come with their translational application like viability, duration, and degree of expansion, long-term storage, and high maintenance cost. Therefore, drawbacks of cell-based therapy can be overcome by a novel therapeutic modality emerging in translational research and application, i.e., exosomes. These small vesicles derived from mesenchymal stem cells are emerging as new avenues in the field of nano-medicine. These nano-vesicles have caught the attention of researchers with their potency as regenerative medicine both in nanotherapeutics and drug delivery systems. In this review, we discuss the current knowledge in the biology and handling of exosomes, with their limitations and future applications. Additionally, we highlight current perspectives that primarily focus on their effect on various diseases and their potential as a drug delivery vehicle.
Collapse
|
76
|
Shi M, Yang Q, Monsel A, Yan J, Dai C, Zhao J, Shi G, Zhou M, Zhu X, Li S, Li P, Wang J, Li M, Lei J, Xu D, Zhu Y, Qu J. Preclinical efficacy and clinical safety of clinical-grade nebulized allogenic adipose mesenchymal stromal cells-derived extracellular vesicles. J Extracell Vesicles 2021; 10:e12134. [PMID: 34429860 PMCID: PMC8363910 DOI: 10.1002/jev2.12134] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/18/2021] [Accepted: 08/01/2021] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stromal cell-derived extracellular vesicles (MSC-EVs) turn out to be a promising source of cell-free therapy. Here, we investigated the biodistribution and effect of nebulized human adipose-derived MSC-EVs (haMSC-EVs) in the preclinical lung injury model and explored the safety of nebulized haMSC-EVs in healthy volunteers. DiR-labelled haMSC-EVs were used to explore the distribution of nebulized haMSC-EVs in the murine model. Pseudomonas aeruginosa-induced murine lung injury model was established, and survival rate, as well as WBC counts, histology, IL-6, TNF-α and IL-10 levels in bronchoalveolar lavage fluid (BALF) were measured to explore the optimal therapeutic dose of haMSC-EVs through the nebulized route. Twenty-four healthy volunteers were involved and received the haMSC-EVs once, ranging from 2 × 108 particles to 16 × 108 particles (MEXVT study, NCT04313647). Nebulizing haMSC-EVs improved survival rate to 80% at 96 h in P. aeruginosa-induced murine lung injury model by decreasing lung inflammation and histological severity. All volunteers tolerated the haMSC-EVs nebulization well, and no serious adverse events were observed from starting nebulization to the 7th day after nebulization. These findings suggest that nebulized haMSC-EVs could be a promising therapeutic strategy, offering preliminary evidence to promote the future clinical applications of nebulized haMSC-EVs in lung injury diseases.
Collapse
Affiliation(s)
- Meng‐meng Shi
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Qing‐yuan Yang
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Antoine Monsel
- Multidisciplinary Intensive Care UnitDepartment of Anaesthesiology and Critical CareLa Pitié‐Salpêtrière HospitalAssistance Publique‐Hôpitaux de Paris (APHP)Sorbonne UniversityFrance
- INSERMSorbonne UniversitéUMR S 959, Immunology‐Immunopathology‐ Immunotherapy (I3); F‐75005ParisFrance
- Biotherapy (CIC‐BTi) and Inflammation‐Immunopathology‐Biotherapy Department (DHU i2B)Hôpital Pitié‐SalpêtrièreAP‐HP, F‐75651ParisFrance
| | - Jia‐yang Yan
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Cheng‐xiang Dai
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
- Daxing Research InstituteUniversity of Science and Technology BeijingBeijingChina
| | - Jing‐ya Zhao
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Guo‐chao Shi
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Min Zhou
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Xue‐mei Zhu
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| | - Su‐ke Li
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Ping Li
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Jing Wang
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Meng Li
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Ji‐gang Lei
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Dong Xu
- Cellular Biomedicine Group Inc. (CBMG)ShanghaiChina
| | - Ying‐gang Zhu
- Department of Pulmonary and Critical Care MedicineHua‐dong HospitalFudan UniversityShanghaiChina
| | - Jie‐ming Qu
- Department of Pulmonary and Critical Care MedicineRui‐jin HospitalShanghai Jiao‐tong University School of MedicineShanghaiChina
- Institute of Respiratory DiseaseShanghai Jiao‐tong University School of MedicineShanghaiChina
- Key Laboratory of Emergency PreventionDiagnosis and Treatment of Respiratory Infectious DiseasesShanghaiChina
| |
Collapse
|
77
|
Gurunathan S, Kang MH, Kim JH. Diverse Effects of Exosomes on COVID-19: A Perspective of Progress From Transmission to Therapeutic Developments. Front Immunol 2021; 12:716407. [PMID: 34394121 PMCID: PMC8355618 DOI: 10.3389/fimmu.2021.716407] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/05/2021] [Indexed: 01/08/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a new strain of coronavirus and the causative agent of the current global pandemic of coronavirus disease 2019 (COVID-19). There are currently no FDA-approved antiviral drugs for COVID-19 and there is an urgent need to develop treatment strategies that can effectively suppress SARS-CoV-2 infection. Numerous approaches have been researched so far, with one of them being the emerging exosome-based therapies. Exosomes are nano-sized, lipid bilayer-enclosed structures, share structural similarities with viruses secreted from all types of cells, including those lining the respiratory tract. Importantly, the interplay between exosomes and viruses could be potentially exploited for antiviral drug and vaccine development. Exosomes are produced by virus-infected cells and play crucial roles in mediating communication between infected and uninfected cells. SARS-CoV-2 modulates the production and composition of exosomes, and can exploit exosome formation, secretion, and release pathways to promote infection, transmission, and intercellular spread. Exosomes have been exploited for therapeutic benefits in patients afflicted with various diseases including COVID-19. Furthermore, the administration of exosomes loaded with immunomodulatory cargo in combination with antiviral drugs represents a novel intervention for the treatment of diseases such as COVID-19. In particular, exosomes derived from mesenchymal stem cells (MSCs) are used as cell-free therapeutic agents. Mesenchymal stem cell derived exosomes reduces the cytokine storm and reverse the inhibition of host anti-viral defenses associated with COVID-19 and also enhances mitochondrial function repair lung injuries. We discuss the role of exosomes in relation to transmission, infection, diagnosis, treatment, therapeutics, drug delivery, and vaccines, and present some future perspectives regarding their use for combating COVID-19.
Collapse
Affiliation(s)
- Sangiliyandi Gurunathan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Min Hee Kang
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
78
|
Mesenchymal Stem Cell-Based Therapy as an Alternative to the Treatment of Acute Respiratory Distress Syndrome: Current Evidence and Future Perspectives. Int J Mol Sci 2021; 22:ijms22157850. [PMID: 34360616 PMCID: PMC8346146 DOI: 10.3390/ijms22157850] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 12/25/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) represents a current challenge for medicine due to its incidence, morbidity and mortality and, also, the absence of an optimal treatment. The COVID-19 outbreak only increased the urgent demand for an affordable, safe and effective treatment for this process. Early clinical trials suggest the therapeutic usefulness of mesenchymal stem cells (MSCs) in acute lung injury (ALI) and ARDS. MSC-based therapies show antimicrobial, anti-inflammatory, regenerative, angiogenic, antifibrotic, anti-oxidative stress and anti-apoptotic actions, which can thwart the physiopathological mechanisms engaged in ARDS. In addition, MSC secretome and their derived products, especially exosomes, may reproduce the therapeutic effects of MSC in lung injury. This last strategy of treatment could avoid several safety issues potentially associated with the transplantation of living and proliferative cell populations and may be formulated in different forms. However, the following diverse limitations must be addressed: (i) selection of the optimal MSC, bearing in mind both the heterogeneity among donors and across different histological origins, (ii) massive obtention of these biological products through genetic manipulations of the most appropriate MSC, (iii) bioreactors that allow their growth in 3D, (iv) ideal culture conditions and (v) adequate functional testing of these obtaining biological products before their clinical application.
Collapse
|
79
|
Yan YY, Zhou WM, Wang YQ, Guo QR, Zhao FX, Zhu ZY, Xing YX, Zhang HY, Aljofan M, Jarrahi AM, Makabel B, Zhang JY. The Potential Role of Extracellular Vesicles in COVID-19 Treatment: Opportunity and Challenge. Front Mol Biosci 2021; 8:699929. [PMID: 34368228 PMCID: PMC8345113 DOI: 10.3389/fmolb.2021.699929] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
SARS-CoV-2 infection has become an urgent public health concern worldwide, severely affecting our society and economy due to the long incubation time and high prevalence. People spare no effort on the rapid development of vaccine and treatment all over the world. Amongst the numerous ways of tackling this pandemic, some approaches using extracellular vesicles (EVs) are emerging. In this review, we summarize current prevalence and pathogenesis of COVID-19, involving the combination of SARS-CoV-2 and virus receptor ACE2, endothelial dysfunction and micro thrombosis, together with cytokine storm. We also discuss the ongoing EVs-based strategies for the treatment of COVID-19, including mesenchymal stem cell (MSC)-EVs, drug-EVs, vaccine-EVs, platelet-EVs, and others. This manuscript provides the foundation for the development of targeted drugs and vaccines for SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Yan-yan Yan
- School of Medicine, Shanxi Datong University, Datong, China
| | - Wen-min Zhou
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yu-qing Wang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiao-ru Guo
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Xinjiang Institute of Materia Medica, Urumqi, China
| | - Fu-xi Zhao
- School of Medicine, Shanxi Datong University, Datong, China
| | - Zhuang-yan Zhu
- School of Medicine, Shanxi Datong University, Datong, China
| | - Yan-xia Xing
- School of Medicine, Shanxi Datong University, Datong, China
| | - Hai-yan Zhang
- School of Medicine, Shanxi Datong University, Datong, China
| | - Mohamad Aljofan
- Department of Biomedical Sciences, School of Medicine, Nazarbayev University, Nur-Sultan, Kazakhstan
| | | | | | - Jian-ye Zhang
- Key Laboratory of Molecular Target and Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
80
|
Ghafouri-Fard S, Niazi V, Hussen BM, Omrani MD, Taheri M, Basiri A. The Emerging Role of Exosomes in the Treatment of Human Disorders With a Special Focus on Mesenchymal Stem Cells-Derived Exosomes. Front Cell Dev Biol 2021; 9:653296. [PMID: 34307345 PMCID: PMC8293617 DOI: 10.3389/fcell.2021.653296] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/10/2021] [Indexed: 12/14/2022] Open
Abstract
Extracellular vesicles (EVs) are produced by diverse eukaryotic and prokaryotic cells. They have prominent roles in the modulation of cell-cell communication, inflammation versus immunomodulation, carcinogenic processes, cell proliferation and differentiation, and tissue regeneration. These acellular vesicles are more promising than cellular methods because of the lower risk of tumor formation, autoimmune responses and toxic effects compared with cell therapy. Moreover, the small size and lower complexity of these vesicles compared with cells have made their production and storage easier than cellular methods. Exosomes originated from mesenchymal stem cells has also been introduced as therapeutic option for a number of human diseases. The current review aims at summarization of the role of EVs in the regenerative medicine with a focus on their therapeutic impacts in liver fibrosis, lung disorders, osteoarthritis, colitis, myocardial injury, spinal cord injury and retinal injury.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vahid Niazi
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Bashdar Mahmud Hussen
- Department of Pharmacognosy, College of Pharmacy, Hawler Medical University, Erbil, Iraq
| | - Mir Davood Omrani
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Taheri
- Skull Base Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Basiri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
81
|
Kronstadt SM, Pottash AE, Levy D, Wang S, Chao W, Jay SM. Therapeutic Potential of Extracellular Vesicles for Sepsis Treatment. ADVANCED THERAPEUTICS 2021; 4:2000259. [PMID: 34423113 PMCID: PMC8378673 DOI: 10.1002/adtp.202000259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Indexed: 12/14/2022]
Abstract
Sepsis is a deadly condition lacking a specific treatment despite decades of research. This has prompted the exploration of new approaches, with extracellular vesicles (EVs) emerging as a focal area. EVs are nanosized, cell-derived particles that transport bioactive components (i.e., proteins, DNA, and RNA) between cells, enabling both normal physiological functions and disease progression depending on context. In particular, EVs have been identified as critical mediators of sepsis pathophysiology. However, EVs are also thought to constitute the biologically active component of cell-based therapies and have demonstrated anti-inflammatory, anti-apoptotic, and immunomodulatory effects in sepsis models. The dual nature of EVs in sepsis is explored here, discussing their endogenous roles and highlighting their therapeutic properties and potential. Related to the latter component, prior studies involving EVs from mesenchymal stem/stromal cells (MSCs) and other sources are discussed and emerging producer cells that could play important roles in future EV-based sepsis therapies are identified. Further, how methodologies could impact therapeutic development toward sepsis treatment to enhance and control EV potency is described.
Collapse
Affiliation(s)
- Stephanie M Kronstadt
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Alex E Pottash
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Daniel Levy
- Fischell Department of Bioengineering, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| | - Sheng Wang
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Wei Chao
- Translational Research Program, Department of Anesthesiology and Center for Shock Trauma and Anesthesiology Research, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Steven M Jay
- Fischell Department of Bioengineering and Program in Molecular and, Cell Biology, University of Maryland, 3102 A. James Clark Hall, College Park, MD 20742, USA
| |
Collapse
|
82
|
Dutra Silva J, Su Y, Calfee CS, Delucchi KL, Weiss D, McAuley DF, O'Kane C, Krasnodembskaya AD. Mesenchymal stromal cell extracellular vesicles rescue mitochondrial dysfunction and improve barrier integrity in clinically relevant models of ARDS. Eur Respir J 2021; 58:13993003.02978-2020. [PMID: 33334945 PMCID: PMC8318599 DOI: 10.1183/13993003.02978-2020] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/02/2020] [Indexed: 12/22/2022]
Abstract
Alveolar epithelial–capillary barrier disruption is a hallmark of acute respiratory distress syndrome (ARDS). Contribution of mitochondrial dysfunction to the compromised alveolar-capillary barrier in ARDS remains unclear. Mesenchymal stromal cells-derived extracellular vesicles (MSC-EVs) are considered as a cell-free therapy for ARDS. Mitochondrial transfer was shown to be important for the therapeutic effects of MSCs and MSC-EVs. Here we investigated the contribution of mitochondrial dysfunction to the injury of alveolar epithelial and endothelial barriers in ARDS and the ability of MSC-EVs to modulate alveolar–capillary barrier integrity through mitochondrial transfer. Primary human small airway epithelial and pulmonary microvascular endothelial cells and human precision cut lung slices (PCLSs) were stimulated with endotoxin or plasma samples from patients with ARDS and treated with MSC-EVs, barrier properties and mitochondrial functions were evaluated. Lipopolysaccharide (LPS)-injured mice were treated with MSC-EVs and degree of lung injury and mitochondrial respiration of the lung tissue were assessed. Inflammatory stimulation resulted in increased permeability coupled with pronounced mitochondrial dysfunction in both types of primary cells and PCLSs. Extracellular vesicles derived from normal MSCs restored barrier integrity and normal levels of oxidative phosphorylation while an extracellular vesicles preparation which did not contain mitochondria was not effective. In vivo, presence of mitochondria was critical for extracellular vesicles ability to reduce lung injury and restore mitochondrial respiration in the lung tissue. In the ARDS environment, MSC-EVs improve alveolar–capillary barrier properties through restoration of mitochondrial functions at least partially via mitochondrial transfer. This study demonstrates that mitochondrial dysfunction is an important mechanism of ARDS pathogenesis. Mitochondrial transfer is crucial for the ability of MSC extracellular vesicles to restore integrity of the alveolar–capillary barrier.https://bit.ly/2JuqoCY
Collapse
Affiliation(s)
- Johnatas Dutra Silva
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Yue Su
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Carolyn S Calfee
- Dept of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, University of California, San Francisco, San Francisco, CA, USA.,Dept of Anesthesia, University of California, San Francisco, San Francisco, CA, USA.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin L Delucchi
- Dept of Psychiatry, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Weiss
- Dept of Medicine, Larner College of Medicine, University of Vermont, Burlington, VT, USA
| | - Danny F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Cecilia O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Anna D Krasnodembskaya
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry, and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| |
Collapse
|
83
|
Sharma A, Chakraborty A, Jaganathan BG. Review of the potential of mesenchymal stem cells for the treatment of infectious diseases. World J Stem Cells 2021; 13:568-593. [PMID: 34249228 PMCID: PMC8246252 DOI: 10.4252/wjsc.v13.i6.568] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/07/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
The therapeutic value of mesenchymal stem cells (MSCs) for the treatment of infectious diseases and the repair of disease-induced tissue damage has been explored extensively. MSCs inhibit inflammation, reduce pathogen load and tissue damage encountered during infectious diseases through the secretion of antimicrobial factors for pathogen clearance and they phagocytose certain bacteria themselves. MSCs dampen tissue damage during infection by downregulating the levels of pro-inflammatory cytokines, and inhibiting the excessive recruitment of neutrophils and proliferation of T cells at the site of injury. MSCs aid in the regeneration of damaged tissue by differentiating into the damaged cell types or by releasing paracrine factors that direct tissue regeneration, differentiation, and wound healing. In this review, we discuss in detail the various mechanisms by which MSCs help combat pathogens, tissue damage associated with infectious diseases, and challenges in utilizing MSCs for therapy.
Collapse
Affiliation(s)
- Amit Sharma
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Anuja Chakraborty
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Bithiah Grace Jaganathan
- Stem Cell and Cancer Biology Group, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
84
|
Lu D, Xu Y, Liu Q, Zhang Q. Mesenchymal Stem Cell-Macrophage Crosstalk and Maintenance of Inflammatory Microenvironment Homeostasis. Front Cell Dev Biol 2021; 9:681171. [PMID: 34249933 PMCID: PMC8267370 DOI: 10.3389/fcell.2021.681171] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/28/2021] [Indexed: 12/13/2022] Open
Abstract
Macrophages are involved in almost every aspect of biological systems and include development, homeostasis and repair. Mesenchymal stem cells (MSCs) have good clinical application prospects due to their ability to regulate adaptive and innate immune cells, particularly macrophages, and they have been used successfully for many immune disorders, including inflammatory bowel disease (IBD), acute lung injury, and wound healing, which have been reported as macrophage-mediated disorders. In the present review, we focus on the interaction between MSCs and macrophages and summarize their methods of interaction and communication, such as cell-to-cell contact, soluble factor secretion, and organelle transfer. In addition, we discuss the roles of MSC-macrophage crosstalk in the development of disease and maintenance of homeostasis of inflammatory microenvironments. Finally, we provide optimal strategies for applications in immune-related disease treatments.
Collapse
Affiliation(s)
- Di Lu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yan Xu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qiuli Liu
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qi Zhang
- The Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
85
|
Marrazzo P, Pizzuti V, Zia S, Sargenti A, Gazzola D, Roda B, Bonsi L, Alviano F. Microfluidic Tools for Enhanced Characterization of Therapeutic Stem Cells and Prediction of Their Potential Antimicrobial Secretome. Antibiotics (Basel) 2021; 10:750. [PMID: 34206190 PMCID: PMC8300685 DOI: 10.3390/antibiotics10070750] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/11/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is creating enormous attention on the development of new antibiotic-free therapy strategies for bacterial diseases. Mesenchymal stromal stem cells (MSCs) are the most promising candidates in current clinical trials and included in several cell-therapy protocols. Together with the well-known immunomodulatory and regenerative potential of the MSC secretome, these cells have shown direct and indirect anti-bacterial effects. However, the low reproducibility and standardization of MSCs from different sources are the current limitations prior to the purification of cell-free secreted antimicrobial peptides and exosomes. In order to improve MSC characterization, novel label-free functional tests, evaluating the biophysical properties of the cells, will be advantageous for their cell profiling, population sorting, and quality control. We discuss the potential of emerging microfluidic technologies providing new insights into density, shape, and size of live cells, starting from heterogeneous or 3D cultured samples. The prospective application of these technologies to studying MSC populations may contribute to developing new biopharmaceutical strategies with a view to naturally overcoming bacterial defense mechanisms.
Collapse
Affiliation(s)
- Pasquale Marrazzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Valeria Pizzuti
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Silvia Zia
- Stem Sel S.r.l., 40127 Bologna, Italy; (S.Z.); (B.R.)
| | | | - Daniele Gazzola
- Cell Dynamics i.S.r.l., 40129 Bologna, Italy; (A.S.); (D.G.)
| | - Barbara Roda
- Stem Sel S.r.l., 40127 Bologna, Italy; (S.Z.); (B.R.)
- Department of Chemistry “G. Ciamician”, University of Bologna, 40126 Bologna, Italy
| | - Laura Bonsi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| | - Francesco Alviano
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40126 Bologna, Italy; (V.P.); (L.B.); (F.A.)
| |
Collapse
|
86
|
Wick KD, Leligdowicz A, Zhuo H, Ware LB, Matthay MA. Mesenchymal stromal cells reduce evidence of lung injury in patients with ARDS. JCI Insight 2021; 6:148983. [PMID: 33974564 PMCID: PMC8262503 DOI: 10.1172/jci.insight.148983] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Whether airspace biomarkers add value to plasma biomarkers in studying acute respiratory distress syndrome (ARDS) is not well understood. Mesenchymal stromal cells (MSCs) are an investigational therapy for ARDS, and airspace biomarkers may provide mechanistic evidence for MSCs’ impact in patients with ARDS. METHODS We carried out a nested cohort study within a phase 2a safety trial of treatment with allogeneic MSCs for moderate-to-severe ARDS. Nonbronchoscopic bronchoalveolar lavage and plasma samples were collected 48 hours after study drug infusion. Airspace and plasma biomarker concentrations were compared between the MSC (n = 17) and placebo (n = 10) treatment arms, and correlation between the two compartments was tested. Airspace biomarkers were also tested for associations with clinical and radiographic outcomes. RESULTS Compared with placebo, MSC treatment significantly reduced airspace total protein, angiopoietin-2 (Ang-2), IL-6, and soluble TNF receptor-1 concentrations. Plasma biomarkers did not differ between groups. Each 10-fold increase in airspace Ang-2 was independently associated with 6.7 fewer days alive and free of mechanical ventilation (95% CI, –12.3 to –1.0, P = 0.023), and each 10-fold increase in airspace receptor for advanced glycation end-products (RAGE) was independently associated with a 6.6-point increase in day 3 radiographic assessment of lung edema score (95% CI, 2.4 to 10.8, P = 0.004). CONCLUSION MSCs reduced biological evidence of lung injury in patients with ARDS. Biomarkers from the airspaces provide additional value for studying pathogenesis, treatment effects, and outcomes in ARDS. TRIAL REGISTRATION ClinicalTrials.gov NCT02097641. FUNDING National Heart, Lung, and Blood Institute.
Collapse
Affiliation(s)
- Katherine D Wick
- Departments of Medicine and Anesthesia and.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Aleksandra Leligdowicz
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA.,Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Hanjing Zhuo
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| | - Lorraine B Ware
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael A Matthay
- Departments of Medicine and Anesthesia and.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
87
|
Zheng D, Zhou H, Wang H, Zhu Y, Wu Y, Li Q, Li T, Liu L. Mesenchymal stem cell-derived microvesicles improve intestinal barrier function by restoring mitochondrial dynamic balance in sepsis rats. Stem Cell Res Ther 2021; 12:299. [PMID: 34039427 PMCID: PMC8152336 DOI: 10.1186/s13287-021-02363-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Sepsis is a major cause of death in ICU, and intestinal barrier dysfunction is its important complication, while the treatment is limited. Recently, mesenchymal stem cell-derived microvesicles (MMVs) attract much attention as a strategy of cell-free treatment; whether MMVs are therapeutic in sepsis induced-intestinal barrier dysfunction is obscure. METHODS In this study, cecal ligation and puncture-induced sepsis rats and lipopolysaccharide-stimulated intestinal epithelial cells to investigate the effect of MMVs on intestinal barrier dysfunction. MMVs were harvested from mesenchymal stem cells and were injected into sepsis rats, and the intestinal barrier function was measured. Afterward, MMVs were incubated with intestinal epithelial cells, and the effect of MMVs on mitochondrial dynamic balance was measured. Then the expression of mfn1, mfn2, OPA1, and PGC-1α in MMVs were measured by western blot. By upregulation and downregulation of mfn2 and PGC-1α, the role of MMVs in mitochondrial dynamic balance was investigated. Finally, the role of MMV-carried mitochondria in mitochondrial dynamic balance was investigated. RESULTS MMVs restored the intestinal barrier function by improving mitochondrial dynamic balance and metabolism of mitochondria. Further study revealed that MMVs delivered mfn2 and PGC-1α to intestinal epithelial cells, and promoted mitochondrial fusion and biogenesis, thereby improving mitochondrial dynamic balance. Furthermore, MMVs delivered functional mitochondria to intestinal epithelial cells and enhanced energy metabolism directly. CONCLUSION MMVs can deliver mfn2, PGC-1α, and functional mitochondria to intestinal epithelial cells, synergistically improve mitochondrial dynamic balance of target cells after sepsis, and restore the mitochondrial function and intestinal barrier function. The study illustrated that MMVs might be a promising strategy for the treatment of sepsis.
Collapse
Affiliation(s)
- Danyang Zheng
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Henan Zhou
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Hongchen Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Yu Zhu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Yue Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Qinghui Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Daping, Chongqing, 400042, People's Republic of China
| | - Tao Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Daping, Chongqing, 400042, People's Republic of China.
| | - Liangming Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Shock and Transfusion Department, Research Institute of Surgery, Daping Hospital, Army Medical University, Daping, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
88
|
Pierce LM, Kurata WE. Priming With Toll-Like Receptor 3 Agonist Poly(I:C) Enhances Content of Innate Immune Defense Proteins but Not MicroRNAs in Human Mesenchymal Stem Cell-Derived Extracellular Vesicles. Front Cell Dev Biol 2021; 9:676356. [PMID: 34109180 PMCID: PMC8180863 DOI: 10.3389/fcell.2021.676356] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 04/13/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) help fight infection by promoting direct bacterial killing or indirectly by modulating the acute phase response, thereby decreasing tissue injury. Recent evidence suggests that extracellular vesicles (EVs) released from MSCs retain antimicrobial characteristics that may be enhanced by pretreatment of parent MSCs with the toll-like receptor 3 (TLR3) agonist poly(I:C). Our aim was to determine whether poly(I:C) priming can modify EV content of miRNAs and/or proteins to gain insight into the molecular mechanisms of their enhanced antimicrobial function. Human bone marrow-derived MSCs were cultured with or without 1 μg/ml poly(I:C) for 1 h and then conditioned media was collected after 64 h of culture in EV-depleted media. Mass spectrometry and small RNA next-generation sequencing were performed to compare proteomic and miRNA profiles. Poly(I:C) priming resulted in 49 upregulated EV proteins, with 21 known to be important in host defense and innate immunity. In contrast, EV miRNA content was not significantly altered. Functional annotation clustering analysis revealed enrichment in biological processes and pathways including negative regulation of endopeptidase activity, acute phase, complement and coagulation cascades, innate immunity, immune response, and Staphylococcus aureus infection. Several antimicrobial peptides identified in EVs remained unaltered by poly(I:C) priming, including dermcidin, lactoferrin, lipocalin 1, lysozyme C, neutrophil defensin 1, S100A7 (psoriasin), S100A8/A9 (calprotectin), and histone H4. Although TLR3 activation of MSCs improves the proteomic profile of EVs, further investigation is needed to determine the relative importance of particular functional EV proteins and their activated signaling pathways following EV interaction with immune cells.
Collapse
Affiliation(s)
- Lisa M Pierce
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI, United States
| | - Wendy E Kurata
- Department of Clinical Investigation, Tripler Army Medical Center, Honolulu, HI, United States
| |
Collapse
|
89
|
Zhou L, Hao Q, Sugita S, Naito Y, He H, Yeh CC, Lee JW. Role of CD44 in increasing the potency of mesenchymal stem cell extracellular vesicles by hyaluronic acid in severe pneumonia. Stem Cell Res Ther 2021; 12:293. [PMID: 34016170 PMCID: PMC8136222 DOI: 10.1186/s13287-021-02329-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Background Although promising, clinical translation of human mesenchymal stem or stromal cell-derived extracellular vesicles (MSC EV) for acute lung injury is potentially limited by significant production costs. The current study was performed to determine whether pretreatment of MSC EV with high molecular weight hyaluronic acid (HMW HA) would increase the therapeutic potency of MSC EV in severe bacterial pneumonia. Methods In vitro experiments were performed to determine the binding affinity of HMW HA to MSC EV and its uptake by human monocytes, and whether HMW HA primed MSC EV would increase bacterial phagocytosis by the monocytes. In addition, the role of CD44 receptor on MSC EV in the therapeutic effects of HMW HA primed MSC EV were investigated. In Pseudomonas aeruginosa (PA) pneumonia in mice, MSC EV primed with or without HMW HA were instilled intravenously 4 h after injury. After 24 h, the bronchoalveolar lavage fluid, blood, and lungs were analyzed for levels of bacteria, inflammation, MSC EV trafficking, and lung pathology. Results MSC EV bound preferentially to HMW HA at a molecular weight of 1.0 MDa compared with HA with a molecular weight of 40 KDa or 1.5 MDa. HMW HA primed MSC EV further increased MSC EV uptake and bacterial phagocytosis by monocytes compared to treatment with MSC EV alone. In PA pneumonia in mice, instillation of HMW HA primed MSC EV further reduced inflammation and decreased the bacterial load by enhancing the trafficking of MSC EV to the injured alveolus. CD44 siRNA pretreatment of MSC EV prior to incubation with HMW HA eliminated its trafficking to the alveolus and therapeutic effects. Conclusions HMW HA primed MSC EV significantly increased the potency of MSC EV in PA pneumonia in part by enhancing the trafficking of MSC EV to the sites of inflammation via the CD44 receptor on MSC EV which was associated with increased antimicrobial activity. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02329-2.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.,Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Qi Hao
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Shinji Sugita
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Yoshifumi Naito
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Hongli He
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Che-Chung Yeh
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA
| | - Jae-Woo Lee
- Department of Anesthesiology, University of California, San Francisco, 505 Parnassus Ave., Box 0648, San Francisco, CA, USA.
| |
Collapse
|
90
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles Alleviate Acute Lung Injury Via Transfer of miR-27a-3p. Crit Care Med 2021; 48:e599-e610. [PMID: 32317602 DOI: 10.1097/ccm.0000000000004315] [Citation(s) in RCA: 75] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The goal of this study was to determine the role of microRNA transfer in mediating the effects of mesenchymal stem cell-derived extracellular vesicles in acute lung injury. DESIGN Experimental cell and animal studies. SETTING University-based research laboratory. SUBJECTS THP-1 monocytes, bone marrow-derived macrophages, and C57BL/6 mice. INTERVENTIONS To determine the microRNA transfer in vitro, mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles were cultured with THP-1 cells and bone marrow-derived macrophages and then assayed for microRNA expression in the target cells. To examine the role of microRNA transfer in vivo, mesenchymal stem cell-derived extracellular vesicles were administered to mice with lipopolysaccharide-induced lung injury. MEASUREMENTS AND MAIN RESULTS Mesenchymal stem cell-derived extracellular vesicles were efficiently taken up by macrophages in vitro and in vivo. miR-27a-3p was one of the most highly expressed microRNAs in THP-1 cells in microarray analysis and was transferred from mesenchymal stem cells and mesenchymal stem cell-derived extracellular vesicles to THP-1/bone marrow-derived macrophages. Mesenchymal stem cell-derived extracellular vesicles promoted M2 polarization in bone marrow-derived macrophages, which was inhibited by lentiviral anti-miR-27a-3p transduction. Mesenchymal stem cell-derived extracellular vesicles administered systemically and intratracheally were as effective as mesenchymal stem cells in alleviating acute lung injury, elevating miR-27a-3p levels in alveolar macrophages, and promoting M2 macrophage polarization. Treatment of mesenchymal stem cell-derived extracellular vesicles concurrently decreased alveolar macrophage expression of nuclear factor kappa B subunit 1, a target of miR-27a-3p. Lentiviral transduction of mesenchymal stem cells with anti-miR-27a-3p or knockdown of miR-27a-3p in vivo abolished the effects of mesenchymal stem cell-derived extracellular vesicles on acute lung injury and M2 macrophage polarization. CONCLUSIONS Mesenchymal stem cell-derived extracellular vesicles mitigate acute lung injury at least partially via transferring miR-27a-3p to alveolar macrophages. miR-27a-3p acts to target NFKB1 and is a crucial regulator of M2 macrophage polarization.
Collapse
|
91
|
Afarid M, Sanie-Jahromi F. Mesenchymal Stem Cells and COVID-19: Cure, Prevention, and Vaccination. Stem Cells Int 2021; 2021:6666370. [PMID: 34035820 PMCID: PMC8103964 DOI: 10.1155/2021/6666370] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 disease has been a global health problem since late 2019. There are many concerns about the rapid spread of this disease, and yet, there is no approved treatment for COVID-19. Several biological interventions have been under study recently to investigate efficient treatment for this viral disease. Besides, many efforts have been made to find a safe way to prevent and vaccinate people against COVID-19 disease. In severe cases, patients suffer from acute respiratory distress syndrome usually associated with an increased level of inflammatory cytokines, called a cytokine storm. It seems that reequilibrating the hyperinflammatory response of the host immune system and regeneration of damaged cells could be the main way to manage the disease. Mesenchymal stem cells (MSCs) have been recently under investigation in this regard, and the achieved clinical outcomes show promising evidence for stem cell-based therapy of COVID-19. MSCs are known for their potential for immunomodulation, defense against virus infection, and tissue regeneration. MSCs are a newly emerged platform for designing vaccines and show promising evidence in this area. In the present study, we provided a thorough research study on the most recent clinical studies based on stem cells in the treatment of COVID-19 while introducing stem cell exclusivities for use as an immune disorder or lung cell therapy and its potential application for protection and vaccination against COVID-19.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
92
|
Heinen N, Klöhn M, Steinmann E, Pfaender S. In Vitro Lung Models and Their Application to Study SARS-CoV-2 Pathogenesis and Disease. Viruses 2021; 13:792. [PMID: 33925255 PMCID: PMC8144959 DOI: 10.3390/v13050792] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/23/2021] [Accepted: 04/26/2021] [Indexed: 02/08/2023] Open
Abstract
SARS-CoV-2 has spread across the globe with an astonishing velocity and lethality that has put scientist and pharmaceutical companies worldwide on the spot to develop novel treatment options and reliable vaccination for billions of people. To combat its associated disease COVID-19 and potentially newly emerging coronaviruses, numerous pre-clinical cell culture techniques have progressively been used, which allow the study of SARS-CoV-2 pathogenesis, basic replication mechanisms, and drug efficiency in the most authentic context. Hence, this review was designed to summarize and discuss currently used in vitro and ex vivo cell culture systems and will illustrate how these systems will help us to face the challenges imposed by the current SARS-CoV-2 pandemic.
Collapse
Affiliation(s)
| | | | | | - Stephanie Pfaender
- Department of Molecular and Medical Virology, Ruhr-University Bochum, 44801 Bochum, Germany; (N.H.); (M.K.); (E.S.)
| |
Collapse
|
93
|
Guo H, Su Y, Deng F. Effects of Mesenchymal Stromal Cell-Derived Extracellular Vesicles in Lung Diseases: Current Status and Future Perspectives. Stem Cell Rev Rep 2021; 17:440-458. [PMID: 33211245 PMCID: PMC7675022 DOI: 10.1007/s12015-020-10085-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2020] [Indexed: 12/11/2022]
Abstract
Mesenchymal stromal cells (MSCs) as a kind of pluripotent adult stem cell have shown great therapeutic potential in relation to many diseases in anti-inflammation and regeneration. The results of preclinical experiments and clinical trials have demonstrated that MSC-derived secretome possesses immunoregulatory and reparative abilities and that this secretome is capable of modulating innate and adaptive immunity and reprograming the metabolism of recipient cells via paracrine mechanisms. It has been recognized that MSC-derived secretome, including soluble proteins (cytokines, chemokines, growth factors, proteases), extracellular vesicles (EVs) and organelles, plays a key role in tissue repair and regeneration in bronchopulmonary dysplasia, acute respiratory distress syndrome (ARDS), bronchial asthma, chronic obstructive pulmonary disease (COPD), idiopathic pulmonary fibrosis (IPF), pulmonary arterial hypertension, and silicosis. This review summarizes the known functions of MSC-EV modulation in lung diseases, coupled with the future challenges of MSC-EVs as a new pharmaceutical agent. The identification of underlying mechanisms for MSC-EV might provide a new direction for MSC-centered treatment in lung diseases.Graphical abstract.
Collapse
Affiliation(s)
- Haiyan Guo
- Department of Pediatrics, The First Affiliated Hospital of Anhui Medical University, No. 218 Ji-Xi Road, 230022 Hefei, Anhui Province People’s Republic of China
| | - Yue Su
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, 97 Lisburn Road, Belfast, Belfast, BT9 7BL UK
| | - Fang Deng
- Department of Nephrology, Anhui Provincial Children’s Hospital, Hefei City, Anhui Province 230022 People’s Republic of China
| |
Collapse
|
94
|
Peng W, Chang M, Wu Y, Zhu W, Tong L, Zhang G, Wang Q, Liu J, Zhu X, Cheng T, Li Y, Chen X, Weng D, Liu S, Zhang H, Su Y, Zhou J, Li H, Song Y. Lyophilized powder of mesenchymal stem cell supernatant attenuates acute lung injury through the IL-6-p-STAT3-p63-JAG2 pathway. Stem Cell Res Ther 2021; 12:216. [PMID: 33781349 PMCID: PMC8008635 DOI: 10.1186/s13287-021-02276-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 03/10/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Acute lung injury (ALI) and acute respiratory distress syndrome (ARDS) are syndromes of acute respiratory failure with extremely high mortality and few effective treatments. Mesenchymal stem cells (MSCs) may reportedly contribute to tissue repair in ALI and ARDS. However, applications of MSCs have been restricted due to safety considerations and limitations in terms of large-scale production and industrial delivery. Alternatively, the MSC secretome has been considered promising for use in therapeutic approaches and has been advanced in pre-clinical and clinical trials. Furthermore, the MSC secretome can be freeze-dried into a stable and ready-to-use supernatant lyophilized powder (SLP) form. Currently, there are no studies on the role of MSC SLP in ALI. METHODS Intratracheal bleomycin was used to induce ALI in mice, and intratracheal MSC SLP was administered as a treatment. Histopathological assessment was performed by hematoxylin and eosin, immunohistochemistry, and immunofluorescence staining. Apoptosis, inflammatory infiltration, immunological cell counts, cytokine levels, and mRNA- and protein-expression levels of relevant targets were measured by performing terminal deoxynucleotidyl transferase dUTP nick-end labeling assays, determining total cell and protein levels in bronchoalveolar lavage fluids, flow cytometry, multiple cytokine-detection techniques, and reverse transcriptase-quantitative polymerase chain reaction and western blot analysis, respectively. RESULTS We found that intratracheal MSC SLP considerably promoted cell survival, inhibited epithelial cell apoptosis, attenuated inflammatory cell recruitment, and reversed immunological imbalances induced by bleomycin. MSC SLP inhibited the interleukin 6-phosphorylated signal transducer and activator of transcription signaling pathway to activate tumor protein 63-jagged 2 signaling in basal cells, suppress T helper 17 cell differentiation, promote p63+ cell proliferation and lung damage repair, and attenuate inflammatory responses. CONCLUSIONS MSC SLP ameliorated ALI by activating p63 and promoting p63+ cell proliferation and the repair of damaged epithelial cells. The findings of this study also shed insight into ALI pathogenesis and imply that MSC SLP shows considerable therapeutic promise for treating ALI and ARDS.
Collapse
Affiliation(s)
- Wenjun Peng
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Meijia Chang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yuanyuan Wu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wensi Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Lin Tong
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Ge Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Qin Wang
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jie Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaoping Zhu
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Tingting Cheng
- Department of Pulmonary and Critical Care Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yijia Li
- Public Translational Platform for Cell Therapy, Yangtze Delta Region Institute of Tsinghua University, Hangzhou, 311200, Zhejiang, China
| | - Xi Chen
- Yunnan Province Stem cell Bank, Kunming, 650101, Yunnan, China
| | - Dong Weng
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Sanhong Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hongwei Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yao Su
- Public Translational Platform for Cell Therapy, Yangtze Delta Region Institute of Tsinghua University, Hangzhou, 311200, Zhejiang, China
| | - Jian Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, 200540, China.
| | - Huayin Li
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Yuanlin Song
- Department of Pulmonary and Critical Care Medicine, Shanghai Respiratory Research Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, China. .,Center of Emergency & Intensive Care Unit, Jinshan Hospital, Fudan University, Shanghai, 200540, China.
| |
Collapse
|
95
|
Raghav A, Khan ZA, Upadhayay VK, Tripathi P, Gautam KA, Mishra BK, Ahmad J, Jeong GB. Mesenchymal Stem Cell-Derived Exosomes Exhibit Promising Potential for Treating SARS-CoV-2-Infected Patients. Cells 2021; 10:587. [PMID: 33799966 PMCID: PMC8001291 DOI: 10.3390/cells10030587] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/01/2021] [Accepted: 03/03/2021] [Indexed: 12/14/2022] Open
Abstract
The novel coronavirus severe acute respiratory syndrome-CoV-2 (SARS-CoV-2) is responsible for COVID-19 infection. The COVID-19 pandemic represents one of the worst global threats in the 21st century since World War II. This pandemic has led to a worldwide economic recession and crisis due to lockdown. Biomedical researchers, pharmaceutical companies, and premier institutes throughout the world are claiming that new clinical trials are in progress. During the severe phase of this disease, mechanical ventilators are used to assist in the management of outcomes; however, their use can lead to the development of pneumonia. In this context, mesenchymal stem cell (MSC)-derived exosomes can serve as an immunomodulation treatment for COVID-19 patients. Exosomes possess anti-inflammatory, pro-angiogenic, and immunomodulatory properties that can be explored in an effort to improve the outcomes of SARS-CoV-2-infected patients. Currently, only one ongoing clinical trial (NCT04276987) is specifically exploring the use of MSC-derived exosomes as a therapy to treat SARS-CoV-2-associated pneumonia. The purpose of this review is to provide insights of using exosomes derived from mesenchymal stem cells in management of the co-morbidities associated with SARS-CoV-2-infected persons in direction of improving their health outcome. There is limited knowledge of using exosomes in SARS-CoV-2; the clinicians and researchers should exploit exosomes as therapeutic regime.
Collapse
Affiliation(s)
- Alok Raghav
- Multidisciplinary Research Unit, Department of Health Research, Ministry of Health and Family Welfare, GSVM Medical College, Kanpur 208002, Uttar Pradesh, India; (A.R.); (P.T.); (K.A.G.)
| | - Zeeshan Ahmad Khan
- Department of Bioengineering, Korea University of Technology and Education, Cheonan-si 31253, Korea;
| | | | - Prashant Tripathi
- Multidisciplinary Research Unit, Department of Health Research, Ministry of Health and Family Welfare, GSVM Medical College, Kanpur 208002, Uttar Pradesh, India; (A.R.); (P.T.); (K.A.G.)
| | - Kirti Amresh Gautam
- Multidisciplinary Research Unit, Department of Health Research, Ministry of Health and Family Welfare, GSVM Medical College, Kanpur 208002, Uttar Pradesh, India; (A.R.); (P.T.); (K.A.G.)
| | - Brijesh Kumar Mishra
- Department of Endocrinology, UCMS, GTB Hospital, Dilshad Garden, Delhi 110095, India;
| | - Jamal Ahmad
- Rajiv Gandhi Centre for Diabetes and Endocrinology, J.N Medical College, Aligarh Muslim University, Aligarh 202002, Uttar Pradesh, India;
| | - Goo-Bo Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Gachon University, 155 Getbeol-ro, Yeonsu-gu, Incheon 21999, Korea
| |
Collapse
|
96
|
Intra-vital imaging of mesenchymal stromal cell kinetics in the pulmonary vasculature during infection. Sci Rep 2021; 11:5265. [PMID: 33664277 PMCID: PMC7933415 DOI: 10.1038/s41598-021-83894-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/20/2021] [Indexed: 01/13/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) have demonstrated efficacy in pre-clinical models of inflammation and tissue injury, including in models of lung injury and infection. Rolling, adhesion and transmigration of MSCs appears to play a role during MSC kinetics in the systemic vasculature. However, a large proportion of MSCs become entrapped within the lungs after intravenous administration, while the initial kinetics and the site of arrest of MSCs in the pulmonary vasculature are unknown. We examined the kinetics of intravascularly administered MSCs in the pulmonary vasculature using a microfluidic system in vitro and intra-vital microscopy of intact mouse lung. In vitro, MSCs bound to endothelium under static conditions but not under laminar flow. VCAM-1 antibodies did not affect MSC binding. Intravital microscopy demonstrated MSC arrest at pulmonary micro-vessel bifurcations due to size obstruction. Retention of MSCs in the pulmonary microvasculature was increased in Escherichia coli-infected animals. Trapped MSCs deformed over time and appeared to release microvesicles. Labelled MSCs retained therapeutic efficacy against pneumonia. Our results suggest that MSCs are physically obstructed in pulmonary vasculature and do not display properties of rolling/adhesion, while retention of MSCs in the infected lung may require receptor interaction.
Collapse
|
97
|
Hickson LJ, Herrmann SM, McNicholas BA, Griffin MD. Progress toward the Clinical Application of Mesenchymal Stromal Cells and Other Disease-Modulating Regenerative Therapies: Examples from the Field of Nephrology. KIDNEY360 2021; 2:542-557. [PMID: 34316720 PMCID: PMC8312727 DOI: 10.34067/kid.0005692020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Drawing from basic knowledge of stem-cell biology, embryonic development, wound healing, and aging, regenerative medicine seeks to develop therapeutic strategies that complement or replace conventional treatments by actively repairing diseased tissue or generating new organs and tissues. Among the various clinical-translational strategies within the field of regenerative medicine, several can be broadly described as promoting disease resolution indirectly through local or systemic interactions with a patient's cells, without permanently integrating or directly forming new primary tissue. In this review, we focus on such therapies, which we term disease-modulating regenerative therapies (DMRT), and on the extent to which they have been translated into the clinical arena in four distinct areas of nephrology: renovascular disease (RVD), sepsis-associated AKI (SA-AKI), diabetic kidney disease (DKD), and kidney transplantation (KTx). As we describe, the DMRT that has most consistently progressed to human clinical trials for these indications is mesenchymal stem/stromal cells (MSCs), which potently modulate ischemic, inflammatory, profibrotic, and immune-mediated tissue injury through diverse paracrine mechanisms. In KTx, several early-phase clinical trials have also tested the potential for ex vivo-expanded regulatory immune cell therapies to promote donor-specific tolerance and prevent or resolve allograft injury. Other promising DMRT, including adult stem/progenitor cells, stem cell-derived extracellular vesicles, and implantable hydrogels/biomaterials remain at varying preclinical stages of translation for these renal conditions. To date (2021), no DMRT has gained market approval for use in patients with RVD, SA-AKI, DKD, or KTx, and clinical trials demonstrating definitive, cost-effective patient benefits are needed. Nonetheless, exciting progress in understanding the disease-specific mechanisms of action of MSCs and other DMRT, coupled with increasing knowledge of the pathophysiologic basis for renal-tissue injury and the experience gained from pioneering early-phase clinical trials provide optimism that influential, regenerative treatments for diverse kidney diseases will emerge in the years ahead.
Collapse
Affiliation(s)
- LaTonya J. Hickson
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Jacksonville, Florida
| | - Sandra M. Herrmann
- Division of Nephrology and Hypertension, Department of Medicine, Mayo Clinic, Rochester, Minnesota
| | - Bairbre A. McNicholas
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Ireland
- Nephrology Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
- Critical Care Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
| | - Matthew D. Griffin
- Regenerative Medicine Institute (REMEDI) at CÚRAM Centre for Research in Medical Devices, School of Medicine, National University of Ireland Galway, Ireland
- Nephrology Services, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland
| |
Collapse
|
98
|
Hamdan H, Hashmi SK, Lazarus H, Gale RP, Qu W, El Fakih R. Promising role for mesenchymal stromal cells in coronavirus infectious disease-19 (COVID-19)-related severe acute respiratory syndrome? Blood Rev 2021; 46:100742. [PMID: 32854985 PMCID: PMC7425550 DOI: 10.1016/j.blre.2020.100742] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 07/02/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022]
Abstract
Mesenchymal stromal cells (MSC) have immune regulatory and tissue regenerative properties. MSCs are being studied as a therapy option for many inflammatory and immune disorders and are approved to treat acute graft-versus-host disease (GvHD). The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic and associated coronavirus infectious disease-19 (COVID-19) has claimed many lives. Innovative therapies are needed. Preliminary data using MSCs in the setting of acute respiratory distress syndrome (ARDS) in COVID-19 are emerging. We review mechanisms of action of MSCs in inflammatory and immune conditions and discuss a potential role in persons with COVID-19.
Collapse
Affiliation(s)
- Hamdan Hamdan
- Department of Physiology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Shahrukh K. Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA,Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Hillard Lazarus
- Division of Hematology and Oncology, Case Western Reserve University, Cleveland, OH, USA
| | | | - Wenchun Qu
- Department of Pain Medicine, Mayo Clinic, Jacksonville, FL, USA,Center of Regenerative Medicine, Mayo Clinic, Jacksonville, FL, USA
| | - Riad El Fakih
- Oncology Centre, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia,Corresponding author at: Oncology Centre, KFSHRC, Section of Adult Hematology/HSCT, PO Box 3354, Riyadh 11471, Saudi Arabia
| |
Collapse
|
99
|
Zhang P, Liu L, Yao L, Song X. Improved Differentiation Ability and Therapeutic Effect of miR-23a-3p Expressing Bone Marrow-Derived Mesenchymal Stem Cells in Mice Model with Acute Lung Injury. Int J Stem Cells 2021; 14:229-239. [PMID: 33632989 PMCID: PMC8138660 DOI: 10.15283/ijsc20136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 12/16/2020] [Accepted: 01/20/2021] [Indexed: 12/27/2022] Open
Abstract
Background and Objectives Implantation of bone marrow-derived mesenchymal stem cells (BMSCs) has been recognized as an effective therapy for attenuating acute lung injury (ALI). This study aims to discover microRNA (miRNA)-mediated improvement of BMSCs-based therapeutic effects. Methods and Results Mice were treated with lipopolysaccharide (LPS) for induction of ALI. BMSCs with lentivirus-mediated expression of miR-23b-3p or fibroblast growth factor 2 (FGF2) were intratracheally injected into the mice with ALI. The expressions of miR-23b-3p, FGF2, Occludin, and surfactant protein C (SPC) in lung tissues were analyzed by immunoblot or quantitative reverse transcription polymerase chain reaction. Histopathological changes in lung tissues were observed via hematoxylin-eosin staining. Lung edema was assessed by the ratio of lung wet weight/body weight (LWW/BW). The levels of interleukin (IL)-1β, IL-6, IL-4, and IL-8 in bronchoalveolar lavage fluid (BALF) were assessed by ELISA. LPS injection downregulated the expressions of miR-23b-3p, SPC and Occludin in the lung tissues, increased the LWW/BW ratio and aggravated histopathological abnormalities, while upregulating IL-1β, IL-6, IL-4, and IL-8 in the BALF. Upregulated miR-23b-3p counteracted LPS-induced effects, whereas downregulated miR-23b-3p intensified LPS-induced effects. FGF2, which was downregulated by miR-23b-3p upregulation, was a target gene of miR-23b-3p. Overexpressing FGF2 downregulated the expressions of miR-23b-3p, SPC and Occludin, increased the LWW/BW ratio and aggravated histopathological abnormalities, while upregulating IL-1β, IL-6, IL-4, and IL-8, and it offset miR-23b-3p upregulation-caused effects on the ALI mice. Conclusions Overexpression of miR-23b-3p in BMSCs strengthened BMSC-mediated protection against LPS-induced mouse acute lung injury via targeting FGF2.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Intensive Care Medicine, Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Linghua Liu
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Lei Yao
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| | - Xiaoxue Song
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, Xi'an, China
| |
Collapse
|
100
|
Lam G, Zhou Y, Wang JX, Tsui YP. Targeting mesenchymal stem cell therapy for severe pneumonia patients. World J Stem Cells 2021; 13:139-154. [PMID: 33708343 PMCID: PMC7933990 DOI: 10.4252/wjsc.v13.i2.139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/03/2020] [Accepted: 12/27/2020] [Indexed: 02/06/2023] Open
Abstract
Pneumonia is the inflammation of the lungs and it is the world's leading cause of death for children under 5 years of age. The latest coronavirus disease 2019 (COVID-19) virus is a prominent culprit to severe pneumonia. With the pandemic running rampant for the past year, more than 1590000 deaths has occurred worldwide up to December 2020 and are substantially attributable to severe pneumonia and induced cytokine storm. Effective therapeutic approaches in addition to the vaccines and drugs under development are hence greatly sought after. Therapies harnessing stem cells and their derivatives have been established by basic research for their versatile capacity to specifically inhibit inflammation due to pneumonia and prevent alveolar/pulmonary fibrosis while enhancing antibacterial/antiviral immunity, thus significantly alleviating the severe clinical conditions of pneumonia. In recent clinical trials, mesenchymal stem cells have shown effectiveness in reducing COVID-19-associated pneumonia morbidity and mortality; positioning these cells as worthy candidates for combating one of the greatest challenges of our time and shedding light on their prospects as a next-generation therapy to counter future challenges.
Collapse
Affiliation(s)
- Guy Lam
- School of Biomedical Sciences, University of Hong Kong, Hong Kong 999077, China
| | - Yuan Zhou
- Research and Development, Help Therapeutics Co. Ltd., Nanjing 211100, Jiangsu Province, China
| | - Jia-Xian Wang
- Research and Development, Help Therapeutics Co. Ltd., Nanjing 211100, Jiangsu Province, China
| | - Yat-Ping Tsui
- Research and Development, Help Therapeutics Co. Ltd., Nanjing 211100, Jiangsu Province, China.
| |
Collapse
|