51
|
Bae D, Lee JY, Ha N, Park J, Baek J, Suh D, Lim HS, Ko SM, Kim T, Som Jeong D, Son WC. CKD-506: A novel HDAC6-selective inhibitor that exerts therapeutic effects in a rodent model of multiple sclerosis. Sci Rep 2021; 11:14466. [PMID: 34262061 PMCID: PMC8280216 DOI: 10.1038/s41598-021-93232-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 06/14/2021] [Indexed: 11/27/2022] Open
Abstract
Despite advances in therapeutic strategies for multiple sclerosis (MS), the therapy options remain limited with various adverse effects. Here, the therapeutic potential of CKD-506, a novel HDAC6-selective inhibitor, against MS was evaluated in mice with myelin oligodendrocyte glycoprotein35-55 (MOG35-55)-induced experimental autoimmune encephalitis (EAE) under various treatment regimens. CKD-506 exerted prophylactic and therapeutic effects by regulating peripheral immune responses and maintaining blood-brain barrier (BBB) integrity. In MOG35-55-re-stimulated splenocytes, CKD-506 decreased proliferation and downregulated the expression of IFN-γ and IL-17A. CKD-506 downregulated the levels of pro-inflammatory cytokines in the blood of EAE mice. Additionally, CKD-506 decreased the leakage of intravenously administered Evans blue into the spinal cord; CD4+ T cells and CD4-CD11b+CD45+ macrophage/microglia in the spinal cord was also decreased. Moreover, CKD-506 exhibited therapeutic efficacy against MS, even when drug administration was discontinued from day 15 post-EAE induction. Disease exacerbation was not observed when fingolimod was changed to CKD-506 from day 15 post-EAE induction. CKD-506 alleviated depression-like behavior at the pre-symptomatic stage of EAE. In conclusion, CKD-506 exerts therapeutic effects by regulating T cell- and macrophage-mediated peripheral immune responses and strengthening BBB integrity. Our results suggest that CKD-506 is a potential therapeutic agent for MS.
Collapse
Affiliation(s)
- Daekwon Bae
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea.
| | - Ji-Young Lee
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Nina Ha
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea
| | - Jinsol Park
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea
| | - Jiyeon Baek
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea
| | - Donghyeon Suh
- Department of Pharmacology, CKD Research Institute, CKD Pharmaceutical Co, Yongin, 16995, Republic of Korea
| | - Hee Seon Lim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Soo Min Ko
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Taehee Kim
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Da Som Jeong
- Department of Medical Science, Asan Medical Institute of Convergence Science and Technology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea
| | - Woo-Chan Son
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, 05505, Republic of Korea.
| |
Collapse
|
52
|
Oliver BJ, Walsh K, Messier R, Mehta F, Cabot A, Klawiter E, Pagnotta P, Solomon A, England SE. System-Level Variation in Multiple Sclerosis Care Outcomes: Initial Findings from the Multiple Sclerosis Continuous Quality Improvement Research Collaborative. Popul Health Manag 2021; 25:46-56. [PMID: 34134513 DOI: 10.1089/pop.2021.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Multiple sclerosis (MS) is a "3C" (complex, chronic, costly) condition that is a common and disabling neurological illness affecting approximately 1 million adults in the United States. MS has been studied at the basic science, individual, and population levels, but not at the system level to assess small-area variation effects on MS population health outcomes. System-level effects have been observed in other 3C conditions including cystic fibrosis, rheumatoid arthritis, and inflammatory bowel disease. The authors report here on system-level variation findings from the baseline period during the first year of the Multiple Sclerosis Continuous Quality Improvement (MS-CQI) study. Stepwise binary logistic regression analyses were conducted to investigate system-level (small-area variation) effects on MS relapses (exacerbations), disease-modifying therapy (DMT) utilization, and brain MRI utilization, controlling for demographics (age and sex) and other potential confounders. Significant differences were observed in people with MS (PwMS) between centers for a number of demographic and disease characteristics, including sex, age, and MS subtype. Controlling for these factors, significant system-level effects were observed on outcomes, including DMT utilization, MRI utilization, and relapses. Significant relationships also were observed between outcomes and urgent care utilization, including emergency department visits and hospitalizations. This initial study provides evidence establishing the presence of system-level variation effects on MS outcomes in a multicenter population study - where PwMS get their care can influence their outcomes. Results support continued systems-level research and improvement initiatives to optimize MS population health outcomes in this challenging and costly complex chronic condition.
Collapse
Affiliation(s)
- Brant J Oliver
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock-Health, Lebanon, New Hampshire, USA.,The Dartmouth Institute for Health Policy & Clinical Practice, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,Department of Psychiatry, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA.,Multiple Sclerosis Specialty Care Program, Concord Hospital Neurology, Concord, New Hampshire, USA
| | - Karen Walsh
- Jefferson College of Population Health, Philadelphia, Pennsylvania, USA
| | | | - Falguni Mehta
- Department of Community and Family Medicine, Geisel School of Medicine at Dartmouth and Dartmouth-Hitchcock-Health, Lebanon, New Hampshire, USA
| | - Ann Cabot
- Multiple Sclerosis Specialty Care Program, Concord Hospital Neurology, Concord, New Hampshire, USA
| | - Eric Klawiter
- Multiple Sclerosis Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Patricia Pagnotta
- Multiple Sclerosis Center, Department of Neurology, University of Vermont Medical Center and Larner College of Medicine at the University of Vermont, Burlington, Vermont, USA
| | | | | |
Collapse
|
53
|
Kumar N, Sharma N, Khera R, Gupta R, Mehan S. Guggulsterone ameliorates ethidium bromide-induced experimental model of multiple sclerosis via restoration of behavioral, molecular, neurochemical and morphological alterations in rat brain. Metab Brain Dis 2021; 36:911-925. [PMID: 33635478 DOI: 10.1007/s11011-021-00691-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/11/2021] [Indexed: 11/30/2022]
Abstract
Multiple Sclerosis (MS) is a progressive neurodegenerative disease with clinical signs of neuroinflammation and the central nervous system's demyelination. Numerous studies have identified the role of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) overexpression and the low level of peroxisome proliferator-activated receptor-gamma (PPAR-γ) in MS pathogenesis. Guggulsterone (GST), an active component derived from 'Commiphora Mukul,' has been used to treat various diseases. Traditional uses indicate that GST is a suitable agent for anti-inflammatory action. Therefore, we assessed the therapeutic potential of GST (30 and 60 mg/kg) in ethidium bromide (EB) induced demyelination in experimental rats and investigated the molecular mechanism by modulating the JAK/STAT and PPAR-γ receptor signaling. Wistar rats were randomly divided into six groups (n = 6). EB (0.1%/10 μl) was injected selectively in the intracerebropeduncle (ICP) region for seven days to cause MS-like manifestations. The present study reveals that long-term administration of GST for 28 days has a neuroprotective effect by improving behavioral deficits (spatial cognition memory, grip, and motor coordination) associated with lower STAT-3 levels. While elevating PPAR-γ and myelin basic protein levels in rat brains are consistent with the functioning of both signaling pathways. Also, GST modulates the neurotransmitter level by increasing Ach, dopamine, serotonin and by reducing glutamate. Moreover, GST ameliorates inflammatory cytokines (TNF, IL-1β), and oxidative stress markers (AchE, SOD, catalase, MDA, GSH, nitrite). In addition, GST prevented apoptosis, as demonstrated by the reduction of caspase-3 and Bax. Simultaneously, Bcl-2 elevation and the restoration of gross morphology alterations are also recovered by long-term GST treatment. Therefore, it can be concluded that GST may be a potential alternative drug candidate for MS-related motor neuron dysfunctions.
Collapse
Affiliation(s)
- Nitish Kumar
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Nidhi Sharma
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Rishabh Khera
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ria Gupta
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Sidharth Mehan
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| |
Collapse
|
54
|
Matejuk A, Vandenbark AA, Offner H. Cross-Talk of the CNS With Immune Cells and Functions in Health and Disease. Front Neurol 2021; 12:672455. [PMID: 34135852 PMCID: PMC8200536 DOI: 10.3389/fneur.2021.672455] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/16/2022] Open
Abstract
The immune system's role is much more than merely recognizing self vs. non-self and involves maintaining homeostasis and integrity of the organism starting from early development to ensure proper organ function later in life. Unlike other systems, the central nervous system (CNS) is separated from the peripheral immune machinery that, for decades, has been envisioned almost entirely as detrimental to the nervous system. New research changes this view and shows that blood-borne immune cells (both adaptive and innate) can provide homeostatic support to the CNS via neuroimmune communication. Neurodegeneration is mostly viewed through the lens of the resident brain immune populations with little attention to peripheral circulation. For example, cognition declines with impairment of peripheral adaptive immunity but not with the removal of microglia. Therapeutic failures of agents targeting the neuroinflammation framework (inhibiting immune response), especially in neurodegenerative disorders, call for a reconsideration of immune response contributions. It is crucial to understand cross-talk between the CNS and the immune system in health and disease to decipher neurodestructive and neuroprotective immune mechanisms for more efficient therapeutic strategies.
Collapse
Affiliation(s)
- Agata Matejuk
- Department of Immunology, Collegium Medicum, University of Zielona Góra, Zielona Góra, Poland
| | - Arthur A Vandenbark
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, United States.,Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Molecular Microbiology and Immunology, Oregon Health and Science University, Portland, OR, United States
| | - Halina Offner
- Neuroimmunology Research, VA Portland Health Care System, Portland, OR, United States.,Department of Neurology, Oregon Health and Science University, Portland, OR, United States.,Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
55
|
Wang Y, Xie C, Song Y, Xiang W, Peng J, Han L, Ding J, Guan Y. miR-20a suppresses Treg differentiation by targeting Map3k9 in experimental autoimmune encephalomyelitis. J Transl Med 2021; 19:223. [PMID: 34039371 PMCID: PMC8157414 DOI: 10.1186/s12967-021-02893-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 05/17/2021] [Indexed: 12/18/2022] Open
Abstract
Background Experimental autoimmune encephalomyelitis (EAE) is a model for inflammatory demyelinating diseases of the central nervous system (CNS), a group of autoimmune diseases characterized by inflammatory infiltration, demyelination, and axonal damage. miR-20a is dysregulated in patients with CNS inflammatory demyelinating diseases; however, the function of miR-20a remains unclear. In this study, we intended to explore the role of miR-20a in EAE. Methods The expression of miR-20a was detected by quantitative real-time PCR (qRT-PCR) in EAE mice and patients with MOG antibody-associated demyelinating diseases. CD4+ T cells of EAE mice were sorted, stimulated, and polarized with miR-20a knockdown. Activation and differentiation of CD4+ T cells were analyzed by flow cytometry. The expression of target gene Map3k9 was detected by qRT-PCR and western blot experiments. The binding of miR-20a to the 3’ UTR of Map3k9 was tested by luciferase assays. The feasibility of miR-20a as a therapeutic target to alleviate the severity of EAE was explored by intravenous administration of miR-20a antagomirs to EAE mice. Results miR-20a was upregulated in splenocytes and lymph node cells, CD4+ T cells, and spinal cords of EAE mice. Moreover, miR-20a knockdown did not influence the activation of antigen-specific CD4+ T cells but promoted their differentiation into Treg cells. Map3k9 was predicted to be a target gene of miR-20a. The expressions of Map3k9 and miR-20a were negatively correlated, and miR-20a knockdown increased the expression of Map3k9. In addition, miR-20a binded to the 3’ UTR of Map3k9, and simultaneous knockdown of miR-20a and Map3k9 counteracted the enhanced differentiation of Tregs observed when miR-20a was knocked down alone. Furthermore, injection of miR-20a antagomirs to EAE mice reduced the severity of the disease and increased the proportion of Treg cells in peripheral immune organs. Conclusions miR-20a suppresses the differentiation of antigen-specific CD4+ T cells into Tregs in EAE by decreasing the expression of Map3k9. miR-20a antagomirs alleviate EAE, suggesting a new therapy for EAE and CNS inflammatory demyelinating diseases. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-021-02893-4.
Collapse
Affiliation(s)
- Yishu Wang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Chong Xie
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yaying Song
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Weiwei Xiang
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Jing Peng
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Lu Han
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Jie Ding
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yangtai Guan
- Department of Neurology, Renji Hospital, Shanghai Jiaotong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
56
|
Zhang Y, Li D, Zeng Q, Feng J, Fu H, Luo Z, Xiao B, Yang H, Wu M. LRRC4 functions as a neuron-protective role in experimental autoimmune encephalomyelitis. Mol Med 2021; 27:44. [PMID: 33932995 PMCID: PMC8088686 DOI: 10.1186/s10020-021-00304-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leucine rich repeat containing 4 (LRRC4), also known as netrin-G ligand-2 (NGL-2), belongs to the superfamily of LRR proteins and serves as a receptor for netrin-G2. LRRC4 regulates the formation of excitatory synapses and promotes axon differentiation. Mutations in LRRC4 occur in Autism Spectrum Disorder (ASD) and intellectual disability. Multiple sclerosis (MS) is a chronic neuroinflammatory disease with spinal cords demyelination and neurodegeneration. Here, we sought to investigate whether LRRC4 is involved in spinal cords neuron-associated diseases. METHODS LRRC4 was detected in the CNS of experimental autoimmune encephalomyelitis (EAE) mice by the use of real-time PCR and western blotting. LRRC4-/- mice were created and immunized with myelin oligodendrocyte glycoprotein peptide (MOG)35-55. Pathological changes in spinal cords of LRRC4-/- and WT mice 15 days after immunization were examined by using hematoxylin and eosin (H&E), Luxol Fast Blue (LFB) staining and immunohistochemistry. The number of Th1/Th2/Th17/Treg cells in spleens and blood were measured with flow cytometry. Differential gene expression in the spinal cords from WT and LRRC4-/- mice was analyzed by using RNA sequencing (RNA-seq). Adeno-associated virus (AAV) vectors were used to overexpress LRRC4 (AAV-LRRC4) and were injected into EAE mice to assess the therapeutic effect of AAV-LRRC4 ectopic expression on EAE. RESULTS We report that LRRC4 is mainly expressed in neuron of spinal cords, and is decreased in the spinal cords of the EAE mice. Knockout of LRRC4 have a disease progression quickened and exacerbated with more severe myelin degeneration and infiltration of leukocytes into the spinal cords. We also first found that Rab7b is high expressed in EAE mice, and the deficiency of LRRC4 induces the elevated NF-κB p65 by up-regulating Rab7b, and up-regulation of IL-6, IFN-γ and down-regulation of TNF-α, results in more severe Th1 immune response in LRRC4-/- mice. Ectopic expression of LRRC4 alleviates the clinical symptoms of EAE mice and protects the neurons from immune damages. CONCLUSIONS We identified a neuroprotective role of LRRC4 in the progression of EAE, which may be used as a potential target for auxiliary support therapeutic treatment of MS.
Collapse
Affiliation(s)
- Yan Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
- Department of Pathology, Affiliated Hospital of Guilin Medical University, Guilin, 541001, Guangxi, China
| | - Di Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Qiuming Zeng
- Internal Medicine-Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jianbo Feng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Haijuan Fu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China
| | - Zhaohui Luo
- Internal Medicine-Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo Xiao
- Internal Medicine-Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Huan Yang
- Internal Medicine-Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, 410013, Hunan, China.
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
57
|
Bar-Or A, Li R. Cellular immunology of relapsing multiple sclerosis: interactions, checks, and balances. Lancet Neurol 2021; 20:470-483. [PMID: 33930317 DOI: 10.1016/s1474-4422(21)00063-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 01/31/2021] [Accepted: 02/10/2021] [Indexed: 01/04/2023]
Abstract
Novel insights from basic and translational studies are reshaping concepts of the immunopathogenesis of multiple sclerosis and understanding of the different inflammatory responses throughout the disease course. Previously, the cellular immunology of relapsing multiple sclerosis was considered to be principally T-cell driven; however, this process is now understood to involve multiple cell types and their functionally distinct subsets. Particularly, relapsing multiple sclerosis appears to involve imbalanced interactions between T cells, myeloid cells, B cells, and their effector and regulatory subpopulations. The major contributors to such imbalances differ across patients. Several emerging techniques enable comprehensive immune cell profiling at the single-cell level, revealing substantial functional heterogeneity and plasticity that could influence disease state and response to treatment. Findings from clinical trials with agents that successfully limit new multiple sclerosis disease activity and trials of agents that inadvertently exacerbate CNS inflammation have helped to elucidate disease mechanisms, better define the relevant modes of action of current immune therapies, and pave the way for new therapeutic strategies.
Collapse
Affiliation(s)
- Amit Bar-Or
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Multiple Sclerosis Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Rui Li
- Center for Neuroinflammation and Experimental Therapeutics, Department of Neurology, Multiple Sclerosis Division, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
58
|
Xia W, Kolli AR, Koshibu K, Martin F, Kondylis A, Kuczaj A, Tan WT, Yeo YS, Tan G, Teng C, Woon K, Schneider T, Talikka M, Phillips BW, Vanscheeuwijck P, Peitsch MC, Hoeng J. In Vivo Profiling of a Natural Alkaloid, Anatabine, in Rodents: Pharmacokinetics and Anti-Inflammatory Efficacy. JOURNAL OF NATURAL PRODUCTS 2021; 84:1012-1021. [PMID: 33706515 DOI: 10.1021/acs.jnatprod.0c01044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural alkaloids, a large class of plant-derived substances, have attracted considerable interest because of their pharmacological activities. In this study, the in vivo pharmacokinetics and anti-inflammatory profile of anatabine, a naturally occurring alkaloid, were characterized in rodents. Anatabine was found to be bioavailable and brain-penetrant following systemic administration. Following intraperitoneal (i.p.) administration (1, 2, and 5 mg/kg), anatabine caused a dose-dependent reduction in carrageenan-induced paw edema in rats; in mice, it inhibited the production of pro-inflammatory cytokines and simultaneously elevated the levels of an anti-inflammatory cytokine in a dose-dependent manner 2 h after lipopolysaccharide challenge. Furthermore, anatabine (∼10 and ∼20 mg/kg/day for 4 weeks; inhalation exposure) had effects in a murine model of multiple sclerosis, reducing neurological deficits and bodyweight loss. Comparative studies of the pharmacokinetics and anti-inflammatory activity of anatabine demonstrated its bioequivalence in rats following i.p. administration and inhalation exposure. This study not only provides the first detailed profile of anatabine pharmacokinetics in rodents but also comprehensively characterizes the anti-inflammatory activities of anatabine in acute and chronic inflammatory models. These findings provide a basis for further characterizing and optimizing the anti-inflammatory properties of anatabine.
Collapse
Affiliation(s)
- Wenhao Xia
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, Singapore 117406
| | - Aditya Reddy Kolli
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| | - Kyoko Koshibu
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| | - Florian Martin
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| | - Athanasios Kondylis
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| | - Arkadiusz Kuczaj
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| | - Wei Teck Tan
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, Singapore 117406
| | - Ying Shan Yeo
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, Singapore 117406
| | - Glenda Tan
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, Singapore 117406
| | - Charles Teng
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, Singapore 117406
| | - Kaing Woon
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, Singapore 117406
| | - Thomas Schneider
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| | - Marja Talikka
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| | - Blaine W Phillips
- Philip Morris International Research Laboratories Pte Ltd, 50 Science Park Road, Singapore 117406
| | | | - Manuel C Peitsch
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| | - Julia Hoeng
- Philip Morris Products S.A., Quai Jeanrenaud 5, Neuchatel, CH-2000, Switzerland
| |
Collapse
|
59
|
Hu Q, Shi J, Zhang J, Wang Y, Guo Y, Zhang Z. Progress and Prospects of Regulatory Functions Mediated by Nitric Oxide on Immunity and Immunotherapy. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Qian Hu
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Jingyu Shi
- Liyuan Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430077 China
| | - Jiao Zhang
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Yi Wang
- Tongji School of Pharmacy Huazhong University of Science and Technology Wuhan Hubei 430030 China
| | - Yuanyuan Guo
- Liyuan Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan Hubei 430077 China
| | - Zhiping Zhang
- Tongji School of Pharmacy, National Engineering Research Centre for Nanomedicine, Hubei Engineering Research Centre for Novel Drug Delivery System Huazhong University of Science and Technology Wuhan Hubei 430030 China
| |
Collapse
|
60
|
Capturing pathogenic immune cells before they home to brain. MED 2021; 2:214-216. [PMID: 33796875 DOI: 10.1016/j.medj.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this issue, Kaufmann and colleagues1 describe a population of immune cells that home to brain in multiple sclerosis (MS). Using an approved therapeutic, targeting α4β1integrin, they demonstrated how to trap these cells in blood, opening the possibility for their elimination before they cross into brain.
Collapse
|
61
|
De Meo E, Bonacchi R, Moiola L, Colombo B, Sangalli F, Zanetta C, Amato MP, Martinelli V, Rocca MA, Filippi M. Early Predictors of 9-Year Disability in Pediatric Multiple Sclerosis. Ann Neurol 2021; 89:1011-1022. [PMID: 33598931 DOI: 10.1002/ana.26052] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The purpose of this study was to assess early predictors of 9-year disability in pediatric patients with multiple sclerosis. METHODS Clinical and magnetic resonance imaging (MRI) assessments of 123 pediatric patients with multiple sclerosis were obtained at disease onset and after 1 and 2 years. A 9-year clinical follow-up was also performed. Cox proportional hazard and multivariable regression models were used to assess independent predictors of time to first relapse and 9-year outcomes. RESULTS Time to first relapse was predicted by optic nerve lesions (hazard ratio [HR] = 2.10, p = 0.02) and high-efficacy treatment exposure (HR = 0.31, p = 0.005). Predictors of annualized relapse rate were: at baseline, presence of cerebellar (β = -0.15, p < 0.001), cervical cord lesions (β = 0.16, p = 0.003), and high-efficacy treatment exposure (β = -0.14, p = 0.01); considering also 1-year variables, number of relapses (β = 0.14, p = 0.002), and the previous baseline predictors; considering 2-year variables, time to first relapse (2-year: β = -0.12, p = 0.01) entered, whereas high-efficacy treatment exposure exited the model. Predictors of 9-year disability worsening were: at baseline, presence of optic nerve lesions (odds ratio [OR] = 6.45, p = 0.01); considering 1-year and 2-year variables, Expanded Disability Status Scale (EDSS) changes (1-year: OR = 26.05, p < 0.001; 2-year: OR = 16.38, p = 0.02), and ≥ 2 new T2-lesions in 2 years (2-year: OR = 4.91, p = 0.02). Predictors of higher 9-year EDSS score were: at baseline, EDSS score (β = 0.58, p < 0.001), presence of brainstem lesions (β = 0.31, p = 0.04), and number of cervical cord lesions (β = 0.22, p = 0.05); considering 1-year and 2-year variables, EDSS changes (1-year: β = 0.79, p < 0.001; 2-year: β = 0.55, p < 0.001), and ≥ 2 new T2-lesions (1-year: β = 0.28, p = 0.03; 2-year: β = 0.35, p = 0.01). INTERPRETATION A complete baseline MRI assessment and an accurate clinical and MRI monitoring during the first 2 years of disease contribute to predict 9-year prognosis in pediatric patients with multiple sclerosis. ANN NEUROL 2021;89:1011-1022.
Collapse
Affiliation(s)
- Ermelinda De Meo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Raffaello Bonacchi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Lucia Moiola
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Bruno Colombo
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Chiara Zanetta
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Pia Amato
- Department NEUROFARBA, Section of Neurosciences, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | | | - Maria Assunta Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
62
|
Yordanova IA, Ebner F, Schulz AR, Steinfelder S, Rosche B, Bolze A, Paul F, Mei HE, Hartmann S. The Worm-Specific Immune Response in Multiple Sclerosis Patients Receiving Controlled Trichuris suis Ova Immunotherapy. Life (Basel) 2021; 11:life11020101. [PMID: 33572978 PMCID: PMC7912101 DOI: 10.3390/life11020101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/19/2022] Open
Abstract
Considering their potent immunomodulatory properties, therapeutic applications of Trichuris suis ova (TSO) are studied as potential alternative treatment of autoimmune disorders like multiple sclerosis (MS), rheumatoid arthritis (RA), or inflammatory bowel disease (IBD). Clinical phase 1 and 2 studies have demonstrated TSO treatment to be safe and well tolerated in MS patients, however, they reported only modest clinical efficacy. We therefore addressed the cellular and humoral immune responses directed against parasite antigens in individual MS patients receiving controlled TSO treatment (2500 TSO p.o. every 2 weeks for 12 month). Peripheral blood mononuclear cells (PBMC) of MS patients treated with TSO (n = 5) or placebo (n = 6) were analyzed. A continuous increase of serum IgG and IgE antibodies specific for T. suis excretory/secretory antigens was observed up to 12 months post-treatment. This was consistent with mass cytometry analysis identifying an increase of activated HLA-DRhigh plasmablast frequencies in TSO-treated patients. While stable and comparable frequencies of total CD4+ and CD8+ T cells were detected in placebo and TSO-treated patients over time, we observed an increase of activated HLA-DR+CD4+ T cells in TSO-treated patients only. Frequencies of Gata3+ Th2 cells and Th1/Th2 ratios remained stable during TSO treatment, while Foxp3+ Treg frequencies varied greatly between individuals. Using a T. suis antigen-specific T cell expansion assay, we also detected patient-to-patient variation of antigen-specific T cell recall responses and cytokine production. In summary, MS patients receiving TSO treatment established a T. suis-specific T- and B-cell response, however, with varying degrees of T cell responses and cellular functionality across individuals, which might account for the overall miscellaneous clinical efficacy in the studied patients.
Collapse
Affiliation(s)
- Ivet A. Yordanova
- Institute of Immunology, Center for Infection Medicine, Freie Universität Berlin, D-14163 Berlin, Germany; (I.A.Y.); (F.E.)
| | - Friederike Ebner
- Institute of Immunology, Center for Infection Medicine, Freie Universität Berlin, D-14163 Berlin, Germany; (I.A.Y.); (F.E.)
| | - Axel Ronald Schulz
- German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, D-10117 Berlin, Germany; (A.R.S.); (H.E.M.)
| | | | - Berit Rosche
- Department of Neurology and Experimental Neurology, Charité—Universitätsmedizin Berlin, D-10117 Berlin, Germany;
- Clinical and Experimental Multiple Sclerosis Research Center, Charité—Universitätsmedizin Berlin, D-10117 Berlin, Germany;
| | - Anna Bolze
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, D-10117 Berlin, Germany;
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité—Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Friedemann Paul
- Clinical and Experimental Multiple Sclerosis Research Center, Charité—Universitätsmedizin Berlin, D-10117 Berlin, Germany;
- NeuroCure Clinical Research Center, Charité—Universitätsmedizin Berlin, D-10117 Berlin, Germany;
- Experimental and Clinical Research Center, Max Delbrück Center for Molecular Medicine, Charité—Universitätsmedizin Berlin, D-10117 Berlin, Germany
| | - Henrik E. Mei
- German Rheumatism Research Center Berlin (DRFZ), a Leibniz Institute, D-10117 Berlin, Germany; (A.R.S.); (H.E.M.)
| | - Susanne Hartmann
- Institute of Immunology, Center for Infection Medicine, Freie Universität Berlin, D-14163 Berlin, Germany; (I.A.Y.); (F.E.)
- Correspondence:
| |
Collapse
|
63
|
Correale J. Immunosuppressive Amino-Acid Catabolizing Enzymes in Multiple Sclerosis. Front Immunol 2021; 11:600428. [PMID: 33552055 PMCID: PMC7855700 DOI: 10.3389/fimmu.2020.600428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease that affects the central nervous system. Although the pathogenesis of MS is not yet fully elucidated, several evidences suggest that autoimmune processes mediated by Th1, Th17, and B cells play an important role in the development of the disease. Similar to other cells, immune cells need continuous access to amino acids (AA) in order to maintain basal metabolism and maintain vitality. When immune cells are activated by inflammation or antigenic signals, their demand for AA increases rapidly. Although AA deprivation itself may weaken the immune response under certain conditions, cells also have AA sensitive pathways that can activate intense alterations in cell metabolism based on changes in AA levels. Several data indicate that cells expressing enzymes that can degrade AA can regulate the functions of antigen-presenting cells and lymphocytes, revealing that the AA pathways are essential for controlling the function, and survival of immune cells, as well as immune cell gene expression. Basal AA catabolism may contribute to immune homeostasis and prevent autoimmunity, while increased AA catalytic activity may enhance immune suppression. In addition, there is increasing evidence that some downstream AA metabolites are important biological mediators of autoimmune response regulation. Two of the most important AA that modulate the immune response are L-Tryptophan (Trp) and L-Arginine (Arg). Tryptophan is catabolized through 2,3-dioxygenase (TDO) and indoleamine 2,3-dioxygenase (IDO) 1 and IDO2 enzymes, while three other enzymes catabolize Arg: inducible nitric oxide synthetase (iNOS), and two arginase isoforms (ARG1, ARG2). Genes encoding IDO, iNOS and ARG are induced by inflammatory cues such as cytokines, a key feature that distinguishes them from enzymes that catabolize other AA. Evidence suggests that AA catabolism is decreased in MS patients and that this decrease has functional consequences, increasing pro-inflammatory cytokines and decreasing Treg cell numbers. These effects are mediated by at least two distinct pathways involving serine/threonine kinases: the general control nonderepressible 2 kinase (GCN2K) pathway; and the mammalian target of rapamycin (mTOR) pathway. Similarly, IDO1-deficient mice showed exacerbation of experimental autoimmune encephalomyelitis (EAE), increased Th1 and Th17 cells, and decreased Treg cells. On the contrary, the administration of downstream Trp metabolite 3-HAA, inhibits Th1/Th17 effector cells and promotes Treg response by up-regulating TGF-β production by dendritic cells, thereby improving EAE. Collectively, these observations stand out the significance of AA catabolism in the regulation of the immune responses in MS patients. The molecules related to these pathways deserve further exploration as potential new therapeutic targets in MS.
Collapse
|
64
|
Gerhards R, Pfeffer LK, Lorenz J, Starost L, Nowack L, Thaler FS, Schlüter M, Rübsamen H, Macrini C, Winklmeier S, Mader S, Bronge M, Grönlund H, Feederle R, Hsia HE, Lichtenthaler SF, Merl-Pham J, Hauck SM, Kuhlmann T, Bauer IJ, Beltran E, Gerdes LA, Mezydlo A, Bar-Or A, Banwell B, Khademi M, Olsson T, Hohlfeld R, Lassmann H, Kümpfel T, Kawakami N, Meinl E. Oligodendrocyte myelin glycoprotein as a novel target for pathogenic autoimmunity in the CNS. Acta Neuropathol Commun 2020; 8:207. [PMID: 33256847 PMCID: PMC7706210 DOI: 10.1186/s40478-020-01086-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Autoimmune disorders of the central nervous system (CNS) comprise a broad spectrum of clinical entities. The stratification of patients based on the recognized autoantigen is of great importance for therapy optimization and for concepts of pathogenicity, but for most of these patients, the actual target of their autoimmune response is unknown. Here we investigated oligodendrocyte myelin glycoprotein (OMGP) as autoimmune target, because OMGP is expressed specifically in the CNS and there on oligodendrocytes and neurons. Using a stringent cell-based assay, we detected autoantibodies to OMGP in serum of 8/352 patients with multiple sclerosis, 1/28 children with acute disseminated encephalomyelitis and unexpectedly, also in one patient with psychosis, but in none of 114 healthy controls. Since OMGP is GPI-anchored, we validated its recognition also in GPI-anchored form. The autoantibodies to OMGP were largely IgG1 with a contribution of IgG4, indicating cognate T cell help. We found high levels of soluble OMGP in human spinal fluid, presumably due to shedding of the GPI-linked OMGP. Analyzing the pathogenic relevance of autoimmunity to OMGP in an animal model, we found that OMGP-specific T cells induce a novel type of experimental autoimmune encephalomyelitis dominated by meningitis above the cortical convexities. This unusual localization may be directed by intrathecal uptake and presentation of OMGP by meningeal phagocytes. Together, OMGP-directed autoimmunity provides a new element of heterogeneity, helping to improve the stratification of patients for diagnostic and therapeutic purposes.
Collapse
|
65
|
Bilge N, Simsek F, Yevgi R, Ceylan M, Askın S. Low serum Α-SYNUCLEIN and oligomer Α-SYNUCLEIN levels in multiple sclerosis patients. J Neuroimmunol 2020; 350:577432. [PMID: 33220655 DOI: 10.1016/j.jneuroim.2020.577432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/20/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is an autoimmune, inflammatory, demyelinating neurodegenerative disease progressing with attacks. Alpha-synuclein (α-Syn), a neuronal protein, has been previously associated with the inflammation and development of neurodegenerative diseases. Although the cause of neurodegeneration in multiple sclerosis is mainly associated with inflammation, α-Syn may play a role in the pathogenesis of MS, as in other classical neurodegenerative diseases such as synucleinopathies. In multiple sclerosis, α-Syn has been directly studied in central nervous system lesions and cerebrospinal fluid (CSF). However, there are few studies approaching variations in peripheral α-Syn in MS. The aim of our study was to investigate the correlation between disease progression and other clinical parameters by measuring serum α-Syn and oligomer α-Syn levels in MS patients. MATERIAL AND METHOD The study included 60 MS patients aged 18 years or older who were admitted to the Department of Neurology between 01.02.2020-01.04.2020 and diagnosed with MS according to the 2010 MC Donald criteria, and 60 age- and sex-matched healthy controls. Those who were in the MS attack period and received cortisone treatment in the past three months were excluded from the study. The serum α-Syn and oligomer α-Syn levels of the individuals in both groups were measured. The correlation between the serum α-Syn, oligomer α-Syn, oligomer α-Syn/α-Syn ratio levels of the MS patients and their age, disease duration, number of attacks, annualized relapse rate (ARR), disease type, EDSS scores and immunomodulatory drug type used was investigated. Statistical analysis was performed using the SPSS 22.0 software. RESULTS In our study, 73.3% of the MS patients were female and the mean age of the patients was 36.18 ± 9.5 years. The most common MS disease type was RRMS with 83.3%. Serum α-Syn (79.52 ± 34.81) and oligomer α-Syn (18.79 ± 10.48) levels were significantly lower in the MS patients compared to the control group (p < 0.001). Serum oligomer α-Syn/α-Syn ratio was higher in the MS patients compared to the control group and in SPMS compared to RRMS, but was not statistically significant. There was no significant correlation between the serum α-Syn, oligomer α-Syn and oligomer α-Syn/α-Syn ratio ratio of the MS patients and their age, disease duration, disease type, EDDS, ARR and immunomodulatory treatments. There was a significant positive correlation between α-Syn and oligomer α-Syn in MS patients (r: 0.29, p: 0.02). CONCLUSION In our study, serum α-Syn and oligomer α-Syn levels were lower in the MS patients compared to the control group. Low levels of α-Syn in MS may play a role in the development of neuroinflammation and may be a result of the diffuse neuronal and synaptic loss. There is a need for further studies on this subject.
Collapse
Affiliation(s)
- Nuray Bilge
- Ataturk University, Faculty of Medicine, Department of Neurology, Erzurum, Turkey
| | - Fatma Simsek
- Ataturk University, Faculty of Medicine, Department of Neurology, Erzurum, Turkey
| | - Recep Yevgi
- Ataturk University, Faculty of Medicine, Department of Neurology, Erzurum, Turkey.
| | - Mustafa Ceylan
- Ataturk University, Faculty of Medicine, Department of Neurology, Erzurum, Turkey
| | - Seda Askın
- Ataturk University, Faculty of Medicine, Department of Biochemistry, Erzurum, Turkey
| |
Collapse
|
66
|
Wong HY, Prasad A, Gan SU, Chua JJE, Schwarz H. Identification of CD137-Expressing B Cells in Multiple Sclerosis Which Secrete IL-6 Upon Engagement by CD137 Ligand. Front Immunol 2020; 11:571964. [PMID: 33240262 PMCID: PMC7677239 DOI: 10.3389/fimmu.2020.571964] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/12/2020] [Indexed: 12/21/2022] Open
Abstract
The potent costimulatory effect of CD137 has been implicated in several murine autoimmune disease models. CD137 costimulates and polarizes antigen-specific T cells toward a potent Th1/Tc1 response, and is essential for the development of experimental autoimmune encephalomyelitis (EAE), a murine model of Multiple Sclerosis (MS). This study aimed to investigate a role of CD137 in MS. Immunohistochemical and immunofluorescence staining of MS brain tissues was used to identify expression of CD137. CD137+ cells were identified in MS brain samples, with active lesions having the highest frequency of CD137+ cells. CD137 expression was found on several leukocyte subsets, including T cells, B cells and endothelial cells. In particular, CD137+ B cells were found in meningeal infiltrates. In vitro experiments showed that CD137 engagement on activated B cells increased early TNF and persistent IL-6 secretion with increased cell proliferation. These CD137+ B cells could interact with CD137L-expressing cells, secrete pro-inflammatory cytokines and accumulate in the meningeal infiltrate. This study demonstrates CD137 expression by activated B cells, enhancement of the inflammatory activity of B cells upon CD137 engagement, and provides evidence for a pathogenic role of CD137+ B cells in MS.
Collapse
Affiliation(s)
- Hiu Yi Wong
- Department of Physiology, National University of Singapore, Singapore, Singapore.,Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ankshita Prasad
- Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore
| | - Shu Uin Gan
- Department of Surgery, National University of Singapore, Singapore, Singapore
| | - John Jia En Chua
- Department of Physiology, National University of Singapore, Singapore, Singapore.,Institute for Health Innovation and Technology, National University of Singapore, Singapore, Singapore.,LSI Neurobiology Programme, National University of Singapore, Singapore, Singapore
| | - Herbert Schwarz
- Department of Physiology, National University of Singapore, Singapore, Singapore.,Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
67
|
Asouri M, Sahraian MA, Karimpoor M, Fattahi S, Motamed N, Doosti R, Amirbozorgi G, Sadaghiani S, Mahboudi F, Akhavan-Niaki H. Molecular Detection of Epstein-Barr Virus, Human Herpes Virus 6, Cytomegalovirus, and Hepatitis B Virus in Patients with Multiple Sclerosis. Middle East J Dig Dis 2020; 12:171-177. [PMID: 33062222 PMCID: PMC7548094 DOI: 10.34172/mejdd.2020.179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Multiple sclerosis (MS) is a chronic disease with significant morbidity. A wide spectrum of risk factors has been suggested that triggers the development of MS. Among them, several viral infections have been implicated to play a role in MS pathogenesis. We aimed to evaluate the relationship between viral diseases, including Epstein–Barr virus (EBV), human herpes virus 6 (HHV-6), cytomegalovirus (CMV), and hepatitis B virus (HBV) and MS in the present case-control study. METHODS About 100 patients with confirmed MS and age- and sex-matched individuals were selected as case and control groups, respectively. The patients were randomly selected from individuals diagnosed by neurologists based on the clinical signs and symptoms and imaging procedures. RESULTS More than 100 patients with MS and patients who were referred for other causes were analyzed for the presence of DNA of EBV, HHV6, CMV, and HBV separately. 9.37% of the control group had a positive test for the DNA of EBV in a real-time polymerase chain reaction (PCR), while the frequency of positive test result was zero in the case group (p = 0.0012). HBV DNA was not detected in both the case and control groups. The prevalence of CMV was 0.88 and zero in the control and case groups, respectively (p = 0.3410). For HHV6, 9.73 % of the control group had a positive result, while this test was positive in 5.88% of the patients with MS (p = 0.2959). CONCLUSION We detected a significantly higher number of individuals with DNA of EBV in their blood among the control group compared with the case group. In conclusion, the results suggest a surprisingly adverse association between MS and EBV, and no association was found between the presence of DNA of HBV, CMV, and HHV6 and MS.
Collapse
Affiliation(s)
- Mohsen Asouri
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.,North Research Center, Pasteur Institute of Iran, Amol, Iran
| | - Mohammad Ali Sahraian
- Multiple Sclerosis Research Center; Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Karimpoor
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Sadegh Fattahi
- North Research Center, Pasteur Institute of Iran, Amol, Iran
| | - Nima Motamed
- Department of Social Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Rozita Doosti
- Multiple Sclerosis Research Center; Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shokufeh Sadaghiani
- Multiple Sclerosis Research Center; Neuroscience Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereidoun Mahboudi
- Department of Molecular Medicine, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Haleh Akhavan-Niaki
- Zoonoses Research Center, North Research Center, Pasteur Institute of Iran, Amol, Iran.,Department of Genetics, Faculty of Medicine, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
68
|
Effects of Lactobacillus casei Strain T2 (IBRC-M10783) on the Modulation of Th17/Treg and Evaluation of miR-155, miR-25, and IDO-1 Expression in a Cuprizone-Induced C57BL/6 Mouse Model of Demyelination. Inflammation 2020; 44:334-343. [PMID: 32914363 DOI: 10.1007/s10753-020-01339-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/19/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is a complex inflammatory disease in which demyelination occurs in the central nervous system affecting approximately 2.5 million people worldwide. Recent reports have shown that the gut microbiome plays a crucial role in the functioning of the immune system in inflammatory diseases such as MS. In this study, the cuprizone-induced demyelination mouse model was used to investigate the effect of Lactobacillus casei strain T2 (IBRC-M10783) on the alleviation of these mice. Female C57BL/6 mice (8-10 weeks old) were divided into 6 groups: group 1, normal control; group 2, cuprizone control (oral administration of cuprizone 0.2% w/w for 4 weeks); group 3, probiotic control (oral administration of 1 × 109 CFU/ml probiotic for 4 weeks); group 4, treatment 1 (probiotic for 4 weeks then cuprizone for 4 weeks); group 5, treatment 2 (cuprizone for 4 weeks then probiotic for 4 weeks); and group 6, treatment 3 (cuprizone for 4 weeks then probiotic for 4 weeks with vitamin D3 at a dose of 20 IU/day). Then, TGF-β and IL-17 were measured by ELISA, and the expression of miR-155, miR-25, and IDO-1 was evaluated by real-time PCR. Among the measured microRNAs, the results showed that there was a significant decrease in miR-155 expression between the treatment 1 group and the cuprizone group. In the case of IL-17, the results also showed a significant reduction between the three treatment groups and the cuprizone group. These observations suggest that L. casei can reduce proinflammatory cytokines and reduce demyelinating symptoms in the mouse model.
Collapse
|
69
|
Engen PA, Zaferiou A, Rasmussen H, Naqib A, Green SJ, Fogg LF, Forsyth CB, Raeisi S, Hamaker B, Keshavarzian A. Single-Arm, Non-randomized, Time Series, Single-Subject Study of Fecal Microbiota Transplantation in Multiple Sclerosis. Front Neurol 2020; 11:978. [PMID: 33013647 PMCID: PMC7506051 DOI: 10.3389/fneur.2020.00978] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence suggests intestinal microbiota as a central contributing factor to the pathogenesis of Relapsing-Remitting-Multiple-Sclerosis (RRMS). This novel RRMS study evaluated the impact of fecal-microbiota-transplantation (FMT) on a broad array of physiological/clinical outcomes using deep metagenome sequencing of fecal microbiome. FMT interventions were associated with increased abundances of putative beneficial stool bacteria and short-chain-fatty-acid metabolites, which were associated with increased/improved serum brain-derived-neurotrophic-factor levels and gait/walking metrics. This proof-of-concept single-subject longitudinal study provides evidence of potential importance of intestinal microbiota in the pathogenesis of MS, and scientific rationale to help design future randomized controlled trials assessing FMT in RRMS patients.
Collapse
Affiliation(s)
- Phillip A Engen
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Antonia Zaferiou
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - Heather Rasmussen
- Department of Nutrition and Health Sciences, University of Nebraska, Lincoln, NE, United States
| | - Ankur Naqib
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Stefan J Green
- Genome Research Core, Research Resources Center, University of Illinois at Chicago, Chicago, IL, United States.,Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL, United States
| | - Louis F Fogg
- Department of Community, Systems and Mental Health Nursing, College of Nursing, Rush University Medical Center, Chicago, IL, United States
| | - Christopher B Forsyth
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Shohreh Raeisi
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States
| | - Bruce Hamaker
- Department of Food Science, Purdue University, West Lafayette, IN, United States
| | - Ali Keshavarzian
- Division of Gastroenterology, Department of Internal Medicine, Rush University Medical Center, Chicago, IL, United States.,Department of Physiology, Rush University Medical Center, Chicago, IL, United States.,Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
70
|
da Cunha ETS, Figueiredo-Godoi LMA, Santos DH, Carneiro RPCD, do Olival GS, de Barros PP, Narimatsu K, Tilbery CP, Junqueira JC. Oral Colonization by Candida Species in Patients with Multiple Sclerosis. Mycopathologia 2020; 185:983-991. [PMID: 32856162 DOI: 10.1007/s11046-020-00486-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/14/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Multiple sclerosis (MS) is a chronic inflammatory demyelinating autoimmune disease that affects the central nervous system. Since immune system plays a key role in this disease, patients with MS can present higher risk of infections. PURPOSE This study aimed to investigate the prevalence of Candida spp. in the oral cavity of MS patients in relation to a control group METHODS: In total, 100 individuals were selected: 55 diagnosed with MS and 45 healthy individuals (control group). Saliva samples were collected and seeded in culture media selecting for Candida. Following an incubation period of 48 h, colony-forming units (CFU mL-1) were counted and colonies were isolated for Candida species identification by multiplex PCR. The results were analysed by chi-squared and Mann-Whitney U statistical tests considering a significance level of 5%. RESULTS Candida spp. were confirmed in the oral cavity of 50.09% patients in the MS group and 35.55% individuals in the control group. In individuals positive for the growth of Candida spp., the median values of Candida colonies were 220 CFU mL-1 for the MS group and 120 CFU mL-1 for the control group. However, no statistically significant differences were observed between groups for both prevalence and CFU mL-1 count. Of the Candida species identified, 73.91% were C. albicans, 21.73% C. glabrata, 2.17% C. tropicalis, and 2.17% C. krusei. CONCLUSIONS The colonization of Candida spp. in the oral cavity of individuals with multiple sclerosis was higher than in the control group; however these findings were not proven to be statistically significant.
Collapse
Affiliation(s)
- Eliana Tomomi Shimabukuro da Cunha
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil.,Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | - Lívia Mara Alves Figueiredo-Godoi
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil.
| | | | | | | | - Patrícia Pimentel de Barros
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| | - Keila Narimatsu
- Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil
| | - Charles Peter Tilbery
- Irmandade da Santa Casa de Misericórdia de São Paulo, São Paulo, Brazil.,Department of Neurology, Faculty of Medical Sciences of Santa Casa de São Paulo, São Paulo, Brazil
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University (UNESP), Francisco José Longo 777, São Dimas, São José dos Campos, SP, 12245-000, Brazil
| |
Collapse
|
71
|
Sanz-Ortega L, Rojas JM, Barber DF. Improving Tumor Retention of Effector Cells in Adoptive Cell Transfer Therapies by Magnetic Targeting. Pharmaceutics 2020; 12:E812. [PMID: 32867162 PMCID: PMC7557387 DOI: 10.3390/pharmaceutics12090812] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/19/2020] [Accepted: 08/24/2020] [Indexed: 02/07/2023] Open
Abstract
Adoptive cell transfer therapy is a promising anti-tumor immunotherapy in which effector immune cells are transferred to patients to treat tumors. However, one of its main limitations is the inefficient trafficking of inoculated effector cells to the tumor site and the small percentage of effector cells that remain activated when reaching the tumor. Multiple strategies have been attempted to improve the entry of effector cells into the tumor environment, often based on tumor types. It would be, however, interesting to develop a more general approach, to improve and facilitate the migration of specific activated effector lymphoid cells to any tumor type. We and others have recently demonstrated the potential for adoptive cell transfer therapy of the combined use of magnetic nanoparticle-loaded lymphoid effector cells together with the application of an external magnetic field to promote the accumulation and retention of lymphoid cells in specific body locations. The aim of this review is to summarize and highlight the recent findings in the field of magnetic accumulation and retention of effector cells in tumors after adoptive transfer, and to discuss the possibility of using this approach for tumor targeting with chimeric antigen receptor (CAR) T-cells.
Collapse
Affiliation(s)
- Laura Sanz-Ortega
- Center for Hematology and Regenerative Medicine (HERM), Department of Medicine, Karolinska Institute, 14183 Stockholm, Sweden;
| | - José Manuel Rojas
- Animal Health Research Centre (CISA)-INIA, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28130 Madrid, Spain;
| | - Domingo F. Barber
- Department of Immunology and Oncology, and NanoBiomedicine Initiative, Centro Nacional de Biotecnología (CNB)-CSIC, 28049 Madrid, Spain
| |
Collapse
|
72
|
Mortales CL, Lee SU, Manousadjian A, Hayama KL, Demetriou M. N-Glycan Branching Decouples B Cell Innate and Adaptive Immunity to Control Inflammatory Demyelination. iScience 2020; 23:101380. [PMID: 32745987 PMCID: PMC7398982 DOI: 10.1016/j.isci.2020.101380] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/10/2020] [Accepted: 07/14/2020] [Indexed: 11/21/2022] Open
Abstract
B cell depletion potently reduces episodes of inflammatory demyelination in multiple sclerosis (MS), predominantly through loss of innate rather than adaptive immunity. However, molecular mechanisms controlling innate versus adaptive B cell function are poorly understood. N-glycan branching, via interactions with galectins, controls endocytosis and signaling of cell surface receptors to control cell function. Here we report that N-glycan branching in B cells dose dependently reduces pro-inflammatory innate responses by titrating decreases in Toll-like receptor-4 (TLR4) and TLR2 surface expression via endocytosis. In contrast, a minimal level of N-glycan branching maximizes surface retention of the B cell receptor (BCR) and the CD19 co-receptor to promote adaptive immunity. Branched N-glycans inhibit antigen presentation by B cells to reduce T helper cell-17 (TH17)/TH1 differentiation and inflammatory demyelination in mice. Thus, N-glycan branching negatively regulates B cell innate function while promoting/maintaining adaptive immunity via BCR, providing an attractive therapeutic target for MS.
Collapse
Affiliation(s)
- Christie-Lynn Mortales
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92617, USA
| | - Sung-Uk Lee
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Armen Manousadjian
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Ken L Hayama
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92617, USA
| | - Michael Demetriou
- Department of Neurology, University of California, Irvine, CA 92617, USA; Department of Microbiology & Molecular Genetics, University of California, Irvine, CA 92617, USA.
| |
Collapse
|
73
|
Oliver G, Kipnis J, Randolph GJ, Harvey NL. The Lymphatic Vasculature in the 21 st Century: Novel Functional Roles in Homeostasis and Disease. Cell 2020; 182:270-296. [PMID: 32707093 PMCID: PMC7392116 DOI: 10.1016/j.cell.2020.06.039] [Citation(s) in RCA: 392] [Impact Index Per Article: 78.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/17/2020] [Accepted: 06/25/2020] [Indexed: 12/19/2022]
Abstract
Mammals have two specialized vascular circulatory systems: the blood vasculature and the lymphatic vasculature. The lymphatic vasculature is a unidirectional conduit that returns filtered interstitial arterial fluid and tissue metabolites to the blood circulation. It also plays major roles in immune cell trafficking and lipid absorption. As we discuss in this review, the molecular characterization of lymphatic vascular development and our understanding of this vasculature's role in pathophysiological conditions has greatly improved in recent years, changing conventional views about the roles of the lymphatic vasculature in health and disease. Morphological or functional defects in the lymphatic vasculature have now been uncovered in several pathological conditions. We propose that subtle asymptomatic alterations in lymphatic vascular function could underlie the variability seen in the body's response to a wide range of human diseases.
Collapse
Affiliation(s)
- Guillermo Oliver
- Center for Vascular and Developmental Biology, Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia (BIG), University of Virginia, Charlottesville, VA 22908, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Natasha L Harvey
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA, Australia
| |
Collapse
|
74
|
Orange DE, Yao V, Sawicka K, Fak J, Frank MO, Parveen S, Blachere NE, Hale C, Zhang F, Raychaudhuri S, Troyanskaya OG, Darnell RB. RNA Identification of PRIME Cells Predicting Rheumatoid Arthritis Flares. N Engl J Med 2020; 383:218-228. [PMID: 32668112 PMCID: PMC7546156 DOI: 10.1056/nejmoa2004114] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Rheumatoid arthritis, like many inflammatory diseases, is characterized by episodes of quiescence and exacerbation (flares). The molecular events leading to flares are unknown. METHODS We established a clinical and technical protocol for repeated home collection of blood in patients with rheumatoid arthritis to allow for longitudinal RNA sequencing (RNA-seq). Specimens were obtained from 364 time points during eight flares over a period of 4 years in our index patient, as well as from 235 time points during flares in three additional patients. We identified transcripts that were differentially expressed before flares and compared these with data from synovial single-cell RNA-seq. Flow cytometry and sorted-blood-cell RNA-seq in additional patients were used to validate the findings. RESULTS Consistent changes were observed in blood transcriptional profiles 1 to 2 weeks before a rheumatoid arthritis flare. B-cell activation was followed by expansion of circulating CD45-CD31-PDPN+ preinflammatory mesenchymal, or PRIME, cells in the blood from patients with rheumatoid arthritis; these cells shared features of inflammatory synovial fibroblasts. Levels of circulating PRIME cells decreased during flares in all 4 patients, and flow cytometry and sorted-cell RNA-seq confirmed the presence of PRIME cells in 19 additional patients with rheumatoid arthritis. CONCLUSIONS Longitudinal genomic analysis of rheumatoid arthritis flares revealed PRIME cells in the blood during the period before a flare and suggested a model in which these cells become activated by B cells in the weeks before a flare and subsequently migrate out of the blood into the synovium. (Funded by the National Institutes of Health and others.).
Collapse
Affiliation(s)
- Dana E Orange
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Vicky Yao
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Kirsty Sawicka
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - John Fak
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Mayu O Frank
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Salina Parveen
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Nathalie E Blachere
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Caryn Hale
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Fan Zhang
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Soumya Raychaudhuri
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Olga G Troyanskaya
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| | - Robert B Darnell
- From the Laboratory of Molecular Neuro-oncology, Rockefeller University (D.E.O., K.S., J.F., M.O.F., S.P., N.E.B., C.H., R.B.D.), the Hospital for Special Surgery (D.E.O.), and the Simons Foundation (O.G.T.) - all in New York; Rice University, Houston (V.Y.); Princeton University, Princeton, NJ (V.Y., O.G.T.); Howard Hughes Medical Institute, Chevy Chase, MD (N.E.B., R.B.D.); and the Divisions of Rheumatology and Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, and the Broad Institute, Cambridge - both in Massachusetts (F.Z., S.R.)
| |
Collapse
|
75
|
Guerrero-García J. The role of astrocytes in multiple sclerosis pathogenesis. NEUROLOGÍA (ENGLISH EDITION) 2020. [DOI: 10.1016/j.nrleng.2017.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
76
|
Nishimura T, Saito Y, Washio K, Komori S, Respatika D, Kotani T, Murata Y, Ohnishi H, Mizobuchi S, Matozaki T. SIRPα on CD11c + cells induces Th17 cell differentiation and subsequent inflammation in the CNS in experimental autoimmune encephalomyelitis. Eur J Immunol 2020; 50:1560-1570. [PMID: 32438469 DOI: 10.1002/eji.201948410] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 04/12/2020] [Indexed: 01/06/2023]
Abstract
Signal regulatory protein α (SIRPα) is expressed predominantly on type 2 conventional dendritic cells (cDC2s) and macrophages. We previously showed that mice systemically lacking SIRPα were resistant to experimental autoimmune encephalomyelitis (EAE). Here, we showed that deletion of SIRPα in CD11c+ cells of mice (SirpaΔDC mice) also markedly ameliorated the development of EAE. The frequency of cDCs and migratory DCs (mDCs), as well as that of Th17 cells, were significantly reduced in draining lymph nodes of SirpaΔDC mice at the onset of EAE. In addition, we found the marked reduction in the number of Th17 cells and DCs in the CNS of SirpaΔDC mice at the peak of EAE. Whereas inducible systemic ablation of SIRPα before the induction of EAE prevented disease development, that after EAE onset did not ameliorate the clinical signs of disease. We also found that EAE development was partially attenuated in mice with CD11c+ cell-specific ablation of CD47, a ligand of SIRPα. Collectively, our results suggest that SIRPα expressed on CD11c+ cells, such as cDC2s and mDCs, is indispensable for the development of EAE, being required for the priming of self-reactive Th17 cells in the periphery as well as for the inflammation in the CNS.
Collapse
Affiliation(s)
- Taichi Nishimura
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.,Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Ken Washio
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Satomi Komori
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Datu Respatika
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan.,Division of Reconstruction, Oculoplasty, and Oncology, Department of Ophthalmology, Faculty of Medicine, Public Health, and Nursing, Gadjah Mada University, Yogyakarta, Indonesia
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Hiroshi Ohnishi
- Department of Laboratory Sciences, Gunma University Graduate School of Health Sciences, Gunma, Japan
| | - Satoshi Mizobuchi
- Division of Anesthesiology, Department of Surgery Related, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| | - Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Chuo-ku, Kobe, Japan
| |
Collapse
|
77
|
Schepici G, Silvestro S, Trubiani O, Bramanti P, Mazzon E. Salivary Biomarkers: Future Approaches for Early Diagnosis of Neurodegenerative Diseases. Brain Sci 2020; 10:brainsci10040245. [PMID: 32326227 PMCID: PMC7226627 DOI: 10.3390/brainsci10040245] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/14/2020] [Accepted: 04/19/2020] [Indexed: 12/13/2022] Open
Abstract
Many neurological diseases are characterized by progressive neuronal degeneration. Early diagnosis and new markers are necessary for prompt therapeutic intervention. Several studies have aimed to identify biomarkers in different biological liquids. Furthermore, it is being considered whether saliva could be a potential biological sample for the investigation of neurodegenerative diseases. This work aims to provide an overview of the literature concerning biomarkers identified in saliva for the diagnosis of neurodegenerative diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and multiple sclerosis (MS). Specifically, the studies have revealed that is possible to quantify beta-amyloid1–42 and TAU protein from the saliva of AD patients. Instead, alpha-synuclein and protein deglycase (DJ-1) have been identified as new potential salivary biomarkers for the diagnosis of PD. Nevertheless, future studies will be needed to validate these salivary biomarkers in the diagnosis of neurological diseases.
Collapse
Affiliation(s)
- Giovanni Schepici
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (G.S.); (S.S.); (P.B.)
| | - Serena Silvestro
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (G.S.); (S.S.); (P.B.)
| | - Oriana Trubiani
- Department of Medical, Oral and Biotechnological Sciences, University “G. d’Annunzio” Chieti-Pescara, 66100 Chieti, Italy;
| | - Placido Bramanti
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (G.S.); (S.S.); (P.B.)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (G.S.); (S.S.); (P.B.)
- Correspondence: ; Tel.: +39-090-6012-8172
| |
Collapse
|
78
|
Vattathara JJ, Prakash O, Subhramanian S, Satheeshkumar MK, Xavier T, Anil M, Pillai GS, Anandakuttan A, Radhakrishnan S, Sivanarayanan TB, Akk U, Mohan CG, Menon KN. Substrate Specific Inhibitor Designed against the Immunomodulator GMF-beta Reversed the Experimental Autoimmune Encephalomyelitis. Sci Rep 2020; 10:3790. [PMID: 32123210 PMCID: PMC7051966 DOI: 10.1038/s41598-020-60710-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 02/14/2020] [Indexed: 01/16/2023] Open
Abstract
The concept of substrate inhibition to prevent its phosphorylation has potential in drug discovery and is envisioned to treat the autoimmune disorder multiple sclerosis (MS). Glia maturation factor-β (GMF-β) Ser83 phosphorylation by protein kinase A (PKA) is pivotal in the activation of GMF-β-p38MAPK-NFκB biochemical pathway towards proinflammatory response induction in experimental autoimmune encephalomyelitis (EAE). Using structure-based drug design, we identified the small molecule inhibitor 1-H-indazole-4yl methanol (GMFBI.1) that specifically blocked Ser83 phosphorylation site on GMF-β substrate. Using in vitro and in vivo techniques, molecular mechanism of action of GMFBI.1’s direct interaction with GMF-β substrate and prevention of its Ser83 phosphorylation was established. GMFBI.1 down regulated p38MAPK phosphorylation and NFκB expression essential for proinflammatory response. Further, GMFBI.1 administration at peak of EAE reversed clinical symptoms, immunopathology, proinflammatory cytokine response and up regulated the anti-inflammatory cytokines. Present strategy of substrate inhibition against the key immunomodulatory target has immense therapeutic potential in MS.
Collapse
Affiliation(s)
- Jane Jose Vattathara
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Ohm Prakash
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Sunitha Subhramanian
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Madathiparambil Kumaran Satheeshkumar
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Tessy Xavier
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Meenakshi Anil
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Gopal S Pillai
- Department of Ophthalmology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Anandkumar Anandakuttan
- Department of Neurology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Sureshkumar Radhakrishnan
- Department of Neurology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - T B Sivanarayanan
- Central Animal Laboratory, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Unni Akk
- Central Animal Laboratory, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India
| | - Chethampadi Gopi Mohan
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India.
| | - Krishnakumar N Menon
- Centre for Nanosciences and Molecular Medicine, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi-682 041, Kerala, India.
| |
Collapse
|
79
|
Mimpen M, Smolders J, Hupperts R, Damoiseaux J. Natural killer cells in multiple sclerosis: A review. Immunol Lett 2020; 222:1-11. [PMID: 32113900 DOI: 10.1016/j.imlet.2020.02.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/13/2022]
Abstract
As the most common non-traumatic disabling disease among adolescents, multiple sclerosis (MS) is a devastating neurological inflammatory disease of the central nervous system. Research has not yet fully elucidated its pathogenesis, but it has shown MS to be a complex, multifactorial disease with many interplaying factors. One of these factors, natural killer (NK) cells, lymphocytes of the innate immune system, have recently gained attention due to the effects of daclizumab therapy, causing an expansion of the immunoregulatory subset of NK cells. Since then, NK cells and their relation to MS have been the focus of research, with many new findings being published in the last decade. In this review, NK cells are pictured as potent cytotoxic killers, as well as unique immune-regulators. Additionally, an overview of our current knowledge regarding NK cells in MS is given. The role of NK cells in MS is reviewed in the context of well-established environmental factors and current disease modifying therapies to gain further understanding of the pathogenesis and treatment options in MS.
Collapse
Affiliation(s)
- Max Mimpen
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht The Netherlands
| | - Joost Smolders
- Department of Neurology, Erasmus University Medical Center, Rotterdam The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, Amsterdam The Netherlands
| | - Raymond Hupperts
- School for Mental Health and Neuroscience, University of Maastricht, Maastricht The Netherlands; Department of Neurology, Zuyderland Medical Center, Sittard The Netherlands
| | - Jan Damoiseaux
- Central Diagnostic Laboratory, Maastricht University Medical Center, Maastricht The Netherlands.
| |
Collapse
|
80
|
Gaetani L, Boscaro F, Pieraccini G, Calabresi P, Romani L, Di Filippo M, Zelante T. Host and Microbial Tryptophan Metabolic Profiling in Multiple Sclerosis. Front Immunol 2020; 11:157. [PMID: 32132996 PMCID: PMC7041364 DOI: 10.3389/fimmu.2020.00157] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/21/2020] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS) that is associated with demyelination and neuronal loss. Over recent years, the immunological and neuronal effects of tryptophan (Trp) metabolites have been largely investigated, leading to the hypothesis that these compounds and the related enzymes are possibly involved in the pathophysiology of MS. Specifically, the kynurenine pathway of Trp metabolism is responsible for the synthesis of intermediate products with potential immunological and neuronal effects. More recently, Trp metabolites, originating also from the host microbiome, have been identified in MS, and it has been shown that they are differently regulated in MS patients. Here, we sought to discuss whether, in MS patients, a specific urinary signature of host/microbiome Trp metabolism can be potentially identified so as to select novel biomarkers and guide toward the identification of specific metabolic pathways as drug targets in MS.
Collapse
Affiliation(s)
- Lorenzo Gaetani
- Section of Neurology, Department of Medicine, University of Perugia, Perugia, Italy
| | - Francesca Boscaro
- Mass Spectrometry Centre (CISM), Department of Health Sciences, University of Florence, Florence, Italy
| | - Giuseppe Pieraccini
- Mass Spectrometry Centre (CISM), Department of Health Sciences, University of Florence, Florence, Italy
| | - Paolo Calabresi
- Section of Neurology, Department of Neuroscience, Agostino Gemelli Hospital, Catholic University of the Sacred Heart, Rome, Italy
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | | | - Teresa Zelante
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| |
Collapse
|
81
|
Acharya B, Meka RR, Venkatesha SH, Lees JR, Teesalu T, Moudgil KD. A novel CNS-homing peptide for targeting neuroinflammatory lesions in experimental autoimmune encephalomyelitis. Mol Cell Probes 2020; 51:101530. [PMID: 32035108 DOI: 10.1016/j.mcp.2020.101530] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 12/14/2022]
Abstract
Using phage peptide library screening, we identified peptide-encoding phages that selectively home to the inflamed central nervous system (CNS) of mice with experimental autoimmune encephalomyelitis (EAE), a model of human multiple sclerosis (MS). A phage peptide display library encoding cyclic 9-amino-acid random peptides was first screened ex-vivo for binding to the CNS tissue of EAE mice, followed by in vivo screening in the diseased mice. Phage insert sequences that were present at a higher frequency in the CNS of EAE mice than in the normal (control) mice were identified by DNA sequencing. One of the phages selected in this manner, denoted as MS-1, was shown to selectively recognize CNS tissue in EAE mice. Individually cloned phages with this insert preferentially homed to EAE CNS after an intravenous injection. Similarly, systemically-administered fluorescence-labeled synthetic MS-1 peptide showed selective accumulation in the spinal cord of EAE mice. We suggest that peptide MS-1 might be useful for targeted drug delivery to CNS in EAE/MS.
Collapse
Affiliation(s)
- Bodhraj Acharya
- University of Maryland School of Medicine, Baltimore, MD, USA; Baltimore VA Medical Center, Baltimore, MD, USA
| | - Rakeshchandra R Meka
- University of Maryland School of Medicine, Baltimore, MD, USA; Baltimore VA Medical Center, Baltimore, MD, USA
| | - Shivaprasad H Venkatesha
- University of Maryland School of Medicine, Baltimore, MD, USA; Baltimore VA Medical Center, Baltimore, MD, USA
| | - Jason R Lees
- Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, USA
| | - Tambet Teesalu
- Institute of Biomedicine and Translational Medicine, University of Tartu (UT), Estonia; Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, USA
| | - Kamal D Moudgil
- University of Maryland School of Medicine, Baltimore, MD, USA; Baltimore VA Medical Center, Baltimore, MD, USA. https://webmail.umaryland.edu/src/compose.php?send_to=kmoud001%40umaryland.edu
| |
Collapse
|
82
|
Skinner DD, Lane TE. CXCR2 Signaling and Remyelination in Preclinical Models of Demyelination. DNA Cell Biol 2020; 39:3-7. [PMID: 31851535 PMCID: PMC6978782 DOI: 10.1089/dna.2019.5182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 12/26/2022] Open
Abstract
The chemokine receptor CXCR2 is a receptor for CXC chemokines, including CXCL1 and CXCL2. CXCR2 is expressed by resident cells of the central nervous system, including neurons, microglia, oligodendrocyte progenitor cells (OPCs), and oligodendrocytes. CXCR2 signaling is important in regulating OPC biology with regard to positional migration and myelination during development. More recently, studies have argued that CXCR2 is involved in controlling events related to remyelination after experimentally induced demyelination. This review examines the concept that targeting CXCR2 may offer a novel therapeutic target for promoting remyelination.
Collapse
Affiliation(s)
- Dominic D. Skinner
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Thomas E. Lane
- Division of Microbiology and Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah
| |
Collapse
|
83
|
Martínez C, Juarranz Y, Gutiérrez-Cañas I, Carrión M, Pérez-García S, Villanueva-Romero R, Castro D, Lamana A, Mellado M, González-Álvaro I, Gomariz RP. A Clinical Approach for the Use of VIP Axis in Inflammatory and Autoimmune Diseases. Int J Mol Sci 2019; 21:E65. [PMID: 31861827 PMCID: PMC6982157 DOI: 10.3390/ijms21010065] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/11/2022] Open
Abstract
The neuroendocrine and immune systems are coordinated to maintain the homeostasis of the organism, generating bidirectional communication through shared mediators and receptors. Vasoactive intestinal peptide (VIP) is the paradigm of an endogenous neuropeptide produced by neurons and endocrine and immune cells, involved in the control of both innate and adaptive immune responses. Exogenous administration of VIP exerts therapeutic effects in models of autoimmune/inflammatory diseases mediated by G-protein-coupled receptors (VPAC1 and VPAC2). Currently, there are no curative therapies for inflammatory and autoimmune diseases, and patients present complex diagnostic, therapeutic, and prognostic problems in daily clinical practice due to their heterogeneous nature. This review focuses on the biology of VIP and VIP receptor signaling, as well as its protective effects as an immunomodulatory factor. Recent progress in improving the stability, selectivity, and effectiveness of VIP/receptors analogues and new routes of administration are highlighted, as well as important advances in their use as biomarkers, contributing to their potential application in precision medicine. On the 50th anniversary of VIP's discovery, this review presents a spectrum of potential clinical benefits applied to inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Carmen Martínez
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Yasmina Juarranz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Irene Gutiérrez-Cañas
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mar Carrión
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Selene Pérez-García
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Raúl Villanueva-Romero
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - David Castro
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Amalia Lamana
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| | - Mario Mellado
- Departamento de Inmunología y Oncología, Centro Nacional de Biotecnología (CNB)/CSIC, 28049 Madrid, Spain;
| | - Isidoro González-Álvaro
- Servicio de Reumatología, Instituto de Investigación Médica, Hospital Universitario La Princesa, 28006 Madrid, Spain;
| | - Rosa P. Gomariz
- Departamento de Biología Celular, Facultad de Biología y Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain; (Y.J.); (I.G.-C.); (M.C.); (S.P.-G.); (R.V.-R.); (D.C.); (A.L.); (R.P.G.)
| |
Collapse
|
84
|
Skarlis C, Anagnostouli M. The role of melatonin in Multiple Sclerosis. Neurol Sci 2019; 41:769-781. [PMID: 31845043 DOI: 10.1007/s10072-019-04137-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 10/31/2019] [Indexed: 12/20/2022]
Abstract
Melatonin is a neurohormone mainly produced by the pineal gland following a circadian rhythm. It is characterized as a pleiotropic factor because it not only regulates the wake-sleep rhythm but also exerts antinociceptive, antidepressant, anxiolytic, and immunomodulating properties. Recent studies suggest that dysregulation of melatonin secretion is associated with the pathogenesis of various autoimmune diseases, such as, rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and multiple sclerosis (MS). MS is an autoimmune disorder characterized by an abnormal immune response directed against the myelin sheath in the central nervous system, demyelination, oligodendrocyte death, and axonal degeneration. Recent evidence reveals that melatonin secretion is dysregulated in MS patients, suggesting that melatonin could be a potential target for therapeutic intervention. Here, we summarize the available literature regarding the role of melatonin in immune processes relevant for experimental autoimmune encephalomyelitis (EAE), MS, and the current clinical trials of melatonin supplementation in MS patients.
Collapse
Affiliation(s)
- Charalampos Skarlis
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Vas. Sophias, 74, 115 28, Athens, Greece.
| | - Maria Anagnostouli
- Immunogenetics Laboratory, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Vas. Sophias, 74, 115 28, Athens, Greece. .,Demyelinating Diseases Clinic, 1st Department of Neurology, Medical School of National and Kapodistrian University of Athens, Aeginition Hospital, Athens, Greece.
| |
Collapse
|
85
|
Tuftsin-phosphorylcholine attenuate experimental autoimmune encephalomyelitis. J Neuroimmunol 2019; 337:577070. [DOI: 10.1016/j.jneuroim.2019.577070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/15/2019] [Accepted: 09/17/2019] [Indexed: 02/06/2023]
|
86
|
Borba VV, Zandman-Goddard G, Shoenfeld Y. Prolactin and autoimmunity: The hormone as an inflammatory cytokine. Best Pract Res Clin Endocrinol Metab 2019; 33:101324. [PMID: 31564625 DOI: 10.1016/j.beem.2019.101324] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nowadays, more than 80 autoimmune disorders are recognized, in which an aberrant immune response against different organs and tissues plays a crucial role. Hormonal homeostasis has great influence in achieving competent and healthy immune system function. Prolactin has a bioactive function acting as a hormone and a cytokine. It influences the immune system modulation, mainly inhibiting the negative selection of autoreactive B lymphocytes. Hyperprolactinemia has been detected in many patients with different autoimmune diseases, such as rheumatoid arthritis, systemic lupus erythematosus, Sjögren syndrome, multiple sclerosis, autoimmune thyroid disease, systemic sclerosis, among others, and its believed to play a crucial role in disease pathogenesis. A direct correlation between prolactin levels and disease activity was not clear. Genetic factors may have a role in humans as in animal models. Dopamine agonists have proven to offer clinical benefits among autoimmune patients and represent a promising therapy to be explored. In this review, the authors attempt to provide a critical overview on the role of prolactin in the immune system, exploring its contribution to the development of autoimmune diseases.
Collapse
Affiliation(s)
- Vânia Vieira Borba
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel
| | - Gisele Zandman-Goddard
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Department of Medicine C, Wolfson Medical Center, Tel Aviv, Israel
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel-Hashomer, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; I.M. Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Russia.
| |
Collapse
|
87
|
Rojas JI, Patrucco L, Cristiano E. An asymptomatic new lesion on MRI is a relapse and should be treated accordingly – Yes. Mult Scler 2019; 25:1842-1843. [DOI: 10.1177/1352458519855723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Juan Ignacio Rojas
- Servicio de Neurología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina; Centro de Esclerosis Múltiple de Buenos Aires, Buenos Aires, Argentina
| | - Liliana Patrucco
- Servicio de Neurología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina; Centro de Esclerosis Múltiple de Buenos Aires, Buenos Aires, Argentina
| | - Edgardo Cristiano
- Servicio de Neurología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina; Centro de Esclerosis Múltiple de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
88
|
Trudler D, Levy‐Barazany H, Nash Y, Samuel L, Sharon R, Frenkel D. Alpha synuclein deficiency increases CD4
+
T‐cells pro‐inflammatory profile in a Nurr1‐dependent manner. J Neurochem 2019; 152:61-71. [DOI: 10.1111/jnc.14871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/05/2019] [Accepted: 09/10/2019] [Indexed: 01/25/2023]
Affiliation(s)
- Dorit Trudler
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| | - Hilit Levy‐Barazany
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - Yuval Nash
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| | - Liron Samuel
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
| | - Ronit Sharon
- Faculty of Medicine Biochemistry and Molecular Biology IMRIC The Hebrew University Jerusalem Jerusalem Israel
| | - Dan Frenkel
- Department of Neurobiology George S. Wise Faculty of Life Sciences Tel Aviv University Tel Aviv Israel
- Sagol School of Neuroscience Tel Aviv University Tel Aviv Israel
| |
Collapse
|
89
|
Marro BS, Skinner DD, Cheng Y, Grist JJ, Dickey LL, Eckman E, Stone C, Liu L, Ransohoff RM, Lane TE. Disrupted CXCR2 Signaling in Oligodendroglia Lineage Cells Enhances Myelin Repair in a Viral Model of Multiple Sclerosis. J Virol 2019; 93:e00240-19. [PMID: 31243125 PMCID: PMC6714798 DOI: 10.1128/jvi.00240-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/16/2019] [Indexed: 12/14/2022] Open
Abstract
CXCR2 is a chemokine receptor expressed on oligodendroglia that has been implicated in the pathogenesis of neuroinflammatory demyelinating diseases as well as enhancement of the migration, proliferation, and myelin production by oligodendroglia. Using an inducible proteolipid protein (Plp) promoter-driven Cre-loxP recombination system, we were able to assess how timed ablation of Cxcr2 in oligodendroglia affected disease following intracranial infection with the neurotropic JHM strain of mouse hepatitis virus (JHMV). Generation of Plp-Cre-ER(T)::Cxcr2flox/flox transgenic mice (termed Cxcr2-CKO mice) allows for Cxcr2 to be silenced in oligodendrocytes in adult mice following treatment with tamoxifen. Ablation of oligodendroglia Cxcr2 did not influence clinical severity in response to intracranial infection with JHMV. Infiltration of activated T cells or myeloid cells into the central nervous system (CNS) was not affected, nor was the ability to control viral infection. In addition, the severity of demyelination was similar between tamoxifen-treated mice and vehicle-treated controls. Notably, deletion of Cxcr2 resulted in increased remyelination, as assessed by g-ratio (the ratio of the inner axonal diameter to the total outer fiber diameter) calculation, compared to that in vehicle-treated control mice. Collectively, our findings argue that CXCR2 signaling in oligodendroglia is dispensable with regard to contributing to neuroinflammation, but its deletion enhances remyelination in a preclinical model of the human demyelinating disease multiple sclerosis (MS).IMPORTANCE Signaling through the chemokine receptor CXCR2 in oligodendroglia is important for developmental myelination in rodents, while chemical inhibition or nonspecific genetic deletion of CXCR2 appears to augment myelin repair in animal models of the human demyelinating disease multiple sclerosis (MS). To better understand the biology of CXCR2 signaling on oligodendroglia, we generated transgenic mice in which Cxcr2 is selectively ablated in oligodendroglia upon treatment with tamoxifen. Using a viral model of neuroinflammation and demyelination, we demonstrate that genetic silencing of CXCR2 on oligodendroglia did not affect clinical disease, neuroinflammation, or demyelination, yet there was increased remyelination. These findings support and extend previous findings suggesting that targeting CXCR2 may offer a therapeutic avenue for enhancing remyelination in patients with demyelinating diseases.
Collapse
Affiliation(s)
- Brett S Marro
- Department of Molecular Biology & Biochemistry, University of California, Irvine, Irvine, California, USA
| | - Dominic D Skinner
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Yuting Cheng
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jonathan J Grist
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Laura L Dickey
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Emily Eckman
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Colleen Stone
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Liping Liu
- Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Richard M Ransohoff
- Department of Cell Biology, Harvard University School of Medicine, Boston, Massachusetts, USA
| | - Thomas E Lane
- Division of Microbiology & Immunology, Department of Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- Immunology, Inflammation & Infectious Disease Initiative, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
90
|
Schepici G, Silvestro S, Bramanti P, Mazzon E. The Gut Microbiota in Multiple Sclerosis: An Overview of Clinical Trials. Cell Transplant 2019; 28:1507-1527. [PMID: 31512505 PMCID: PMC6923550 DOI: 10.1177/0963689719873890] [Citation(s) in RCA: 111] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Multiple sclerosis (MS) is a chronic, inflammatory, demyelinating, and
degenerative disease that affects the central nervous system. A recent study
showed that interaction between the immune system and the gut microbiota plays a
crucial role in the development of MS. This review reports the clinical studies
carried out in recent years that aimed to evaluate the composition of the
microbiota in patients with relapsing–remitting MS (RR-MS). We also report what
is available in the literature regarding the effectiveness of fecal microbiota
transplantation and the role of the diet in restoring the intestinal bacterial
population. Studies report that patients with RR-MS have a microbiota that,
compared with healthy controls, has higher amounts of
Pedobacteria, Flavobacterium,
Pseudomonas, Mycoplana,
Acinetobacter, Eggerthella,
Dorea, Blautia,
Streptococcus and Akkermansia. In
contrast, MS patients have a microbiota with impoverished microbial populations
of Prevotella, Bacteroides,
Parabacteroides, Haemophilus,
Sutterella, Adlercreutzia,
Coprobacillus, Lactobacillus,
Clostridium, Anaerostipes and
Faecalibacterium. In conclusion, the restoration of the
microbial population in patients with RR-MS appears to reduce inflammatory
events and the reactivation of the immune system.
Collapse
Affiliation(s)
- Giovanni Schepici
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy.,Both the authors contributed equally to this article
| | - Serena Silvestro
- IRCCS Centro Neurolesi "Bonino Pulejo", Messina, Italy.,Both the authors contributed equally to this article
| | | | | |
Collapse
|
91
|
Evaluation of variation in genes of the arylhydrocarbon receptor pathway for an association with multiple sclerosis. J Neuroimmunol 2019; 334:576979. [DOI: 10.1016/j.jneuroim.2019.576979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 05/14/2019] [Accepted: 05/31/2019] [Indexed: 01/11/2023]
|
92
|
Abstract
The systemic regulation of immune reactions by the nervous system is well studied and depends on the release of hormones. Some regional regulations of immune reactions, on the other hand, depend on specific neural pathways. Better understanding of these regulations will expand therapeutic applications for neuroimmune and organ-to-organ functional interactions. Here, we discuss one regional neuroimmune interaction, the gateway reflex, which converts specific neural inputs into local inflammatory outputs in the CNS. Neurotransmitters released by the inputs stimulate specific blood vessels to express chemokines, which serve as a gateway for immune cells to extravasate into the target organ such as the brain or spinal cord. Several types of gateway reflexes have been reported, and each controls distinct CNS blood vessels to form gateways that elicit local inflammation, particularly in the presence of autoreactive immune cells. For example, neural stimulation by gravity creates the initial entry point to the CNS by CNS-reactive pathogenic CD4+ T cells at the dorsal vessels of fifth lumbar spinal cord, while pain opens the gateway at the ventral side of blood vessels in the spinal cord. In addition, it was recently found that local inflammation by the gateway reflex in the brain triggers the activation of otherwise resting neural circuits to dysregulate organ functions in the periphery including the upper gastrointestinal tract and heart. Therefore, the gateway reflex represents a novel bidirectional neuroimmune interaction that regulates organ functions and could be a promising target for bioelectric medicine.
Collapse
Affiliation(s)
- D Kamimura
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - M Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
93
|
Chen T, Noto D, Hoshino Y, Mizuno M, Miyake S. Butyrate suppresses demyelination and enhances remyelination. J Neuroinflammation 2019; 16:165. [PMID: 31399117 PMCID: PMC6688239 DOI: 10.1186/s12974-019-1552-y] [Citation(s) in RCA: 129] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The association of gut microbiota and diseases of the central nervous system (CNS), including multiple sclerosis (MS), has attracted much attention. Although a previous analysis of MS gut microbiota revealed a reduction in species producing short-chain fatty acids (SCFAs), the influence of these metabolites on demyelination and remyelination, the critical factors of MS pathogenesis, remains unclear. METHODS To investigate the relationship between demyelination and gut microbiota, we administered a mixture of non-absorbing antibiotics or SCFAs to mice with cuprizone-induced demyelination and evaluated demyelination and the accumulation of microglia. To analyze the direct effect of SCFAs on demyelination or remyelination, we induced demyelination in an organotypic cerebellar slice culture using lysolecithin and analyzed the demyelination and maturation of oligodendrocyte precursor cells with or without SCFA treatment. RESULTS The oral administration of antibiotics significantly enhanced cuprizone-induced demyelination. The oral administration of butyrate significantly ameliorated demyelination, even though the accumulation of microglia into demyelinated lesions was not affected. Furthermore, we showed that butyrate treatment significantly suppressed lysolecithin-induced demyelination and enhanced remyelination in an organotypic slice culture in the presence or absence of microglia, suggesting that butyrate may affect oligodendrocytes directly. Butyrate treatment facilitated the differentiation of immature oligodendrocytes. CONCLUSIONS We revealed that treatment with butyrate suppressed demyelination and enhanced remyelination in an organotypic slice culture in association with facilitating oligodendrocyte differentiation. Our findings shed light on a novel mechanism of interaction between the metabolites of gut microbiota and the CNS and may provide a strategy to control demyelination and remyelination in MS.
Collapse
Affiliation(s)
- Tong Chen
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Daisuke Noto
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| | - Yasunobu Hoshino
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
- Department of Neurology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Miho Mizuno
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Sachiko Miyake
- Department of Immunology, Juntendo University School of Medicine, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
94
|
Yue P, Jing L, Zhao X, Zhu H, Teng J. Down-regulation of taurine-up-regulated gene 1 attenuates inflammation by sponging miR-9-5p via targeting NF-κB1/p50 in multiple sclerosis. Life Sci 2019; 233:116731. [PMID: 31394128 DOI: 10.1016/j.lfs.2019.116731] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/25/2019] [Accepted: 08/03/2019] [Indexed: 12/30/2022]
Abstract
AIMS Multiple sclerosis (MS) is an inflammatory disease of the central nervous system characterized by widespread inflammation. LncRNA taurine-up-regulated gene 1 (TUG1) has been reported to be involved in multiple biological processes and human diseases. The aim of this study was to investigate the role of lncRNA TUG1 in MS and the underlying mechanism. MAIN METHODS Experimental autoimmune encephalomyelitis (EAE) was induced in mice by immunization with myelin oligodendrocyte glycoprotein peptide 35-55 (MOG35-55). Lentiviral vectors encoding sh-TUG1 was constructed to silence TUG1 in MOG-EAE mice by intracerebroventricular (ICV) injection. The effect of TUG1 on inflammation in MS was evaluated by real-time PCR, Western blot, ELISA and Hematoxylin-eosin staining. To further study the mechanism of TUG1 in MS, TUG1 knockdown and miR-9-5p overexpression were performed in LPS-induced BV2 cells. KEY FINDINGS Down-regulation of TUG1 improved mice behavior, reduced granulocyte-macrophage colony stimulating factor (GM-CSF) level, decreased the levels of pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interferon-γ (IFN-γ), interleukin (IL)-6 and IL-17, and increased IL-10 in EAE mice. Notably, TUG1 expression was negatively correlated with miR-9-5p expression, while positively correlated with NF-κB1/p50. Knockdown of TUG1 or enforced expression of miR-9-5p inhibited LPS-induced inflammation in BV2 cells, while these effects were abolished by inhibition of miR-9-5p. We further verified that TUG1 negatively regulated miR-9-5p expression and NF-κB1/p50 is a direct target of miR-9-5p. SIGNIFICANCE Down-regulation of TUG1 attenuates MS through inhibition of inflammation by sponging miR-9-5p via targeting NF-κB1/p50, suggesting that TUG1 is a potential therapeutic target for MS treatment.
Collapse
MESH Headings
- Animals
- Apoptosis
- Cell Proliferation
- Cytokines/metabolism
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Encephalomyelitis, Autoimmune, Experimental/prevention & control
- Gene Expression Regulation
- Inflammation/chemically induced
- Inflammation/pathology
- Inflammation/prevention & control
- Lipopolysaccharides/toxicity
- Male
- Mice
- Mice, Inbred C57BL
- MicroRNAs/genetics
- Multiple Sclerosis/prevention & control
- NF-kappa B p50 Subunit/genetics
- NF-kappa B p50 Subunit/metabolism
- RNA, Long Noncoding/antagonists & inhibitors
- RNA, Long Noncoding/genetics
- Transcriptional Activation
Collapse
Affiliation(s)
- Peijian Yue
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China.
| | - Lijun Jing
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xinyu Zhao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Hongcan Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Junfang Teng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, People's Republic of China
| |
Collapse
|
95
|
Kim H, Dickey L, Stone C, Jafek JL, Lane TE, Tantin D. T cell-selective deletion of Oct1 protects animals from autoimmune neuroinflammation while maintaining neurotropic pathogen response. J Neuroinflammation 2019; 16:133. [PMID: 31266507 PMCID: PMC6607600 DOI: 10.1186/s12974-019-1523-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 06/17/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Treatments for autoimmune diseases aim to dampen autoreactivity while preserving normal immune function. In CD4+ T cells, the transcription factor Oct1/Pou2f1 is a dispensable transcription factor for T cell development and response to primary infection, but promotes expression of target genes, including Il2 and Ifng, under conditions of antigen reencounter. As a result, they are more strongly expressed upon secondary stimulation. Such repeated antigen encounters occur in memory recall responses, in autoimmunity where self-antigen can be recognized multiple times, and in chronic infection where foreign antigen is persistent. Based on these previous findings, we hypothesized that Oct1 loss would protect animals from autoimmunity but maintain normal responses to pathogens in the CNS. OBJECTIVE We used a conditional mouse Oct1 (Pou2f1) allele and a CD4-Cre driver to determine the effect of T cell-specific Oct1 loss on autoimmune- and viral-induced neuroinflammation using an autoantigen-driven EAE model of autoimmunity and a JHMV model of viral infection. RESULTS Oct1 conditional deletion mitigated clinical scores and reduced infiltrating T cells and cytokine production in the EAE model. Consistently, Oct1-deficient CD4+ T cells stimulated in vitro showed increased expression of markers associated with T cell anergy, particularly in the absence of co-stimulatory signals. In contrast, anti-viral T cell effector functions are intact in the absence of Oct1, with no changes in neuroinflammation, infiltrating T cells or cytokine production. CONCLUSION Our findings uncover a significant difference between the effect of Oct1 loss on autoimmune and anti-pathogen responses, which potentially could be exploited for therapeutic benefit.
Collapse
Affiliation(s)
- Heejoo Kim
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Laura Dickey
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Colleen Stone
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Jillian L. Jafek
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Thomas E. Lane
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| | - Dean Tantin
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT 84112 USA
| |
Collapse
|
96
|
Sato W, Yamamura T. Multiple sclerosis: Possibility of a gut environment-induced disease. Neurochem Int 2019; 130:104475. [PMID: 31152766 DOI: 10.1016/j.neuint.2019.104475] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/25/2019] [Accepted: 05/25/2019] [Indexed: 10/26/2022]
Abstract
Multiple sclerosis is a putative autoimmune disease of the central nervous system, a representative disease of 'neuroimmunology.' We now understand that gut microbiota constitutes an integral part of our body and play critical roles in various neurological diseases with which no intestinal pathology was previously associated. In fact, several reports from Japan, North America, and Europe confirmed dysbiosis of the gut microbiome in MS patients. Given the increase in the prevalence of MS worldwide, especially in Japan, some previously unknown causal environmental factors needed to be identified to inhibit the development of MS in future generations. In this review, we will introduce recent key topics related to MS pathogenesis and immune cells linking gut and brain, and then summarize studies on gut microbiome in MS and its mouse model. Lastly, we will discuss the potential role of diet in the development of MS and propose a hypothesis that could explain the dramatic increase in the number of patients suffering with MS in Japan in the past few decades.
Collapse
Affiliation(s)
- Wakiro Sato
- Department of Immunology, Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan
| | - Takashi Yamamura
- Department of Immunology, Institute of Neuroscience, National Center of Neurology and Psychiatry, Japan.
| |
Collapse
|
97
|
Carpaij OA, Burgess JK, Kerstjens HAM, Nawijn MC, van den Berge M. A review on the pathophysiology of asthma remission. Pharmacol Ther 2019; 201:8-24. [PMID: 31075356 DOI: 10.1016/j.pharmthera.2019.05.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 05/02/2019] [Indexed: 01/28/2023]
Abstract
Asthma is a chronic respiratory condition, which is highly prevalent worldwide. Although no cure is currently available, it is well recognized that some asthma patients can spontaneously enter remission of the disease later in life. Asthma remission is characterized by absence of symptoms and lack of asthma-medication use. Subjects in asthma remission can be divided into two groups: those in clinical remission and those in complete remission. In clinical asthma remission, subjects still have a degree of lung functional impairment or bronchial hyperresponsiveness, while in complete asthma remission, these features are no longer present. Over longer periods, the latter group is less likely to relapse. This remission group is of great scientific interest due to the higher potential to find biomarkers or biological pathways that elicit or are associated with asthma remission. Despite the fact that the definition of asthma remission varies between studies, some factors are reproducibly observed to be associated with remitted asthma. Among these are lower levels of inflammatory markers, which are lowest in complete remission. Additionally, in both groups some degree of airway remodeling is present. Still, the pathological disease state of asthma remission has been poorly investigated. Future research should focus on at least two aspects: further characterisation of the small airways and airway walls in order to determine histologically true remission, and more thorough biological pathway analyses to explore triggers that elicit this phenomenon. Ultimately, this will result in pharmacological targets that provide the potential to steer the course of asthma towards remission.
Collapse
Affiliation(s)
- Orestes A Carpaij
- University of Groningen, University Medical Center Groningen, Groningen, Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands.
| | - Janette K Burgess
- University of Groningen, University Medical Center Groningen, Groningen, Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Huib A M Kerstjens
- University of Groningen, University Medical Center Groningen, Groningen, Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands
| | - Martijn C Nawijn
- University of Groningen, University Medical Center Groningen, Groningen, Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pathology and Medical Biology, Groningen, the Netherlands
| | - Maarten van den Berge
- University of Groningen, University Medical Center Groningen, Groningen, Research Institute for Asthma and COPD (GRIAC), Groningen, the Netherlands; University of Groningen, University Medical Center Groningen, Department of Pulmonology, Groningen, the Netherlands
| |
Collapse
|
98
|
Type 2 Inflammatory Responses in Autoimmune Demyelination of the Central Nervous System: Recent Advances. J Immunol Res 2019; 2019:4204512. [PMID: 31205957 PMCID: PMC6530110 DOI: 10.1155/2019/4204512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/17/2019] [Indexed: 12/28/2022] Open
Abstract
Type 2 immunity has long been confined to a restricted spectrum of responses, mostly including allergic reactions to innocuous environmental triggers. However, growing evidence suggests that cells and mediators typically associated with type 2 inflammation are involved in several physiopathological conditions, such as defense against toxic substances, anticancer immunity, and autoimmune diseases. In neuromyelitis optica, an autoimmune demyelinating disorder of the spinal cord and optic nerve, eosinophils extensively infiltrate lesions in the central nervous system (CNS) and promote tissue pathology in experimental models of this disease. Next-generation sequencing of CD4+ T cells isolated from a specific subtype of multiple sclerosis plaque has uncovered an unexpectedly Th2 profile of these cells. Even mast cells and other allergic mediators have been implicated in the modulation and/or effector mechanisms of autoimmune reactions against the CNS. In this review article, the most recent developments showing the involvement of type 2 inflammatory components in CNS autoimmunity are summarised and possible lines of further investigation are discussed.
Collapse
|
99
|
Parry-Romberg Syndrome with Uhthoff's Phenomena: A Spectrum of Autoimmune Disease? Case Reports Immunol 2019; 2019:1752456. [PMID: 31139478 PMCID: PMC6500608 DOI: 10.1155/2019/1752456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 04/11/2019] [Indexed: 11/17/2022] Open
Abstract
Parry–Romberg syndrome (PRS) is a rare disorder characterized by unilateral facial atrophy. Currently, the pathogenesis of PRS is poorly understood and no definitive treatment is available. This article reports the case of a 51-year-old woman with progressive hemifacial atrophy following herpes zoster infection, who presented with a concomitant chronic history of heat-induced diplopia. Magnetic resonance imaging showed unilateral cerebral white matter, periventricular, and medial longitudinal fasciculus lesions. The patient's diplopia resolved following treatment with valacyclovir. Infection has been previously considered as potential cause of PRS. However, herpes-induced PRS with ophthalmologic manifestations of Uhthoff's phenomena has not previously been reported. The present case suggests that PRS may possibly have an autoimmune etiology resembling that of multiple sclerosis.
Collapse
|
100
|
DNA threads released by activated CD4 + T lymphocytes provide autocrine costimulation. Proc Natl Acad Sci U S A 2019; 116:8985-8994. [PMID: 30988194 DOI: 10.1073/pnas.1822013116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The extrusion of DNA traps contributes to a key mechanism in which innate immune cells clear pathogens or induce sterile inflammation. Here we provide evidence that CD4+ T cells, a critical regulator of adaptive immunity, release extracellular threads of DNA on activation. These DNA extrusions convey autocrine costimulatory signals to T lymphocytes and can be detected in lymph nodes isolated during the priming phase of experimental autoimmune encephalomyelitis (EAE), a CD4+ T cell-driven mouse model of multiple sclerosis. Pharmacologic inhibition of mitochondrial reactive oxygen species (mtROS) abolishes the extrusion of DNA by CD4+ T cells, reducing cytokine production in vitro and T cell priming against myelin in vivo. Moreover, mtROS blockade during established EAE markedly ameliorates disease severity, dampening autoimmune inflammation of the central nervous system. Taken together, these experimental results elucidate a mechanism of intrinsic immune costimulation mediated by DNA threads released by activated T helper cells, and identify a potential therapeutic target for such disorders as multiple sclerosis, neuromyelitis optica, and CD4+ T cell-mediated disorders.
Collapse
|