51
|
Xie S, Liu Q. Case report: Different mechanisms of drug resistance in a synchronous multiple primary lung cancer patient after EGFR-TKI treatment. Front Oncol 2022; 12:977065. [PMID: 36249035 PMCID: PMC9557219 DOI: 10.3389/fonc.2022.977065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 09/16/2022] [Indexed: 11/30/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the most common cancer in the world. In recent years, the incidence of synchronous multiple primary lung cancer (SMPLC) has gradually increased. Surgery is the preferred method to treat these patients. The management of SMPLC patients who cannot tolerate surgical treatment is controversial. We report a rare case in which a 70-year-old Chinese woman with no history of smoking had three primary lung adenocarcinoma lesions. Two lesions had epidermal growth factor receptor (EGFR) exon 19 deletion mutations, and one lesion had the L858R mutation. After first-generation EGFR–tyrosine kinase inhibitor (TKI) treatment, the three lesions all showed a good response until disease progression. After the corresponding drug treatments were given based on the different drug resistance mechanisms, good responsiveness was shown in each lessions. This case suggests that in the treatment of SMPLC, it is necessary to learn the molecular-biological information of each lesion due to the differences thereof, and a targeted treatment regimen should be developed on this basis.
Collapse
|
52
|
Lai J, Yang S, Chu S, Xu T, Huang J. Determination of a prediction model for therapeutic response and prognosis based on chemokine signaling-related genes in stage I–III lung squamous cell carcinoma. Front Genet 2022; 13:921837. [PMID: 36118890 PMCID: PMC9470854 DOI: 10.3389/fgene.2022.921837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/12/2022] [Indexed: 01/10/2023] Open
Abstract
Background: The chemokine signaling pathway plays an essential role in the development, progression, and immune surveillance of lung squamous cell carcinoma (LUSC). Our study aimed to systematically analyze chemokine signaling-related genes (CSRGs) in LUSC patients with stage I–III disease and develop a prediction model to predict the prognosis and therapeutic response. Methods: A total of 610 LUSC patients with stage I–III disease from three independent cohorts were included in our study. Least absolute shrinkage and selection operator (LASSO) and stepwise multivariate Cox regression analyses were used to develop a CSRG-related signature. GSVA and GSEA were performed to identify potential biological pathways. The ESTIMATE algorithm, ssGSEA method, and CIBERSORT analyses were applied to explore the correlation between the CSRG signature and the tumor immune microenvironment. The TCIA database and pRRophetic algorithm were utilized to predict responses to immunochemotherapy and targeted therapy. Results: A signature based on three CSRGs (CCL15, CXCL7, and VAV2) was developed in the TCGA training set and validated in the TCGA testing set and GEO external validation sets. A Kaplan–Meier survival analysis revealed that patients in the high-risk group had significantly shorter survival than those in the low-risk group. A nomogram combined with clinical parameters was established for clinical OS prediction. The calibration and DCA curves confirmed that the prognostic nomogram had good discrimination and accuracy. An immune cell landscape analysis demonstrated that immune score and immune-related functions were abundant in the high-risk group. Interestingly, the proportion of CD8 T-cells was higher in the low-risk group than in the high-risk group. Immunotherapy response prediction indicated that patients in the high-risk group had a better response to CTLA-4 inhibitors. We also found that patients in the low-risk group were more sensitive to first-line chemotherapeutic treatment and EGFR tyrosine kinase inhibitors. In addition, the expression of genes in the CSRG signature was validated by qRT‒PCR in clinical tumor specimens. Conclusion: In the present study, we developed a CSRG-related signature that could predict the prognosis and sensitivity to immunochemotherapy and targeted therapy in LUSC patients with stage I–III disease. Our study provides an insight into the multifaceted role of the chemokine signaling pathway in LUSC and may help clinicians implement optimal individualized treatment for patients.
Collapse
Affiliation(s)
- Jinzhi Lai
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shiyu Yang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shuqiang Chu
- Department of Pathology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Tianwen Xu
- Department of Oncology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- *Correspondence: Tianwen Xu, ; Jingshan Huang,
| | - Jingshan Huang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- *Correspondence: Tianwen Xu, ; Jingshan Huang,
| |
Collapse
|
53
|
Bouleau A, Nozach H, Dubois S, Kereselidze D, Chevaleyre C, Wang CI, Evans MJ, Lebon V, Maillère B, Truillet C. Optimizing Immuno-PET Imaging of Tumor PD-L1 Expression: Pharmacokinetic, Biodistribution, and Dosimetric Comparisons of 89Zr-Labeled Anti-PD-L1 Antibody Formats. J Nucl Med 2022; 63:1259-1265. [PMID: 34933891 PMCID: PMC9364342 DOI: 10.2967/jnumed.121.262967] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 11/30/2021] [Indexed: 02/03/2023] Open
Abstract
PET imaging of programmed cell death ligand 1 (PD-L1) may help to noninvasively predict and monitor responses to anti-programmed cell death 1/anti-PD-L1 immunotherapies. In this study, we compared the imaging characteristics of 3 radioligands derived from the anti-PD-L1 IgG1 complement 4 (C4). In addition to the IgG C4, we produced a fragment antigen-binding (Fab) C4, as well as a double-mutant IgG C4 (H310A/H435Q) with minimal affinity for the murine neonatal Fc receptor. Methods: The pharmacokinetics, biodistribution, and dosimetry of the 3 89Zr-labeled C4 ligands were compared by longitudinal PET/CT imaging in nude mice bearing subcutaneous human non-small cell lung cancer xenografts with positive (H1975 model) or negative (A549 model) endogenous PD-L1 expression. Results: The C4 radioligands substantially accumulated in PD-L1-positive tumors but not in PD-L1-negative tumors or in blocked PD-L1-positive tumors, confirming their PD-L1-specific tumor targeting. 89Zr-Fab C4 and 89Zr-IgG C4 (H310A/H435Q) were rapidly eliminated compared with 89Zr-IgG C4. Consequently, maximal tumor-to-muscle ratios were obtained earlier, at 4 h after injection for 89Zr-Fab C4 (ratio, ∼6) and 24 h after injection for 89Zr-IgG C4 (H310A/H435Q) (ratio, ∼9), versus 48 h after injection for 89Zr-IgG C4 (ratio, ∼8). Background activity in nontumor tissues was low, except for high kidney retention of 89Zr-Fab C4 and persistent liver accumulation of 89Zr-IgG C4 (H310A/H435Q) compared with 89Zr-IgG C4. Dosimetry estimates suggested that the C4 radioligands would yield organ-absorbed doses tolerable for repeated clinical PET imaging studies. Conclusion: This study highlights the potential of designing radioligands with shorter pharmacokinetics for PD-L1 immuno-PET imaging in a preclinical model and encourages further clinical translation of such radioligands.
Collapse
Affiliation(s)
- Alizée Bouleau
- Paris-Saclay University, CEA, CNRS, INSERM, Multimodal Biomedical Imaging Lab, Orsay, France
| | - Hervé Nozach
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Gif-sur-Yvette, France
| | - Steven Dubois
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Gif-sur-Yvette, France
| | - Dimitri Kereselidze
- Paris-Saclay University, CEA, CNRS, INSERM, Multimodal Biomedical Imaging Lab, Orsay, France
| | - Céline Chevaleyre
- Paris-Saclay University, CEA, CNRS, INSERM, Multimodal Biomedical Imaging Lab, Orsay, France
| | - Cheng-I Wang
- Singapore Immunology Network, A*STAR, Immunos, Singapore, Singapore; and
| | - Michael J. Evans
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Vincent Lebon
- Paris-Saclay University, CEA, CNRS, INSERM, Multimodal Biomedical Imaging Lab, Orsay, France
| | - Bernard Maillère
- Paris-Saclay University, CEA, INRAE, Medicines and Healthcare Technologies Department, SIMoS, Gif-sur-Yvette, France
| | - Charles Truillet
- Paris-Saclay University, CEA, CNRS, INSERM, Multimodal Biomedical Imaging Lab, Orsay, France
| |
Collapse
|
54
|
Prognosis of different extrathoracic metastasis patterns in patients with M1c lung adenocarcinoma receiving immunotherapy. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04182-z. [PMID: 35882652 DOI: 10.1007/s00432-022-04182-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/28/2022] [Indexed: 10/16/2022]
Abstract
INTRODUCTION Lung cancer with extrathoracic metastases is classified as M1c. However, extrathoracic metastases can be further classified into different patterns. The purpose of this study was to analyze the survival differences between different patterns of extrathoracic metastases in patients with stage M1c lung adenocarcinoma after receiving immunotherapy. MATERIALS AND METHODS This study included 160 stage M1c lung adenocarcinoma patients and treated with immunotherapy. The enrolled patients were divided into two groups: those with multiple extrathoracic metastases alone (EM group) and those with simultaneous multiple extrathoracic and intrathoracic metastases (EIM group). Progression-free survival (PFS) and overall survival (OS) were evaluated. RESULTS The median PFS and OS in the whole group were 7.7 months and 25.4 months, respectively. The patients in the EM group show better PFS (13.0 months vs. 5.0 months; hazard ratio [HR] = 0.462, 95% confidence interval [CI] 0.317-0.673, P < 0.0001) and OS (35.0 months vs. 18.9 months; HR 0.592, 95% CI 0.380-0.922, P = 0.019) compared with the EIM group. Furthermore, in patients with lung adenocarcinoma with simultaneous extrathoracic and intrathoracic metastases who received immunotherapy, immunotherapy combined with chemotherapy has better PFS and OS than immunotherapy alone. There was no difference between immunotherapy alone or combined with chemotherapy in patients with lung adenocarcinoma with extrathoracic metastasis alone. CONCLUSION The different patterns of extrathoracic metastasis were related to the efficacy and prognosis of immunotherapy in M1c cohort. In addition, patients with simultaneous extrathoracic and intrathoracic metastases were more recommended to choose immunotherapy in combination with chemotherapy rather than immunotherapy alone.
Collapse
|
55
|
Liu SY, Liu SYM, Zhong WZ, Wu YL. Targeted Therapy in Early Stage Non-small Cell Lung Cancer. Curr Treat Options Oncol 2022; 23:1169-1184. [PMID: 35876956 DOI: 10.1007/s11864-022-00994-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/22/2022] [Indexed: 11/29/2022]
Abstract
OPINION STATEMENT Tyrosine kinase inhibitors (TKIs) have dramatically improved tumor response rates and survival benefits in advanced oncogenic non-small-cell lung cancer (NSCLC). Given the impressive success, a renewed interest has been raised in the study of these agents in the perioperative setting. Preliminary data have shown dramatic effectiveness compared to conventional chemotherapy. Given the explicit need to induce durable responses and raise cure rates, we summarize the current progression, identify key challenges, and raise potential opportunities for perioperative targeted therapy that range from precise biomarkers to optimal adjuvant regimens for individual patients. As perioperative treatment indeed provides researchers with a unique platform to address the challenges mentioned above, investigators could obtain a comprehensive analysis of genomic profiling and trace resistance mechanisms. Multidisciplinary collaboration and adaptive clinical trial designs are warranted to integrate translational research into personalized perioperative TKI treatment paradigms.
Collapse
Affiliation(s)
- Si-Yang Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd., Guangzhou, 510080, Guangdong, China
| | - Si-Yang Maggie Liu
- Department of Hematology, Jinan University, Guangzhou, 510632, China.,First Affiliated Hospital, Jinan University, Guangzhou, 510632, China.,Institute of Hematology, School of Medicine, Jinan University, Guangzhou, 510632, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd., Guangzhou, 510080, Guangdong, China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan 2nd Rd., Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
56
|
Influence of the Timing of Leptomeningeal Metastasis on the Outcome of EGFR-Mutant Lung Adenocarcinoma Patients and Predictors of Detectable EGFR Mutations in Cerebrospinal Fluid. Cancers (Basel) 2022; 14:cancers14122824. [PMID: 35740489 PMCID: PMC9221267 DOI: 10.3390/cancers14122824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/05/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022] Open
Abstract
Simple Summary Leptomeningeal metastasis (LM) is a devastating complication of lung cancer, with a generally poor outcome. We conduct the present study to evaluate the association between clinical presentations, brain images, tumor cell counts of the cerebrospinal fluid (CSF), and the epidermal growth factor receptor (EGFR) mutation detection rate in CSF among EGFR-mutant lung adenocarcinoma patients with LM and accessed the influence of the timing of LM occurrence on patient outcomes. Tumor cell numbers were semi-quantified according to tumor cells per high power field of CSF cytological slides. Radiological burden was assessed using a four-point scoring system, which evaluated LM-involved areas on brain magnetic resonance imaging. Our results suggest the association between the radiological severity score of LM, CSF tumor cell counts, and EGFR mutation detection rate in CSF. Furthermore, LM prior to first-line EGFR-tyrosine kinase inhibitor treatment was associated with an independently worse outcome. Abstract Background: We aim to evaluate the influence of the timing of leptomeningeal metastasis (LM) occurrence on the outcome of EGFR-mutant lung adenocarcinoma and to explore the predictors of detectable EGFR mutation in the cerebrospinal fluid (CSF). Methods: EGFR-mutant lung adenocarcinoma patients with cytologically confirmed LM were included for analysis. EGFR mutation in CSF was detected by MALDI-TOF MS plus PNA. Results: A total of 43 patients was analyzed. Of them, 8 (18.6%) were diagnosed with LM prior to first-line EGFR-TKI treatment (early onset), while 35 patients (81.4%) developed LM after first-line EGFR-TKI treatment (late onset). Multivariate analysis suggested that both late-onset LM (aHR 0.31 (95% CI 0.10–0.94), p = 0.038) and a history of third-generation EGFR-TKI treatment (aHR 0.24 (95% CI 0.09–0.67), p = 0.006) independently predicted a favorable outcome. EGFR mutation detection sensitivity in CSF was 81.4%. The radiological burden of LM significantly correlated with CSF tumor cell counts (p = 0.013) with higher CSF tumor cell counts predicting a higher detection sensitivity of EGFR mutation (p = 0.042). Conclusions: Early onset LM was an independently poor prognostic factor. A higher radiological severity score of LM could predict higher tumor cell counts in CSF, which in turn were associated with a higher detection rate of EGFR mutation.
Collapse
|
57
|
Utility of Next-Generation Sequencing in the Reconstruction of Clonal Architecture in a Patient with an EGFR Mutated Advanced Non-Small Cell Lung Cancer: A Case Report. Diagnostics (Basel) 2022; 12:diagnostics12051266. [PMID: 35626421 PMCID: PMC9141594 DOI: 10.3390/diagnostics12051266] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 05/15/2022] [Accepted: 05/17/2022] [Indexed: 01/27/2023] Open
Abstract
EGFR tyrosine kinase inhibitors (EGFR-TKIs) have revolutionized the treatment of non-small cell lung cancer (NSCLC) patients with activating EGFR mutations. However, targeted therapies impose a strong selective pressure against the coexisting tumor populations that lead to the emergence of resistant clones. Molecular characterization of the disease is essential for the clinical management of the patient, both at diagnosis and after progression. Next-generation sequencing (NGS) has been established as a technique capable of providing clinically useful molecular profiling of the disease in tissue samples and in non-invasive liquid biopsy samples (LB). Here, we describe a case report of a patient with metastatic NSCLC harboring EGFR mutation who developed two independent resistance mechanisms (EGFR-T790M and TP53 + RB1 mutations) to dacomitinib. Osimertinib given as a second-line treatment eliminated the EGFR-T790M population and simultaneously consolidated the proliferation of the TP53 + RB1 clone that eventually led to the histologic transformation to small-cell lung cancer (SCLC). Comprehensive NGS profiling revealed the presence of the TP53 + RB1 clone in the pretreatment biopsy, while EGFR-T790M was only detected after progression on dacomitinib. Implementation of NGS studies in routine molecular diagnosis of tissue and LB samples provides a more comprehensive view of the clonal architecture of the disease in order to guide therapeutic decision-making.
Collapse
|
58
|
Huang YL, Chen YJ, Juan YH, Wu SG, Chung KP. Prognostic significance of dynamin-related protein 1 expression in advanced lung adenocarcinoma. Pathol Res Pract 2022; 234:153931. [PMID: 35523103 DOI: 10.1016/j.prp.2022.153931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Dynamin-related protein 1 (DRP1) is a key regulator of mitochondrial fission and is activated by phosphorylation at serine 616. We previously demonstrated that DRP1 activation is regulated by epidermal growth factor receptor (EGFR) signaling and multiple kinases in lung adenocarcinoma, and is significantly associated with an increased risk of postoperative recurrence in early stage lung adenocarcinoma. However, it is unclear whether DRP1 activation is associated with worse prognosis in patients with advanced lung adenocarcinoma. This study is aimed to examine whether P(S616)-DRP1 expression is significantly related to the survival of patients with advanced lung adenocarcinoma. MATERIALS AND METHODS Biopsy samples were obtained from patients with stage IV lung adenocarcinoma. The activation status of DRP1 in cancer cells was quantified based on the immunohistochemical stain of phosphorylated DRP1 at serine 616 [P(S616)-DRP1]. Results of EGFR, ALK, ROS1, and KRAS mutations were retrieved from the medical records. The staining intensity and the histological scores (H-scores) of P(S616)-DRP1 were analyzed for association with progression-free survival (PFS) under first-line tyrosine-kinase inhibitors (TKIs) and with overall survival (OS). RESULTS Overall, 123 patients with stage IV lung adenocarcinoma constituted the study population, and 90 (73.2%) patients received TKIs as the first-line treatments. The median P(S616)-DRP1H-score was used to dichotomize the study population into the high (n = 61) and low (n = 62) DRP1 activation groups. DRP1 was significantly less phosphorylated in lung adenocarcinoma with EGFR, ALK, ROS1, and KRAS mutations. Importantly, in patients who received first-line TKIs, DRP1 phosphorylation was not significantly correlated with PFS and OS. Multivariate Cox proportional hazard models showed that high DRP1 activation in cancer cells was not significantly associated with worse OS in the study population (adjusted hazard ratio: 1.402, 95% confidence interval: 0.865-2.271, p = 0.170). Similar results were obtained in the analysis based on the intensities of P(S616)-DRP1 in cancer cells. CONCLUSIONS Our data demonstrate that DRP1 phosphorylation is not related to the prognosis of patients with advanced lung adenocarcinoma.
Collapse
Affiliation(s)
- Yen-Lin Huang
- Department of Pathology, National Taiwan University Cancer Center, Taipei, Taiwan; Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yi-Jung Chen
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yi-Hsiu Juan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shang-Gin Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Cancer Center, Taipei, Taiwan
| | - Kuei-Pin Chung
- Department of Laboratory Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
59
|
Cao P, Li Y, Shi R, Yuan Y, Gong H, Zhu G, Zhang Z, Chen C, Zhang H, Liu M, Pan Z, Liu H, Chen J. Combining EGFR-TKI With SAHA Overcomes EGFR-TKI-Acquired Resistance by Reducing the Protective Autophagy in Non-Small Cell Lung Cancer. Front Chem 2022; 10:837987. [PMID: 35402377 PMCID: PMC8990828 DOI: 10.3389/fchem.2022.837987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/31/2022] [Indexed: 11/22/2022] Open
Abstract
Nowadays, lung cancer has the highest mortality worldwide. The emergence of epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) has greatly improved the survival of patients with non-small cell lung cancer (NSCLC) having EGFR-TKI-sensitive mutations. Unfortunately, acquired resistance happens for most patients. In the present research, we found that EGFR-TKIs (such as gefitinib and osimertinib) can induce autophagy in NSCLC cell lines. Compared with parental sensitive cells, drug-resistant cells have higher autophagy activity. The use of an autophagy inhibitor could enhance the toxicity of gefitinib and osimertinib, which indicates that the enhancement of protective autophagy might be one of the mechanisms of EGFR-TKI resistance in NSCLC. In addition, increased autophagy activity is associated with decreased enhancer of zeste homolog 2 (EZH2) expression. Knockdown of EZH2 or EZH2 inhibitor treatment could lead to increased autophagy in NSCLC cells, indicating that EZH2 is a negative regulator of autophagy. We revealed that the increase in autophagy caused by the reduction of EZH2 was reversed in vitro and in vivo when combining gefitinib or osimertinib with suberoylanilide hydroxamic acid (SAHA), a broad-spectrum histone deacetylase inhibitor (HDACi). In conclusion, our results indicated that the combination of EGFR-TKIs and SAHA may be a new strategy to overcome EGFR-TKIs acquired resistance.
Collapse
Affiliation(s)
- Peijun Cao
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yongwen Li
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Ruifeng Shi
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Yin Yuan
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Hao Gong
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangsheng Zhu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zihe Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chen Chen
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongbing Zhang
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Minghui Liu
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zhenhua Pan
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Hongyu Liu
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jun Chen
- Department of Lung Cancer Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
60
|
Ren C, Li J, Zhou Y, Zhang S, Wang Q. Typical tumor immune microenvironment status determine prognosis in lung adenocarcinoma. Transl Oncol 2022; 18:101367. [PMID: 35176624 PMCID: PMC8851380 DOI: 10.1016/j.tranon.2022.101367] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/21/2022] [Accepted: 02/07/2022] [Indexed: 12/13/2022] Open
Abstract
Immune cells infiltration level in lung adenocarcinoma immune microenvironment were quantified and compared. Three distinct tumor immune microenvironment subtypes were consistent with cancer immunity cycle in cancer dynamic development. Immune infiltration status of three subtypes were correlated with significant mutated genes, copy number variation and cancer stemness Prognostic biomarker lung adenocarcinoma immune microenvironment score model was constructed to assess immune infiltration status, evaluate immunotherapy response, and predict patient prognosis.
Background Immune cells, vital components of tumor microenvironment, regulate tumor survival and progression. Lung adenocarcinoma (LUAD), the tumor with the highest mortality rate worldwide, reconstitutes tumor immune microenvironment (TIME) to avoid immune destruction. Data have shown that TIME influences LUAD prognosis and predicts immunotherapeutic efficacy. The related information about the role of TIME's characteristics in LUAD is limited. Methods We performed unsupervised consensus clustering via machine-learning techniques to identify TIME clusters among 1906 patients and gathered survival data. The characteristics of TIME clusters of LUAD were visualized by multi-omics analysis, pseudo-time dynamic analysis, and enrichment analysis. TIME score model was constructed by principal component analysis. Comprehensive analysis and validation were conducted to test the prognostic efficacy and immunotherapeutic response of TIME score. Results TIME clusters (A, B and C) were constructed and exhibited different immune infiltration states. Multi-omics analyses included significant mutated genes (SMG), copy number variation (CNV) and cancer stemness that were significantly different among the three clusters. TIME cluster A had a lower SMG, lower CNV, and lower stemness but a higher immune infiltration level compared to TIME clusters B and C. TIME score showed that patients in low TIME score group had higher overall survival rates, higher immune infiltration level and high expression of immune checkpoints. In validation cohorts, low TIME score subgroup had better drug sensitivity and favorable immunotherapeutic response. Conclusion We constructed a stable model of LUAD immune microenvironment characteristics that may improve the prognostic accuracy of patients, provide improved explanations of LUAD responses to immunotherapy, and provide new strategies for LUAD treatment.
Collapse
Affiliation(s)
- Caixia Ren
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Jinyu Li
- Department of Breast Oncology, The Second Hospital of Dalian Medical University, Dalian, Liaoning, 116023, China.
| | - Yang Zhou
- Liaoning Clinical Research Center for Lung Cancer,The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| | - Shuyu Zhang
- China National Nuclear Corporation 416 Hospital, The Second Affiliated Hospital of Chengdu Medical College, Chengdu 610051, China.
| | - Qi Wang
- Department of Respiratory Medicine, The Second Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
61
|
Wang S, Zhang W. Small Proline Rich Protein 1A promotes lung adenocarcinoma progression and indicates unfavorable clinical outcomes. Biochem Cell Biol 2022; 100:199-212. [PMID: 35263193 DOI: 10.1139/bcb-2021-0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Small Proline Rich Protein 1A (SPRR1A) plays a critical role in regulating squamous cell differentiation. It has been reported that SPRR1A overexpression was closely related to the progression of some tumors such as gastric cancer and colon cancer. However, the function of SPRR1A in lung adenocarcinoma (LUAD) has not been elucidated. Here we firstly examined the expression pattern of SPRR1A in LUAD tissues, which indicated that SPRR1A expression level was significantly elevated in LUAD tissues compared to normal lung tissues. High expression of SPRR1A was closely related to the larger tumor size. LUAD patients with higher SPRR1A expression had poorer overall survival and SPRR1A was identified as an independent unfavorable prognosis factor. In addition, the effects of SPRR1A on lung cancer cells were tested through cellular experiments and the result demonstrated that knockdown of SPRR1A can suppress proliferation and invasion capacities of tumor cells, while overexpressing SPRR1A exerted opposite effects. Finally, our findings were substantiated by the data obtained from in vivo xenografts using mice model. In conclusion, LUAD patients with higher SPRR1A expression were more predisposed to poorer clinical outcomes and unfavorable prognosis, indicating the potential role of SPRR1A as a novel clinical biomarker and therapeutic target.
Collapse
Affiliation(s)
- Shenqi Wang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Department of Respiratory Medicine, Shanghai, China;
| | - Wenmei Zhang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Department of Respiratory Medicine, Shanghai, China, 200336;
| |
Collapse
|
62
|
Wu J, Hou L, E H, Zhao Y, Yu X, Xu L, Ning Y, Deng J, Sun K, Zhang J, Wu C, Zhu Y, Zhao D, She Y, Su C, Chen C. Real-world clinical outcomes of neoadjuvant immunotherapy combined with chemotherapy in resectable non-small cell lung cancer. Lung Cancer 2022; 165:115-123. [PMID: 35123154 DOI: 10.1016/j.lungcan.2022.01.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/14/2022] [Accepted: 01/24/2022] [Indexed: 12/25/2022]
Abstract
OBJECTIVES Early stage non-small cell lung cancer (NSCLC) patients who undergo complete resection continue to demonstrate high risk of recurrence and death. The advent of the neoadjuvant regimen has brought new hope for these patients. The present study aims to further demonstrate the efficacy of neoadjuvant chemoimmunotherapy. MATERIALS AND METHODS A real-world observational study was conducted concerning patients who received neoadjuvant pembrolizumab or nivolumab combined with chemotherapy between January 2018 and December 2020 in Shanghai Pulmonary Hospital. The primary endpoint was major pathologic response (MPR), and the secondary endpoints were objective response rate (ORR), pathologic complete response (pCR), disease-free survival (DFS) and toxicity. RESULTS A total of 76 patients were analyzed and divided into the pembrolizumab (n = 42) and nivolumab groups (n = 34) with a median follow-up time of 12.2 months. Most patients (92%) had stage III disease, with 41 (54%) and 29 (38%) patients initially diagnosed clinical stage IIIA and IIIB, respectively. Fifty (66%), 21 (28%) and 5 (6%) patients received two, three and four cycles of neoadjuvant treatment, separately, achieving an ORR of 75%. None of them needed a reduced initial dose or delay due to intolerable adverse events. Forty-nine (64%) and 28 (37%) patients achieved MPR and pCR, respectively. RNA sequencing showed that MPR associated with increased infiltration of cytotoxic immune cells with tertiary lymphoid structures (TLSs). Histological evaluation highlighted the localization of B cells within TLSs. Forty-two (69%) patients with clinically N2 disease at baseline were downstaged to pathological N0 (39 patients) or N1 (3 patients). One-year-PFS rate of stage III patients was 91%. No difference in baseline characteristics and treatment outcomes was observed between 2 groups. CONCLUSION The feasibility of neoadjuvant chemoimmunotherapy for resectable NSCLC was further validated, with a high MPR rate and manageable adverse events.
Collapse
Affiliation(s)
- Junqi Wu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Likun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Haoran E
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Yue Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Xin Yu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Long Xu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Ye Ning
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Jiajun Deng
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Ke Sun
- Department of Radiology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Jie Zhang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Chunyan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Yuming Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Deping Zhao
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China
| | - Yunlang She
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China.
| | - Chunxia Su
- Department of Medical Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China.
| | - Chang Chen
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, People's Republic of China; Department of Thoracic Surgery, The First Hospital of Lanzhou University, Gansu, China; The International Science and Technology Cooperation Base for Development and Application of Key Technologies in Thoracic Surgery, Gansu Province, China.
| |
Collapse
|
63
|
Capaccione KM, Huang S, D'souza B, Leb J, Luk L, Goldstein J, May B, Deng A, Salvatore MM. Radiographic features of pneumonitis in patients treated with immunotherapy compared to traditional chemotherapy for non-small cell lung cancer. Clin Imaging 2022; 93:106-112. [DOI: 10.1016/j.clinimag.2022.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 03/04/2022] [Accepted: 03/06/2022] [Indexed: 11/25/2022]
|
64
|
Yang Z, Tian H, Bie F, Xu J, Zhou Z, Yang J, Li R, Peng Y, Bai G, Tian Y, Chen Y, Liu L, Fan T, Xiao C, Zheng Y, Zheng B, Wang J, Li C, Gao S, He J. ERAP2 Is Associated With Immune Infiltration and Predicts Favorable Prognosis in SqCLC. Front Immunol 2022; 12:788985. [PMID: 34992605 PMCID: PMC8725995 DOI: 10.3389/fimmu.2021.788985] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/06/2021] [Indexed: 12/25/2022] Open
Abstract
Background Immunotherapy has been proven effective among several human cancer types, including Squamous cell lung carcinoma (SqCLC). ERAP2 plays a pivotal role in peptide trimming of many immunological processes. However, the prognostic role of ERAP2 and its relationship with immune cell infiltration in SqCLC remains unclear. Methods The differential expression of ERAP2 was identified via GEO and TCGA databases. We calculated the impact of ERAP2 on clinical prognosis using the Kaplan-Meier plotter. TIMER was applied to evaluate the abundance of immune cells infiltration and immune markers. SqCLC tissue microarrays containing 190 patients were constructed, and we performed immunohistochemical staining for ERAP2, CD8, CD47, CD68, and PD-L1 to validate our findings in public data. Results In the GEO SqCLC database, ERAP2 was upregulated in patients with better survival (p=0.001). ERAP2 expression in SqCLC was significantly lower than that of matched normal samples (p<0.05) based on TCGA SqCLC data. Higher expression of ERAP2 was significantly associated with better survival in SqCLC patients from TCGA (p=0.007), KM-plotter (p=0.017), and our tissue microarrays (TMAs) (p=0.026). In univariate and multivariate Cox analysis of SqCLC TMAs, high ERAP2 expression was identified as an independent protective factor for SqCLC patients (Univariate Cox, HR=0.659, range 0.454-0.956, p<0.05. Multivariate Cox, HR=0.578, range 0.385-0.866, p<0.05). In TIMER, ERAP2 was positively correlated with several immune markers (CD274, p=1.27E-04; CD68, p=5.88E-08) and immune infiltrating cells (CD8+ T cell, p=4.09E-03; NK cell, p=1.00E-04). In our cohort, ERAP2 was significantly correlated with CD8+ tumor-infiltrating lymphocytes (TILs) (p=0.0029), and patients with higher ERAP2 expression had a higher percentage of PD-L1 positive patients (p=0.049) and a higher CD8+ TILs level (p=0.036). Conclusions For the first time, our study demonstrates that higher expression of ERAP2 is tightly associated with the immuno-supportive microenvironment and can predict a favorable prognosis in SqCLC. Meanwhile, ERAP2 may be a promising immunotherapeutic target for patients with SqCLC.
Collapse
Affiliation(s)
- Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Fenglong Bie
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Zheng Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Junhui Yang
- Genetron Health (Beijing) Co. Ltd., Beijing, China
| | - Renda Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yue Peng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yanhua Tian
- Department of Thoracic Surgery/Head & Neck Medical Oncology, The University of Texas (UT) MD Anderson Cancer Center, Houston, TX, United States
| | - Ying Chen
- Department of Thoracic Surgery I, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming, China
| | - Lei Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jie Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| |
Collapse
|
65
|
Zhuang Q, Huang Z, Zhuang W, Hong Y, Huang Y. Knockdown of circ-RAD23B inhibits non-small cell lung cancer progression via the miR-142-3p/MAP4K3 axis. Thorac Cancer 2022; 13:750-760. [PMID: 35106926 PMCID: PMC8888159 DOI: 10.1111/1759-7714.14319] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/29/2021] [Accepted: 01/02/2022] [Indexed: 01/10/2023] Open
Abstract
Background The development of non‐small cell lung cancer (NSCLC) is associated with the deregulation of circRNAs. The objective of this study was to investigate the effects of circ‐RAD23B in NSCLC. Methods Circ‐RAD23B expression, miR‐142‐3p and MAP4K3 was detected by qPCR. Cell proliferation was investigated by CCK‐8 assay and colony formation assay. Cell migration and invasion were assessed by transwell assay. Angiogenesis ability was assessed by tube formation assay. Cell cycle distribution and cell apoptosis were monitored by flow cytometry. The predicted binding relationship between miR‐142‐3p and circ‐RAD23B or MAP4K3 was verified by dual‐luciferase reporter assay. The protein level of MAP4K3 was detected by western blot. Animal models were established to determine the role of circ‐RAD23B in vivo. Results Circ‐RAD23B was shown to be upregulated in NSCLC tissues and cells. Knockdown of circ‐RAD23B inhibited proliferation, migration, invasion, angiogenesis and promoted cell cycle arrest and apoptosis in NSCLC cells, and circ‐RAD23B knockdown also impeded tumor growth in vivo. Circ‐RAD23B acted as miR‐142‐3p sponge to inhibit miR‐142‐3p expression and thus enrich the expression of MAP4K3, a target of miR‐142‐3p. Rescue experiments presented that miR‐142‐3p inhibition reversed the effects of circ‐RAD23B knockdown, and MAP4K3 overexpression abolished the effects of miR‐142‐3p restoration. In addition, we found that circ‐RAD23B knockdown led to decreased phosphorylation expression of ERK1/2, JNK and p38, three key groups of the MAPK signaling pathway. Conclusions Circ‐RAD23B knockdown inhibited NSCLC development by regulating the miR‐142‐3p/MAP4K3 axis, which might be associated with the inactivation of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Qingyang Zhuang
- Department of Radiotherapy, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Zhangzhou Huang
- Department of Thoracic Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Wu Zhuang
- Department of Thoracic Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yaping Hong
- Department of Thoracic Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| | - Yunjian Huang
- Department of Thoracic Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fuzhou, China
| |
Collapse
|
66
|
Fang L, Yu W, Yu G, Zhong F, Ye B. Junctional Adhesion Molecule-Like Protein (JAML) Is Correlated with Prognosis and Immune Infiltrates in Lung Adenocarcinoma. MEDICAL SCIENCE MONITOR : INTERNATIONAL MEDICAL JOURNAL OF EXPERIMENTAL AND CLINICAL RESEARCH 2022; 28:e933503. [PMID: 35034089 PMCID: PMC8772237 DOI: 10.12659/msm.933503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Junctional adhesion molecule-like protein (JAML) is a member of the junctional adhesion molecule family and mediates migration of immune cells, but its function in cancers remains unclear. This study aimed to evaluate the role of JAML in the prognosis and immune infiltrates of lung adenocarcinoma (LUAD). MATERIAL AND METHODS JAML expressions in LUAD tissues and normal tissues were compared using The Cancer Genome Atlas (TCGA) database and datasets from the Gene Expression Omnibus (GEO) database. The influence of JAML expression on prognosis was analyzed by Kaplan-Meier curve and Cox regression model. Interactive and functional analyses of JAML were performed by LinkedOmics and GeneMANIA databases. TIMER2.0, TISIDB, and GEPIA2 databases were used to investigate the correlation between JAML expression and immune infiltrates. RESULTS JAML expression was decreased in LUAD (P<0.001), and lower JAML expression was associated with worse outcomes of LUAD patients. High JAML expression was the protective factor for overall survival (OS) (HR 0.706, 95% CI 0.500-0.997, P=0.048). Interactive and functional analyses suggested that co-expressed genes with JAML have an obvious link to immune-related pathways. In addition, JAML expression was positively associated with infiltrating levels of CD8+ T cells, CD4+ T cells, B cells, dendritic cells, macrophages, and neutrophils, and had significant correlations with diverse immune marker sets in LUAD. CONCLUSIONS JAML expression was significantly correlated with prognosis and immune infiltrates. These preliminary findings suggested JAML could be considered as a potential prognostic biomarker and therapeutic target for LUAD.
Collapse
Affiliation(s)
- Likui Fang
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Wenfeng Yu
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Guocan Yu
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Fangming Zhong
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| | - Bo Ye
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
67
|
Chen S, Fu A, Lu Y, Lu W, Chen Y, Hong S, Zhou S, Xiang T, Zhang Z, Cai Y. Investigating the genomic alteration improved the clinical outcome of aged patients with lung carcinoma. BMC Genomics 2022; 23:55. [PMID: 35031014 PMCID: PMC8760649 DOI: 10.1186/s12864-021-08289-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/28/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Lung carcinoma is a common geriatric disease. The development of genotype-targeted therapies greatly improved the management of lung carcinoma. However, the treatment for old patients can be more complex than that for young individuals. RESULTS To investigate the benefits of genetic detection for older patients with lung carcinoma, we explored the genomic profiling of 258 patients with more than 55 years using a targeted next generation sequencing, and some of these patients were treated with targeted therapies based on the results of genomic detection. KRAS codon 61 mutations were found in 15.2% KRAS-mutated patients, which tend to be co-existing with other classical activating mutations other than codons 12/13. Acquired EGFR C797S mutations were identified in 2 cases and ERBB2 amplification was identified in 1 case. All these 3 cases developed resistance to EGFR tyrosine kinase inhibitors and showed expected results of their followed therapies. The median progression-free survival and median overall survival of patients treated with molecular targeted therapies were better than those of patients treated with chemoradiotherapy alone. CONCLUSIONS Our findings revealed the specific genomic profiles of patients older than 55 years with lung carcinoma and suggested that these old patients have been benefit from the genetic detection, which helped identify druggable mutations and distinguish resistance mechanisms.
Collapse
Affiliation(s)
- Sixian Chen
- Medical Oncology Department V, Guangdong Nongken Central Hospital, Zhanjiang, 524002, China
| | - Aizhen Fu
- Gynecology Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, China
| | - Yuan Lu
- Medical Oncology Department V, Guangdong Nongken Central Hospital, Zhanjiang, 524002, China
| | - Wei Lu
- Medical Oncology Department V, Guangdong Nongken Central Hospital, Zhanjiang, 524002, China
| | - Yongfeng Chen
- Medical Oncology Department V, Guangdong Nongken Central Hospital, Zhanjiang, 524002, China
| | - Shuiqiang Hong
- Medical Oncology Department V, Guangdong Nongken Central Hospital, Zhanjiang, 524002, China
| | - Suli Zhou
- Medical Oncology Department V, Guangdong Nongken Central Hospital, Zhanjiang, 524002, China
| | | | | | - Yongguang Cai
- Medical Oncology Department V, Guangdong Nongken Central Hospital, Zhanjiang, 524002, China.
| |
Collapse
|
68
|
Duffy MJ, Crown J. Use of Circulating Tumour DNA (ctDNA) for Measurement of Therapy Predictive Biomarkers in Patients with Cancer. J Pers Med 2022; 12:99. [PMID: 35055414 PMCID: PMC8779216 DOI: 10.3390/jpm12010099] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 01/27/2023] Open
Abstract
Biomarkers that predict likely response or resistance to specific therapies are critical in personalising treatment for cancer patients. Such biomarkers are now available for an increasing number of anti-cancer therapies, especially targeted therapy and immunotherapy. The gold-standard method for determining predictive biomarkers requires tumour tissue. Obtaining tissue, however, is not always possible and even if possible, the amount or quality of tissue obtained may be inadequate for biomarker analysis. Tumour DNA, however, can be released into the bloodstream, giving rise to what is referred to as circulating tumour DNA (ctDNA). In contrast to tissue, blood can be obtained from effectively all patients in a minimally invasive and safe manner. Other advantages of blood over tissue for biomarker testing include a shorter turn-around time and an ability to perform serial measurements. Furthermore, blood should provide a more complete profile of mutations present in heterogeneous tumours than a single-needle tissue biopsy. A limitation of blood vis-à-vis tissue, however, is lower sensitivity and, thus, the possibility of missing an actionable mutation. Despite this limitation, blood-based predictive biomarkers, such as mutant EGFR for predicting response to EGFR tyrosine kinase inhibitors in advanced non-small-cell lung cancer and mutant PIK3CA for predicting response to alpelisib in combination with fulvestrant in advanced breast cancer, may be used when tissue is unavailable. Although tissue remains the gold standard for detecting predictive biomarkers, it is likely that several further blood-based assays will soon be validated and used when tissue is unavailable or unsuitable for analysis.
Collapse
Affiliation(s)
- Michael J. Duffy
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, D04 V1W Dublin, Ireland
- UCD Clinical Research Centre, St. Vincent’s University Hospital, D04 T6F4 Dublin, Ireland
| | - John Crown
- Department of Medical Oncology, St Vincent’s University Hospital, D04 T6F4 Dublin, Ireland;
| |
Collapse
|
69
|
Zhou W, Liu Z, Wang Y, Zhang Y, Qian F, Lu J, Wang H, Gu P, Hu M, Chen Y, Yang Z, Zhao R, Lou Y, Han B, Zhang W. The clinicopathological and molecular characteristics of resected EGFR-mutant lung adenocarcinoma. Cancer Med 2022; 11:1299-1309. [PMID: 35023616 PMCID: PMC8894712 DOI: 10.1002/cam4.4543] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Epidermal growth factor receptor (EGFR) mutations were frequently found with concomitant genetic alterations in lung adenocarcinoma (LUAD). This study aimed to investigate the profile of concomitant alterations of EGFR-mutant LUAD ≤3 cm in size and its prognostic effect on recurrence. METHODS From January 2018 to December 2018, patients with resected LUAD ≤3 cm in size in Shanghai Chest Hospital were identified. All patients underwent capture-based targeted next-generation sequencing (NGS) with a panel of 68 lung cancer-related genes and were found with EGFR mutation. Clinicopathological and molecular characteristics and recurrence-free survival (RFS) were analyzed. RESULTS A total of 637 patients were enrolled in this study. The top three frequent co-mutational genes were TP53 (179 of 637, 28.1%), PIK3CA (27 of 637, 4.2%), and ATM (22 of 637, 3.5%). The most common amplified genes were EGFR (37 of 637, 5.8%), followed by CDK4 (37 of 637, 5.8%) and MYC (12 of 637, 2.0%). Only TP53 mutation and EGFR amplification were adverse prognostic factors for RFS (all p < 0.001) in univariate analysis. Multivariable analysis further demonstrated that TP53 mutation and EGFR amplification were independent risk factors for RFS [(hazard ratio (HR) 2.07, 95% confidence interval (CI) 1.07-4.00, p = 0.030; HR 3.09, 95% CI 1.49-6.40, p = 0.002, respectively]. CONCLUSIONS Concomitant TP53 mutation and EGFR amplification were poor prognostic factors for RFS in patients with EGFR-mutant resected LUAD. Our findings provide valuable understanding of the impact of concurrent alterations and implication for better implementation of precision therapy for patients.
Collapse
Affiliation(s)
- Wensheng Zhou
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhichao Liu
- School of Medicine, Shanghai Jiao Tong University, Shanghai, China.,Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanan Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanwei Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Fangfei Qian
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Lu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Wang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ping Gu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Minjuan Hu
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ya Chen
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Zhengyu Yang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Ruiying Zhao
- Department of Pathology, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yuqing Lou
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Baohui Han
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wei Zhang
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
70
|
Recent Advances in the Diagnosis and Management of Multiple Primary Lung Cancer. Cancers (Basel) 2022; 14:cancers14010242. [PMID: 35008406 PMCID: PMC8750235 DOI: 10.3390/cancers14010242] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 12/25/2022] Open
Abstract
With the wide application of computed tomography in lung cancer screening, the incidence of multiple primary lung cancer (MPLC) has been increasingly reported. Despite the established criteria, the differentiation between MPLC and intrapulmonary metastasis remains challenging. Although histologic features are helpful in some circumstances, a molecular analysis is often needed. The application of next-generation sequencing could aid in distinguishing MPLCs from intrapulmonary metastasis, decreasing ambiguity. For MPLC management, surgery with lobectomy is the main operation method. Limited resection does not appear to negatively affect survival, and it is a reasonable alternative. Stereotactic ablative radiotherapy (SABR) has become a standard of care for patients refusing surgery or for those with medically inoperable early-stage lung cancer. However, the efficacy of SABR in MPLC management could only be found in retrospective series. Other local ablation techniques are an emerging alternative for the control of residual lesions. Furthermore, systemic therapies, such as targeted therapy for oncogene-addicted patients, and immunotherapy have shown promising results in MPLC management after resection. In this paper, the recent advances in the diagnosis and management of MPLC are reviewed.
Collapse
|
71
|
Circulating cancer biomarkers: current status and future prospects. Cancer Biomark 2022. [DOI: 10.1016/b978-0-12-824302-2.00009-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
72
|
Liao ZX, Ou DL, Hsieh MJ, Hsieh CC. Synergistic Effect of Repolarization of M2 to M1 Macrophages Induced by Iron Oxide Nanoparticles Combined with Lactate Oxidase. Int J Mol Sci 2021; 22:ijms222413346. [PMID: 34948143 PMCID: PMC8705044 DOI: 10.3390/ijms222413346] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Metabolic reprogramming of tumors with the accompanying reprogramming of glucose metabolism and production of lactate accumulation is required for the subsequent development of tumors. Recent evidence has indicated that tumor-secreted lactate can promote an oncolytic immune microenvironment within the tumor. Furthermore, tumor-secreted lactate directly induces polarization of tumor-supportive M2 macrophages. However, oxidized tumor-secreted lactate in the tumor microenvironment can be exploited. Iron oxide nanoparticles have shown promising anticancer potential by activating tumor-suppressing macrophages. Furthermore, lactate oxidase (LOX) generally oxidizes tumor-secreted lactate and subsequently converts to pyruvate. Particularly, the ratio of M2 macrophages to M1 macrophages corresponds with tumor growth. In this study, we present iron oxide nanoparticles with carboxylic acid combined with LOX that enhance antitumor efficacy as a synergistic effect on the repolarization of tumor-supportive M2 macrophages to tumor-suppressive M1 macrophages in a tumor microenvironment. After M2 macrophages treated with iron oxide nanoparticles were combined with LOX, the ratio of M1 macrophages was significantly greater than iron oxide nanoparticles alone or with LOX alone. It is concluded that the inhibition of cancer cell proliferation by ratio of M1 macrophages was observed. This study suggests that the iron oxide nanoparticles combined with LOX could be potentially used for potentiating immune checkpoint inhibitor therapies for cancer treatment.
Collapse
Affiliation(s)
- Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.-J.H.); (C.-C.H.)
- Correspondence: ; Tel.: +886-7525-2000
| | - Da-Liang Ou
- Graduate Institute of Oncology, College of Medicine, National Taiwan University, Taipei 10051, Taiwan;
- YongLin Institute of Health, National Taiwan University, Taipei 10051, Taiwan
| | - Ming-Jung Hsieh
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.-J.H.); (C.-C.H.)
| | - Chia-Chen Hsieh
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan; (M.-J.H.); (C.-C.H.)
| |
Collapse
|
73
|
Ren W, Li Y, Chen X, Hu S, Cheng W, Cao Y, Gao J, Chen X, Xiong D, Li H, Wang P. RYR2 mutation in non-small cell lung cancer prolongs survival via down-regulation of DKK1 and up-regulation of GS1-115G20.1: A weighted gene Co-expression network analysis and risk prognostic models. IET Syst Biol 2021; 16:43-58. [PMID: 34877784 PMCID: PMC8965387 DOI: 10.1049/syb2.12038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/18/2021] [Accepted: 11/04/2021] [Indexed: 12/24/2022] Open
Abstract
RYR2 mutation is clinically frequent in non-small cell lung cancer (NSCLC) with its function being elusive. We downloaded lung squamous cell carcinoma and lung adenocarcinoma samples from the TCGA database, split the samples into RYR2 mutant group (n = 337) and RYR2 wild group (n = 634), and established Kaplan-Meier curves. The results showed that RYR2 mutant group lived longer than the wild group (p = 0.027). Weighted gene co-expression network analysis (WGCNA) of differentially expressed genes (DEGs) yielded prognosis-related genes. Five mRNAs and 10 lncRNAs were selected to build survival prognostic models with other clinical features. The AUCs of 2 models are 0.622 and 0.565 for predicting survival at 3 years. Among these genes, the AUCs of DKK1 and GS1-115G20.1 expression levels were 0.607 and 0.560, respectively, which predicted the 3-year survival rate of NSCLC sufferers. GSEA identified an association of high DKK1 expression with TP53, MTOR, and VEGF expression. Several target miRNAs interacting with GS1-115G20.1 were observed to show the relationship with the phenotype, treatment, and survival of NSCLC. NSCLC patients with RYR2 mutation may obtain better prognosis by down-regulating DKK1 and up-regulating GS1-115G20.1.
Collapse
Affiliation(s)
- Wenjun Ren
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,Kunming Medical University, Kunming, Yunnan, China.,Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Yongwu Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xi Chen
- Kunming Medical University, Kunming, Yunnan, China.,First Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Sheng Hu
- Kunming Medical University, Kunming, Yunnan, China.,Second Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wanli Cheng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,Kunming Medical University, Kunming, Yunnan, China
| | - Yu Cao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Jingcheng Gao
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Xia Chen
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Da Xiong
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Hongrong Li
- Department of Cardiovascular Surgery, The First People's Hospital of Yunnan Province, Kunming, China.,Department of Cardiovascular Surgery, Affiliated Hospital of Kunming University of Science and Technology, Kunming, China
| | - Ping Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, China.,Kunming Medical University, Kunming, Yunnan, China
| |
Collapse
|
74
|
Lin W, Wang X, Xu Z, Wang Z, Liu T, Cao Z, Feng X, Gao Y, He J. Identification and validation of cellular senescence patterns to predict clinical outcomes and immunotherapeutic responses in lung adenocarcinoma. Cancer Cell Int 2021; 21:652. [PMID: 34872577 PMCID: PMC8647370 DOI: 10.1186/s12935-021-02358-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 11/22/2021] [Indexed: 01/22/2023] Open
Abstract
Background Aging and senescence can alter immune cell fitness and influence the efficacy of lung cancer treatments, especially immunotherapy. However, the correlations between cellular senescence and tumor microenvironment are still not clearly clarified and the value of cellular senescence-related genes in evaluating the immune infiltration and clinical outcomes of lung adenocarcinoma (LUAD) need further investigated. Methods We identified three cellular senescence clusters by NMF algorithm and correlated the cellular senescence clusters with the immune landscape in LUAD patients. A prognostic scoring system was established using random survival forest algorithm and validated in 4 external cohorts. Multivariate Cox regression analysis was performed to evaluate the prognostic value of the scoring system. Expression of LYPD3 was evaluated by immunohistochemistry in LUAD samples. Results Based on the mRNA expression profiles of 278 cellular senescence-related genes, three cellular senescence clusters with distinct prognosis were identified. We characterized three cellular senescence clusters by differences in biological processes, EMT score, expression of immunomodulatory genes, extent of intratumor heterogeneity and response to immunotherapy. Meanwhile, a cellular senescence-related scoring system (CSS) was established and validated as an independent prognostic factor and immunotherapy predictor of LUAD. Patients with low CSS was characterized by prolonged survival time. In response to anti-cancer drugs, patients with low CSS exhibited higher sensitivities to molecular drugs, such as Roscovitine (CDKs inhibitor), Lenaidornide (TNF-α inhibitor), MK2206 (Akt 1/2/3 inhibitor), and especially increased response to anti-PD-1/L1 immunotherapy. Conclusions This study demonstrated the correlations between cellular senescence patterns and tumor immune landscape in LUAD, which enhanced our understanding of the tumor immune microenvironment and provided new insights for improving the outcome of immunotherapy for LUAD patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-021-02358-0.
Collapse
Affiliation(s)
- Weihao Lin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhenyi Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Harbin Medical University, Harbin, China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Tiejun Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zheng Cao
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yibo Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
75
|
Huang Z, Liu Z, Cheng X, Han Z, Li J, Xia T, Gao Y, Wei L. Prognostic significance of HSF2BP in lung adenocarcinoma. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1559. [PMID: 34790765 PMCID: PMC8576644 DOI: 10.21037/atm-21-4935] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 10/13/2021] [Indexed: 02/01/2023]
Abstract
Background Recent studies have demonstrated that upregulation of heat shock transcription factor 2 binding protein (HSF2BP) may promote genomic instability, thereby leading to the development of tumors and also providing a potential target for biological antitumor therapy. However, the role of HSF2BP has so far remained unclear in lung adenocarcinoma (LUAD). Methods To explore the function of HSF2BP in LUAD, we collected transcriptome data for 551 lung samples from The Cancer Genome Atlas (TCGA) database and methylation data for 461 lung samples from the University of California Santa Cruz (UCSC) genome database, in addition to corresponding clinical information. We used bioinformatic approaches to systematically explore the role of HSF2BP in LUAD, including Gene Set Enrichment Analysis (GSEA), coexpression analysis, the Tumor IMmune Estimation Resource (TIMER) tool, Connectivity Map (CMap) analysis, and a meta-analysis involving three Gene Expression Omnibus (GEO) datasets and one TCGA dataset. Results Our results found that upregulation of HSF2BP in LUAD was an independent risk factor for the prognosis and diagnosis of LUAD. GSEA analysis showed HSF2BP expression was associated with vital signaling pathways, including the cell cycle, P53 signaling pathway, and homologous recombination. Coexpression analysis revealed 10 HSF2BP-associated genes, including oncogenes and tumor suppressor genes. Additionally, we found that HSF2BP expression was negatively correlated with B-cell infiltration and had a potential interaction with CD80 in LUAD, which may play an important role in tumor immune escape. Finally, we identified four small-molecule drugs which show promise for LUAD treatment. Conclusions The present study found that elevated HSF2BP posed a threat to prognosis in LUAD patients. HSF2BP might have been involved in tumorigenesis by influencing genomic stability and contributing to tumor immune evasion in the tumor immune microenvironment of LUAD. These findings suggest that HSF2BP may provide a vulnerable target for improving and enhancing treatment of LUAD.
Collapse
Affiliation(s)
- Zhendong Huang
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-Stage Lung Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Zhendong Liu
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Zhengzhou University People's Hospital, People's Hospital of Henan University, Zhengzhou, China
| | - Xingbo Cheng
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Zhengzhou University People's Hospital, People's Hospital of Henan University, Zhengzhou, China
| | - Zhibin Han
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Zhengzhou University People's Hospital, People's Hospital of Henan University, Zhengzhou, China
| | - Jiwei Li
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-Stage Lung Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Tian Xia
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-Stage Lung Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yanzheng Gao
- Department of Surgery of Spine and Spinal Cord, Henan Provincial People's Hospital, Henan International Joint Laboratory of Intelligentized Orthopedics Innovation and Transformation, Henan Key Laboratory for Intelligent Precision Orthopedics, Zhengzhou University People's Hospital, People's Hospital of Henan University, Zhengzhou, China
| | - Li Wei
- Department of Thoracic Surgery, Zhengzhou Key Laboratory for Surgical Treatment for End-Stage Lung Disease, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, China
| |
Collapse
|
76
|
Chen YY, Chang SC, Chang CY, Chang CF, Lai YC, Wei YF, Chen CY. Real-world effectiveness of second-line Afatinib versus chemotherapy for the treatment of advanced lung squamous cell carcinoma in immunotherapy-naïve patients. BMC Cancer 2021; 21:1225. [PMID: 34781919 PMCID: PMC8594240 DOI: 10.1186/s12885-021-08920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 10/25/2021] [Indexed: 11/22/2022] Open
Abstract
Background Limited treatment options exist for relapsed advanced lung squamous cell carcinoma (SCC), leading to poor outcomes compared with adenocarcinoma. This study aimed to investigate the efficacy of second-line afatinib versus chemotherapy in patients with advanced lung SCC who progressed after first-line chemotherapy. Methods In this retrospective, multisite cohort study, we recruited patients with initial locally advanced or metastatic lung SCC from four institutes in Taiwan between June 2014 and October 2020. The primary endpoint of this study was progression-free survival (PFS), and the secondary endpoints were the objective response rate (ORR), disease control rate (DCR), and overall survival (OS). Results The present study enrolled 108 patients: 19 received second-line afatinib, and 89 received second-line chemotherapy. The median ages were 71 and 67 years, respectively. PFS was significantly longer among patients who received afatinib than among those who received chemotherapy (median 4.7 months [95% confidence interval (CI), 0.1–7.5] vs. 2.6 months [95% CI, 0.9–6.7]; hazard ratio (HR) 0.53 [95% CI 0.32–0.88], p = 0.013). Compared with the chemotherapy group, OS was longer in the afatinib group but did not reach significance (median 16.0 months [95% CI, 6.1–22.0] vs. 12.3 months [6.2–33.9]; HR 0.65 [95% CI 0.38–1.11], p = 0.112). Conclusions Afatinib offered a longer PFS and comparable OS to chemotherapy in advanced lung SCC patients in a real-world setting, it may be considered as a 2nd line alternative treatment choice for immunotherapy unfit advanced lung SCC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08920-3.
Collapse
Affiliation(s)
- You-Yi Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin Count, Douliu City, Taiwan, Republic of China.,College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shih-Chieh Chang
- Division of Chest Medicine, Department of Internal Medicine, National Yang Ming Chiao Tung University Hospital, Yilan County, Taiwan
| | - Cheng-Yu Chang
- Division of Pulmonary Medicine, Department of Internal Medicine, Far Eastern Memorial Hospital, and Department of Nursing, Cardinal Tien College of Healthcare and Management, New Taipei City, Taiwan
| | - Chun-Fu Chang
- Division of Chest Medicine, Department of Internal Medicine, National Yang Ming Chiao Tung University Hospital, Yilan County, Taiwan
| | - Yi-Chun Lai
- Division of Chest Medicine, Department of Internal Medicine, National Yang Ming Chiao Tung University Hospital, Yilan County, Taiwan
| | - Yu-Feng Wei
- Department of Internal Medicine, E-Da Cancer Hospital, Kaohsiung, Taiwan.,School of Medicine for International Students, College of Medicine, and Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Chung-Yu Chen
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Taiwan University Hospital Yunlin Branch, Yunlin Count, Douliu City, Taiwan, Republic of China. .,College of Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
77
|
Chen L, Zhang Y, Tian L, Wang C, Deng T, Zheng X, Wang T, Li Z, Tang Z, Meng Q, Sun H, Li L, Ma X, Xu Y. Noncovalent EGFR T790M/L858R inhibitors based on diphenylpyrimidine scaffold: Design, synthesis, and bioactivity evaluation for the treatment of NSCLC. Eur J Med Chem 2021; 223:113626. [PMID: 34218082 DOI: 10.1016/j.ejmech.2021.113626] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/10/2021] [Accepted: 06/03/2021] [Indexed: 01/17/2023]
Abstract
A series of diphenylpyrimidine derivatives bearing a hydroxamic acid group was designed and synthesized as noncovalent EGFRT790M/L858R inhibitors to improve the biological activity and selectivity. One of the most promising compound 9d effectively interfered EGFRT790M/L858R binding with ATP and suppressed the proliferation of H1975 cells with IC50 values of 1.097 nM and 0.09777 μM, respectively. Moreover, compound 9d also not only exhibited a high selective index of 43.4 for EGFRT790M/L858R over the wild-type and 10.9 for H1975 cells over A431, but also exhibited low toxicity against the normal HBE cells (IC50 > 20 μΜ). In addition, the action mechanism validated that compound 9d effectively inhibited cell migration and promoted cell apoptosis by blocking cell cycle at G2/M stage. Furthermore, the target dose-dependently downregulated the expression of p-EGFR and arrested the activation of downstream Akt and ERK in H1975. All these studies provide important clues for the discovery of potent noncovalent EGFRT790M/L858R inhibitors.
Collapse
Affiliation(s)
- Lixue Chen
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Yunhao Zhang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Liangliang Tian
- School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Changyuan Wang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Tuo Deng
- School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Xu Zheng
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Tong Wang
- School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, PR China
| | - Zhen Li
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Zeyao Tang
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Qiang Meng
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Huijun Sun
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China
| | - Lei Li
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China.
| | - Xiaodong Ma
- College of Pharmacy, Dalian Medical University, Dalian, 116044, PR China.
| | - Youjun Xu
- School of Pharmaceutical Engineering, Key Laboratory of Structure-Based Drug Design & Discovery (Ministry of Education), Shenyang Pharmaceutical University, Shenyang, 110016, PR China.
| |
Collapse
|
78
|
Fang L, Yu G, Yu W, Chen G, Ye B. The correlation of WDR76 expression with survival outcomes and immune infiltrates in lung adenocarcinoma. PeerJ 2021; 9:e12277. [PMID: 34707943 PMCID: PMC8496460 DOI: 10.7717/peerj.12277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/19/2021] [Indexed: 01/31/2023] Open
Abstract
Background WD repeat domain 76 (WDR76) is a predicted member of the WD40-repeat-containing domain superfamily and possibly involves in various biological processes, but its function in cancers is poorly characterized. This study aimed to evaluate the role of WDR76 in the prognosis and immune infiltrates of lung adenocarcinoma (LUAD). Methods WDR76 expressions in LUAD tissues and normal tissues were primarily compared by The Cancer Genome Atlas (TCGA) database, and were validated in cohorts from Gene Expression Omnibus (GEO) database. The associations between WDR76 expression and clinicopathologic characteristics were analyzed. Kaplan–Meier and Cox regression analyses were performed to determine the impact of WDR76 expression on survival outcomes. The protein interaction network of WDR76 was built using STRING website. TIMER and GEPIA databases were used to investigate the correlation between WDR76 expression and immune infiltrates. Results WDR76 expression was elevated in LUAD (P < 0.001) and high WDR76 expression was associated with advanced N stage, M stage and pathologic stage. Expectedly, high WDR76 expression significantly correlated with poor survival outcomes and was the independent risk factor for overall survival (OS) (HR 1.468, 95% CI [1.031–2.089], P = 0.033) and disease specific survival (DSS) (HR 1.764, 95% CI [1.095–2.842], P = 0.020). DDB1 and LSH were the important proteins interacting with WDR76. WDR76 expression correlated with CD8+ T cells presence and was also positively associated with levels of inhibitory receptors. Conclusion WDR76 expression was involved in the regulation of immune infiltrates and had predictive value for prognosis in LUAD.
Collapse
Affiliation(s)
- Likui Fang
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guocan Yu
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenfeng Yu
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Gang Chen
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bo Ye
- Department of Thoracic Surgery, Affiliated Hangzhou Chest Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
79
|
Liu L, Xu K, Zhou Y. Development of a novel embryonic germline gene-related prognostic model of lung adenocarcinoma. PeerJ 2021; 9:e12257. [PMID: 34721973 PMCID: PMC8542372 DOI: 10.7717/peerj.12257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/15/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Emerging evidence implicates the correlation of embryonic germline genes with the tumor progress and patient's outcome. However, the prognostic value of these genes in lung adenocarcinoma (LUAD) has not been fully studied. Here we systematically evaluated this issue, and constructed a novel signature and a nomogram associated with embryonic germline genes for predicting the outcomes of lung adenocarcinoma. METHODS The LUAD cohorts retrieved from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) database were used as training set and testing set, respectively. The embryonic germline genes were downloaded from the website https://venn.lodder.dev. Then, the differentially expressed embryonic germline genes (DEGGs) between the tumor and normal samples were identified by limma package. The functional enrichment and pathway analyses were also performed by clusterProfiler package. The prognostic model was constructed by the least absolute shrinkage and selection operator (LASSO)-Cox regression method. Survival and Receiver Operating Characteristic (ROC) analyses were performed to validate the model using training set and four testing GEO datasets. Finally, a prognostic nomogram based on the signature genes was constructed using multivariate regression method. RESULTS Among the identified 269 DEGGs, 249 were up-regulated and 20 were down-regulated. GO and KEGG analyses revealed that these DEGGs were mainly enriched in the process of cell proliferation and DNA damage repair. Then, 103 DEGGs with prognostic value were identified by univariate Cox regression and further filtered by LASSO method. The resulting sixteen DEGGs were included in step multivariate Cox regression and an eleven embryonic germline gene related signature (EGRS) was constructed. The model could robustly stratify the LUAD patients into high-risk and low-risk groups in both training and testing sets, and low-risk patients had much better outcomes. The multi-ROC analysis also showed that the EGRS model had the best predictive efficacy compared with other common clinicopathological factors. The EGRS model also showed robust predictive ability in four independent external datasets, and the area under curve (AUC) was 0.726 (GSE30219), 0.764 (GSE50081), 0.657 (GSE37745) and 0.668 (GSE72094). More importantly, the expression level of some genes in EGRS has a significant correlation with the progression of LUAD clinicopathology, suggesting these genes might play an important role in the progression of LUAD. Finally, based on EGRS genes, we built and calibrated a nomogram for conveniently evaluating patients' outcomes.
Collapse
Affiliation(s)
- Linjun Liu
- Department of Biotechnology, College of Life Science & Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| | - Ke Xu
- NHC Key Laboratory of Biosafety, China CDC, National Institute for Viral Disease Control and Prevention, Beijing, China
| | - Yubai Zhou
- Department of Biotechnology, College of Life Science & Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| |
Collapse
|
80
|
Liang N, Liu L, Huang C, Liu H, Guo C, Li J, Wang W, Li N, Lin R, Wang T, Ding L, Mao L, Li S. Transcriptomic and Mutational Analysis Discovering Distinct Molecular Characteristics Among Chinese Thymic Epithelial Tumor Patients. Front Oncol 2021; 11:647512. [PMID: 34568003 PMCID: PMC8456088 DOI: 10.3389/fonc.2021.647512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 05/24/2021] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Thymic epithelial tumors (TETs) are malignancies arising from the epithelium of the thymic gland, rare but with relatively favorable prognosis. TETs have different pathological subtypes: thymomas and thymic carcinoma, and they show different clinical characteristics regarding prognosis, pathology, and molecular profiles, etc. Although some studies have investigated the pathogenesis of TETs, more molecular data is still needed to further understand the underlying mechanisms among different TETs subtypes and populations. METHODS In this study, we performed targeted gene panel sequencing and whole transcriptome sequencing on the tumor tissues from 27 Chinese TET patients, including 24 thymomas (A, AB, and B subtypes) and 3 thymic squamous cell carcinomas. We analyzed the genetic variations and differentially expressed genes among multiple TET subtypes. Moreover, we compared our data with the published The Cancer Genome Atlas (TCGA) TET data on both the genetic and transcriptomic levels. RESULTS Compared with the TCGA TET genomic data, we found that NF1 and ATM were the most frequently mutated genes (each with a frequency of 11%, 3/27). These mutations were not mutually exclusive, since one B1 thymoma showed mutations of both genes. The GTF2I mutation was mainly enriched in subtype A and AB thymomas, consistent with the previous reports. RNA-seq results unveiled that the genes related to thymus development (FGF7, FGF10 and CLDN4) were highly expressed in certain TET subtypes, implicating that the developmental process of thymus might be linked to the tumorigenesis of these subtypes. We found high expression of CD274 (PD-L1) in B2 and B3 thymoma samples, and validated its expression using immunohistochemistry (IHC). Based on the expression profiles, we further established a machine learning model to predict the myasthenia gravis status of TET patients and achieved 90% sensitivity and 70.6% specificity in the testing cohort. CONCLUSION This study provides the first genomic and transcriptomic analysis of a Chinese TET cohort. The high expression of genes involved in thymus developmental processes suggests the potential association between tumorigenesis of TETs and dysregulation of developmental pathways. The high expression of PD-L1 in B2 and B3 thymomas support the potential application of immunotherapy on certain thymoma subtypes.
Collapse
Affiliation(s)
- Naixin Liang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Lei Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Cheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Ji Li
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Weiwei Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Nan Li
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Rui Lin
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Tao Wang
- Department of R&D, Hangzhou Repugene Technology Co., Ltd., Hangzhou, China
| | - Lieming Ding
- Department of Medical, Betta Pharmaceuticals Co., Ltd., Hangzhou, China
| | - Li Mao
- Department of Medical, Betta Pharmaceuticals Co., Ltd., Hangzhou, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
81
|
Kim SY, Kim SM, Lim S, Lee JY, Choi SJ, Yang SD, Yun MR, Kim CG, Gu SR, Park C, Park AY, Lim SM, Heo SG, Kim H, Cho BC. Modeling Clinical Responses to Targeted Therapies by Patient-Derived Organoids of Advanced Lung Adenocarcinoma. Clin Cancer Res 2021; 27:4397-4409. [PMID: 34083237 PMCID: PMC9401503 DOI: 10.1158/1078-0432.ccr-20-5026] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/23/2021] [Accepted: 05/21/2021] [Indexed: 01/07/2023]
Abstract
PURPOSE Patient-derived organoids (PDO) of lung cancer has been recently introduced, reflecting the genomic landscape of lung cancer. However, clinical relevance of advanced lung adenocarcinoma organoids remains unknown. Here, we examined the ability of PDOs to predict clinical responses to targeted therapies in individual patients and to identify effective anticancer therapies for novel molecular targets. EXPERIMENTAL DESIGN Eighty-four organoids were established from patients with advanced lung adenocarcinoma. Formalin-fixed, paraffin-embedded tumor specimens from corresponding patients were analyzed by whole-exome sequencing (n = 12). Organoids were analyzed by whole-exome sequencing (n = 61) and RNA sequencing (n = 55). Responses to mono or combination targeted therapies were examined in organoids and organoid-derived xenografts. RESULTS PDOs largely retained somatic alterations including driver mutations of matching patient tumors. PDOs were able to recapitulate progression-free survival and objective responses of patients with non-small cell lung cancer receiving clinically approved tyrosine kinase inhibitors. PDOs recapitulated activity of therapeutic strategies under clinical investigation. YUO-071 harboring an EGFR exon 19 deletion and a BRAF G464A mutation and the matching patient responded to dabrafenib/trametinib combination therapy. YUO-004 and YUO-050 harboring an EGFR L747P mutation was sensitive to afatinib, consistent with the response in the matching patient of YUO-050. Furthermore, we utilized organoids to identify effective therapies for novel molecular targets by demonstrating the efficacy of poziotinib against ERBB2 exon 20 insertions and pralsetinib against RET fusions. CONCLUSIONS We demonstrated translational relevance of PDOs in advanced lung adenocarcinoma. PDOs are an important diagnostic tool, which can assist clinical decision making and accelerate development of therapeutic strategies.
Collapse
Affiliation(s)
- Seok-Young Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sang-Min Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea
| | - Sumin Lim
- Interpark Bio Convergence Corp., Seoul, Korea
| | - Ji Yeon Lee
- Interpark Bio Convergence Corp., Seoul, Korea
| | - Su-Jin Choi
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - San-Duk Yang
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Mi Ran Yun
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Chang Gon Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seo Rin Gu
- Interpark Bio Convergence Corp., Seoul, Korea
| | - Chaewon Park
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - A-Young Park
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea
| | - Seong Gu Heo
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Korea.
| | - HyunKi Kim
- Department of Pathology, Yonsei University College of Medicine, Seoul, Korea.
| | - Byoung Chul Cho
- Division of Medical Oncology, Yonsei University College of Medicine, Yonsei Cancer Center, Seoul, Korea.
| |
Collapse
|
82
|
Liao ZX, Kempson IM, Hsieh CC, Tseng SJ, Yang PC. Potential therapeutics using tumor-secreted lactate in nonsmall cell lung cancer. Drug Discov Today 2021; 26:2508-2514. [PMID: 34325010 DOI: 10.1016/j.drudis.2021.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/03/2021] [Accepted: 07/19/2021] [Indexed: 01/13/2023]
Abstract
Targeted-therapy failure in treating nonsmall cell lung cancer (NSCLC) frequently occurs because of the emergence of drug resistance and genetic mutations. The same mutations also result in aerobic glycolysis, which further antagonizes outcomes by localized increases in lactate, an immune suppressor. Recent evidence indicates that enzymatic lowering of lactate can promote an oncolytic immune microenvironment within the tumour. Here, we review factors relating to lactate expression in NSCLC and the utility of lactate oxidase (LOX) for governing therapeutic delivery, its role in lactate oxidation and turnover, and relationships between lactate depletion and immune cell populations. The lactate-rich characteristic of NSCLC provides an exploitable property to potentially improve NSCLC outcomes and design new therapeutic strategies to integrate with conventional therapies.
Collapse
Affiliation(s)
- Zi-Xian Liao
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ivan M Kempson
- Future Industries Institute, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Chia-Chen Hsieh
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - S-Ja Tseng
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 10051, Taiwan; National Taiwan University YongLin Scholar, YongLin Institute of Health, National Taiwan University, Taipei 10051, Taiwan.
| | - Pan-Chyr Yang
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei 10051, Taiwan; Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
83
|
Sun CY, Li YZ, Cao D, Zhou YF, Zhang MY, Wang HY. Rapamycin and trametinib: a rational combination for treatment of NSCLC. Int J Biol Sci 2021; 17:3211-3223. [PMID: 34421360 PMCID: PMC8375233 DOI: 10.7150/ijbs.62752] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/11/2021] [Indexed: 02/02/2023] Open
Abstract
Mammalian target of rapamycin (mTOR) is one of the most commonly activated pathways in human cancers, including lung cancer. Targeting mTOR with molecule inhibitors is considered as a useful therapeutic strategy. However, the results obtained from the clinical trials with the inhibitors so far have not met the original expectations, largely because of the drug resistance. Thus, combined or multiple drug therapy can bring about more favorable clinical outcomes. Here, we found that activation of ERK pathway was responsible for rapamycin drug resistance in non-small-cell lung cancer (NSCLC) cells. Accordingly, rapamycin-resistant NSCLC cells were more sensitive to ERK inhibitor (ERKi), trametinib, and in turn, trametinib-resistant NSCLC cells were also susceptible to rapamycin. Combining rapamycin with trametinib led to a potent synergistic antitumor efficacy, which induced G1-phase cycle arrest and apoptosis. In addition, rapamycin synergized with another ERKi, MEK162, and in turn, trametinib synergized with other mTORi, Torin1 and OSI-027. Mechanistically, rapamycin in combination with trametinib resulted in a greater decrease of phosphorylation of AKT, ERK, mTOR and 4EBP1. In xenograft mouse model, co-administration of rapamycin and trametinib caused a substantial suppression in tumor growth without obvious drug toxicity. Overall, our study identifies a reasonable combined strategy for treatment of NSCLC.
Collapse
Affiliation(s)
- Chao-Yue Sun
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China 510060
| | - Yi-Zhuo Li
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China 510060
| | - Di Cao
- Department of Medical Imaging, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China 510060
| | - Yu-Feng Zhou
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China 510060
| | - Mei-Yin Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China 510060
| | - Hui-Yun Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 651 Dongfeng East Road, Guangzhou, China 510060
| |
Collapse
|
84
|
Wang L, Liu Z, Liu L, Guo C, Jiao D, Li L, Zhao J, Han X, Sun Y. CELF2 is a candidate prognostic and immunotherapy biomarker in triple-negative breast cancer and lung squamous cell carcinoma: A pan-cancer analysis. J Cell Mol Med 2021; 25:7559-7574. [PMID: 34288370 PMCID: PMC8335674 DOI: 10.1111/jcmm.16791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/26/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
CUGBP Elav‐like family member 2(CELF2) plays crucial roles in the development and activation of T cell. However, the impacts of CELF2 on tumour‐infiltrating immune cells (TIICs) and clinical outcomes of tumours remain unclear. In this study, we found that elevated CELF2 expression was markedly correlated with prolonged survival in multiple tumours, particularly in breast and lung cancers. Notably, CELF2 only impacted the prognosis of triple‐negative breast cancer (TNBC) with lymph node metastasis. Further investigation showed CELF2 expression was positively correlated with the infiltration abundance of dendritic cells (DCs), CD8+ T cells and neutrophils in breast invasive carcinoma (BRCA) and DCs in lung squamous cell carcinoma (LUSC). CELF2 also had strong correlations with markers of diverse TIICs such as T cells, tumour‐associated macrophages and DCs in BRCA and LUSC. Importantly, CELF2 was significantly associated with plenty of immune checkpoint molecules (ICMs) and outperformed five prevalent biomarkers including PD‐1, PD‐L1, CTLA‐4, CD8 and tumour mutation burden in predicting immunotherapeutic responses. Immunohistochemistry also revealed lower protein levels of CELF2 in TNBC and LUSC compared to normal tissues, and patients with high expression showed significantly prolonged prognosis. In conclusion, we demonstrated that increased CELF2 expression was closely related to better prognosis and superior TIIC infiltration and ICM expression, particularly in BRCA and LUSC. CELF2 also performed well in evaluating the immunotherapeutic efficacy, suggesting CELF2 might be a promising biomarker.
Collapse
Affiliation(s)
- Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China.,Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lifeng Li
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China.,Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jie Zhao
- Internet Medical and System Applications of National Engineering Laboratory, Zhengzhou, China.,Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuling Sun
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Hepatobiliary and Pancreatic Diseases, Zhengzhou University, Zhengzhou, China.,Zhengzhou Basic and Clinical Key Laboratory of Hepatopancreatobiliary Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
85
|
Fang Y, Wang Y, Zeng D, Zhi S, Shu T, Huang N, Zheng S, Wu J, Liu Y, Huang G, Xue Y, Bin J, Liao Y, Shi M, Liao W. Comprehensive analyses reveal TKI-induced remodeling of the tumor immune microenvironment in EGFR/ALK-positive non-small-cell lung cancer. Oncoimmunology 2021; 10:1951019. [PMID: 34345533 PMCID: PMC8288040 DOI: 10.1080/2162402x.2021.1951019] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Tyrosine kinase inhibitors (TKI) play a pivotal role in the treatment of non-small-cell lung cancer (NSCLC) with mutations in epidermal growth factor receptor (EGFR) and rearrangements in anaplastic lymphoma kinase (ALK). However, the influences of TKIs on the tumor immune microenvironment (TIM), especially dynamic changes of responders, have not yet been fully elucidated. Therefore, RNA sequencing and whole-exome sequencing were performed on EGFR/ALK-positive NSCLC samples before and after TKI treatment. In combination with neoantigen and mutational-load estimations, xCell and single-sample gene set enrichment analysis (ssGSEA) were used to assess tumor immune-cell infiltration and activity. Furthermore, weighted-gene correlation network analysis and the bottleneck method were used to identify the hub genes that affected treatment-related immune responses. We found that TKI treatment remodeled the TIM in treatment-responsive samples. Profound increases in the rate of anti-tumor cell infiltration and cytotoxicity was observed following TKI treatment, while antigen presentation was limited in ALK-rearranged samples. However, no significant change in anti-tumor cell infiltration or cytotoxicity was found between pre-treatment and post-progression samples. Subsequently, we found that neurofilament heavy (NEFH) mutations were enriched in samples after TKI treatment and were associated with reduced neutrophil infiltration. The cytotoxicity of EGFR-mutant NSCLCs with co-driver TP53 mutation and ALK-rearranged samples with wild-type TP53 seems to be more easily induced by TKI. Finally, the immune-associated score generated by hub genes was positively correlated with immune infiltration, immune activation, and a favorable prognosis. In conclusion, the dynamic changes in the TIM provide clues to drug selection and timing for TKI-immunotherapy combinations.
Collapse
Affiliation(s)
- Yisheng Fang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yuanyuan Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Dongqiang Zeng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Shimeng Zhi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Tingting Shu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Na Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Siting Zheng
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianhua Wu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yantan Liu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Genjie Huang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yichen Xue
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianping Bin
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yulin Liao
- Department of Cardiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Min Shi
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
86
|
You H, Teng M, Gao CX, Yang B, Hu S, Wang T, Dong Y, Chen S. Construction of a Nomogram for Predicting Survival in Elderly Patients With Lung Adenocarcinoma: A Retrospective Cohort Study. Front Med (Lausanne) 2021; 8:680679. [PMID: 34336886 PMCID: PMC8316725 DOI: 10.3389/fmed.2021.680679] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/21/2021] [Indexed: 12/20/2022] Open
Abstract
Elderly patients with non-small-cell lung cancer (NSCLC) exhibit worse reactions to anticancer treatments. Adenocarcinoma (AC) is the predominant histologic subtype of NSCLC, is diverse and heterogeneous, and shows different outcomes and responses to treatment. The aim of this study was to establish a nomogram that includes the important prognostic factors based on the Surveillance, Epidemiology, and End Results (SEER) database from 2010 to 2015. We collected 53,694 patients of older than 60 who have been diagnosed with lung AC from the SEER database. Univariate and multivariate Cox regression analyses were used to screen the independent prognostic factors, which were used to construct a nomogram for predicting survival rates in elderly AC patients. The nomogram was evaluated using the concordance index (C-index), calibration curves, net reclassification index (NRI), integrated discrimination improvement (IDI), and decision-curve analysis (DCA). Elderly AC patients were randomly divided into a training cohort and validation cohort. The nomogram model included the following 11 prognostic factors: age, sex, race, marital status, tumor site, histologic grade, American Joint Committee for Cancer (AJCC) stage, surgery status, radiotherapy status, chemotherapy status, and insurance type. The C-indexes of the training and validation cohorts for cancer-specific survival (CSS) (0.832 and 0.832, respectively) based on the nomogram model were higher than those of the AJCC model (0.777 and 0.774, respectively). The CSS discrimination performance as indicated by the AUC was better in the nomogram model than the AJCC model at 1, 3, and 5 years in both the training cohort (0.888 vs. 0.833, 0.887 vs. 0.837, and 0.876 vs. 0.830, respectively) and the validation cohort (0.890 vs. 0.832, 0.883 vs. 0.834, and 0.880 vs. 0.831, respectively). The predicted CSS probabilities showed optimal agreement with the actual observations in nomogram calibration plots. The NRI, IDI, and DCA for the 1-, 3-, and 5-year follow-up examinations verified the clinical usability and practical decision-making effects of the new model. We have developed a reliable nomogram for determining the prognosis of elderly AC patients, which demonstrated excellent discrimination and clinical usability and more accurate prognosis predictions. The nomogram may improve clinical decision-making and prognosis predictions for elderly AC patients.
Collapse
Affiliation(s)
- Haisheng You
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mengmeng Teng
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Chun Xia Gao
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bo Yang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Sasa Hu
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Taotao Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Siying Chen
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
87
|
Chen Y, Wen S, Wu Y, Shi L, Xu X, Shen B. Efficacy and safety of first-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) combined with chemotherapy or antiangiogenic therapy as first-line treatment in patients with EGFR-mutant non-small cell lung cancer: A systematic review and meta-analysis. Crit Rev Oncol Hematol 2021; 163:103393. [PMID: 34119658 DOI: 10.1016/j.critrevonc.2021.103393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/16/2021] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
OBJECTIVE We conducted a meta-analysis to synthesize the results of published randomized controlled trials conducted to evaluate the efficacy and safety of epidermal growth factor receptor - tyrosine kinase inhibitors (EGFR-TKIs) combined with chemotherapy or antiangiogenic therapy. METHODS PubMed, EMBASE, Cochrane Library and ClinicalTrials.gov databases were searched and literatures from international conferences were read to identify eligible studies. The primary endpoints were objective response rate (ORR) and progression free survival (PFS). The secondary endpoints were disease control rate (DCR), overall survival (OS) and treatment-emergent adverse events (TEAEs). RESULTS 10 studies, all on first-generation EGFR-TKI combination therapy, involving 2367 patients were included. Combination therapy resulted in significant improvements in ORR (RR: 1.11, 95% CI: 1.06-1.17, P < 0.001), DCR (RR: 1.03, 95% CI: 1.01-1.05, P = 0.007), PFS (HR: 0.56, 95% CI: 0.51-0.62, P < 0.001), OS (HR: 0.74, 95% CI: 0.64-0.84, P = 0.002) over monotherapy. This improvement was more apparent in the EGFR-TKIs combination chemotherapy group, and indirect comparisons revealed that EGFR-TKIs combined with chemotherapy appeared to be superior to combined with antiangiogenic therapy in ORR (RR: 1.19, 95% CI: 1.07-1.32), DCR (RR: 1.04, 95% CI: 1.02-1.08), and OS (HR: 0.79, 95% CI: 0.66-0.96). Of additional concern is the increased incidence of TEAEs in combination therapy. CONCLUSION As a first-line treatment for patients with EGFR-mutated advanced non-small cell lung cancer (NSCLC), first-generation EGFR-TKIs combined with chemotherapy or antiangiogenic therapy was associated with significant improvement in ORR, DCR, PFS and OS compared with monotherapy.
Collapse
Affiliation(s)
- Yuzhong Chen
- The Affilated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute Of Cancer Research, 42 Baiziting, Nanjing, Jiangsu, 210009, China
| | - Shaodi Wen
- The Affilated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute Of Cancer Research, 42 Baiziting, Nanjing, Jiangsu, 210009, China
| | - Yuan Wu
- The Affilated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute Of Cancer Research, 42 Baiziting, Nanjing, Jiangsu, 210009, China
| | - Lin Shi
- The Affilated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute Of Cancer Research, 42 Baiziting, Nanjing, Jiangsu, 210009, China
| | - Xiaoyue Xu
- The Affilated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute Of Cancer Research, 42 Baiziting, Nanjing, Jiangsu, 210009, China
| | - Bo Shen
- The Affilated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital & Jiangsu Institute Of Cancer Research, 42 Baiziting, Nanjing, Jiangsu, 210009, China.
| |
Collapse
|
88
|
Non-Small Cell Lung Cancer Harboring Concurrent EGFR Genomic Alterations: A Systematic Review and Critical Appraisal of the Double Dilemma. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2020016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The molecular pathways which promote lung cancer cell features have been broadly explored, leading to significant improvement in prognostic and diagnostic strategies. Epidermal growth factor receptor (EGFR) tyrosine kinase inhibitors (TKIs) have dramatically altered the treatment approach for patients with metastatic non-small cell lung cancer (NSCLC). Latest investigations by using next-generation sequencing (NGS) have shown that other oncogenic driver mutations, believed mutually exclusive for decades, could coexist in EGFR-mutated NSCLC patients. However, the exact clinical and pathological role of concomitant genomic aberrations needs to be investigated. In this systematic review, we aimed to summarize the recent data on the oncogenic role of concurrent genomic alterations, by specifically evaluating the characteristics, the pathological significance, and their potential impact on the treatment approach.
Collapse
|
89
|
What Is New in Biomarker Testing at Diagnosis of Advanced Non-Squamous Non-Small Cell Lung Carcinoma? Implications for Cytology and Liquid Biopsy. JOURNAL OF MOLECULAR PATHOLOGY 2021. [DOI: 10.3390/jmp2020015] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The discovery and clinical validation of biomarkers predictive of the response of non-squamous non-small-cell lung carcinomas (NS-NSCLC) to therapeutic strategies continue to provide new data. The evaluation of novel treatments is based on molecular analyses aimed at determining their efficacy. These tests are increasing in number, but the tissue specimens are smaller and smaller and/or can have few tumor cells. Indeed, in addition to tissue samples, complementary cytological and/or blood samples can also give access to these biomarkers. To date, it is recommended and necessary to look for the status of five genomic molecular biomarkers (EGFR, ALK, ROS1, BRAFV600, NTRK) and of a protein biomarker (PD-L1). However, the short- and more or less long-term emergence of new targeted treatments of genomic alterations on RET and MET, but also on others’ genomic alteration, notably on KRAS, HER2, NRG1, SMARCA4, and NUT, have made cellular and blood samples essential for molecular testing. The aim of this review is to present the interest in using cytological and/or liquid biopsies as complementary biological material, or as an alternative to tissue specimens, for detection at diagnosis of new predictive biomarkers of NS-NSCLC.
Collapse
|
90
|
Zhang R, Liu P, Zhang X, Ye Y, Yu J. Lin28A promotes the proliferation and stemness of lung cancer cells via the activation of mitogen-activated protein kinase pathway dependent on microRNA let-7c. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:982. [PMID: 34277782 PMCID: PMC8267304 DOI: 10.21037/atm-21-2124] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 06/04/2021] [Indexed: 12/20/2022]
Abstract
Background Among patients with lung cancer, metastatic and relapsed cases account for the largest proportion of disease-associated deaths. Tumor metastasis and relapse are believed to originate from cancer stem cells (CSCs), which have the capacity to be highly proliferative and invasive. In our previous studies, we established a conditional basement membrane extract-based (BME-based) 3-dimensional (3D) culture system to mimic the tumor growth environment in vivo and further amplified lung cancer stem cells (LCSCs) in our system. However, the molecular mechanisms of LCSC amplification and development in our 3D culture system have not been fully uncovered. Method We established the conditional 3D culture system to amplify LCSCs in other lung cancer cell lines, followed by examining the expression of Lin28A and let-7 microRNAs in them. We also explored the expression of Lin28A and let-7 microRNAs in LCSCs from clinical lung cancer tissue samples and even analyzed the correlation of Lin28A/let-7c and patients’ survival outcomes. We further constructed A549 cells either knockdown of Lin28A or overexpression of let-7c, followed by investigating stemness marker gene expression, and stemness phenotypes including mammosphere culture, cell migration and invasion in vitro, as well as tumorigenicity in vivo. Results Here, we observed that Lin28A/let-7c was dysregulated in LCSCs in both the 3D culture system and lung cancer tissues. Further, the abnormal expression of Lin28A/let-7c was correlated with poor survival outcomes. Via the construction of A549 cells with let-7c over-expression, we found that let-7c inhibited the maintenance of LCSC properties, while the results of Lin28A knockdown showed that Lin28A played a critical role in the enrichment and proliferation of LCSCs via mitogen-activated protein kinase (MAPK) signaling pathway. Importantly, we found that LCSCs with knockdown of Lin28A or over-expression of let-7c exhibited inhibited carcinogenesis and disrupted expansion in vivo. Conclusions Our study uncovered the functions and mechanisms of the Lin28A/let-7c/MAPK signaling pathway in promoting the proliferation and cancer stemness of LCSCs, which might be a potential therapeutic target for reducing and even eliminating LCSCs in the future.
Collapse
Affiliation(s)
- Rui Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Pengpeng Liu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Xiao Zhang
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Yingnan Ye
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Jinpu Yu
- Cancer Molecular Diagnostics Core, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Key Laboratory of Cancer Immunology and Biotherapy, Tianjin, China.,Tianjin's Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
91
|
Abnormal Expression and Prognostic Significance of Bone Morphogenetic Proteins and Their Receptors in Lung Adenocarcinoma. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6663990. [PMID: 34036102 PMCID: PMC8123996 DOI: 10.1155/2021/6663990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 03/15/2021] [Accepted: 04/17/2021] [Indexed: 12/24/2022]
Abstract
Background Lung adenocarcinoma (LUAD) is one of the most life-threatening malignancies. The crucial role of bone morphogenetic protein (BMP)/BMP receptors reveals the significance of exploring BMP protein-related prognostic predictors in LUAD. Methods The mRNA expression of BMPs/BMP receptors was investigated in LUAD and normal lung tissues. Gene Ontology and the Kyoto Encyclopedia of Genes and Genomes pathway analyses were performed, and the prognostic values were assessed by Kaplan-Meier Plotter. Univariate and multivariate Cox regression analyses were executed to ascertain the correlation between overall survival (OS) and the mRNA expression of BMPs/BMP receptors. The receiver operating characteristic (ROC) curves were implemented to evaluate the predictive power of the prognostic model. Then, the prognostic model was validated in the GEO cohort. Furthermore, a nomogram comprising the prognostic model was established. Results The mRNA expression of BMP2/5/6/R2, ACVRL1, and TGFBR2/3 was lower in LUAD tissues than in normal lung tissues. High expression of BMP2/4/5/R1A/R2, ACVR1/2A/L1, and TGFBR1/3 was associated with better OS, while BMP7 and ACVR1C/2B were associated with poorer OS. Three genes (BMP5, BMP7, and ACVR2A) were screened by univariate and multivariate Cox regression analyses to develop the prognostic model in TCGA. Significantly better survival was observed in LUAD patients with a low-risk score than those with a high-risk score. The ROC curves confirmed the good performance of the prognostic model, then, the prognostic model was validated in the GSE31210 dataset. A nomogram was constructed (AUCs>0.7). And hub genes were further evaluated, including gene set enrichment analysis and immune cell infiltration. Conclusions BMP5, BMP7, and ACVR2A are potential therapeutic targets in LUAD. The three-gene prognostic model and the nomogram are reliable tools for predicting the OS of LUAD patients.
Collapse
|
92
|
Choong WK, Sung TY. Somatic mutation subtypes of lung adenocarcinoma in East Asian reveal divergent biological characteristics and therapeutic vulnerabilities. iScience 2021; 24:102522. [PMID: 34142036 PMCID: PMC8188494 DOI: 10.1016/j.isci.2021.102522] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/25/2021] [Accepted: 05/04/2021] [Indexed: 12/25/2022] Open
Abstract
Lung adenocarcinoma (LUAD) patients in East Asia predominantly harbor oncogenic EGFR mutations. However, there remains a limited understanding of the biological characteristics and therapeutic vulnerabilities of the concurrent mutations of EGFR and other genes in LUAD. Here, we performed comprehensive bioinformatics analyses on 88 treatment-naïve East Asian LUAD patients. Based on somatic mutation clustering, we identified three somatic mutation subtypes: EGFR + TP53 co-mutation, EGFR mutation, and multiple-gene mutation. A proteogenomic analysis among subtypes revealed varying degrees of dysregulation in cell-cycle-related and immune-related processes. An immune-characteristic analysis revealed higher PDL1 protein expression in the EGFR + TP53 co-mutation subtype than in the EGFR mutation subtype, which may affect the therapeutic efficacy of anti-PD-L1 therapy. Moreover, integrating known and potential therapeutic target analysis reveals therapeutic vulnerabilities of specific subtypes and nominates candidate biomarkers for therapeutic intervention. This study provides new biological insight and therapeutic opportunities with respect to EGFR-mutant LUAD subtypes. Comprehensive clustering analysis reveals three somatic mutation subtypes Prognosis of EGFRmut/TP53mut subtype is worse than EGFRmut subtype EGFRmut/TP53mut subtype shows IFN signaling and antigen processing pathway signatures Proteome analysis identifies druggable proteins and candidates for drug repositioning
Collapse
Affiliation(s)
- Wai-Kok Choong
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Taipei, 115, Taiwan
| |
Collapse
|
93
|
Kitata RB, Choong WK, Tsai CF, Lin PY, Chen BS, Chang YC, Nesvizhskii AI, Sung TY, Chen YJ. A data-independent acquisition-based global phosphoproteomics system enables deep profiling. Nat Commun 2021; 12:2539. [PMID: 33953186 PMCID: PMC8099862 DOI: 10.1038/s41467-021-22759-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 03/29/2021] [Indexed: 01/07/2023] Open
Abstract
Phosphoproteomics can provide insights into cellular signaling dynamics. To achieve deep and robust quantitative phosphoproteomics profiling for minute amounts of sample, we here develop a global phosphoproteomics strategy based on data-independent acquisition (DIA) mass spectrometry and hybrid spectral libraries derived from data-dependent acquisition (DDA) and DIA data. Benchmarking the method using 166 synthetic phosphopeptides shows high sensitivity (<0.1 ng), accurate site localization and reproducible quantification (~5% median coefficient of variation). As a proof-of-concept, we use lung cancer cell lines and patient-derived tissue to construct a hybrid phosphoproteome spectral library covering 159,524 phosphopeptides (88,107 phosphosites). Based on this library, our single-shot streamlined DIA workflow quantifies 36,350 phosphosites (19,755 class 1) in cell line samples within two hours. Application to drug-resistant cells and patient-derived lung cancer tissues delineates site-specific phosphorylation events associated with resistance and tumor progression, showing that our workflow enables the characterization of phosphorylation signaling with deep coverage, high sensitivity and low between-run missing values.
Collapse
Affiliation(s)
| | - Wai-Kok Choong
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, 99354, USA
| | - Pei-Yi Lin
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
| | - Bo-Shiun Chen
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Yun-Chien Chang
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - Alexey I Nesvizhskii
- Department of Computational Medicine and Bioinformatics, and Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, 48109, USA
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Taipei, 11529, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, 11529, Taiwan.
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
| |
Collapse
|
94
|
Hofman P. Next-Generation Sequencing with Liquid Biopsies from Treatment-Naïve Non-Small Cell Lung Carcinoma Patients. Cancers (Basel) 2021; 13:2049. [PMID: 33922637 PMCID: PMC8122958 DOI: 10.3390/cancers13092049] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/11/2021] [Accepted: 04/20/2021] [Indexed: 12/16/2022] Open
Abstract
Recently, the liquid biopsy (LB), a non-invasive and easy to repeat approach, has started to compete with the tissue biopsy (TB) for detection of targets for administration of therapeutic strategies for patients with advanced stages of lung cancer at tumor progression. A LB at diagnosis of late stage non-small cell lung carcinoma (NSCLC) is also being performed. It may be asked if a LB can be complementary (according to the clinical presentation or systematics) or even an alternative to a TB for treatment-naïve advanced NSCLC patients. Nucleic acid analysis with a TB by next-generation sequencing (NGS) is gradually replacing targeted sequencing methods for assessment of genomic alterations in lung cancer patients with tumor progression, but also at baseline. However, LB is still not often used in daily practice for NGS. This review addresses different aspects relating to the use of LB for NGS at diagnosis in advanced NSCLC, including its advantages and limitations.
Collapse
Affiliation(s)
- Paul Hofman
- Laboratory of Clinical and Experimental Pathology, Université Côte d’Azur, CHU Nice, FHU OncoAge, Pasteur Hospital, 30 avenue de la voie romaine, BP69, CEDEX 01, 06001 Nice, France; ; Tel.: +33-4-92-03-88-55 or +33-4-92-03-87-49; Fax: +33-4-92-88-50
- Hospital-Integrated Biobank BB-0033-00025, Université Côte d’Azur, CHU Nice, FHU OncoAge, 06001 Nice, France
| |
Collapse
|
95
|
Yokota E, Iwai M, Yukawa T, Yoshida M, Naomoto Y, Haisa M, Monobe Y, Takigawa N, Guo M, Maeda Y, Fukazawa T, Yamatsuji T. Clinical application of a lung cancer organoid (tumoroid) culture system. NPJ Precis Oncol 2021; 5:29. [PMID: 33846488 PMCID: PMC8042017 DOI: 10.1038/s41698-021-00166-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/24/2021] [Indexed: 12/25/2022] Open
Abstract
Despite high expectations for lung tumoroids, they have not been applied in the clinic due to the difficulty of their long-term culture. Here, however, using AO (airway organoid) media developed by the Clevers laboratory, we succeeded in generating 3 lung tumoroid lines for long-term culture (>13 months) from 41 lung cancer cases (primary or metastatic). Use of nutlin-3a was key to selecting lung tumoroids that harbor mutant p53 in order to eliminate normal lung epithelial organoids. Next-generation sequencing (NGS) analysis indicated that each lung tumoroid carried BRAFG469A, TPM3-ROS1 or EGFRL858R/RB1E737*, respectively. Targeted therapies using small molecule drugs (trametinib/erlotinib for BRAFG469A, crizotinib/entrectinib for TPM3-ROS1 and ABT-263/YM-155 for EGFRL858R/RB1E737*) significantly suppressed the growth of each lung tumoroid line. AO media was superior to 3 different media developed by other laboratories. Our experience indicates that long-term lung tumoroid culture is feasible, allowing us to identify NGS-based therapeutic targets and determine the responsiveness to corresponding small molecule drugs.
Collapse
Affiliation(s)
- Etsuko Yokota
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Miki Iwai
- General Medical Center Research Unit, Kawasaki Medical School, Okayama, Japan
| | - Takuro Yukawa
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Masakazu Yoshida
- Department of Thoracic Surgery, Kurashiki Central Hospital, Kurashiki, Japan
| | - Yoshio Naomoto
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| | - Minoru Haisa
- Professor with Special Assignment, Kawasaki Medical School, Okayama, Japan
| | - Yasumasa Monobe
- Department of Pathology, Kawasaki Medical School, Okayama, Japan
| | - Nagio Takigawa
- Department of General Internal Medicine 4, Kawasaki Medical School, Okayama, Japan
| | - Minzhe Guo
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center (CCHMC) and Department of Pediatrics, The University of Cincinnati College of Medicine (UC-COM), Cincinnati, OH, USA
| | - Yutaka Maeda
- Perinatal Institute, Division of Neonatology, Perinatal and Pulmonary Biology, Cincinnati Children's Hospital Medical Center (CCHMC) and Department of Pediatrics, The University of Cincinnati College of Medicine (UC-COM), Cincinnati, OH, USA
| | - Takuya Fukazawa
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan.
| | - Tomoki Yamatsuji
- Department of General Surgery, Kawasaki Medical School, Okayama, Japan
| |
Collapse
|
96
|
Zhu Y, Guo YB, Xu D, Zhang J, Liu ZG, Wu X, Yang XY, Chang DD, Xu M, Yan J, Ke ZF, Feng ST, Liu YL. A computed tomography (CT)-derived radiomics approach for predicting primary co-mutations involving TP53 and epidermal growth factor receptor ( EGFR) in patients with advanced lung adenocarcinomas (LUAD). ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:545. [PMID: 33987243 DOI: 10.21037/atm-20-6473] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Background Epidermal growth factor receptor (EGFR) co-mutated with TP53 could reduce responsiveness to tyrosine kinase inhibitors (TKIs) and worsen patients' prognosis compared to TP53 wild type patients in. EGFR mutated lung adenocarcinomas (LUAD). To identify this genetically unique subset prior to treatment through computed tomography (CT) images had not been reported yet. Methods Stage III and IV LUAD with known mutation status of EGFR and TP53 from The First Affiliated Hospital of Sun Yat-sen University (May 1, 2017 to June 1, 2020) were collected. Characteristics of pretreatment enhanced-CT images were analyzed. One-versus-one was used as the multiclass classification strategy to distinguish the three subtypes of co-mutations: EGFR + & TP53 +, EGFR + & TP53 -, EGFR -. The clinical model, semantic model, radiomics model and integrated model were built. Area under the receiver-operating characteristic curves (AUCs) were used to evaluate the prediction efficacy. Results A total of 199 patients were enrolled, including 83 (42%) cases of EGFR -, 55 (28%) cases of EGFR + & TP53 +, 61 (31%) cases of EGFR + & TP53 -. Among the four different models, the integrated model displayed the best performance for all the three subtypes of co-mutations: EGFR - (AUC, 0.857; accuracy, 0.817; sensitivity, 0.998; specificity, 0.663), EGFR + & TP53 + (AUC, 0.791; accuracy, 0.758; sensitivity, 0.762; specificity, 0.783), EGFR + & TP53 - (AUC, 0.761; accuracy, 0.813; sensitivity, 0.594; specificity, 0.977). The radiomics model was slightly inferior to the integrated model. The results for the clinical and the semantic models were dissatisfactory, with AUCs less than 0.700 for all the three subtypes. Conclusions CT imaging based artificial intelligence (AI) is expected to distinguish co-mutation status involving TP53 and EGFR. The proposed integrated model may serve as an important alternative marker for preselecting patients who will be adaptable to and sensitive to TKIs.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yu-Biao Guo
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Di Xu
- Department of Thoracic Surgery, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zhen-Guo Liu
- Department of Thoracic Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xi Wu
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiao-Yu Yang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Dan-Dan Chang
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Min Xu
- Scientific Collaboration, CT-MR Division, Canon Medical System (China), Beijing, China
| | - Jing Yan
- Scientific Collaboration, CT-MR Division, Canon Medical System (China), Beijing, China
| | - Zun-Fu Ke
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yang-Li Liu
- Division of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
97
|
Qu J, Mei Q, Liu L, Cheng T, Wang P, Chen L, Zhou J. The progress and challenge of anti-PD-1/PD-L1 immunotherapy in treating non-small cell lung cancer. Ther Adv Med Oncol 2021; 13:1758835921992968. [PMID: 33643442 PMCID: PMC7890731 DOI: 10.1177/1758835921992968] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
The use of programmed cell-death protein 1 (PD-1)/programmed cell-death ligand 1 (PD-L1) inhibitors is the standard therapy for the first-line or second-line treatment of patients with non-small-cell lung cancer (NSCLC). In contrast to current traditional treatments such as chemotherapy or radiotherapy, anti-PD-1 and anti-PD-L1 treatments can directly attenuate tumour-mediated exhaustion and effectively modulate the host anti-tumour immune response in vivo. In addition, compared with traditional therapy, PD-1/PD-L1 inhibitor monotherapy can significantly prolong survival without obvious side effects in the treatment of advanced NSCLC. Ideally, several biomarkers could be used to monitor the safety and effectiveness of anti-PD-1 and anti-PD-L1 treatments; however, the current lack of optimal prognostic markers remains a widespread limitation and challenge for further clinical applications, as does the possibility of immune-related adverse events and drug resistance. In this review, we aimed to summarise the latest progress in anti-PD-1/anti-PD-L1 treatment of advanced NSCLC, worldwide, including in China. An exploration of underlying biomarker identification and future challenges will be discussed in this article to facilitate translational studies in cancer immunotherapy.
Collapse
Affiliation(s)
- Jingjing Qu
- Department of Respiratory Disease, Thoracic Disease Centre, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Quanhui Mei
- Intensive Care Unit, The First People's Hospital of Changde City, Changde, Hunan, PR China
| | - Li Liu
- Lung Cancer and Gastroenterology Department, Hunan Cancer Hospital, Affiliated Tumour Hospital of Xiangya Medical School of Central South University, Changsha, Hunan, PR China
| | - Tianli Cheng
- Thoracic Medicine Department 1, Hunan Cancer Hospital, Affiliated Tumour Hospital of Xiangya Medical School of Central South University, Changsha, Hunan, PR China
| | - Peng Wang
- Ningxia Key Laboratory of Cerebrocranial Diseases, School of Basic Medical Science, Ningxia Medical University, Yinchuan, Ningxia, PR China
| | - Lijun Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, PR China
| | - Jianying Zhou
- Department of Respiratory Disease, Thoracic Disease Centre, The First Affiliated Hospital, College of Medicine, Zhejiang University, 79 Qingchun Road, Hangzhou, Zhejiang 310003, PR China
| |
Collapse
|
98
|
Mograbi B, Heeke S, Hofman P. The Importance of STK11/ LKB1 Assessment in Non-Small Cell Lung Carcinomas. Diagnostics (Basel) 2021; 11:196. [PMID: 33572782 PMCID: PMC7912095 DOI: 10.3390/diagnostics11020196] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Despite the recent implementation of immunotherapy as a single treatment or in combination with chemotherapy for first-line treatment of advanced non-small cell lung cancer (NSCLC), many patients do not benefit from this regimen due to primary treatment resistance or toxicity. Consequently, there is an urgent need to develop efficient biomarkers that can select patients who will benefit from immunotherapy thereby providing the appropriate treatment and avoiding toxicity. One of the biomarkers recently described for the stratification of NSCLC patients undergoing immunotherapy are mutations in STK11/LKB1, which are often associated with a lack of response to immunotherapy in some patients. Therefore, the purpose of this review is to describe the different cellular mechanisms associated with STK11/LKB1 mutations, which may explain the lack of response to immunotherapy. Moreover the review addresses the co-occurrence of additional mutations that may influence the response to immunotherapy and the current clinical studies that have further explored STK11/LKB1 as a predictive biomarker. Additionally this work includes the opportunities and limitations to look for the STK11/LKB1 status in the therapeutic strategy for NSCLC patients.
Collapse
Affiliation(s)
- Baharia Mograbi
- Centre Antoine Lacassagne, CNRS, FHU OncoAge, Team 4, INSERM, IRCAN, Université Côte d’Azur, 06000 Nice, France;
| | - Simon Heeke
- Department of Thoracic Head and Neck Medical Oncology, UT MD Anderson Cancer Center, Houston, TX 77030, USA;
| | - Paul Hofman
- Centre Antoine Lacassagne, CNRS, FHU OncoAge, Team 4, INSERM, IRCAN, Université Côte d’Azur, 06000 Nice, France;
- CHU Nice, Laboratory of Clinical and Experimental Pathology, FHU OncoAge, Pasteur Hospital, Université Côte d’Azur, 06000 Nice, France
- CHU Nice, FHU OncoAge, Hospital-Integrated Biobank BB-0033-00025, Université Côte d’Azur, 06000 Nice, France
| |
Collapse
|
99
|
Chen YJ, Roumeliotis TI, Chang YH, Chen CT, Han CL, Lin MH, Chen HW, Chang GC, Chang YL, Wu CT, Lin MW, Hsieh MS, Wang YT, Chen YR, Jonassen I, Ghavidel FZ, Lin ZS, Lin KT, Chen CW, Sheu PY, Hung CT, Huang KC, Yang HC, Lin PY, Yen TC, Lin YW, Wang JH, Raghav L, Lin CY, Chen YS, Wu PS, Lai CT, Weng SH, Su KY, Chang WH, Tsai PY, Robles AI, Rodriguez H, Hsiao YJ, Chang WH, Sung TY, Chen JS, Yu SL, Choudhary JS, Chen HY, Yang PC, Chen YJ. Proteogenomics of Non-smoking Lung Cancer in East Asia Delineates Molecular Signatures of Pathogenesis and Progression. Cell 2021; 182:226-244.e17. [PMID: 32649875 DOI: 10.1016/j.cell.2020.06.012] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/13/2020] [Accepted: 06/03/2020] [Indexed: 12/13/2022]
Abstract
Lung cancer in East Asia is characterized by a high percentage of never-smokers, early onset and predominant EGFR mutations. To illuminate the molecular phenotype of this demographically distinct disease, we performed a deep comprehensive proteogenomic study on a prospectively collected cohort in Taiwan, representing early stage, predominantly female, non-smoking lung adenocarcinoma. Integrated genomic, proteomic, and phosphoproteomic analysis delineated the demographically distinct molecular attributes and hallmarks of tumor progression. Mutational signature analysis revealed age- and gender-related mutagenesis mechanisms, characterized by high prevalence of APOBEC mutational signature in younger females and over-representation of environmental carcinogen-like mutational signatures in older females. A proteomics-informed classification distinguished the clinical characteristics of early stage patients with EGFR mutations. Furthermore, integrated protein network analysis revealed the cellular remodeling underpinning clinical trajectories and nominated candidate biomarkers for patient stratification and therapeutic intervention. This multi-omic molecular architecture may help develop strategies for management of early stage never-smoker lung adenocarcinoma.
Collapse
Affiliation(s)
- Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Theodoros I Roumeliotis
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK
| | - Ya-Hsuan Chang
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Ching-Tai Chen
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Chia-Li Han
- Master Program in Clinical Pharmacogenomics and Pharmacoproteomics, College of Pharmacy, Taipei Medical University, Taipei, Taiwan.
| | - Miao-Hsia Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Huei-Wen Chen
- Graduate Institute of Toxicology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Gee-Chen Chang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yih-Leong Chang
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Chen-Tu Wu
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Mong-Wei Lin
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Min-Shu Hsieh
- Department of Pathology, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yu-Tai Wang
- National Applied Research Laboratories, National Center for High-performance Computing, Hsinchu, Taiwan
| | - Yet-Ran Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Inge Jonassen
- Computational Biology Unit (CBU), Informatics Department, University of Bergen, Bergen, Norway
| | | | - Ze-Shiang Lin
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Kuen-Tyng Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ching-Wen Chen
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Pei-Yuan Sheu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Chen-Ting Hung
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | | | - Hao-Chin Yang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Pei-Yi Lin
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ta-Chi Yen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yi-Wei Lin
- Division of Thoracic Surgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Jen-Hung Wang
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Lovely Raghav
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Institute of Bioinformatics and Systems Biology, National Chiao Tung University, Bioinformatics Program, Taiwan International Graduate Program, Hsinchu, Taiwan
| | - Chien-Yu Lin
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Yan-Si Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Pei-Shan Wu
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Chi-Ting Lai
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | | | - Kang-Yi Su
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Wei-Hung Chang
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Pang-Yan Tsai
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yi-Jing Hsiao
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Wen-Hsin Chang
- Institute of Molecular Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Ting-Yi Sung
- Institute of Information Science, Academia Sinica, Taipei, Taiwan.
| | - Jin-Shing Chen
- Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Laboratory Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Jyoti S Choudhary
- Functional Proteomics Group, Chester Beatty Laboratories, The Institute of Cancer Research, London SW3 6JB, UK.
| | - Hsuan-Yu Chen
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan; Ph.D. Program in Microbial Genomics, National Chung Hsing University, Taichung, Taiwan.
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University, Taipei, Taiwan; Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan; Department of Chemistry, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
100
|
Kok VC, Lee CK, Chiang YH, Wang MC, Lu YT, Cherng CC, Lee PY, Wang KB. Extensive-Stage Small Cell Carcinoma Transformation From EGFR Del19-Mutant Lung Adenocarcinoma on Gefitinib at the Twelfth-Year Follow-Up Case Report. Front Oncol 2021; 11:564799. [PMID: 33816221 PMCID: PMC8012892 DOI: 10.3389/fonc.2021.564799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/01/2021] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION The acquired resistance mechanisms in patients with epidermal growth factor receptor (EGFR)-mutant lung cancer, particularly adenocarcinoma (ADC), following treatment with an EGFR tyrosine kinase inhibitor (TKI) have received extensive investigations. The phenotypic transformation to small cell carcinoma (SCCT) has been estimated to occur in approximately 3 to 10% of patients treated with an EGFR-TKI. The prognosis after SCCT is extremely poor. CASE STUDY We report about SCCT that occurred 45 months after the initial diagnosis of ADC in an East Asian never-smoker woman with advanced-stage EGFR Del-19-mutant lung ADC treated with combined chemoradiotherapy before the era of insurance coverage for EGFR-TKIs in this country and subsequently gefitinib; deletion at codon 746-750 in exon 19 of the EGFR gene was ascertained in the original formalin-fixed paraffin-embedded lung biopsy tissue. Spinal cord compression at thoracic-12 level from SCCT was successfully relieved with neurosurgical treatment, chemotherapy with etoposide and cisplatin, and radiotherapy, while gefitinib treatment was maintained. Eleven months later, SCCT relapsed in the lung parenchyma, which was resected and was found to be sensitive to second-line weekly topotecan. Prophylactic cranial irradiation was subsequently administered. SCCT was confirmed by MALDI-TOF MS analysis of formalin-fixed paraffin-embedded tissues demonstrating the same exon 19 deletion. At the 12th-year follow-up, the patient remains relapse free with very good performance status. The novelty of this case is the successful interdisciplinary team effort to correct the spinal cord compression by maintaining the patient in an ambulatory state, non-stop use of gefitinib justified by the presence of activating EGFR mutation in SCCT tumor cells, and aggressive dose-intensive chemotherapy and radiotherapy for the SCCT that leads to an unprecedented prolonged remission and survival. This case also supports the observation that SCCT is chemotherapy sensitive, and thus, re-biopsy or complete tumor excision is recommended to understand the mutation profiles of the current tumor. Aggressive prudent administration of systemic chemotherapy obtaining optimal dose intensity leads to the successful management of the patient.
Collapse
Affiliation(s)
- Victor C. Kok
- Division of Medical Oncology, KTGH Cancer Center, Kuang Tien General Hospital, Taichung, Taiwan
- Disease Informatics Research Group, Asia University Taiwan, Taichung, Taiwan
- *Correspondence: Victor C. Kok, ; orcid.org/0000-0003-3440-8154
| | - Chien-Kuan Lee
- Department of Pathology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Yu-Hsin Chiang
- Division of Chest Surgery, Department of Surgery, Kuang Tien General Hospital, Taichung, Taiwan
| | - Ming-Chih Wang
- Department of Radiation Oncology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Yen-Te Lu
- Department of Radiation Oncology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Chiu-Chun Cherng
- Division of Neurosurgery, Department of Surgery, Kuang Tien General Hospital, Taichung, Taiwan
| | - Pei-Yu Lee
- Department of Diagnostic and Intervention Radiology, Kuang Tien General Hospital, Taichung, Taiwan
| | - Ke-Bin Wang
- Department of Nuclear Medicine, Kuang Tien General Hospital, Taichung, Taiwan
| |
Collapse
|