51
|
Amezrou R, Ducasse A, Compain J, Lapalu N, Pitarch A, Dupont L, Confais J, Goyeau H, Kema GHJ, Croll D, Amselem J, Sanchez-Vallet A, Marcel TC. Quantitative pathogenicity and host adaptation in a fungal plant pathogen revealed by whole-genome sequencing. Nat Commun 2024; 15:1933. [PMID: 38431601 PMCID: PMC10908820 DOI: 10.1038/s41467-024-46191-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Knowledge of genetic determinism and evolutionary dynamics mediating host-pathogen interactions is essential to manage fungal plant diseases. Studies on the genetic architecture of fungal pathogenicity often focus on large-effect effector genes triggering strong, qualitative resistance. It is not clear how this translates to predominately quantitative interactions. Here, we use the Zymoseptoria tritici-wheat model to elucidate the genetic architecture of quantitative pathogenicity and mechanisms mediating host adaptation. With a multi-host genome-wide association study, we identify 19 high-confidence candidate genes associated with quantitative pathogenicity. Analysis of genetic diversity reveals that sequence polymorphism is the main evolutionary process mediating differences in quantitative pathogenicity, a process that is likely facilitated by genetic recombination and transposable element dynamics. Finally, we use functional approaches to confirm the role of an effector-like gene and a methyltransferase in phenotypic variation. This study highlights the complex genetic architecture of quantitative pathogenicity, extensive diversifying selection and plausible mechanisms facilitating pathogen adaptation.
Collapse
Affiliation(s)
- Reda Amezrou
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France.
| | - Aurélie Ducasse
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Jérôme Compain
- Université Paris-Saclay, INRAE, UR URGI, Versailles, France
| | - Nicolas Lapalu
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
- Université Paris-Saclay, INRAE, UR URGI, Versailles, France
| | - Anais Pitarch
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Laetitia Dupont
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | - Johann Confais
- Université Paris-Saclay, INRAE, UR BIOGER, Palaiseau, France
| | | | - Gert H J Kema
- Plant Research International B.V., Wageningen, The Netherlands
| | - Daniel Croll
- Department of Ecology and Evolution, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Joëlle Amselem
- Université Paris-Saclay, INRAE, UR URGI, Versailles, France
| | | | | |
Collapse
|
52
|
de Oliveira Silva A, Fernando Devasahayam BR, Aliyeva-Schnorr L, Glienke C, Deising HB. The serine-threonine protein kinase Snf1 orchestrates the expression of plant cell wall-degrading enzymes and is required for full virulence of the maize pathogen Colletotrichum graminicola. Fungal Genet Biol 2024; 171:103876. [PMID: 38367799 DOI: 10.1016/j.fgb.2024.103876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Abstract
Colletotrichum graminicola, the causal agent of maize leaf anthracnose and stalk rot, differentiates a pressurized infection cell called an appressorium in order to invade the epidermal cell, and subsequently forms biotrophic and necrotrophic hyphae to colonize the host tissue. While the role of force in appressorial penetration is established (Bechinger et al., 1999), the involvement of cell wall-degrading enzymes (CWDEs) in this process and in tissue colonization is poorly understood, due to the enormous number and functional redundancy of these enzymes. The serine/threonine protein kinase gene SNF1 identified in Sucrose Non-Fermenting yeast mutants mediates de-repression of catabolite-repressed genes, including many genes encoding CWDEs. In this study, we identified and functionally characterized the SNF1 homolog of C. graminicola. Δsnf1 mutants showed reduced vegetative growth and asexual sporulation rates on media containing polymeric carbon sources. Microscopy revealed reduced efficacies in appressorial penetration of cuticle and epidermal cell wall, and formation of unusual medusa-like biotrophic hyphae by Δsnf1 mutants. Severe and moderate virulence reductions were observed on intact and wounded leaves, respectively. Employing RNA-sequencing we show for the first time that more than 2,500 genes are directly or indirectly controlled by Snf1 in necrotrophic hyphae of a plant pathogenic fungus, many of which encode xylan- and cellulose-degrading enzymes. The data presented show that Snf1 is a global regulator of gene expression and is required for full virulence.
Collapse
Affiliation(s)
- Alan de Oliveira Silva
- Chair of Phytopathology and Plant Protection, Institute for Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany; Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Bennet Rohan Fernando Devasahayam
- Chair of Phytopathology and Plant Protection, Institute for Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany
| | - Lala Aliyeva-Schnorr
- Chair of Phytopathology and Plant Protection, Institute for Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany
| | - Chirlei Glienke
- Department of Genetics, Federal University of Paraná, Curitiba, PR, Brazil
| | - Holger B Deising
- Chair of Phytopathology and Plant Protection, Institute for Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Germany.
| |
Collapse
|
53
|
Xiao Y, Sun G, Yu Q, Gao T, Zhu Q, Wang R, Huang S, Han Z, Cervone F, Yin H, Qi T, Wang Y, Chai J. A plant mechanism of hijacking pathogen virulence factors to trigger innate immunity. Science 2024; 383:732-739. [PMID: 38359129 DOI: 10.1126/science.adj9529] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 12/22/2023] [Indexed: 02/17/2024]
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) interact with pathogen-derived polygalacturonases to inhibit their virulence-associated plant cell wall-degrading activity but stimulate immunity-inducing oligogalacturonide production. Here we show that interaction between Phaseolus vulgaris PGIP2 (PvPGIP2) and Fusarium phyllophilum polygalacturonase (FpPG) enhances substrate binding, resulting in inhibition of the enzyme activity of FpPG. This interaction promotes FpPG-catalyzed production of long-chain immunoactive oligogalacturonides, while diminishing immunosuppressive short oligogalacturonides. PvPGIP2 binding creates a substrate binding site on PvPGIP2-FpPG, forming a new polygalacturonase with boosted substrate binding activity and altered substrate preference. Structure-based engineering converts a putative PGIP that initially lacks FpPG-binding activity into an effective FpPG-interacting protein. These findings unveil a mechanism for plants to transform pathogen virulence activity into a defense trigger and provide proof of principle for engineering PGIPs with broader specificity.
Collapse
Affiliation(s)
- Yu Xiao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guangzheng Sun
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiangsheng Yu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Teng Gao
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qinsheng Zhu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Shijia Huang
- School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Zhifu Han
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| | - Felice Cervone
- Dipartimento di Biologia e Biotecnologie "C. Darwin," Sapienza, University of Rome, Piazzale Aldo Moro, 00185 Roma, Italy
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tiancong Qi
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Nanjing Agricultural University, Nanjing 210095, China
- The Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing 210095, China
| | - Jijie Chai
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Frontier Research Center for Biological Structure, Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing 100084, China
- School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang, China
| |
Collapse
|
54
|
Barrit T, Planchet E, Lothier J, Satour P, Aligon S, Tcherkez G, Limami AM, Campion C, Teulat B. Nitrogen Nutrition Modulates the Response to Alternaria brassicicola Infection via Metabolic Modifications in Arabidopsis Seedlings. PLANTS (BASEL, SWITZERLAND) 2024; 13:534. [PMID: 38502050 PMCID: PMC10892011 DOI: 10.3390/plants13040534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/05/2024] [Accepted: 02/10/2024] [Indexed: 03/20/2024]
Abstract
Little is known about the effect of nitrogen nutrition on seedling susceptibility to seed-borne pathogens. We have previously shown that seedlings grown under high nitrate (5 mM) conditions are less susceptible than those grown under low nitrate (0.1 mM) and ammonium (5 mM) in the Arabidopsis-Alternaria brassicicola pathosystem. However, it is not known how seedling metabolism is modulated by nitrogen nutrition, nor what is its response to pathogen infection. Here, we addressed this question using the same pathosystem and nutritive conditions, examining germination kinetics, seedling development, but also shoot ion contents, metabolome, and selected gene expression. Nitrogen nutrition clearly altered the seedling metabolome. A similar metabolomic profile was observed in inoculated seedlings grown at high nitrate levels and in not inoculated-seedlings. High nitrate levels also led to specific gene expression patterns (e.g., polyamine metabolism), while other genes responded to inoculation regardless of nitrogen supply conditions. Furthermore, the metabolites best correlated with high disease symptoms were coumarate, tyrosine, hemicellulose sugars, and polyamines, and those associated with low symptoms were organic acids (tricarboxylic acid pathway, glycerate, shikimate), sugars derivatives and β-alanine. Overall, our results suggest that the beneficial effect of high nitrate nutrition on seedling susceptibility is likely due to nutritive and signaling mechanisms affecting developmental plant processes detrimental to the pathogen. In particular, it may be due to a constitutively high tryptophan metabolism, as well as down regulation of oxidative stress caused by polyamine catabolism.
Collapse
Affiliation(s)
- Thibault Barrit
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (T.B.); (E.P.); (J.L.); (P.S.); (S.A.); (G.T.); (A.M.L.); (C.C.)
| | - Elisabeth Planchet
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (T.B.); (E.P.); (J.L.); (P.S.); (S.A.); (G.T.); (A.M.L.); (C.C.)
| | - Jérémy Lothier
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (T.B.); (E.P.); (J.L.); (P.S.); (S.A.); (G.T.); (A.M.L.); (C.C.)
| | - Pascale Satour
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (T.B.); (E.P.); (J.L.); (P.S.); (S.A.); (G.T.); (A.M.L.); (C.C.)
| | - Sophie Aligon
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (T.B.); (E.P.); (J.L.); (P.S.); (S.A.); (G.T.); (A.M.L.); (C.C.)
| | - Guillaume Tcherkez
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (T.B.); (E.P.); (J.L.); (P.S.); (S.A.); (G.T.); (A.M.L.); (C.C.)
- Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Anis M. Limami
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (T.B.); (E.P.); (J.L.); (P.S.); (S.A.); (G.T.); (A.M.L.); (C.C.)
| | - Claire Campion
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (T.B.); (E.P.); (J.L.); (P.S.); (S.A.); (G.T.); (A.M.L.); (C.C.)
| | - Béatrice Teulat
- Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, 49000 Angers, France; (T.B.); (E.P.); (J.L.); (P.S.); (S.A.); (G.T.); (A.M.L.); (C.C.)
| |
Collapse
|
55
|
Wang Y, Liao X, Shang W, Qin J, Xu X, Hu X. The secreted feruloyl esterase of Verticillium dahliae modulates host immunity via degradation of GhDFR. MOLECULAR PLANT PATHOLOGY 2024; 25:e13431. [PMID: 38353627 PMCID: PMC10866084 DOI: 10.1111/mpp.13431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Feruloyl esterase (ferulic acid esterase, FAE) is an essential component of many biological processes in both eukaryotes and prokaryotes. This research aimed to investigate the role of FAE and its regulation mechanism in plant immunity. We identified a secreted feruloyl esterase VdFAE from the hemibiotrophic plant pathogen Verticillium dahliae. VdFAE acted as an important virulence factor during V. dahliae infection, and triggered plant defence responses, including cell death in Nicotiana benthamiana. Deletion of VdFAE led to a decrease in the degradation of ethyl ferulate. VdFAE interacted with Gossypium hirsutum protein dihydroflavanol 4-reductase (GhDFR), a positive regulator in plant innate immunity, and promoted the degradation of GhDFR. Furthermore, silencing of GhDFR led to reduced resistance of cotton plants against V. dahliae. The results suggested a fungal virulence strategy in which a fungal pathogen secretes FAE to interact with host DFR and interfere with plant immunity, thereby promoting infection.
Collapse
Affiliation(s)
- Yajuan Wang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiwen Liao
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Wenjing Shang
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jun Qin
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xiangming Xu
- Pest & Pathogen Ecology, NIAB East MallingWest MallingUK
| | - Xiaoping Hu
- State Key Laboratory for Crop Stress Resistance and High‐Efficiency Production, Key Laboratory of Plant Protection Resources and Pest Integrated Management of Ministry of Education, Key Laboratory of Integrated Pest Management on Crops in Northwestern Loess Plateau of Ministry of Agriculture and Rural Affairs and College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
56
|
Treindl AD, Stapley J, Croll D, Leuchtmann A. Two-speed genomes of Epichloe fungal pathogens show contrasting signatures of selection between species and across populations. Mol Ecol 2024; 33:e17242. [PMID: 38084851 DOI: 10.1111/mec.17242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 11/23/2023] [Accepted: 11/30/2023] [Indexed: 12/19/2023]
Abstract
Antagonistic selection between pathogens and their hosts can drive rapid evolutionary change and leave distinct molecular footprints of past and ongoing selection in the genomes of the interacting species. Despite an increasing availability of tools able to identify signatures of selection, the genetic mechanisms underlying coevolutionary interactions and the specific genes involved are still poorly understood, especially in heterogeneous natural environments. We searched the genomes of two species of Epichloe plant pathogen for evidence of recent selection. The Epichloe genus includes highly host-specific species that can sterilize their grass hosts. We performed selection scans using genome-wide SNP data from seven natural populations of two co-occurring Epichloe sibling species specialized on different hosts. We found evidence of recent (and ongoing) selective sweeps across the genome in both species. However, selective sweeps were more abundant in the species with a larger effective population size. Sweep regions often overlapped with highly polymorphic AT-rich regions supporting the role of these genome compartments in adaptive evolution. Although most loci under selection were specific to individual populations, we could also identify several candidate genes targeted by selection in sweep regions shared among populations. The genes encoded small secreted proteins typical of fungal effectors and cell wall-degrading enzymes. By investigating the genomic signatures of selection across multiple populations and species, this study contributes to our understanding of complex adaptive processes in natural plant pathogen systems.
Collapse
Affiliation(s)
- Artemis D Treindl
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
- Biodiversity and Conservation Biology, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Jessica Stapley
- Plant Pathology Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Adrian Leuchtmann
- Plant Ecological Genetics Group, Institute of Integrative Biology, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
57
|
Xu M, Godana EA, Li J, Deng Y, Ma Y, Ya H, Zhang H. Infection of postharvest pear by Penicillium expansum is facilitated by the glycoside hydrolase (eglB) gene. Int J Food Microbiol 2024; 410:110465. [PMID: 37980812 DOI: 10.1016/j.ijfoodmicro.2023.110465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/16/2023] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
The primary reason for postharvest loss is blue mold disease which is mainly caused by Penicillium expansum. Strategies for disease control greatly depend on the understanding of mechanisms of pathogen-fruit interaction. A member of the glycoside hydrolase family, β-glucosidase 1b (eglB), in P. expansum was significantly upregulated during postharvest pear infection. Glycoside hydrolases are a large group of enzymes that can degrade plant cell wall polymers. High homology was found between the glycoside hydrolase superfamily in P. expansum. Functional characterization and analysis of eglB were performed via gene knockout and complementation analysis. Although eglB deletion had no notable effect on P. expansum colony shape or microscopic morphology, it did reduce the production of fungal hyphae, thereby reducing P. expansum's sporulation and patulin (PAT) accumulation. Moreover, the deletion of eglB (ΔeglB) reduced P. expansum pathogenicity in pears. The growth, conidia production, PAT accumulation, and pathogenicity abilities of ΔeglB were restored to that of wild-type P. expansum by complementation of eglB (ΔeglB-C). These findings indicate that eglB contributes to P. expansum's development and pathogenicity. This research is a contribution to the identification of key effectors of fungal pathogenicity for use as targets in fruit safety strategies.
Collapse
Affiliation(s)
- Meiqiu Xu
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, Henan, People's Republic of China
| | - Esa Abiso Godana
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China
| | - Jingyu Li
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, Henan, People's Republic of China
| | - Yaping Deng
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, Henan, People's Republic of China
| | - Yufei Ma
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, Henan, People's Republic of China
| | - Huiyuan Ya
- College of Food and Drug, Luoyang Normal University, Luoyang 471934, Henan, People's Republic of China.
| | - Hongyin Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
58
|
Zhao X, Wang Y, Yuan B, Zhao H, Wang Y, Tan Z, Wang Z, Wu H, Li G, Song W, Gupta R, Tsuda K, Ma Z, Gao X, Gu Q. Temporally-coordinated bivalent histone modifications of BCG1 enable fungal invasion and immune evasion. Nat Commun 2024; 15:231. [PMID: 38182582 PMCID: PMC10770383 DOI: 10.1038/s41467-023-44491-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 12/15/2023] [Indexed: 01/07/2024] Open
Abstract
Bivalent histone modifications, including functionally opposite H3K4me3 and H3K27me3 marks simultaneously on the same nucleosome, control various cellular processes by fine-tuning the gene expression in eukaryotes. However, the role of bivalent histone modifications in fungal virulence remains elusive. By mapping the genome-wide landscape of H3K4me3 and H3K27me3 dynamic modifications in Fusarium graminearum (Fg) during invasion, we identify the infection-related bivalent chromatin-marked genes (BCGs). BCG1 gene, which encodes a secreted Fusarium-specific xylanase containing a G/Q-rich motif, displays the highest increase of bivalent modification during Fg infection. We report that the G/Q-rich motif of BCG1 is a stimulator of its xylanase activity and is essential for the full virulence of Fg. Intriguingly, this G/Q-rich motif is recognized by pattern-recognition receptors to trigger plant immunity. We discover that Fg employs H3K4me3 modification to induce BCG1 expression required for host cell wall degradation. After breaching the cell wall barrier, this active chromatin state is reset to bivalency by co-modifying with H3K27me3, which enables epigenetic silencing of BCG1 to escape from host immune surveillance. Collectively, our study highlights how fungal pathogens deploy bivalent epigenetic modification to achieve temporally-coordinated activation and suppression of a critical fungal gene, thereby facilitating successful infection and host immune evasion.
Collapse
Affiliation(s)
- Xiaozhen Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Yiming Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Bingqin Yuan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Hanxi Zhao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Yujie Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Zheng Tan
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Zhiyuan Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Gang Li
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Wei Song
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, 02707, South Korea
| | - Kenichi Tsuda
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, the Key Laboratory of Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, Ministry of Education, Nanjing, China.
| |
Collapse
|
59
|
Kalita B, Roy A, Jayaprakash A, Arunachalam A, P.T.V L. Identification of lncRNA and weighted gene coexpression network analysis of germinating Rhizopus delemar causing mucormycosis. Mycology 2024; 14:344-357. [PMID: 38187880 PMCID: PMC10769135 DOI: 10.1080/21501203.2023.2265414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/27/2023] [Indexed: 01/09/2024] Open
Abstract
Rhizopus delemar, an opportunistic fungal pathogen, causes a highly fatal disease, mucormycosis. Spore germination is a crucial mechanism for disease pathogenesis. Thus, exploring the molecular mechanisms of fungal germination would underpin our knowledge of such transformation and, in turn, help control mucormycosis. To gain insight into the developmental process particularly associated with cell wall modification and synthesis, weighted gene co-expression network analysis (WGCNA) was performed including both coding and non-coding transcripts identified in the current study, to find out the module of interest in the germination stages. The module-trait relationship identified a particular module to have a high correlation only at the resting phase and further analysis revealed the module to be enriched for protein phosphorylation, carbohydrate metabolic process, and cellular response to stimulus. Moreover, co-expression network analysis of highly connected nodes revealed cell wall modifying enzymes, especially those involved in mannosylation, chitin-glucan crosslinking, and polygalacturonase activities co-expressing and interacting with the novel lncRNAs among which some of them predicted to be endogenous target mimic (eTM) lncRNAs. Hence, the present study provides an insight into the onset of spore germination and the information on the novel non-coding transcripts with key cell wall-related enzymes as potential targets against mucormycosis.
Collapse
Affiliation(s)
- Barsha Kalita
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | - Abhijeet Roy
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| | | | | | - Lakshmi P.T.V
- Department of Bioinformatics, Pondicherry University, Puducherry, India
| |
Collapse
|
60
|
Li W, Li P, Deng Y, Situ J, He Z, Zhou W, Li M, Xi P, Liang X, Kong G, Jiang Z. A plant cell death-inducing protein from litchi interacts with Peronophythora litchii pectate lyase and enhances plant resistance. Nat Commun 2024; 15:22. [PMID: 38167822 PMCID: PMC10761943 DOI: 10.1038/s41467-023-44356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 12/11/2023] [Indexed: 01/05/2024] Open
Abstract
Cell wall degrading enzymes, including pectate lyases (PeLs), released by plant pathogens, break down protective barriers and/or activate host immunity. The direct interactions between PeLs and plant immune-related proteins remain unclear. We identify two PeLs, PlPeL1 and PlPeL1-like, critical for full virulence of Peronophythora litchii on litchi (Litchi chinensis). These proteins enhance plant susceptibility to oomycete pathogens in a PeL enzymatic activity-dependent manner. However, LcPIP1, a plant immune regulator secreted by litchi, binds to PlPeL1/PlPeL1-like, and attenuates PlPeL1/PlPeL1-like induced plant susceptibility to Phytophthora capsici. LcPIP1 also induces cell death and various immune responses in Nicotiana benthamiana. Conserved in plants, LcPIP1 homologs bear a conserved "VDMASG" motif and exhibit immunity-inducing activity. Furthermore, SERK3 interacts with LcPIP1 and is required for LcPIP1-induced cell death. NbPIP1 participates in immune responses triggered by the PAMP protein INF1. In summary, our study reveals the dual roles of PlPeL1/PlPeL1-like in plant-pathogen interactions: enhancing pathogen virulence through PeL enzymatic activity while also being targeted by LcPIP1, thus enhancing plant immunity.
Collapse
Affiliation(s)
- Wen Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Peng Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Yizhen Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, China
| | - Junjian Situ
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Zhuoyuan He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Wenzhe Zhou
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Minhui Li
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Pinggen Xi
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China
| | - Xiangxiu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guanghui Kong
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.
| | - Zide Jiang
- National Key Laboratory of Green Pesticide/Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
61
|
Waqar S, Bhat AA, Khan AA. Endophytic fungi: Unravelling plant-endophyte interaction and the multifaceted role of fungal endophytes in stress amelioration. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108174. [PMID: 38070242 DOI: 10.1016/j.plaphy.2023.108174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/23/2023] [Accepted: 11/07/2023] [Indexed: 02/15/2024]
Abstract
Endophytic fungi colonize interior plant tissue and mostly form mutualistic associations with their host plant. Plant-endophyte interaction is a complex mechanism and is currently a focus of research to understand the underlying mechanism of endophyte asymptomatic colonization, the process of evading plant immune response, modulation of gene expression, and establishment of a balanced mutualistic relationship. Fungal endophytes rely on plant hosts for nutrients, shelter, and transmission and improve the host plant's tolerance against biotic stresses, including -herbivores, nematodes, bacterial, fungal, viral, nematode, and other phytopathogens. Endophytic fungi have been reported to improve plant health by reducing and eradicating the harmful effect of phytopathogens through competition for space or nutrients, mycoparasitism, and through direct or indirect defense systems by producing secondary metabolites as well as by induced systemic resistance (ISR). Additionally, for efficient crop improvement, practicing them would be a fruitful step for a sustainable approach. This review article summarizes the current research progress in plant-endophyte interaction and the fungal endophyte mechanism to overcome host defense responses, their subsequent colonization, and the establishment of a balanced mutualistic interaction with host plants. This review also highlighted the potential of fungal endophytes in the amelioration of biotic stress. We have also discussed the relevance of various bioactive compounds possessing antimicrobial potential against a variety of agricultural pathogens. Furthermore, endophyte-mediated ISR is also emphasized.
Collapse
Affiliation(s)
- Sonia Waqar
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Adil Ameen Bhat
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| | - Abrar Ahmad Khan
- Section of Environmental Botany and Plant Pathology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
62
|
Huang Z, Wang C, Li H, Zhou Y, Duan Z, Bao Y, Hu Q, Powell CA, Chen B, Zhang J, Zhang M, Yao W. Small secreted effector protein from Fusarium sacchari suppresses host immune response by inhibiting ScPi21-induced cell death. MOLECULAR PLANT PATHOLOGY 2024; 25:e13414. [PMID: 38279852 PMCID: PMC10782473 DOI: 10.1111/mpp.13414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 01/29/2024]
Abstract
Fusarium sacchari is one of the primary pathogens causing pokkah boeng disease, which impairs the yield and quality of sugarcane around the world. Understanding the molecular mechanisms of the F. sacchari effectors that regulate plant immunity is of great importance for the development of novel strategies for the persistent control of pokkah boeng disease. In a previous study, Fs00367 was identified to inhibit BAX-induced cell death. In this study, Fs00367nsp (without signal peptide) was found to suppress BAX-induced cell death, reactive oxygen species bursts and callose accumulation. The amino acid region 113-142 of Fs00367nsp is the functional region. Gene mutagenesis indicated that Fs00367 is important for the full virulence of F. sacchari. A yeast two-hybrid assay revealed an interaction between Fs00367nsp and sugarcane ScPi21 in yeast that was further confirmed using bimolecular fluorescence complementation, pull-down assay and co-immunoprecipitation. ScPi21 can induce plant immunity, but this effect could be blunted by Fs00367nsp. These results suggest that Fs00367 is a core pathogenicity factor that suppresses plant immunity through inhibiting ScPi21-induced cell death. The findings of this study provide new insights into the molecular mechanisms of effectors in regulating plant immunity.
Collapse
Affiliation(s)
- Zhen Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Caixia Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Huixue Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Yuming Zhou
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Zhenzhen Duan
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Yixue Bao
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Qin Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | | | - Baoshan Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Jisen Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
- IRREC‐IFASUniversity of FloridaFort PierceFloridaUSA
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agri‐Biological Resources, Guangxi Key Laboratory of Sugarcane BiologyGuangxi UniversityNanningChina
- IRREC‐IFASUniversity of FloridaFort PierceFloridaUSA
| |
Collapse
|
63
|
Su L, Zhang T, Yang B, Bai Y, Fang W, Xiong J, Cheng ZM(M. The Botrytis cinerea effector BcXYG1 suppresses immunity in Fragaria vesca by targeting FvBPL4 and FvACD11. HORTICULTURE RESEARCH 2024; 11:uhad251. [PMID: 38304330 PMCID: PMC10831327 DOI: 10.1093/hr/uhad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/14/2023] [Indexed: 02/03/2024]
Abstract
Botrytis cinerea is one of the most destructive pathogens in strawberry cultivation. Successful infection by B. cinerea requires releasing a large number of effectors that interfere with the plant's immune system. One of the effectors required by B. cinerea for optimal virulence is the secreted protein BcXYG1, which is thought to associate with proteins near the plasma membrane of the host plant to induce necrosis. However, the host proteins that associate with BcXYG1 at the plasma membrane are currently unknown. We found that BcXYG1 binds to FvBPL4 and FvACD11 at the plasma membrane. Both FvBPL4 and FvACD11 are negative regulators of plant immunity in strawberry. Our results demonstrate that degradation of FvBPL4 by BcXYG1 promotes disease resistance while stabilization of FvACD11 by BcXYG1 suppresses the immune response. These findings suggest that BcXYG1 suppresses plant immunity and promotes B. cinerea infection by regulating FvBPL4 and FvACD11 protein levels.
Collapse
Affiliation(s)
- Liyao Su
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Bin Yang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yibo Bai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wanping Fang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingsong Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zong-Ming (Max) Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
64
|
Bawin T, Didriksen A, Faehn C, Olsen S, Sørensen I, Rose JKC, Krause K. Cuscuta campestris fine-tunes gene expression during haustoriogenesis as an adaptation to different hosts. PLANT PHYSIOLOGY 2023; 194:258-273. [PMID: 37706590 PMCID: PMC10756757 DOI: 10.1093/plphys/kiad505] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 08/11/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
The Cuscuta genus comprises obligate parasitic plants that have an unusually wide host range. Whether Cuscuta uses different infection strategies for different hosts or whether the infection strategy is mechanistically and enzymatically conserved remains unknown. To address this, we investigated molecular events during the interaction between field dodder (Cuscuta campestris) and two host species of the Solanum genus that are known to react differently to parasitic infection. We found that host gene induction, particularly of cell wall fortifying genes, coincided with a differential induction of genes for cell wall degradation in the parasite in the cultivated tomato (Solanum lycopersicum) but not in a wild relative (Solanum pennellii). This indicates that the parasite can adjust its gene expression in response to its host. This idea was supported by the increased expression of C. campestris genes encoding an endo-β-1,4-mannanase in response to exposure of the parasite to purified mono- and polysaccharides in a host-independent infection system. Our results suggest multiple key roles of the host cell wall in determining the outcome of an infection attempt.
Collapse
Affiliation(s)
- Thomas Bawin
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Alena Didriksen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Corine Faehn
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Stian Olsen
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| | - Iben Sørensen
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jocelyn K C Rose
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Kirsten Krause
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø 9019, Norway
| |
Collapse
|
65
|
Meng F, Tian C. Gene Family Expansion during the Adaptation of Colletotrichum gloeosporioides to Woody Plants. J Fungi (Basel) 2023; 9:1185. [PMID: 38132786 PMCID: PMC10744947 DOI: 10.3390/jof9121185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Gene gains/losses during evolution are critical for the adaptation of organisms to new environments or hosts. However, it remains unknown whether gene family expansions facilitated the adaptation of phytopathogenic fungi to woody plants. In this study, we compared the newly sequenced genome of the Colletotrichum gloeosporioides strain CFCC80308 with the genomes of two other C. gloeosporioides strains, Cg-14 and Lc-1, isolated from Persea americana and Liriodendron leaves, respectively. The genes in the expanded families, which were associated with plant surface signal recognition, encoded various proteins, including glycosyde hydrolases (GHs) and cytochrome P450. Interestingly, there was a substantial increase in the number of GH family genes in CFCC80308. Specifically, there were 368 enriched genes in the GH families (e.g., GH1, GH3, GH10, GH12, GH15, GH16, GH17, GH18, GH25, GH32, GH53, GH61, GH76, and GH81); the expression levels of these genes were highly up-regulated during the infection of poplar trees. Additionally, the GH17 family was larger in CFCC80308 than in C. gloeosporioides strains Cg-14 and Lc-1. Furthermore, the expansion of the MP65-encoding gene family during the adaptation of Colletotrichum species to woody plants was consistent with the importance of gene gains/losses for the adaptation of organisms to their environments. This study has clarified how C. gloeosporioides adapted to woody plants during evolution.
Collapse
Affiliation(s)
- Fanli Meng
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China;
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Chengming Tian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China;
- Beijing Key Laboratory for Forest Pest Control, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
66
|
Khelghatibana F, Javan-Nikkhah M, Safaie N, Sobhani A, Shams S, Sari E. A reference transcriptome for walnut anthracnose pathogen, Ophiognomonia leptostyla, guides the discovery of candidate virulence genes. Fungal Genet Biol 2023; 169:103828. [PMID: 37657751 DOI: 10.1016/j.fgb.2023.103828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 08/13/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023]
Abstract
Despite the economic losses due to the walnut anthracnose, Ophiognomonia leptostyla is an orphan fungus with respect to genomic resources. In the present study, the transcriptome of O. leptostyla was assembled for the first time. RNA sequencing was conducted for the fungal mycelia grown in a liquid media, and the inoculated leaf samples of walnut with the fungal conidia sampled at 48, 96 and 144 h post inoculation (hpi). The completeness, correctness, and contiguity of the de novo transcriptome assemblies generated with Trinity, Oases, SOAPdenovo-Trans and Bridger were compared to identify a single superior reference assembly. In most of the assessment criteria including N50, Transrate score, number of ORFs with known description in gene bank, the percentage of reads mapped back to the transcript (RMBT), BUSCO score, Swiss-Prot coverage bin and RESM-EVAL score, the Bridger assembly was the superior and thus used as a reference for profiling the O. leptostyla transcriptome in liquid media vs. during walnut infection. The k-means clustering of transcripts resulted in four distinct transcription patterns across the three sampling time points. Most of the detected CAZy transcripts had elevated transcription at 96 hpi that is hypothetically concurrent with the start of intracellular growth. The in-silico analysis revealed 103 candidate effectors of which six were members of Necrosis and Ethylene Inducing Like Protein (NLP) gene family belonging to three distinct k-means clusters. This study provided a complex and temporal pattern of the CAZys and candidate effectors transcription during six days post O. leptostyla inoculation on walnut leaves, introducing a list of candidate virulence genes for validation in future studies.
Collapse
Affiliation(s)
- Fatemeh Khelghatibana
- Department of Plant Pathology, Iranian Research Institute of Plant Protection, Agricultural Research, Education and Extension Organization (AREEO), Tehran, Iran.
| | - Mohammad Javan-Nikkhah
- Department of Plant Protection, College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Naser Safaie
- Department of Plant Pathology, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
| | - Ahmad Sobhani
- Agricultural Biotechnology Research Institute of Iran - Isfahan Branch, Agricultural Research, Education and Extension Organization (AREEO), Isfahan, Iran
| | - Somayeh Shams
- Department of Plant Production and Genetic Engineering, Faculty of Agriculture, University of Lorestan, Khorramabad, Iran
| | - Ehsan Sari
- Department of Microbiology and Plant Pathology, University of California, Riverside, CA, USA.
| |
Collapse
|
67
|
Li J, Zhang D, Du Y, Song J, Li R, Dai X, Chen J, Li G, Liu Z. Genome Sequence Resource of Cladosporium velox Strain C4 Causing Cotton Boll Disease in Xinjiang, China. PLANT DISEASE 2023; 107:4010-4015. [PMID: 37368501 DOI: 10.1094/pdis-11-22-2694-a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Cladosporium spp., as one of the largest and most heterogeneous genera of hyphomycetes, are widely distributed worldwide. This genus is usually adaptable to a wide variety of extreme environments. However, only 11 genomes of Cladosporium genus have been publicly released. From 2017, we found for the first time that Cladosporium velox could cause cotton boll disease and lead to stiffness and cracking boll in Xinjiang, China. Herein, we provide a high-quality reference genome for the C. velox strain C4 isolated from cotton boll in Xinjiang, China. The genome size and encoding gene number of the C. velox strain C4 and C. cucumerinum strain CCNX2, which was recently released and caused the cucumber scab, showed minor differences. This resource will contribute to future research that aims to elucidate the genetic basis of C. velox pathogenicity and could expand our knowledge of Cladosporium spp. genomic characteristics that will be valuable for the development of Cladosporium disease control measures.
Collapse
Affiliation(s)
- Jingwen Li
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Dandan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Yejuan Du
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Jian Song
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Ran Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Xiaofeng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jieyin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China
| | - Guoying Li
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Zheng Liu
- College of Agriculture/Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Resources Utilization, Xinjiang Uygur Autonomous Region, Shihezi University, Shihezi, Xinjiang 832003, China
| |
Collapse
|
68
|
Lee HK, Santiago J. Structural insights of cell wall integrity signaling during development and immunity. CURRENT OPINION IN PLANT BIOLOGY 2023; 76:102455. [PMID: 37739866 DOI: 10.1016/j.pbi.2023.102455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/12/2023] [Accepted: 08/25/2023] [Indexed: 09/24/2023]
Abstract
A communication system between plant cells and their surrounding cell wall is required to coordinate development, immunity, and the integration of environmental cues. This communication network is facilitated by a large pool of membrane- and cell-wall-anchored proteins that can potentially interact with the matrix or its fragments, promoting cell wall patterning or eliciting cellular responses that may lead to changes in the architecture and chemistry of the wall. A mechanistic understanding of how these receptors and cell wall proteins recognize and interact with cell wall epitopes would be key to a better understanding of all plant processes that require cell wall remodeling such as expansion, morphogenesis, and defense responses. This review focuses on the latest developments in structurally and biochemically characterized receptors and protein complexes implicated in reading and regulating cell wall integrity and immunity.
Collapse
Affiliation(s)
- Hyun Kyung Lee
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Julia Santiago
- The Plant Signaling Mechanisms Laboratory, Department of Plant Molecular Biology, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
69
|
Fei YC, Cheng Q, Zhang H, Han C, Wang X, Li YF, Li SQ, Zhao XH. Maleic acid and malonic acid reduced the pathogenicity of Sclerotinia sclerotiorum by inhibiting mycelial growth, sclerotia formation and virulence factors. STRESS BIOLOGY 2023; 3:45. [PMID: 37955738 PMCID: PMC10643788 DOI: 10.1007/s44154-023-00122-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/07/2023] [Indexed: 11/14/2023]
Abstract
Sclerotinia sclerotiorum is a necrotrophic plant pathogenic fungus with broad distribution and host range. Bioactive compounds derived from plant extracts have been proven to be effective in controlling S. sclerotiorum. In this study, the mycelial growth of S. sclerotiorum was effectively inhibited by maleic acid, malonic acid, and their combination at a concentration of 2 mg/mL, with respective inhibition rates of 32.5%, 9.98%, and 67.6%. The treatment of detached leaves with the two acids resulted in a decrease in lesion diameters. Interestingly, maleic acid and malonic acid decreased the number of sclerotia while simultaneously increasing their weight. The two acids also disrupted the cell structure of sclerotia, leading to sheet-like electron-thin regions. On a molecular level, maleic acid reduced oxalic acid secretion, upregulated the expression of Ss-Odc2 and downregulated CWDE10, Ss-Bi1 and Ss-Ggt1. Differently, malonic acid downregulated CWDE2 and Ss-Odc1. These findings verified that maleic acid and malonic acid could effectively inhibit S. sclerotiorum, providing promising evidence for the development of an environmentally friendly biocontrol agent.
Collapse
Affiliation(s)
- Yu-Chen Fei
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fuqing, 350300, China
| | - Qin Cheng
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huan Zhang
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuang Han
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Yan-Feng Li
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shi-Qian Li
- Fujian Universities and Colleges Engineering Research Center of Modern Facility Agriculture, Fuqing, 350300, China.
| | - Xiao-Hu Zhao
- State Key Laboratory of Agricultural Microbiology / College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
70
|
Long W, Chen Y, Wei Y, Feng J, Zhou D, Cai B, Qi D, Zhang M, Zhao Y, Li K, Liu YZ, Wang W, Xie J. A newly isolated Trichoderma Parareesei N4-3 exhibiting a biocontrol potential for banana fusarium wilt by Hyperparasitism. FRONTIERS IN PLANT SCIENCE 2023; 14:1289959. [PMID: 37941669 PMCID: PMC10629295 DOI: 10.3389/fpls.2023.1289959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/29/2023] [Indexed: 11/10/2023]
Abstract
Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense tropical race4 (Foc TR4) is one of the most destructive soil-borne fungal diseases and currently threatens banana production around the world. Until now, there is lack of an effective method to control banana Fusarium wilt. Therefore, it is urgent to find an effective and eco-friendly strategy against the fungal disease. In this study, a strain of Trichoderma sp. N4-3 was isolated newly from the rhizosphere soil of banana plants. The isolate was identified as Trichoderma parareesei through analysis of TEF1 and RPB2 genes as well as morphological characterization. In vitro antagonistic assay demonstrated that strain N4-3 had a broad-spectrum antifungal activity against ten selected phytopathogenic fungi. Especially, it demonstrated a strong antifungal activity against Foc TR4. The results of the dual culture assay indicated that strain N4-3 could grow rapidly during the pre-growth period, occupy the growth space, and secrete a series of cell wall-degrading enzymes upon interaction with Foc TR4. These enzymes contributed to the mycelial and spore destruction of the pathogenic fungus by hyperparasitism. Additionally, the sequenced genome proved that strain N4-3 contained 21 genes encoding chitinase and 26 genes encoding β-1,3-glucanase. The electron microscopy results showed that theses cell wall-degrading enzymes disrupted the mycelial, spore, and cell ultrastructure of Foc TR4. A pot experiment revealed that addition of strain N4-3 significantly reduced the amount of Foc TR4 in the rhizosphere soil of bananas at 60 days post inoculation. The disease index was decreased by 45.00% and the fresh weight was increased by 63.74% in comparison to the control. Hence, Trichoderma parareesei N4-3 will be a promising biological control agents for the management of plant fungal diseases.
Collapse
Affiliation(s)
- Weiqiang Long
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yufeng Chen
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yongzan Wei
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Junting Feng
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Dengbo Zhou
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Bingyu Cai
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Dengfeng Qi
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Miaoyi Zhang
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yankun Zhao
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Kai Li
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
| | - Yong-Zhong Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wei Wang
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jianghui Xie
- National Key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
71
|
Boubsi F, Hoff G, Arguelles Arias A, Steels S, Andrić S, Anckaert A, Roulard R, Rigolet A, van Wuytswinkel O, Ongena M. Pectic homogalacturonan sensed by Bacillus acts as host associated cue to promote establishment and persistence in the rhizosphere. iScience 2023; 26:107925. [PMID: 37790276 PMCID: PMC10543691 DOI: 10.1016/j.isci.2023.107925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/19/2023] [Accepted: 09/12/2023] [Indexed: 10/05/2023] Open
Abstract
Bacillus velezensis isolates are among the most promising plant-associated beneficial bacteria used as biocontrol agents. However, various aspects of the chemical communication between the plant and these beneficials, determining root colonization ability, remain poorly described. Here we investigated the molecular basis of such interkingdom interaction occurring upon contact between Bacillus velezensis and its host via the sensing of pectin backbone homogalacturonan (HG). We showed that B. velezensis stimulates key developmental traits via a dynamic process involving two conserved pectinolytic enzymes. This response integrates transcriptional changes leading to the switch from planktonic to sessile cells, a strong increase in biofilm formation, and an accelerated sporulation dynamics while conserving the potential to efficiently produce specialized secondary metabolites. As a whole, we anticipate that this response of Bacillus to cell wall-derived host cues contributes to its establishment and persistence in the competitive rhizosphere niche and ipso facto to its activity as biocontrol agent.
Collapse
Affiliation(s)
- Farah Boubsi
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Grégory Hoff
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Anthony Arguelles Arias
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Sébastien Steels
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Sofija Andrić
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Adrien Anckaert
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Romain Roulard
- UMRT INRAe 1158 Plant Biology and Innovation, University of Picardie Jules Verne, UFR des Sciences, 80039 Amiens, France
| | - Augustin Rigolet
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Olivier van Wuytswinkel
- UMRT INRAe 1158 Plant Biology and Innovation, University of Picardie Jules Verne, UFR des Sciences, 80039 Amiens, France
| | - Marc Ongena
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| |
Collapse
|
72
|
Dort EN, Layne E, Feau N, Butyaev A, Henrissat B, Martin FM, Haridas S, Salamov A, Grigoriev IV, Blanchette M, Hamelin RC. Large-scale genomic analyses with machine learning uncover predictive patterns associated with fungal phytopathogenic lifestyles and traits. Sci Rep 2023; 13:17203. [PMID: 37821494 PMCID: PMC10567782 DOI: 10.1038/s41598-023-44005-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
Invasive plant pathogenic fungi have a global impact, with devastating economic and environmental effects on crops and forests. Biosurveillance, a critical component of threat mitigation, requires risk prediction based on fungal lifestyles and traits. Recent studies have revealed distinct genomic patterns associated with specific groups of plant pathogenic fungi. We sought to establish whether these phytopathogenic genomic patterns hold across diverse taxonomic and ecological groups from the Ascomycota and Basidiomycota, and furthermore, if those patterns can be used in a predictive capacity for biosurveillance. Using a supervised machine learning approach that integrates phylogenetic and genomic data, we analyzed 387 fungal genomes to test a proof-of-concept for the use of genomic signatures in predicting fungal phytopathogenic lifestyles and traits during biosurveillance activities. Our machine learning feature sets were derived from genome annotation data of carbohydrate-active enzymes (CAZymes), peptidases, secondary metabolite clusters (SMCs), transporters, and transcription factors. We found that machine learning could successfully predict fungal lifestyles and traits across taxonomic groups, with the best predictive performance coming from feature sets comprising CAZyme, peptidase, and SMC data. While phylogeny was an important component in most predictions, the inclusion of genomic data improved prediction performance for every lifestyle and trait tested. Plant pathogenicity was one of the best-predicted traits, showing the promise of predictive genomics for biosurveillance applications. Furthermore, our machine learning approach revealed expansions in the number of genes from specific CAZyme and peptidase families in the genomes of plant pathogens compared to non-phytopathogenic genomes (saprotrophs, endo- and ectomycorrhizal fungi). Such genomic feature profiles give insight into the evolution of fungal phytopathogenicity and could be useful to predict the risks of unknown fungi in future biosurveillance activities.
Collapse
Affiliation(s)
- E N Dort
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada
| | - E Layne
- School of Computer Science, McGill University, Montreal, QC, Canada
| | - N Feau
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - A Butyaev
- School of Computer Science, McGill University, Montreal, QC, Canada
| | - B Henrissat
- Department of Biotechnology and Biomedicine (DTU Bioengineering), Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - F M Martin
- Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement, Unité Mixte de Recherche Interactions Arbres/Microorganismes, Centre INRAE, Grand Est-Nancy, Université de Lorraine, Champenoux, France
| | - S Haridas
- Lawrence Berkeley National Laboratory, U.S. Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - A Salamov
- Lawrence Berkeley National Laboratory, U.S. Department of Energy Joint Genome Institute, Berkeley, CA, USA
| | - I V Grigoriev
- Lawrence Berkeley National Laboratory, U.S. Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - M Blanchette
- School of Computer Science, McGill University, Montreal, QC, Canada
| | - R C Hamelin
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Vancouver, BC, Canada.
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.
- Département des Sciences du bois et de la Forêt, Faculté de Foresterie et Géographie, Université Laval, Québec, QC, Canada.
| |
Collapse
|
73
|
Liu S, Liu R, Lv J, Feng Z, Wei F, Zhao L, Zhang Y, Zhu H, Feng H. The glycoside hydrolase 28 member VdEPG1 is a virulence factor of Verticillium dahliae and interacts with the jasmonic acid pathway-related gene GhOPR9. MOLECULAR PLANT PATHOLOGY 2023; 24:1238-1255. [PMID: 37401912 PMCID: PMC10502839 DOI: 10.1111/mpp.13366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 07/05/2023]
Abstract
Glycoside hydrolase (GH) family members act as virulence factors and regulate plant immune responses during pathogen infection. Here, we characterized the GH28 family member endopolygalacturonase VdEPG1 in Verticillium dahliae. VdEPG1 acts as a virulence factor during V. dahliae infection. The expression level of VdEPG1 was greatly increased in V. dahliae inoculated on cotton roots. VdEPG1 suppressed VdNLP1-mediated cell death by modulating pathogenesis-related genes in Nicotiana benthamiana. Knocking out VdEPG1 led to a significant decrease in the pathogenicity of V. dahliae in cotton. The deletion strains were more susceptible to osmotic stress and the ability of V. dahliae to utilize carbon sources was deficient. In addition, the deletion strains lost the ability to penetrate cellophane membrane, with mycelia showing a disordered arrangement on the membrane, and spore development was affected. A jasmonic acid (JA) pathway-related gene, GhOPR9, was identified as interacting with VdEPG1 in the yeast two-hybrid system. The interaction was further confirmed by bimolecular fluorescence complementation and luciferase complementation imaging assays in N. benthamiana leaves. GhOPR9 plays a positive role in the resistance of cotton to V. dahliae by regulating JA biosynthesis. These results indicate that VdEPG1 may be able to regulate host immune responses as a virulence factor through modulating the GhOPR9-mediated JA biosynthesis.
Collapse
Affiliation(s)
- Shichao Liu
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Spice and Beverage Research InstituteChinese Academy of Tropical Agricultural SciencesWanningHainanChina
| | - Ruibing Liu
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Spice and Beverage Research InstituteChinese Academy of Tropical Agricultural SciencesWanningHainanChina
| | - Junyuan Lv
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
| | - Zili Feng
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
| | - Feng Wei
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Western Agricultural Research Center of Chinese Academy of Agricultural SciencesChinese Academy of Agricultural SciencesChangjiXinjiangChina
| | - Lihong Zhao
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
| | - Yalin Zhang
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
| | - Heqin Zhu
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Western Agricultural Research Center of Chinese Academy of Agricultural SciencesChinese Academy of Agricultural SciencesChangjiXinjiangChina
| | - Hongjie Feng
- National Key Laboratory of Cotton Bio‐breeding and Integrated UtilizationInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangHenanChina
- Western Agricultural Research Center of Chinese Academy of Agricultural SciencesChinese Academy of Agricultural SciencesChangjiXinjiangChina
| |
Collapse
|
74
|
Kim SJ, Bhandari DD, Sokoloski R, Brandizzi F. Immune activation during Pseudomonas infection causes local cell wall remodeling and alters AGP accumulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:541-557. [PMID: 37496362 DOI: 10.1111/tpj.16393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 07/05/2023] [Indexed: 07/28/2023]
Abstract
The plant cell boundary generally comprises constituents of the primary and secondary cell wall (CW) that are deposited sequentially during development. Although it is known that the CW acts as a barrier against phytopathogens and undergoes modifications to limit their invasion, the extent, sequence, and requirements of the pathogen-induced modifications of the CW components are still largely unknown, especially at the level of the polysaccharide fraction. To address this significant knowledge gap, we adopted the compatible Pseudomonas syringae-Arabidopsis thaliana system. We found that, despite systemic signaling actuation, Pseudomonas infection leads only to local CW modifications. Furthermore, by utilizing a combination of CW and immune signaling-deficient mutants infected with virulent or non-virulent bacteria, we demonstrated that the pathogen-induced changes in CW polysaccharides depend on the combination of pathogen virulence and the host's ability to mount an immune response. This results in a pathogen-driven accumulation of CW hexoses, such as galactose, and an immune signaling-dependent increase in CW pentoses, mainly arabinose, and xylose. Our analyses of CW changes during disease progression also revealed a distinct spatiotemporal pattern of arabinogalactan protein (AGP) deposition and significant modifications of rhamnogalacturonan sidechains. Furthermore, genetic analyses demonstrated a critical role of AGPs, specifically of the Arabinoxylan Pectin Arabinogalactan Protein1, in limiting pathogen growth. Collectively, our results provide evidence for the actuation of significant remodeling of CW polysaccharides in a compatible host-pathogen interaction, and, by identifying AGPs as critical elements of the CW in plant defense, they pinpoint opportunities to improve plants against diverse pathogens.
Collapse
Affiliation(s)
- Sang-Jin Kim
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Deepak D Bhandari
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Rylee Sokoloski
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Federica Brandizzi
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
75
|
Jin P, Kong Y, Zhang Z, Zhang H, Dong Y, Lamour K, Yang Z, Zhou Y, Hu J. Comparative genomics and transcriptome analysis reveals potential pathogenic mechanisms of Microdochium paspali on seashore paspalum. Front Microbiol 2023; 14:1259241. [PMID: 37795300 PMCID: PMC10546424 DOI: 10.3389/fmicb.2023.1259241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 08/31/2023] [Indexed: 10/06/2023] Open
Abstract
The sparse leaf patch of seashore paspalum (Paspalum vaginatum Sw.) caused by Microdochium paspali seriously impacts the landscape value of turf and poses a challenge to the maintenance and management of golf courses. Little is known about the genome of M. paspali or the potential genes underlying pathogenicity. In this study, we present a high-quality genome assembly of M. paspali with 14 contigs using the Nanopore and Illumina platform. The M. paspali genome is roughly 37.32 Mb in size and contains 10,365 putative protein-coding genes. These encompass a total of 3,830 pathogen-host interactions (PHI) genes, 481 carbohydrate-active enzymes (CAZymes) coding genes, 105 effectors, and 50 secondary metabolite biosynthetic gene clusters (SMGCs) predicted to be associated with pathogenicity. Comparative genomic analysis suggests M. paspali has 672 species-specific genes (SSGs) compared to two previously sequenced non-pathogenic Microdochium species, including 24 species-specific gene clusters (SSGCs). Comparative transcriptomic analyses reveal that 739 PHIs, 198 CAZymes, 40 effectors, 21 SMGCs, 213 SSGs, and 4 SSGCs were significantly up-regulated during the process of infection. In conclusion, the study enriches the genomic resources of Microdochium species and provides a valuable resource to characterize the pathogenic mechanisms of M. paspali.
Collapse
Affiliation(s)
- Peiyuan Jin
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yixuan Kong
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Ze Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Huangwei Zhang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yinglu Dong
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Kurt Lamour
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, United States
| | - Zhimin Yang
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Yuxin Zhou
- Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China
| | - Jian Hu
- College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
76
|
Shirai M, Eulgem T. Molecular interactions between the soilborne pathogenic fungus Macrophomina phaseolina and its host plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1264569. [PMID: 37780504 PMCID: PMC10539690 DOI: 10.3389/fpls.2023.1264569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/28/2023] [Indexed: 10/03/2023]
Abstract
Mentioned for the first time in an article 1971, the occurrence of the term "Macrophomina phaseolina" has experienced a steep increase in the scientific literature over the past 15 years. Concurrently, incidences of M. phaseolina-caused crop diseases have been getting more frequent. The high levels of diversity and plasticity observed for M. phasolina genomes along with a rich equipment of plant cell wall degrading enzymes, secondary metabolites and putative virulence effectors as well as the unusual longevity of microsclerotia, their asexual reproduction structures, make this pathogen very difficult to control and crop protection against it very challenging. During the past years several studies have emerged reporting on host defense measures against M. phaseolina, as well as mechanisms of pathogenicity employed by this fungal pathogen. While most of these studies have been performed in crop systems, such as soybean or sesame, recently interactions of M. phaseolina with the model plant Arabidopsis thaliana have been described. Collectively, results from various studies are hinting at a complex infection cycle of M. phaseolina, which exhibits an early biotrophic phase and switches to necrotrophy at later time points during the infection process. Consequently, responses of the hosts are complex and seem coordinated by multiple defense-associated phytohormones. However, at this point no robust and strong host defense mechanism against M. phaseolina has been described.
Collapse
Affiliation(s)
| | - Thomas Eulgem
- Center for Plant Cell Biology, Institute for Integrative Genome Biology, Department of Botany & Plant Sciences, University of California at Riverside, Riverside, CA, United States
| |
Collapse
|
77
|
Hu S, Yan C, Fei Q, Zhang B, Wu W. MOF-based stimuli-responsive controlled release nanopesticide: mini review. Front Chem 2023; 11:1272725. [PMID: 37767340 PMCID: PMC10520976 DOI: 10.3389/fchem.2023.1272725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
By releasing an adequate amount of active ingredients when triggered by environmental and biological factors, the nanopesticides that respond to stimuli can enhance the efficacy of pesticides and contribute to the betterment of both the environment and food safety. The versatile nature and highly porous structure of metal-organic frameworks (MOFs) have recently garnered significant interest as drug carriers for various applications. In recent years, there has been significant progress in the development of metal-organic frameworks as nanocarriers for pesticide applications. This review focuses on the advancements, challenges, and potential future enhancements in the design of metal-organic frameworks as nanocarriers in the field of pesticides. We explore the various stimuli-responsive metal-organic frameworks carriers, particularly focusing on zeolitic imidazolate framework-8 (ZIF-8), which have been successfully activated by external stimuli such as pH-responsive or multiple stimuli-responsive mechanisms. In conclusion, this paper presents the existing issues and future prospects of metal-organic frameworks-based nanopesticides with stimuli-responsive controlled release.
Collapse
Affiliation(s)
- Shuhui Hu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Chang Yan
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Qiang Fei
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Bo Zhang
- Shanghai Engineering Research Center of Green Energy Chemical Engineering, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Wenneng Wu
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| |
Collapse
|
78
|
Restrepo-Leal JD, Belair M, Fischer J, Richet N, Fontaine F, Rémond C, Fernandez O, Besaury L. Differential carbohydrate-active enzymes and secondary metabolite production by the grapevine trunk pathogen Neofusicoccum parvum Bt-67 grown on host and non-host biomass. Mycologia 2023; 115:579-601. [PMID: 37358885 DOI: 10.1080/00275514.2023.2216122] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 05/17/2023] [Indexed: 06/27/2023]
Abstract
Neofusicoccum parvum is one of the most aggressive Botryosphaeriaceae species associated with grapevine trunk diseases. This species may secrete enzymes capable of overcoming the plant barriers, leading to wood colonization. In addition to their roles in pathogenicity, there is an interest in taking advantage of N. parvum carbohydrate-active enzymes (CAZymes), related to plant cell wall degradation, for lignocellulose biorefining. Furthermore, N. parvum produces toxic secondary metabolites that may contribute to its virulence. In order to increase knowledge on the mechanisms underlying pathogenicity and virulence, as well as the exploration of its metabolism and CAZymes for lignocellulose biorefining, we evaluated the N. parvum strain Bt-67 capacity in producing lignocellulolytic enzymes and secondary metabolites when grown in vitro with two lignocellulosic biomasses: grapevine canes (GP) and wheat straw (WS). For this purpose, a multiphasic study combining enzymology, transcriptomic, and metabolomic analyses was performed. Enzyme assays showed higher xylanase, xylosidase, arabinofuranosidase, and glucosidase activities when the fungus was grown with WS. Fourier transform infrared (FTIR) spectroscopy confirmed the lignocellulosic biomass degradation caused by the secreted enzymes. Transcriptomics indicated that the N. parvum Bt-67 gene expression profiles in the presence of both biomasses were similar. In total, 134 genes coding CAZymes were up-regulated, where 94 of them were expressed in both biomass growth conditions. Lytic polysaccharide monooxygenases (LPMOs), glucosidases, and endoglucanases were the most represented CAZymes and correlated with the enzymatic activities obtained. The secondary metabolite production, analyzed by high-performance liquid chromatography-ultraviolet/visible spectophotometry-mass spectrometry (HPLC-UV/Vis-MS), was variable depending on the carbon source. The diversity of differentially produced metabolites was higher when N. parvum Bt-67 was grown with GP. Overall, these results provide insight into the influence of lignocellulosic biomass on virulence factor expressions. Moreover, this study opens the possibility of optimizing the enzyme production from N. parvum with potential use for lignocellulose biorefining.
Collapse
Affiliation(s)
- Julián D Restrepo-Leal
- AFERE Chair, Fractionnement des Agroressources et Environnement (FARE) UMR A 614, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
- MALDIVE Chair, Résistance Induite et Bioprotection des Plantes (RIBP) USC 1488, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Marie Belair
- AFERE Chair, Fractionnement des Agroressources et Environnement (FARE) UMR A 614, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Jochen Fischer
- Institut für Biotechnologie und Wirkstoff-Forschung gGmbH (IBWF), Hanns-Dieter-Hüsch-Weg 17, 55128 Mainz, Germany
| | - Nicolas Richet
- Plateau Technique Mobile de Cytométrie Environnementale (MOBICYTE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne Ardenne/Institut National de l'Environnement Industriel et des Risques (INERIS), 51100 Reims, France
| | - Florence Fontaine
- MALDIVE Chair, Résistance Induite et Bioprotection des Plantes (RIBP) USC 1488, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Caroline Rémond
- AFERE Chair, Fractionnement des Agroressources et Environnement (FARE) UMR A 614, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Olivier Fernandez
- MALDIVE Chair, Résistance Induite et Bioprotection des Plantes (RIBP) USC 1488, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| | - Ludovic Besaury
- AFERE Chair, Fractionnement des Agroressources et Environnement (FARE) UMR A 614, Institut National de Recherche pour l'Agriculture, l'Alimentation et l'Environnement (INRAE), UFR Sciences Exactes et Naturelles, Université de Reims Champagne-Ardenne, 51100 Reims, France
| |
Collapse
|
79
|
Pring S, Kato H, Imano S, Camagna M, Tanaka A, Kimoto H, Chen P, Shrotri A, Kobayashi H, Fukuoka A, Saito M, Suzuki T, Terauchi R, Sato I, Chiba S, Takemoto D. Induction of plant disease resistance by mixed oligosaccharide elicitors prepared from plant cell wall and crustacean shells. PHYSIOLOGIA PLANTARUM 2023; 175:e14052. [PMID: 37882264 DOI: 10.1111/ppl.14052] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/27/2023]
Abstract
Basal plant immune responses are activated by the recognition of conserved microbe-associated molecular patterns (MAMPs), or breakdown molecules released from the plants after damage by pathogen penetration, so-called damage-associated molecular patterns (DAMPs). While chitin-oligosaccharide (CHOS), a primary component of fungal cell walls, is most known as MAMP, plant cell wall-derived oligosaccharides, cello-oligosaccharides (COS) from cellulose, and xylo-oligosaccharide (XOS) from hemicellulose are representative DAMPs. In this study, elicitor activities of COS prepared from cotton linters, XOS prepared from corn cobs, and chitin-oligosaccharide (CHOS) from crustacean shells were comparatively investigated. In Arabidopsis, COS, XOS, or CHOS treatment triggered typical defense responses such as reactive oxygen species (ROS) production, phosphorylation of MAP kinases, callose deposition, and activation of the defense-related transcription factor WRKY33 promoter. When COS, XOS, and CHOS were used at concentrations with similar activity in inducing ROS production and callose depositions, CHOS was particularly potent in activating the MAPK kinases and WRKY33 promoters. Among the COS and XOS with different degrees of polymerization, cellotriose and xylotetraose showed the highest activity for the activation of WRKY33 promoter. Gene ontology enrichment analysis of RNAseq data revealed that simultaneous treatment of COS, XOS, and CHOS (oligo-mix) effectively activates plant disease resistance. In practice, treatment with the oligo-mix enhanced the resistance of tomato to powdery mildew, but plant growth was not inhibited but rather tended to be promoted, providing evidence that treatment with the oligo-mix has beneficial effects on improving disease resistance in plants, making them a promising class of compounds for practical application.
Collapse
Affiliation(s)
- Sreynich Pring
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hiroaki Kato
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Sayaka Imano
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Maurizio Camagna
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hisashi Kimoto
- Graduate School of Bioscience and Biotechnology, Fukui Prefectural University, Awara, Japan
| | - Pengru Chen
- Institute for Catalysis, Hokkaido University, Sapporo, Japan
| | - Abhijit Shrotri
- Institute for Catalysis, Hokkaido University, Sapporo, Japan
| | | | - Atsushi Fukuoka
- Institute for Catalysis, Hokkaido University, Sapporo, Japan
| | - Makoto Saito
- Resonac Corporation (Showa Denko K.K.), Tokyo, Japan
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Ryohei Terauchi
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ikuo Sato
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Sotaro Chiba
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daigo Takemoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
80
|
Yang S, Zhuo Y, Lin Y, Huang M, Tang W, Zheng W, Lu G, Wang Z, Yun Y. The Signal Peptidase FoSpc2 Is Required for Normal Growth, Conidiation, Virulence, Stress Response, and Regulation of Light Sensitivity in Fusarium odoratissimum. Microbiol Spectr 2023; 11:e0440322. [PMID: 37367437 PMCID: PMC10433827 DOI: 10.1128/spectrum.04403-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 06/05/2023] [Indexed: 06/28/2023] Open
Abstract
Signal peptidase (SPase) is responsible for cleavage of N-terminal signal peptides in most secretory precursor proteins and many membrane proteins during maturation. In this study, we identified four components of the SPase complex (FoSec11, FoSpc1, FoSpc2, and FoSpc3) in the banana wilt fungal pathogen Fusarium odoratissimum. We proved that interactions exist among the four SPase subunits by bimolecular fluorescence complementation (BiFC) and affinity purification and mass spectrometry (AP-MS) assays. Among the four SPase genes, FoSPC2 was successfully deleted. FoSPC2 deletion caused defects in vegetative growth, conidiation, and virulence. Loss of FoSPC2 also affected the secretion of some pathogenicity-related extracellular enzymes, suggesting that SPase without FoSpc2 may have a lower efficiency in managing the maturation of the extracellular enzymes in F. odoratissimum. In addition, we found that the ΔFoSPC2 mutant had increased sensitivity to light, and the colonies of the mutant grew faster under all-dark conditions than under all-light conditions. We further observed that deletion of FoSPC2 affected expression of the blue light photoreceptor gene FoWC2, leading to cytoplasmic accumulation of FoWc2 under all-light conditions. Since FoWc2 has signal peptides, FoSpc2 may regulate the expression and subcellular localization of FoWc2 indirectly. Contrary to its response to light, the ΔFoSPC2 mutant displayed a significant decreased sensitivity to osmotic stress, and culturing the mutant under osmotic stress conditions restored both the localization of FoWc2 and light sensitivity of the ΔFoSPC2, suggesting that a cross talk between osmotic stress and light response pathways in F. odoratissimum and FoSpc2 takes part in these processes. IMPORTANCE In this study, we identified four components of SPase in the banana wilt pathogen Fusarium odoratissimum and characterized the SPase FoSpc2. Loss of FoSPC2 affected the secretion of extracellular enzymes, suggesting that SPase without FoSpc2 may have a lower efficiency in managing the maturation of the extracellular enzymes in F. odoratissimum. In addition, this is the first time that we have found a relationship between the SPase and fungal light response. Deletion of FoSPC2 resulted in decreased sensitivity to the osmotic stresses but with increased sensitivity to light. Continuous light inhibited the growth rate of the ΔFoSPC2 mutant and affected the cellular localization of the blue light photoreceptor FoWc2 in this mutant, but culturing the mutant under osmotic stress both restored the localization of FoWc2 and eliminated the light sensitivity of the ΔFoSPC2 mutant, suggesting that loss of FoSPC2 may affect a cross talk between the osmotic stress and light response pathways in F. odoratissimum.
Collapse
Affiliation(s)
- Shuai Yang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yanghong Zhuo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yaqi Lin
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meimei Huang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wei Tang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zheng
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guodong Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zonghua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Yingzi Yun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| |
Collapse
|
81
|
Li R, Ma XY, Zhang YJ, Zhang YJ, Zhu H, Shao SN, Zhang DD, Klosterman SJ, Dai XF, Subbarao KV, Chen JY. Genome-wide identification and analysis of a cotton secretome reveals its role in resistance against Verticillium dahliae. BMC Biol 2023; 21:166. [PMID: 37542270 PMCID: PMC10403859 DOI: 10.1186/s12915-023-01650-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 08/06/2023] Open
Abstract
BACKGROUND The extracellular space between the cell wall and plasma membrane is a battlefield in plant-pathogen interactions. Within this space, the pathogen employs its secretome to attack the host in a variety of ways, including immunity manipulation. However, the role of the plant secretome is rarely studied for its role in disease resistance. RESULTS Here, we examined the secretome of Verticillium wilt-resistant Gossypium hirsutum cultivar Zhongzhimian No.2 (ZZM2, encoding 95,327 predicted coding sequences) to determine its role in disease resistance against the wilt causal agent, Verticillium dahliae. Bioinformatics-driven analyses showed that the ZZM2 genome encodes 2085 secreted proteins and that these display disequilibrium in their distribution among the chromosomes. The cotton secretome displayed differences in the abundance of certain amino acid residues as compared to the remaining encoded proteins due to the localization of these putative proteins in the extracellular space. The secretome analysis revealed conservation for an allotetraploid genome, which nevertheless exhibited variation among orthologs and comparable unique genes between the two sub-genomes. Secretome annotation strongly suggested its involvement in extracellular stress responses (hydrolase activity, oxidoreductase activity, and extracellular region, etc.), thus contributing to resistance against the V. dahliae infection. Furthermore, the defense response genes (immunity marker NbHIN1, salicylic acid marker NbPR1, and jasmonic acid marker NbLOX4) were activated to varying degrees when Nicotina benthamiana leaves were agro-infiltrated with 28 randomly selected members, suggesting that the secretome plays an important role in the immunity response. Finally, gene silencing assays of 11 members from 13 selected candidates in ZZM2 displayed higher susceptibility to V. dahliae, suggesting that the secretome members confer the Verticillium wilt resistance in cotton. CONCLUSIONS Our data demonstrate that the cotton secretome plays an important role in Verticillium wilt resistance, facilitating the development of the resistance gene markers and increasing the understanding of the mechanisms regulating disease resistance.
Collapse
Affiliation(s)
- Ran Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Xi-Yue Ma
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Ye-Jing Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yong-Jun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - He Zhu
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
- The Cotton Research Center of Liaoning Academy of Agricultural Sciences, National Cotton Industry Technology System Liaohe Comprehensive Experimental Station, Liaoning Provincial Institute of Economic Crops, Liaoyang, 111000, China
| | - Sheng-Nan Shao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Dan-Dan Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China
| | - Steven J Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, USA
| | - Xiao-Feng Dai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Krishna V Subbarao
- Department of Plant Pathology, University of California, Davis c/o United States Agricultural Research Station, Salinas, CA, USA.
| | - Jie-Yin Chen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| |
Collapse
|
82
|
Wu Y, Zhang B, Liu S, Zhao Z, Ren W, Chen L, Yang L, Zhuang M, Lv H, Wang Y, Ji J, Han F, Zhang Y. A Whole-Genome Assembly for Hyaloperonospora parasitica, A Pathogen Causing Downy Mildew in Cabbage ( Brassica oleracea var. capitata L.). J Fungi (Basel) 2023; 9:819. [PMID: 37623590 PMCID: PMC10456066 DOI: 10.3390/jof9080819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/01/2023] [Accepted: 08/01/2023] [Indexed: 08/26/2023] Open
Abstract
Hyaloperonospora parasitica is a global pathogen that can cause leaf necrosis and seedling death, severely threatening the quality and yield of cabbage. However, the genome sequence and infection mechanisms of H. parasitica are still unclear. Here, we present the first whole-genome sequence of H. parasitica isolate BJ2020, which causes downy mildew in cabbage. The genome contains 4631 contigs and 9991 protein-coding genes, with a size of 37.10 Mb. The function of 6128 genes has been annotated. We annotated the genome of H. parasitica strain BJ2020 using databases, identifying 2249 PHI-associated genes, 1538 membrane transport proteins, and 126 CAZy-related genes. Comparative analyses between H. parasitica, H.arabidopsidis, and H. brassicae revealed dramatic differences among these three Brassicaceae downy mildew pathogenic fungi. Comprehensive genome-wide clustering analysis of 20 downy mildew-causing pathogens, which infect diverse crops, elucidates the closest phylogenetic affinity between H. parasitica and H. brassicae, the causative agent of downy mildew in Brassica napus. These findings provide important insights into the pathogenic mechanisms and a robust foundation for further investigations into the pathogenesis of H. parasitica BJ2020.
Collapse
Affiliation(s)
- Yuankang Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (B.Z.); (W.R.); (L.C.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Bin Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (B.Z.); (W.R.); (L.C.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Shaobo Liu
- China Vegetable Biotechnology (Shouguang) Co., Ltd., Shouguang 262700, China; (S.L.); (Z.Z.)
| | - Zhiwei Zhao
- China Vegetable Biotechnology (Shouguang) Co., Ltd., Shouguang 262700, China; (S.L.); (Z.Z.)
| | - Wenjing Ren
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (B.Z.); (W.R.); (L.C.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Li Chen
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (B.Z.); (W.R.); (L.C.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Limei Yang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (B.Z.); (W.R.); (L.C.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Mu Zhuang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (B.Z.); (W.R.); (L.C.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Honghao Lv
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (B.Z.); (W.R.); (L.C.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Yong Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (B.Z.); (W.R.); (L.C.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Jialei Ji
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (B.Z.); (W.R.); (L.C.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Fengqing Han
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (B.Z.); (W.R.); (L.C.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Y.W.); (B.Z.); (W.R.); (L.C.); (L.Y.); (M.Z.); (H.L.); (Y.W.); (J.J.)
| |
Collapse
|
83
|
Wang H, Lu Z, Keyhani NO, Deng J, Zhao X, Huang S, Luo Z, Jin K, Zhang Y. Insect fungal pathogens secrete a cell wall-associated glucanase that acts to help avoid recognition by the host immune system. PLoS Pathog 2023; 19:e1011578. [PMID: 37556475 PMCID: PMC10441804 DOI: 10.1371/journal.ppat.1011578] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 08/21/2023] [Accepted: 07/25/2023] [Indexed: 08/11/2023] Open
Abstract
Fungal insect pathogens have evolved diverse mechanisms to evade host immune recognition and defense responses. However, identification of fungal factors involved in host immune evasion during cuticular penetration and subsequent hemocoel colonization remains limited. Here, we report that the entomopathogenic fungus Beauveria bassiana expresses an endo-β-1,3-glucanase (BbEng1) that functions in helping cells evade insect immune recognition/ responses. BbEng1 was specifically expressed during infection, in response to host cuticle and hemolymph, and in the presence of osmotic or oxidative stress. BbEng1 was localized to the fungal cell surface/ cell wall, where it acts to remodel the cell wall pathogen associated molecular patterns (PAMPs) that can trigger host defenses, thus facilitating fungal cell evasion of host immune defenses. BbEng1 was secreted where it could bind to fungal cells. Cell wall β-1,3-glucan levels were unchanged in ΔBbEng1 cells derived from in vitro growth media, but was elevated in hyphal bodies, whereas glucan levels were reduced in most cell types derived from the BbEng1 overexpressing strain (BbEng1OE). The BbEng1OE strain proliferated more rapidly in the host hemocoel and displayed higher virulence as compared to the wild type parent. Overexpression of their respective Eng1 homologs or of BbEng1 in the insect fungal pathogens, Metarhizium robertsii and M. acridum also resulted in increased virulence. Our data support a mechanism by which BbEng1 helps the fungal pathogen to evade host immune surveillance by decreasing cell wall glucan PAMPs, promoting successful fungal mycosis.
Collapse
Affiliation(s)
- Huifang Wang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Zhuoyue Lu
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Nemat O. Keyhani
- Department of Biological Sciences, University of Illinois, Chicago, Illinois, United States of America
| | - Juan Deng
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Xin Zhao
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Shuaishuai Huang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Zhibing Luo
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, People’s Republic of China
| | - Yongjun Zhang
- Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing, People’s Republic of China
- Key Laboratory of Entomology and Pest Control Engineering, Academy of Agricultural Sciences, Southwest University, Chongqing, People’s Republic of China
| |
Collapse
|
84
|
Pei Y, Ji P, Si J, Zhao H, Zhang S, Xu R, Qiao H, Duan W, Shen D, Yin Z, Dou D. A Phytophthora receptor-like kinase regulates oospore development and can activate pattern-triggered plant immunity. Nat Commun 2023; 14:4593. [PMID: 37524729 PMCID: PMC10390575 DOI: 10.1038/s41467-023-40171-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 07/05/2023] [Indexed: 08/02/2023] Open
Abstract
Plant cell-surface leucine-rich repeat receptor-like kinases (LRR-RLKs) and receptor-like proteins (LRR-RLPs) form dynamic complexes to receive a variety of extracellular signals. LRR-RLKs are also widespread in oomycete pathogens, whereas it remains enigmatic whether plant and oomycete LRR-RLKs could mediate cell-to-cell communications between pathogen and host. Here, we report that an LRR-RLK from the soybean root and stem rot pathogen Phytophthora sojae, PsRLK6, can activate typical pattern-triggered immunity in host soybean and nonhost tomato and Nicotiana benthamiana plants. PsRLK6 homologs are conserved in oomycetes and also exhibit immunity-inducing activity. A small region (LRR5-6) in the extracellular domain of PsRLK6 is sufficient to activate BAK1- and SOBIR1-dependent immune responses, suggesting that PsRLK6 is likely recognized by a plant LRR-RLP. Moreover, PsRLK6 is shown to be up-regulated during oospore maturation and essential for the oospore development of P. sojae. Our data provide a novel type of microbe-associated molecular pattern that functions in the sexual reproduction of oomycete, and a scenario in which a pathogen LRR-RLK could be sensed by a plant LRR-RLP to mount plant immunity.
Collapse
Affiliation(s)
- Yong Pei
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Peiyun Ji
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jierui Si
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hanqing Zhao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Sicong Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ruofei Xu
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huijun Qiao
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weiwei Duan
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhiyuan Yin
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China.
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
85
|
Giehl A, dos Santos AA, Cadamuro RD, Tadioto V, Guterres IZ, Prá Zuchi ID, Minussi GDA, Fongaro G, Silva IT, Alves SL. Biochemical and Biotechnological Insights into Fungus-Plant Interactions for Enhanced Sustainable Agricultural and Industrial Processes. PLANTS (BASEL, SWITZERLAND) 2023; 12:2688. [PMID: 37514302 PMCID: PMC10385130 DOI: 10.3390/plants12142688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
The literature is full of studies reporting environmental and health issues related to using traditional pesticides in food production and storage. Fortunately, alternatives have arisen in the last few decades, showing that organic agriculture is possible and economically feasible. And in this scenario, fungi may be helpful. In the natural environment, when associated with plants, these microorganisms offer plant-growth-promoting molecules, facilitate plant nutrient uptake, and antagonize phytopathogens. It is true that fungi can also be phytopathogenic, but even they can benefit agriculture in some way-since pathogenicity is species-specific, these fungi are shown to be useful against weeds (as bioherbicides). Finally, plant-associated yeasts and molds are natural biofactories, and the metabolites they produce while dwelling in leaves, flowers, roots, or the rhizosphere have the potential to be employed in different industrial activities. By addressing all these subjects, this manuscript comprehensively reviews the biotechnological uses of plant-associated fungi and, in addition, aims to sensitize academics, researchers, and investors to new alternatives for healthier and more environmentally friendly production processes.
Collapse
Affiliation(s)
- Anderson Giehl
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Angela Alves dos Santos
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
| | - Rafael Dorighello Cadamuro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Viviani Tadioto
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Iara Zanella Guterres
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Isabella Dai Prá Zuchi
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Gabriel do Amaral Minussi
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Cerro Largo 97900-000, RS, Brazil
| | - Gislaine Fongaro
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Izabella Thais Silva
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Laboratory of Applied Virology, Department of Microbiology, Immunology and Parasitology, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Pharmacy, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Sergio Luiz Alves
- Laboratory of Yeast Biochemistry, Federal University of Fronteira Sul, Chapecó 89815-899, SC, Brazil
- Graduate Program in Biotechnology and Biosciences, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
- Graduate Program in Environment and Sustainable Technologies, Federal University of Fronteira Sul, Cerro Largo 97900-000, RS, Brazil
| |
Collapse
|
86
|
Bouqellah NA, Elkady NA, Farag PF. Secretome Analysis for a New Strain of the Blackleg Fungus Plenodomus lingam Reveals Candidate Proteins for Effectors and Virulence Factors. J Fungi (Basel) 2023; 9:740. [PMID: 37504729 PMCID: PMC10381368 DOI: 10.3390/jof9070740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/02/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
The fungal secretome is the main interface for interactions between the pathogen and its host. It includes the most important virulence factors and effector proteins. We integrated different bioinformatic approaches and used the newly drafted genome data of P. lingam isolate CAN1 (blackleg of rapeseed fungus) to predict the secretion of 217 proteins, including many cell-wall-degrading enzymes. All secretory proteins were identified; 85 were classified as CAZyme families and 25 were classified as protease families. Moreover, 49 putative effectors were predicted and identified, where 39 of them possessed at least one conserved domain. Some pectin-degrading enzymes were noticeable as a clustering group according to STRING web analysis. The secretome of P. lingam CAN1 was compared to the other two blackleg fungal species (P. lingam JN3 and P. biglobosus CA1) secretomes and their CAZymes and effectors were identified. Orthologue analysis found that P. lingam CAN1 shared 14 CAZy effectors with other related species. The Pathogen-Host Interaction database (PHI base) classified the effector proteins in several categories where most proteins were assigned as reduced virulence and two of them termed as hypervirulence. Nowadays, in silico approaches can solve many ambiguous issues about the mechanism of pathogenicity between fungi and plant host with well-designed bioinformatics tools.
Collapse
Affiliation(s)
- Nahla A Bouqellah
- Department of Biology, College of Science, Taibah University, P.O. Box 344, Al Madinah Al Munawwarah 42317-8599, Saudi Arabia
| | - Nadia A Elkady
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| | - Peter F Farag
- Department of Microbiology, Faculty of Science, Ain Shams University, Cairo 11566, Egypt
| |
Collapse
|
87
|
Mustafa MH, Corre MN, Heurtevin L, Bassi D, Cirilli M, Quilot-Turion B. Stone fruit phenolic and triterpenoid compounds modulate gene expression of Monilinia spp. in culture media. Fungal Biol 2023; 127:1085-1097. [PMID: 37495299 DOI: 10.1016/j.funbio.2023.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/28/2023]
Abstract
Phenolic and triterpenoid compounds are essential components in stone fruit skin and flesh tissues. They are thought to possess general antimicrobial activity. However, regarding brown rot disease, investigations were only confined to a limited number of phenolics, especially chlorogenic acid. The activity of triterpenoids against Monilinia spp., as an essential part of the peach cuticular wax, has not been studied before. In this work, the anti-fungal effect of some phenolics, triterpenoids, and fruit surface compound (FSC) extracts of peach fruit at two developmental stages were investigated on Monilinia fructicola and Monilinia laxa characteristics during in vitro growth. A new procedure for assaying anti-fungal activity of triterpenoids, which are notoriously difficult to assess in vitro because of their hydrophobicity, has been developed. Measurements of colony diameter, sporulation, and germination of second-generation conidia were recorded. Furthermore, the expression of twelve genes of M. fructicola associated with germination and/or appressorium formation and virulence-related genes was studied relative to the presence of the compounds. The study revealed that certain phenolics and triterpenoids showed modest anti-fungal activity while dramatically modulating gene expression in mycelium of M. fructicola on culture medium. MfRGAE1 gene was overexpressed by chlorogenic and ferulic acids and MfCUT1 by betulinic acid, at 4- and 7- days of mycelium incubation. The stage II FSC extract, corresponding to the period when the fruit is resistant to Monilinia spp., considerably up-regulated the MfLAE1 gene. These findings effectively contribute to the knowledge of biochemical compounds effects on fungi on in vitro conditions.
Collapse
Affiliation(s)
- Majid Hassan Mustafa
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy; INRAE, GAFL, F-84143, Montfavet, France
| | | | | | - Daniele Bassi
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy
| | - Marco Cirilli
- Department of Agricultural and Environmental Sciences (DISAA), University of Milan, 20133, Milan, Italy
| | | |
Collapse
|
88
|
Singh S, Sarki YN, Marwein R, Singha DL, Velmurugan N, Chikkaputtaiah C. Unraveling the role of effector proteins in Bipolaris oryzae infecting North East Indian rice cultivars through time-course transcriptomics analysis. Fungal Biol 2023; 127:1098-1110. [PMID: 37495300 DOI: 10.1016/j.funbio.2023.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 04/29/2023] [Accepted: 05/21/2023] [Indexed: 07/28/2023]
Abstract
Bipolaris oryzae, causing brown spot disease in rice, is one of the neglected diseases reducing rice productivity. Limited knowledge is available on the genetics of host-pathogen interaction. Here, we used time-course transcriptome sequencing to elucidate the differential transcriptional responses of the pathogen genes in two contradictory infection-responsive rice hosts. Evaluation of transcriptome data showed similar regulation of fungal genes within susceptible (1733) and resistant (1846) hosts at an early stage however, in the later stage, the number was significantly higher in susceptible (2877) compared to resistant (1955) hosts. GO enrichment terms for upregulated genes showed a similar pattern in both the hosts at an early stage, but in the later stage terms related to degradation of carbohydrates, carbohydrate transport, and pathogenesis are enriched extensively within the susceptible host. Likewise, similar expression responses were observed with the secretory and effector proteins. Plant pathogenic homologs genes such as those involved in appressorium and conidia formation, host cell wall degradative enzymes, etc. were reported to be highly upregulated within the susceptible host. This study predicts the successful establishment of B. oryzae BO1 in both the host surfaces at an early stage, while disease progression only occurs in the susceptible host in later stage.
Collapse
Affiliation(s)
- Sanjay Singh
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India
| | - Yogita N Sarki
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Riwandahun Marwein
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India
| | - Dhanawantari L Singha
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India
| | - Natarajan Velmurugan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India; Biological Sciences Division, Branch Laboratory-Itanagar, CSIR-NEIST, Naharlagun, 791110, Arunachal Pradesh, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, 785006, Assam, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201 002, India.
| |
Collapse
|
89
|
Kim S, Lee J, Park J, Choi S, Bui DC, Kim JE, Shin J, Kim H, Choi GJ, Lee YW, Chang PS, Son H. Genetic and Transcriptional Regulatory Mechanisms of Lipase Activity in the Plant Pathogenic Fungus Fusarium graminearum. Microbiol Spectr 2023; 11:e0528522. [PMID: 37093014 PMCID: PMC10269793 DOI: 10.1128/spectrum.05285-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
Lipases, which catalyze the hydrolysis of long-chain triglycerides, diglycerides, and monoglycerides into free fatty acids and glycerol, participate in various biological pathways in fungi. In this study, we examined the biological functions and regulatory mechanisms of fungal lipases via two approaches. First, we performed a systemic functional characterization of 86 putative lipase-encoding genes in the plant-pathogenic fungus Fusarium graminearum. The phenotypes were assayed for vegetative growth, asexual and sexual reproduction, stress responses, pathogenicity, mycotoxin production, and lipase activity. Most mutants were normal in the assessed phenotypes, implying overlapping roles for lipases in F. graminearum. In particular, FgLip1 and Fgl1 were revealed as core extracellular lipases in F. graminearum. Second, we examined the lipase activity of previously constructed transcription factor (TF) mutants of F. graminearum and identified three TFs and one histone acetyltransferase that significantly affect lipase activity. The relative transcript levels of FgLIP1 and FGL1 were markedly reduced or enhanced in these TF mutants. Among them, Gzzc258 was identified as a key lipase regulator that is also involved in the induction of lipase activity during sexual reproduction. To our knowledge, this study is the first comprehensive functional analysis of fungal lipases and provides significant insights into the genetic and regulatory mechanisms underlying lipases in fungi. IMPORTANCE Fusarium graminearum is an economically important plant-pathogenic fungus that causes Fusarium head blight (FHB) on wheat and barley. Here, we constructed a gene knockout mutant library of 86 putative lipase-encoding genes and established a comprehensive phenotypic database of the mutants. Among them, we found that FgLip1 and Fgl1 act as core extracellular lipases in this pathogen. Moreover, several putative transcription factors (TFs) that regulate the lipase activities in F. graminearum were identified. The disruption mutants of F. graminearum-lipase regulatory TFs all showed defects in sexual reproduction, which implies a strong relationship between sexual development and lipase activity in this fungus. These findings provide valuable insights into the genetic mechanisms regulating lipase activity as well as its importance to the developmental stages of this plant-pathogenic fungus.
Collapse
Affiliation(s)
- Sieun Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Juno Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Jiyeun Park
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Soyoung Choi
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Duc-Cuong Bui
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jung-Eun Kim
- Research Institute of Climate Change and Agriculture, National Institute of Horticultural and Herbal Science, Jeju, Republic of Korea
| | - Jiyoung Shin
- Division of Bioresources Bank, Honam National Institute of Biological Resources, Mokpo, Republic of Korea
| | - Hun Kim
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Gyung Ja Choi
- Center for Eco-friendly New Materials, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Yin-Won Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
| | - Pahn-Shick Chang
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, Republic of Korea
- Center for Agricultural Microorganism and Enzyme, Seoul National University, Seoul, Republic of Korea
| | - Hokyoung Son
- Department of Agricultural Biotechnology, Seoul National University, Seoul, Republic of Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
90
|
Wang C, Huang Z, Duan Z, Zhu L, Di R, Bao Y, Powell CA, Hu Q, Chen B, Zhang M, Yao W. Pectate Lyase from Fusarium sacchari Induces Plant Immune Responses and Contributes to Virulence. Microbiol Spectr 2023; 11:e0016523. [PMID: 37140457 PMCID: PMC10269888 DOI: 10.1128/spectrum.00165-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/13/2023] [Indexed: 05/05/2023] Open
Abstract
Fusarium sacchari is one of the primary pathogens causing Pokkah Boeng disease (PBD) in sugarcane in China. Pectate lyases (PL), which play a critical role in pectin degradation and fungal virulence, have been extensively studied in major bacterial and fungal pathogens of a wide range of plant species. However, only a few PLs have been functionally investigated. In this study, we analyzed the function of the pectate lyase gene, FsPL, from F. sacchari. FsPL is a key virulence factor of F. sacchari and can induce plant cell death. FsPL also triggers the pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) response in Nicotiana benthamiana, as reflected by increases in reactive oxygen species (ROS) production, electrolyte leakage, and callose accumulation, as well as the upregulation of defense response genes. In addition, our study also found that the signal peptide of FsPL was necessary for induced cell death and PTI responses. Virus-induced gene silencing showed that FsPL-induced cell death in Nicotiana benthamiana was mediated by leucine-rich repeat (LRR) receptor-like kinases BAK1 and SOBIR1. Thus, FsPL may not only be a critical virulence factor for F. sacchari but may also induce plant defense responses. These findings provide new insights into the functions of pectate lyase in host-pathogen interactions. IMPORTANCE Pokkah Boeng disease (PBD) is one of the main diseases affecting sugarcane in China, seriously damaging sugarcane production and economic development. Therefore, it is important to clarify the pathogenic mechanisms of this disease and to provide a theoretical basis for the breeding of PBD-resistant sugarcane strains. The present study aimed to analyze the function of FsPL, a recently identified pectate lyase gene from F. sacchari. FsPL is a key virulence factor of F. sacchari that induces plant cell death. Our results provide new insights into the function of pectate lyase in host-pathogen interactions.
Collapse
Affiliation(s)
- Caixia Wang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Zhen Huang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Zhenzhen Duan
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Lixiang Zhu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Ruolin Di
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Yixue Bao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | | | - Qin Hu
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Baoshan Chen
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
| | - Muqing Zhang
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
- IRREC-IFAS, University of Florida, Fort Pierce, Florida, USA
| | - Wei Yao
- State Key Lab for Conservation and Utilization of Subtropical Agri-Biological Resources, Guangxi Key Lab of Sugarcane Biology, Guangxi University, Nanning, China
- IRREC-IFAS, University of Florida, Fort Pierce, Florida, USA
| |
Collapse
|
91
|
Verma NK, Raghav N. In-silico identification of lysine residue for lysozyme immobilization on dialdehyde cellulose. Int J Biol Macromol 2023:125367. [PMID: 37327935 DOI: 10.1016/j.ijbiomac.2023.125367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
In the realm of enzymes, the Enzyme Immobilization technique can be extremely beneficial. More research into computational approaches could lead to a better understanding as well as lead us in the direction of a more environmentally friendly and greener path. In this study, molecular modelling techniques were used to collect information regarding the immobilization of Lysozyme (EC 3.2.1.17) on Dialdehyde Cellulose (CDA). Lysine, being the most nucleophilic, is most likely to interact with dialdehyde cellulose. Enzyme substrate interactions have been studied with and without the refinement of modified lysozyme molecules. A total of six CDA-modified lysine residues were selected for the study. The docking process for all modified lysozymes was carried out using four distinct docking programs: Autodock Vina, GOLD, Swissdock, and iGemdock. The binding affinity (-7.8 & -8.0 kcal mol-1 in case of non-refinement and -4.7 & -5.0 kcal mol-1 in case of refinement), calculated from Autodock vina, as well as the interaction similarity of Lys116 immobilized lysozyme with its substrate, were found to be 75 % (W/o simulation) & 66.7 % (With simulation) identical with the reference case (unmodified lysozyme) if Lys116 is bound to Dialdehyde Cellulose. The approach described here is utilized to identify amino acid residues that are used in the immobilization of lysozyme.
Collapse
Affiliation(s)
- Nitin Kumar Verma
- Chemistry Department, Kurukshetra University, Kurukshetra 136119, Haryana, India
| | - Neera Raghav
- Chemistry Department, Kurukshetra University, Kurukshetra 136119, Haryana, India.
| |
Collapse
|
92
|
Adnan M, Islam W, Waheed A, Hussain Q, Shen L, Wang J, Liu G. SNARE Protein Snc1 Is Essential for Vesicle Trafficking, Membrane Fusion and Protein Secretion in Fungi. Cells 2023; 12:1547. [PMID: 37296667 PMCID: PMC10252874 DOI: 10.3390/cells12111547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Fungi are an important group of microorganisms that play crucial roles in a variety of ecological and biotechnological processes. Fungi depend on intracellular protein trafficking, which involves moving proteins from their site of synthesis to the final destination within or outside the cell. The soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNARE) proteins are vital components of vesicle trafficking and membrane fusion, ultimately leading to the release of cargos to the target destination. The v-SNARE (vesicle-associated SNARE) Snc1 is responsible for anterograde and retrograde vesicle trafficking between the plasma membrane (PM) and Golgi. It allows for the fusion of exocytic vesicles to the PM and the subsequent recycling of Golgi-localized proteins back to the Golgi via three distinct and parallel recycling pathways. This recycling process requires several components, including a phospholipid flippase (Drs2-Cdc50), an F-box protein (Rcy1), a sorting nexin (Snx4-Atg20), a retromer submit, and the COPI coat complex. Snc1 interacts with exocytic SNAREs (Sso1/2, Sec9) and the exocytic complex to complete the process of exocytosis. It also interacts with endocytic SNAREs (Tlg1 and Tlg2) during endocytic trafficking. Snc1 has been extensively investigated in fungi and has been found to play crucial roles in various aspects of intracellular protein trafficking. When Snc1 is overexpressed alone or in combination with some key secretory components, it results in enhanced protein production. This article will cover the role of Snc1 in the anterograde and retrograde trafficking of fungi and its interactions with other proteins for efficient cellular transportation.
Collapse
Affiliation(s)
- Muhammad Adnan
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (A.W.); (J.W.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Waqar Islam
- Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
| | - Abdul Waheed
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (A.W.); (J.W.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Quaid Hussain
- Shenzhen Key Laboratory of Marine Bioresource and Eco-Environmental Science, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China;
| | - Ling Shen
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, China;
| | - Juan Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (A.W.); (J.W.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Gang Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China; (M.A.); (A.W.); (J.W.)
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
93
|
Ellur V, Wei W, Ghogare R, Solanki S, Vandemark G, Brueggeman R, Chen W. Unraveling the genomic reorganization of polygalacturonase-inhibiting proteins in chickpea. Front Genet 2023; 14:1189329. [PMID: 37342773 PMCID: PMC10278945 DOI: 10.3389/fgene.2023.1189329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/26/2023] [Indexed: 06/23/2023] Open
Abstract
Polygalacturonase-inhibiting proteins (PGIPs) are cell wall proteins that inhibit pathogen polygalacturonases (PGs). PGIPs, like other defense-related proteins, contain extracellular leucine-rich repeats (eLRRs), which are required for pathogen PG recognition. The importance of these PGIPs in plant defense has been well documented. This study focuses on chickpea (Cicer arietinum) PGIPs (CaPGIPs) owing to the limited information available on this important crop. This study identified two novel CaPGIPs (CaPGIP3 and CaPGIP4) and computationally characterized all four CaPGIPs in the gene family, including the previously reported CaPGIP1 and CaPGIP2. The findings suggest that CaPGIP1, CaPGIP3, and CaPGIP4 proteins possess N-terminal signal peptides, ten LRRs, theoretical molecular mass, and isoelectric points comparable to other legume PGIPs. Phylogenetic analysis and multiple sequence alignment revealed that the CaPGIP1, CaPGIP3, and CaPGIP4 amino acid sequences are similar to the other PGIPs reported in legumes. In addition, several cis-acting elements that are typical of pathogen response, tissue-specific activity, hormone response, and abiotic stress-related are present in the promoters of CaPGIP1, CaPGIP3, and CaPGIP4 genes. Localization experiments showed that CaPGIP1, CaPGIP3, and CaPGIP4 are located in the cell wall or membrane. Transcript levels of CaPGIP1, CaPGIP3, and CaPGIP4 genes analyzed at untreated conditions show varied expression patterns analogous to other defense-related gene families. Interestingly, CaPGIP2 lacked a signal peptide, more than half of the LRRs, and other characteristics of a typical PGIP and subcellular localization indicated it is not located in the cell wall or membrane. The study's findings demonstrate CaPGIP1, CaPGIP3, and CaPGIP4's similarity to other legume PGIPs and suggest they might possess the potential to combat chickpea pathogens.
Collapse
Affiliation(s)
- Vishnutej Ellur
- Molecular Plant Science, Washington State University, Pullman, WA, United States
| | - Wei Wei
- Department of Plant Pathology, Washington State University, Pullman, WA, United States
| | - Rishikesh Ghogare
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Shyam Solanki
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - George Vandemark
- Grain Legume Genetics Physiology Research, Pullman, WA, United States
| | - Robert Brueggeman
- Department of Crop and Soil Science, Washington State University, Pullman, WA, United States
| | - Weidong Chen
- Grain Legume Genetics Physiology Research, Pullman, WA, United States
| |
Collapse
|
94
|
Advances in molecular interactions on the Rhizoctonia solani-sugar beet pathosystem. FUNGAL BIOL REV 2023. [DOI: 10.1016/j.fbr.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
95
|
Matsumoto R, Mehjabin JJ, Noguchi H, Miyamoto T, Takasuka TE, Hori C. Genomic and Secretomic Analyses of the Newly Isolated Fungus Perenniporia fraxinea SS3 Identified CAZymes Potentially Related to a Serious Pathogenesis of Hardwood Trees. Appl Environ Microbiol 2023; 89:e0027223. [PMID: 37098943 PMCID: PMC10231188 DOI: 10.1128/aem.00272-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/06/2023] [Indexed: 04/27/2023] Open
Abstract
Perenniporia fraxinea can colonize living trees and cause severe damage to standing hardwoods by secreting a number of carbohydrate-activate enzymes (CAZymes), unlike other well-studied Polyporales. However, significant knowledge gaps exist in understanding the detailed mechanisms for this hardwood-pathogenic fungus. To address this issue, five monokaryotic P. fraxinea strains, SS1 to SS5, were isolated from the tree species Robinia pseudoacacia, and high polysaccharide-degrading activities and the fastest growth were found for P. fraxinea SS3 among the isolates. The whole genome of P. fraxinea SS3 was sequenced, and its unique CAZyme potential for tree pathogenicity was determined in comparison to the genomes of other nonpathogenic Polyporales. These CAZyme features are well conserved in a distantly related tree pathogen, Heterobasidion annosum. Furthermore, the carbon source-dependent CAZyme secretions of P. fraxinea SS3 and a nonpathogenic and strong white-rot Polyporales member, Phanerochaete chrysosporium RP78, were compared by activity measurements and proteomic analyses. As seen in the genome comparisons, P. fraxinea SS3 exhibited higher pectin-degrading activities and higher laccase activities than P. chrysosporium RP78, which were attributed to the secretion of abundant glycoside hydrolase family 28 (GH28) pectinases and auxiliary activity family 1_1 (AA1_1) laccases, respectively. These enzymes are possibly related to fungal invasion into the tree lumens and the detoxification of tree defense substances. Additionally, P. fraxinea SS3 showed secondary cell wall degradation capabilities at the same level as that of P. chrysosporium RP78. Overall, this study suggested mechanisms for how this fungus can attack the cell walls of living trees as a serious pathogen and differs from other nonpathogenic white-rot fungi. IMPORTANCE Many studies have been done to understand the mechanisms underlying the degradation of plant cell walls of dead trees by wood decay fungi. However, little is known about how some of these fungi weaken living trees as pathogens. P. fraxinea belongs to the Polyporales, a group of strong wood decayers, and is known to aggressively attack and fell standing hardwood trees all over the world. Here, we report CAZymes potentially related to plant cell wall degradation and pathogenesis factors in a newly isolated fungus, P. fraxinea SS3, by genome sequencing in conjunction with comparative genomic and secretomic analyses. The present study provides insights into the mechanisms of the degradation of standing hardwood trees by the tree pathogen, which will contribute to the prevention of this serious tree disease.
Collapse
Affiliation(s)
- Ruy Matsumoto
- Research Faculty of Engineering, Hokkaido University, Sapporo, Japan
| | - Jakia Jerin Mehjabin
- Research Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| | - Hideki Noguchi
- Center for Genome Informatics, Joint Support Center for Data Science Research, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- Advanced Genomics Center, National Institute of Genetics, Mishima, Shizuoka, Japan
| | | | - Taichi E. Takasuka
- Research Faculty of Agriculture, Hokkaido University, Sapporo, Japan
- Global Station for Food, Land, and Water Resources, Hokkaido University, Sapporo, Japan
| | - Chiaki Hori
- Research Faculty of Engineering, Hokkaido University, Sapporo, Japan
- Research Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan
| |
Collapse
|
96
|
You S, Jiang M, Lan W, Chen M, Bai B, Zhang L, Tu K, Song L, Pan L. Assessment of the optical properties with physicochemical properties and cell wall polysaccharides of 'Korla' pear flesh during Alternaria alternata-induced disease development. Food Chem 2023; 409:135302. [PMID: 36623358 DOI: 10.1016/j.foodchem.2022.135302] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/06/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Abstract
Cell wall polysaccharides and physicochemical properties are the major quality characteristics of fruit, but they are significantly affected by the postharvest disease. In this study, the influence of Alternaria alternata-induced disease on the contents of cell wall polysaccharides and physicochemical properties in 'Korla' pear flesh during storage, as well as their relationships of the optical absorption (μa) and reduced scattering (μs') were explored. The infected pear had lower individual sugars, covalent-soluble pectin, cellulose and hemicellulose contents than the healthy ones. The successive decreases of μa and increases of μs' in pears were observed while the process of pathogen infection. Path-coefficient analysis indicated the ionic-soluble pectin was the main reason responsible for the change of μs' in infected pear at 675 nm and 980 nm. This study indicated the optical properties have the possibility to present the physicochemical characteristics and cell wall polysaccharides of pears during postharvest pathogen infection.
Collapse
Affiliation(s)
- Sicong You
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mengwei Jiang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Weijie Lan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Mingrui Chen
- Nantes Université, Ecole Doctorale Ecologie Géosciences Agronomie ALimentation, Nantes, France
| | - Bingyao Bai
- College of Life Science, Tarim University, Alaer 843300, China
| | - Li Zhang
- College of Life Science, Tarim University, Alaer 843300, China; College of Food and Biological Engineering, Bengbu University, Bengbu 233030, Anhui, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lijun Song
- College of Life Science, Tarim University, Alaer 843300, China; College of Food and Biological Engineering, Bengbu University, Bengbu 233030, Anhui, China.
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Sanya Institute of Nanjing Agricultural University, Sanya, Hainan 572024, China.
| |
Collapse
|
97
|
Liu D, Lun Z, Liu N, Yuan G, Wang X, Li S, Peng YL, Lu X. Identification and Characterization of Novel Candidate Effector Proteins from Magnaporthe oryzae. J Fungi (Basel) 2023; 9:jof9050574. [PMID: 37233285 DOI: 10.3390/jof9050574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
The fungal pathogen Magnaporthe oryzae secretes a large number of effector proteins to facilitate infection, most of which are not functionally characterized. We selected potential candidate effector genes from the genome of M. oryzae, field isolate P131, and cloned 69 putative effector genes for functional screening. Utilizing a rice protoplast transient expression system, we identified that four candidate effector genes, GAS1, BAS2, MoCEP1 and MoCEP2 induced cell death in rice. In particular, MoCEP2 also induced cell death in Nicotiana benthamiana leaves through Agrobacteria-mediated transient gene expression. We further identified that six candidate effector genes, MoCEP3 to MoCEP8, suppress flg22-induced ROS burst in N. benthamiana leaves upon transient expression. These effector genes were highly expressed at a different stage after M. oryzae infection. We successfully knocked out five genes in M. oryzae, MoCEP1, MoCEP2, MoCEP3, MoCEP5 and MoCEP7. The virulence tests suggested that the deletion mutants of MoCEP2, MoCEP3 and MoCEP5 showed reduced virulence on rice and barley plants. Therefore, those genes play an important role in pathogenicity.
Collapse
Affiliation(s)
- Di Liu
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Zhiqin Lun
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Ning Liu
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Guixin Yuan
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Xingbin Wang
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Shanshan Li
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - You-Liang Peng
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Xunli Lu
- MOA Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| |
Collapse
|
98
|
Yang J, Wang S, Zhang Y, Chen Y, Zhou H, Zhang G. Identification, Culture Characteristics and Whole-Genome Analysis of Pestalotiopsis neglecta Causing Black Spot Blight of Pinus sylvestris var. mongolica. J Fungi (Basel) 2023; 9:jof9050564. [PMID: 37233276 DOI: 10.3390/jof9050564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Black spot needle blight is a serious conifer disease of Pinus sylvestris var. mongolica occurring in Northeast China, which is usually caused by the plant pathogenic fungus Pestalotiopsis neglecta. From the diseased pine needles collected in Honghuaerji, the P. neglecta strain YJ-3 was isolated and identified as the phytopathogen, and its culture characteristics were studied. Then, we generated a highly contiguous 48.36-Mbp genome assembly (N50 = 6.62 Mbp) of the P. neglecta strain YJ-3 by combining the PacBio RS II Single Molecule Real Time (SMRT) and Illumina HiSeq X Ten sequencing platforms. The results showed that a total of 13,667 protein-coding genes were predicted and annotated using multiple bioinformatics databases. The genome assembly and annotation resource reported here will be useful for the study of fungal infection mechanisms and pathogen-host interaction.
Collapse
Affiliation(s)
- Jing Yang
- College of Forestry, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Shuren Wang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, China
| | - Yundi Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, China
| | - Yunze Chen
- School of Biological Sciences, Guizhou Education University, Wudang District, Guiyang 550018, China
| | - Heying Zhou
- College of Forestry, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Guocai Zhang
- Heilongjiang Province Key Laboratory of Forest Protection, School of Forest, Northeast Forestry University, Hexing Road 26, Xiangfang District, Harbin 150040, China
| |
Collapse
|
99
|
Pineda-Fretez A, Orrego A, Iehisa JCM, Flores-Giubi ME, Barúa JE, Sánchez-Lucas R, Jorrín-Novo J, Romero-Rodríguez MC. Secretome analysis of the phytopathogen Macrophomina phaseolina cultivated in liquid medium supplemented with and without soybean leaf infusion. Fungal Biol 2023; 127:1043-1052. [PMID: 37142363 DOI: 10.1016/j.funbio.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 03/23/2023] [Accepted: 04/03/2023] [Indexed: 05/06/2023]
Abstract
Macrophomina phaseolina (Tassi) Goid. is a fungal pathogen that causes root and stem rot in several economically important crops. However, most of disease control strategies have shown limited effectiveness. Despite its impact on agriculture, molecular mechanisms involved in the interaction with host plant remains poorly understood. Nevertheless, it has been proven that fungal pathogens secrete a variety of proteins and metabolites to successfully infect their host plants. In this study, a proteomic analysis of proteins secreted by M. phaseolina in culture media supplemented with soybean leaf infusion was performed. A total of 250 proteins were identified with a predominance of hydrolytic enzymes. Plant cell wall degrading enzymes together peptidases were found, probably involved in the infection process. Predicted effector proteins were also found that could induce plant cell death or suppress plant immune response. Some of the putative effectors presented similarities to known fungal virulence factors. Expression analysis of ten selected protein-coding genes showed that these genes are induced during host tissue infection and suggested their participation in the infection process. The identification of secreted proteins of M. phaseolina could be used to improve the understanding of the biology and pathogenesis of this fungus. Although leaf infusion was able to induce changes at the proteome level, it is necessary to study the changes induced under conditions that mimic the natural infection process of the soil-borne pathogen M. phaseolina to identify virulence factors.
Collapse
Affiliation(s)
- Amiliana Pineda-Fretez
- Department of Chemical Biology, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Adriana Orrego
- Department of Biotechnology, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Julio César Masaru Iehisa
- Department of Biotechnology, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay.
| | - María Eugenia Flores-Giubi
- Department of Chemical Biology, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Javier E Barúa
- Department of Chemical Biology, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Rosa Sánchez-Lucas
- Birmingham Institute of Forest Research, School of Biosciences, University of Birmingham, Edgbaston Campus, Birmingham, B15 2TT, UK
| | - Jesús Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, 14014, Cordoba, Spain
| | | |
Collapse
|
100
|
Liu Q, Li Y, Wu H, Zhang B, Liu C, Gao Y, Guo H, Zhao J. Hyphopodium-Specific Signaling Is Required for Plant Infection by Verticillium dahliae. J Fungi (Basel) 2023; 9:jof9040484. [PMID: 37108938 PMCID: PMC10143791 DOI: 10.3390/jof9040484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
For successful colonization, fungal pathogens have evolved specialized infection structures to overcome the barriers present in host plants. The morphology of infection structures and pathogenic mechanisms are diverse according to host specificity. Verticillium dahliae, a soil-borne phytopathogenic fungus, generates hyphopodium with a penetration peg on cotton roots while developing appressoria, that are typically associated with leaf infection on lettuce and fiber flax roots. In this study, we isolated the pathogenic fungus, V. dahliae (VdaSm), from Verticillium wilt eggplants and generated a GFP-labeled isolate to explore the colonization process of VdaSm on eggplants. We found that the formation of hyphopodium with penetration peg is crucial for the initial colonization of VdaSm on eggplant roots, indicating that the colonization processes on eggplant and cotton share a similar feature. Furthermore, we demonstrated that the VdNoxB/VdPls1-dependent Ca2+ elevation activating VdCrz1 signaling is a common genetic pathway to regulate infection-related development in V. dahliae. Our results indicated that VdNoxB/VdPls1-dependent pathway may be a desirable target to develop effective fungicides, to protect crops from V. dahliae infection by interrupting the formation of specialized infection structures.
Collapse
Affiliation(s)
- Qingyan Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yingchao Li
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- School of Life Sciences, Hebei University, Baoding 071000, China
| | - Huawei Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Bosen Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanhui Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Yi Gao
- Qilu Zhongke Academy of Modern Microbiology Technology, Jinan 250022, China
| | - Huishan Guo
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jianhua Zhao
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|