51
|
Centane S, Nyokong T. Co phthalocyanine mediated electrochemical detection of the HER2 in the presence of Au and CeO2 nanoparticles and graphene quantum dots. Bioelectrochemistry 2023; 149:108301. [DOI: 10.1016/j.bioelechem.2022.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/03/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022]
|
52
|
Srout M, Carboni M, Gonzalez JA, Trabesinger S. Insights into the Importance of Native Passivation Layer and Interface Reactivity of Metallic Lithium by Electrochemical Impedance Spectroscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206252. [PMID: 36464645 DOI: 10.1002/smll.202206252] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Indexed: 06/17/2023]
Abstract
Lithium-metal batteries offer substantial advantages over lithium-ion batteries in terms of gravimetric and volumetric energy densities. However, their widespread practical use is hindered by safety concerns, often attributed to the poor stability of the metallic lithium interface, where electrochemical impedance spectroscopy (EIS) can provide crucial information. The EIS spectra of metallic lithium electrodes proved to be more complex than expected, especially when studying thin lithium metal foils. Here, it is identified that charge-transfer impedance becomes one of the main components of the EIS spectra, the magnitude of which is found to be strongly dependent on the native passivation layer of metallic lithium and on the nature of electrolyte. "Asymmetricity" of the EIS spectra in symmetric cells when separated the working and counter electrode contributions to the total impedance using three-electrode cells is also identified.
Collapse
Affiliation(s)
- Mohammed Srout
- Battery Electrodes and Cells, Electrochemistry Laboratory, Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| | - Marco Carboni
- Belenos Clean Power Holding AG, Seevorstadt 6, Biel/Bienne, 2502, Switzerland
| | | | - Sigita Trabesinger
- Battery Electrodes and Cells, Electrochemistry Laboratory, Paul Scherrer Institute, Forschungsstrasse 111, Villigen-PSI, 5232, Switzerland
| |
Collapse
|
53
|
Awadein M, Sparey M, Grall S, Kienberger F, Clement N, Gramse G. Nanoscale electrochemical charge transfer kinetics investigated by electrochemical scanning microwave microscopy. NANOSCALE ADVANCES 2023; 5:659-667. [PMID: 36756524 PMCID: PMC9890956 DOI: 10.1039/d2na00671e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/17/2022] [Indexed: 06/18/2023]
Abstract
We show how microwave microscopy can be used to probe local charge transfer reactions with unprecedented sensitivity, visualizing surface reactions with only a few hundred molecules involved. While microwaves are too fast under classical conditions to interact and sense electrochemical processes, this is different at the nanoscale, where our heterodyne microwave sensing method allows for highly sensitive local cyclic voltammetry (LCV) and local electrochemical impedance spectroscopy (LEIS). LCV and LEIS allow for precise measurement of the localized charge transfer kinetics, as illustrated in this study for a ferrocene self-assembled monolayer immersed in an electrolyte. The theoretical analysis presented here enables a consistent mapping of the faradaic kinetics and the parasitic contributions (nonfaradaic) to be spectrally resolved and subtracted. In particular, this methodology reveals an undistorted assessment of accessible redox site density of states associated with faradaic capacitance, fractional surface coverage and electron transfer kinetics at the nanoscale. The developed methodology opens a new perspective on comprehending electrochemical reactivity at the nanoscale.
Collapse
Affiliation(s)
- Mohamed Awadein
- Keysight Labs Austria, Keysight Technologies Linz 4020 Austria
| | - Maxwell Sparey
- Keysight Labs Austria, Keysight Technologies Linz 4020 Austria
| | - Simon Grall
- LIMMS/CNRS Institute of Industrial Science, University of Tokyo Tokyo 153-8505 Japan
| | | | - Nicolas Clement
- LIMMS/CNRS Institute of Industrial Science, University of Tokyo Tokyo 153-8505 Japan
| | - Georg Gramse
- Keysight Labs Austria, Keysight Technologies Linz 4020 Austria
- Institute of Biophysics, Johannes Kepler University Linz 4020 Austria
| |
Collapse
|
54
|
Park G, Park H, Park SC, Jang M, Yoon J, Ahn JH, Lee T. Recent Developments in DNA-Nanotechnology-Powered Biosensors for Zika/Dengue Virus Molecular Diagnostics. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:361. [PMID: 36678114 PMCID: PMC9864780 DOI: 10.3390/nano13020361] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Zika virus (ZIKV) and dengue virus (DENV) are highly contagious and lethal mosquito-borne viruses. Global warming is steadily increasing the probability of ZIKV and DENV infection, and accurate diagnosis is required to control viral infections worldwide. Recently, research on biosensors for the accurate diagnosis of ZIKV and DENV has been actively conducted. Moreover, biosensor research using DNA nanotechnology is also increasing, and has many advantages compared to the existing diagnostic methods, such as polymerase chain reaction (PCR) and enzyme-linked immunosorbent assay (ELISA). As a bioreceptor, DNA can easily introduce a functional group at the 5' or 3' end, and can also be used as a folded structure, such as a DNA aptamer and DNAzyme. Instead of using ZIKV and DENV antibodies, a bioreceptor that specifically binds to viral proteins or nucleic acids has been fabricated and introduced using DNA nanotechnology. Technologies for detecting ZIKV and DENV can be broadly divided into electrochemical, electrical, and optical. In this review, advances in DNA-nanotechnology-based ZIKV and DENV detection biosensors are discussed.
Collapse
Affiliation(s)
- Goeun Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Hanbin Park
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Chan Park
- Department of Electronics Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Moonbong Jang
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Jinho Yoon
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Wonmi-gu, Bucheon-si 14662, Gyeonggi-do, Republic of Korea
| | - Jae-Hyuk Ahn
- Department of Electronics Engineering, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Republic of Korea
| | - Taek Lee
- Department of Chemical Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
- TL Bioindustry, 20 Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea
| |
Collapse
|
55
|
Duff B, Elliott SJ, Gamon J, Daniels LM, Rosseinsky MJ, Blanc F. Toward Understanding of the Li-Ion Migration Pathways in the Lithium Aluminum Sulfides Li 3AlS 3 and Li 4.3AlS 3.3Cl 0.7 via 6,7Li Solid-State Nuclear Magnetic Resonance Spectroscopy. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:27-40. [PMID: 36644214 PMCID: PMC9835825 DOI: 10.1021/acs.chemmater.2c02101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/23/2022] [Indexed: 06/17/2023]
Abstract
Li-containing materials providing fast ion transport pathways are fundamental in Li solid electrolytes and the future of all-solid-state batteries. Understanding these pathways, which usually benefit from structural disorder and cation/anion substitution, is paramount for further developments in next-generation Li solid electrolytes. Here, we exploit a range of variable temperature 6Li and 7Li nuclear magnetic resonance approaches to determine Li-ion mobility pathways, quantify Li-ion jump rates, and subsequently identify the limiting factors for Li-ion diffusion in Li3AlS3 and chlorine-doped analogue Li4.3AlS3.3Cl0.7. Static 7Li NMR line narrowing spectra of Li3AlS3 show the existence of both mobile and immobile Li ions, with the latter limiting long-range translational ion diffusion, while in Li4.3AlS3.3Cl0.7, a single type of fast-moving ion is present and responsible for the higher conductivity of this phase. 6Li-6Li exchange spectroscopy spectra of Li3AlS3 reveal that the slower moving ions hop between non-equivalent Li positions in different structural layers. The absence of the immobile ions in Li4.3AlS3.3Cl0.7, as revealed from 7Li line narrowing experiments, suggests an increased rate of ion exchange between the layers in this phase compared with Li3AlS3. Detailed analysis of spin-lattice relaxation data allows extraction of Li-ion jump rates that are significantly increased for the doped material and identify Li mobility pathways in both materials to be three-dimensional. The identification of factors limiting long-range translational Li diffusion and understanding the effects of structural modification (such as anion substitution) on Li-ion mobility provide a framework for the further development of more highly conductive Li solid electrolytes.
Collapse
Affiliation(s)
- Benjamin
B. Duff
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
- Stephenson
Institute for Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
| | - Stuart J. Elliott
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Jacinthe Gamon
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Luke M. Daniels
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
| | - Matthew J. Rosseinsky
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
- Leverhulme
Research Centre for Functional Materials Design, Materials Innovation
Factory, University of Liverpool, Liverpool L7 3NY, U.K.
| | - Frédéric Blanc
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, U.K.
- Stephenson
Institute for Renewable Energy, University
of Liverpool, Liverpool L69 7ZF, U.K.
- Leverhulme
Research Centre for Functional Materials Design, Materials Innovation
Factory, University of Liverpool, Liverpool L7 3NY, U.K.
| |
Collapse
|
56
|
Jilani NAK, Zakariah EI, Ariffin EY, Sapari S, Nokarajoo D, Yamin B, Hasbullah SA. Highly sensitive pork meat detection using copper(ii) tetraaza complex by electrochemical biosensor. RSC Adv 2023; 13:2104-2114. [PMID: 36712615 PMCID: PMC9832347 DOI: 10.1039/d2ra05701h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Three copper(ii) tetraaza complexes [Cu(ii)LBr]Br (1a), [Cu(ii)L(CIO4)](CIO4) (2a) and [Cu(ii)L](CIO4)2 (2b), where L = 5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-7,14-diene were prepared and confirmed by FTIR, 1HNMR and 13CNMR. The binding interaction of complex (1a, 2a, 2b) with calf thymus DNA (CT-DNA) was investigated using UV-vis absorption, luminescence titrations, viscosity measurements and molecular docking. The findings suggested that complex 1a, 2a and 2b bind to DNA by electrostatic interaction, and the strengths of the interaction were arranged according to 2b > 1a > 2a. The differences in binding strengths were certainly caused by the complexes' dissimilar charges and counter anions. Complex 2b, with the biggest binding strength towards the DNA, was further applied in developing the porcine sensor. The developed sensor exhibits a broad linear dynamic range, low detection limit, good selectivity, and reproducibility. Analysis of real samples showed that the biosensor had excellent selectivity towards the pork meat compared to chicken and beef meat.
Collapse
Affiliation(s)
- Noraisyah Abdul Kadir Jilani
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Emma Izzati Zakariah
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Eda Yuhana Ariffin
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Suhaila Sapari
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Devika Nokarajoo
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Bohari Yamin
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| | - Siti Aishah Hasbullah
- Department of Chemical Sciences. Faculty Science and Technology, Universiti Kebangsaan Malaysia 43600 Bangi Selangor Darul Ehsan Malaysia
| |
Collapse
|
57
|
Gabetti S, Sileo A, Montrone F, Putame G, Audenino AL, Marsano A, Massai D. Versatile electrical stimulator for cardiac tissue engineering-Investigation of charge-balanced monophasic and biphasic electrical stimulations. Front Bioeng Biotechnol 2023; 10:1031183. [PMID: 36686253 PMCID: PMC9846083 DOI: 10.3389/fbioe.2022.1031183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023] Open
Abstract
The application of biomimetic physical stimuli replicating the in vivo dynamic microenvironment is crucial for the in vitro development of functional cardiac tissues. In particular, pulsed electrical stimulation (ES) has been shown to improve the functional properties of in vitro cultured cardiomyocytes. However, commercially available electrical stimulators are expensive and cumbersome devices while customized solutions often allow limited parameter tunability, constraining the investigation of different ES protocols. The goal of this study was to develop a versatile compact electrical stimulator (ELETTRA) for biomimetic cardiac tissue engineering approaches, designed for delivering controlled parallelizable ES at a competitive cost. ELETTRA is based on an open-source micro-controller running custom software and is combinable with different cell/tissue culture set-ups, allowing simultaneously testing different ES patterns on multiple samples. In particular, customized culture chambers were appositely designed and manufactured for investigating the influence of monophasic and biphasic pulsed ES on cardiac cell monolayers. Finite element analysis was performed for characterizing the spatial distributions of the electrical field and the current density within the culture chamber. Performance tests confirmed the accuracy, compliance, and reliability of the ES parameters delivered by ELETTRA. Biological tests were performed on neonatal rat cardiac cells, electrically stimulated for 4 days, by comparing, for the first time, the monophasic waveform (electric field = 5 V/cm) to biphasic waveforms by matching either the absolute value of the electric field variation (biphasic ES at ±2.5 V/cm) or the total delivered charge (biphasic ES at ±5 V/cm). Findings suggested that monophasic ES at 5 V/cm and, particularly, charge-balanced biphasic ES at ±5 V/cm were effective in enhancing electrical functionality of stimulated cardiac cells and in promoting synchronous contraction.
Collapse
Affiliation(s)
- Stefano Gabetti
- Department of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Antonio Sileo
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Federica Montrone
- Department of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Giovanni Putame
- Department of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Alberto L. Audenino
- Department of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy
| | - Anna Marsano
- Department of Surgery and Department of Biomedicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Diana Massai
- Department of Mechanical and Aerospace Engineering and PolitoBIOMed Lab, Politecnico di Torino, Turin, Italy,*Correspondence: Diana Massai,
| |
Collapse
|
58
|
Cao L, Qiao S, Li X, Li Q. Synthesis and photocatalytic performance of g-C 3N 4/MeTMC-COP composite photocatalyst. Front Chem 2023; 11:1138789. [PMID: 36936527 PMCID: PMC10014922 DOI: 10.3389/fchem.2023.1138789] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 02/16/2023] [Indexed: 03/05/2023] Open
Abstract
Covalent organic polymers have excellent application prospects in photocatalysis due to their excellent visible light absorption and structural designability. However, their fast recombination efficiency and complex preparation process limit their applications. Because of the above problems, this paper used urea to prepare g-C3N4 by high-temperature thermal polymerization and prepared g-C3N4 composite photocatalyst loaded with MeTMC-COP (g-C3N4/MeTMC-COP) by hydrothermal method. The photocatalytic hydrogen generation and photocatalytic degradation capabilities of composite photocatalysts with various mass ratios were investigated by characterizing the catalyst and using the organic dye Rhodamine B (RhB) as the pollutant. According to the research, the specific surface area of the g-C3N4/MeTMC-COP composite may reach 40.95 m2 g-1 when the mass ratio of g-C3N4 and MeTMC-COP is 3:1 (25.22 m2 g-1). It can offer more active sites for the photocatalytic process, and because the fluorescence peak intensity is the lowest, it has the lowest photogenerated electron-hole recombination efficiency. In comparison to g-C3N4, 3:1 g-C3N4/MeTMC-COP can breakdown rhodamine B up to 100% after 75 min of light irradiation; its photocatalytic hydrogen generation efficiency is 1.62 times that of g-C3N4, and the hydrogen evolution rate is 11.8 μmol g-1 h-1.
Collapse
|
59
|
Štukovnik Z, Bren U. Recent Developments in Electrochemical-Impedimetric Biosensors for Virus Detection. Int J Mol Sci 2022; 23:ijms232415922. [PMID: 36555560 PMCID: PMC9788240 DOI: 10.3390/ijms232415922] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Viruses, including influenza viruses, MERS-CoV (Middle East respiratory syndrome coronavirus), SARS-CoV (severe acute respiratory syndrome coronavirus), HAV (Hepatitis A virus), HBV (Hepatitis B virus), HCV (Hepatitis C virus), HIV (human immunodeficiency virus), EBOV (Ebola virus), ZIKV (Zika virus), and most recently SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), are responsible for many diseases that result in hundreds of thousands of deaths yearly. The ongoing outbreak of the COVID-19 disease has raised a global concern and intensified research on the detection of viruses and virus-related diseases. Novel methods for the sensitive, rapid, and on-site detection of pathogens, such as the recent SARS-CoV-2, are critical for diagnosing and treating infectious diseases before they spread and affect human health worldwide. In this sense, electrochemical impedimetric biosensors could be applied for virus detection on a large scale. This review focuses on the recent developments in electrochemical-impedimetric biosensors for the detection of viruses.
Collapse
Affiliation(s)
- Zala Štukovnik
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
| | - Urban Bren
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova ulica 17, 2000 Maribor, Slovenia
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska, Glagoljaška ulica 8, 6000 Koper, Slovenia
- Institute for Environmental Protection and Sensors, Beloruska ulica 7, 2000 Maribor, Slovenia
| |
Collapse
|
60
|
Bravo de Luciano G, Panecatl‐Bernal Y, Soto‐Cruz B, Méndez‐Rojas MÁ, López‐Salazar P, Alcántara‐Iniesta S, Portillo MC, Romero‐López A, Mejía‐Silva J, Alvarado J, Domínguez‐Jiménez MÁ. Controlling Size Distribution of Silver Nanoparticles using Natural Reducing Agents in MCM‐41@Ag. ChemistrySelect 2022. [DOI: 10.1002/slct.202202566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Gerardo‐Miguel Bravo de Luciano
- Centro de Investigación en Dispositivos Semiconductores Instituto de Ciencias Benemérita Universidad Autónoma de Puebla Puebla 72570 Puebla México
| | - Yesmin Panecatl‐Bernal
- División de Ingeniería Industrial Tecnológico Nacional de México Campus Zacatlán Jicolapa 73310 Puebla, México
| | - Blanca‐Susana Soto‐Cruz
- Centro de Investigación en Dispositivos Semiconductores Instituto de Ciencias Benemérita Universidad Autónoma de Puebla Puebla 72570 Puebla México
| | - Miguel Ángel Méndez‐Rojas
- Departmento de Ciencias Químico-Biológicas Universidad de las Américas Puebla ExHda. Sta. Catarina Mártir s/n San Andrés Cholula 72810 Puebla, México
| | - Primavera López‐Salazar
- Centro de Investigación en Dispositivos Semiconductores Instituto de Ciencias Benemérita Universidad Autónoma de Puebla Puebla 72570 Puebla México
| | - Salvador Alcántara‐Iniesta
- Centro de Investigación en Dispositivos Semiconductores Instituto de Ciencias Benemérita Universidad Autónoma de Puebla Puebla 72570 Puebla México
| | - Melissa Chávez Portillo
- División de Ingeniería Industrial Tecnológico Nacional de México Campus Zacatlán Jicolapa 73310 Puebla, México
| | - Anabel Romero‐López
- Instituto de Física “Luis Rivera Terrazas” Benemérita Universidad Autónoma de Puebla Puebla, Ecocampus Valsequillo 72960 San Pedro Zacachimalpa, México
| | | | - Joaquin Alvarado
- Centro de Investigación en Dispositivos Semiconductores Instituto de Ciencias Benemérita Universidad Autónoma de Puebla Puebla 72570 Puebla México
| | - Miguel Ángel Domínguez‐Jiménez
- Centro de Investigación en Dispositivos Semiconductores Instituto de Ciencias Benemérita Universidad Autónoma de Puebla Puebla 72570 Puebla México
| |
Collapse
|
61
|
Shaimerdenova M, Ayupova T, Bekmurzayeva A, Sypabekova M, Ashikbayeva Z, Tosi D. Spatial-Division Multiplexing Approach for Simultaneous Detection of Fiber-Optic Ball Resonator Sensors: Applications for Refractometers and Biosensors. BIOSENSORS 2022; 12:1007. [PMID: 36421126 PMCID: PMC9688048 DOI: 10.3390/bios12111007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/26/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Fiber-optic ball resonators are an attractive technology for refractive index (RI) sensing and optical biosensing, as they have good sensitivity and allow for a rapid and repeatable manufacturing process. An important feature for modern biosensing devices is the multiplexing capacity, which allows for interrogating multiple sensors (potentially, with different functionalization methods) simultaneously, by a single analyzer. In this work, we report a multiplexing method for ball resonators, which is based on a spatial-division multiplexing approach. The method is validated on four ball resonator devices, experimentally evaluating both the cross-talk and the spectral shape influence of one sensor on another. We show that the multiplexing approach is highly efficient and that a sensing network with an arbitrary number of ball resonators can be designed with reasonable penalties for the sensing capabilities. Furthermore, we validate this concept in a four-sensor multiplexing configuration, for the simultaneous detection of two different cancer biomarkers across a widespread range of concentrations.
Collapse
Affiliation(s)
- Madina Shaimerdenova
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
| | - Takhmina Ayupova
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
- Department of Bioengineering and Nick Holonyak Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Aliya Bekmurzayeva
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
| | - Marzhan Sypabekova
- School of Engineering and Computer Science, Baylor University, Waco, TX 76798, USA
| | - Zhannat Ashikbayeva
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
| | - Daniele Tosi
- School of Engineering and Digital Sciences, Nazarbayev University, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
- National Laboratory Astana, Laboratory of Biosensors and Bioinstruments, 53 Kabanbay Batyr, Astana 010000, Kazakhstan
| |
Collapse
|
62
|
Recent Advances in Electrochemical and Optical Biosensors for Cancer Biomarker Detection. BIOCHIP JOURNAL 2022. [DOI: 10.1007/s13206-022-00089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
63
|
Metal nanoparticles-assisted early diagnosis of diseases. OPENNANO 2022. [DOI: 10.1016/j.onano.2022.100104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
64
|
Poly(vinylidene fluoride-co-hexafluoropropylene) based tri-composites with zeolite and ionic liquid for electromechanical actuator and lithium-ion battery applications. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
65
|
Yang HJ, Han D, Kim J, Kim YH, Bae JH. Constant phase element affected by ion transport in nanoporous electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
66
|
Avila LB, Serrano Arambulo PC, Dantas A, Cuevas-Arizaca EE, Kumar D, Müller CK. Study on the Electrical Conduction Mechanism of Unipolar Resistive Switching Prussian White Thin Films. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2881. [PMID: 36014746 PMCID: PMC9416141 DOI: 10.3390/nano12162881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The electrical conduction mechanism of resistive switching Prussian white (PW) thin films obtained by the electrodeposition method was examined by AC impedance spectroscopy and DC current-voltage measurements. Using an electrode tip to contact PW grown over Au, robust unipolar resistive switching was observed with a current change of up to three orders of magnitude, high repeatability, and reproducibility. Moreover, electrical impedance spectroscopy showed that the resistive switching comes from small conductive filaments formed by potassium ions before the establishment of larger conductive channels. Both voltammetry and EIS measurements suggest that the electrical properties and conductive filament formation are influenced by defects and ions present in the grain boundaries. Thus, PW is a potential material for the next generation of ReRAM devices.
Collapse
Affiliation(s)
- Lindiomar B. Avila
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - Pablo C. Serrano Arambulo
- Departamento de Física, Universidade Federal de Santa Catarina, Florianópolis 88040-900, Santa Catarina, Brazil
| | - Adriana Dantas
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianopolis 88040-900, Santa Catarina, Brazil
| | | | - Dinesh Kumar
- Shoolini University of Biotechnology and Management Sciences, Solan 173229, India
| | - Christian K. Müller
- Faculty of Physical Engineering/Computer Sciences, University of Applied Sciences Zwickau, 08056 Zwickau, Germany
| |
Collapse
|
67
|
Erdem A, Senturk H, Yildiz E, Maral M. Impedimetric Detection Based on Label-Free Immunoassay Developed for Targeting Spike S1 Protein of SARS-CoV-2. Diagnostics (Basel) 2022; 12:1992. [PMID: 36010342 PMCID: PMC9407092 DOI: 10.3390/diagnostics12081992] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/01/2022] [Accepted: 08/12/2022] [Indexed: 11/24/2022] Open
Abstract
After the COVID-19 pandemic started all over the world, great importance was placed on the development of sensitive and selective bioanalytical assays for the rapid detection of the highly pathogenic SARS-CoV-2 virus causing COVID-19 disease. In this present work, an impedimetric immunosensor was developed and applied for rapid, reliable, sensitive and selective detection of the SARS-CoV-2 S1 protein. To detect the SARS-CoV-2 virus, targeting of the spike S1 protein was achieved herein by using S1 protein-specific capture antibody (Cab-S1) immobilized screen-printed electrode (SPE) in combination with the electrochemical impedance spectroscopy (EIS) technique. With the impedimetric immunosensor, the detection limit for S1 protein in buffer medium was found to be 0.23 ng/mL (equal to 23.92 amol in 8 µL sample) in the linear concentration range of S1 protein from 0.5 to 10 ng/mL. In the artificial saliva medium, it was found to be 0.09 ng/mL (equals to 9.36 amol in 8 µL sample) in the linear concentration range of S1 protein between 0.1 and 1 ng/mL. The selectivity of the impedimetric immunosensor toward S1 protein was tested against influenza hemagglutinin antigen (HA) in the buffer medium as well as in artificial saliva.
Collapse
Affiliation(s)
- Arzum Erdem
- Analytical Chemistry Department, Faculty of Pharmacy, Ege University, Bornova, Izmir 35100, Turkey
| | | | | | | |
Collapse
|
68
|
Serra J, Fidalgo-Marijuan A, Barbosa JC, Correia DM, Gonçalves R, Porro JM, Lanceros-Mendez S, Costa CM. Lithium-Ion Battery Solid Electrolytes Based on Poly(vinylidene Fluoride)-Metal Thiocyanate Ionic Liquid Blends. ACS APPLIED POLYMER MATERIALS 2022; 4:5909-5919. [PMID: 36568737 PMCID: PMC9778058 DOI: 10.1021/acsapm.2c00789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/01/2022] [Indexed: 06/17/2023]
Abstract
Solid polymer electrolytes (SPEs) are required to improve battery safety through the elimination of the liquid electrolyte solution in current batteries. This work is focused on the development of a hybrid SPE based on poly(vinylidene fluoride), PVDF, and 1-butyl-3-methylimidazolium cobalt(II) isothiocyanate, [BMIM]2[(SCN)4Co] magnetic ionic liquid (MIL), and its battery cycling behavior at room temperature. The addition of MIL in filler contents up to 40 wt % to the PVDF matrix does not influence the compact morphology of the samples obtained by solvent casting. The polar β-phase of PVDF increases with increasing MIL content, whereas the degree of crystallinity, thermal degradation temperature, and mechanical properties of the MIL/PVDF blends decrease with increasing MIL content. The ionic conductivity of the MIL/PVDF blends increases both with temperature and MIL content, showing the highest ionic conductivity of 7 × 10-4 mS cm-1 at room temperature for the MIL/PVDF blend with 40 wt % of MIL. The cathodic half-cells prepared with this blend as SPE show good reversibility and excellent cycling behavior at different C-rates, with a discharge capacity of 80 mAh g-1 at a C/10-rate with a Coulombic efficiency of 99%. The developed magnetic SPE, with excellent performance at room temperature, shows potential for the implementation of sustainable lithium-ion batteries, which can be further tuned by the application of an external magnetic field.
Collapse
Affiliation(s)
- João
P. Serra
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga 4710-057, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
| | - Arkaitz Fidalgo-Marijuan
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Department
of Organic and Inorganic Chemistry, University
of the Basque Country (UPV/EHU), 48940 Leioa, Spain
| | - João C. Barbosa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga 4710-057, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
- Centre
of Chemistry, University of Trás-os-Montes
e Alto Douro, 5000-801 Vila Real, Portugal
| | - Daniela M. Correia
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga 4710-057, Portugal
- Centre
of Chemistry, University of Trás-os-Montes
e Alto Douro, 5000-801 Vila Real, Portugal
| | - Renato Gonçalves
- Centre of
Chemistry, University of Minho, 4710-057 Braga, Portugal
| | - José M. Porro
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Senentxu Lanceros-Mendez
- BCMaterials,
Basque Center for Materials, Applications and Nanostructures, UPV/EHU
Science Park, 48940 Leioa, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, Braga 4710-057, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
69
|
Utomo NW, Deng Y, Zhao Q, Liu X, Archer LA. Structure and Evolution of Quasi-Solid-State Hybrid Electrolytes Formed Inside Electrochemical Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110333. [PMID: 35765212 DOI: 10.1002/adma.202110333] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 06/06/2022] [Indexed: 06/15/2023]
Abstract
Solid-state electrolytes (SSEs) formed inside an electrochemical cell by polymerization of a liquid precursor provide a promising strategy for overcoming problems with electrolyte wetting in solid-state batteries. Hybrid solid-state polymer electrolytes (HSPEs) created by in situ polymerization of a conventional liquid precursor containing electrochemically inert nanostructures are of particular interest because they offer a mechanism for selectively reinforcing or adding new functionalities to the electrolyte-removing the need for high degrees of polymerization. The synthesis, structure, chemical kinetics, ion-transport properties and electrochemical characteristics of HSPEs created by Al(OTf)3 -initiated polymerization of 1,3-dioxolane (DOL) containing hairy, nano-sized SiO2 particles are reported. Small-angle X-ray scattering reveals the particles are well-dispersed in liquid DOL. Strong interaction between poly(ethylene glycol) molecules tethered to the SiO2 particles and poly(DOL) lead to co-crystallization-anchoring the nanoparticles in their host It also enables polymerization-depolymerization processes in DOL to be studied and controlled. The utility of the in-situ-formed HSPE, is demonstrated first in Li|HSPE|Cu half cells, which manifest Coulombic efficiencies (CE) values approaching 99%. HSPEs are also demonstrated in solid-state lithium-sulfur-polyacrylonitrile (SPAN) composite full-cell batteries. The in-situ-formed Li|HSPE|SPAN cells show good cycling stability and thus provide a promising path toward all-solid-state batteries.
Collapse
Affiliation(s)
- Nyalaliska W Utomo
- Robert Frederick School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853-5201, USA
| | - Yue Deng
- Department of Materials Science and Engineering, Cornell University, Bard Hall, Ithaca, NY, 14853-5201, USA
| | - Qing Zhao
- Robert Frederick School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853-5201, USA
| | - Xiaotun Liu
- Robert Frederick School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853-5201, USA
| | - Lynden A Archer
- Robert Frederick School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853-5201, USA
- Department of Materials Science and Engineering, Cornell University, Bard Hall, Ithaca, NY, 14853-5201, USA
| |
Collapse
|
70
|
Wang H, Long X, Sun Y, Wang D, Wang Z, Meng H, Jiang C, Dong W, Lu N. Electrochemical impedance spectroscopy applied to microbial fuel cells: A review. Front Microbiol 2022; 13:973501. [PMID: 35935199 PMCID: PMC9355145 DOI: 10.3389/fmicb.2022.973501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/18/2022] Open
Abstract
Electrochemical impedance spectroscopy (EIS) is an efficient and non-destructive test for analyzing the bioelectrochemical processes of microbial fuel cells (MFCs). The key factors limiting the output performance of an MFC can be identified by quantifying the contribution of its various internal parts to the total impedance. However, little attention has been paid to the measurement conditions and diagrammatic processes of the EIS for MFC. This review, starting with the analysis of admittance of bioelectrode, introduces conditions for the EIS measurement and summarizes the representative equivalent circuit plots for MFC. Despite the impedance from electron transfer and diffusion process, the effect of unnoticeable capacitance obtained from the Nyquist plot on MFCs performance is evaluated. Furthermore, given that distribution of relaxation times (DRT) is an emerging method for deconvoluting EIS data in the field of fuel cell, the application of DRT-analysis to MFC is reviewed here to get insight into bioelectrode reactions and monitor the biofilm formation. Generally, EIS measurement is expected to optimize the construction and compositions of MFCs to overcome the low power generation.
Collapse
Affiliation(s)
- Hui Wang
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Xizi Long
- International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science, Tsukuba, Japan
- *Correspondence: Xizi Long,
| | - Yingying Sun
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd., and Xi’an Jiaotong University, Xi'an, China
| | - Dongqi Wang
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Zhe Wang
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Haiyu Meng
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Chunbo Jiang
- Department of Municipal and Environmental Engineering, Faculty of Water Resources and Hydroelectric Engineering, Xi’an University of Technology, Xi’an, China
| | - Wen Dong
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd., and Xi’an Jiaotong University, Xi'an, China
| | - Nan Lu
- Technology Innovation Center for Land Engineering and Human Settlements, Shaanxi Land Engineering Construction Group Co., Ltd., and Xi’an Jiaotong University, Xi'an, China
| |
Collapse
|
71
|
Copper–Ruthenium Composite as Perspective Material for Bioelectrodes: Laser-Assisted Synthesis, Biocompatibility Study, and an Impedance-Based Cellular Biosensor as Proof of Concept. BIOSENSORS 2022; 12:bios12070527. [PMID: 35884330 PMCID: PMC9313201 DOI: 10.3390/bios12070527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Copper is an inexpensive material that has found wide application in electronics due to its remarkable electric properties. However, the high toxicity of both copper and copper oxide imposes restrictions on the application of this metal as a material for bioelectronics. One way to increase the biocompatibility of pure copper while keeping its remarkable properties is to use copper-based composites. In the present study, we explored a new copper–ruthenium composite as a potential biocompatible material for bioelectrodes. Sample electrodes were obtained by subsequent laser deposition of copper and ruthenium on glass plates from a solution containing salts of these metals. The fabricated Cu–Ru electrodes exhibit high effective area and their impedance properties can be described by simple R-CPE equivalent circuits that make them perspective for sensing applications. Finally, we designed a simple impedance cell-based biosensor using this material that allows us to distinguish between dead and alive HeLa cells.
Collapse
|
72
|
Iron (Fe)-doped mesoporous 45S5 bioactive glasses: Implications for cancer therapy. Transl Oncol 2022; 20:101397. [PMID: 35366536 PMCID: PMC8972012 DOI: 10.1016/j.tranon.2022.101397] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 12/23/2022] Open
Abstract
Fe-doped mesoporous 45S5 BGs were successfully synthesized using the sol-gel route. Fe-doped MBGs exhibited a particles size of 12 nm with a high surface area of 306 m2/g. Fe-doped MBGs could generate H2O2 in a cathodic potential higher than −0.2 V. Fe-doped MBGs increased the standard rate constant of Electro-Fenton's (EF) reaction up to 38.44 times as compared with the Fe-free glasses.
The utilization of bioactive glasses (BGs) in cancer therapy has recently become quite promising; herein, a series of Fe-doped mesoporous 45S5-based BGs (MBGs) were synthesized via the sol-gel method in the presence of Pluronic P123 as a soft template. The physico-chemical and biological properties of the prepared glasses were well-characterized through structural assessments, thermal analyses, and electron microscopic studies. Electrochemical analyses, including cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS), were also performed to investigate the actual potential of the Fe2O3-containing MBGs in modulating the Fenton's reaction. The XRD results confirmed the glassy state of the Fe-doped samples before immersion in simulated body fluid (SBF). The prepared Fe-doped MBGs exhibited a particle size in the range of 11–86 nm, surface charge of 27–30 mV, SBET of 95–306 m2/g, and Ms of 0.08 to 0.2 emu/g. The incorporation of Fe2O3 led to a negligible decrease in the bioactivity of the glasses. The CV analysis indicated that the Fe-doped MBGs could generate H2O2 in a cathodic potential higher than -0.2 V (vs. Ag/AgCl) in the O2-saturated Na2SO4 solution. Additionally, the data of the EIS test revealed that the Fe2O3-doped MBGs could increase the standard rate constant of Electro-Fenton's (EF) reaction up to 38.44 times as compared with the Fe-free glasses. In conclusion, Fe-doped 45S5-derived glasses may be useful in cancer therapy strategies due to their capability of activating Fenton's reaction and subsequent production of reactive oxygen species (ROS) such as •OH free radicals.
Collapse
|
73
|
Rotake D, Pratim Goswami P, Govind Singh S. Ultraselective, ultrasensitive, point-of-care electrochemical sensor for detection of Hg(II) ions with electrospun-InZnO nanofibers. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
74
|
Development of an Online Monitoring Device for the Mixing Ratio of Two-Part Epoxy Adhesives Using an Electrical Impedance Spectroscopy Technique and Machine Learning. Processes (Basel) 2022. [DOI: 10.3390/pr10050951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Two-part epoxy adhesives are widely used in a range of industries. Two-part epoxy adhesive is composed of a resin and a hardener. Both materials remain stable in the general environment but curing begins when mixed in the specified mixing ratio. However, it has the disadvantage of requiring a specific mixing device. In addition, if the mixing ratio is different from the specified ratio due to the error of the mixing system, it has a fatal effect on the adhesion performance. The dielectric constant is a characteristic constant of a material. Therefore, it represents the mixing ratio of mixed two-part epoxy adhesives. With the electrical impedance spectroscopy technique, it can be measured indirectly by measuring impedance according to frequency and temperature. In this study, a sensor and embedded device for an online monitoring of its integrity using a regression method among machine learning are developed, which can acquire impedance data with frequency and temperature data according to the change in the mixing ratio of a two-part epoxy adhesive. The experimentally collected data were used as training data for the machine learning algorithm. It was found that the learned machine learning algorithm effectively estimates the mixing ratio of the two-part epoxy with an arbitrary value.
Collapse
|
75
|
Padha B, Verma S, Mahajan P, Arya S. Electrochemical Impedance Spectroscopy (EIS) Performance Analysis and Challenges in Fuel Cell Applications. J ELECTROCHEM SCI TE 2022. [DOI: 10.33961/jecst.2021.01263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
76
|
Garg S, Kumar P, Greene GW, Mishra V, Avisar D, Sharma RS, Dumée LF. Nano-enabled sensing of per-/poly-fluoroalkyl substances (PFAS) from aqueous systems - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 308:114655. [PMID: 35131704 DOI: 10.1016/j.jenvman.2022.114655] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 01/01/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Per-/poly-fluoroalkyl substances (PFAS) are an emerging class of environmental contaminants used as an additive across various commodity and fire-retardant products, for their unique thermo-chemical stability, and to alter their surface properties towards selective liquid repellence. These properties also make PFAS highly persistent and mobile across various environmental compartments, leading to bioaccumulation, and causing acute ecotoxicity at all trophic levels particularly to human populations, thus increasing the need for monitoring at their repositories or usage sites. In this review, current nano-enabled methods towards PFAS sensing and its monitoring in wastewater are critically discussed and benchmarked against conventional detection methods. The discussion correlates the materials' properties to the sensitivity, responsiveness, and reproducibility of the sensing performance for nano-enabled sensors in currently explored electrochemical, spectrophotometric, colorimetric, optical, fluorometric, and biochemical with limits of detection of 1.02 × 10-6 μg/L, 2.8 μg/L, 1 μg/L, 0.13 μg/L, 6.0 × 10-5 μg/L, and 4.141 × 10-7 μg/L respectively. The cost-effectiveness of sensing platforms plays an important role in the on-site analysis success and upscalability of nano-enabled sensors. Environmental monitoring of PFAS is a step closer to PFAS remediation. Electrochemical and biosensing methods have proven to be the most reliable tools for future PFAS sensing endeavors with very promising detection limits in an aqueous matrix, short detection times, and ease of fabrication.
Collapse
Affiliation(s)
- Shafali Garg
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India
| | - Pankaj Kumar
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India
| | - George W Greene
- Deakin University, Institute for Frontier Materials, Burwood, Melbourne, Victoria, Australia
| | - Vandana Mishra
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India; University of Delhi, Delhi School of Climate Change and Sustainability, Institute of Eminence, Delhi, 110007, India
| | - Dror Avisar
- Tel Aviv University, School for Environmental and Earth Sciences, Water Research Center, Tel Aviv, Israel
| | - Radhey Shyam Sharma
- University of Delhi, Bioresources and Environmental Biotechnology Laboratory, Department of Environmental Studies, India; University of Delhi, Delhi School of Climate Change and Sustainability, Institute of Eminence, Delhi, 110007, India.
| | - Ludovic F Dumée
- Khalifa University, Department of Chemical Engineering, Abu Dhabi, United Arab Emirates; Khalifa University, Center for Membrane and Advanced Water Technology, Abu Dhabi, United Arab Emirates; Khalifa University, Research and Innovation Center on CO(2) and Hydrogen, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
77
|
Yeh SL, Deval P, Wu JG, Luo SC, Tsai WB. One-step electrochemical deposition of antifouling polymers with pyrogallol for biosensing applications. J Mater Chem B 2022; 10:2504-2511. [PMID: 35018937 DOI: 10.1039/d1tb02536h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electrochemical techniques are highly sensitive and label-free sensing methods for the detection of various biomarkers, toxins, or pathogens. An ideal sensing element should be electroconductive, nonfouling, and readily available for conjugation of ligands. In this work, we have developed a facile, one-step electrodeposition method based on pyrogallol polymerization for preparation of a nonfouling and biotinylated surface on indium tin oxide (ITO). A copolymer of sulfobetaine methacrylate and aminoethyl methacrylate (pSBAE) was synthesized and deposited on ITO in the presence of pyrogallol via cyclic voltammetry. The deposition took less than 15 minutes to sufficiently inhibit cell adhesion. Using biotinylated pSBAE, the modified surface resisted nonspecific protein adsorption from the fetal bovine serum solution and detected added avidin concentrations. The results show an efficient platform to fabricate an electrochemical biosensor for the detection of biomarkers. We expect that this facile one-step technology could be applied to conjugate various biosensing elements for nonfouling biosensors.
Collapse
Affiliation(s)
- Shang-Lin Yeh
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.
| | - Piyush Deval
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.
| | - Jhih-Guang Wu
- Department of Material Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Shyh-Chyang Luo
- Department of Material Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan
| | - Wei-Bor Tsai
- Department of Chemical Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei, 10617, Taiwan.
| |
Collapse
|
78
|
Liu S, Zhong Y, Zhang X, Pi M, Wang X, Zhu R, Cui W, Ran R. Highly Deformable, Conductive Double-Network Hydrogel Electrolytes for Durable and Flexible Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15641-15652. [PMID: 35317550 DOI: 10.1021/acsami.2c00962] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Developing flexible energy storage devices with the ability to retain capacitance under extreme deformation is promising but remains challenging. Here, we report the development of a durable supercapacitor with remarkable capacitance retention under mechanical deformation by utilizing a physical double-network (DN) hydrogel as an electrolyte. The first network is hydrophobically associating polyacrylamide cross-linked by nanoparticles, and the second network is Zn2+ cross-linked alginate. Through soaking such a DN hydrogel into a high concentration of ZnSO4 solution, a highly deformable electrolyte with good conductivity is fabricated, which also shows adhesion to diverse surfaces. Directly attaching the hydrogel electrolyte to two pieces of an active carbon cloth facilely produces a flexible supercapacitor with a high specific capacitance and theoretical energy density. Remarkable capacitance retention under tension, compression, and bending is observed for the supercapacitor, which can also maintain above 87% of the initial capacitance after 4000 charge-discharge cycles. This study provides a simple way to fabricate hydrogel electrolytes for deformable yet durable supercapacitors, which is expected to inspire the development of next-generation flexible energy storage devices.
Collapse
Affiliation(s)
- Shengqu Liu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yuehui Zhong
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Menghan Pi
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaoyu Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ruijie Zhu
- Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Wei Cui
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Rong Ran
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
79
|
Alves R, Fidalgo-Marijuan A, Campos-Arias L, Gonçalves R, Silva MM, del Campo FJ, Costa CM, Lanceros-Mendez S. Solid Polymer Electrolytes Based on Gellan Gum and Ionic Liquid for Sustainable Electrochromic Devices. ACS APPLIED MATERIALS & INTERFACES 2022; 14:15494-15503. [PMID: 35324148 PMCID: PMC9773178 DOI: 10.1021/acsami.2c01658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Materials sustainability is becoming increasingly relevant in every developed technology and, consequently, environmentally friendly solid polymer electrolytes (SPEs) based on gellan gum and different quantities of ionic liquid (IL) 1-ethyl-3-methyl-imidazolium-thiocyanate [Emim][SCN] have been prepared and applied in electrochromic devices (ECDs). The addition of the IL does not affect the crystalline phase of gellan gum, and the samples show a compact morphology, surface uniformity, no phase separation, and good distribution of the IL within the carrageenan matrix. The developed SPE are thermally stable up to ∼100 °C and show suitable mechanical properties. The most concentrated sample (39 wt % IL content) reaches a maximum ionic conductivity value of 6.0 × 10-3 S cm-1 and 1.8 × 10-2 S cm-1 at 30 and 90 °C, respectively. The electrochromic device (ECD) was fabricated with poly(3,4-ethylenedioxythiophene) polystyrenesulfonate (PEDOT:PSS) as working electrode and the developed SPE was compared with an aqueous 0.1 M KNO3 solution. The electrochromic performance of the electrolyte was assessed in terms of spectroelectrochemistry, demonstrating a fully flexible ECD operating at voltages below 1.0 V. This novel electrolyte opens the door to the preparation of high performance sustainable ECD.
Collapse
Affiliation(s)
- Raquel Alves
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
| | - Arkaitz Fidalgo-Marijuan
- BCMaterials, Basque Center for Materials,
Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Department
of Organic and Inorganic Chemistry, University
of the Basque Country (UPV/EHU), 01006 Vitoria-Gasteiz, Spain
| | - Lia Campos-Arias
- BCMaterials, Basque Center for Materials,
Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Renato Gonçalves
- Center
of Chemistry, University of Minho, 4710-057 Braga, Portugal
| | | | - Francisco Javier del Campo
- BCMaterials, Basque Center for Materials,
Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque
Foundation for Science, 48009 Bilbao, Spain
| | - Carlos M. Costa
- Physics
Centre of Minho and Porto Universities (CF-UM-UP), University of Minho, 4710-057 Braga, Portugal
- Institute
of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-057 Braga, Portugal
- Laboratory
of Physics for Materials and Emergent Technologies, LapMET, University of Minho, Braga 4710-057, Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials,
Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque
Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
80
|
Schalenbach M, Durmus YE, Tempel H, Kungl H, Eichel RA. The role of the double layer for the pseudocapacitance of the hydrogen adsorption on platinum. Sci Rep 2022; 12:3375. [PMID: 35233048 PMCID: PMC8888654 DOI: 10.1038/s41598-022-07411-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/16/2022] [Indexed: 11/09/2022] Open
Abstract
Pseudocapacitances such as the hydrogen adsorption on platinum (HAoPt) are associated with faradaic chemical processes that appear as capacitive in their potentiodynamic response, which was reported to result from the kinetics of adsorption processes. This study discusses an alternative interpretation of the partly capacitive response of the HAoPt that is based on the proton transport of ad- or desorbed hydrogen in the double layer. Potentiodynamic perturbations of equilibrated surface states of the HAoPt lead to typical double layer responses with the characteristic resistive–capacitive relaxations that overshadow the fast adsorption kinetics. A potential-dependent double layer representation by a dynamic transmission line model incorporates the HAoPt in terms of capacitive contributions and can computationally reconstruct the charge exchanged in full range cyclic voltammetry data. The coupling of charge transfer with double layer dynamics displays a novel physicochemical theory to explain the phenomenon of pseudocapacitance and the mechanisms in thereon based supercapacitors.
Collapse
Affiliation(s)
- Maximilian Schalenbach
- Fundamental Electrochemistry (IEK‑9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| | - Y Emre Durmus
- Fundamental Electrochemistry (IEK‑9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Hermann Tempel
- Fundamental Electrochemistry (IEK‑9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Hans Kungl
- Fundamental Electrochemistry (IEK‑9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Rüdiger-A Eichel
- Fundamental Electrochemistry (IEK‑9), Institute of Energy and Climate Research, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| |
Collapse
|
81
|
Selective Passivation of Three-Dimensional Carbon Microelectrodes by Polydopamine Electrodeposition and Local Laser Ablation. MICROMACHINES 2022; 13:mi13030371. [PMID: 35334663 PMCID: PMC8950879 DOI: 10.3390/mi13030371] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/04/2023]
Abstract
In this article, a novel approach for selective passivation of three-dimensional pyrolytic carbon microelectrodes via a facile electrochemical polymerization of a non-conductive polymer (polydopamine, PDA) onto the surface of carbon electrodes, followed by a selective laser ablation is elaborated. The 3D carbon electrodes consisting of 284 micropillars on a circular 2D carbon base layer were fabricated by pyrolysis of lithographically patterned negative photoresist SU-8. As a second step, dopamine was electropolymerized onto the electrode by cyclic voltammetry (CV) to provide an insulating layer at its surface. The CV parameters, such as the scan rate and the number of cycles, were investigated and optimized to achieve a reliable and uniform non-conductive coating on the surface of the 3D pyrolytic carbon electrode. Finally, the polydopamine was selectively removed only from the tips of the pillars, by using localized laser ablation. The selectively passivated electrodes were characterized by scanning electron microscopy, cyclic voltammetry and electrochemical impedance spectroscopy methods. Due to the surface being composed of highly biocompatible materials, such as pyrolytic carbon and polydopamine, these 3D electrodes are particularly suited for biological application, such as electrochemical monitoring of cells or retinal implants, where highly localized electrical stimulation of nerve cells is beneficial.
Collapse
|
82
|
Abstract
Currently, hydrogen production is based on the reforming process, leading to the emission of pollutants; therefore, a substitute production method is imminently required. Water electrolysis is an ideal alternative for large-scale hydrogen production, as it does not produce any carbon-based pollutant byproducts. The production of green hydrogen from water electrolysis using intermittent sources (e.g., solar and eolic sources) would facilitate clean energy storage. However, the electrocatalysts currently required for water electrolysis are noble metals, making this potential option expensive and inaccessible for industrial applications. Therefore, there is a need to develop electrocatalysts based on earth-abundant and low-cost metals. Nickel-based electrocatalysts are a fitting alternative because they are economically accessible. Extensive research has focused on developing nickel-based electrocatalysts for hydrogen and oxygen evolution. Theoretical and experimental work have addressed the elucidation of these electrochemical processes and the role of heteroatoms, structure, and morphology. Even though some works tend to be contradictory, they have lit up the path for the development of efficient nickel-based electrocatalysts. For these reasons, a review of recent progress is presented herein.
Collapse
|
83
|
Idili A, Montón H, Medina-Sánchez M, Ibarlucea B, Cuniberti G, Schmidt OG, Plaxco KW, Parolo C. Continuous monitoring of molecular biomarkers in microfluidic devices. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:295-333. [PMID: 35094779 DOI: 10.1016/bs.pmbts.2021.07.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The ability to monitor molecular targets is crucial in fields ranging from healthcare to industrial processing to environmental protection. Devices employing biomolecules to achieve this goal are called biosensors. Over the last half century researchers have developed dozens of different biosensor approaches. In this chapter we analyze recent advances in the biosensing field aiming at adapting these to the problem of continuous molecular monitoring in complex sample streams, and how the merging of these sensors with lab-on-a-chip technologies would be beneficial to both. To do so we discuss (1) the components that comprise a biosensor, (2) the challenges associated with continuous molecular monitoring in complex sample streams, (3) how different sensing strategies deal with (or fail to deal with) these challenges, and (4) the implementation of these technologies into lab-on-a-chip architectures.
Collapse
Affiliation(s)
- Andrea Idili
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Department of Chemical Science and Technologies, University of Rome, Tor Vergata, Rome, Italy
| | - Helena Montón
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States
| | | | - Bergoi Ibarlucea
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Technische Universität Dresden, Dresden, Germany; Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, Dresden, Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center for Biomaterials, Technische Universität Dresden, Dresden, Germany; Center for Advancing Electronics Dresden (CFAED), Technische Universität Dresden, Dresden, Germany
| | - Oliver G Schmidt
- Institute for Integrative Nanosciences, Leibniz IFW Dresden, Dresden, Germany; Research Center for Materials, Architectures and Integration of Nanomembranes (MAIN), Chemnitz, Germany; School of Science, TU Dresden, Dresden, Germany
| | - Kevin W Plaxco
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Interdepartmental Program in Biomolecular Science and Engineering University of California, Santa Barbara, CA, United States
| | - Claudio Parolo
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States; Barcelona Institute for Global Health (ISGlobal) Hospital Clínic, Barcelona, Spain.
| |
Collapse
|
84
|
Dar RA, Naikoo GA, Srivastava AK, Hassan IU, Karna SP, Giri L, Shaikh AMH, Rezakazemi M, Ahmed W. Performance of graphene-zinc oxide nanocomposite coated-glassy carbon electrode in the sensitive determination of para-nitrophenol. Sci Rep 2022; 12:117. [PMID: 34996919 PMCID: PMC8741969 DOI: 10.1038/s41598-021-03495-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022] Open
Abstract
Graphene: zinc oxide nanocomposite (GN:ZnO NC) platform was tried for the sensitive determination of para-nitrophenol (p-NP) through the electrochemical method. ZnO nanoparticles (NPs) were synthesized by the modified wet-chemical method where in potassium hydroxide and zinc nitrate were used as precursors and starch as a stabilizing agent. A green and facile approach was applied to synthesize GN:ZnO NC in which glucose was employed as a reductant to reduce graphene-oxide to graphene in the presence of ZnO NPs. The synthesized NC was characterized using scanning and high-resolution transmission electron microscopy, energy dispersive x-ray analysis, X-ray diffraction and Raman spectroscopic techniques to examine the crystal phase, crystallinity, morphology, chemical composition and phase structure. GN:ZnO NC layer deposited over the glassy carbon electrode (GCE) was initially probed for its electrochemical performance using the standard 1 mM K3[Fe(CN)6] model complex. GN:ZnO NC modified GCE was monitored based on p-NP concentration. An enhanced current response was observed in 0.1 M phosphate buffer of pH 6.8 for the determination of p-NP in a linear working range of 0.09 × 10-6 to 21.80 × 10-6 M with a lower detection limit of 8.8 × 10-9 M employing square wave adsorptive stripping voltammetric technique at a deposition-potential and deposition-time of - 1.0 V and 300 s, respectively. This electrochemical sensor displayed very high specificity for p-NP with no observed interference from some other possible interfering substances such as 2, 4-di-NP, ortho-NP, and meta-NP. The developed strategy was useful for sensitive detection of p-NP quantity in canals/rivers and ground H2O samples with good recoveries.
Collapse
Affiliation(s)
- Riyaz Ahmad Dar
- Department of Chemistry, Maharashtra College of Arts, Science and Commerce, Mumbai, 400008, India.
| | - Gowhar Ahmad Naikoo
- Department of Mathematics and Sciences, College of Arts and Applied Sciences, Dhofar University, PC 211, Salalah, Sultanate of Oman.
| | - Ashwini Kumar Srivastava
- Department of Chemistry, University of Mumbai, Vidyanagari, Santacruz (East), Mumbai, 400098, India
| | - Israr Ul Hassan
- College of Engineering, Dhofar University, PC 211, Salalah, Sultanate of Oman
| | - Shashi P Karna
- US Army Research Laboratory, Weapons and Materials Research Laboratory, FCDD-RLW-, Aberdeen Proving Ground, Maryland, 21005-5069, USA
| | - Lily Giri
- US Army Research Laboratory, Weapons and Materials Research Laboratory, FCDD-RLW-, Aberdeen Proving Ground, Maryland, 21005-5069, USA
| | - Ahamad M H Shaikh
- Department of Chemistry, Maharashtra College of Arts, Science and Commerce, Mumbai, 400008, India
| | - Mashallah Rezakazemi
- Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
| | - Waqar Ahmed
- School of Mathematics and Physics, College of Science, University of Lincoln, Lincoln, LN6 7TS, UK
| |
Collapse
|
85
|
Er OF, Kivrak H, Ozok O, Çelik S, Kivrak A. A novel electrochemical sensor for monitoring ovarian cancer tumor protein CA 125 on benzothiophene derivative based electrodes. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
86
|
Mathioudaki E, Alifragis Y, Fouskaki M, Chochlakis D, Xie H, Psaroulaki A, Tsiotis G, Chaniotakis N. Electrochemical antigenic sensor for the diagnosis of chronic Q fever. CURRENT RESEARCH IN BIOTECHNOLOGY 2022. [DOI: 10.1016/j.crbiot.2022.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
87
|
Ge Y, Lyu Z, Marcos-Hernández M, Villagrán D. Free-base porphyrin polymer for bifunctional electrochemical water splitting. Chem Sci 2022; 13:8597-8604. [PMID: 35974754 PMCID: PMC9337729 DOI: 10.1039/d2sc01250b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/02/2022] [Indexed: 11/21/2022] Open
Abstract
Water splitting is considered a promising approach for renewable and sustainable energy conversion. The development of water splitting electrocatalysts that have low-cost, long-lifetime, and high-performance is an important area of research for the sustainable generation of hydrogen and oxygen gas. Here, we report a metal-free porphyrin-based two-dimensional crystalline covalent organic polymer obtained from the condensation of terephthaloyl chloride and 5,10,15,20-tetrakis(4-aminophenyl) porphyrin which is stabilized by an extensive hydrogen bonding network. This material exhibits bifunctional electrocatalytic performance towards water splitting with onset overpotentials, η, of 36 mV and 110 mV for HER (in 0.5 M H2SO4) and OER (in 1.0 M KOH), respectively. The as-synthesized material is also able to perform water splitting in neutral phosphate buffer saline solution, with 294 mV for HER and 520 mV for OER, respectively. Characterized by electrochemical impedance spectroscopy (EIS) and chronoamperometry, the as-synthesized material also shows enhanced conductivity and stability compared to its molecular counterpart. Inserting a non-redox active zinc metal center in the porphyrin unit leads to a decrease in electrochemical activity towards both HER and OER, suggesting the four-nitrogen porphyrin core is the active site. The high performance of this metal-free material towards water splitting provides a sustainable alternative to the use of scarce and expensive metal electrocatalysts in energy conversion for industrial applications. Water splitting is considered a promising approach for renewable and sustainable energy conversion.![]()
Collapse
Affiliation(s)
- Yulu Ge
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Zhenhua Lyu
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mariana Marcos-Hernández
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Dino Villagrán
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
88
|
Khanwalker M, Fujita R, Lee J, Wilson E, Ito K, Asano R, Ikebukuro K, LaBelle J, Sode K. Development of a POCT type insulin sensor employing anti-insulin single chain variable fragment based on faradaic electrochemical impedance spectroscopy under single frequency measurement. Biosens Bioelectron 2021; 200:113901. [PMID: 34968857 DOI: 10.1016/j.bios.2021.113901] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 11/24/2022]
Abstract
To improve glycemic control managed through insulin administration, recent studies have focused on developing hand-held point-of-care testing (POCT) electrochemical biosensors for insulin measurement. Amongst them, anti-insulin IgG-based sensors show promise in detecting insulin with high specificity and sensitivity. However, fabrication of electrochemical sensors with IgG antibodies can prove challenging because of their larger molecular size. To overcome these limitations, this study focuses on utilizing the anti-insulin single chain variable fragment (scFv) as a biosensing molecule with single-frequency faradaic electrochemical impedance spectroscopy (EIS). By comparing two different immobilization methods, covalent conjugation via succinimidyl ester and non-covalent poly-histidine chelation, we demonstrated effective modification of the electrode surface with anti-insulin scFv, while retaining its specific recognition toward insulin. Sensor performance was confirmed via the concentration-dependent faradaic electrochemical impedance change using potassium ferricyanide as a redox probe. The optimal frequency for measurement was determined to be the peak slope of the calculated impedance correlation with respect to frequency. Based on the identified optimized frequency, we performed single-frequency measurement of insulin within a concentration range of 10 pM-100 nM. This study can aid in developing a future point-of-care sensor which rapidly and sensitively measures insulin across a dynamic range of physiological concentrations, with label-free detection.
Collapse
Affiliation(s)
- Mukund Khanwalker
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC27599, USA
| | - Rinko Fujita
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Jinhee Lee
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC27599, USA
| | - Ellie Wilson
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC27599, USA
| | - Kohei Ito
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Ryutaro Asano
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Kazunori Ikebukuro
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
| | - Jeffrey LaBelle
- Department of Bioengineering, College of Engineering Science and Technology, Grand Canyon University, Phoenix, AZ, AZ85017, USA
| | - Koji Sode
- Joint Department of Biomedical Engineering, The University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC27599, USA.
| |
Collapse
|
89
|
Han H, Nobusawa K, Yamashita I. Anomalous Enhancement of Electrochemical Charge Transfer by a Ru Complex Ion Intercalator. Anal Chem 2021; 94:571-576. [PMID: 34928123 DOI: 10.1021/acs.analchem.1c03681] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have found that the DNA intercalator [Ru(bpy)2DPPZ]2+ (bpy = 2,2'-bipyridine; DPPZ = dipyrido[3,2-a:2',3'-c]phenazine) causes an anomalous increase in charge transfer in electrochemical impedance spectroscopy (EIS). With a carbonaceous electrode and a 1 mM hexacyanoferrate (1 mM [Fe(CN)6]3- and 1 mM [Fe(CN)6]4-) mediator, we found that adding only 1 μM [Ru(bpy)2DPPZ]2+ greatly enhanced the charge transfer between the electrode and hexacyanoferrate mediator, independently of other electrolytes or buffer components. The effect started with a one millionth amount of hexacyanoferrate. Since [Ru(bpy)2DPPZ]2+ can intercalate with dsDNA, the effect is highly applicable for dsDNA detection or PCR monitoring. With further developments of this method, EIS sensors not requiring specific electrode modifications should be possible.
Collapse
Affiliation(s)
- HuanWen Han
- Graduate School of Engineering, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazuyuki Nobusawa
- Graduate School of Engineering, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Ichiro Yamashita
- Graduate School of Engineering, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| |
Collapse
|
90
|
Park C, Hwang S, Kang Y, Sim J, Cho HU, Oh Y, Shin H, Kim DH, Blaha CD, Bennet KE, Lee KH, Jang DP. Feasibility of Applying Fourier Transform Electrochemical Impedance Spectroscopy in Fast Cyclic Square Wave Voltammetry for the In Vivo Measurement of Neurotransmitters. Anal Chem 2021; 93:15861-15869. [PMID: 34839667 DOI: 10.1021/acs.analchem.1c02308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We previously reported on the use of fast cyclic square wave voltammetry (FCSWV) as a new voltammetric technique. Fourier transform electrochemical impedance spectroscopy (FTEIS) has recently been utilized to provide information that enables a detailed analytical description of an electrified interface. In this study, we report on attempts to combine FTEIS with FCSWV (FTEIS-FCSWV) and demonstrate the feasibility of FTEIS-FCSWV in the in vivo detection of neurotransmitters, thus giving a new type of electrochemical impedance information such as biofouling on the electrode surface. From FTEIS-FCSWV, three new equivalent circuit element voltammograms, consisting of charge-transfer resistance (Rct), solution-resistance (Rs), and double-layer capacitance (Cdl) voltammograms were constructed and investigated in the phasic changes in dopamine (DA) concentrations. As a result, all Rct, Rs, and Cdl voltammograms showed different DA redox patterns and linear trends for the DA concentration (R2 > 0.99). Furthermore, the Rct voltammogram in FTEIS-FCSWV showed lower limit of detection (21.6 ± 15.8 nM) than FSCV (35.8 ± 17.4 nM). FTEIS-FCSWV also showed significantly lower prediction errors than FSCV in selectivity evaluations of unknown mixtures of catecholamines. Finally, Cdl from FTEIS-FCSWV showed a significant relationship with fouling effect on the electrode surface by showing decreased DA sensitivity in both flow injection analysis experiment (r = 0.986) and in vivo experiments. Overall, this study demonstrates the feasibility of FTEIS-FCSWV, which could offer a new type of neurochemical spectroscopic information concerning electrochemical monitoring of neurotransmitters in the brain, and the ability to estimate the degree of sensitivity loss caused by biofouling on the electrode surface.
Collapse
Affiliation(s)
- Cheonho Park
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sangmun Hwang
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yumin Kang
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Jeongeun Sim
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyun U Cho
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Yoonbae Oh
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States.,Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Hojin Shin
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | | | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Kevin E Bennet
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States.,Division of Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota 55905, United States.,Department of Biomedical Engineering, Mayo Clinic, Rochester, Minnesota 55905, United States
| | - Dong Pyo Jang
- Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
91
|
MoS 2 quantum dots and titanium carbide co-modified carbon nanotube heterostructure as electrode for highly sensitive detection of zearalenone. Mikrochim Acta 2021; 189:15. [PMID: 34873654 DOI: 10.1007/s00604-021-05104-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
A novel electrochemical sensor has been fabricated for sensitive determination of zearalenone (ZEA) in food samples based on molybdenum disulfide quantum dots (MoS2 QDs) and two-dimensional titanium carbide (2D-Ti3C2Tx MXene) co-modified multi-walled carbon nanotube (MWCNT) heterostructure. Physical and electrochemical characterizations reveal that 2D-Ti3C2Tx and MoS2 QDs co-modified MWCNTs yields synergistic signal amplification effect, together with large specific surface area and excellent conductivity for the heterostructure, endowing the developed sensor with high detection performance to ZEA. Under optimized conditions, the sensor shows a wide linear range from 3.00 to 300 ng mL-1 and a low limit of detection (LOD) of 0.32 ng mL-1, which is far lower than the maximum residue limits (MRLs) settled by the European Commission. In addition, it exhibits excellent selectivity, high reproducibility with a relative standard deviation (RSD) of 1.1%, and good repeatability (RSD 1.1%). In real sample analysis recoveries ranged from 94.8 to 105% showing the proposed electrochemical sensor has high potential in practical applications. This work presents an effective and valuable pathway for the use of novel heterostructure in the biosensing field.
Collapse
|
92
|
Liao YK, Tong Z, Fang CC, Liao SC, Chen JM, Liu RS, Hu SF. Extensively Reducing Interfacial Resistance by the Ultrathin Pt Layer between the Garnet-Type Solid-State Electrolyte and Li-Metal Anode. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56181-56190. [PMID: 34784188 DOI: 10.1021/acsami.1c16922] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
All-solid-state Li-ion batteries (ASSLIBs), also known as next-generation batteries, have attracted much attention due to their high energy density and safety. The best advantage of ASSLIBs is the Li-metal anodes that could be used without safety issues. In this study, a highly conductive garnet solid electrolyte (Li6.75La3Zr1.75Ta0.25O12, LLZTO) was used in the ASSLIB, and a Pt film was used to modify the surface of LLZTO to prove the solution of the Li-metal anode for LLZTO. Li-Pt alloy was synthesized to improve the wettability and contact of the interface. The interfacial resistance was reduced by 21 times, at only 9 Ω cm2. The symmetric cell could stably cycle over 3500 h at a current density of 0.1 mA cm-2. The full cell of Li|Li-Pt|LLZTO|LiFePO4 and Li|Li-Pt|LLZTO|LiMn0.8Fe0.2PO4 achieved high stability in terms of battery performance. Point-to-point contact transformed into homogeneous surface contact made the Li-ion flux faster and more stable. This surface modification method could provide researchers with a new choice for fixing interface issues and promoting the application of high-performance ASSLIBs in the future.
Collapse
Affiliation(s)
- Yu-Kai Liao
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| | - Zizheng Tong
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chia-Chen Fang
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan
| | - Shih-Chieh Liao
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan
| | - Jin-Ming Chen
- Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 300, Taiwan
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Shu-Fen Hu
- Department of Physics, National Taiwan Normal University, Taipei 116, Taiwan
| |
Collapse
|
93
|
Zhou J, Hung YC, Xie X. Making waves: Pathogen inactivation by electric field treatment: From liquid food to drinking water. WATER RESEARCH 2021; 207:117817. [PMID: 34763276 DOI: 10.1016/j.watres.2021.117817] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 09/25/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Jianfeng Zhou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yen-Con Hung
- Department of Food Science and Technology, College of Agriculture and Environmental Sciences, University of Georgia, Griffin, GA, USA
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
94
|
Patrick SC, Hein R, Beer PD, Davis JJ. Continuous and Polarization-Tuned Redox Capacitive Anion Sensing at Electroactive Interfaces. J Am Chem Soc 2021; 143:19199-19206. [PMID: 34730337 DOI: 10.1021/jacs.1c09743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Continuous, real-time ion sensing is of great value across various environmental and medical scenarios but remains underdeveloped. Herein, we demonstrate the potential of redox capacitance spectroscopy as a sensitive and highly adaptable ion sensing methodology, exemplified by the continuous flow sensing of anions at redox-active halogen bonding ferrocenylisophthalamide self-assembled monolayers. Upon anion binding, the redox distribution of the electroactive interface, and its associated redox capacitance, are reversibly modulated, providing a simple and direct sensory readout. Importantly, the redox capacitance can be monitored at a freely chosen, constant electrode polarization, providing a facile means of tuning both the sensor analytical performance and the anion binding affinity, by up to 1 order of magnitude. In surpassing standard voltammetric methods in terms of analytical performance and adaptability, these findings pave the way for the development of highly sensitive and uniquely tunable ion sensors. More generally, this methodology also serves as a powerful and unprecedented means of simultaneously modulating and monitoring the thermodynamics and kinetics of host-guest interactions at redox-active interfaces.
Collapse
Affiliation(s)
- Sophie C Patrick
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Robert Hein
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Paul D Beer
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| | - Jason J Davis
- Department of Chemistry, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
95
|
Anthi J, Kolivoška V, Holubová B, Vaisocherová-Lísalová H. Probing polymer brushes with electrochemical impedance spectroscopy: a mini review. Biomater Sci 2021; 9:7379-7391. [PMID: 34693954 DOI: 10.1039/d1bm01330k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Polymer brushes are frequently used as surface-tethered antifouling layers in biosensors to improve sensor surface-analyte recognition in the presence of abundant non-target molecules in complex biological samples by suppressing nonspecific interactions. However, because brushes are complex systems highly responsive to changes in their surrounding environment, studying their properties remains a challenge. Electrochemical impedance spectroscopy (EIS) is an emerging method in this context. In this mini review, we aim to elucidate the potential of EIS for investigating the physicochemical properties and structural aspects of polymer brushes. The application of EIS in brush-based biosensors is also discussed. Most common principles employed in these biosensors are presented, as well as interpretation of EIS data obtained in such setups. Overall, we demonstrate that the EIS-polymer brush pairing has a considerable potential for providing new insights into brush functionalities and designing highly sensitive and specific biosensors.
Collapse
Affiliation(s)
- Judita Anthi
- Institute of Physics of the CAS, Na Slovance 2, 182 21 Prague, Czech Republic. .,Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague, Czech Republic
| | - Viliam Kolivoška
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 182 23 Prague, Czech Republic.
| | - Barbora Holubová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 3, 16628 Prague, Czech Republic
| | | |
Collapse
|
96
|
Khayamian MA, Parizi MS, Ghaderinia M, Abadijoo H, Vanaei S, Simaee H, Abdolhosseini S, Shalileh S, Faramarzpour M, Naeini VF, Hoseinpour P, Shojaeian F, Abbasvandi F, Abdolahad M. A label-free graphene-based impedimetric biosensor for real-time tracing of the cytokine storm in blood serum; suitable for screening COVID-19 patients. RSC Adv 2021; 11:34503-34515. [PMID: 35494759 PMCID: PMC9042719 DOI: 10.1039/d1ra04298j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/22/2021] [Indexed: 12/27/2022] Open
Abstract
Concurrent with the pandemic announcement of SARS-CoV-2 infection by the WHO, a variety of reports were published confirming the cytokine storm as the most mortal effect of the virus on the infected patients. Hence, cytokine storm as an evidenced consequence in most of the COVID-19 patients could offer a promising opportunity to use blood as a disease progression marker. Here, we have developed a rapid electrochemical impedance spectroscopy (EIS) sensor for quantifying the overall immune activity of the patients. Since during the cytokine storm many types of cytokines are elevated in the blood, there is no need for specific detection of a single type of cytokine and the collective behavior is just measured without any electrode functionalization. The sensor includes a monolayer graphene on a copper substrate as the working electrode (WE) which is able to distinguish between the early and severe stage of the infected patients. The charge transfer resistance (R CT) in the moderate and severe cases varies about 65% and 138% compared to the normal groups, respectively and a specificity of 77% and sensitivity of 100% based on ELISA results were achieved. The outcomes demonstrate a significant correlation between the total mass of the three main hypercytokinemia associated cytokines including IL-6, TNF-α and IFN-γ in patients and the R CT values. As an extra application, the biosensor's capability for diagnosis of COVID-19 patients was tested and a sensitivity of 92% and specificity of 50% were obtained compared to the RT-PCR results.
Collapse
Affiliation(s)
- Mohammad Ali Khayamian
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- School of Mechanical Engineering, College of Engineering, University of Tehran Tehran 11155-4563 Iran
| | - Mohammad Salemizadeh Parizi
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Mohammadreza Ghaderinia
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Hamed Abadijoo
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Shohreh Vanaei
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- School of Biology, College of Science, University of Tehran P. O. Box: 14155-6655 Tehran Iran
| | - Hossein Simaee
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Integrative Oncology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR Tehran Iran
| | - Saeed Abdolhosseini
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Shahriar Shalileh
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Mahsa Faramarzpour
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
| | - Vahid Fadaei Naeini
- School of Mechanical Engineering, College of Engineering, University of Tehran Tehran 11155-4563 Iran
- Division of Machine Elements, Luleå University of Technology Luleå SE-97187 Sweden
| | | | - Fatemeh Shojaeian
- Imam Hossein Clinical Research Development Center, Imam Hossein Hospital, Shahid Beheshti University of Medical Science Tehran Iran
| | - Fereshteh Abbasvandi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR P. O. Box 15179/64311 Tehran Iran
| | - Mohammad Abdolahad
- Nano Electronic Center of Excellence, Nano Bio Electronic Devices Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Nano Electronic Center of Excellence, Thin Film and Nano Electronics Lab, School of Electrical and Computer Engineering, University of Tehran P. O. Box 14395/515 Tehran Iran
- Cancer Institute, Imam-Khomeini Hospital, Tehran University of Medical Sciences P. O. Box 13145-158 Tehran Iran
- UT&TUMS Cancer electronic Research Center, Tehran University of Medical Sciences Tehran Iran
| |
Collapse
|
97
|
Barbosa JC, Correia DM, Fernández EM, Fidalgo-Marijuan A, Barandika G, Gonçalves R, Ferdov S, de Zea Bermudez V, Costa CM, Lanceros-Mendez S. High-Performance Room Temperature Lithium-Ion Battery Solid Polymer Electrolytes Based on Poly(vinylidene fluoride- co-hexafluoropropylene) Combining Ionic Liquid and Zeolite. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48889-48900. [PMID: 34636238 DOI: 10.1021/acsami.1c15209] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The demand for more efficient energy storage devices has led to the exponential growth of lithium-ion batteries. To overcome the limitations of these systems in terms of safety and to reduce environmental impact, solid-state technology emerges as a suitable approach. This work reports on a three-component solid polymer electrolyte system based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP), the ionic liquid 1-butyl-3-methylimidazolium thiocyanate ([BMIM][SCN]), and clinoptilolite zeolite (CPT). The influences of the preparation method and of the dopants on the electrolyte stability, ionic conductivity, and battery performance were studied. The developed electrolytes show an improved room temperature ionic conductivity (1.9 × 10-4 S cm-1), thermal stability (up to 300 °C), and mechanical stability. The corresponding batteries exhibit an outstanding room temperature performance of 160.3 mAh g-1 at a C/15-rate, with a capacity retention of 76% after 50 cycles. These results represent a step forward in a promising technology aiming the widespread implementation of solid-state batteries.
Collapse
Affiliation(s)
- João C Barbosa
- Center of Physics, University of Minho, 4710-058 Braga, Portugal
- Department of Chemistry and CQ-VR, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Daniela M Correia
- Center of Physics, University of Minho, 4710-058 Braga, Portugal
- Department of Chemistry and CQ-VR, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Eva M Fernández
- Department of Organic and Inorganic Chemistry, Universidad del Pais Vasco (UPV/EHU), 48940 Leioa, Spain
| | - Arkaitz Fidalgo-Marijuan
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Gotzone Barandika
- Department of Organic and Inorganic Chemistry, Universidad del Pais Vasco (UPV/EHU), 48940 Leioa, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Renato Gonçalves
- Center of Chemistry, University of Minho, 4710-058 Braga, Portugal
| | - Stanislav Ferdov
- Center of Physics, University of Minho, 4710-058 Braga, Portugal
| | - Verónica de Zea Bermudez
- Department of Chemistry and CQ-VR, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Carlos M Costa
- Center of Physics, University of Minho, 4710-058 Braga, Portugal
- Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-053 Braga, Portugal
| | - Senentxu Lanceros-Mendez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
98
|
Roehrich B, Liu EZ, Silverstein R, Sepunaru L. Detection and Characterization of Single Particles by Electrochemical Impedance Spectroscopy. J Phys Chem Lett 2021; 12:9748-9753. [PMID: 34591489 DOI: 10.1021/acs.jpclett.1c02822] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We present an electrochemical impedance spectroscopy (EIS) technique that can detect and characterize single particles as they collide with an electrode in solution. This extension of single-particle electrochemistry offers more information than typical amperometric single-entity measurements, as EIS can isolate concurrent capacitive, resistive, and diffusional processes on the basis of their time scales. Using a simple model system, we show that time-resolved EIS can detect individual polystyrene particles that stochastically collide with an electrode. Discrete changes are observed in various equivalent circuit elements, corresponding to the physical properties of the single particles. The advantages of EIS are leveraged to separate kinetic and diffusional processes, enabling enhanced precision in measurements of the size of the particles. In a broader context, the frequency analysis and single-object resolution afforded by this technique can provide valuable insights into single pseudocapacitive microparticles, electrocatalysts, and other energy-relevant materials.
Collapse
Affiliation(s)
- Brian Roehrich
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Eric Z Liu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| | - Ravit Silverstein
- Materials Department, University of California, Santa Barbara, Santa Barbara, California 93117, United States
| | - Lior Sepunaru
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106-9510, United States
| |
Collapse
|
99
|
Lin WL, Zhong HY, Huang YE, Lu X, Zhao Y, Zhang JX, Du KZ, Wu XH. Se 4P 4nanoparticles confined within porous carbon as a lithium-ion battery anode with superior electrochemical performance. NANOTECHNOLOGY 2021; 32:505713. [PMID: 34479214 DOI: 10.1088/1361-6528/ac238f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
The exploration of advanced anode materials through rational structure/phase design is the key to developing high-performance rechargeable batteries. Herein, tetraphosphorus tetraselenide (Se4P4) nanoparticles confined within porous carbon (named SeP@C) are developed for lithium-ion batteries. The designed SeP@C shows a set of structural/compositional advantages as lithium-ion battery anodes including high electrical conductivity, low ion diffusion barrier, and relieved lithiation stress. Consequently, the SeP@C electrode displays superior comprehensive lithium storage performance, e.g., high reversible capacity (640.8 mA h g-1at 0.1 A g-1), excellent cycling stability (500 cycles with respective capacity retention of over or nearly 100%), and good rate capability, representing a comparable lithium storage performance in reported phosphide-based anodes. More significantly, it shows excellent energy storage properties in lithium-ion full cells which can light up 85 red LEDs for over 3.2 h. This work offers an advanced electrode construction guidance of phosphorous-based anodes for the development of high-performance energy storage devices.
Collapse
Affiliation(s)
- Wei-Lin Lin
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Hou-Yang Zhong
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Yue-E Huang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Xian Lu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Yi Zhao
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Jia-Xiang Zhang
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Ke-Zhao Du
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
| | - Xiao-Hui Wu
- Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China
| |
Collapse
|
100
|
Cheema JA, Carraher C, Plank NOV, Travas-Sejdic J, Kralicek A. Insect odorant receptor-based biosensors: Current status and prospects. Biotechnol Adv 2021; 53:107840. [PMID: 34606949 DOI: 10.1016/j.biotechadv.2021.107840] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 09/02/2021] [Accepted: 09/27/2021] [Indexed: 02/01/2023]
Abstract
Whilst the senses of vision and hearing have been successfully automated and miniaturized in portable formats (e.g. smart phone), this is yet to be achieved with the sense of smell. This is because the sensing challenge is not trivial as it involves navigating a chemosensory space comprising thousands of volatile organic compounds. Distinct aroma recognition is based on detecting unique combinations of volatile organic compounds. In natural olfactory systems this is accomplished by employing odorant receptors (ORs) with varying specificities, together with combinatorial neural coding mechanisms. Attempts to mimic the remarkable sensitivity and accuracy of natural olfactory systems has therefore been challenging. Current portable chemical sensors for odorant detection are neither sensitive nor selective, prompting research exploring artificial olfactory devices that use natural OR proteins for sensing. Much research activity to develop OR based biosensors has concentrated on mammalian ORs, however, insect ORs have not been explored as extensively. Insects possess an extraordinary sense of smell due to a repertoire of odorant receptors evolved to interpret olfactory cues vital to the insects' survival. The potential of insect ORs as sensing elements is only now being unlocked through recent research efforts to understand their structure, ligand binding mechanisms and development of odorant biosensors. Like their mammalian counterparts, there are many challenges with working with insect ORs. These include expression, purification and presentation of the insect OR in a stable display format compatible with an effective transduction methodology while maintaining OR structure and function. Despite these challenges, significant progress has been demonstrated in developing OR-based biosensors which exploit insect ORs in cells, lipid bilayers, liposomes and nanodisc formats. Ultrasensitive and highly selective detection of volatile organic compounds has been validated by coupling these insect OR display formats with transduction methodologies spanning optical (fluorescence) and electrical (field effect transistors, electrochemical impedance spectroscopy) techniques. This review summarizes the current status of insect OR based biosensors and their future outlook.
Collapse
Affiliation(s)
- Jamal Ahmed Cheema
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand; The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Colm Carraher
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand
| | - Natalie O V Plank
- MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand; School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington 6021, New Zealand
| | - Jadranka Travas-Sejdic
- Polymer Biointerface Centre, School of Chemical Sciences, The University of Auckland, Auckland 1023, New Zealand; MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand.
| | - Andrew Kralicek
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92169, Auckland 1142, New Zealand; Scentian Bio Limited, 1c Goring Road, Sandringham, Auckland 1025, New Zealand.
| |
Collapse
|