51
|
Lee SF, Davey L. Disulfide Bonds: A Key Modification in Bacterial Extracytoplasmic Proteins. J Dent Res 2017; 96:1465-1473. [PMID: 28797211 DOI: 10.1177/0022034517725059] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Disulfide bonds are a common posttranslational modification that contributes to the folding and stability of extracytoplasmic proteins. Almost all organisms, from eukaryotes to prokaryotes, have evolved enzymes to make and break these bonds. Accurate and efficient disulfide bond formation can be vital for protein function; therefore, the enzymes that catalyze disulfide bond formation are involved in multiple biological processes. Recent advances clearly show that oral bacteria also have the ability to from disulfide bonds, and this ability has an effect on a range of dental plaque-related phenotypes. In the gram-positive Streptococcus gordonii, the ability to form disulfide bonds affected autolysis, extracellular DNA release, biofilm formation, genetic competence, and bacteriocin production. In Actinomyces oris, disulfide bond formation is needed for pilus assembly, coaggregation, and biofilm formation. In other gram-positive bacteria, such as Enterococcus faecalis, disulfide bonds are formed in secreted bacteriocins and required for activity. In these oral bacteria, the enzymes that catalyze the disulfide bonds are quite diverse and share little sequence homology, but all contain a CXXC catalytic active site motif and a conserved C-terminal cis-proline, signature features of a thiol-disulfide oxidoreductase. Emerging evidence also indicates that gram-negative oral bacteria, such as Porphyromonas gingivalis and Tannerella forsythia, use disulfide bonds to stabilize their outer membrane porin proteins. Bioinformatic screens reveal that these gram-negative bacteria carry genes coding for thiol-disulfide oxidoreductases in their genomes. In conclusion, disulfide bond formation in oral bacteria is an emerging field, and the ability to form disulfide bonds plays an important role in dental plaque formation and fitness for the bacteria.
Collapse
Affiliation(s)
- S F Lee
- 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,2 Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada.,3 Department of Pediatrics, Faculty of Medicine, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada.,4 Department of Applied Oral Sciences, Faculty of Dentistry, Dalhousie University, Halifax, NS, Canada
| | - L Davey
- 1 Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada.,2 Canadian Center for Vaccinology, Dalhousie University and the IWK Health Centre, Halifax, NS, Canada.,Current address: Department of Molecular Genetics and Microbiology, Duke University, Durham, NC, USA
| |
Collapse
|
52
|
Abstract
Cysteine thiols are among the most reactive functional groups in proteins, and their pairing in disulfide linkages is a common post-translational modification in proteins entering the secretory pathway. This modest amino acid alteration, the mere removal of a pair of hydrogen atoms from juxtaposed cysteine residues, contrasts with the substantial changes that characterize most other post-translational reactions. However, the wide variety of proteins that contain disulfides, the profound impact of cross-linking on the behavior of the protein polymer, the numerous and diverse players in intracellular pathways for disulfide formation, and the distinct biological settings in which disulfide bond formation can take place belie the simplicity of the process. Here we lay the groundwork for appreciating the mechanisms and consequences of disulfide bond formation in vivo by reviewing chemical principles underlying cysteine pairing and oxidation. We then show how enzymes tune redox-active cofactors and recruit oxidants to improve the specificity and efficiency of disulfide formation. Finally, we discuss disulfide bond formation in a cellular context and identify important principles that contribute to productive thiol oxidation in complex, crowded, dynamic environments.
Collapse
Affiliation(s)
- Deborah Fass
- Department of Structural Biology, Weizmann Institute of Science , Rehovot 7610001, Israel
| | - Colin Thorpe
- Department of Chemistry and Biochemistry, University of Delaware , Newark, Delaware 19716, United States
| |
Collapse
|
53
|
Chen L, Wang M, Huang L, Zhang Z, Liu F, Lu G. XC_0531 encodes a c-type cytochrome biogenesis protein and is required for pathogenesis in Xanthomonas campestris pv. campestris. BMC Microbiol 2017; 17:142. [PMID: 28655353 PMCID: PMC5488342 DOI: 10.1186/s12866-017-1056-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 06/21/2017] [Indexed: 11/13/2022] Open
Abstract
Background The phytopathogenic Xanthomonas campestris pv.campestris is a gram-negative bacterium and the causal agent of black-rot disease of cruciferous crops. Many gram-negative bacteria possess a family of proteins, called Dsbs, which are involved in disulfide bond formation in certain periplasmic proteins. In our preliminary screening of the virulence to the plants we identified that gene XC_0531 which annotated gene dsbD of Xanthomonas campestris pv. campestris (Xcc) is related to the virulence to the host plants. Results Here, we found XC_0531 encoded a DsbD like protein. Its deletion is sensitive to DTT and copper, decreased accumulation of free thiols in periplasm. Its deletion also affected heme synthesis, position of Soret band and the production of peak c550. This suggests that XC_0531 is related to c-type cytochromes biogenesis. XC_0531 mutation decreased the utilization of different carbon sources (such as galactose, xylose, maltose, saccharose and glucose), reduced extracellular polysaccharide (EPS) production, decreased extracellular enzyme activities (protease, cellulose and amylase), slowed down growth rate of Xcc and weakened virulence to the plants. These results suggest that these phenotypes caused by XC_0531 mutation is possibly due to deficient biosynthesis of c-type cytochromes in respiration chain and the formation of disulfide bonds. Our work confirmed the function of XC_0531 and provide theory basis for scientists working on molecular mechanisms of cytochrome c biogenesis, pathogenesis of Xcc, development of EPS commercial values and protecting plant from black rot. Conclusion We confirmed the function of gene XC_0531, which encodes a DsbD like protein, a protein correlated with c-type cytochrome biogenesis. This gene is related to the virulence to plants by affecting funtion of cytochromes c and probably disulfide bonds modification of proteins in type II secretion system (T2SS). Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1056-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Lei Chen
- State Key Laboratory for Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, The Key Laboratory ofMinistry of Education for Microbial and Plant Genetic Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China.,Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Yantai, China
| | - Mingpeng Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Yantai, China
| | - Li Huang
- State Key Laboratory for Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, The Key Laboratory ofMinistry of Education for Microbial and Plant Genetic Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China
| | - Zhaojie Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Fanghua Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Yantai, China
| | - Guangtao Lu
- State Key Laboratory for Conservation and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, The Key Laboratory ofMinistry of Education for Microbial and Plant Genetic Engineering, Guangxi University, 100 Daxue Road, Nanning, Guangxi, 530004, China.
| |
Collapse
|
54
|
Movement protein of Apple chlorotic leaf spot virus is genetically unstable and negatively regulated by Ribonuclease E in E. coli. Sci Rep 2017; 7:2133. [PMID: 28522867 PMCID: PMC5437062 DOI: 10.1038/s41598-017-02375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/10/2017] [Indexed: 12/03/2022] Open
Abstract
Movement protein (MP) of Apple chlorotic leaf spot virus (ACLSV) belongs to “30 K” superfamily of proteins and members of this family are known to show a wide array of functions. In the present study this gene was found to be genetically unstable in E. coli when transformed DH5α cells were grown at 28 °C and 37 °C. However, genetic instability was not encountered at 20 °C. Heterologous over expression failed despite the use of different transcriptional promoters and translational fusion constructs. Total cell lysate when subjected to western blotting using anti-ACLSV MP antibodies, showed degradation/cleavage of the expressed full-length protein. This degradation pointed at severe proteolysis or instability of the corresponding mRNA. Predicted secondary structure analysis of the transcript revealed a potential cleavage site for an endoribonuclease (RNase E) of E. coli. The negating effect of RNase E on transcript stability and expression was confirmed by northern blotting and quantitative RT-PCR of the RNA extracted from RNase E temperature sensitive mutant (strain N3431). The five fold accumulation of transcripts at non-permissive temperature (43 °C) suggests the direct role of RNase E in regulating the expression of ACLSV MP in E. coli.
Collapse
|
55
|
Luong TT, Reardon-Robinson ME, Siegel SD, Ton-That H. Reoxidation of the Thiol-Disulfide Oxidoreductase MdbA by a Bacterial Vitamin K Epoxide Reductase in the Biofilm-Forming Actinobacterium Actinomyces oris. J Bacteriol 2017; 199:e00817-16. [PMID: 28289087 PMCID: PMC5405209 DOI: 10.1128/jb.00817-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 02/23/2017] [Indexed: 12/18/2022] Open
Abstract
Posttranslocational protein folding in the Gram-positive biofilm-forming actinobacterium Actinomyces oris is mediated by a membrane-bound thiol-disulfide oxidoreductase named MdbA, which catalyzes oxidative folding of nascent polypeptides transported by the Sec translocon. Reoxidation of MdbA involves a bacterial vitamin K epoxide reductase (VKOR)-like protein that contains four cysteine residues, C93/C101 and C175/C178, with the latter forming a canonical CXXC thioredoxin-like motif; however, the mechanism of VKOR-mediated reoxidation of MdbA is not known. We present here a topological view of the A. oris membrane-spanning protein VKOR with these four exoplasmic cysteine residues that participate in MdbA reoxidation. Like deletion of the VKOR gene, alanine replacement of individual cysteine residues abrogated polymicrobial interactions and biofilm formation, concomitant with the failure to form adhesive pili on the bacterial surface. Intriguingly, the mutation of the cysteine at position 101 to alanine (C101A mutation) resulted in a high-molecular-weight complex that was positive for MdbA and VKOR by immunoblotting and was absent in other alanine substitution mutants and the C93A C101A double mutation and after treatment with the reducing agent β-mercaptoethanol. Consistent with this observation, affinity purification followed by immunoblotting confirmed this MdbA-VKOR complex in the C101A mutant. Furthermore, ectopic expression of the Mycobacterium tuberculosis VKOR analog in the A. oris VKOR deletion (ΔVKOR) mutant rescued its defects, in contrast to the expression of M. tuberculosis VKOR variants known to be nonfunctional in the disulfide relay that mediates reoxidation of the disulfide bond-forming catalyst DsbA in Escherichia coli Altogether, the results support a model of a disulfide relay, from its start with the pair C93/C101 to the C175-X-X-C178 motif, that is required for MdbA reoxidation and appears to be conserved in members of the class ActinobacteriaIMPORTANCE It has recently been shown in the high-GC Gram-positive bacteria (or Actinobacteria) Actinomyces oris and Corynebacterium diphtheriae that oxidative folding of nascent polypeptides transported by the Sec machinery is catalyzed by a membrane-anchored oxidoreductase named MdbA. In A. oris, reoxidation of MdbA requires a bacterial VKOR-like protein, and yet, how VKOR mediates MdbA reoxidation is unknown. We show here that the A. oris membrane-spanning protein VKOR employs two pairs of exoplasmic cysteine residues, including the canonical CXXC thioredoxinlike motif, to oxidize MdbA via a disulfide relay mechanism. This mechanism of disulfide relay is essential for pilus assembly, polymicrobial interactions, and biofilm formation and appears to be conserved in members of the class Actinobacteria, including Mycobacterium tuberculosis.
Collapse
Affiliation(s)
- Truc Thanh Luong
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| | - Melissa E Reardon-Robinson
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
- Department of Microbiology & Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Sara D Siegel
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| | - Hung Ton-That
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center, Houston, Texas, USA
| |
Collapse
|
56
|
Owrangi B, Masters N, Vollmerhausen T, O'Dea C, Kuballa A, Katouli M. Comparison between virulence characteristics of dominant and non-dominant Escherichia coli strains of the gut and their interaction with Caco-2 cells. Microb Pathog 2017; 105:171-176. [DOI: 10.1016/j.micpath.2017.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/21/2017] [Accepted: 02/21/2017] [Indexed: 01/14/2023]
|
57
|
Urano H, Yoshida M, Ogawa A, Yamamoto K, Ishihama A, Ogasawara H. Cross-regulation between two common ancestral response regulators, HprR and CusR, in Escherichia coli. MICROBIOLOGY-SGM 2017; 163:243-252. [PMID: 27983483 DOI: 10.1099/mic.0.000410] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The uncharacterized two-component system YedVW of Escherichia coli is involved in stress response to hydrogen peroxide. To identify the H2O2-sensing role of YedV, a set of single Cys-to-Ala substitution mutants were constructed. One particular mutant with C165A substitution in the membrane domain rendered YedV inactive in H2O2-dependent transcription of its regulatory target hiuH. We then proposed to rename YedVW to HprSR (hydrogen peroxide response sensor/regulator). One unique characteristic of HprR is the overlapping of its recognition sequence with that of the Cu(II)-response two-component system regulator CusR. Towards understanding this unique regulation system, in this study we analysed the interplay between HprR and CusR with respect to transcription of hiuH, a regulatory target of HprR, and cusC, a target of CusR. Under low protein concentrations in vitro and in vivo, two regulators recognize and transcribe both hiuH and cusC promoters, albeit at different efficiency, apparently in a collaborative fashion. This is a new type of transcription regulation of the common target genes in response to different external signals. Upon increase in protein concentrations, however, HprR and CusR compete with each other in transcription of the common targets, thereby exhibiting a competitive interplay.
Collapse
Affiliation(s)
- Hiroyuki Urano
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano 386-8567, Japan
| | - Myu Yoshida
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Ayano Ogawa
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Kaneyoshi Yamamoto
- Department of Frontier Bioscience, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Akira Ishihama
- Research Center for Micro-Nano Technology, Hosei University, Koganei, Tokyo 184-8584, Japan
| | - Hiroshi Ogasawara
- Research Center for Supports to Advanced Science, Division of Gene Research, Shinshu University, Ueda, Nagano 386-8567, Japan.,Research Center for Fungal and Microbial Dynamism, Shinshu University, 8304 Minamiminowa, Kamiina, Nagano 399-4598, Japan
| |
Collapse
|
58
|
Lim JK, Jung HC, Kang SG, Lee HS. Redox regulation of SurR by protein disulfide oxidoreductase in Thermococcus onnurineus NA1. Extremophiles 2017; 21:491-498. [PMID: 28251348 DOI: 10.1007/s00792-017-0919-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 02/13/2017] [Indexed: 01/22/2023]
Abstract
Protein disulfide oxidoreductases are redox enzymes that catalyze thiol-disulfide exchange reactions. These enzymes include thioredoxins, glutaredoxins, protein disulfide isomerases, disulfide bond formation A (DsbA) proteins, and Pyrococcus furiosus protein disulfide oxidoreductase (PfPDO) homologues. In the genome of a hyperthermophilic archaeon, Thermococcus onnurineus NA1, the genes encoding one PfPDO homologue (TON_0319, Pdo) and three more thioredoxin- or glutaredoxin-like proteins (TON_0470, TON_0472, TON_0834) were identified. All except TON_0470 were recombinantly expressed and purified. Three purified proteins were reduced by a thioredoxin reductase (TrxR), indicating that each protein can form redox complex with TrxR. SurR, a transcription factor involved in the sulfur response, was tested for a protein target of a TrxR-redoxin system and only Pdo was identified to be capable of catalyzing the reduction of SurR. Electromobility shift assay demonstrated that SurR reduced by the TrxR-Pdo system could bind to the DNA probe with the SurR-binding motif, GTTttgAAC. In this study, we present the TrxR-Pdo couple as a redox-regulator for SurR in T. onnurineus NA1.
Collapse
Affiliation(s)
- Jae Kyu Lim
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Hae-Chang Jung
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea.,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea
| | - Sung Gyun Kang
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea. .,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| | - Hyun Sook Lee
- Marine Biotechnology Research Division, Korea Institute of Ocean Science and Technology, Ansan, 15627, Republic of Korea. .,Department of Marine Biotechnology, Korea University of Science and Technology, Daejeon, 34113, Republic of Korea.
| |
Collapse
|
59
|
Landeta C, Meehan BM, McPartland L, Ingendahl L, Hatahet F, Tran NQ, Boyd D, Beckwith J. Inhibition of virulence-promoting disulfide bond formation enzyme DsbB is blocked by mutating residues in two distinct regions. J Biol Chem 2017; 292:6529-6541. [PMID: 28232484 DOI: 10.1074/jbc.m116.770891] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/09/2017] [Indexed: 01/30/2023] Open
Abstract
Disulfide bonds contribute to protein stability, activity, and folding in a variety of proteins, including many involved in bacterial virulence such as toxins, adhesins, flagella, and pili, among others. Therefore, inhibitors of disulfide bond formation enzymes could have profound effects on pathogen virulence. In the Escherichia coli disulfide bond formation pathway, the periplasmic protein DsbA introduces disulfide bonds into substrates, and then the cytoplasmic membrane protein DsbB reoxidizes DsbA's cysteines regenerating its activity. Thus, DsbB generates a protein disulfide bond de novo by transferring electrons to the quinone pool. We previously identified an effective pyridazinone-related inhibitor of DsbB enzymes from several Gram-negative bacteria. To map the protein residues that are important for the interaction with this inhibitor, we randomly mutagenized by error-prone PCR the E. coli dsbB gene and selected dsbB mutants that confer resistance to this drug using two approaches. We characterized in vivo and in vitro some of these mutants that map to two areas in the structure of DsbB, one located between the two first transmembrane segments where the quinone ring binds and the other located in the second periplasmic loop of DsbB, which interacts with DsbA. In addition, we show that a mutant version of a protein involved in lipopolysaccharide assembly, lptD4213, is synthetically lethal with the deletion of dsbB as well as with DsbB inhibitors. This finding suggests that drugs decreasing LptD assembly may be synthetically lethal with inhibitors of the Dsb pathway, potentiating the antibiotic effects.
Collapse
Affiliation(s)
- Cristina Landeta
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Brian M Meehan
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Laura McPartland
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Linda Ingendahl
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Feras Hatahet
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Ngoc Q Tran
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Dana Boyd
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| | - Jon Beckwith
- From the Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
60
|
Wible RS, Sutter TR. Soft Cysteine Signaling Network: The Functional Significance of Cysteine in Protein Function and the Soft Acids/Bases Thiol Chemistry That Facilitates Cysteine Modification. Chem Res Toxicol 2017; 30:729-762. [DOI: 10.1021/acs.chemrestox.6b00428] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Ryan S. Wible
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| | - Thomas R. Sutter
- Department
of Chemistry, ‡Department of Biological Sciences, and §W. Harry Feinstone Center for Genomic
Research, University of Memphis, 3700 Walker Avenue, Memphis, Tennessee 38152-3370, United States
| |
Collapse
|
61
|
Poet GJ, Oka OB, van Lith M, Cao Z, Robinson PJ, Pringle MA, Arnér ES, Bulleid NJ. Cytosolic thioredoxin reductase 1 is required for correct disulfide formation in the ER. EMBO J 2017; 36:693-702. [PMID: 28093500 PMCID: PMC5331760 DOI: 10.15252/embj.201695336] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/22/2016] [Accepted: 12/22/2016] [Indexed: 11/09/2022] Open
Abstract
Folding of proteins entering the secretory pathway in mammalian cells frequently requires the insertion of disulfide bonds. Disulfide insertion can result in covalent linkages found in the native structure as well as those that are not, so-called non-native disulfides. The pathways for disulfide formation are well characterized, but our understanding of how non-native disulfides are reduced so that the correct or native disulfides can form is poor. Here, we use a novel assay to demonstrate that the reduction in non-native disulfides requires NADPH as the ultimate electron donor, and a robust cytosolic thioredoxin system, driven by thioredoxin reductase 1 (TrxR1 or TXNRD1). Inhibition of this reductive pathway prevents the correct folding and secretion of proteins that are known to form non-native disulfides during their folding. Hence, we have shown for the first time that mammalian cells have a pathway for transferring reducing equivalents from the cytosol to the ER, which is required to ensure correct disulfide formation in proteins entering the secretory pathway.
Collapse
Affiliation(s)
- Greg J Poet
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Ojore Bv Oka
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Marcel van Lith
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Zhenbo Cao
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Philip J Robinson
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Marie Anne Pringle
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| | - Elias Sj Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics (MBB), Karolinska Institutet, Stockholm, Sweden
| | - Neil J Bulleid
- The Institute of Molecular, Cell and Systems Biology, CMVLS, University of Glasgow, Glasgow, UK
| |
Collapse
|
62
|
Shi Y, Lammers T, Storm G, Hennink WE. Physico-Chemical Strategies to Enhance Stability and Drug Retention of Polymeric Micelles for Tumor-Targeted Drug Delivery. Macromol Biosci 2017; 17:10.1002/mabi.201600160. [PMID: 27413999 PMCID: PMC5410994 DOI: 10.1002/mabi.201600160] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/11/2016] [Indexed: 11/06/2022]
Abstract
Polymeric micelles (PM) have been extensively used for tumor-targeted delivery of hydrophobic anti-cancer drugs. The lipophilic core of PM is naturally suitable for loading hydrophobic drugs and the hydrophilic shell endows them with colloidal stability and stealth properties. Decades of research on PM have resulted in tremendous numbers of PM-forming amphiphilic polymers, and approximately a dozen micellar nanomedicines have entered the clinic. The first generation of PM can be considered solubilizers of hydrophobic drugs, with short circulation times resulting from poor micelle stability and unstable drug entrapment. To more optimally exploit the potential of PM for targeted drug delivery, several physical (e.g., π-π stacking, stereocomplexation, hydrogen bonding, host-guest complexation, and coordination interaction) and chemical (e.g., free radical polymerization, click chemistry, disulfide and hydrazone bonding) strategies have been developed to improve micelle stability and drug retention. In this review, the most promising physico-chemical approaches to enhance micelle stability and drug retention are described, and how these strategies have resulted in systems with promising therapeutic efficacy in animal models, paving the way for clinical translation, is summarized.
Collapse
Affiliation(s)
- Yang Shi
- School of Bioscience and Bioengineering, South China University of Technology, 510006 Guangzhou, China
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, 52074 Aachen, Germany, Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, 7522 NB, The Netherlands, Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Gert Storm
- Department of Targeted Therapeutics, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, 7522 NB, The Netherlands, Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands, Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wim E. Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, 3584 CG, The Netherlands
| |
Collapse
|
63
|
Meehan BM, Landeta C, Boyd D, Beckwith J. The essential cell division protein FtsN contains a critical disulfide bond in a non-essential domain. Mol Microbiol 2016; 103:413-422. [PMID: 27785850 DOI: 10.1111/mmi.13565] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2016] [Indexed: 11/28/2022]
Abstract
Disulfide bonds are found in many proteins associated with the cell wall of Escherichia coli, and for some of these proteins the disulfide bond is critical to their stability and function. One protein found to contain a disulfide bond is the essential cell division protein FtsN, but the importance of this bond to the protein's structural integrity is unclear. While it evidently plays a role in the proper folding of the SPOR domain of FtsN, this domain is non-essential, suggesting that the disulfide bond might also be dispensable. However, we find that FtsN mutants lacking cysteines give rise to filamentous growth. Furthermore, FtsN protein levels in strains expressing these mutants were significantly lower than in a strain expressing the wild-type allele, as were FtsN levels in strains incapable of making disulfide bonds (dsb- ) exposed to anaerobic conditions. These results strongly suggest that FtsN lacking a disulfide bond is unstable, thereby making this disulfide critical for function. We have previously found that dsb- strains fail to grow anaerobically, and the results presented here suggest that this growth defect may be due in part to misfolded FtsN. Thus, proper cell division in E. coli is dependent upon disulfide bond formation.
Collapse
Affiliation(s)
- Brian M Meehan
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Cristina Landeta
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Dana Boyd
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jon Beckwith
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
64
|
Ellis M, Patel P, Edon M, Ramage W, Dickinson R, Humphreys DP. Development of a high yieldingE. coliperiplasmic expression system for the production of humanized Fab' fragments. Biotechnol Prog 2016; 33:212-220. [DOI: 10.1002/btpr.2393] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 10/19/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Mark Ellis
- Discovery Research, Protein Sciences; UCB Pharma, 208 Bath Road; Slough, Berkshire SL1 3WE U.K
| | | | - Marjory Edon
- Novasep, 5 chemin du Pilon, St Maurice de Beynost; Miribel 01708 France
| | - Walter Ramage
- NIBSC, Blanche Lane, South Mimms, Potters Bar; Hertfordshire EN6 3QG U.K
| | | | - David P. Humphreys
- Discovery Research, Protein Sciences; UCB Pharma, 208 Bath Road; Slough, Berkshire SL1 3WE U.K
| |
Collapse
|
65
|
Monti DM, De Simone G, Langella E, Supuran CT, Di Fiore A, Monti SM. Insights into the role of reactive sulfhydryl groups of Carbonic Anhydrase III and VII during oxidative damage. J Enzyme Inhib Med Chem 2016; 32:5-12. [PMID: 27766895 PMCID: PMC6010095 DOI: 10.1080/14756366.2016.1225046] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Carbonic anhydrases (CAs) III and VII are two cytosolic isoforms of the α-CA family which catalyze the physiological reaction of carbon dioxide hydration to bicarbonate and proton. Despite these two enzymes share a 49% sequence identity and present a very similar three-dimensional structure, they show profound differences when comparing the specific activity for CO2 hydration reaction, with CA VII being much more active than CA III. Recently, CA III and CA VII have been proposed to play a new role as scavenger enzymes in cells where oxidative damage occurs. Here, we will examine functional and structural features of these two isoforms giving insights into their newly proposed protective role against oxidative stress.
Collapse
Affiliation(s)
- Daria M Monti
- a Department of Chemical Sciences , University of Naples Federico II , Naples , Italy
| | | | - Emma Langella
- b Institute of Biostructures and Bioimaging, CNR , Naples , Italy
| | - Claudiu T Supuran
- c Dipartimento Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche , Università degli Studi di Firenze , Florence , Italy
| | - Anna Di Fiore
- b Institute of Biostructures and Bioimaging, CNR , Naples , Italy
| | - Simona M Monti
- b Institute of Biostructures and Bioimaging, CNR , Naples , Italy
| |
Collapse
|
66
|
Raimondi D, Orlando G, Messens J, Vranken WF. Investigating the Molecular Mechanisms Behind Uncharacterized Cysteine Losses from Prediction of Their Oxidation State. Hum Mutat 2016; 38:86-94. [PMID: 27667481 DOI: 10.1002/humu.23129] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 09/13/2016] [Accepted: 09/20/2016] [Indexed: 01/08/2023]
Abstract
Cysteines are among the rarest amino acids in nature, and are both functionally and structurally very important for proteins. The ability of cysteines to form disulfide bonds is especially relevant, both for constraining the folded state of the protein and for performing enzymatic duties. But how does the variation record of human proteins reflect their functional importance and structural role, especially with regard to deleterious mutations? We created HUMCYS, a manually curated dataset of single amino acid variants that (1) have a known disease/neutral phenotypic outcome and (2) cause the loss of a cysteine, in order to investigate how mutated cysteines relate to structural aspects such as surface accessibility and cysteine oxidation state. We also have developed a sequence-based in silico cysteine oxidation predictor to overcome the scarcity of experimentally derived oxidation annotations, and applied it to extend our analysis to classes of proteins for which the experimental determination of their structure is technically challenging, such as transmembrane proteins. Our investigation shows that we can gain insights into the reason behind the outcome of cysteine losses in otherwise uncharacterized proteins, and we discuss the possible molecular mechanisms leading to deleterious phenotypes, such as the involvement of the mutated cysteine in a structurally or enzymatically relevant disulfide bond.
Collapse
Affiliation(s)
- Daniele Raimondi
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center (SBRC), VIB, Brussels, Belgium.,Machine Learning Group, ULB, Brussels, Belgium
| | - Gabriele Orlando
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center (SBRC), VIB, Brussels, Belgium.,Machine Learning Group, ULB, Brussels, Belgium
| | - Joris Messens
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center (SBRC), VIB, Brussels, Belgium
| | - Wim F Vranken
- Interuniversity Institute of Bioinformatics in Brussels, ULB-VUB, Brussels, Belgium.,Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium.,Structural Biology Research Center (SBRC), VIB, Brussels, Belgium
| |
Collapse
|
67
|
Naqvi AAT, Anjum F, Khan FI, Islam A, Ahmad F, Hassan MI. Sequence Analysis of Hypothetical Proteins from Helicobacter pylori 26695 to Identify Potential Virulence Factors. Genomics Inform 2016; 14:125-135. [PMID: 27729842 PMCID: PMC5056897 DOI: 10.5808/gi.2016.14.3.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 08/05/2016] [Accepted: 08/29/2016] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori is a Gram-negative bacteria that is responsible for gastritis in human. Its spiral flagellated body helps in locomotion and colonization in the host environment. It is capable of living in the highly acidic environment of the stomach with the help of acid adaptive genes. The genome of H. pylori 26695 strain contains 1,555 coding genes that encode 1,445 proteins. Out of these, 340 proteins are characterized as hypothetical proteins (HP). This study involves extensive analysis of the HPs using an established pipeline which comprises various bioinformatics tools and databases to find out probable functions of the HPs and identification of virulence factors. After extensive analysis of all the 340 HPs, we found that 104 HPs are showing characteristic similarities with the proteins with known functions. Thus, on the basis of such similarities, we assigned probable functions to 104 HPs with high confidence and precision. All the predicted HPs contain representative members of diverse functional classes of proteins such as enzymes, transporters, binding proteins, regulatory proteins, proteins involved in cellular processes and other proteins with miscellaneous functions. Therefore, we classified 104 HPs into aforementioned functional groups. During the virulence factors analysis of the HPs, we found 11 HPs are showing significant virulence. The identification of virulence proteins with the help their predicted functions may pave the way for drug target estimation and development of effective drug to counter the activity of that protein.
Collapse
Affiliation(s)
- Ahmad Abu Turab Naqvi
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Farah Anjum
- Female College of Applied Medical Science, Taif University, Al-Taif 21974, Kingdom of Saudi Arabia
| | - Faez Iqbal Khan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Henan 450001, China
| | - Asimul Islam
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Faizan Ahmad
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Md Imtaiyaz Hassan
- Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| |
Collapse
|
68
|
|
69
|
Li W, O'Brien-Simpson NM, Tailhades J, Pantarat N, Dawson RM, Otvos L, Reynolds EC, Separovic F, Hossain MA, Wade JD. Multimerization of a Proline-Rich Antimicrobial Peptide, Chex-Arg20, Alters Its Mechanism of Interaction with the Escherichia coli Membrane. ACTA ACUST UNITED AC 2016; 22:1250-8. [PMID: 26384569 DOI: 10.1016/j.chembiol.2015.08.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/28/2015] [Accepted: 08/07/2015] [Indexed: 10/23/2022]
Abstract
A3-APO, a de novo designed branched dimeric proline-rich antimicrobial peptide (PrAMP), is highly effective against a variety of in vivo bacterial infections. We undertook a selective examination of the mechanism for the Gram-negative Escherichia coli bacterial membrane interaction of the monomer (Chex-Arg20), dimer (A3-APO), and tetramer (A3-APO disulfide-linked dimer). All three synthetic peptides were effective at killing E. coli. However, the tetramer was 30-fold more membrane disruptive than the dimer while the monomer showed no membrane activity. Using flow cytometry and high-resolution fluorescent microscopy, it was observed that dimerization and tetramerization of the Chex-Arg20 monomer led to an alteration in the mechanism of action from non-lytic/membrane hyperpolarization to membrane disruption/depolarization. Our findings show that the membrane interaction and permeability of Chex-Arg20 was altered by multimerization.
Collapse
Affiliation(s)
- Wenyi Li
- School of Chemistry, University of Melbourne, VIC 3010, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia
| | - Neil M O'Brien-Simpson
- Oral Health CRC, Melbourne Dental School, University of Melbourne, VIC 3010, Australia; Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - Julien Tailhades
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia
| | - Namfon Pantarat
- Oral Health CRC, Melbourne Dental School, University of Melbourne, VIC 3010, Australia
| | - Raymond M Dawson
- Land Division, Defence Science and Technology Organization, Fishermans Bend, VIC 3207, Australia
| | - Laszlo Otvos
- Department of Biology, Temple University, Philadelphia, PA 19122, USA; Institute of Medical Microbiology, Semmelweis University, Budapest 1089, Hungary
| | - Eric C Reynolds
- Oral Health CRC, Melbourne Dental School, University of Melbourne, VIC 3010, Australia; Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - Frances Separovic
- School of Chemistry, University of Melbourne, VIC 3010, Australia; Bio21 Institute, University of Melbourne, VIC 3010, Australia
| | - Mohammed Akhter Hossain
- School of Chemistry, University of Melbourne, VIC 3010, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia.
| | - John D Wade
- School of Chemistry, University of Melbourne, VIC 3010, Australia; The Florey Institute of Neuroscience and Mental Health, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
70
|
Peleh V, Cordat E, Herrmann JM. Mia40 is a trans-site receptor that drives protein import into the mitochondrial intermembrane space by hydrophobic substrate binding. eLife 2016; 5. [PMID: 27343349 PMCID: PMC4951193 DOI: 10.7554/elife.16177] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 06/24/2016] [Indexed: 11/13/2022] Open
Abstract
Many proteins of the mitochondrial IMS contain conserved cysteines that are oxidized to disulfide bonds during their import. The conserved IMS protein Mia40 is essential for the oxidation and import of these proteins. Mia40 consists of two functional elements: an N-terminal cysteine-proline-cysteine motif conferring substrate oxidation, and a C-terminal hydrophobic pocket for substrate binding. In this study, we generated yeast mutants to dissect both Mia40 activities genetically and biochemically. Thereby we show that the substrate-binding domain of Mia40 is both necessary and sufficient to promote protein import, indicating that trapping by Mia40 drives protein translocation. An oxidase-deficient Mia40 mutant is inviable, but can be partially rescued by the addition of the chemical oxidant diamide. Our results indicate that Mia40 predominantly serves as a trans-site receptor of mitochondria that binds incoming proteins via hydrophobic interactions thereby mediating protein translocation across the outer membrane by a ‘holding trap’ rather than a ‘folding trap’ mechanism. DOI:http://dx.doi.org/10.7554/eLife.16177.001 Human, yeast and other eukaryotic cells contain compartments called mitochondria that perform several vital tasks, including supplying the cell with energy. Each mitochondrion is surrounded by an inner and an outer membrane, which are separated by an intermembrane space that contains a host of molecules, including proteins. Intermembrane space proteins are made in the cytosol before being transported into the intermembrane space through pores in the mitochondrion’s outer membrane. Many of these proteins have the ability to form disulfide bonds within their structures, which help the proteins to fold and assemble correctly, but they only acquire these bonds once they have entered the intermembrane space. An enzyme called Mia40 sits inside the intermembrane space and helps other proteins to fold correctly. This Mia40-induced folding had been suggested to help proteins to move into the intermembrane space. Mia40 contains two important regions: one region acts as an enzyme and adds disulfide bonds to other proteins, and the other region binds to the intermembrane space proteins. Peleh et al. have now generated versions of Mia40 that lack one or the other of these regions in yeast cells, and then tested to see if these mutants could drive proteins across the outer membrane of mitochondria. The results show that it is the ability of Mia40 to bind proteins – and not its enzyme activity – that is essential for importing proteins into the intermembrane space. As disulfide bond formation is not critical for importing proteins into the intermembrane space, future studies could test whether Mia40 also helps to transport proteins that cannot form disulfide bonds. Presumably, Mia40 has a much broader relevance for importing mitochondrial proteins than was previously thought. DOI:http://dx.doi.org/10.7554/eLife.16177.002
Collapse
Affiliation(s)
- Valentina Peleh
- Cell Biology, University of Kaiserslautern, Kaiserslautern, Germany
| | | | | |
Collapse
|
71
|
Samanta S, Ray S, Ghosh AB, Biswas P. 3,6-Di(pyridin-2-yl)-1,2,4,5-tetrazine (pytz) mediated metal-free mild oxidation of thiols to disulfides in aqueous medium. RSC Adv 2016. [DOI: 10.1039/c6ra01509c] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
72
|
Fadeyi OO, Mousseau JJ, Feng Y, Allais C, Nuhant P, Chen MZ, Pierce B, Robinson R. Visible-Light-Driven Photocatalytic Initiation of Radical Thiol–Ene Reactions Using Bismuth Oxide. Org Lett 2015; 17:5756-9. [DOI: 10.1021/acs.orglett.5b03184] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Olugbeminiyi O. Fadeyi
- Worldwide Medicinal Chemistry, Pfizer, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - James J. Mousseau
- Worldwide Medicinal Chemistry, Pfizer, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Yiqing Feng
- Worldwide Medicinal Chemistry, Pfizer, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Christophe Allais
- Worldwide Medicinal Chemistry, Pfizer, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Philippe Nuhant
- Worldwide Medicinal Chemistry, Pfizer, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ming Z. Chen
- Worldwide Medicinal Chemistry, Pfizer, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Betsy Pierce
- Worldwide Medicinal Chemistry, Pfizer, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| | - Ralph Robinson
- Worldwide Medicinal Chemistry, Pfizer, 445 Eastern Point Road, Groton, Connecticut 06340, United States
| |
Collapse
|
73
|
Roussel C, Cesselin B, Cachon R, Gaudu P. Characterization of two Lactococcus lactis zinc membrane proteins, Llmg_0524 and Llmg_0526, and role of Llmg_0524 in cell wall integrity. BMC Microbiol 2015; 15:246. [PMID: 26519082 PMCID: PMC4628341 DOI: 10.1186/s12866-015-0587-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 10/23/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Due to its extraordinary chemical properties, the cysteine amino acid residue is often involved in protein folding, electron driving, sensing stress, and binding metals such as iron or zinc. Lactococcus lactis, a Gram-positive bacterium, houses around one hundred cysteine-rich proteins (with the CX2C motif) in the cytoplasm, but only a few in the membrane. RESULTS In order to understand the role played by this motif we focused our work on two membrane proteins of unknown function: Llmg_0524 and Llmg_0526. Each of these proteins has two CX2C motifs separated by ten amino-acid residues (CX2CX10CX2C). Together with a short intervening gene (llmg_0525), the genes of these two proteins form an operon, which is induced only during the early log growth phase. In both proteins, we found that the CX2CX10CX2C motif chelated a zinc ion via its cysteine residues, but the sphere of coordination was remarkably different in each case. In the case of Llmg_0524, two of the four cysteines were ligands of a zinc ion whereas in Llmg_0526, all four residues were involved in binding zinc. In both proteins, the cysteine-zinc complex was very stable at 37 °C or in the presence of oxidative agents, suggesting a probable role in protein stability. We found that the complete deletion of llmg_0524 increased the sensitivity of the mutant to cumene hydroperoxide whereas the deletion of the cysteine motif in Llmg_0524 resulted in a growth defect. The latter mutant was much more resistant to lysozyme than other strains. CONCLUSIONS Our data suggest that the CX2CX10CX2C motif is used to chelate a zinc ion but we cannot predict the number of cysteine residue involved as ligand of metal. Although no other motif is present in sequence to identify roles played by these proteins, our results indicate that Llmg_0524 contributes to the cell wall integrity.
Collapse
Affiliation(s)
- Célia Roussel
- INRA, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78350, Jouy-en-Josas, France.
| | - Bénédicte Cesselin
- INRA, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78350, Jouy-en-Josas, France.
| | - Rémy Cachon
- UMR A 02.102 Unité Procédés Alimentaires et Microbiologiques, AgroSup Dijon-Université de Bourgogne, 1-esplanade Erasme, F-21000, Dijon, France.
| | - Philippe Gaudu
- INRA, UMR1319 Micalis, F-78350, Jouy-en-Josas, France. .,AgroParisTech, UMR Micalis, F-78350, Jouy-en-Josas, France. .,Institut Micalis UMR1319 et AgroParisTech, Domaine de Vilvert, 78352 Jouy-en-Josas, Cedex, France.
| |
Collapse
|
74
|
Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nat Commun 2015; 6:8072. [PMID: 26311203 PMCID: PMC4560801 DOI: 10.1038/ncomms9072] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 07/15/2015] [Indexed: 02/06/2023] Open
Abstract
Current methods for producing immunoglobulin G (IgG) antibodies in engineered cells often require refolding steps or secretion across one or more biological membranes. Here, we describe a robust expression platform for biosynthesis of full-length IgG antibodies in the Escherichia coli cytoplasm. Synthetic heavy and light chains, both lacking canonical export signals, are expressed in specially engineered E. coli strains that permit formation of stable disulfide bonds within the cytoplasm. IgGs with clinically relevant antigen- and effector-binding activities are readily produced in the E. coli cytoplasm by grafting antigen-specific variable heavy and light domains into a cytoplasmically stable framework and remodelling the fragment crystallizable domain with amino-acid substitutions that promote binding to Fcγ receptors. The resulting cytoplasmic IgGs—named ‘cyclonals'—effectively bypass the potentially rate-limiting steps of membrane translocation and glycosylation. Current methods for production of monoclonal antibodies often require refolding steps or secretion across biological membranes. Here, Robinson et al. describe engineered E. coli strains for efficient production of functional immunoglobulin G antibodies in the bacterial cytoplasm.
Collapse
|
75
|
In Vivo Formation of the Protein Disulfide Bond That Enhances the Thermostability of Diphosphomevalonate Decarboxylase, an Intracellular Enzyme from the Hyperthermophilic Archaeon Sulfolobus solfataricus. J Bacteriol 2015; 197:3463-71. [PMID: 26303832 DOI: 10.1128/jb.00352-15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/10/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED In the present study, the crystal structure of recombinant diphosphomevalonate decarboxylase from the hyperthermophilic archaeon Sulfolobus solfataricus was solved as the first example of an archaeal and thermophile-derived diphosphomevalonate decarboxylase. The enzyme forms a homodimer, as expected for most eukaryotic and bacterial orthologs. Interestingly, the subunits of the homodimer are connected via an intersubunit disulfide bond, which presumably formed during the purification process of the recombinant enzyme expressed in Escherichia coli. When mutagenesis replaced the disulfide-forming cysteine residue with serine, however, the thermostability of the enzyme was significantly lowered. In the presence of β-mercaptoethanol at a concentration where the disulfide bond was completely reduced, the wild-type enzyme was less stable to heat. Moreover, Western blot analysis combined with nonreducing SDS-PAGE of the whole cells of S. solfataricus proved that the disulfide bond was predominantly formed in the cells. These results suggest that the disulfide bond is required for the cytosolic enzyme to acquire further thermostability and to exert activity at the growth temperature of S. solfataricus. IMPORTANCE This study is the first report to describe the crystal structures of archaeal diphosphomevalonate decarboxylase, an enzyme involved in the classical mevalonate pathway. A stability-conferring intersubunit disulfide bond is a remarkable feature that is not found in eukaryotic and bacterial orthologs. The evidence that the disulfide bond also is formed in S. solfataricus cells suggests its physiological importance.
Collapse
|
76
|
Sohn CH, Gao J, Thomas DA, Kim TY, Goddard WA, Beauchamp JL. Mechanisms and energetics of free radical initiated disulfide bond cleavage in model peptides and insulin by mass spectrometry. Chem Sci 2015; 6:4550-4560. [PMID: 29142703 PMCID: PMC5666513 DOI: 10.1039/c5sc01305d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/20/2015] [Indexed: 11/21/2022] Open
Abstract
We investigate the mechanism of disulfide bond cleavage in gaseous peptide and protein ions initiated by a covalently-attached regiospecific acetyl radical using mass spectrometry (MS). Highly selective S-S bond cleavages with some minor C-S bond cleavages are observed by a single step of collisional activation. We show that even multiple disulfide bonds in intact bovine insulin are fragmented in the MS2 stage, releasing the A- and B-chains with a high yield, which has been challenging to achieve by other ion activation methods. Yet, regardless of the previous reaction mechanism studies, it has remained unclear why (1) disulfide bond cleavage is preferred to peptide backbone fragmentation, and why (2) the S-S bond that requires the higher activation energy conjectured in previously suggested mechanisms is more prone to be cleaved than the C-S bond by hydrogen-deficient radicals. To probe the mechanism of these processes, model peptides possessing deuterated β-carbon(s) at the disulfide bond are employed. It is suggested that the favored pathway of S-S bond cleavage is triggered by direct acetyl radical attack at sulfur with concomitant cleavage of the S-S bond (SH2). The activation energy for this process is substantially lower by ∼9-10 kcal mol-1 than those of peptide backbone cleavage processes determined by density functional quantum chemical calculations. Minor reaction pathways are initiated by hydrogen abstraction from the α-carbon or the β-carbon of a disulfide, followed by β-cleavages yielding C-S or S-S bond scissions. The current mechanistic findings should be generally applicable to other radical-driven disulfide bond cleavages with different radical species such as the benzyl and methyl pyridyl radicals.
Collapse
Affiliation(s)
- Chang Ho Sohn
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| | - Jinshan Gao
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| | - Daniel A Thomas
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| | - Tae-Young Kim
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| | - William A Goddard
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
- Materials and Process Simulation Center , Beckman Institute , California Institute of Technology , Pasadena , CA 91125 , USA
| | - J L Beauchamp
- Division of Chemistry and Chemical Engineering , California Institute of Technology , Pasadena , CA 91125 , USA .
| |
Collapse
|
77
|
Leclerc M, Planas D, Amyot M. Relationship between Extracellular Low-Molecular-Weight Thiols and Mercury Species in Natural Lake Periphytic Biofilms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7709-7716. [PMID: 26011687 DOI: 10.1021/es505952x] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The uptake of mercury by microorganisms is a key step in the production of methylmercury, a biomagnifiable toxin. Mercury complexation by low-molecular-weight (LMW) thiols can affect its bioavailability and thus the production of methylmercury. Freshwater biofilms were sampled in the summer using artificial Teflon substrates submerged for over a year to allow natural community colonization in the littoral zone of a Boreal Shield lake. Inside biofilms, concentrations of different extracellular thiol species (thioglycolic acid, l-cysteine-l-glycine, cysteine, and glutathione) were up to 3 orders of magnitude greater than in the surrounding water column, potentially more readily controlling mercury speciation than in the water column. All biofilm thiols except thioglycolic acid were highly correlated to chlorophyll a, likely indicating an algal origin. Extracellular total mercury represented 3 ± 1% of all biofilm mercury and was preferentially found in the capsular fraction. Levels of LMW thiols of presumed algal origins were highly correlated with total mercury in the mobile colloidal fraction of biofilms. We propose that periphytic phototrophic microorganisms such as algae likely affect the bioavailability of mercury through the exudation of LMW thiols, and thus they may play a key role in the production of methylmercury in biofilms.
Collapse
Affiliation(s)
- Maxime Leclerc
- †GRIL, Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Succursale Centre Ville, Montréal, Québec, Canada, H3C 3J7
| | - Dolors Planas
- ‡GRIL, Département de Sciences Biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre Ville, Montréal, Québec, Canada H3C 3P8
| | - Marc Amyot
- †GRIL, Département de Sciences Biologiques, Université de Montréal, C.P. 6128, Succursale Centre Ville, Montréal, Québec, Canada, H3C 3J7
| |
Collapse
|
78
|
Back A, Borges F, Mangavel C, Paris C, Rondags E, Kapel R, Aymes A, Rogniaux H, Pavlović M, van Heel AJ, Kuipers OP, Revol-Junelles AM, Cailliez-Grimal C. Recombinant pediocin in Lactococcus lactis: increased production by propeptide fusion and improved potency by co-production with PedC. Microb Biotechnol 2015; 9:466-77. [PMID: 26147827 PMCID: PMC4919988 DOI: 10.1111/1751-7915.12285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 02/18/2015] [Accepted: 03/11/2015] [Indexed: 11/29/2022] Open
Abstract
We describe the impact of two propeptides and PedC on the production yield and the potency of recombinant pediocins produced in Lactococcus lactis. On the one hand, the sequences encoding the propeptides SD or LEISSTCDA were inserted between the sequence encoding the signal peptide of Usp45 and the structural gene of the mature pediocin PA‐1. On the other hand, the putative thiol‐disulfide oxidoreductase PedC was coexpressed with pediocin. The concentration of recombinant pediocins produced in supernatants was determined by enzyme‐linked immunosorbent assay. The potency of recombinant pediocins was investigated by measuring the minimal inhibitory concentration by agar well diffusion assay. The results show that propeptides SD or LEISSTCDA lead to an improved secretion of recombinant pediocins with apparently no effect on the antibacterial potency and that PedC increases the potency of recombinant pediocin. To our knowledge, this study reveals for the first time that pediocin tolerates fusions at the N‐terminal end. Furthermore, it reveals that only expressing the pediocin structural gene in a heterologous host is not sufficient to get an optimal potency and requires the accessory protein PedC. In addition, it can be speculated that PedC catalyses the correct formation of disulfide bonds in pediocin.
Collapse
Affiliation(s)
- Alexandre Back
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Frédéric Borges
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Cécile Mangavel
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Cédric Paris
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Emmanuel Rondags
- Laboratoire Réactions et Génie des Procédés (LRGP), CNRS-UMR 7274, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Romain Kapel
- Laboratoire Réactions et Génie des Procédés (LRGP), CNRS-UMR 7274, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Arnaud Aymes
- Laboratoire Réactions et Génie des Procédés (LRGP), CNRS-UMR 7274, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Hélène Rogniaux
- INRA Unité Biopolymères Interactions Assemblages (UR1268), Rue de la Géraudière, Nantes, 44316, France
| | - Marija Pavlović
- INRA Unité Biopolymères Interactions Assemblages (UR1268), Rue de la Géraudière, Nantes, 44316, France
| | - Auke J van Heel
- Department of Molecular Genetics, GBB Institute, University of Gronningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, GBB Institute, University of Gronningen, Nijenborgh 7, 9747AG, Groningen, The Netherlands
| | - Anne-Marie Revol-Junelles
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| | - Catherine Cailliez-Grimal
- Laboratoire d'Ingénierie des Biomolécules (LIBio), ENSAIA, Université de Lorraine, 2 Avenue de la Forêt de Haye, Vandœuvre-lès-Nancy, 54518, France
| |
Collapse
|
79
|
Comparative Roles of the Two Helicobacter pylori Thioredoxins in Preventing Macromolecule Damage. Infect Immun 2015; 83:2935-43. [PMID: 25964471 DOI: 10.1128/iai.00232-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 04/30/2015] [Indexed: 12/29/2022] Open
Abstract
Thioredoxins are highly conserved throughout a wide range of organisms, and they are essential for the isurvival of oxygen-sensitive cells. The gastric pathogen Helicobacter pylori uses the thioredoxin system to maintain its thiol/disulfide balance. There are two thioredoxins present in H. pylori, Trx1 and Trx2 (herein referred to as TrxA and TrxC). TrxA has been shown to be important as an electron donor for some antioxidant enzymes, but the function of TrxC remains unknown (L. M. Baker, A. Raudonikiene, P. S. Hoffman, and L. B. Poole, J Bacteriol 183:1961-1973, 2001; P. Alamuri and R. J. Maier, J Bacteriol 188:5839-5850, 2006). We demonstrate that both TrxA and TrxC are important in protecting H. pylori from oxidative stress. Individual ΔtrxA and ΔtrxC deletion mutant strains each show a greater abundance of lipid peroxides and suffer more DNA damage and more protein carbonylation than the parent. Both deletion mutants were much more sensitive to O2-mediated viability loss than the parent. Unexpectedly, the oxidative DNA damage and protein carbonylation was more severe in the ΔtrxC mutant than in the ΔtrxA mutant; it had 20-fold- and 4-fold-more carbonylated protein content than the wild type and the ΔtrxA strain, respectively, after 4 h of atmospheric O2 stress. trx transcript abundance was altered by the deletion of the heterologous trx gene. The ΔtrxC mutant lacked mouse colonization ability, while the ability to colonize mouse stomachs was significantly reduced in the ΔtrxA mutant.
Collapse
|
80
|
Kahn TB, Fernández JM, Perez-Jimenez R. Monitoring Oxidative Folding of a Single Protein Catalyzed by the Disulfide Oxidoreductase DsbA. J Biol Chem 2015; 290:14518-27. [PMID: 25897077 DOI: 10.1074/jbc.m115.646000] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Indexed: 12/21/2022] Open
Abstract
Oxidative folding, the process by which proteins fold and acquire disulfide bonds concurrently, is of critical importance for a wide range of biological processes. Generally, this process is catalyzed by oxidoreductase enzymes that facilitate oxidation and also bear chaperone functionality. Although this process has been well described qualitatively, fine yet important details remain obscured by a limited quantitative perspective, arising from the limitations in the application of bulk biochemical methods to the study of oxidative folding. In this work, we have applied single molecule force spectroscopy techniques to monitor in real time the process of oxidative folding as catalyzed by DsbA, the enzyme solely responsible for the catalysis of oxidative folding in the bacterial periplasm. We provide a quantitative and detailed description of the catalytic mechanism utilized by DsbA that offers insight into the entire sequence of events that occurs in the periplasm from the unfolded-reduced state to the folded-oxidized protein. We have compared our results with those of protein disulfide-isomerase, the eukaryotic counterpart of DsbA, allowing us to devise a general mechanism for oxidative folding that also reflects upon the physiological functions and demands of these enzymes in vivo.
Collapse
Affiliation(s)
- Thomas B Kahn
- From the Department of Biochemistry and Molecular Biophysics, Columbia University Medical Center, New York, New York 10032
| | - Julio M Fernández
- Department of Biological Sciences, Columbia University, New York, New York 10027
| | - Raul Perez-Jimenez
- Centro de Investigación Cooperativa (CIC) nanoGUNE, 20018 Donostia-San Sebastian, Spain, and IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
81
|
Selective redox-responsive drug release in tumor cells mediated by chitosan based glycolipid-like nanocarrier. J Control Release 2015; 206:91-100. [PMID: 25796347 DOI: 10.1016/j.jconrel.2015.03.018] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Revised: 03/09/2015] [Accepted: 03/17/2015] [Indexed: 11/23/2022]
Abstract
The redox responsive nanocarriers have made a considerable progress in achieving triggered drug release by responding to the endogenous occurring difference between the extra- and intra- cellular redox environments. Despite the promises, this redox difference exists both in normal and tumor tissue. So a non-selective redox responsive drug delivery system may result in an undesired drug release in normal cells and relevant side-effects. To overcome these limitations, we have developed a chitosan based glycolipid-like nanocarrier (CSO-ss-SA) which selectively responded to the reducing environment in tumor cells. The CSO-ss-SA showed an improved reduction-sensitivity which only fast degraded and released drug in 10mM levels of glutathione (GSH). The CSO-ss-SA could transport the drug fast into the human ovarian cancer SKOV-3 cells and human normal liver L-02 cells by internalization, but only fast release drug in SKOV-3 cells. By regulating the intracellular GSH concentration in SKOV-3 cells, it indicated that the cellular inhibition of the PTX-loaded CSO-ss-SA showed a positive correlation with the GSH concentration. The CSO-ss-SA was mainly located in the liver, spleen and tumor in vivo, which evidenced the passive tumor targeting ability. Despite the high uptake of liver and spleen, drug release was mainly occurred in tumor. PTX-loaded CSO-ss-SA achieved a remarkable tumor growth inhibition effect with rather low dose of PTX. This study demonstrates that a smartly designed glycolipid-like nanocarrier with selective redox sensitivity could serve as an excellent platform to achieve minimal toxicity and rapid intracellular drug release in tumor cells.
Collapse
|
82
|
Schaefer K, Geil WM, Sweredoski MJ, Moradian A, Hess S, Barton JK. Oxidation of p53 through DNA charge transport involves a network of disulfides within the DNA-binding domain. Biochemistry 2015; 54:932-41. [PMID: 25584637 PMCID: PMC4310631 DOI: 10.1021/bi501424v] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 12/19/2014] [Indexed: 11/29/2022]
Abstract
Transcription factor p53 plays a critical role in the cellular response to stress stimuli. We have seen that p53 dissociates selectively from various promoter sites as a result of oxidation at long-range through DNA-mediated charge transport (CT). Here, we examine this chemical oxidation and determine the residues in p53 that are essential for oxidative dissociation, focusing on the network of cysteine residues adjacent to the DNA-binding site. Of the eight mutants studied, only the C275S mutation shows decreased affinity for the Gadd45 promoter site. However, both mutations C275S and C277S result in substantial attenuation of oxidative dissociation, with C275S causing the most severe attenuation. Differential thiol labeling was used to determine the oxidation states of cysteine residues within p53 after DNA-mediated oxidation. Reduced cysteines were iodoacetamide-labeled, whereas oxidized cysteines participating in disulfide bonds were (13)C2D2-iodoacetamide-labeled. Intensities of respective iodoacetamide-modified peptide fragments were analyzed by mass spectrometry. A distinct shift in peptide labeling toward (13)C2D2-iodoacetamide-labeled cysteines is observed in oxidized samples, confirming that chemical oxidation of p53 occurs at long range. All observable cysteine residues trend toward the heavy label under conditions of DNA CT, indicating the formation of multiple disulfide bonds among the cysteine network. On the basis of these data, it is proposed that disulfide formation involving C275 is critical for inducing oxidative dissociation of p53 from DNA.
Collapse
Affiliation(s)
- Kathryn
N. Schaefer
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Wendy M. Geil
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Michael J. Sweredoski
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Annie Moradian
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Sonja Hess
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| | - Jacqueline K. Barton
- Division of Chemistry and
Chemical Engineering, California Institute
of Technology, Pasadena, California 91125, United States
| |
Collapse
|
83
|
Talla A, Driessen B, Straathof NJW, Milroy LG, Brunsveld L, Hessel V, Noël T. Metal-Free Photocatalytic Aerobic Oxidation of Thiols to Disulfides in Batch and Continuous-Flow. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201401010] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
84
|
Beyond the cytoplasm of Escherichia coli: localizing recombinant proteins where you want them. Methods Mol Biol 2015; 1258:79-97. [PMID: 25447860 DOI: 10.1007/978-1-4939-2205-5_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
Abstract
Recombinant protein expression in Escherichia coli represents a cornerstone of the biotechnology enterprise. While cytoplasmic expression in this host has received the most attention, achieving substantial yields of correctly folded proteins in this compartment can sometimes be met with difficulties. These issues can often be overcome by targeting protein expression to extracytoplasmic compartments (e.g., membrane, periplasm) or to the culture medium. This chapter discusses various strategies for exporting proteins out of the cytoplasm as well as tools for monitoring and optimizing these different export mechanisms.
Collapse
|
85
|
Terada T, Yokoyama S. Escherichia coli Cell-Free Protein Synthesis and Isotope Labeling of Mammalian Proteins. Methods Enzymol 2015; 565:311-45. [DOI: 10.1016/bs.mie.2015.08.035] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
86
|
Abicht HK, Schärer MA, Quade N, Ledermann R, Mohorko E, Capitani G, Hennecke H, Glockshuber R. How periplasmic thioredoxin TlpA reduces bacterial copper chaperone ScoI and cytochrome oxidase subunit II (CoxB) prior to metallation. J Biol Chem 2014; 289:32431-44. [PMID: 25274631 DOI: 10.1074/jbc.m114.607127] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Two critical cysteine residues in the copper-A site (Cu(A)) on subunit II (CoxB) of bacterial cytochrome c oxidase lie on the periplasmic side of the cytoplasmic membrane. As the periplasm is an oxidizing environment as compared with the reducing cytoplasm, the prediction was that a disulfide bond formed between these cysteines must be eliminated by reduction prior to copper insertion. We show here that a periplasmic thioredoxin (TlpA) acts as a specific reductant not only for the Cu(2+) transfer chaperone ScoI but also for CoxB. The dual role of TlpA was documented best with high-resolution crystal structures of the kinetically trapped TlpA-ScoI and TlpA-CoxB mixed disulfide intermediates. They uncovered surprisingly disparate contact sites on TlpA for each of the two protein substrates. The equilibrium of CoxB reduction by TlpA revealed a thermodynamically favorable reaction, with a less negative redox potential of CoxB (E'0 = -231 mV) as compared with that of TlpA (E'0 = -256 mV). The reduction of CoxB by TlpA via disulfide exchange proved to be very fast, with a rate constant of 8.4 × 10(4) M(-1) s(-1) that is similar to that found previously for ScoI reduction. Hence, TlpA is a physiologically relevant reductase for both ScoI and CoxB. Although the requirement of ScoI for assembly of the Cu(A)-CoxB complex may be bypassed in vivo by high environmental Cu(2+) concentrations, TlpA is essential in this process because only reduced CoxB can bind copper ions.
Collapse
Affiliation(s)
- Helge K Abicht
- From the Institute of Molecular Biology and Biophysics and Institute of Microbiology, ETH Zürich, CH-8093 Zürich and
| | - Martin A Schärer
- From the Institute of Molecular Biology and Biophysics and the Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Nick Quade
- From the Institute of Molecular Biology and Biophysics and
| | | | | | - Guido Capitani
- the Laboratory of Biomolecular Research, Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland
| | - Hauke Hennecke
- Institute of Microbiology, ETH Zürich, CH-8093 Zürich and
| | | |
Collapse
|
87
|
Hemmis CW, Wright NT, Majumdar A, Schildbach JF. Chemical shift assignments of a reduced N-terminal truncation mutant of the disulfide bond isomerase TrbB from plasmid F, TrbBΔ29. BIOMOLECULAR NMR ASSIGNMENTS 2014; 8:435-438. [PMID: 24771093 PMCID: PMC4268134 DOI: 10.1007/s12104-013-9533-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Accepted: 12/12/2013] [Indexed: 06/03/2023]
Abstract
TrbB from the conjugative plasmid F is a 181-residue disulfide bond isomerase that plays a role in the correct folding and maintenance of disulfide bonds within F plasmid encoded proteins in the bacterial periplasm. As a member of the thioredoxin-like superfamily, TrbB has a predicted thioredoxin-like fold that contains a C-X-X-C active site required for performing specific redox chemistries on protein substrates. Here we report the sequence-specific assignments of the reduced form of the N-terminally truncated TrbB construct, TrbBΔ29.
Collapse
Affiliation(s)
- Casey W. Hemmis
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Nathan T. Wright
- Department of Chemistry and Biochemistry, James Madison University, Harrisonburg, Virginia 22807
| | - Ananya Majumdar
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - Joel F. Schildbach
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| |
Collapse
|
88
|
Co-expression of Dsb proteins enables soluble expression of a single-chain variable fragment (scFv) against human type 1 insulin-like growth factor receptor (IGF-1R) in E. coli. World J Microbiol Biotechnol 2014; 30:3221-7. [DOI: 10.1007/s11274-014-1749-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Accepted: 09/22/2014] [Indexed: 10/24/2022]
|
89
|
Lu A, Peng Q, Ling E. Formation of disulfide bonds in insect prophenoloxidase enhances immunity through improving enzyme activity and stability. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:351-358. [PMID: 24480295 DOI: 10.1016/j.dci.2014.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 06/03/2023]
Abstract
Type 3 copper proteins, including insect prophenoloxidase (PPO), contain two copper atoms in the active site pocket and can oxidize phenols. Insect PPO plays an important role in immunity. Insects and other invertebrates show limited recovery from pathogen invasion and wounds if phenoloxidase (PO) activity is low. In most insect PPOs, two disulfide bonds are present near the C-terminus. However, in Pimpla hypochondriaca (a parasitoid wasp), each PPO contains one disulfide bond. We thus questioned whether the formation of two sulfide bonds in insect PPOs improved protein stability and/or increased insect innate immunity over time. Using Drosophila melanogaster PPO1 as a model, one or two disulfide bonds were deleted to evaluate the importance of disulfide bonds in insect immunity. rPPO1 and mutants lacking disulfide bonds could be expressed and showed PO activity. However, the PO activities of mutants lacking one or two disulfide bonds significantly decreased. Deletion of disulfide bonds also reduced PPO thermostability. Furthermore, antibacterial activities against Escherichia coli and Bacillus subtilis significantly decreased when disulfide bonds were deleted. Therefore, the formation of two disulfide bond(s) in insect PPO enhances antibacterial activity by increasing PO activity and stability.
Collapse
Affiliation(s)
- Anrui Lu
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Qin Peng
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China
| | - Erjun Ling
- Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, People's Republic of China.
| |
Collapse
|
90
|
Abstract
ABSTRACT
During infection,
Mycobacterium tuberculosis
is exposed to a diverse array of microenvironments in the human host, each with its own unique set of redox conditions. Imbalances in the redox environment of the bacillus or the host environment serve as stimuli, which could regulate virulence. The ability of
M. tuberculosis
to evade the host immune response and cause disease is largely owing to the capacity of the mycobacterium to sense changes in its environment, such as host-generated gases, carbon sources, and pathological conditions, and alter its metabolism and redox balance accordingly for survival. In this article we discuss the redox sensors that are, to date, known to be present in
M. tuberculosis
, such as the Dos dormancy regulon, WhiB family, anti-σ factors, and MosR, in addition to the strategies present in the bacillus to neutralize free radicals, such as superoxide dismutases, catalase-peroxidase, thioredoxins, and methionine sulfoxide reductases, among others.
M. tuberculosis
is peculiar in that it appears to have a hierarchy of redox buffers, namely, mycothiol and ergothioneine. We discuss the current knowledge of their biosynthesis, function, and regulation. Ergothioneine is still an enigma, although it appears to have distinct and overlapping functions with mycothiol, which enable it to protect against a wide range of toxic metabolites and free radicals generated by the host. Developing approaches to quantify the intracellular redox status of the mycobacterium will enable us to determine how the redox balance is altered in response to signals and environments that mimic those encountered in the host.
Collapse
|
91
|
Sheng Y, Abreu IA, Cabelli DE, Maroney MJ, Miller AF, Teixeira M, Valentine JS. Superoxide dismutases and superoxide reductases. Chem Rev 2014; 114:3854-918. [PMID: 24684599 PMCID: PMC4317059 DOI: 10.1021/cr4005296] [Citation(s) in RCA: 674] [Impact Index Per Article: 61.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Indexed: 11/30/2022]
Affiliation(s)
- Yuewei Sheng
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
| | - Isabel A. Abreu
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
- Instituto
de Biologia Experimental e Tecnológica, Av. da República,
Qta. do Marquês, Estação Agronómica Nacional,
Edificio IBET/ITQB, 2780-157, Oeiras, Portugal
| | - Diane E. Cabelli
- Chemistry
Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Michael J. Maroney
- Department
of Chemistry, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Anne-Frances Miller
- Department
of Chemistry, University of Kentucky, Lexington, Kentucky 40506-0055, United States
| | - Miguel Teixeira
- Instituto
de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - Joan Selverstone Valentine
- Department
of Chemistry and Biochemistry, University
of California Los Angeles, Los
Angeles, California 90095, United States
- Department
of Bioinspired Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| |
Collapse
|
92
|
Nikkanen L, Rintamäki E. Thioredoxin-dependent regulatory networks in chloroplasts under fluctuating light conditions. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130224. [PMID: 24591711 PMCID: PMC3949389 DOI: 10.1098/rstb.2013.0224] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Plants have adopted a number of mechanisms to restore redox homeostasis in the chloroplast under fluctuating light conditions in nature. Chloroplast thioredoxin systems are crucial components of this redox network, mediating environmental signals to chloroplast proteins. In the reduced state, thioredoxins control the structure and function of proteins by reducing disulfide bridges in the redox active site of a protein. Subsequently, an oxidized thioredoxin is reduced by a thioredoxin reductase, the two enzymes together forming a thioredoxin system. Plant chloroplasts have versatile thioredoxin systems, including two reductases dependent on ferredoxin and NADPH as reducing power, respectively, several types of thioredoxins, and the system to deliver thiol redox signals to the thylakoid membrane and lumen. Light controls the activity of chloroplast thioredoxin systems in two ways. First, light reactions activate the thioredoxin systems via donation of electrons to oxidized ferredoxin and NADP+, and second, light induces production of reactive oxygen species in chloroplasts which deactivate the components of the thiol redox network. The diversity and partial redundancy of chloroplast thioredoxin systems enable chloroplast metabolism to rapidly respond to ever-changing environmental conditions and to raise plant fitness in natural growth conditions.
Collapse
Affiliation(s)
- Lauri Nikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, , Turku 20014, Finland
| | | |
Collapse
|
93
|
Zeida A, Guardia CM, Lichtig P, Perissinotti LL, Defelipe LA, Turjanski A, Radi R, Trujillo M, Estrin DA. Thiol redox biochemistry: insights from computer simulations. Biophys Rev 2014; 6:27-46. [PMID: 28509962 PMCID: PMC5427810 DOI: 10.1007/s12551-013-0127-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Accepted: 12/03/2013] [Indexed: 12/13/2022] Open
Abstract
Thiol redox chemical reactions play a key role in a variety of physiological processes, mainly due to the presence of low-molecular-weight thiols and cysteine residues in proteins involved in catalysis and regulation. Specifically, the subtle sensitivity of thiol reactivity to the environment makes the use of simulation techniques extremely valuable for obtaining microscopic insights. In this work we review the application of classical and quantum-mechanical atomistic simulation tools to the investigation of selected relevant issues in thiol redox biochemistry, such as investigations on (1) the protonation state of cysteine in protein, (2) two-electron oxidation of thiols by hydroperoxides, chloramines, and hypochlorous acid, (3) mechanistic and kinetics aspects of the de novo formation of disulfide bonds and thiol-disulfide exchange, (4) formation of sulfenamides, (5) formation of nitrosothiols and transnitrosation reactions, and (6) one-electron oxidation pathways.
Collapse
Affiliation(s)
- Ari Zeida
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina
| | - Carlos M Guardia
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina
| | - Pablo Lichtig
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina
| | - Laura L Perissinotti
- Institute for Biocomplexity and Informatics, Department of Biological Sciences, University of Calgary, 2500 University Drive, Calgary, AB, Canada, T2N 2N4
| | - Lucas A Defelipe
- Departamento de Química Biológica and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina
| | - Adrián Turjanski
- Departamento de Química Biológica and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina
| | - Rafael Radi
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral Flores 2125, CP 11800, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica and Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Av. Gral Flores 2125, CP 11800, Montevideo, Uruguay
| | - Darío A Estrin
- Departamento de Química Inorgánica, Analítica y Química-Física and INQUIMAE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pab. 2, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
94
|
Proteomic analysis of the purple sulfur bacterium Candidatus “Thiodictyon syntrophicum” strain Cad16T isolated from Lake Cadagno. EUPA OPEN PROTEOMICS 2014. [DOI: 10.1016/j.euprot.2013.11.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
95
|
Boronat S, Domènech A, Paulo E, Calvo IA, García-Santamarina S, García P, Encinar del Dedo J, Barcons A, Serrano E, Carmona M, Hidalgo E. Thiol-based H2O2 signalling in microbial systems. Redox Biol 2014; 2:395-9. [PMID: 24563858 PMCID: PMC3926117 DOI: 10.1016/j.redox.2014.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 01/16/2014] [Indexed: 11/19/2022] Open
Abstract
Cysteine residues, and in particular their thiolate groups, react not only with reactive oxygen species but also with electrophiles and with reactive nitrogen species. Thus, cysteine oxidation has often been linked to the toxic effects of some of these reactive molecules. However, thiol-based switches are common in protein sensors of antioxidant cascades, in both prokaryotic and eukaryotic organisms. We will describe here three redox sensors, the transcription factors OxyR, Yap1 and Pap1, which respond by disulfide bond formation to hydrogen peroxide stress, focusing specially on the differences among the three peroxide-sensing mechanisms.
Collapse
|
96
|
Mavridou DAI, Saridakis E, Kritsiligkou P, Mozley EC, Ferguson SJ, Redfield C. An extended active-site motif controls the reactivity of the thioredoxin fold. J Biol Chem 2014; 289:8681-96. [PMID: 24469455 PMCID: PMC3961690 DOI: 10.1074/jbc.m113.513457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Proteins belonging to the thioredoxin (Trx) superfamily are abundant in all organisms. They share the same structural features, arranged in a seemingly simple fold, but they perform a multitude of functions in oxidative protein folding and electron transfer pathways. We use the C-terminal domain of the unique transmembrane reductant conductor DsbD as a model for an in-depth analysis of the factors controlling the reactivity of the Trx fold. We employ NMR spectroscopy, x-ray crystallography, mutagenesis, in vivo functional experiments applied to DsbD, and a comparative sequence analysis of Trx-fold proteins to determine the effect of residues in the vicinity of the active site on the ionization of the key nucleophilic cysteine of the -CXXC- motif. We show that the function and reactivity of Trx-fold proteins depend critically on the electrostatic features imposed by an extended active-site motif.
Collapse
Affiliation(s)
- Despoina A I Mavridou
- From the Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, United Kingdom and
| | | | | | | | | | | |
Collapse
|
97
|
Xiang Z, Lacey VK, Ren H, Xu J, Burban DJ, Jennings PA, Wang L. Proximity-Enabled Protein Crosslinking through Genetically Encoding Haloalkane Unnatural Amino Acids. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201308794] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
98
|
Xiang Z, Lacey VK, Ren H, Xu J, Burban DJ, Jennings PA, Wang L. Proximity-enabled protein crosslinking through genetically encoding haloalkane unnatural amino acids. Angew Chem Int Ed Engl 2014; 53:2190-3. [PMID: 24449339 DOI: 10.1002/anie.201308794] [Citation(s) in RCA: 103] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Indexed: 11/06/2022]
Abstract
The selective generation of covalent bonds between and within proteins would provide new avenues for studying protein function and engineering proteins with new properties. New covalent bonds were genetically introduced into proteins by enabling an unnatural amino acid (Uaa) to selectively react with a proximal natural residue. This proximity-enabled bioreactivity was expanded to a series of haloalkane Uaas. Orthogonal tRNA/synthetase pairs were evolved to incorporate these Uaas, which only form a covalent thioether bond with cysteine when positioned in close proximity. By using the Uaa and cysteine, spontaneous covalent bond formation was demonstrated between an affibody and its substrate Z protein, thereby leading to irreversible binding, and within the affibody to increase its thermostability. This strategy of proximity-enabled protein crosslinking (PEPC) may be generally expanded to target different natural amino acids, thus providing diversity and flexibility in covalent bond formation for protein research and protein engineering.
Collapse
Affiliation(s)
- Zheng Xiang
- The Jack H. Skirball Center for Chemical Biology and Proteomics, The Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037 (USA) http://wang.salk.edu/
| | | | | | | | | | | | | |
Collapse
|
99
|
Morones-Ramirez JR, Winkler JA, Spina CS, Collins JJ. Silver enhances antibiotic activity against gram-negative bacteria. Sci Transl Med 2014; 5:190ra81. [PMID: 23785037 DOI: 10.1126/scitranslmed.3006276] [Citation(s) in RCA: 465] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A declining pipeline of clinically useful antibiotics has made it imperative to develop more effective antimicrobial therapies, particularly against difficult-to-treat Gram-negative pathogens. Silver has been used as an antimicrobial since antiquity, yet its mechanism of action remains unclear. We show that silver disrupts multiple bacterial cellular processes, including disulfide bond formation, metabolism, and iron homeostasis. These changes lead to increased production of reactive oxygen species and increased membrane permeability of Gram-negative bacteria that can potentiate the activity of a broad range of antibiotics against Gram-negative bacteria in different metabolic states, as well as restore antibiotic susceptibility to a resistant bacterial strain. We show both in vitro and in a mouse model of urinary tract infection that the ability of silver to induce oxidative stress can be harnessed to potentiate antibiotic activity. Additionally, we demonstrate in vitro and in two different mouse models of peritonitis that silver sensitizes Gram-negative bacteria to the Gram-positive-specific antibiotic vancomycin, thereby expanding the antibacterial spectrum of this drug. Finally, we used silver and antibiotic combinations in vitro to eradicate bacterial persister cells, and show both in vitro and in a mouse biofilm infection model that silver can enhance antibacterial action against bacteria that produce biofilms. This work shows that silver can be used to enhance the action of existing antibiotics against Gram-negative bacteria, thus strengthening the antibiotic arsenal for fighting bacterial infections.
Collapse
Affiliation(s)
- J Ruben Morones-Ramirez
- Howard Hughes Medical Institute, Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02118, USA
| | - Jonathan A Winkler
- Howard Hughes Medical Institute, Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA.,Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Catherine S Spina
- Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02118, USA
| | - James J Collins
- Howard Hughes Medical Institute, Department of Biomedical Engineering and Center of Synthetic Biology, Boston University, Boston, MA 02215, USA.,Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA 02215, USA.,Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02118, USA
| |
Collapse
|
100
|
Israel BA, Kodali VK, Thorpe C. Going through the barrier: coupled disulfide exchange reactions promote efficient catalysis in quiescin sulfhydryl oxidase. J Biol Chem 2013; 289:5274-84. [PMID: 24379406 DOI: 10.1074/jbc.m113.536219] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The quiescin sulfhydryl oxidase (QSOX) family of enzymes generates disulfide bonds in peptides and proteins with the reduction of oxygen to hydrogen peroxide. Determination of the potentials of the redox centers in Trypanosoma brucei QSOX provides a context for understanding catalysis by this facile oxidant of protein thiols. The CXXC motif of the thioredoxin domain is comparatively oxidizing (E'0 of -144 mV), consistent with an ability to transfer disulfide bonds to a broad range of thiol substrates. In contrast, the proximal CXXC disulfide in the ERV (essential for respiration and vegetative growth) domain of TbQSOX is strongly reducing (E'0 of -273 mV), representing a major apparent thermodynamic barrier to overall catalysis. Reduction of the oxidizing FAD cofactor (E'0 of -153 mV) is followed by the strongly favorable reduction of molecular oxygen. The role of a mixed disulfide intermediate between thioredoxin and ERV domains was highlighted by rapid reaction studies in which the wild-type CGAC motif in the thioredoxin domain of TbQSOX was replaced by the more oxidizing CPHC or more reducing CGPC sequence. Mixed disulfide bond formation is accompanied by the generation of a charge transfer complex with the flavin cofactor. This provides thermodynamic coupling among the three redox centers of QSOX and avoids the strongly uphill mismatch between the formal potentials of the thioredoxin and ERV disulfides. This work identifies intriguing mechanistic parallels between the eukaryotic QSOX enzymes and the DsbA/B system catalyzing disulfide bond generation in the bacterial periplasm and suggests that the strategy of linked disulfide exchanges may be exploited in other catalysts of oxidative protein folding.
Collapse
Affiliation(s)
- Benjamin A Israel
- From the Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716
| | | | | |
Collapse
|