51
|
Hengeveld RCC, Hertz NT, Vromans MJM, Zhang C, Burlingame AL, Shokat KM, Lens SMA. Development of a chemical genetic approach for human aurora B kinase identifies novel substrates of the chromosomal passenger complex. Mol Cell Proteomics 2012; 11:47-59. [PMID: 22267324 DOI: 10.1074/mcp.m111.013912] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
To understand how the chromosomal passenger complex ensures chromosomal stability, it is crucial to identify its substrates and to find ways to specifically inhibit the enzymatic core of the complex, Aurora B. We therefore developed a chemical genetic approach to selectively inhibit human Aurora B. By mutating the gatekeeper residue Leu-154 in the kinase active site, the ATP-binding pocket was enlarged, but kinase function was severely disrupted. A unique second site suppressor mutation was identified that rescued kinase activity in the Leu-154 mutant and allowed the accommodation of bulky N(6)-substituted adenine analogs. Using this analog-sensitive Aurora B kinase, we found that retention of the chromosomal passenger complex at the centromere depends on Aurora B kinase activity. Furthermore, analog-sensitive Aurora B was able to use bulky ATPγS analogs and could thiophosphorylate multiple proteins in cell extracts. Utilizing an unbiased approach for kinase substrate mapping, we identified several novel substrates of Aurora B, including the nucleosomal-binding protein HMGN2. We confirmed that HMGN2 is a bona fide Aurora B substrate in vivo and show that its dynamic association to chromatin is controlled by Aurora B.
Collapse
Affiliation(s)
- Rutger C C Hengeveld
- Department of Medical Oncology, University Medical Center, 3584 CG Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
52
|
Haan C, Rolvering C, Raulf F, Kapp M, Drückes P, Thoma G, Behrmann I, Zerwes HG. Jak1 has a dominant role over Jak3 in signal transduction through γc-containing cytokine receptors. ACTA ACUST UNITED AC 2011; 18:314-23. [PMID: 21439476 DOI: 10.1016/j.chembiol.2011.01.012] [Citation(s) in RCA: 157] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 12/28/2010] [Accepted: 01/05/2011] [Indexed: 02/09/2023]
Abstract
Genetic deficiency of Jak3 leads to abrogation of signal transduction through the common gamma chain (γc) and thus to immunodeficiency suggesting that specific inhibition of Jak3 kinase may result in immunosuppression. Jak1 cooperates with Jak3 in signaling through γc-containing receptors. Unexpectedly, a Jak3-selective inhibitor was less efficient in abolishing STAT5 phosphorylation than pan-Jak inhibitors. We therefore explored the roles of Jak1 and Jak3 kinase functionality in signaling using a reconstituted system. The presence of kinase-inactive Jak1 but not kinase-inactive Jak3 resulted in complete abolishment of STAT5 phosphorylation. Specific inhibition of the "analog-sensitive" mutant AS-Jak1 but not AS-Jak3 by the ATP-competitive analog 1NM-PP1 abrogated IL-2 signaling, corroborating the data with the selective Jak3 inhibitor. Jak1 thus plays a dominant role over Jak3 and these data challenge the notion that selective ATP-competitive Jak3 kinase inhibitors will be effective.
Collapse
Affiliation(s)
- Claude Haan
- Life Sciences Research Unit-Signal Transduction Laboratory, University of Luxembourg, Luxembourg, L-1511, Luxembourg.
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Heemskerk JW, Harper MT, Cosemans JM, Poole AW. Unravelling the different functions of protein kinase C isoforms in platelets. FEBS Lett 2011; 585:1711-6. [DOI: 10.1016/j.febslet.2011.05.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Revised: 04/28/2011] [Accepted: 05/04/2011] [Indexed: 11/17/2022]
|
54
|
Abstract
![]()
Small-molecule target identification is a vital and daunting task for the chemical biology community as well as for researchers interested in applying the power of chemical genetics to impact biology and medicine. To overcome this “target ID” bottleneck, new technologies are being developed that analyze protein–drug interactions, such as drug affinity responsive target stability (DARTS), which aims to discover the direct binding targets (and off targets) of small molecules on a proteome scale without requiring chemical modification of the compound. Here, we review the DARTS method, discuss why it works, and provide new perspectives for future development in this area.
Collapse
Affiliation(s)
- Brett Lomenick
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, United States
| | - Richard W. Olsen
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, United States
| | - Jing Huang
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
55
|
Antagonistic interactions between the cAMP-dependent protein kinase and Tor signaling pathways modulate cell growth in Saccharomyces cerevisiae. Genetics 2010; 187:441-54. [PMID: 21078689 DOI: 10.1534/genetics.110.123372] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic cells integrate information from multiple sources to respond appropriately to changes in the environment. Here, we examined the relationship between two signaling pathways in Saccharomyces cerevisiae that are essential for the coordination of cell growth with nutrient availability. These pathways involve the cAMP-dependent protein kinase (PKA) and Tor proteins, respectively. Although these pathways control a similar set of processes important for growth, it was not clear how their activities were integrated in vivo. The experiments here examined this coordination and, in particular, tested whether the PKA pathway was primarily a downstream effector of the TORC1 signaling complex. Using a number of reporters for the PKA pathway, we found that the inhibition of TORC1 did not result in diminished PKA signaling activity. To the contrary, decreased TORC1 signaling was generally associated with elevated levels of PKA activity. Similarly, TORC1 activity appeared to increase in response to lower levels of PKA signaling. Consistent with these observations, we found that diminished PKA signaling partially suppressed the growth defects associated with decreased TORC1 activity. In all, these data suggested that the PKA and TORC1 pathways were functioning in parallel to promote cell growth and that each pathway might restrain, either directly or indirectly, the activity of the other. The potential significance of this antagonism for the regulation of cell growth and overall fitness is discussed.
Collapse
|
56
|
Kennedy MJ, Hughes RM, Peteya LA, Schwartz JW, Ehlers MD, Tucker CL. Rapid blue-light-mediated induction of protein interactions in living cells. Nat Methods 2010; 7:973-5. [PMID: 21037589 PMCID: PMC3059133 DOI: 10.1038/nmeth.1524] [Citation(s) in RCA: 827] [Impact Index Per Article: 59.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 10/01/2010] [Indexed: 11/09/2022]
Abstract
Dimerizers allowing inducible control of protein-protein interactions are powerful tools for manipulating biological processes. Here we describe genetically encoded light-inducible protein interaction modules based on Arabidopsis thaliana cryptochrome 2 and CIB1 that require no exogenous ligands and dimerize on blue light exposure with sub-second time resolution and subcellular spatial resolution. We demonstrate the general utility of this system by inducing protein translocation, transcription, and Cre-mediated DNA recombination using light.
Collapse
Affiliation(s)
- Matthew J Kennedy
- Department of Neurobiology, Duke University Medical Center, Durham North Carolina, USA
| | | | | | | | | | | |
Collapse
|
57
|
Swarbrick JM, Gaffney PRJ. Synthesis of 4-C-alkyl inositol 1,4,5-trisphosphates and 1,3,4,5-tetrakisphosphates. J Org Chem 2010; 75:4376-86. [PMID: 20507072 DOI: 10.1021/jo100414e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The preparation of 2,3,6-O-tribenzyl- and 2,6-O-dibenzyl-myo-inositols with beta-primary, secondary, and tertiary 4-C-alkyl or aryl groups is reported. Five of these novel polyols are elaborated to 4-C-alkyl Ins(1,4,5)P(3) and Ins(1,3,4,5)P(4) analogues. Regio- and stereoselective introduction of 4-C-alkyl or aryl substituents proceeded via a 4-exo-methylene oxide. Subsequent regioselective reduction of an orthobenzoate provided a divergent method to access both InsP(3) and InsP(4) precursors. Previously unreported phosphorylation of the tertiary hydroxyl and global deprotection afforded novel analogues that retain their full complement of polar and charged binding features.
Collapse
Affiliation(s)
- Joanna M Swarbrick
- Department of Chemistry, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | | |
Collapse
|
58
|
Probing bacterial transmembrane histidine kinase receptor-ligand interactions with natural and synthetic molecules. Proc Natl Acad Sci U S A 2010; 107:5575-80. [PMID: 20212168 DOI: 10.1073/pnas.1001392107] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial histidine kinases transduce extracellular signals into the cytoplasm. Most stimuli are chemically undefined; therefore, despite intensive study, signal recognition mechanisms remain mysterious. We exploit the fact that quorum-sensing signals are known molecules to identify mutants in the Vibrio cholerae quorum-sensing receptor CqsS that display altered responses to natural and synthetic ligands. Using this chemical-genetics approach, we assign particular amino acids of the CqsS sensor to particular roles in recognition of the native ligand, CAI-1 (S-3 hydroxytridecan-4-one) as well as ligand analogues. Amino acids W104 and S107 dictate receptor preference for the carbon-3 moiety. Residues F162 and C170 specify ligand head size and tail length, respectively. By combining mutations, we can build CqsS receptors responsive to ligand analogues altered at both the head and tail. We suggest that rationally designed ligands can be employed to study, and ultimately to control, histidine kinase activity.
Collapse
|
59
|
Taylor JL, Rohatgi P, Spencer HT, Doyle DF, Azizi B. Characterization of a molecular switch system that regulates gene expression in mammalian cells through a small molecule. BMC Biotechnol 2010; 10:15. [PMID: 20167077 PMCID: PMC2831033 DOI: 10.1186/1472-6750-10-15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 02/18/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Molecular switch systems that activate gene expression by a small molecule are effective technologies that are widely used in applied biological research. Nuclear receptors are valuable candidates for these regulation systems due to their functional role as ligand activated transcription factors. Previously, our group engineered a variant of the retinoid x receptor to be responsive to the synthetic compound, LG335, but not responsive to its natural ligand, 9-cis-retinoic acid. RESULTS This work focuses on characterizing a molecular switch system that quantitatively controls transgene expression. This system is composed of an orthogonal ligand/nuclear receptor pair, LG335 and GRQCIMFI, along with an artificial promoter controlling expression of a target transgene. GRQCIMFI is composed of the fusion of the DNA binding domain of the yeast transcription factor, Gal4, and a retinoid x receptor variant. The variant consists of the following mutations: Q275C, I310M, and F313I in the ligand binding domain. When introduced into mammalian cell culture, the switch shows luciferase activity at concentrations as low as 100 nM of LG335 with a 6.3 +/- 1.7-fold induction ratio. The developed one-component system activates transgene expression when introduced transiently or virally. CONCLUSIONS We have successfully shown that this system can induce tightly controlled transgene expression and can be used for transient transfections or retroviral transductions in mammalian cell culture. Further characterization is needed for gene therapy applications.
Collapse
Affiliation(s)
- Jennifer L Taylor
- School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Drive, Atlanta, GA 30332, USA
| | | | | | | | | |
Collapse
|
60
|
Li B, Zhao L, Wang C, Guo H, Wu L, Zhang X, Qian W, Wang H, Guo Y. The protein-protein interface evolution acts in a similar way to antibody affinity maturation. J Biol Chem 2010; 285:3865-3871. [PMID: 20007707 PMCID: PMC2823529 DOI: 10.1074/jbc.m109.076547] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Indexed: 12/22/2022] Open
Abstract
Understanding the evolutionary mechanism that acts at the interfaces of protein-protein complexes is a fundamental issue with high interest for delineating the macromolecular complexes and networks responsible for regulation and complexity in biological systems. To investigate whether the evolution of protein-protein interface acts in a similar way as antibody affinity maturation, we incorporated evolutionary information derived from antibody affinity maturation with common simulation techniques to evaluate prediction success rates of the computational method in affinity improvement in four different systems: antibody-receptor, antibody-peptide, receptor-membrane ligand, and receptor-soluble ligand. It was interesting to find that the same evolutionary information could improve the prediction success rates in all the four protein-protein complexes with an exceptional high accuracy (>57%). One of the most striking findings in our present study is that not only in the antibody-combining site but in other protein-protein interfaces almost all of the affinity-enhancing mutations are located at the germline hotspot sequences (RGYW or WA), indicating that DNA hot spot mechanisms may be widely used in the evolution of protein-protein interfaces. Our data suggest that the evolution of distinct protein-protein interfaces may use the same basic strategy under selection pressure to maintain interactions. Additionally, our data indicate that classical simulation techniques incorporating the evolutionary information derived from in vivo antibody affinity maturation can be utilized as a powerful tool to improve the binding affinity of protein-protein complex with a high accuracy.
Collapse
MESH Headings
- Amino Acid Sequence
- Antibodies, Monoclonal/chemistry
- Antibodies, Monoclonal/genetics
- Antibodies, Monoclonal/metabolism
- Antibodies, Monoclonal, Murine-Derived
- Antibody Affinity/genetics
- Antibody Affinity/immunology
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Base Sequence
- Binding Sites/genetics
- CTLA-4 Antigen
- Computer Simulation
- Crystallography, X-Ray
- Evolution, Molecular
- Interleukin-2 Receptor alpha Subunit/chemistry
- Interleukin-2 Receptor alpha Subunit/genetics
- Interleukin-2 Receptor alpha Subunit/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Protein Binding
- Protein Interaction Mapping/methods
- Protein Structure, Tertiary
- Proteins/chemistry
- Proteins/genetics
- Proteins/metabolism
- Rituximab
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Bohua Li
- From the International Joint Cancer Institute and 301 General Hospital Cancer Center, Second Military Medical University, Shanghai 200433; the National Engineering Research Center for Antibody Medicine and Shanghai Key Laboratory of Cell Engineering & Antibody, Shanghai 201203, and
| | - Lei Zhao
- From the International Joint Cancer Institute and 301 General Hospital Cancer Center, Second Military Medical University, Shanghai 200433
| | - Chong Wang
- the School of Medicine and School of Pharmacy, The Center for Antibody Medicine of Ministry of Education, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai 200025, China
| | - Huaizu Guo
- the School of Medicine and School of Pharmacy, The Center for Antibody Medicine of Ministry of Education, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai 200025, China
| | - Lan Wu
- From the International Joint Cancer Institute and 301 General Hospital Cancer Center, Second Military Medical University, Shanghai 200433
| | - Xunming Zhang
- From the International Joint Cancer Institute and 301 General Hospital Cancer Center, Second Military Medical University, Shanghai 200433
| | - Weizhu Qian
- From the International Joint Cancer Institute and 301 General Hospital Cancer Center, Second Military Medical University, Shanghai 200433; the National Engineering Research Center for Antibody Medicine and Shanghai Key Laboratory of Cell Engineering & Antibody, Shanghai 201203, and
| | - Hao Wang
- From the International Joint Cancer Institute and 301 General Hospital Cancer Center, Second Military Medical University, Shanghai 200433; the National Engineering Research Center for Antibody Medicine and Shanghai Key Laboratory of Cell Engineering & Antibody, Shanghai 201203, and
| | - Yajun Guo
- From the International Joint Cancer Institute and 301 General Hospital Cancer Center, Second Military Medical University, Shanghai 200433; the National Engineering Research Center for Antibody Medicine and Shanghai Key Laboratory of Cell Engineering & Antibody, Shanghai 201203, and; the School of Medicine and School of Pharmacy, The Center for Antibody Medicine of Ministry of Education, Shanghai Jiao Tong University, 227 South Chongqing Road, Shanghai 200025, China.
| |
Collapse
|
61
|
Alghisi GC, Rüegg C. Vascular Integrins in Tumor Angiogenesis: Mediators and Therapeutic Targets. ACTA ACUST UNITED AC 2009; 13:113-35. [PMID: 16728329 DOI: 10.1080/10623320600698037] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The notion that tumor angiogenesis may have therapeutic implications in the control of tumor growth was introduced by Dr. Judah Folkman in 1971. The approval of Avastin in 2004 as the first antiangiogenic systemic drug to treat cancer patients came as a validation of this visionary concept and opened new perspectives to the treatment of cancer. In addition, this success boosted the field to the quest for new therapeutic targets and antiangiogenic drugs. Preclinical and clinical evidence indicate that vascular integrins may be valid therapeutic targets. In preclinical studies, pharmacological inhibition of integrin function efficiently suppressed angiogenesis and inhibited tumor progression. alphaVbeta3 and alphaVbeta5 were the first vascular integrins targeted to suppress tumor angiogenesis. Subsequent experiments revealed that at least four additional integrins (i.e., alpha1beta1, alpha2beta1, alpha5beta1, and alpha6beta4) might be potential therapeutic targets. In clinical studies low-molecular-weight integrin inhibitors and anti-integrin function-blocking antibodies demonstrated low toxicity and good tolerability and are now being tested in combination with radiotherapy and chemotherapy for anticancer activity in patients. In this article the authors review the role of integrins in angiogenesis, present recent development in the use of alphaVbeta3 and alpha5beta1 integrin antagonists as potential therapeutics in cancer, and discuss future perspectives.
Collapse
Affiliation(s)
- Gian Carlo Alghisi
- Centre Pluridisciplinaire d'Oncologie (CePO), Faculty of Biology and Medicine, University of Lausanne, Switzerland
| | | |
Collapse
|
62
|
Pedró Rosa LE, Reddy DR, Queener SF, Miller LW. Selective antifolates for chemically labeling proteins in mammalian cells. Chembiochem 2009; 10:1462-4. [PMID: 19437525 DOI: 10.1002/cbic.200900152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laura E Pedró Rosa
- Department of Chemistry, University of Illinois at Chicago, 845 W. Taylor Street, MC111, Chicago, IL 60607, USA
| | | | | | | |
Collapse
|
63
|
Bishop AC, Chen VL. Brought to life: targeted activation of enzyme function with small molecules. J Chem Biol 2008; 2:1-9. [PMID: 19568788 DOI: 10.1007/s12154-008-0012-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Accepted: 09/04/2008] [Indexed: 11/30/2022] Open
Abstract
Cell-permeable small molecules that are capable of activating particular enzymes would be invaluable tools for studying protein function in complex cell-signaling cascades. But, is it feasible to identify compounds that allow chemical-biology researchers to activate specific enzymes in a cellular context? In this review, we describe some recent advances in achieving targeted enzyme activation with small molecules. In addition to surveying progress in the identification and targeting of enzymes that contain natural allosteric-activation sites, we focus on recently developed protein-engineering strategies that allow researchers to render an enzyme of interest "activatable" by a pre-chosen compound. Three distinct strategies for targeting an engineered enzyme are discussed: direct chemical "rescue" of an intentionally inactivated enzyme, activation of an enzyme by targeting a de novo small-molecule-binding site, and the generation of activatable enzymes via fusion of target enzymes to previously characterized small-molecule-binding domains.
Collapse
Affiliation(s)
- Anthony C Bishop
- Department of Chemistry, Amherst College, Amherst, MA, 01002, USA,
| | | |
Collapse
|
64
|
Zhang XY, Chen VL, Rosen MS, Blair ER, Lone AM, Bishop AC. Allele-specific inhibition of divergent protein tyrosine phosphatases with a single small molecule. Bioorg Med Chem 2008; 16:8090-7. [PMID: 18678493 PMCID: PMC2561268 DOI: 10.1016/j.bmc.2008.07.053] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Revised: 07/18/2008] [Accepted: 07/19/2008] [Indexed: 02/06/2023]
Abstract
A central challenge of chemical biology is the development of small-molecule tools for controlling protein activity in a target-specific manner. Such tools are particularly useful if they can be systematically applied to the members of large protein families. Here we report that protein tyrosine phosphatases can be systematically 'sensitized' to target-specific inhibition by a cell-permeable small molecule, Fluorescein Arsenical Hairpin Binder (FlAsH), which does not inhibit any wild-type PTP investigated to date. We show that insertion of a FlAsH-binding peptide at a conserved position in the PTP catalytic-domain's WPD loop confers novel FlAsH sensitivity upon divergent PTPs. The position of the sensitizing insertion is readily identifiable from primary-sequence alignments, and we have generated FlAsH-sensitive mutants for seven different classical PTPs from six distinct subfamilies of receptor and non-receptor PTPs, including one phosphatase (PTP-PEST) whose three-dimensional catalytic-domain structure is not known. In all cases, FlAsH-mediated PTP inhibition was target specific and potent, with inhibition constants for the seven sensitized PTPs ranging from 17 to 370 nM. Our results suggest that a substantial fraction of the PTP superfamily will be likewise sensitizable to allele-specific inhibition; FlAsH-based PTP targeting thus potentially provides a rapid, general means for selectively targeting PTP activity in cell-culture- or model-organism-based signaling studies.
Collapse
Affiliation(s)
- Xin-Yu Zhang
- Amherst College, Department of Chemistry, Amherst, Massachusetts 01002
| | - Vincent L. Chen
- Amherst College, Department of Chemistry, Amherst, Massachusetts 01002
| | - Mari S. Rosen
- Amherst College, Department of Chemistry, Amherst, Massachusetts 01002
| | | | - Anna Mari Lone
- Amherst College, Department of Chemistry, Amherst, Massachusetts 01002
| | - Anthony C. Bishop
- Amherst College, Department of Chemistry, Amherst, Massachusetts 01002
| |
Collapse
|
65
|
Nawaratne V, Leach K, Suratman N, Loiacono RE, Felder CC, Armbruster BN, Roth BL, Sexton PM, Christopoulos A. New Insights into the Function of M4 Muscarinic Acetylcholine Receptors Gained Using a Novel Allosteric Modulator and a DREADD (Designer Receptor Exclusively Activated by a Designer Drug). Mol Pharmacol 2008; 74:1119-31. [DOI: 10.1124/mol.108.049353] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
66
|
Zhang XY, Bishop AC. Engineered Inhibitor Sensitivity in the WPD Loop of a Protein Tyrosine Phosphatase. Biochemistry 2008; 47:4491-500. [DOI: 10.1021/bi800014c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xin-Yu Zhang
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002
| | - Anthony C. Bishop
- Department of Chemistry, Amherst College, Amherst, Massachusetts 01002
| |
Collapse
|
67
|
Abstract
One of the key aims of synthetic biology is to engineer artificial processes inside living cells. This requires components that interact in a predictable manner, both with each other and with existing cellular systems. However, the activity of many components is constrained by their interactions with other cellular molecules and often their roles in maintaining cell health. To escape this limitation, researchers are pursuing an "orthogonal" approach, building a parallel metabolism within the cell. Components of this parallel metabolism can be sourced from evolutionarily distant species or reengineered from existing cellular molecules by using rational design and directed evolution. These approaches allow the study of basic principles in cell biology and the engineering of cells that can function as environmental sensors, simple computers, and drug factories.
Collapse
Affiliation(s)
- Aleksandra Filipovska
- Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Perth, Western Australia, Australia,
- School of Biomedical, Biomolecular and Chemical Sciences, University of Western Australia, Crawley, Western Australia, Australia
| | - Oliver Rackham
- Western Australian Institute for Medical Research and Centre for Medical Research, University of Western Australia, Perth, Western Australia, Australia,
| |
Collapse
|
68
|
Vincent F, Cook SP, Johnson EO, Emmert D, Shah K. Engineering unnatural nucleotide specificity to probe G protein signaling. ACTA ACUST UNITED AC 2007; 14:1007-18. [PMID: 17884633 DOI: 10.1016/j.chembiol.2007.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2007] [Revised: 07/23/2007] [Accepted: 08/01/2007] [Indexed: 11/26/2022]
Abstract
G proteins comprise approximately 0.5% of proteins encoded by mammalian genomes. To date, there exists a lack of small-molecule modulators that could contribute to their functional study. In this report, we present the use of H-Ras to develop a system that answers this need. Small molecules that allow for the highly specific inhibition or activation of the engineered G protein were developed. The rational design preserved binding of the natural substrates to the G protein, and the mutations were functionally innocuous in a cellular context. This tool can be used for isolating specific G protein effectors, as we demonstrate with the identification of Nol1 as a putative effector of H-Ras. Finally, the generalization of this system was confirmed by applying it to Rap1B, suggesting that this method will be applicable to other G proteins.
Collapse
Affiliation(s)
- Fabien Vincent
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907, USA
| | | | | | | | | |
Collapse
|
69
|
Schultz C. Molecular tools for cell and systems biology. HFSP JOURNAL 2007; 1:230-48. [PMID: 19404424 DOI: 10.2976/1.2812442] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Accepted: 10/24/2007] [Indexed: 01/25/2023]
Abstract
The sequencing of the genomes of key organisms and the subsequent identification of genes merely leads us to the next real challenge in modern biology-revealing the precise functions of these genes. Further, detailed knowledge of how the products of these genes behave in space and time is required, including their interactions with other molecules. In order to tackle these considerable tasks, a large and continuously expanding toolbox is required to probe the functions of proteins on a cellular level. Here, the currently available tools are described and future developments are projected. There is no doubt that only the close interplay between the life science disciplines in addition to advances in engineering will be able to meet the challenge.
Collapse
Affiliation(s)
- Carsten Schultz
- Gene Expression Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| |
Collapse
|
70
|
Affiliation(s)
- Michael J Evans
- The Skaggs Institute for Chemical Biology and Departments of Cell Biology and Chemistry, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
71
|
Affiliation(s)
- Daniel P Walsh
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | |
Collapse
|
72
|
Bishop AC, Zhang XY, Lone AM. Generation of inhibitor-sensitive protein tyrosine phosphatases via active-site mutations. Methods 2007; 42:278-88. [PMID: 17532515 PMCID: PMC1950444 DOI: 10.1016/j.ymeth.2007.02.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2007] [Accepted: 02/14/2007] [Indexed: 01/23/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs) catalyze the dephosphorylation of phosphotyrosine, a central control element in mammalian signal transduction. Small-molecule inhibitors that are specific for each cellular PTP would be valuable tools in dissecting phosphorylation networks and for validating PTPs as therapeutic targets. However, the common architecture of PTP active sites impedes the discovery of selective PTP inhibitors. Our laboratory has recently used enzyme/inhibitor-interface engineering to generate selective PTP inhibitors. The crux of the strategy resides in the design of "inhibitor-sensitized" PTPs through protein engineering of a novel binding pocket in the target PTP. "Allele-specific" inhibitors that selectively target the sensitized PTP can be synthesized by modifying broad-specificity inhibitors with bulky chemical groups that are incompatible with wild-type PTP active sites; alternatively, specific inhibitors that serendipitously recognize the sensitized PTP's non-natural pocket may be discovered from panels of "non-rationally" designed compounds. In this review, we describe the current state of the PTP-sensitization strategy, with emphases on the methodology of identifying PTP-sensitizing mutations and synthesizing the compounds that have been found to target PTPs in an allele-specific manner. Moreover, we discuss the scope of PTP sensitization in regard to the potential application of the approach across the family of classical PTPs.
Collapse
Affiliation(s)
- Anthony C Bishop
- Department of Chemistry, Amherst College, Amherst, MA 01002, USA.
| | | | | |
Collapse
|
73
|
Jaru-Ampornpan P, Chandrasekar S, Shan SO. Efficient interaction between two GTPases allows the chloroplast SRP pathway to bypass the requirement for an SRP RNA. Mol Biol Cell 2007; 18:2636-45. [PMID: 17475780 PMCID: PMC1924832 DOI: 10.1091/mbc.e07-01-0037] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2007] [Revised: 04/18/2007] [Accepted: 04/20/2007] [Indexed: 11/11/2022] Open
Abstract
Cotranslational protein targeting to membranes is regulated by two GTPases in the signal recognition particle (SRP) and the SRP receptor; association between the two GTPases is slow and is accelerated 400-fold by the SRP RNA. Intriguingly, the otherwise universally conserved SRP RNA is missing in a novel chloroplast SRP pathway. We found that even in the absence of an SRP RNA, the chloroplast SRP and receptor GTPases can interact efficiently with one another; the kinetics of interaction between the chloroplast GTPases is 400-fold faster than their bacterial homologues, and matches the rate at which the bacterial SRP and receptor interact with the help of SRP RNA. Biochemical analyses further suggest that the chloroplast SRP receptor is pre-organized in a conformation that allows optimal interaction with its binding partner, so that conformational changes during complex formation are minimized. Our results highlight intriguing differences between the classical and chloroplast SRP and SRP receptor GTPases, and help explain how the chloroplast SRP pathway can mediate efficient targeting of proteins to the thylakoid membrane in the absence of the SRP RNA, which plays an indispensable role in all the other SRP pathways.
Collapse
Affiliation(s)
- Peera Jaru-Ampornpan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
74
|
Biggins JB, Hashimoto A, Koh JT. Photocaged Agonist for an Analogue-Specific form of the Vitamin D Receptor. Chembiochem 2007; 8:799-803. [PMID: 17393546 DOI: 10.1002/cbic.200600497] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nuclear hormone receptors (NHRs) represent a diverse class of ligand-dependent transcriptional regulators. NHRs that have been rendered functionally inactive due to mutations that abrogate proper ligand binding can often be rescued by appropriately designed hormone analogues. The analogue-specific receptor-ligand pairs provide an ideal platform from which to develop new chemogenomic tools for the spatial and temporal control of gene expression. Here, we describe the synthesis and in vitro assessment of a photocaged VDR agonist specific to a mutant NHR that is associated with vitamin D-resistant rickets. The results provide insight into the utility of the agonist as a potential tool for photoinduced gene patterning.
Collapse
Affiliation(s)
- John B Biggins
- Department of Chemistry and Biochemistry, University of Delaware, Brown Laboratories, Newark, DE 19716, USA
| | | | | |
Collapse
|
75
|
Jiang S, DiPaolo J, Currie K, Alderucci S, Ramamurthy A, Peppers J, Qian X, Qian D, Awad T, Velleca M, Whitney JA. Chemical genetic transcriptional fingerprinting for selectivity profiling of kinase inhibitors. Assay Drug Dev Technol 2007; 5:49-64. [PMID: 17355199 DOI: 10.1089/adt.2006.032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
The importance of protein kinases as a major class of drug targets across multiple diseases has generated a critical need for technologies that enable the identification of potent and selective kinase inhibitors. Bruton's tyrosine kinase (Btk) is a compelling drug target in multiple therapeutic areas, including systemic lupus erythematosus, asthma, rheumatoid arthritis, and B cell malignancies. We have combined potent, selective kinase inhibition through chemical genetics with gene expression profiling to identify a "fingerprint" of transcriptional changes associated with selective Btk kinase inhibition. The Btk transcriptional fingerprint shows remarkable relevance for Btk's biological roles and was used for functional selectivity profiling of two kinase inhibitor compounds. The fingerprint was able to rank the compounds by relative selectivity for Btk, and revealed broader off-target effects than observed in a broad panel of biochemical kinase cross screens. In addition to being useful for functional selectivity profiling, the fingerprint genes are themselves potential preclinical and clinical biomarkers for developing Btk-directed therapies.
Collapse
Affiliation(s)
- Shan Jiang
- CGI Pharmaceuticals, Inc., Branford, CT 06405, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Coffinier Y, Szunerits S, Jama C, Desmet R, Melnyk O, Marcus B, Gengembre L, Payen E, Delabouglise D, Boukherroub R. Peptide immobilization on amine-terminated boron-doped diamond surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2007; 23:4494-7. [PMID: 17367174 DOI: 10.1021/la063440y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
This paper reports on the formation and characterization of semicarbazide termination on aminated boron-doped diamond (BDD) surfaces, and further preparation of peptide microarray through site-specific alpha-oxo semicarbazone ligation. Hydrogen-terminated BDD electrodes were first aminated using NH3 plasma treatment and then reacted with triphosgene and Fmoc-protected hydrazine to yield a protected semicarbazide termination. Subsequent deprotection and chemical reaction with glyoxylyl peptides led to the covalent immobilization of the peptides on the surface through site-specific ligation. The resulting surfaces were characterized using X-ray photoelectron spectroscopy (XPS) and fluorescence measurements.
Collapse
Affiliation(s)
- Yannick Coffinier
- Institut de Recherche Interdisciplinaire (IRI, FRE2963) and Institut d'Electronique, de Microélectronique et de Nanotechnologie (IEMN), Cité Scientifique, Avenue Poincaré - BP. 60069, 59652 Villeneuve d'Ascq, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Abstract
Genetics and pharmacology can elicit surprisingly different phenotypes despite targeting the same protein. This Essay explores these unexpected differences and their implications for biology and medicine.
Collapse
Affiliation(s)
- Zachary A Knight
- Howard Hughes Medical Institute, Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94143, USA
| | | |
Collapse
|
78
|
Armbruster BN, Li X, Pausch MH, Herlitze S, Roth BL. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 2007; 104:5163-8. [PMID: 17360345 PMCID: PMC1829280 DOI: 10.1073/pnas.0700293104] [Citation(s) in RCA: 1449] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
We evolved muscarinic receptors in yeast to generate a family of G protein-coupled receptors (GPCRs) that are activated solely by a pharmacologically inert drug-like and bioavailable compound (clozapine-N-oxide). Subsequent screening in human cell lines facilitated the creation of a family of muscarinic acetylcholine GPCRs suitable for in vitro and in situ studies. We subsequently created lines of telomerase-immortalized human pulmonary artery smooth muscle cells stably expressing all five family members and found that each one faithfully recapitulated the signaling phenotype of the parent receptor. We also expressed a G(i)-coupled designer receptor in hippocampal neurons (hM(4)D) and demonstrated its ability to induce membrane hyperpolarization and neuronal silencing. We have thus devised a facile approach for designing families of GPCRs with engineered ligand specificities. Such reverse-engineered GPCRs will prove to be powerful tools for selectively modulating signal-transduction pathways in vitro and in vivo.
Collapse
Affiliation(s)
| | | | - Mark H. Pausch
- Discovery Neuroscience, Wyeth Research, Princeton, NJ 08543-8000; and
| | | | - Bryan L. Roth
- Departments of *Biochemistry
- Neurosciences, and
- Psychiatry, Case Western Reserve University School of Medicine, Cleveland, OH 44106
- Department of Pharmacology, University of North Carolina Medical School, Chapel Hill, NC 27705
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
79
|
Bond MR, Kohler JJ. Chemical methods for glycoprotein discovery. Curr Opin Chem Biol 2007; 11:52-8. [PMID: 17174139 DOI: 10.1016/j.cbpa.2006.11.032] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2006] [Accepted: 11/14/2006] [Indexed: 01/02/2023]
Abstract
An important frontier in glycoproteomics is the discovery of proteins with post-translational glycan modifications. The first step in glycoprotein identification is the isolation of glycosylated proteins from the remainder of the proteome. New enzymatic and metabolic methods are being used to chemically tag proteins to enable their isolation. Once isolated, glycoproteins can be identified by mass spectrometry. Additional information can be obtained by using either enzymatic or chemoselective reactions to incorporate isotope labels at specific sites of glycosylation. Isotopic labeling facilitates mass spectrometry-based confirmation of glycoprotein identity, identification of glycosylation sites, and quantification of the extent of modification. By combining chemical tagging for isolation and isotope labeling for mass spectrometry analysis, researchers are developing highly effective strategies for glycoproteomics. These techniques are enabling cancer biologists to identify biomarkers whose glycosylation state correlates with disease states, and developmental biologists to characterize stage-specific changes in glycoprotein expression. Next-generation methods will make functional analyses of the glycoproteome possible, including the discovery of glycoprotein interaction partners and the identification of enzymes responsible for synthesis of particular glycan structures.
Collapse
Affiliation(s)
- Michelle R Bond
- Department of Chemistry, Stanford University, Keck Science Building, Stanford, CA 94305, USA
| | | |
Collapse
|
80
|
Simon MD, Feldman ME, Rauh D, Maris AE, Wemmer DE, Shokat KM. Structure and properties of a re-engineered homeodomain protein-DNA interface. ACS Chem Biol 2006; 1:755-60. [PMID: 17240973 DOI: 10.1021/cb6003756] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The homeodomain (HD)-DNA interface has been conserved over 500 million years of evolution. Despite this conservation, we have successfully re-engineered the engrailed HD to specifically recognize an unnatural nucleotide using a phage display selection. Here we report the synthesis of novel nucleosides and the selection of mutant HDs that bind these nucleotides using phage display. The high-resolution crystal structure of one mutant in complex with modified and unmodified DNA demonstrates that, even with the substantial perturbation to the interface, this selected mutant retains a canonical HD structure. Dissection of the contributions due to each of the selected mutations reveals that the majority of the modification-specific binding is accomplished by a single mutation (I47G) but that the remaining mutations retune the stability of the HD. These results afford a detailed look at a re-engineered protein-DNA interaction and provide insight into the opportunities for re-engineering highly conserved interfaces.
Collapse
|
81
|
Bishop AC, Blair ER. A gatekeeper residue for inhibitor sensitization of protein tyrosine phosphatases. Bioorg Med Chem Lett 2006; 16:4002-6. [PMID: 16716588 DOI: 10.1016/j.bmcl.2006.05.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2006] [Revised: 05/02/2006] [Accepted: 05/03/2006] [Indexed: 11/23/2022]
Abstract
Allele-specific enzyme inhibitors are powerful tools in chemical biology. However, few general approaches for the discovery of such inhibitors have been described. Herein is reported a method for the sensitization of protein tyrosine phosphatases (PTPs) to small-molecule inhibition. It is shown that mutation of an active-site isoleucine to alanine (I219A) sensitizes PTP1B to inhibition by a class of thiophene-based inhibitors. This sensitization strategy succeeds for both 'orthogonal' inhibitors, designed to be incompatible with wild-type PTP active sites, and previously optimized wild-type PTP inhibitors. The finding that the I219A mutation sensitizes phosphatase domains to a variety of compounds suggests that isoleucine 219 may act as a 'gatekeeper' residue that can be widely exploited for the chemical-genetic analysis of PTP function.
Collapse
Affiliation(s)
- Anthony C Bishop
- Department of Chemistry, Amherst College, Amherst, MA 01002, USA.
| | | |
Collapse
|
82
|
Tate EW. Chemical intervention in signalling networks: recent advances and applications. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/sita.200500075] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
83
|
Saraf MC, Moore GL, Goodey NM, Cao VY, Benkovic SJ, Maranas CD. IPRO: an iterative computational protein library redesign and optimization procedure. Biophys J 2006; 90:4167-80. [PMID: 16513775 PMCID: PMC1459523 DOI: 10.1529/biophysj.105.079277] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A number of computational approaches have been developed to reengineer promising chimeric proteins one at a time through targeted point mutations. In this article, we introduce the computational procedure IPRO (iterative protein redesign and optimization procedure) for the redesign of an entire combinatorial protein library in one step using energy-based scoring functions. IPRO relies on identifying mutations in the parental sequences, which when propagated downstream in the combinatorial library, improve the average quality of the library (e.g., stability, binding affinity, specific activity, etc.). Residue and rotamer design choices are driven by a globally convergent mixed-integer linear programming formulation. Unlike many of the available computational approaches, the procedure allows for backbone movement as well as redocking of the associated ligands after a prespecified number of design iterations. IPRO can also be used, as a limiting case, for the redesign of a single or handful of individual sequences. The application of IPRO is highlighted through the redesign of a 16-member library of Escherichia coli/Bacillus subtilis dihydrofolate reductase hybrids, both individually and through upstream parental sequence redesign, for improving the average binding energy. Computational results demonstrate that it is indeed feasible to improve the overall library quality as exemplified by binding energy scores through targeted mutations in the parental sequences.
Collapse
Affiliation(s)
- Manish C Saraf
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | | | | | | | | | | |
Collapse
|
84
|
Juris SJ, Shah K, Shokat K, Dixon JE, Vacratsis PO. Identification of otubain 1 as a novel substrate for theYersiniaprotein kinase using chemical genetics and mass spectrometry. FEBS Lett 2005; 580:179-83. [PMID: 16364312 DOI: 10.1016/j.febslet.2005.11.071] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2005] [Revised: 11/23/2005] [Accepted: 11/29/2005] [Indexed: 10/25/2022]
Abstract
Yersinia encodes a protein kinase, YpkA, which disrupts the actin cytoskeleton. Using an approach termed chemical genetics, we identified a 36-kDa substrate for YpkA in both J774 lysates and bovine brain cytosol. Mass spectrometry analysis identified this substrate as FLJ20113, an open reading frame that corresponds to otubain 1, a deubiquitinating enzyme implicated in immune cell clonal anergy. We demonstrate that otubain 1 is phosphorylated by YpkA in vitro and interacts with YpkA and actin in vivo. Identification of otubain 1 as a YpkA substrate suggests that regulation of immune cell anergy may be a survival mechanism for Yersinia.
Collapse
Affiliation(s)
- Stephen J Juris
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Avenue, Windsor, Ont., Canada N9B3P4
| | | | | | | | | |
Collapse
|
85
|
Hang HC, Bertozzi CR. The chemistry and biology of mucin-type O-linked glycosylation. Bioorg Med Chem 2005; 13:5021-34. [PMID: 16005634 DOI: 10.1016/j.bmc.2005.04.085] [Citation(s) in RCA: 203] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 04/26/2005] [Indexed: 02/04/2023]
Abstract
Mucin-type O-linked glycosylation is a fundamental post-translational modification that is involved in a variety of important biological processes. However, the lack of chemical tools to study mucin-type O-linked glycosylation has hindered our molecular understanding of O-linked glycans in many biological contexts. The review discusses the significance of mucin-type O-linked glycosylation initiated by the polypeptide N-acetylgalactosaminyltransferases in biology and development of chemical tools to study these enzymes and their substrates.
Collapse
Affiliation(s)
- Howard C Hang
- Department of Chemistry, University of California, Berkeley 94720-1460, USA.
| | | |
Collapse
|
86
|
Hillebrand S, Garcia W, Delmar Cantú M, de Araújo APU, Tanaka M, Tanaka T, Garratt RC, Carrilho E. In vitro monitoring of GTPase activity and enzyme kinetics studies using capillary electrophoresis. Anal Bioanal Chem 2005; 383:92-7. [PMID: 16041603 DOI: 10.1007/s00216-005-3375-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 05/21/2005] [Accepted: 06/01/2005] [Indexed: 11/25/2022]
Abstract
A capillary electrophoresis (CE)-based method for the in vitro detection and monitoring of nucleotide-triphosphatase activity is described. This robust and reproducible method was used to investigate GTPase activity of a recombinant protein construct containing the catalytic domain of Human SEPT4/Bradeion beta (GST-rDGTPase). This example application demonstrates that the CE technique can replace classical radioactive methods for GTPase activity assays and may be used as a routine analytical tool. Enzyme kinetics of GST-rDGTPase was studied and yielded the following kinetic parameters: v(max) = 1.7 microM min(-1) +/- 0.1, Km = 1.0 mM +/- 0.3, and apKcat = 9 x 10(-3) s(-1). In addition the effect of co-factors such as Mg2+ and Mn2+ on the catalytic activity was investigated. The described analytical method was also shown to be useful to analyze diphosphated and triphosphated forms of other nucleotides.
Collapse
Affiliation(s)
- Sandro Hillebrand
- Centro de Biotecnologia Molecular e Estrutural, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Chockalingam K, Zhao H. Creating new specific ligand-receptor pairs for transgene regulation. Trends Biotechnol 2005; 23:333-5. [PMID: 15978316 DOI: 10.1016/j.tibtech.2005.05.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 03/21/2005] [Accepted: 05/05/2005] [Indexed: 11/18/2022]
Abstract
The creation of specifically matched ligand-receptor pairs that are orthogonal to naturally present interacting pairs is essential for the development of small molecule-regulated gene expression systems for biotechnological applications. However, for many years this task has represented a significant challenge for synthetic chemists and protein engineers. Recently, Doyle and colleagues demonstrated that highly specific ligand-receptor pairs can be engineered in a rapid fashion by creating large libraries of protein variants and applying a selection scheme to identify variants with improved activation by the target synthetic ligand.
Collapse
Affiliation(s)
- Karuppiah Chockalingam
- Department of Chemical Engineering and Biomolecular Engineering, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
88
|
Blair ER, Hoffman HE, Bishop AC. Engineering non-natural inhibitor sensitivity in protein tyrosine phosphatase H1. Bioorg Med Chem 2005; 14:464-71. [PMID: 16182535 DOI: 10.1016/j.bmc.2005.08.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 08/11/2005] [Accepted: 08/11/2005] [Indexed: 01/10/2023]
Abstract
Protein tyrosine phosphatase H1, a member of the ubiquitous protein tyrosine phosphatase (PTP) superfamily of enzymes, is an important signaling molecule, mutant forms of which have been found in human colorectal cancers. Selective PTPH1 inhibitors would be valuable tools for investigating PTPH1's roles in cellular regulation. However, no PTPH1-specific inhibitors are known. To identify target-selective inhibitors of human PTPH1, we have redesigned a PTPH1/inhibitor interface. Structure-based protein design was used to identify two amino-acid residues, isoleucine 846 and methionine 883, that control PTPH1's sensitivity to oxalylaminoindole PTP inhibitors. Mutation of residues 846 and 883 to alanine and glycine, respectively, conferred novel inhibitor sensitivity onto PTPH1. From a small panel of putative inhibitors, compounds that potently and selectively target the inhibitor-sensitized PTPH1 mutants were identified.
Collapse
|
89
|
Abstract
Chemical genetics is an emerging approach for studying biological systems using chemical tools. This strategy aims to reveal the macromolecules responsible for regulating biological systems; thus, the approach shares much in common with genetics. In both strategies, one must (a) develop an assay that reports on a biological process of interest, (b) perturb this process systematically (with mutations or small molecules), and (c) determine the target of each perturbation to reveal macromolecules (i.e., proteins and genes) regulating the process of interest. In this review, we discuss advances and challenges in this field that have emerged over the past four years. Several technologies have converged, raising the hope that it may be possible to systematically apply chemical probes to biological processes.
Collapse
Affiliation(s)
- Inese Smukste
- Department of Biological Sciences and Department of Chemistry, Columbia University, Fairchild Center, New York, New York 10027, USA
| | | |
Collapse
|
90
|
Copper catalyzed arylation with boronic acids for the synthesis of N1-aryl purine nucleosides. Tetrahedron Lett 2005. [DOI: 10.1016/j.tetlet.2005.06.083] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
91
|
Petersen SG, Rajski SR. o-Nitrobenzenesulfonamides in Nucleoside Synthesis: Efficient 5‘-Aziridination of Adenosine. J Org Chem 2005; 70:5833-9. [PMID: 16018675 DOI: 10.1021/jo050205w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
5'-Aziridinoadenylates of the form 1 and a related nitrogen mustard variant have been constructed using a novel variation of the Mitsunobu reaction. Such molecules allow conversion of biological methyltransferases into nucleoside transferases, thus providing powerful tools for investigating S-adenosyl-l-methionine (SAM)-dependent methylation. We present here a highly effective synthesis of such molecules that is amenable to aziridine diversification as well as elaboration of the base moiety so as to afford "bumped" cofactor mimics compatible with "hole"-bearing mutant proteins.
Collapse
Affiliation(s)
- Scott G Petersen
- The School of Pharmacy and Department of Chemistry, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705-2222, USA
| | | |
Collapse
|
92
|
Shan SO, Walter P. Molecular crosstalk between the nucleotide specificity determinant of the SRP GTPase and the SRP receptor. Biochemistry 2005; 44:6214-22. [PMID: 15835909 DOI: 10.1021/bi0500980] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In signal recognition particle (SRP)-dependent targeting of proteins to the bacterial plasma membrane, two GTPases, Ffh (the SRP GTPase) and FtsY (the receptor GTPase), form a complex in which both proteins reciprocally stimulate each other's GTPase activities. We mutated Asp251 in the Ffh active site to Asn (D251N), converting Ffh to a xanthosine 5'-triphosphate (XTP)-specific protein as has been observed in many other GTPases. Unexpectedly, mutant SRP(D251N) is severely compromised in the formation of an active SRP.FtsY complex when bound with cognate XTP, and even more surprisingly, mutant SRP(D251N) works better when bound with noncognate GTP. These paradoxical results are explained by a model in which Ffh Asp251 forms a bidentate interaction with not only the bound GTP but also the receptor FtsY across the dimer interface. These interactions form part of the network that seals the lateral entrance to the composite active site at the dimer interface, thereby ensuring the electrostatic and/or structural integrity of the active site and contributing to the formation of an active SRP.FtsY complex.
Collapse
Affiliation(s)
- Shu-ou Shan
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, California 94143-2200, USA.
| | | |
Collapse
|
93
|
Abstract
A major challenge in biology is the discovery of the processes controlled by the roughly one-third of genes with no known function. One approach being explored to address this problem is the use of small molecules in conjunction with genetics-chemical genetics. A short review of this field is provided as an introduction to a series of papers in this issue of Cell in which a new type of chemical genetics revealed the function of a new outer membrane protein complex in bacteria.
Collapse
Affiliation(s)
- Kevan M Shokat
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, California 94143, USA.
| |
Collapse
|
94
|
Jones MH, Huneycutt BJ, Pearson CG, Zhang C, Morgan G, Shokat K, Bloom K, Winey M. Chemical genetics reveals a role for Mps1 kinase in kinetochore attachment during mitosis. Curr Biol 2005; 15:160-5. [PMID: 15668173 DOI: 10.1016/j.cub.2005.01.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 11/11/2004] [Accepted: 11/12/2004] [Indexed: 11/21/2022]
Abstract
Accurate chromosome segregation depends on proper assembly and function of the kinetochore and the mitotic spindle. In the budding yeast, Saccharomyces cerevisiae, the highly conserved protein kinase Mps1 has well-characterized roles in spindle pole body (SPB, yeast centrosome equivalent) duplication and the mitotic checkpoint. However, an additional role for Mps1 is suggested by phenotypes of MPS1 mutations that include genetic interactions with kinetochore mutations and meiotic chromosome segregation defects and also by the localization of Mps1 at the kinetochore, the latter being independent of checkpoint activation. We have developed a new MPS1 allele, mps1-as1, that renders the kinase specifically sensitive to a cell-permeable ATP analog inhibitor, allowing us to perform high-resolution execution point experiments that identify a novel role for Mps1 subsequent to SPB duplication. We demonstrate, by using both fixed- and live-cell fluoresence techniques, that cells lacking Mps1 function show severe defects in mitotic spindle formation, sister kinetochore positioning at metaphase, and chromosome segregation during anaphase. Taken together, our experiments are consistent with an important role for Mps1 at the kinetochore in mitotic spindle assembly and function.
Collapse
Affiliation(s)
- Michele H Jones
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Boulder, CO 80309-0347, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Chockalingam K, Chen Z, Katzenellenbogen JA, Zhao H. Directed evolution of specific receptor-ligand pairs for use in the creation of gene switches. Proc Natl Acad Sci U S A 2005; 102:5691-6. [PMID: 15811944 PMCID: PMC556283 DOI: 10.1073/pnas.0409206102] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite their versatility and power in controlling gene regulation in nature, nuclear hormone receptors (NHRs) have largely eluded utility in heterologous gene regulation applications such as gene therapy and metabolic engineering. The main reason for this void is the pleiotropic interference of the receptor-ligand combination with regulatory networks in the host organism. In recent years, numerous strategies have been developed to engineer ligand-receptor pairs that do not cross-interact with host regulatory pathways. However, these strategies have either met with limited success or cannot be readily extended to other ligand-receptor pairs. Here, we present a simple, effective, and readily generalizable strategy for reengineering NHRs to respond specifically to a selected synthetic ligand. The method involves generation of genetic diversity by stepwise individual site saturation mutagenesis of a fixed set of ligand-contacting residues and random point mutagenesis, followed by phenotypic screening based on a yeast two-hybrid system. As a test case, this method was used to alter the specificity of the NHR human estrogen receptor alpha in favor of the synthetic ligand 4,4'-dihydroxybenzil, relative to the natural ligand 17beta-estradiol, by >10(7)-fold. The resulting ligand-receptor pair is highly sensitive to the synthetic ligand in human endometrial cancer cells and is essentially fully orthogonal to the wild-type receptor-natural ligand pair. This method should provide a powerful, broadly applicable tool for engineering receptors/enzymes with improved or novel ligand/substrate specificity.
Collapse
Affiliation(s)
- Karuppiah Chockalingam
- Department of Chemical Engineering and Biomolecular Engineering, Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | |
Collapse
|
96
|
Gillespie PG. Myosin I and adaptation of mechanical transduction by the inner ear. Philos Trans R Soc Lond B Biol Sci 2005; 359:1945-51. [PMID: 15647170 PMCID: PMC1693471 DOI: 10.1098/rstb.2004.1564] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Twenty years ago, the description of hair-cell stereocilia as actin-rich structures led to speculation that myosin molecules participated in mechanical transduction in the inner ear. In 1987, Howard and Hudspeth proposed specifically that a myosin I might mediate adaptation of the transduction current carried by hair cells, the sensory cells of the ear. We exploited the myosin literature to design tests of this hypothesis and to show that the responsible isoform is myosin 1c. The identification of this myosin as the adaptation motor would have been impossible without thorough experimentation on other myosins, particularly muscle myosins. The sliding-filament hypothesis for muscle contraction has thus led to a detailed understanding of the behaviour of hair cells.
Collapse
Affiliation(s)
- Peter G Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA.
| |
Collapse
|
97
|
Shan SO, Walter P. Co-translational protein targeting by the signal recognition particle. FEBS Lett 2005; 579:921-6. [PMID: 15680975 DOI: 10.1016/j.febslet.2004.11.049] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Revised: 11/02/2004] [Accepted: 11/22/2004] [Indexed: 11/21/2022]
Abstract
The signal recognition particle (SRP) mediates the co-translational targeting of nascent proteins to the eukaryotic endoplasmic reticulum membrane, or the bacterial plasma membrane. During this process, two GTPases, one in the SRP and one in the SRP receptor (SR), form a complex in which both proteins reciprocally activate the GTPase reaction of one another. The recent crystal structures of the T. aquaticus SRP.SR complex show that the two GTPases associate via an unusually extensive and highly cooperative interaction surface, and form a composite active site at the interface. GTPase activation proceeds through a unique mechanism, stimulated by both interactions between the twinned GTP molecules across the dimer interface and by conformational rearrangements that position catalytic residues in each active site with respect to the bound substrates. Distinct classes of mutations have been isolated that inhibit specific stages during SRP-SR complex formation and activation, suggesting discrete conformational stages during formation of the active SRP.SR complex. Each stage provides a potential control point in the targeting reaction at which regulation by additional components can be exerted, thus ensuring the binding and release of cargo at the appropriate time.
Collapse
Affiliation(s)
- Shu-ou Shan
- Howard Hughes Medical Institute, Department of Biochemistry and Biophysics, University of California, San Francisco, USA
| | | |
Collapse
|
98
|
Buskirk AR, Liu DR. Creating Small-Molecule-Dependent Switches to Modulate Biological Functions. ACTA ACUST UNITED AC 2005; 12:151-61. [PMID: 15734643 DOI: 10.1016/j.chembiol.2004.11.012] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 11/17/2004] [Accepted: 11/19/2004] [Indexed: 01/24/2023]
Abstract
Biological small-molecule-dependent switches sense external chemical signals and transduce them into appropriate internal signals and cellular responses. Artificial molecular switches that control the function of any protein of interest using a small molecule are powerful tools for studying biology because they enable cellular responses to be controlled by inputs chosen by researcher. Furthermore, these switches can combine the generality of genetic regulation with the reversibility and temporal control afforded by small molecules. Three approaches to creating molecular switches include altering a natural switch to recognize new exogenous ligands, engineering novel allosteric responses to ligand binding, or enforcing protein localization with chemical dimerizers. Here, we discuss the development of small-molecule-dependent switches that control in a general fashion transcriptional activation, translational initiation, and protein activity posttranslationally.
Collapse
Affiliation(s)
- Allen R Buskirk
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, Utah 84602, USA
| | | |
Collapse
|
99
|
Verkhivker GM. Computational analysis of ligand binding dynamics at the intermolecular hot spots with the aid of simulated tempering and binding free energy calculations. J Mol Graph Model 2004; 22:335-48. [PMID: 15099830 DOI: 10.1016/j.jmgm.2003.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Equilibrium binding dynamics is studied for a panel of benzimidazole-containing compounds at the remodeled interface between human growth hormone (hGH) and the extracellular domain of its receptor (hGHbp), engineered by mutating to glycine hot spot residues T175 from the hormone and W104 from the receptor. Binding energetics is predicted in a good agreement with the experimental data for a panel of these small molecules that complement the engineered defect and restore the binding affinity of the wild-type hGH-hGHbp complex. The results of simulated tempering ligand dynamics at the protein-protein interface reveals a diversity of ligand binding modes that is consistent with the structural orientation of the benzimidazole ring which closely mimics the position of the mutated W104 hot spot residue in the wild-type hGH-hGHbp complex. This structural positioning of the benzimidazole core motif is shown to be a critical feature of the low-energy ligand conformations binding in the engineered cavity. The binding free energy analysis provides a plausible rationale behind the experimental dissociation constants and suggests a key role of ligand-protein van der Waals interactions in restoring binding affinity.
Collapse
Affiliation(s)
- Gennady M Verkhivker
- Pfizer Global Research and Development, La Jolla Laboratories, 10777 Science Center Drive, San Diego, CA 92121-1111, USA.
| |
Collapse
|
100
|
de Graffenried CL, Laughlin ST, Kohler JJ, Bertozzi CR. A small-molecule switch for Golgi sulfotransferases. Proc Natl Acad Sci U S A 2004; 101:16715-20. [PMID: 15548609 PMCID: PMC534710 DOI: 10.1073/pnas.0403681101] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2004] [Indexed: 12/28/2022] Open
Abstract
The study of glycan function is a major frontier in biology that could benefit from small molecules capable of perturbing carbohydrate structures on cells. The widespread role of sulfotransferases in modulating glycan function makes them prime targets for small-molecule modulators. Here, we report a system for conditional activation of Golgi-resident sulfotransferases using a chemical inducer of dimerization. Our approach capitalizes on two features shared by these enzymes: their requirement of Golgi localization for activity on cellular substrates and the modularity of their catalytic and localization domains. Fusion of these domains to the proteins FRB and FKBP enabled their induced assembly by the natural product rapamycin. We applied this strategy to the GlcNAc-6-sulfotransferases GlcNAc6ST-1 and GlcNAc6ST-2, which collaborate in the sulfation of L-selectin ligands. Both the activity and specificity of the inducible enzymes were indistinguishable from their WT counterparts. We further generated rapamycin-inducible chimeric enzymes comprising the localization domain of a sulfotransferase and the catalytic domain of a glycosyltransferase, demonstrating the generality of the system among other Golgi enzymes. The approach provides a means for studying sulfate-dependent processes in cellular systems and, potentially, in vivo.
Collapse
|