51
|
Fleischer J, Krieger J. Insect Pheromone Receptors - Key Elements in Sensing Intraspecific Chemical Signals. Front Cell Neurosci 2018; 12:425. [PMID: 30515079 PMCID: PMC6255830 DOI: 10.3389/fncel.2018.00425] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/30/2018] [Indexed: 12/20/2022] Open
Abstract
Pheromones are chemicals that serve intraspecific communication. In animals, the ability to detect and discriminate pheromones in a complex chemical environment substantially contributes to the survival of the species. Insects widely use pheromones to attract mating partners, to alarm conspecifics or to mark paths to rich food sources. The various functional roles of pheromones for insects are reflected by the chemical diversity of pheromonal compounds. The precise detection of the relevant intraspecific signals is accomplished by specialized chemosensory neurons housed in hair-like sensilla located on the surface of body appendages. Current data indicate that the extraordinary sensitivity and selectivity of the pheromone-responsive neurons (PRNs) is largely based on specific pheromone receptors (PRs) residing in their ciliary membrane. Besides these key elements, proper ligand-induced responses of PR-expressing neurons appear to generally require a putative co-receptor, the so-called "sensory neuron membrane protein 1" (SNMP1). Regarding the PR-mediated chemo-electrical signal transduction processes in insect PRNs, ionotropic as well as metabotropic mechanisms may be involved. In this review, we summarize and discuss current knowledge on the peripheral detection of pheromones in the olfactory system of insects with a focus on PRs and their specific role in the recognition and transduction of volatile intraspecific chemical signals.
Collapse
Affiliation(s)
- Jörg Fleischer
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Jürgen Krieger
- Department of Animal Physiology, Institute of Biology/Zoology, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
52
|
Environmentally vulnerable noble chafers exhibit unusual pheromone-mediated behaviour. PLoS One 2018; 13:e0206526. [PMID: 30383860 PMCID: PMC6211686 DOI: 10.1371/journal.pone.0206526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 10/08/2018] [Indexed: 11/19/2022] Open
Abstract
Conserving populations of environmentally vulnerable insect species requires a greater understanding of the factors that determine their abundance and distribution, which requires detailed knowledge of their population and community ecology. Chemical ecological tools such as pheromones can be used for non-destructive monitoring of scarab beetle populations, enabling European countries to detect and, in some cases, map the range of some of these species, proving a valuable technique for monitoring elusive saproxylic beetles. In this paper, we investigated the behavioural and chemical ecology of the noble chafer, Gnorimus nobilis L., a model insect species of conservation concern across a Europe-wide distribution, and a red-listed UK Biodiversity Action Plan priority species. We identified a potential pheromone of adult beetles using electrophysiological recordings, behavioural measurements and field trials in the UK. Gnorimus nobilis is highly unusual in that although both sexes produce, at high metabolic cost, the natural product 2-propyl (E)-3-hexenoate, it only attracts males. This pattern of chemical signalling makes the classification of the compound, based on current semiochemical terminology, somewhat problematic, but in our view, it should be termed an aggregation pheromone as a consequence of the production pattern. Since both sexes emit it, but apparently only males respond positively to it, 2-propyl (E)-3-hexenoate may reflect an intermediate evolutionary stage towards developing into a sex-specific signal. From an applied perspective, our study provides a model for the non-invasive surveillance of cryptic vulnerable insect species, without the need for habitat searching or disturbance, and continuous human monitoring.
Collapse
|
53
|
Everaerts C, Cazalé-Debat L, Louis A, Pereira E, Farine JP, Cobb M, Ferveur JF. Pre-imaginal conditioning alters adult sex pheromone response in Drosophila. PeerJ 2018; 6:e5585. [PMID: 30280017 PMCID: PMC6164551 DOI: 10.7717/peerj.5585] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/15/2018] [Indexed: 11/20/2022] Open
Abstract
Pheromones are chemical signals that induce innate responses in individuals of the same species that may vary with physiological and developmental state. In Drosophila melanogaster, the most intensively studied pheromone is 11-cis-vaccenyl acetate (cVA), which is synthezised in the male ejaculatory bulb and is transferred to the female during copulation. Among other effects, cVA inhibits male courtship of mated females. We found that male courtship inhibition depends on the amount of cVA and this effect is reduced in male flies derived from eggs covered with low to zero levels of cVA. This effect is not observed if the eggs are washed, or if the eggs are laid several days after copulation. This suggests that courtship suppression involves a form of pre-imaginal conditioning, which we show occurs during the early larval stage. The conditioning effect could not be rescued by synthetic cVA, indicating that it largely depends on conditioning by cVA and other maternally-transmitted factor(s). These experiments suggest that one of the primary behavioral effects of cVA is more plastic and less stereotypical than had hitherto been realised.
Collapse
Affiliation(s)
- Claude Everaerts
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Laurie Cazalé-Debat
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Alexis Louis
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Emilie Pereira
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| | - Matthew Cobb
- School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Jean-François Ferveur
- Centre des Sciences du Goût et de l'Alimentation, Agrosup-UMR 6265 CNRS, UMR 1324 INRA, Université de Bourgogne, Dijon, France
| |
Collapse
|
54
|
Carabidae Semiochemistry: Current and Future Directions. J Chem Ecol 2018; 44:1069-1083. [PMID: 30232615 DOI: 10.1007/s10886-018-1011-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 08/14/2018] [Accepted: 08/23/2018] [Indexed: 12/27/2022]
Abstract
Ground beetles (Carabidae) are recognized for their diverse, chemically-mediated defensive behaviors. Produced using a pair of pygidial glands, over 250 chemical constituents have been characterized across the family thus far, many of which are considered allomones. Over the past century, our knowledge of Carabidae exocrine chemistry has increased substantially, yet the role of these defensive compounds in mediating behavior other than repelling predators is largely unknown. It is also unclear whether non-defensive compounds produced by ground beetles mediate conspecific and heterospecific interactions, such as sex-aggregation pheromones or kairomones, respectively. Here we review the current state of non-exocrine Carabidae semiochemistry and behavioral research, discuss the importance of semiochemical research including but not limited to allomones, and describe next-generation methods for elucidating the underlying genetics and evolution of chemically-mediated behavior.
Collapse
|
55
|
Heys C, Lizé A, Colinet H, Price TAR, Prescott M, Ingleby F, Lewis Z. Evidence That the Microbiota Counteracts Male Outbreeding Strategy by Inhibiting Sexual Signaling in Females. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00029] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
56
|
Abstract
Symbiotic microorganisms can influence the fitness of their insect hosts by modulating pheromone production and perception.
Collapse
Affiliation(s)
- Tobias Engl
- Department of Evolutionary Ecology
- Institute of Organismic and Molecular Evolution
- Johannes Gutenberg University of Mainz
- 55128 Mainz
- Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology
- Institute of Organismic and Molecular Evolution
- Johannes Gutenberg University of Mainz
- 55128 Mainz
- Germany
| |
Collapse
|
57
|
History Matters: Oviposition Resource Acceptance in an Exploiter of a Nursery Pollination Mutualism. J Chem Ecol 2017; 44:18-28. [PMID: 29250744 DOI: 10.1007/s10886-017-0914-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/30/2017] [Accepted: 12/05/2017] [Indexed: 10/18/2022]
Abstract
In the fig-fig wasp nursery pollination system, parasitic wasps, such as gallers and parasitoids that oviposit from the exterior into the fig syconium (globular, enclosed inflorescence) are expected to use a variety of chemical cues for successful location of their hidden hosts. Behavioral assays were performed with freshly eclosed naive galler wasps. Syconia with different oviposition histories, i.e. with or without prior oviposition, were presented to wasps in no-choice assays and the time taken to the first oviposition attempt was recorded. The wasps exhibited a preference for syconia previously exposed to conspecifics for oviposition over unexposed syconia. Additionally, syconia exposed to oviposition by heterospecific wasps were also preferred for oviposition over unexposed syconia indicating that wasps recognise and respond to interspecific cues. Wasps also aggregated for oviposition on syconia previously exposed to oviposition by conspecifics. We investigated chemical cues that wasps may employ in accepting an oviposition resource by analyzing syconial volatile profiles, chemical footprints left by wasps on syconia, and syconial surface hydrocarbons. The volatile profile of a syconium is influenced by the identity of wasps developing within and may be used to identify suitable host syconia at long range whereas close range preference seems to exploit wasp footprints that alter syconium surface hydrocarbon profiles. These cues act as indicators of the oviposition history of the syconium, thereby helping wasps in their oviposition decisions.
Collapse
|
58
|
Pol JC, Jimenez SI, Gries G. New Food Baits for Trapping German Cockroaches, Blattella germanica (L.) (Dictyoptera: Blattellidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2518-2526. [PMID: 29029107 DOI: 10.1093/jee/tox247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Indexed: 06/07/2023]
Abstract
German cockroaches (GCRs), Blattella germanica (L.) (Dictyoptera: Blattellidae), are attracted to those beer semiochemicals (e.g., ethanol) that formerly living and active yeasts have produced or otherwise formed in the brewing process. We predicted that an earlier step in the production of beer, where yeasts actively metabolize the sugar in malted barley powder (dry malt extract [DME]), is very attractive to GCRs. In laboratory experiments, a 3-component composition (3CC) comprising DME, water, and Brewer's yeast strongly attracted GCR nymphs, females, and males. Both Brewers' yeast and 'spoilage organisms' in the DME or water seem to add to the attractiveness of the 3CC, but there is no additive or synergistic effect between them. The 3CC becomes optimally attractive to GCRs after 12 h of fermentation and stays that attractive for at least 120 h. In field trapping experiments, the 3CC and-unexpectedly-also the DME each proved as effective for attracting and capturing GCRs as a commercial cockroach bait (Combat Roach Gel). Future studies will investigate lethal biocontrol agents that can be added to the 3CC, or the DME, and will explore the efficacy of such lethal baits for GCR control.
Collapse
Affiliation(s)
- Joshua C Pol
- Department of Biological Sciences, Simon Fraser University, Canada
| | | | - Gerhard Gries
- Department of Biological Sciences, Simon Fraser University, Canada
| |
Collapse
|
59
|
Yang S, Zhang XF, Gao YL, Chen D, She DM, Zhang T, Ning J. Male-Produced Aggregation Pheromone of Coffee Bean Weevil, Araecerus fasciculatus. J Chem Ecol 2017; 43:978-985. [PMID: 29043534 DOI: 10.1007/s10886-017-0894-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 09/10/2017] [Accepted: 10/02/2017] [Indexed: 11/30/2022]
Abstract
The coffee bean weevil (CBW), Araecerus fasciculatus (De Geer, 1775), is a cosmopolitan stored-product pest, especially in tropical and subtropical areas. Previous reports showed evidence for aggregation behavior of CBW and this study aimed to identify and evaluate the aggregation pheromone of this pest. Whole-body solvent extractions were analyzed by coupled gas chromatography-mass spectrometry and comparison of male and female extracts showed a male-specific compound which was identified as squalene, 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene. This compound was shown to attract male and female CBW in Y-tube olfactometer and storage trap assays. The longevity of septum lures was also evaluated in a warehouse. Squalene could be useful in monitoring and controlling this pest.
Collapse
Key Words
- 2,6,10,15,19,23-hexamethyl-2,6,10,14,18,22-tetracosahexaene
- Olfaction
- Squalene
- Warehouse trapping
- Y-tube bioassay
Collapse
Affiliation(s)
- Shuai Yang
- Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Institute of Plant Protection, Baoding, 071000, China.,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Institute of Plant Protection, Beijing, 100193, China
| | - Xiao-Fang Zhang
- Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Institute of Plant Protection, Baoding, 071000, China
| | - Yu-Lin Gao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Institute of Plant Protection, Beijing, 100193, China
| | - Dan Chen
- Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Institute of Plant Protection, Baoding, 071000, China
| | - Dong-Mei She
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Institute of Plant Protection, Beijing, 100193, China
| | - Tao Zhang
- Hebei Academy of Agricultural and Forestry Sciences, Integrated Pest Management Center of Hebei Province, Key Laboratory of IPM on Crops in Northern Region of North China, Ministry of Agriculture, Institute of Plant Protection, Baoding, 071000, China.
| | - Jun Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Chinese Academy of Agricultural Sciences, Institute of Plant Protection, Beijing, 100193, China.
| |
Collapse
|
60
|
Woznica A, Gerdt JP, Hulett RE, Clardy J, King N. Mating in the Closest Living Relatives of Animals Is Induced by a Bacterial Chondroitinase. Cell 2017; 170:1175-1183.e11. [PMID: 28867285 DOI: 10.1016/j.cell.2017.08.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/07/2017] [Accepted: 08/03/2017] [Indexed: 01/08/2023]
Abstract
We serendipitously discovered that the marine bacterium Vibrio fischeri induces sexual reproduction in one of the closest living relatives of animals, the choanoflagellate Salpingoeca rosetta. Although bacteria influence everything from nutrition and metabolism to cell biology and development in eukaryotes, bacterial regulation of eukaryotic mating was unexpected. Here, we show that a single V. fischeri protein, the previously uncharacterized EroS, fully recapitulates the aphrodisiac-like activity of live V. fischeri. EroS is a chondroitin lyase; although its substrate, chondroitin sulfate, was previously thought to be an animal synapomorphy, we demonstrate that S. rosetta produces chondroitin sulfate and thus extend the ancestry of this important glycosaminoglycan to the premetazoan era. Finally, we show that V. fischeri, purified EroS, and other bacterial chondroitin lyases induce S. rosetta mating at environmentally relevant concentrations, suggesting that bacteria likely regulate choanoflagellate mating in nature.
Collapse
Affiliation(s)
- Arielle Woznica
- Howard Hughes Medical Institute, and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Joseph P Gerdt
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Ryan E Hulett
- Howard Hughes Medical Institute, and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jon Clardy
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| | - Nicole King
- Howard Hughes Medical Institute, and Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
61
|
Biedermann PH, Rohlfs M. Evolutionary feedbacks between insect sociality and microbial management. CURRENT OPINION IN INSECT SCIENCE 2017; 22:92-100. [PMID: 28805645 DOI: 10.1016/j.cois.2017.06.003] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/22/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
Fitness-determining interactions with microbes-in particular fungi-have often been considered a by-product of social evolution in insects. Here, we take the view that both beneficial and harmful microbial consortia are major drivers of social behaviours in many insect systems-ranging from aggregation to eusociality. We propose evolutionary feedbacks between the insect sociality and microbial communities that strengthen mutualistic interactions with beneficial (dietary or defensive) microbes and simultaneously increase the capacity to defend against pathogens (i.e. social immunity). We identified variation in habitat stability-as determined by breeding site predictability and ephemerality-as a main ecological factor that constrains these feedbacks. To test this hypothesis we suggest following the evolution of insect social traits upon experimental manipulation of habitat stability and microbial consortia.
Collapse
Affiliation(s)
- Peter Hw Biedermann
- Department of Biochemistry, Max-Planck-Institute for Chemical Ecology, Jena, Germany; Institute for Animal Ecology and Tropical Biology, Julius-Maximilians-University of Würzburg, Germany.
| | - Marko Rohlfs
- University of Bremen, Institute of Ecology, Population- and Evolutionary Ecology Group, Germany; University of Goettingen, J.F. Blumenbach Institute of Zoology, Animal Ecology Group, Germany.
| |
Collapse
|
62
|
Powell JA, Garlick MJ, Bentz BJ, Friedenberg N. Differential dispersal and the Allee effect create power‐law behaviour: Distribution of spot infestations during mountain pine beetle outbreaks. J Anim Ecol 2017; 87:73-86. [DOI: 10.1111/1365-2656.12700] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 03/02/2017] [Indexed: 11/30/2022]
Affiliation(s)
- James A. Powell
- Departments of Mathematics & Statistics and BiologyUtah State University Logan UT USA
| | - Martha J. Garlick
- Department of Mathematics & Computer ScienceSouth Dakota School of Mines and Technology Rapid City SD USA
| | - Barbara J. Bentz
- USDA‐FS Rocky Mountain Research StationForestry Sciences Lab Logan UT USA
| | | |
Collapse
|
63
|
Sweeney J, Silk PJ, Rhainds M, MacKay W, Hughes C, Van Rooyen K, MacKinnon W, Leclair G, Holmes S, Kettela EG. First Report of Mating Disruption With an Aggregation Pheromone: A Case Study With Tetropium fuscum (Coleoptera: Cerambycidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:1078-1086. [PMID: 28334411 DOI: 10.1093/jee/tow308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Indexed: 06/06/2023]
Abstract
Tetropium fuscum (F.), native to Europe and established in Nova Scotia, Canada, since at least 1990, is considered a low-to-moderate threat to spruce (Picea spp.) forests in North America and regulated as a quarantine pest by the Canadian Food Inspection Agency. We tested broadcast applications of the aggregation pheromone racemic (5E)-6,10-dimethyl-5,9-undecadien-2-ol (fuscumol), formulated at 10% concentration in Hercon Bio-Flakes (Hercon International, Emigsville, PA), for efficacy in disrupting T. fuscum mating and suppressing populations. Two applications of 2.5-2.75 kg Bio-Flakes (250-275 g a.i.) per ha per season significantly reduced trap catches and mating success (2009, 2010, 2012): about 30% of females trapped in treated plots had mated compared with 60% of females trapped in untreated plots. Similar reductions in mating success were observed in 2011 with one or two 4.5 kg/ha applications of Bio-Flakes. Mean densities of T. fuscum colonizing sentinel bait logs or girdled trees were 36% lower in pheromone-treated plots than in untreated plots, but the difference was not statistically significant. Lack of population suppression may have been because mated females immigrated into treated plots or because populations were so high that despite a 50% reduction in mating success, absolute numbers of mated females were sufficient to infest our bait logs or trees. This is the first demonstration of insect mating disruption via broadcast application of an aggregation pheromone. Pheromone-mediated mating disruption has potential to slow the spread of invasive cerambycids by targeting low-density outlier populations near or beyond the leading edge of an infestation.
Collapse
Affiliation(s)
- Jon Sweeney
- Natural Resources Canada, Canadian Forest Service, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada ( ; ; ; ; ; ; ; ; ; )
- Corresponding author, e-mail:
| | - Peter J Silk
- Natural Resources Canada, Canadian Forest Service, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada (; ; ; ; ; ; ; ; ; )
| | - Marc Rhainds
- Natural Resources Canada, Canadian Forest Service, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada (; ; ; ; ; ; ; ; ; )
| | - Wayne MacKay
- Natural Resources Canada, Canadian Forest Service, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada (; ; ; ; ; ; ; ; ; )
| | - Cory Hughes
- Natural Resources Canada, Canadian Forest Service, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada (; ; ; ; ; ; ; ; ; )
| | - Kate Van Rooyen
- Natural Resources Canada, Canadian Forest Service, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada (; ; ; ; ; ; ; ; ; )
| | - Wayne MacKinnon
- Natural Resources Canada, Canadian Forest Service, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada (; ; ; ; ; ; ; ; ; )
| | - Gaetan Leclair
- Natural Resources Canada, Canadian Forest Service, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada (; ; ; ; ; ; ; ; ; )
| | - Steve Holmes
- Natural Resources Canada, Canadian Forest Service, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada (; ; ; ; ; ; ; ; ; )
| | - Edward G Kettela
- Natural Resources Canada, Canadian Forest Service, P.O. Box 4000, Fredericton, NB E3B 5P7, Canada (; ; ; ; ; ; ; ; ; )
| |
Collapse
|
64
|
Zakir A, Khallaf MA, Hansson BS, Witzgall P, Anderson P. Herbivore-Induced Changes in Cotton Modulates Reproductive Behavior in the Moth Spodoptera littoralis. Front Ecol Evol 2017. [DOI: 10.3389/fevo.2017.00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
65
|
Boulay J, Deneubourg JL, Hédouin V, Charabidzé D. Interspecific shared collective decision-making in two forensically important species. Proc Biol Sci 2017; 283:rspb.2015.2676. [PMID: 26865296 DOI: 10.1098/rspb.2015.2676] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To date, the study of collective behaviour has mainly focused on intraspecific situations: the collective decision-making of mixed-species groups involving interspecific aggregation-segregation has received little attention. Here, we show that, in both conspecific and heterospecific groups, the larvae of two species (Lucilia sericata and Calliphora vomitoria, calliphorid carrion-feeding flies) were able to make a collective choice. In all groups, the choice was made within a few minutes and persisted throughout the period of the experiment. The monitoring of a focal individual within a group showed that these aggregations were governed by attractive and retentive effects of the group. Furthermore, the similarity observed between the conspecific and heterospecific groups suggested the existence of shared aggregation signals. The group size was found to have a stronger influence than the species of necrophagous larvae. These results should be viewed in relation to the well-known correlation between group size and heat generation. This study provides the first experimental examination of the dynamics of collective decision-making in mixed-species groups of invertebrates, contributing to our understanding of the cooperation-competition phenomenon in animal social groups.
Collapse
Affiliation(s)
- Julien Boulay
- CHU Lille, Université Lille 2, EA 7367-UTML-Unité de Taphonomie Médico-Légale, Lille, France Unit of Social Ecology-CP 231, Université Libre de Bruxelles (ULB), Campus Plaine, Boulevard du Triomphe, Building NO-level 5, 1050 Bruxelles, Belgium
| | - Jean-Louis Deneubourg
- Unit of Social Ecology-CP 231, Université Libre de Bruxelles (ULB), Campus Plaine, Boulevard du Triomphe, Building NO-level 5, 1050 Bruxelles, Belgium
| | - Valéry Hédouin
- CHU Lille, Université Lille 2, EA 7367-UTML-Unité de Taphonomie Médico-Légale, Lille, France
| | - Damien Charabidzé
- CHU Lille, Université Lille 2, EA 7367-UTML-Unité de Taphonomie Médico-Légale, Lille, France
| |
Collapse
|
66
|
Goodsman DW, Koch D, Whitehouse C, Evenden ML, Cooke BJ, Lewis MA. Aggregation and a strong Allee effect in a cooperative outbreak insect. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2016; 26:2621-2634. [PMID: 27862568 DOI: 10.1002/eap.1404] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 04/21/2016] [Accepted: 06/13/2016] [Indexed: 06/06/2023]
Abstract
Most species that are negatively impacted when their densities are low aggregate to minimize this effect. Aggregation has the potential to change how Allee effects are expressed at the population level. We studied the interplay between aggregation and Allee effects in the mountain pine beetle (Dendroctonus ponderosae Hopkins), an irruptive bark beetle that aggregates to overcome tree defenses. By cooperating to surpass a critical number of attacks per tree, the mountain pine beetle is able to breach host defenses, oviposit, and reproduce. Mountain pine beetles and Hymenopteran parasitoids share some biological features, the most notable of which is obligatory host death as a consequence of parasitoid attack and development. We developed spatiotemporal models of mountain pine beetle dynamics that were based on the Nicholson-Bailey framework but which featured beetle aggregation and a tree-level attack threshold. By fitting our models to data from a local mountain pine beetle outbreak, we demonstrate that due to aggregation, attack thresholds at the tree level can be overcome by a surprisingly low ratio of beetles per susceptible tree at the stand level. This results confirms the importance of considering aggregation in models of organisms that are subject to strong Allee effects.
Collapse
Affiliation(s)
- D W Goodsman
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada
| | - D Koch
- Mathematical and Statistical Sciences, University of Alberta, 632 CAB, Edmonton, Alberta, T6G 2G1, Canada
| | - C Whitehouse
- Operations Division, Alberta Agriculture and Forestry, Peace River, Alberta, T8S 1T4, Canada
| | - M L Evenden
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada
| | - B J Cooke
- Canadian Forest Service, Northern Forestry Centre, 5320 122 Street Northwest, Edmonton, Alberta, T6H 3S5, Canada
| | - M A Lewis
- Department of Biological Sciences, University of Alberta, CW 405, Biological Sciences Bldg, Edmonton, Alberta, T6G 2E9, Canada
- Mathematical and Statistical Sciences, University of Alberta, 632 CAB, Edmonton, Alberta, T6G 2G1, Canada
| |
Collapse
|
67
|
Nicolis SC, Halloy J, Deneubourg JL. Transition between segregation and aggregation: the role of environmental constraints. Sci Rep 2016; 6:32703. [PMID: 27599636 PMCID: PMC5013323 DOI: 10.1038/srep32703] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 08/12/2016] [Indexed: 11/10/2022] Open
Abstract
Interactions between sub-groups (species, strains) have been reported in many species among many taxae. We propose a generic model based on earlier experiments accounting for both conspecific (or between individuals of the same strains) and heterospecific (or between strains) interactions. The model predicts different collective behaviours without any change of individuals’ algorithm as some key generic parameters such as the carrying capacity, the number of individuals involved and the strength of inter-attraction between sub-groups are varied. A key result is the possibility for sub-groups to segregate between patches and for transition between different patterns, even in absence of active agonistic behaviour. The model can be viewed as a network of feedbacks that is independent of the signals or cues involved in mixed groups interactions. Its predictions are therefore applicable to a wide spectrum of situations including social insects (inter castes interaction) and provides insights on possible mechanisms that can be at work.
Collapse
Affiliation(s)
- Stamatios C Nicolis
- Unit of Social Ecology Université Libre de Bruxelles, 1050 Bruxelles, Belgium
| | - José Halloy
- Laboratoire Interdisciplinaire des Énergies de De main, Université Paris Diderot, Paris VII, France
| | | |
Collapse
|
68
|
Formica V, Wood C, Cook P, Brodie E. Consistency of animal social networks after disturbance. Behav Ecol 2016. [DOI: 10.1093/beheco/arw128] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
|
69
|
Filiano AJ, Xu Y, Tustison NJ, Marsh RL, Baker W, Smirnov I, Overall CC, Gadani SP, Turner SD, Weng Z, Peerzade SN, Chen H, Lee KS, Scott MM, Beenhakker MP, Litvak V, Kipnis J. Unexpected role of interferon-γ in regulating neuronal connectivity and social behaviour. Nature 2016; 535:425-9. [PMID: 27409813 PMCID: PMC4961620 DOI: 10.1038/nature18626] [Citation(s) in RCA: 489] [Impact Index Per Article: 54.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 06/03/2016] [Indexed: 12/31/2022]
Abstract
Immune dysfunction is commonly associated with several neurological and mental disorders. Although the mechanisms by which peripheral immunity may influence neuronal function are largely unknown, recent findings implicate meningeal immunity influencing behavior, such as spatial learning and memory1. Here we show that meningeal immunity is also critical for social behavior; mice deficient in adaptive immunity exhibit social deficits and hyper-connectivity of fronto-cortical brain regions. Associations between rodent transcriptomes from brain and cellular transcriptomes in response to T cell–derived cytokines suggest a strong interaction between social behavior and interferon-gamma (IFN-γ) driven responses. Concordantly, we demonstrate that inhibitory neurons respond to IFN-γ and increase GABAergic currents in projection neurons, suggesting that IFN-γ is a molecular link between meningeal immunity and neural circuits recruited for social behavior. Meta-analysis on the transcriptomes of a range of organisms revealed that rodents, fish, and flies elevate IFN-γ/JAK-STAT–dependent gene signatures in a social context, suggesting that the IFN-γ signaling pathway could mediate a co-evolutionary link between social/aggregation behavior and an efficient anti-pathogen response. This study implicates adaptive immune dysfunction, in particular IFN-γ, in disorders characterized by social dysfunction and suggests a co-evolutionary link between social behavior and an anti-pathogen immune response driven by IFN-γ signaling.
Collapse
|
70
|
Stanton MA, Preβler J, Paetz C, Boland W, Svatoš A, Baldwin IT. Plant-mediated pheromone emission by a hemipteran seed feeder increases the apparency of an unreliable but rewarding host. THE NEW PHYTOLOGIST 2016; 211:113-25. [PMID: 26915986 DOI: 10.1111/nph.13879] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 12/26/2015] [Indexed: 06/05/2023]
Abstract
The defensive chemistry and persistence of plant tissues determine their suitability and apparency - the likelihood of being discovered - to insect herbivores. As consumers of plant tissues with transient apparency, florivores and seed-feeders must frequently migrate between host plants to synchronize colonization with plant phenology. Aggregation pheromones could provide information-based solutions to finding ephemeral hosts, but little is known about plant-influenced variation in this form of chemical communication. Combining analytical chemistry, de novo synthesis and field ecology, we investigated the change in colonization of two sympatric host plants, Nicotiana attenuata and Nicotiana obtusifolia, which differ in apparency-related life history traits, by a heteropteran seed-feeder, Corimelaena extensa. We identified a novel pheromone released by C. extensa males - (5Z,8Z)-tetradeca-5,8-dienal - and performed field assays with the synthetic pheromone, showing that it stimulates the formation of feeding aggregations on the post-fire annual N. attenuata. Corimelaena extensa pheromone emission was 40-fold higher when feeding on N. attenuata compared with the perennial N. obtusifolia, as were adult fecundity and seed capsule content of the putative biosynthetic precursor, linoleic acid. Higher pheromone emission increases the apparency and colonization of the ephemeral, high-quality host N. attenuata. This plant-specific variation in insect signaling could facilitate host-finding by seed-feeders migrating between plant patches.
Collapse
Affiliation(s)
- Mariana A Stanton
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745, Jena, Germany
| | - Jens Preβler
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745, Jena, Germany
| | - Christian Paetz
- Research Group Biosynthesis/NMR, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745, Jena, Germany
| | - Wilhelm Boland
- Department of Bioorganic Chemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745, Jena, Germany
| | - Aleš Svatoš
- Research Group Mass Spectrometry/Proteomics, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745, Jena, Germany
| | - Ian T Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straβe 8, 07745, Jena, Germany
| |
Collapse
|
71
|
Reisenman CE, Lei H, Guerenstein PG. Neuroethology of Olfactory-Guided Behavior and Its Potential Application in the Control of Harmful Insects. Front Physiol 2016; 7:271. [PMID: 27445858 PMCID: PMC4928593 DOI: 10.3389/fphys.2016.00271] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/16/2016] [Indexed: 11/26/2022] Open
Abstract
Harmful insects include pests of crops and storage goods, and vectors of human and animal diseases. Throughout their history, humans have been fighting them using diverse methods. The fairly recent development of synthetic chemical insecticides promised efficient crop and health protection at a relatively low cost. However, the negative effects of those insecticides on human health and the environment, as well as the development of insect resistance, have been fueling the search for alternative control tools. New and promising alternative methods to fight harmful insects include the manipulation of their behavior using synthetic versions of "semiochemicals", which are natural volatile and non-volatile substances involved in the intra- and/or inter-specific communication between organisms. Synthetic semiochemicals can be used as trap baits to monitor the presence of insects, so that insecticide spraying can be planned rationally (i.e., only when and where insects are actually present). Other methods that use semiochemicals include insect annihilation by mass trapping, attract-and- kill techniques, behavioral disruption, and the use of repellents. In the last decades many investigations focused on the neural bases of insect's responses to semiochemicals. Those studies help understand how the olfactory system detects and processes information about odors, which could lead to the design of efficient control tools, including odor baits, repellents or ways to confound insects. Here we review our current knowledge about the neural mechanisms controlling olfactory responses to semiochemicals in harmful insects. We also discuss how this neuroethology approach can be used to design or improve pest/vector management strategies.
Collapse
Affiliation(s)
- Carolina E. Reisenman
- Department of Molecular and Cell Biology and Essig Museum of Entomology, University of California, BerkeleyBerkeley, CA, USA
| | - Hong Lei
- Department of Neuroscience, University of ArizonaTucson, AZ, USA
| | - Pablo G. Guerenstein
- Lab. de Estudio de la Biología de Insectos, CICyTTP-CONICETDiamante, Argentina
- Facultad de Ingeniería, Universidad Nacional de Entre RíosOro Verde, Argentina
| |
Collapse
|
72
|
Lihoreau M, Clarke IM, Buhl C, Sumpter DJT, Simpson SJ. Collective selection of food patches in Drosophila. J Exp Biol 2016; 219:668-75. [PMID: 26747899 DOI: 10.1242/jeb.127431] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 12/11/2015] [Indexed: 02/03/2023]
Abstract
The fruit fly Drosophila melanogaster has emerged as a model organism for research on social interactions. Although recent studies have described how individuals interact on foods for nutrition and reproduction, the complex dynamics by which groups initially develop and disperse have received little attention. Here we investigated the dynamics of collective foraging decisions by D. melanogaster and their variation with group size and composition. Groups of adults and larvae facing a choice between two identical, nutritionally balanced food patches distributed themselves asymmetrically, thereby exploiting one patch more than the other. The speed of the collective decisions increased with group size, as a result of flies joining foods faster. However, smaller groups exhibited more pronounced distribution asymmetries than larger ones. Using computer simulations, we show how these non-linear phenomena can emerge from social attraction towards occupied food patches, whose effects add up or compete depending on group size. Our results open new opportunities for exploring complex dynamics of nutrient selection in simple and genetically tractable groups.
Collapse
Affiliation(s)
- Mathieu Lihoreau
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Ireni M Clarke
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Camille Buhl
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - David J T Sumpter
- Department of Mathematics, Uppsala University, Uppsala 751 06, Sweden
| | - Stephen J Simpson
- Charles Perkins Centre, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
73
|
Groba HF, Castelo MK. Host gut microorganisms' cues mediate orientation behaviour in the larva of the parasitoid Mallophora ruficauda. BULLETIN OF ENTOMOLOGICAL RESEARCH 2016; 106:81-90. [PMID: 26521818 DOI: 10.1017/s0007485315000838] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The robber fly Mallophora ruficauda is one of the most important apicultural pests in the Pampas region of Argentina. This species is a parasitoid of scarab beetle larvae. Females lay eggs away from the host, and the larvae perform active search behaviour toward Cyclocephala signaticollis third instar larvae, parasitoid's preferred host. This behaviour is mediated by host-related chemical cues produced in hosts' fermentation chamber. Also, C. signaticollis larvae are attracted to fermentation chamber extracts. As scarab larvae have microbe-rich fermentation chamber, it has been suggested that microorganisms could be involved in the production of these semiochemicals. The aims of this work were first to ascertain the presence of microorganisms in the fermentation chamber of C. signaticollis larvae and second to determine the role of microorganisms in the orientation response of parasitoid and host larvae. We found that microorganisms-free C. signaticollis larvae showed deterioration in their development and did not produce the attractive semiochemicals. Therefore, we isolated fermentation chamber microorganisms of host larvae by means of different cultures media, and then, assayed different microorganisms' stimuli by binary choice tests. We were able to isolate microorganisms and determine that M. ruficauda larvae are attracted to semiochemicals from protein degradation in the fermentation chamber. However, C. signaticollis larvae were not attracted to any semiochemicals associated with microorganisms' activity in the fermentation chamber. Although we were unable to elucidate the exact role of gut microorganisms in host behaviour, we discuss their relevance in parasitoid host-seeking behaviour and host conspecific interaction in M. ruficauda-C. signaticollis system.
Collapse
Affiliation(s)
- H F Groba
- Grupo de Investigación en Ecofisiología de Parasitoides (GIEP),Departamento de Ecología,Genética y Evolución- Instituto IEGEBA (CONICET - UBA),Facultad de Ciencias Exactas y Naturales,Universidad de Buenos Aires,Intendente Güiraldes 2160,Ciudad Universitaria,Pabellón II,(C1428EHA) Ciudad de Buenos Aires,Argentina
| | - M K Castelo
- Grupo de Investigación en Ecofisiología de Parasitoides (GIEP),Departamento de Ecología,Genética y Evolución- Instituto IEGEBA (CONICET - UBA),Facultad de Ciencias Exactas y Naturales,Universidad de Buenos Aires,Intendente Güiraldes 2160,Ciudad Universitaria,Pabellón II,(C1428EHA) Ciudad de Buenos Aires,Argentina
| |
Collapse
|
74
|
Lihoreau M, Poissonnier LA, Isabel G, Dussutour A. Drosophila females trade off good nutrition with high quality oviposition sites when choosing foods. J Exp Biol 2016; 219:2514-24. [DOI: 10.1242/jeb.142257] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/06/2016] [Indexed: 02/04/2023]
Abstract
Animals, from insects to human, select foods to regulate their acquisition of key nutrients in amounts and balances maximising fitness. In species where the nutrition of juveniles depends on parents, adults must make challenging foraging decisions that simultaneously address their own nutrient needs as well as those of the progeny. Here we examined how fruit flies Drosophila melanogaster, a species where individuals eat and lay eggs in decaying fruits, integrate feeding decisions (individual nutrition) and oviposition decisions (offspring nutrition) when foraging. Using cafeteria assays with artificial diets varying in concentrations and ratios of protein to carbohydrates, we show that Drosophila females exhibit complex foraging patterns, alternating between laying eggs on high carbohydrate foods and feeding on foods with different nutrient contents depending on their own nutritional state. Although larvae showed faster development on high protein foods, both survival and learning performances were higher on balanced foods. We suggest that the apparent mismatch between the oviposition preference of females for high carbohydrate foods and the high performances of larvae on balanced foods reflects a natural situation where high carbohydrate ripened fruits gradually enrich in proteinaceous yeast as they start rotting, thereby yielding optimal nutrition for the developing larvae. Our findings that animals with rudimentary parental care uncouple feeding and egg-laying decisions in order to balance their own diet and provide a nutritionally optimal environment to their progeny reveals unsuspected levels of complexity in the nutritional ecology of parent-offspring interactions.
Collapse
Affiliation(s)
- Mathieu Lihoreau
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, France
| | - Laure-Anne Poissonnier
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, France
- Current address: School of Agriculture, Food and Wine, The University of Adelaide, 5005 12 SA, Australia
| | - Guillaume Isabel
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, France
| | - Audrey Dussutour
- Research Center on Animal Cognition (CRCA), Center for Integrative Biology (CBI), Toulouse University, CNRS, UPS, France
| |
Collapse
|
75
|
Kojima W. Attraction to Carbon Dioxide from Feeding Resources and Conspecific Neighbours in Larvae of the Rhinoceros Beetle Trypoxylus dichotomus. PLoS One 2015; 10:e0141733. [PMID: 26536591 PMCID: PMC4633205 DOI: 10.1371/journal.pone.0141733] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 10/11/2015] [Indexed: 11/30/2022] Open
Abstract
Saprophagous (feeding on decaying matter) insects often use carbon dioxide (CO2) as a cue for finding food. Humus-feeding larvae of the giant rhinoceros beetle Trypoxylus dichotomus exhibit a clumped distribution in natural microhabitats, but the mechanisms driving the distribution were unknown. Herein, I examined whether larvae use CO2 as a cue for fermented humus and aggregate in the vicinity of the food. I found that (i) larvae of T. dichotomus are strongly attracted to CO2, (ii) larvae orient toward highly fermented humus when given a choice between highly and poorly fermented humus, (iii) the highly fermented humus emits more CO2 than the poorly fermented humus, and (iv) larvae grow larger when fed highly fermented humus rather than poorly fermented humus. The clumped distribution of larvae is probably formed along the concentration gradient of CO2 induced by heterogeneity of fermented organic materials in soil. My laboratory experiments also revealed that larvae are chemically attracted to each other. Moreover, CO2 concentrations in soil were increased by the larval respiration, and small amounts of CO2 (much less than emitted during respiration by a single larva) were sufficient for larval attraction. These results suggest that not only response to fermented food resources, but also respiratory CO2 from conspecifics may lead to aggregation. Enhanced densities resulted in reduced weight gain under experimental conditions. However, exploiting a high-value resource at enhanced densities still led to greater body weight compared to individually exploiting a low-value resource. This demonstrates the adaptive value of the response to CO2 sources in this species.
Collapse
Affiliation(s)
- Wataru Kojima
- Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo, 153-8902, Japan
- * E-mail:
| |
Collapse
|
76
|
Brodie BS, Wong WHL, VanLaerhoven S, Gries G. Is aggregated oviposition by the blow flies Lucilia sericata and Phormia regina (Diptera: Calliphoridae) really pheromone-mediated? INSECT SCIENCE 2015; 22:651-660. [PMID: 25099558 DOI: 10.1111/1744-7917.12160] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
When female blow flies Lucilia sericata and Phormia regina (Diptera: Calliphoridae) oviposit in aggregations on carrion, even-aged larval offspring reportedly develop faster, and fewer are parasitized or preyed upon. The benefits of aggregated oviposition equally affect con- and heterospecific larvae sharing a resource. The benefits imply that female blow flies engage in coordinated, pheromone-mediated oviposition behavior. Yet, repeated attempts to identify oviposition pheromones have failed invoking doubt that they exist. Simply by regurgitating and feeding on carrion, flies may produce attractive semiochemicals. If flies were to aggregate in response to feeding flies rather than ovipositing flies, then the semiochemical cue(s) may be associated with the salivary gland. Working with L. sericata and P. regina and using liver as a surrogate oviposition medium, we test the hypotheses, and present data in their support, that (i) gravid or nongravid females ovipositing and/or feeding on liver enhance its attractiveness to gravid and nongravid females; (ii) females respond to semiochemicals from feeding heterospecific females; (iii) females respond equally well to semiochemicals from feeding con- and heterospecific females; (iv) macerated head tissues of females applied to liver enhance its attractiveness; and (v) females in direct contact with and feeding on liver, but not when next to yet physically separated from liver, enhance attraction of flies. We conclude that oviposition site-seeking females do not respond to an oviposition pheromone. Instead, they appear to coopt semiochemicals associated with feeding flies as resource indicators, taking chances that resources are suitable for oviposition, and that ovipositing flies are present.
Collapse
Affiliation(s)
- Bekka S Brodie
- Simon Fraser University, Dept. of Biological Sciences Burnaby, BC, V5A 1S6, Canada
| | - Warren H L Wong
- Simon Fraser University, Dept. of Biological Sciences Burnaby, BC, V5A 1S6, Canada
| | | | - Gerhard Gries
- Simon Fraser University, Dept. of Biological Sciences Burnaby, BC, V5A 1S6, Canada
| |
Collapse
|
77
|
Yew JY, Chung H. Insect pheromones: An overview of function, form, and discovery. Prog Lipid Res 2015; 59:88-105. [DOI: 10.1016/j.plipres.2015.06.001] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 05/01/2015] [Accepted: 06/12/2015] [Indexed: 12/17/2022]
|
78
|
Behavioural Contagion Explains Group Cohesion in a Social Crustacean. PLoS Comput Biol 2015; 11:e1004290. [PMID: 26067565 PMCID: PMC4465910 DOI: 10.1371/journal.pcbi.1004290] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Accepted: 04/17/2015] [Indexed: 11/26/2022] Open
Abstract
In gregarious species, social interactions maintain group cohesion and the associated adaptive values of group living. The understanding of mechanisms leading to group cohesion is essential for understanding the collective dynamics of groups and the spatio-temporal distribution of organisms in environment. In this view, social aggregation in terrestrial isopods represents an interesting model due to its recurrence both in the field and in the laboratory. In this study, and under a perturbation context, we experimentally tested the stability of groups of woodlice according to group size and time spent in group. Our results indicate that the response to the disturbance of groups decreases with increases in these two variables. Models neglecting social effects cannot reproduce experimental data, attesting that cohesion of aggregation in terrestrial isopods is partly governed by a social effect. In particular, models involving calmed and excited individuals and a social transition between these two behavioural states more accurately reproduced our experimental data. Therefore, we concluded that group cohesion (and collective response to stimulus) in terrestrial isopods is governed by a transitory resting state under the influence of density of conspecifics and time spent in group. Lastly, we discuss the nature of direct or indirect interactions possibly implicated. Terrestrial isopods, commonly named woodlice or pill bugs, are commonly distributed soil-dwelling arthropods, particularly important in soils as macro-decomposers of leaf litter. Many species of woodlice are synanthropic and, for this reason, are easily observable in gardens, urban parks or composts. Harmless organisms and easy to raise, the woodlice represent an excellent pedagogical model in many schools, so that children may perform on these organisms various behavioral tests such as light escape or introduction to social behaviors. Indeed, woodlice are gregarious species and exhibit long phases of aggregation. Here, we propose a model based on simple rules involving calmed and excited individuals and a social transition between these two behavioural states to explain group cohesion in woodlice. This contagion model well reproduces our experimental results. Our approach provides important clues for the understanding of how social group effects and collective mechanisms may govern the stability and dispersion of aggregates in gregarious arthropods.
Collapse
|
79
|
Imen S, Christian M, Virginie D, Colette R. Intraspecific Signals Inducing Aggregation in Periplaneta americana (Insecta: Dictyoptera). ENVIRONMENTAL ENTOMOLOGY 2015; 44:713-723. [PMID: 26313978 DOI: 10.1093/ee/nvv035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 02/23/2015] [Indexed: 06/04/2023]
Abstract
Chemical communication is necessary to induce aggregation and to maintain the cohesion of aggregates in Periplaneta americana (L.) cockroaches. We aimed to identify the chemical message inducing aggregation in this species. Two types of bioassays were used-binary choice tests in Petri dishes and tests in Y-olfactometer. Papers conditioned by direct contact of conspecifics induce aggregation when proposed in binary choice tests and were attractive in a Y-olfactometer. The identification of the molecules present on these conditioned papers indicated that dichloromethane extracts contained mainly cuticular hydrocarbons whereas methanol extracts contained more volatile molecules. Only a mixture of extracts in both solvents induced aggregation. High concentrations of cuticular hydrocarbons are necessary to induce aggregation when presented alone. When presented with volatile molecules present in methanol extracts, low concentrations of cuticular hydrocarbons are sufficient to induce aggregation if they are presented in contact. Among volatile molecules collected on filter paper, a mixture of three compounds-hexadecanoic acid, pentadecanoic acid, and pentaethylene glycol-induced aggregation. Our results provide evidence that aggregation processes in P. americana relies on a dual mechanism: attraction over long distances by three volatile molecules and maintenance on site by contact with cuticular hydrocarbons.
Collapse
Affiliation(s)
- Saïd Imen
- Faculté des Sciences de Gafsa, Université de Gafsa, Campus Zarroug, 2112 Gafsa, Tunisia.
| | - Malosse Christian
- Unité de Spectrométrie de Masse Structurale et Protéomique, Institut Pasteur, 75015 Paris, France
| | - Durier Virginie
- Laboratoire d'éthologie animale et humaine, Université de Rennes I Campus de Beaulieu, 35042 Rennes Cedex, France
| | - Rivault Colette
- Laboratoire d'éthologie animale et humaine, Université de Rennes I Campus de Beaulieu, 35042 Rennes Cedex, France
| |
Collapse
|
80
|
Defining attraction and aggregation pheromones: teleological versus functional perspectives. J Chem Ecol 2015; 40:519-20. [PMID: 24946748 DOI: 10.1007/s10886-014-0465-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
81
|
Chen X, Liang AP. Identification of a self-regulatory pheromone system that controls nymph aggregation behavior of rice spittlebug Callitettix versicolor. Front Zool 2015; 12:10. [PMID: 25987889 PMCID: PMC4435853 DOI: 10.1186/s12983-015-0102-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/18/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Nymphs of many spittlebug species are known to aggregate in one spittle mass, a behavior which greatly benefits the survival of the developing nymphs. Little is known, however, about the precise mechanisms that induce and regulate aggregation. Here, we investigated the aggregation behavior of nymphs of the rice spittlebug Callitettix versicolor, and analyzed the chemical composition of spittle masses. RESULTS We identified six n-alkane compounds, namely un-, do-, tri-, tetra-, penta- and hexadecane in the spittle mass. Importantly, we showed that solitary spittle mass (SSM) and aggregation spittle mass (ASM) differed significantly in the amounts and composition of these compounds. While un-, do-, tri-, tetra-and hexadecane were overrepresented in SSM, pentadecane was found at significantly higher levels in ASM. Electrophysiological experiments showed that antennae responses to these six compounds were significantly higher than to both the hexane and the docosane control, which suggests a specific role of the six volatile alkanes as pheromones. In agreement with this hypothesis, behavioral tests revealed that five of the six compounds (e.g. un-, do-, tri-, tetra-, and hexadecane) acted as attractants across a wide concentration range. Thus, these five compounds allow recruitment of additional nymphs to a growing spittle mass. The sixth compound, pentadecane, attracted nymphs at low doses, whereas at higher doses, this effect vanished, suggesting that this alkane functioned as a repellent, thus preventing recruitment of additional individuals to a full aggregation in a spittle mass. CONCLUSIONS In summary, our study identified a simple, yet fully functional feedback mechanism which allows aggregation at low nymph numbers, while preventing over-crowding beyond a set number of nymphs within one spittle mass. In conclusion, our study provides new insights into C. versicolor development and behavior that should greatly facilitate the identification of new approaches for pheromonal control of this pest.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Ai-Ping Liang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
82
|
Abstract
Intraspecific olfactory signals known as pheromones play important roles in insect mating systems. In the model Drosophila melanogaster, a key part of the pheromone-detecting system has remained enigmatic through many years of research in terms of both its behavioral significance and its activating ligands. Here we show that Or47b-and Or88a-expressing olfactory sensory neurons (OSNs) detect the fly-produced odorants methyl laurate (ML), methyl myristate, and methyl palmitate. Fruitless (fru(M))-positive Or47b-expressing OSNs detect ML exclusively, and Or47b- and Or47b-expressing OSNs are required for optimal male copulation behavior. In addition, activation of Or47b-expressing OSNs in the male is sufficient to provide a competitive mating advantage. We further find that the vigorous male courtship displayed toward oenocyte-less flies is attributed to an oenocyte-independent sustained production of the Or47b ligand, ML. In addition, we reveal that Or88a-expressing OSNs respond to all three compounds, and that these neurons are necessary and sufficient for attraction behavior in both males and females. Beyond the OSN level, information regarding the three fly odorants is transferred from the antennal lobe to higher brain centers in two dedicated neural lines. Finally, we find that both Or47b- and Or88a-based systems and their ligands are remarkably conserved over a number of drosophilid species. Taken together, our results close a significant gap in the understanding of the olfactory background to Drosophila mating and attraction behavior; while reproductive isolation barriers between species are created mainly by species-specific signals, the mating enhancing signal in several Drosophila species is conserved.
Collapse
|
83
|
Venu I, Durisko Z, Xu J, Dukas R. Social attraction mediated by fruit flies' microbiome. ACTA ACUST UNITED AC 2015; 217:1346-52. [PMID: 24744425 DOI: 10.1242/jeb.099648] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Larval and adult fruit flies are attracted to volatiles emanating from food substrates that have been occupied by larvae. We tested whether such volatiles are emitted by the larval gut bacteria by conducting tests under bacteria-free (axenic) conditions. We also tested attraction to two bacteria species, Lactobacillus brevis, which we cultured from larvae in our lab, and L. plantarum, a common constituent of fruit flies' microbiome in other laboratory populations and in wild fruit flies. Neither larvae nor adults showed attraction to axenic food that had been occupied by axenic larvae, but both showed the previously reported attraction to standard food that had been occupied by larvae with an intact microbiome. Larvae also showed significant attraction to volatiles from axenic food and larvae to which we added only either L. brevis or L. plantarum, and volatiles from L. brevis reared on its optimal growth medium. Controlled learning experiments indicated that larvae experienced with both standard and axenic used food do not perceive either as superior, while focal larvae experienced with simulated used food, which contains burrows, perceive it as superior to unused food. Our results suggest that flies rely on microbiome-derived volatiles for long-distance attraction to suitable food patches. Under natural settings, fruits often contain harmful fungi and bacteria, and both L. brevis and L. plantarum produce compounds that suppress the growth of some antagonistic fungi and bacteria. The larval microbiome volatiles may therefore lead prospective fruit flies towards substrates with a hospitable microbial environment.
Collapse
Affiliation(s)
- Isvarya Venu
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | | | | | | |
Collapse
|
84
|
Austel N, Reinecke A, Björkman C, Hilker M, Meiners T. Phenotypic plasticity in a willow leaf beetle depends on host plant species: release and recognition of beetle odors. Chem Senses 2014; 40:109-24. [PMID: 25537016 DOI: 10.1093/chemse/bju065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Aggregation behavior of herbivorous insects is mediated by a wide range of biotic and abiotic factors. It has been suggested that aggregation behavior of the blue willow leaf beetle Phratora vulgatissima is mediated by both host plant odor and by odor released by the beetles. Previous studies show that the beetles respond to plant odors according to their prior host plant experiences. Here, we analyzed the effect of the host plant species on odor released and perceived by adult P. vulgatissima. The major difference between the odor of beetles feeding on salicin-rich and salicin-poor host plants was the presence of salicylaldehyde in the odor of the former, where both males and females released this compound. Electrophysiological studies showed that the intensity of responses to single components of odor released by beetles was sex specific and dependent on the host plant species with which the beetles were fed. Finally, behavioral studies revealed that males feeding on salicin-rich willows were attracted by salicylaldehyde, whereas females did not respond behaviorally to this compound, despite showing clear antennal responses to it. Finally, the ecological relevance of the influence of a host plant species on the plasticity of beetle odor chemistry, perception, and behavior is discussed.
Collapse
Affiliation(s)
- Nadine Austel
- Freie Universitaet Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Haderslebener Straße 9, 12163 Berlin, Germany
| | - Andreas Reinecke
- Department of Neuroethology, Max Planck Institute for Chemical Ecology, Hans-Knöll-Straße 8, 07745 Jena, Germany, Present address: Department of Behavioural Ecology and Evolutionary Genetics, Max Planck Institute for Ornithology, Eberhard-Gwinner-Straße 4, 82319 Seewiesen, Germany
| | - Christer Björkman
- Department of Ecology, Swedish University of Agricultural Sciences, Box 7044, 750 07 Uppsala, Sweden and
| | - Monika Hilker
- Freie Universitaet Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Haderslebener Straße 9, 12163 Berlin, Germany
| | - Torsten Meiners
- Freie Universitaet Berlin, Dahlem Centre of Plant Sciences, Institute of Biology, Haderslebener Straße 9, 12163 Berlin, Germany, Department of Chemical Biology, Helmholtz-Centre for Infection Research, Inhoffen-Straße 7, 38124 Braunschweig, Germany
| |
Collapse
|
85
|
Abstract
Many animals copy the choices of others but the functional and mechanistic explanations for copying are still not fully resolved. We relied on novel behavioral protocols to quantify the value of patch-choice copying in fruit flies. In a titration experiment, we quantified how much nutritional value females were willing to trade for laying eggs on patches already occupied by larvae (social patches). Females were highly sensitive to nutritional quality, which was positively associated with their offspring success. Females, however, perceived social, low-nutrition patches (33% of the nutrients) as equally valuable as non-social, high-nutrition ones (100% of the nutrients). In follow-up experiments, we could not, however, either find informational benefits from copying others or detect what females' offspring may gain from developing with older larvae. Because patch-choice copying in fruit flies is a robust phenomenon in spite of potential costs due to competition, we suggest that it is beneficial in natural settings, where fruit flies encounter complex dynamics of microbial communities, which include, in addition to the preferred yeast species they feed on, numerous harmful fungi and bacteria. We suggest that microbial ecology underlies many cases of copying in nature.
Collapse
Affiliation(s)
- Shane Golden
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
86
|
Pheromonal Communication in the European House Dust Mite, Dermatophagoides pteronyssinus. INSECTS 2014; 5:639-50. [PMID: 26462831 PMCID: PMC4592581 DOI: 10.3390/insects5030639] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2014] [Revised: 07/18/2014] [Accepted: 07/30/2014] [Indexed: 11/16/2022]
Abstract
Despite the sanitary importance of the European house dust mite Dermatophagoides pteronyssinus (Trouessart, 1897), the pheromonal communication in this species has not been sufficiently studied. Headspace analysis using solid phase micro extraction (SPME) revealed that nerol, neryl formate, pentadecane, (6Z,9Z)-6,9-heptadecadiene, and (Z)-8-heptadecene are released by both sexes whereas neryl propionate was released by males only. Tritonymphs did not produce any detectable volatiles. In olfactometer experiments, pentadecane and neryl propionate were attractive to both sexes as well as to tritonymphs. (Z)-8-heptadecene was only attractive to male mites. Therefore it is discussed that pentadecane and neryl propionate are aggregation pheromones and (Z)-8-heptadecene is a sexual pheromone of the European house dust mite D. pteronyssinus. To study the potential use of pheromones in dust mite control, long-range olfactometer experiments were conducted showing that mites can be attracted to neryl propionate over distances of at least 50 cm. This indicates that mite pheromones might be useable to monitor the presence or absence of mites in the context of control strategies.
Collapse
|
87
|
Gilbert JDJ. Thrips domiciles protect larvae from desiccation in an arid environment. ACTA ACUST UNITED AC 2014; 25:1338-1346. [PMID: 25419084 PMCID: PMC4235581 DOI: 10.1093/beheco/aru128] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 11/14/2022]
Abstract
Desiccation is a particular risk for small animals in arid environments. In response, many organisms "construct niches," favorable microenvironments where they spend part or all of their life cycle. Some maintain such environments for their offspring via parental care. Insect eggs are often protected from desiccation by parentally derived gels, casings, or cocoons, but active parental protection of offspring from desiccation has never been demonstrated. Most free-living thrips (Thysanoptera) alleviate water loss via thigmotaxis (crevice seeking). In arid Australia, Acacia thrips (Phlaeothripidae) construct many kinds of niche. Some thrips induce galls; others, like Dunatothrips aneurae, live and breed within "domiciles" made from loosely glued phyllodes. The function of domiciles is unknown; like other constructed niches, they may 1) create favorable microenvironments, 2) facilitate feeding, 3) protect from enemies, or a combination. To test the first 2 alternatives experimentally, field-collected domiciles were destroyed or left intact. Seven-day survival of feeding and nonfeeding larval stages was monitored at high (70-80%) or low (8-10%, approximately ambient) humidity. Regardless of humidity, most individuals survived in intact domiciles, whereas for destroyed domiciles, survival depended on humidity, suggesting parents construct and maintain domiciles to prevent offspring desiccating. Feeding and nonfeeding larvae had similar survival patterns, suggesting the domicile's role is not nutritional. Outside domiciles, survival at "high" humidity was intermediate, suggesting very high humidity requirements, or energetic costs of wandering outside domiciles. D. aneurae commonly cofound domiciles; cofoundresses may benefit both from shared nestbuilding costs, and from "deferred byproduct mutualism," that is, backup parental care in case of mortality.
Collapse
|
88
|
Kojima W, Ishikawa Y, Takanashi T. Chemically mediated group formation in soil-dwelling larvae and pupae of the beetle Trypoxylus dichotomus. Naturwissenschaften 2014; 101:687-95. [PMID: 25027587 DOI: 10.1007/s00114-014-1199-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/06/2014] [Accepted: 06/09/2014] [Indexed: 12/01/2022]
Abstract
Many insects form groups through interactions among individuals, and these are often mediated by chemical, acoustic, or visual cues and signals. In spite of the diversity of soil-dwelling insects, their aggregation behaviour has not been examined as extensively as that of aboveground species. We investigated the aggregation mechanisms of larvae of the Japanese rhinoceros beetle Trypoxylus dichotomus, which live in groups in humus soil. In two-choice laboratory tests, 2nd- and 3rd-instar larvae gathered at conspecific larvae irrespective of the kinship. The ablation of maxillae, which bear chemosensilla, abolished aggregation behaviour. Intact larvae also exhibited aggregation behaviour towards a larval homogenate. These results suggest that larval aggregation is mediated by chemical cues. We also demonstrated that the mature larvae of T. dichotomus built their pupal cells close to a mesh bag containing a conspecific pupal cell, which indicated that larvae utilize chemical cues emanating from these cells to select the pupation site. Thus, the larvae of T. dichotomus may use chemical cues from the conspecifics in two different contexts, i.e. larval aggregation and pupation site selection. Using conspecific cues, larvae may be able to choose suitable locations for foraging or building pupal cells. The results of the present study highlight the importance of chemical information in belowground ecology.
Collapse
Affiliation(s)
- Wataru Kojima
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, 113-8657, Japan,
| | | | | |
Collapse
|
89
|
Clotuche G, Yano S, Akino T, Amano H. Chemical investigation of aggregation behaviour in the two-spotted spider mite Tetranychus urticae. EXPERIMENTAL & APPLIED ACAROLOGY 2014; 63:377-387. [PMID: 24535123 DOI: 10.1007/s10493-014-9779-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 02/08/2014] [Indexed: 06/03/2023]
Abstract
The silk produced by the group-living mite Tetranychus urticae provides group protection and is used as an informative material during habitat settlement, egg laying, mating, and dispersal events. In this context, cues contained in the silk and other materials produced by mites [eggs, black faeces (BF) and white faeces + silk (WFS)] were investigated. Chemical compounds were extracted by hexane or methanol, and choice tests were used to determine the individual attractiveness of each extract. For both solvents, individuals did not respond to the extract from eggs and WFS. BF extracts were attractive for both solvents. After separating the BF methanol extract into four different chemical components using thin layer chromatography, no component was determined to be responsible for mite attraction. This work supports the evidence that the faeces of T. urticae do contain substances that promote behavioural changes. Not particular chemical compounds but combinations of them seem to induce the mites' preference. Moreover, the response of mites to chemicals seemed to be context dependent as mites belonging to populations with different densities differed in their attraction to BF extracts.
Collapse
Affiliation(s)
- Gwendoline Clotuche
- Laboratory of Ecological Information, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan,
| | | | | | | |
Collapse
|
90
|
Bontonou G, Wicker-Thomas C. Sexual Communication in the Drosophila Genus. INSECTS 2014; 5:439-58. [PMID: 26462693 PMCID: PMC4592592 DOI: 10.3390/insects5020439] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/14/2014] [Accepted: 05/16/2014] [Indexed: 12/20/2022]
Abstract
In insects, sexual behavior depends on chemical and non-chemical cues that might play an important role in sexual isolation. In this review, we present current knowledge about sexual behavior in the Drosophila genus. We describe courtship and signals involved in sexual communication, with a special focus on sex pheromones. We examine the role of cuticular hydrocarbons as sex pheromones, their implication in sexual isolation, and their evolution. Finally, we discuss the roles of male cuticular non-hydrocarbon pheromones that act after mating: cis-vaccenyl acetate, developing on its controversial role in courtship behavior and long-chain acetyldienylacetates and triacylglycerides, which act as anti-aphrodisiacs in mated females.
Collapse
Affiliation(s)
- Gwénaëlle Bontonou
- CNRS UPR 9034 and Université de Paris Sud, 91198 Gif sur Yvette, France.
| | | |
Collapse
|
91
|
Cerretti P, Di Giulio A, Romani R, Inclan DJ, Whitmore D, Di Giovanni F, Scalici M, Minelli A. First report of exocrine epithelial glands in oestroid flies: the tachinid sexual patches (Diptera: Oestroidea: Tachinidae). ACTA ZOOL-STOCKHOLM 2014. [DOI: 10.1111/azo.12085] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Pierfilippo Cerretti
- DAFNAE-Entomologia; Università degli Studi di Padova; Viale dell'Università 16 Legnaro I 35020 Italy
- Dipartimento di Biologia e Biotecnologie ‘Charles Darwin’; ‘Sapienza’ Università di Roma; Piazzale A. Moro 5 Rome I 00185 Italy
| | - Andrea Di Giulio
- Dipartimento di Scienze; Università degli Studi ‘Roma Tre’; Viale G. Marconi 446 Rome I 00146 Italy
| | - Roberto Romani
- Dipartimento di Scienze Agrarie Alimentari e Ambientali; Università degli Studi di Perugia; Borgo XX Giugno 74 Perugia I 06121 Italy
| | - Diego J. Inclan
- DAFNAE-Entomologia; Università degli Studi di Padova; Viale dell'Università 16 Legnaro I 35020 Italy
| | - Daniel Whitmore
- Department of Life Sciences; Natural History Museum; Cromwell Road London SW7 5BD UK
| | - Filippo Di Giovanni
- Dipartimento di Biologia e Biotecnologie ‘Charles Darwin’; ‘Sapienza’ Università di Roma; Piazzale A. Moro 5 Rome I 00185 Italy
| | - Massimiliano Scalici
- Dipartimento di Scienze; Università degli Studi ‘Roma Tre’; Viale G. Marconi 446 Rome I 00146 Italy
| | - Alessandro Minelli
- Dipartimento di Biologia; Università degli Studi di Padova; Via Ugo Bassi 58B Padova I 35131 Italy
| |
Collapse
|
92
|
Lucas-Barbosa D, Poelman EH, Aartsma Y, Snoeren TAL, van Loon JJA, Dicke M. Caught between parasitoids and predators - survival of a specialist herbivore on leaves and flowers of mustard plants. J Chem Ecol 2014; 40:621-31. [PMID: 24888744 DOI: 10.1007/s10886-014-0454-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 05/20/2014] [Accepted: 05/21/2014] [Indexed: 01/13/2023]
Abstract
The survival of insect herbivores typically is constrained by food choice and predation risk. Here, we explored whether movement from leaves to flowers increases survival of herbivores that prefer to feed on floral tissues. Combining field and greenhouse experiments, we investigated whether flowering influences the behavior of Pieris brassicae butterflies and caterpillars and, consequently, herbivore survival in the field. In this context, we investigated also if flowers of Brassica nigra can provide caterpillars refuge from the specialist parasitoid Cotesia glomerata and from predatory social wasps. By moving to flowers, caterpillars escaped from the parasitoid. Flowers are nutritionally superior when compared with leaves, and caterpillars develop faster when feeding on flowers. However, late-stage caterpillars can be preyed upon intensively by social wasps, irrespective of whether they feed on leaves or flowers. We conclude that flower preference by P. brassicae is more likely driven by nutritional advantages and reduced parasitism on flowers, than by risks of being killed by generalist predators.
Collapse
Affiliation(s)
- Dani Lucas-Barbosa
- Laboratory of Entomology, Wageningen University, Wageningen, The Netherlands,
| | | | | | | | | | | |
Collapse
|
93
|
Barrantes ME, Castelo MK. Host specificity in the host-seeking larva of the dipteran parasitoid Mallophora ruficauda and the influence of age on parasitism decisions. BULLETIN OF ENTOMOLOGICAL RESEARCH 2014; 104:295-306. [PMID: 24548616 DOI: 10.1017/s0007485314000029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Larvae of the robber fly Mallophora ruficauda are ectoparasitoids of white grubs and adults are an important apiculture pest in Argentina. Females oviposit on tall grasses and the second instar larva actively searches and locates hosts. There are nine potential hosts in the distribution area of this parasitoid and Cyclocephala signaticollis (Coleoptera: Scarabaeidae) is the most parasitized in the field. However, M. ruficauda has a certain degree of behavioural flexibility towards different host species, and not being a strict specialist. The conditions under which the parasitoid orientates and accepts different hosts' species are unknown. We studied the host specificity of M. ruficauda towards three species of Cyclocephala genus and we determined whether this specificity depends on larval age. We also evaluated whether larva orientation towards Cyclocephala species changes with chemical cue concentration. We assessed host specificity measuring the orientation and acceptance behaviours towards kairomones extracts and live individuals of Cyclocephala species using M. ruficauda larvae of low and high life expectancy (i.e., young and aged second instar larvae). We observed that young larvae orientated only towards C. signaticollis chemical stimulus, whereas aged larvae orientated also towards C. modesta, and the same was observed with increasing stimuli's concentration. Both young and aged M. ruficauda larvae orientate towards live C. signaticollis and C. putrida species and rejected C. modesta. Also, we found that larvae accepted all Cyclocephala hosts. In conclusion, our results indicate that specificity in the laboratory, observed through host orientation and host acceptance behaviours, depends not only on the availability of host species, but also on the nature of the host's stimuli combined with parasitoid age.
Collapse
Affiliation(s)
- M E Barrantes
- Grupo de Investigación en Ecofisiología de Parasitoides (GIEP), Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güirales 2160, Ciudad Universitaria, Pabellón II (C1428EHA), Ciudad de Buenos Aires, Argentina
| | - M K Castelo
- Grupo de Investigación en Ecofisiología de Parasitoides (GIEP), Departamento de Ecología, Genética y Evolución, Instituto IEGEBA (CONICET-UBA), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güirales 2160, Ciudad Universitaria, Pabellón II (C1428EHA), Ciudad de Buenos Aires, Argentina
| |
Collapse
|
94
|
Leskey TC, Hock V, Chouinard G, Cormier D, Leahy K, Cooley D, Tuttle A, Eaton A, Zhang A. Evaluating electrophysiological and behavioral responses to volatiles for improvement of odor-baited trap tree management of Conotrachelus nenuphar (Coleoptera: Curculionidae). ENVIRONMENTAL ENTOMOLOGY 2014; 43:753-761. [PMID: 24780096 DOI: 10.1603/en13230] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Plum curculio, Conotrachelus nenuphar (Herbst), one of the most important pests of apple in eastern and central North America, is usually managed in New England apple orchards by multiple full-block insecticide applications. Efforts to reduce insecticide inputs against plum curculio include using an "attract and kill" approach: odor-baited trap trees deployed in the perimeter row of apple orchards. The standard approach is based on baiting apple trees with two olfactory stimuli, the fruit volatile benzaldehyde and the aggregation pheromone of plum curculio, grandisoic acid. We attempted to improve attraction, aggregation, and retention of adult plum curculios within specific baited trap tree canopies within apple orchards using an additional host plant volatile found to be highly stimulating in electroantennogram studies, trans-2-hexenal. We also attempted to increase aggregation using increased release rates of grandisoic acid. We found that trans-2-hexenal did not provide increased aggregation when deployed as an additional attractant within trap trees or when conversely deployed as a "push" component or repellent in perimeter trees lateral to the baited trap tree. Although increasing the release rate of grandisoic acid 5× actually appeared to increase overall aggregation within trap trees, it was not significantly different than that obtained using the standard dose. Therefore, we believe that the standard olfactory stimuli are sufficient to provide aggregation within trap trees, but that other means should be used to manage them after their arrival.
Collapse
Affiliation(s)
- Tracy C Leskey
- USDA-ARS, Appalachian Fruit Research Station, 2217 Wiltshire Rd., Kearneysville, WV 25430-2771, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Le Goff GJ, Hance T, Detrain C, Deneubourg JL, Mailleux AC. Impact of living with kin/non-kin on the life history traits of Tetranychus urticae (Acari: Tetranychidae). EXPERIMENTAL & APPLIED ACAROLOGY 2014; 63:37-47. [PMID: 24599554 DOI: 10.1007/s10493-014-9783-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 02/18/2014] [Indexed: 06/03/2023]
Abstract
In many vertebrates and invertebrates, living in a group may influence the life history traits, physiology and behaviour of its individual members, whereas genetic relatedness affects social interactions among individuals in a group. The two-spotted spider mite Tetranychus urticae is characterised by a communal organization, in which silk production plays a key role. A silken web protects the colony against biotic and abiotic agents such as predators, competitors, humidity, wind, rain and acaricides. To evaluate the potential costs and benefits of being associated with genetically distant vs genetically close individuals in T. urticae, we assessed various fitness indicators (faecal pellet production, fecundity, death rate) in pure and mixed groups of two distinct populations of T. urticae: a red-form population from Tunisia and a green-form population from Belgium. If genetic origin had no influence, the values of fitness indicators in mixed groups composed of green and red individuals, would be intermediate between those of the pure green-form and red-form groups. Our results show that in a mixed group, faecal pellet production and death rate were statistically similar to the values obtained in the pure group of green-form individuals. Therefore, our study suggests that strain recognition ability may occur in T. urticae and that the genetic background of an individual may have a great impact on several of its life history traits.
Collapse
Affiliation(s)
- Guillaume Jean Le Goff
- Earth and Life Institute, Biodiversity Research Centre, Université Catholique de Louvain, 4-5 Place Croix-du-Sud, 1348, Louvain, Belgium,
| | | | | | | | | |
Collapse
|
96
|
Durisko Z, Kemp R, Mubasher R, Dukas R. Dynamics of social behavior in fruit fly larvae. PLoS One 2014; 9:e95495. [PMID: 24740198 PMCID: PMC3989340 DOI: 10.1371/journal.pone.0095495] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 03/27/2014] [Indexed: 11/19/2022] Open
Abstract
We quantified the extent and dynamics of social interactions among fruit fly larvae over time. Both a wild-type laboratory population and a recently-caught strain of larvae spontaneously formed social foraging groups. Levels of aggregation initially increased during larval development and then declined with the wandering stage before pupation. We show that larvae aggregated more on hard than soft food, and more at sites where we had previously broken the surface of the food. Groups of larvae initiated burrowing sooner than solitary individuals, indicating that one potential benefit of larval aggregations is an improved ability to dig and burrow into the food substrate. We also show that two closely related species, D. melanogaster and D. simulans, differ in their tendency to aggregate, which may reflect different evolutionary histories. Our protocol for quantifying social behavior in larvae uncovered robust social aggregations in this simple model, which is highly amenable to neurogenetic analyses, and can serve for future research into the mechanisms and evolution of social behavior.
Collapse
Affiliation(s)
- Zachary Durisko
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
- Social Aetiology of Mental Illness (SAMI) CIHR Training Program, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- * E-mail:
| | - Rebecca Kemp
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Rameeshay Mubasher
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
97
|
Wheeler CA, Cardé RT. Following in their footprints: cuticular hydrocarbons as overwintering aggregation site markers in Hippodamia convergens. J Chem Ecol 2014; 40:418-28. [PMID: 24687179 DOI: 10.1007/s10886-014-0409-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2014] [Revised: 03/05/2014] [Accepted: 03/11/2014] [Indexed: 12/01/2022]
Abstract
The convergent lady beetle (Hippodamia convergens) forms large overwintering aggregations at revisited montane microsites far removed from their summer foraging grounds. Although orientation responses to visual and altitudinal features of habitat can explain the arrival of migrants at the general overwintering macrosite, the role that pheromones play in the accumulation of individuals in inconspicuous hibernacula microsites is not fully understood. Through two-choice bioassays and gas chromatography and mass spectrometry, we found that H. convergens orient towards hydrocarbons previously deposited on their walking surfaces by conspecifics. n-Tricosane (C23) is primarily responsible for this chemically-mediated orientation. Footprint extracts, as well as C23 alone, induce the eventual accumulation in the field of migrant H. convergens at artificial hibernacula, confirming their probable role as aggregation signals. Aggregations persisted over many days when footprint extracts were applied in conjunction with the previously identified 2-isobutyl-3-methoxypyrazine (IBMP) aggregation pheromone. The C23 hydrocarbon functions as a pheromone that interacts with responses to methoxypyrazines to effectively mediate formation of persistent aggregations of diapausing conspecifics at specific microsites. Also discussed is the potential effect that C23 has as a persistent scent marker in establishing the traditional use of hibernacula.
Collapse
|
98
|
Semiochemistry of the Scarabaeoidea. J Chem Ecol 2014; 40:190-210. [PMID: 24474404 DOI: 10.1007/s10886-014-0377-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 12/16/2013] [Accepted: 01/02/2014] [Indexed: 12/13/2022]
Abstract
The superfamily Scarabaeoidea comprises a large and diverse monophyletic group. Members share ancestral characteristics, but often exhibit considerable differences in their ecology, physiology, or mating strategies. A large number of species are regarded as pests of crop or amenity plants, while others are beneficial to humans and even may be extremely rare as a result of anthropogenic activities. A significant number of chemical ecology-based studies have been conducted with the Scarabaeoidea in order to characterize semiochemicals influencing their behavior, such as pheromones and plant-derived allelochemicals. These may be used either to control or preserve populations of the beetles, depending upon pest or beneficial status. This paper is a review of the role and identity of the semiochemicals of the Scarabaeoidea, with comments on possible future research and applied opportunities in the field of chemical ecology.
Collapse
|
99
|
Chemosensory and thermal cue responses in the sub-Antarctic moth Pringleophaga marioni: Do caterpillars choose Wandering Albatross nest proxies? Polar Biol 2014. [DOI: 10.1007/s00300-014-1457-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
100
|
Gasch T, Schott M, Wehrenfennig C, Düring RA, Vilcinskas A. Multifunctional weaponry: the chemical defenses of earwigs. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:1186-1193. [PMID: 24090659 DOI: 10.1016/j.jinsphys.2013.09.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/19/2013] [Accepted: 09/20/2013] [Indexed: 06/02/2023]
Abstract
Earwigs protect themselves against predators using pincer-like cerci and/or malodorous exudates secreted from abdominal glands. Little is known about the chemistry of these secretions and their potential functions. However, because earwigs live in aggregations and overwinter in soil, they are exposed to high microbial loads throughout their lifecycle, and we therefore hypothesized that the secretions are used not only to deter predators but also to combat pathogens and parasites in their environment. We analyzed the defensive secretions of the European earwig Forficula auricularia, the short-winged earwig Apterygida media and the woodland earwig Chelidurella guentheri by gas chromatography-mass spectrometry. The secretions of all three species contained 2-methyl-1,4-benzoquinone and 2-ethyl-1,4-benzoquinone, whereas A. media also produced 2,3-dimethyl-1,4-benzoquinone and 2-ethyl-3-methyl-1,4-benzoquinone. The latter has not been identified in the exudates of insects before. The composition and/or quantity of these components were species-specific and partially sex-specific. All secretions showed antimicrobial activity against Gram-positive and Gram-negative bacteria as well as two entomopathogenic fungi. Furthermore, the secretion of F. auricularia displayed nematicidal activity against Caenorhabditis elegans. Our data support the hypothesis that earwig secretions are multifunctional, serving both to deter predators and sanitize the microenvironment.
Collapse
Affiliation(s)
- Tina Gasch
- Institute of Phytopathology and Applied Zoology, Justus Liebig University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | | | | | | | | |
Collapse
|