51
|
Crowley SD, Frey CW, Gould SK, Griffiths R, Ruiz P, Burchette JL, Howell DN, Makhanova N, Yan M, Kim HS, Tharaux PL, Coffman TM. Stimulation of lymphocyte responses by angiotensin II promotes kidney injury in hypertension. Am J Physiol Renal Physiol 2008; 295:F515-24. [PMID: 18495795 DOI: 10.1152/ajprenal.00527.2007] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Activation of the renin-angiotensin system contributes to the progression of chronic kidney disease. Based on the known cellular effects of ANG II to promote inflammation, we posited that stimulation of lymphocyte responses by ANG II might contribute to the pathogenesis of hypertensive kidney injury. We therefore examined the effects of the immunosuppressive agent mycophenolate mofetil (MMF) on the course of hypertension and kidney disease induced by chronic infusion of ANG II in 129/SvEv mice. Although it had no effect on the severity of hypertension or cardiac hypertrophy, treatment with MMF significantly reduced albuminuria and ameliorated kidney injury, decreasing glomerulosclerosis and reducing lymphocyte infiltration into the renal interstitium. Attenuation of renal pathology with MMF was associated with reduced expression of mRNAs for the proinflammatory cytokines interferon-gamma and tumor necrosis factor-alpha and the profibrotic cytokine transforming growth factor-beta. As infiltration of the kidney by T lymphocytes was a prominent feature of ANG II-dependent renal injury, we carried out experiments examining the effects of ANG II on lymphocytes in vitro. We find that exposure of splenic lymphocytes to ANG II causes prominent rearrangements of the actin cytoskeleton. These actions require the activity of Rho kinase. Thus, ANG II exaggerates hypertensive kidney injury by stimulating lymphocyte responses. These proinflammatory actions of ANG II seem to have a proclivity for inducing kidney injury while having negligible actions in the pathogenesis of cardiac hypertrophy.
Collapse
Affiliation(s)
- Steven D Crowley
- Division of Nephrology, Department of Medicine, Duke University Medical Center and Durham Veterans Affairs Medical Center, Durham, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Wang P, Sidney J, Dow C, Mothé B, Sette A, Peters B. A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 2008; 4:e1000048. [PMID: 18389056 PMCID: PMC2267221 DOI: 10.1371/journal.pcbi.1000048] [Citation(s) in RCA: 618] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Accepted: 02/29/2008] [Indexed: 11/23/2022] Open
Abstract
The identification of MHC class II restricted peptide epitopes is an important goal in immunological research. A number of computational tools have been developed for this purpose, but there is a lack of large-scale systematic evaluation of their performance. Herein, we used a comprehensive dataset consisting of more than 10,000 previously unpublished MHC-peptide binding affinities, 29 peptide/MHC crystal structures, and 664 peptides experimentally tested for CD4+ T cell responses to systematically evaluate the performances of publicly available MHC class II binding prediction tools. While in selected instances the best tools were associated with AUC values up to 0.86, in general, class II predictions did not perform as well as historically noted for class I predictions. It appears that the ability of MHC class II molecules to bind variable length peptides, which requires the correct assignment of peptide binding cores, is a critical factor limiting the performance of existing prediction tools. To improve performance, we implemented a consensus prediction approach that combines methods with top performances. We show that this consensus approach achieved best overall performance. Finally, we make the large datasets used publicly available as a benchmark to facilitate further development of MHC class II binding peptide prediction methods. A critical step in developing immune response against pathogens is the recognition of antigenic peptides presented by MHC class II molecules. Since experiments for MHC class II binding peptide identification are expensive and time consuming, computational tools have been developed as fast alternatives but with inferior performance. Here, we carried out a large-scale systematic evaluation of existing prediction tools with the aim of establishing a benchmark for performance comparison and to identify directions that can further improve prediction performance. We provide an unbiased ranking of the performance of publicly available MHC class II prediction tools and demonstrate that the MHC class II prediction tools did not perform as well as the MHC class I tools. In addition, we show that the size of training data and the correct identification of the binding core are the two factors limiting the performance of existing tools. Finally, we make available to the immunology community a large dataset to facilitate the evaluation and development of MHC class II binding prediction tools.
Collapse
Affiliation(s)
- Peng Wang
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - John Sidney
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Courtney Dow
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- Department of Biological Sciences, California State University-San Marcos, San Marcos, California, United States of America
| | - Bianca Mothé
- Department of Biological Sciences, California State University-San Marcos, San Marcos, California, United States of America
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
53
|
Noubade R, Milligan G, Zachary JF, Blankenhorn EP, del Rio R, Rincon M, Teuscher C. Histamine receptor H1 is required for TCR-mediated p38 MAPK activation and optimal IFN-gamma production in mice. J Clin Invest 2008; 117:3507-18. [PMID: 17965772 DOI: 10.1172/jci32792] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2007] [Accepted: 08/29/2007] [Indexed: 01/14/2023] Open
Abstract
Histamine receptor H1 (H1R) is a susceptibility gene in both experimental autoimmune encephalomyelitis (EAE) and experimental autoimmune orchitis (EAO), 2 classical T cell-mediated models of organ-specific autoimmune disease. Here we showed that expression of H1R in naive CD4+ T cells was required for maximal IFN-gamma production but was dispensable for proliferation. Moreover, H1R signaling at the time of TCR ligation was required for activation of p38 MAPK, a known regulator of IFN-gamma expression. Importantly, selective reexpression of H1R in CD4+ T cells fully complemented both the IFN-gamma production and the EAE susceptibility of H1R-deficient mice. These data suggest that the presence of H1R in CD4+ T cells and its interaction with histamine regulates early TCR signals that lead to Th1 differentiation and autoimmune disease.
Collapse
Affiliation(s)
- Rajkumar Noubade
- Department of Medicine, University of Vermont, Burlington, Vermont, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Protein phosphatase subunit G5PR that regulates the JNK-mediated apoptosis signal is essential for the survival of CD4 and CD8 double-positive thymocytes. Mol Immunol 2008; 45:2028-37. [DOI: 10.1016/j.molimm.2007.10.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2007] [Revised: 10/11/2007] [Accepted: 10/12/2007] [Indexed: 11/22/2022]
|
55
|
Soto-Peña GA, Vega L. Arsenic interferes with the signaling transduction pathway of T cell receptor activation by increasing basal and induced phosphorylation of Lck and Fyn in spleen cells. Toxicol Appl Pharmacol 2008; 230:216-26. [PMID: 18407307 DOI: 10.1016/j.taap.2008.02.029] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2007] [Revised: 02/05/2008] [Accepted: 02/20/2008] [Indexed: 11/18/2022]
Abstract
Arsenic is known to produce inhibition as well as induction of immune cells proliferative responses depending on the doses as one of its mechanisms of immunotoxicity. Here we evaluate the effect of arsenic exposure on the activation of splenic mononuclear cells (SMC) in male CD57BL6N mice. Intra-gastric exposure to arsenic (as sodium arsenite) for 30 days (1, 0.1, or 0.01 mg/kg/day), reduced the proportion of CD4+ cells and the CD4+/CD8+ ratio in the spleen, increasing the proportion of CD11b+ cells. Arsenic exposure did not modify the proportion of B cells. SMC showed an increased level of phosphorylation of lck and fyn kinases (first kinases associated to TCR complex when activated). Although normal levels of apoptosis were observed on freshly isolated SMC, an increase in apoptotic cells related with the increase in phosphorylation of lck and fyn was observed when SMC were activated with Concanavalin-A (Con-A). Arsenic exposure reduced the proliferative response of SMC to Con-A, and also reduced secretion of IL-2, IL-6, IL-12 and IFNgamma. No effect was observed on IL-4, and IL-10 secretion. The same effects were observed when SMC of exposed animals were activated with anti-CD3/CD28 antibodies for 24 h, but these effects were transitory since a recovery, up to control levels or even higher, were observed after 72 h of stimulation. This study demonstrates that repeated and prolonged exposure to arsenic alters cell populations and produces functional changes depending on the specific activation pathway, and could be related with the phosphorylation status of lck and fyn kinases.
Collapse
Affiliation(s)
- Gerson A Soto-Peña
- Sección Externa de Toxicología, CINVESTAV, Av. IPN 2508, San Pedro Zacatenco, México D. F., 07360, Mexico
| | | |
Collapse
|
56
|
Jarmin SJ, David R, Ma L, Chai JG, Dewchand H, Takesono A, Ridley AJ, Okkenhaug K, Marelli-Berg FM. T cell receptor-induced phosphoinositide-3-kinase p110delta activity is required for T cell localization to antigenic tissue in mice. J Clin Invest 2008; 118:1154-64. [PMID: 18259608 PMCID: PMC2230659 DOI: 10.1172/jci33267] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2007] [Accepted: 12/12/2007] [Indexed: 11/17/2022] Open
Abstract
The establishment of T cell-mediated inflammation requires the migration of primed T lymphocytes from the blood stream and their retention in antigenic sites. While naive T lymphocyte recirculation in the lymph and blood is constitutively regulated and occurs in the absence of inflammation, the recruitment of primed T cells to nonlymphoid tissue and their retention at the site are enhanced by various inflammatory signals, including TCR engagement by antigen-displaying endothelium and resident antigen-presenting cells. In this study, we investigated whether signals downstream of TCR ligation mediated by the phosphoinositide-3-kinase (PI3K) subunit p110delta contributed to the regulation of these events. T lymphocytes from mice expressing catalytically inactive p110delta displayed normal constitutive trafficking and migratory responses to nonspecific stimuli. However, these cells lost susceptibility to TCR-induced migration and failed to localize efficiently to antigenic tissue. Importantly, we showed that antigen-induced T cell trafficking and subsequent inflammation was abrogated by selective pharmacological inhibition of PI3K p110delta activity. These observations suggest that pharmacological targeting of p110delta activity is a viable strategy for the therapy of T cell-mediated pathology.
Collapse
Affiliation(s)
- Sarah J. Jarmin
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Rachel David
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Liang Ma
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Jan-Guo Chai
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Hamlata Dewchand
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Aya Takesono
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Anne J. Ridley
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Klaus Okkenhaug
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| | - Federica M. Marelli-Berg
- Department of Immunology, Division of Medicine, Imperial College London, Hammersmith Campus, London, United Kingdom.
Ludwig Institute for Cancer Research, University College London, London, United Kingdom.
Laboratory of Lymphocyte Signalling and Development, Babraham Institute, Cambridge, United Kingdom
| |
Collapse
|
57
|
Cronin SJF, Penninger JM. From T-cell activation signals to signaling control of anti-cancer immunity. Immunol Rev 2008; 220:151-68. [PMID: 17979845 DOI: 10.1111/j.1600-065x.2007.00570.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The activation of resting T cells is crucial to most immune processes. Recognition of foreign antigen by T-cell receptors has to be correctly translated into signal transduction events necessary for the induction of an effective immune response. In this review, we discuss the essential signals, molecules, and processes necessary to achieve full T-cell activation. In addition to describing these key biological events, we also discuss how T-cell receptor signaling may be harnessed to yield new therapeutic targets for a next generation of anti-cancer drugs.
Collapse
Affiliation(s)
- Shane J F Cronin
- IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
| | | |
Collapse
|
58
|
Khan AA, Mao XO, Banwait S, DerMardirossian CM, Bokoch GM, Jin K, Greenberg DA. Regulation of hypoxic neuronal death signaling by neuroglobin. FASEB J 2008; 22:1737-47. [PMID: 18198211 DOI: 10.1096/fj.07-100784] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The signal transduction pathways involved in neuronal death are not well understood. Neuroglobin (Ngb), a recently discovered vertebrate globin expressed predominantly in the brain, shows increased expression in neurons in response to oxygen deprivation and protects neurons from ischemic and hypoxic death. The mechanism of this neuroprotection is unclear. We examined the surface distribution of raft membrane microdomains in cortical neuron cultures during hypoxia using the raft marker cholera toxin B (CTx-B) subunit. Mechanistically, we demonstrate that hypoxia induces rapid polarization of somal membranes and aggregation of microdomains with the subjacent mitochondrial network. This signaling complex is formed well before neurons commit to die, consistent with an early role in death signal transduction. Neurons from Ngb-overexpressing transgenic (Ngb-Tg) mice do not undergo microdomain polarization or mitochondrial aggregation in response to, and are resistant to death from hypoxia. We link the protective actions of Ngb to inhibition of Pak1 kinase activity and Rac1-GDP-dissociation inhibitor disassociation, and inhibition of actin assembly and death-signaling module polarization.
Collapse
Affiliation(s)
- Adil A Khan
- The Buck Institute for Age Research, 8001 Redwood Blvd., Novato, CA 94945, USA.
| | | | | | | | | | | | | |
Collapse
|
59
|
Caloca MJ, Delgado P, Alarcón B, Bustelo XR. Role of chimaerins, a group of Rac-specific GTPase activating proteins, in T-cell receptor signaling. Cell Signal 2007; 20:758-70. [PMID: 18249095 DOI: 10.1016/j.cellsig.2007.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2007] [Revised: 12/17/2007] [Accepted: 12/17/2007] [Indexed: 10/22/2022]
Abstract
Chimaerins are GTPase-activating proteins that inactivate the GTP-hydrolase Rac1 in a diacylglycerol-dependent manner. To date, the study of chimaerins has been done mostly in neuronal cells. Here, we show that alpha2- and beta2-chimaerin are expressed at different levels in T-cells and that they participate in T-cell receptor signaling. In agreement with this, we have observed that alpha2- and beta2-chimaerins translocate to the T-cell/B-cell immune synapse and, using both gain- and loss-of-function approaches, demonstrated that their catalytic activity is important for the inhibition of the T-cell receptor- and Vav1-dependent stimulation of the transcriptional factor NF-AT. Mutagenesis-based approaches have revealed the molecular determinants that contribute to the biological program of chimaerins during T-cell responses. Unexpectedly, we have found that the translocation of chimaerins to the T-cell/B-cell immune synapse does not rely on the canonical binding of diacylglycerol to the C1 region of these GTPase-activating proteins. Taken together, these results identify chimaerins as candidates for the downmodulation of Rac1 in T-lymphocytes and, in addition, uncover a novel regulatory mechanism that mediates their activation in T-cells.
Collapse
Affiliation(s)
- María José Caloca
- Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, E-37007 Salamanca, Spain.
| | | | | | | |
Collapse
|
60
|
Cotta-de-Almeida V, Westerberg L, Maillard MH, Onaldi D, Wachtel H, Meelu P, Chung UI, Xavier R, Alt FW, Snapper SB. Wiskott Aldrich syndrome protein (WASP) and N-WASP are critical for T cell development. Proc Natl Acad Sci U S A 2007; 104:15424-9. [PMID: 17878299 PMCID: PMC2000553 DOI: 10.1073/pnas.0706881104] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although T cell dysfunction and lymphopenia are key features of immunodeficient patients with the Wiskott-Aldrich syndrome and Wiskott-Aldrich syndrome protein (WASP)-deficient mice, T cell development appears relatively normal. We hypothesized that N-WASP, a ubiquitously expressed homologue of WASP, may serve a redundant function with WASP. To examine the unique and redundant activities of WASP and N-WASP, we generated ES cells devoid of WASP and N-WASP [double knockout (DKO)] and used the RAG-2-deficient blastocyst complementation system to generate DKO lymphocytes. Moreover, we mated WASP KO mice with mice containing a conditionally targeted N-WASP allele and used the Cre-loxP system to generate mice lacking WASP and N-WASP in T cells [conditional DKO (cDKO)]. In both systems, N-WASP-deficient cells were indistinguishable from WT cells. In contrast, T cell development in DKO and cDKO mice was markedly altered, as shown by thymic hypocellularity and reduced numbers of peripheral T cells. We found that the combined activity of WASP and N-WASP was important for CD4(-)CD8(-) double-negative (DN)-to-CD4(+)CD8(+) double-positive (DP) cell transition, and this may be partly explained by reduced cycling DN3 cells. In addition, decreased migratory responses of CD4(+)CD8(-) and CD4(-)CD8(+) single-positive (SP) cells and increased percentage of CD69(low)CD24(low) and CD62L(low) SP cells in cDKO cells imply retention of SP cells in the thymus. In summary, this study suggests that, although WASP serves a unique role for peripheral T cell function, T cell development depends on the combined activity of WASP and N-WASP.
Collapse
Affiliation(s)
- Vinicius Cotta-de-Almeida
- *Gastrointestinal Unit
- Center for the Study of Inflammatory Bowel Disease
- Medicine, Harvard Medical School, Boston, MA 02115; and
- Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Lisa Westerberg
- *Gastrointestinal Unit
- Center for the Study of Inflammatory Bowel Disease
- Medicine, Harvard Medical School, Boston, MA 02115; and
| | - Michel H. Maillard
- *Gastrointestinal Unit
- Center for the Study of Inflammatory Bowel Disease
- Medicine, Harvard Medical School, Boston, MA 02115; and
| | - Dilek Onaldi
- *Gastrointestinal Unit
- Center for the Study of Inflammatory Bowel Disease
- Medicine, Harvard Medical School, Boston, MA 02115; and
| | - Heather Wachtel
- *Gastrointestinal Unit
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Parool Meelu
- *Gastrointestinal Unit
- Center for the Study of Inflammatory Bowel Disease
- Medicine, Harvard Medical School, Boston, MA 02115; and
| | | | - Ramnik Xavier
- *Gastrointestinal Unit
- Center for the Study of Inflammatory Bowel Disease
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114
- Medicine, Harvard Medical School, Boston, MA 02115; and
| | - Frederick W. Alt
- **Howard Hughes Medical Institute, Children's Hospital, Boston, MA 02115
- Center for Blood Research, Boston, MA 02115
- Departments of Genetics and
- To whom correspondence may be addressed. E-mail: or
| | - Scott B. Snapper
- *Gastrointestinal Unit
- Center for the Study of Inflammatory Bowel Disease
- Medicine, Harvard Medical School, Boston, MA 02115; and
- To whom correspondence may be addressed. E-mail: or
| |
Collapse
|
61
|
Wei B, da Rocha Dias S, Wang H, Rudd CE. CTL-associated antigen-4 ligation induces rapid T cell polarization that depends on phosphatidylinositol 3-kinase, Vav-1, Cdc42, and myosin light chain kinase. THE JOURNAL OF IMMUNOLOGY 2007; 179:400-8. [PMID: 17579061 DOI: 10.4049/jimmunol.179.1.400] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
CTLA-4 can negatively regulate cytokine production and proliferation, increase motility, and override the TCR-induced stop-signal needed for stable T cell-APC conjugation. Despite this, little is known regarding whether CTLA-4 can alter T cell morphology and the nature of the signaling events that could account for this event. In this study, we demonstrate that anti-CTLA-4 and CD3/CTLA-4 induce rapid T cell polarization (i.e., within 15-30 min) with increases in lamellipodia, filopodia, and uropod formation. This was observed with anti-CTLA-4 and CD80-Ig ligation of CTLA-4, but not with anti-CD3 alone, or anti-CD3/CD28 coligation. Polarization required PI3K, the guanine nucleotide exchange factor Vav1, the GTP-binding protein Cdc42, as well as myosin L chain kinase. By contrast, a key downstream target of PI3K, protein kinase B, as well as Rho kinase and RhoA, were not needed. Our results demonstrate that CTLA-4 is a potent activator T cell polarization needed for motility, and this process involves specific set of signaling proteins that might contribute to coreceptor regulation of T cell function.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- Antigens, Differentiation/physiology
- CD3 Complex/immunology
- CTLA-4 Antigen
- Cell Movement/immunology
- Cells, Cultured
- Humans
- Immune Sera/physiology
- Intracellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/physiology
- Mice
- Myosin-Light-Chain Kinase/physiology
- Phosphatidylinositol 3-Kinases/physiology
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins c-akt/metabolism
- Proto-Oncogene Proteins c-vav/physiology
- Pseudopodia/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes, Cytotoxic/cytology
- T-Lymphocytes, Cytotoxic/enzymology
- T-Lymphocytes, Cytotoxic/immunology
- T-Lymphocytes, Cytotoxic/metabolism
- Up-Regulation/immunology
- cdc42 GTP-Binding Protein/physiology
- rho-Associated Kinases
- rhoA GTP-Binding Protein/metabolism
Collapse
Affiliation(s)
- Bin Wei
- Molecular Immunology Section, Department of Immunology, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
62
|
Eisenmann KM, West RA, Hildebrand D, Kitchen SM, Peng J, Sigler R, Zhang J, Siminovitch KA, Alberts AS. T Cell Responses in Mammalian Diaphanous-related Formin mDia1 Knock-out Mice. J Biol Chem 2007; 282:25152-8. [PMID: 17595162 DOI: 10.1074/jbc.m703243200] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Activated T cells rapidly assemble filamentous (F-) actin networks in response to ligation of the T cell receptor or upon interaction with adhesive stimuli in order to facilitate cell migration and the formation of the immune synapse. Branched filament assembly is crucial for this process and is dependent upon activation of the Arp2/3 complex by the actin nucleation-promoting factor Wiskott-Aldrich Syndrome protein (WASp). Genetic disruption of the WAS gene has been linked to hematopoietic malignancies and various cytopenias. Although the contributions of WASp and Arp2/3 to T cell responses are fairly well characterized, the role of the mammalian Diaphanous (mDia)-related formins, which both nucleate and processively elongate non-branched F-actin, has not been demonstrated. Here, we report the effects on T cell development and function following the knock out of the murine Drf1 gene encoding the canonical formin p140mDia1. Drf1(-/-) mice develop lymphopenia characterized by diminished T cell populations in lymphoid tissues. Consistent with a role for p140mDia1 in the regulation of the actin cytoskeleton, isolated Drf1(-/-) splenic T cells adhered poorly to extracellular matrix proteins and migration in response to chemotactic stimuli was completely abrogated. Both integrin and chemokine receptor expression was unaffected by Drf1(-/-) targeting. In response to proliferative stimuli, both thymic and splenic Drf1(-/-) T cells failed to proliferate; ERK1/2 activation was also diminished in activated Drf1(-/-) T cells. These data suggest a central role for p140mDia1 in vivo in dynamic cytoskeletal remodeling events driving normal T cell responses.
Collapse
Affiliation(s)
- Kathryn M Eisenmann
- Laboratory of Cell Structure and Signal Integration, Van Andel Research Institute, Grand Rapids, Michigan 49503, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
Rueda D, Gaide O, Ho L, Lewkowicz E, Niedergang F, Hailfinger S, Rebeaud F, Guzzardi M, Conne B, Thelen M, Delon J, Ferch U, Mak TW, Ruland J, Schwaller J, Thome M. Bcl10 controls TCR- and FcgammaR-induced actin polymerization. THE JOURNAL OF IMMUNOLOGY 2007; 178:4373-84. [PMID: 17371994 DOI: 10.4049/jimmunol.178.7.4373] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Bcl10 plays an essential role in the adaptive immune response, because Bcl10-deficient lymphocytes show impaired Ag receptor-induced NF-kappaB activation and cytokine production. Bcl10 is a phosphoprotein, but the physiological relevance of this posttranslational modification remains poorly defined. In this study, we report that Bcl10 is rapidly phosphorylated upon activation of human T cells by PMA/ionomycin- or anti-CD3 treatment, and identify Ser(138) as a key residue necessary for Bcl10 phosphorylation. We also show that a phosphorylation-deficient Ser(138)/Ala mutant specifically inhibits TCR-induced actin polymerization yet does not affect NF-kappaB activation. Moreover, silencing of Bcl10, but not of caspase recruitment domain-containing MAGUK protein-1 (Carma1) induces a clear defect in TCR-induced F-actin formation, cell spreading, and conjugate formation. Remarkably, Bcl10 silencing also impairs FcgammaR-induced actin polymerization and phagocytosis in human monocytes. These results point to a key role of Bcl10 in F-actin-dependent immune responses of T cells and monocytes/macrophages.
Collapse
Affiliation(s)
- Daniel Rueda
- Department of Biochemistry, University of Lausanne, BIL Biomedical Research Center, Chemin des Boveresses 155, Epalinges, Switzerland
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
64
|
Weckbecker G, Bruns C, Fischer KD, Heusser C, Li J, Metzler B, Morris RE, Nuesslein-Hildesheim B, Raulf F, Wieczorek G, Zenke G. Strongly reduced alloreactivity and long-term survival times of cardiac allografts in Vav1- and Vav1/Vav2-knockout mice. Transpl Int 2007; 20:353-64. [PMID: 17326776 DOI: 10.1111/j.1432-2277.2006.00438.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vav proteins mediate T- and B-cell activation by functioning as GTP/GDP exchange factors for small GTPases. We have studied the role of Vav1 and Vav2 in allogeneic T-cell activation, antibody responses and allograft rejection. Alloantigen-induced proliferation of T cells from Vav1- and Vav1/Vav2-knockout (ko) mice was decreased by >90% in a mixed lymphocyte reaction. In whole-blood cultures, Vav deficiency led to markedly impaired T- and B-cell activation. Expansion of Vav1- or Vav1/Vav2-ko T cells (C57BL/6) was reduced after transfer into severe combined immune deficiency/beige recipient mice (BALB/c). After priming with 2,4-dinitrophenyl (DNP)-keyhole limpet hemocyanin, T-cell-dependent anti-DNP IgM and IgG antibody levels were normal in Vav1-ko mice but undetectable in Vav1/Vav2-ko mice. The median survival time of BALB/c cardiac allografts transplanted into C57BL/6 Vav1-ko mice (n = 13) or Vav1/Vav2-ko mice (n = 5) was >100 and >77 days, compared with 8-9 days in the corresponding wild-type mice. Vav1/Vav2-ko mice with <100 days graft survival developed bacterial skin infections and were prematurely killed with beating cardiac allograft. Long-term surviving transplants of single and double ko mice showed mild cellular interstitial rejection and mild to severe vascular remodeling. In conclusion, our studies show for the first time that the absence of Vav1 and Vav1/Vav2 in ko mice strongly reduces alloreactivity and results in long-term allograft survival, whereas antibody responses were only affected in Vav1/Vav2 ko mice.
Collapse
Affiliation(s)
- Gisbert Weckbecker
- Autoimmunity and Transplantation, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Morley SC, Sung J, Sun GP, Martelli MP, Bunnell SC, Bierer BE. Gelsolin overexpression alters actin dynamics and tyrosine phosphorylation of lipid raft-associated proteins in Jurkat T cells. Mol Immunol 2006; 44:2469-80. [PMID: 17178161 PMCID: PMC1945820 DOI: 10.1016/j.molimm.2006.09.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2006] [Accepted: 09/29/2006] [Indexed: 12/18/2022]
Abstract
Upon T cell receptor engagement, both the actin cytoskeleton and substrates of tyrosine phosphorylation are remodeled to create a signaling complex at the interface of the antigen-presenting cell and responding T cell. While T cell signaling has been shown to regulate actin reorganization, the mechanisms by which changes in actin dynamics affect early T cell signaling have not been fully explored. Using gelsolin, an actin-binding protein with capping and severing activities, and latrunculin, an actin-depolymerizing agent, we have further investigated the interplay between actin dynamics and the regulation of T cell signaling. Overexpression of gelsolin altered actin dynamics in Jurkat T cells, and alteration of actin dynamics correlated with dysregulation of tyrosine phosphorylation of raft-associated substrates. This perturbation of tyrosine phosphorylation was correlated with inhibition of activation-dependent signaling pathways regulating Erk-1/2 phosphorylation, NF-AT transcriptional activation and IL-2 production. Modification of actin by the depolymerizing agent latrunculin also altered the tyrosine phosphorylation patterns of proteins associated with lipid rafts, and pre-treatment with latrunculin inhibited anti-CD3 mAb-mediated NF-AT activation. Thus, our data indicate that actin cytoskeletal dynamics modulate the tyrosine phosphorylation of raft-associated proteins and subsequent downstream signal transduction.
Collapse
Affiliation(s)
- S Celeste Morley
- Laboratory of Lymphocyte Biology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
66
|
Morrow MA. Clinorotation differentially inhibits T-lymphocyte transcription factor activation. In Vitro Cell Dev Biol Anim 2006; 42:153-8. [PMID: 16848635 DOI: 10.1290/0601011.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
T lymphocytes cultured under the low-shear stress environment of modeled microgravity demonstrate an inhibition of activation in response to T-cell receptor (TCR)-mediated signaling. Modeled microgravity culture-induced inhibition mimics the inhibition observed during spaceflight. This work investigates the molecular signaling events of interleukin 2 transcription activation in modeled microgravity as generated with clinorotation. Under normal conditions, NFAT (nuclear factor of activated T cells) is dephosphorylated and activated with sustained calcium (Ca++) influx and calcineurin activity, whereas AP-1 is activated by protein kinase C (PKC) and Ras-mediated pathways. Purified human T lymphocytes are shown to exhibit differential inhibition of transcription factor activation in modeled microgravity. Activation of AP-1 is blocked with clinorotation, whereas NFAT dephosphorylation occurs. This work supports the theory that modeled microgravity differentially blocks the activation of distinct signaling mechanism.
Collapse
Affiliation(s)
- Maureen A Morrow
- Department of Biology, State University of New York, New Paltz, 75 South Manheim Boulevard, New Paltz, NY 12561-2499, USA.
| |
Collapse
|
67
|
Buckler JL, Walsh PT, Porrett PM, Choi Y, Turka LA. Cutting edge: T cell requirement for CD28 costimulation is due to negative regulation of TCR signals by PTEN. THE JOURNAL OF IMMUNOLOGY 2006; 177:4262-6. [PMID: 16982858 DOI: 10.4049/jimmunol.177.7.4262] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Recent studies suggest that the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) plays a critical role in the maintenance of self-tolerance. Using T cell-specific PTEN knockout mice (PTENDeltaT), we have identified a novel mechanism by which PTEN regulates T cell tolerance. We found that TCR stimulation alone, without CD28 costimulation, is sufficient to induce hyperactivation of the PI3K pathway, which leads to enhanced IL-2 production by naive PTENDeltaT T cells. Importantly, as a result of this increased response to TCR stimulation, PTENDeltaT CD4(+) T cells no longer require CD28 costimulation for in vitro or in vivo expansion. In fact, unlike wild-type T cells, PTENDeltaT CD4(+) T cells are not anergized by delivery of TCR stimulation alone. These data suggest that by negatively regulating TCR signals, PTEN imposes a requirement for CD28 costimulation, thus defining a novel mechanism for its role in self-tolerance.
Collapse
Affiliation(s)
- Jodi L Buckler
- Department of Medicine, University of Pennsylvania, 415 Curie Boulevard, Philadelphia, PA 19104-6144, USA
| | | | | | | | | |
Collapse
|
68
|
Wang Z, Liao YH, Yuan J, Zhang JH, Liu ZP, Dong JH. Analysis of IgG subclass antibodies and expression of T-Cell receptor signaling molecules in anti-CD4 monoclonal antibody treated mice with autoimmune cardiomyopathy. Autoimmunity 2006; 39:455-60. [PMID: 17060024 DOI: 10.1080/08916930600845915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
T-cell immune abnormality in patients of dilated cardiomyopathy has been intensively studied over the past 10 years. In this study, we aim to focus on the molecular mechanism of T-cells in autoimmune cardiomyopathy mouse model by detecting the expression of three T-cell signaling molecules. Balb/C mice (n = 12) were immunized with the peptides derived from human ADP/ATP carrier on the 1st, 14th, 28th, 49th and 79th days, and half of them were also injected with anti-L3T4 McAb on the - 1st, 0 and 1st days. The sham-immunized mice were taken as the controls (n = 6). The main result shows that the antibody response of IgG subclasses such as IgG1, IgG2b and IgG3 were definitely blocked except IgG2a in CD4+ cell-depleted Balb/C mice. In addition, the average mRNA expression of p56lck, p59fyn and zap-70 were all found to be dramatically higher in the mice immunized with only ADP/ATP carrier peptides than in the control-group. At meantime, reduced levels of the protein kinases p56lck, p59fyn and zap-70 were clearly observed in anti-CD4 McAb immunized group compared with DCM group. We propose that the proliferation of T-cells was significantly inhibited in anti-CD4 treated mice and CD4+ T-cells may play a critical role in ADP/ATP carrier caused mouse DCM.
Collapse
Affiliation(s)
- Zhaohui Wang
- Laboratory of Cardiovascular immunology, Tongji Medical College, Institute of Cardiology, Union Hospital, Huazhong Technology and Science University, 1277 Jie-Fang Avenue, Wuhan, 430022, People's Republic of China
| | | | | | | | | | | |
Collapse
|
69
|
Abstract
Since Medawar's initial contemplations in 1953 on the mechanisms of immune evasion allowing for the survival of the allogeneic conceptus in an immunologically competent mother, physicians and immunologists alike have struggled to understand the immunological paradox of pregnancy. Ultimately, our attempts to define the immunology of normal pregnancy have broadened our appreciation of the myriad mechanisms at play that enable the promotion of implantation and maintenance of pregnancy. In this review, we summarise what is known regarding the immunology of normal pregnancy, with special emphasis on the relation to common disorders of pregnancy.
Collapse
Affiliation(s)
- Kjersti M Aagaard-Tillery
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Utah Health Sciences, 30 North 1900 East, SOM 2B200, Salt Lake City, UT 84132, USA.
| | | | | |
Collapse
|
70
|
Suzuki JI, Yamasaki S, Wu J, Koretzky GA, Saito T. The actin cloud induced by LFA-1–mediated outside-in signals lowers the threshold for T-cell activation. Blood 2006; 109:168-75. [PMID: 16973965 DOI: 10.1182/blood-2005-12-020164] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
AbstractThe dynamic rearrangement of the actin cytoskeleton plays critical roles in T-cell receptor (TCR) signaling and immunological synapse (IS) formation in T cells. Following actin rearrangement in T cells upon TCR stimulation, we found a unique ring-shaped reorganization of actin called the “actin cloud,” which was specifically induced by outside-in signals through lymphocyte function–associated antigen-1 (LFA-1) engagement. In T-cell–antigen-presenting cell (APC) interactions, the actin cloud is generated in the absence of antigen and localized at the center of the T-cell–APC interface, where it accumulates LFA-1 and tyrosine-phosphorylated proteins. The LFA-1–induced actin cloud formation involves ADAP (adhesion- and degranulation-promoting adaptor protein) phosphorylation, LFA-1/ADAP assembly, and c-Jun N-terminal kinase (JNK) activation, and occurs independent of TCR and its proximal signaling. The formation of the actin cloud lowers the threshold for subsequent T-cell activation. Thus, the actin cloud induced by LFA-1 engagement may serve as a possible platform for LFA-1–mediated costimulatory function for T-cell activation.
Collapse
Affiliation(s)
- Jun-ichiro Suzuki
- Department of Molecular Genetics, Graduate School of Medicine, Chiba University, Japan
| | | | | | | | | |
Collapse
|
71
|
Crotta S, Ronconi V, Ulivieri C, Baldari CT, Valiante NM, Valiente NM, Abrignani S, Wack A. Cytoskeleton rearrangement induced by tetraspanin engagement modulates the activation of T and NK cells. Eur J Immunol 2006; 36:919-29. [PMID: 16552713 DOI: 10.1002/eji.200535527] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The hepatitis C virus (HCV) binds to human cells through the interaction of its envelope glycoprotein E2 with the tetraspanin CD81. We have previously reported that engagement of CD81 has opposite effects on T and NK cell function, as it enhances T cell receptor-mediated T cell activation and inhibits CD16- or IL-12-mediated NK cell activation. We further investigated this dichotomy and found that another tetraspanin, CD82, induces the same opposing effects on human primary T and NK cells. Activation by other unrelated stimuli such as NKG2D- and beta-1 integrin is also reduced by CD81 ligation on NK cells. CD81 engagement by monoclonal antibody or HCV-E2 enhances zeta and Erk phosphorylation in T cells and reduces them in NK cells, reflecting the opposite functional outcomes. CD81 engagement induces dramatic morphological changes and local F-actin accumulation in both NK and T cells, indicating rearrangement of the actin cytoskeleton. Pharmacological inhibition of actin polymerization reduces T cell activation, whereas it greatly enhances NK cell activation. Importantly, treatment with actin blockers abolishes the inhibitory effect of CD81 ligation on NK cells. We propose that tetraspanin engagement leads to comparable cytoskeleton reorganization in T and NK cells, which in turn results in opposite functional outcomes.
Collapse
|
72
|
Su IH, Dobenecker MW, Dickinson E, Oser M, Basavaraj A, Marqueron R, Viale A, Reinberg D, Wülfing C, Tarakhovsky A. Polycomb group protein ezh2 controls actin polymerization and cell signaling. Cell 2005; 121:425-36. [PMID: 15882624 DOI: 10.1016/j.cell.2005.02.029] [Citation(s) in RCA: 288] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2004] [Revised: 01/01/2005] [Accepted: 02/22/2005] [Indexed: 12/14/2022]
Abstract
Polycomb group protein Ezh2, one of the key regulators of development in organisms from flies to mice, exerts its epigenetic function through regulation of histone methylation. Here, we report the existence of the cytosolic Ezh2-containing methyltransferase complex and tie the function of this complex to regulation of actin polymerization in various cell types. Genetic evidence supports the essential role of cytosolic Ezh2 in actin polymerization-dependent processes such as antigen receptor signaling in T cells and PDGF-induced dorsal circular ruffle formation in fibroblasts. Revealed function of Ezh2 points to a broader usage of lysine methylation in regulation of both nuclear and extra-nuclear signaling processes.
Collapse
Affiliation(s)
- I-hsin Su
- Laboratory of Lymphocyte Signaling, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Blanchet F, Cardona A, Letimier FA, Hershfield MS, Acuto O. CD28 costimulatory signal induces protein arginine methylation in T cells. ACTA ACUST UNITED AC 2005; 202:371-7. [PMID: 16061726 PMCID: PMC2213083 DOI: 10.1084/jem.20050176] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Protein phosphorylation initiates signal transduction that triggers lymphocyte activation. However, other posttranslational modifications may contribute to this process. Here, we show that CD28 engagement induced protein arginine methyltransferase activity and methylation on arginine of several proteins, including Vav1. Methylation of Vav1 and IL-2 production were reduced by inhibiting S-adenosyl-L-homocysteine hydrolase, an enzyme that regulates cellular transmethylation. Methylated Vav1 was induced in human and mouse T cells and selectively localized in the nucleus, which suggested that this form marks a nuclear function of Vav1. Our findings uncover a signaling pathway that is controlled by CD28 that is likely to be important for T cell activation.
Collapse
Affiliation(s)
- Fabien Blanchet
- Molecular Immunology Unit, Institut Pasteur, Paris 75015, Cedex 15, France
| | | | | | | | | |
Collapse
|
74
|
Han J, Shui JW, Zhang X, Zheng B, Han S, Tan TH. HIP-55 is important for T-cell proliferation, cytokine production, and immune responses. Mol Cell Biol 2005; 25:6869-78. [PMID: 16055701 PMCID: PMC1190228 DOI: 10.1128/mcb.25.16.6869-6878.2005] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Engagement of the T-cell receptor (TCR) triggers a series of signaling events that lead to the activation of T cells. HIP-55 (SH3P7 or mAbp1), an actin-binding adaptor protein, interacts with and is tyrosine phosphorylated by ZAP-70, which is a crucial proximal protein tyrosine kinase for TCR signaling. HIP-55 is important for JNK and HPK1 activation induced by TCR signaling. In this study, we report the generation and characterization of HIP-55 knockout mice. We found that HIP-55 knockout mice were viable and fertile but showed decreased body weight and increased occurrence of death within the first 4 weeks after birth. The lymphoid organs in HIP-55 knockout mice showed cellularity and T-cell development comparable to that of the wild-type mice. HIP-55 knockout T cells displayed defective T-cell proliferation, decreased cytokine production, and decreased up-regulation of the activation markers induced by TCR stimulation. TCR internalization was slightly increased in HIP-55 knockout T cells. These phenotypes were accompanied by reduced immune responses, including antigen-specific antibody production and T-cell proliferation in HIP-55 knockout mice. The TCR-induced signaling events, including LAT/phospholipase Cgamma1 phosphorylation and HPK1/JNK activation, were partially defective in HIP-55 knockout T cells. These results demonstrate the importance of HIP-55 as an adaptor protein in the TCR signaling and immune system.
Collapse
MESH Headings
- Actins/chemistry
- Alleles
- Animals
- Blotting, Southern
- Blotting, Western
- Body Weight
- Cell Proliferation
- Cytokines/biosynthesis
- Cytokines/metabolism
- Dose-Response Relationship, Drug
- Flow Cytometry
- Humans
- Immune System
- Immunoprecipitation
- Jurkat Cells
- Lymphocyte Activation
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Microfilament Proteins/metabolism
- Microfilament Proteins/physiology
- Models, Genetic
- Mutation
- Phospholipase C gamma
- Phosphorylation
- Polymerase Chain Reaction
- Protein Binding
- Protein Structure, Tertiary
- Protein-Tyrosine Kinases/chemistry
- RNA/metabolism
- Receptors, Antigen, T-Cell/chemistry
- Receptors, Antigen, T-Cell/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Signal Transduction
- T-Lymphocytes/cytology
- Time Factors
- Type C Phospholipases/metabolism
- Tyrosine/chemistry
- ZAP-70 Protein-Tyrosine Kinase
- src Homology Domains/physiology
Collapse
Affiliation(s)
- Jin Han
- Department of Immunology, Baylor College of Medicine, Houston, Texas 77030.
| | | | | | | | | | | |
Collapse
|
75
|
Herndon TM, Pirone DM, Tsokos GC, Chen CS. T cell-to-T cell clustering enhances NF-κB activity by a PI3K signal mediated by Cbl-b and Rho. Biochem Biophys Res Commun 2005; 332:1133-9. [PMID: 15922296 DOI: 10.1016/j.bbrc.2005.05.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2005] [Accepted: 05/10/2005] [Indexed: 11/25/2022]
Abstract
Full activation of T cells requires the binding of antigen to the T cell receptor and stimulation of the CD28 molecule, a process which typically occurs when T cells bind to an antigen presenting cell. The transcription factor, NF-kappaB, is an integration point for these two signals and its activation is critical for T cell function. Using antibodies to the TCR and CD28 molecules to activate Jurkat T cells, we show that cells that were permitted to aggregate into multi-cellular clusters increased NF-kappaB activity compared to unclustered cells. Inhibition of PI3K signaling with wortmannin decreased the clustering-mediated NF-kappaB signal. Over-expression of a dominant negative form of Cbl-b, an endogenous inhibitor of PI3K, in unclustered cells rescued NF-kappaB activation to the same levels caused by cell clustering. Inhibiting signaling through Rho with dominant negative RhoA abrogated both clustering-mediated and dominant negative Cbl-b-mediated NF-kappaB inactivation, but not TCR/CD28 mediated NF-kappaB activation. Taken together, these results suggest that in addition to pathways stimulated by classical T cell-APC interactions, another signal arising from T cell clustering can enhance activation.
Collapse
Affiliation(s)
- Thomas M Herndon
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|
76
|
Abstract
Many bacterial cytotoxins act on eukaryotic cells by targeting the regulators that are involved in controlling the cytoskeleton or by directly modifying actin, with members of the Rho GTPase family being particularly important targets. The actin cytoskeleton, and especially the GTPase 'molecular switches' that are involved in its control, have crucial functions in innate and adaptive immunity, and have pivotal roles in the biology of infection. In this review, we briefly discuss the role of the actin cytoskeleton and the Rho GTPases in host-pathogen interactions, and review the mode of actions of bacterial protein toxins that target these components.
Collapse
Affiliation(s)
- Klaus Aktories
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie der Albert-Ludwigs-Universität, Otto-Krayer-Haus, Albert-Strasse 25, D-79104 Freiburg, Germany.
| | | |
Collapse
|
77
|
Mack KD, Von Goetz M, Lin M, Venegas M, Barnhart J, Lu Y, Lamar B, Stull R, Silvin C, Owings P, Bih FY, Abo A. Functional identification of kinases essential for T-cell activation through a genetic suppression screen. Immunol Lett 2005; 96:129-45. [PMID: 15585316 DOI: 10.1016/j.imlet.2004.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2004] [Revised: 08/14/2004] [Accepted: 08/15/2004] [Indexed: 01/18/2023]
Abstract
Activation of T-cells by antigens initiates a complex series of signal-transduction events that are critical for immune responses. While kinases are key mediators of signal transduction networks, several of which have been well characterized in T-cell activation, the functional roles of other kinases remain poorly defined. To address this deficiency, we developed a genetic screen to survey the functional roles of kinases in antigen mediated T-cell activation. A retroviral library was constructed that expressed genetic suppressor elements (GSEs) comprised of peptides and antisense nucleotides derived from kinase cDNAs including members of the STE, CAMK, AGC, CMGC, RGC, TK, TKL, Atypical, and Lipid kinase groups. The retroviral library was expressed in Jurkat T-cells and analyzed for their effect on T-cell activation as monitored by CD69 expression. Jurkat cells were activated by antigen presenting cells treated with superantigen, and sorted for a CD69 negative phenotype by flow cytometry. We identified 19 protein kinases that were previously implicated in T-cell signaling processes and 12 kinases that were not previously linked to T-cell activation. To further validate our approach, we characterized the role of the protein kinase MAP4K4 that was identified in the screen. siRNA studies showed a role for MAP4K4 in antigen mediated T-cell responses in Jurkat and primary T-cells. In addition, by analyzing multiple promoter elements using reporter assays, we have shown that MAP4K4 is implicated in the activation of the TNF-alpha promoter. Our results suggest that this methodology could be used to survey the function of the entire kinome in T-cell activation.
Collapse
Affiliation(s)
- Karl D Mack
- PPD Discovery Inc., 1505 O'Brien Drive, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Tian W, Feng B, Liou HC. Silencing OCILRP2 leads to intrinsic defects in T cells in response to antigenic stimulation. Cell Immunol 2005; 235:72-84. [PMID: 16143319 DOI: 10.1016/j.cellimm.2005.07.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2005] [Revised: 07/01/2005] [Accepted: 07/14/2005] [Indexed: 10/25/2022]
Abstract
We have previously demonstrated that OCILRP2 interaction with its ligand NKRP1f provides a co-stimulatory signal for optimal T cell proliferation and IL-2 production. Here, using RNA interference technology, we will demonstrate that silencing OCILRP2 in vivo leads to intrinsic impairment in T cell response to CD3- and CD28-cross-linking as well as antigenic stimulation. OCILRP2-silenced T cells have reduced cell proliferation and IL-2 production, which can be bypassed by PMA and ionomycin treatment. OCILRP2-silenced T cells also failed to undergo TCR capping and had impaired cytoskeleton reorganization. Moreover, in OCILRP2-silenced T cells, tyrosine phosphorylation of Lck was diminished, while tyrosine phosphorylation of linkers for activation of T cells was unchanged. Interestingly, NF-kappaB activation was also impaired as the result of OCILRP2 silencing. Together, our data strongly support a novel role for OCILRP2 C-type lectin in TCR-mediated signal transduction. The observation that OCILRP2 is involved in TCR capping and cytoskeletal organization suggests that OCILRP2-NKRP1f may facilitate lipid rafts and immunological synapse formation during T cell interaction with antigen presenting cells.
Collapse
Affiliation(s)
- Wenzhi Tian
- Division of Immunology, Department of Medicine, Weill Medical College of Cornell University, New York, NY 10021, USA
| | | | | |
Collapse
|
79
|
Abstract
Memory T cells exhibit low activation thresholds and mediate rapid effector responses when recalled by antigen; contrasting the higher activation threshold, slower responses and predominant IL-2 production by naive T cells. While the sequence of intracellular events coupling the T cell-receptor (TCR) to naive T cell activation is well characterized, biochemical control of memory T cell differentiation and function remains undefined. In this review, we will discuss recent developments in T cell-receptor signal transduction as they pertain to memory T cells, and will discuss how signal dampening may drive memory generation, and more efficient spatial organization of signaling molecules may promote rapid recall responses.
Collapse
Affiliation(s)
- Meena R Chandok
- Division of Transplantation, Department of Surgery, University of Maryland School of Medicine, MSTF Building, Room 400, 685 W. Baltimore St., Baltimore, MD 21201, USA
| | | |
Collapse
|
80
|
Patrussi L, Savino MT, Pellegrini M, Paccani SR, Migliaccio E, Plyte S, Lanfrancone L, Pelicci PG, Baldari CT. Cooperation and selectivity of the two Grb2 binding sites of p52Shc in T-cell antigen receptor signaling to Ras family GTPases and Myc-dependent survival. Oncogene 2005; 24:2218-28. [PMID: 15688026 DOI: 10.1038/sj.onc.1208384] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Shc proteins participate in a variety of processes regulating cell proliferation, survival and apoptosis. The two ubiquitously expressed isoforms, p52Shc/p46Shc, couple tyrosine kinase receptors to Ras by recruiting Grb2/Sos complexes to a membrane-proximal localization. Tyrosine residues 239/240 and 317 become phosphorylated following receptor engagement and, as such, form two Grb2 binding sites, which have been proposed to be differentially coupled to Myc-dependent survival and to fos-dependent proliferation, respectively. Here, we have addressed the individual function of YY239/240 and Y317 in T-cell antigen receptor (TCR) signaling. We show that p52Shc is phosphorylated on both YY239/240 and Y317 following TCR engagement. Mutation of either YY239/240 or Y317 results in impaired interaction with Grb2 and inhibition of Ras/MAP kinase activation and CD69 induction, supporting a role for both Grb2 binding sites in this function. Substitution of either YY239/240 or Y317 also results in a defective activation of Rac and the coupled stress kinases JNK and p38. Furthermore, mutation of Y317 or, to a larger extent, of YY239/240, results in increased activation-induced cell death, which in cells expressing the FF239/240 mutant is accompanied by impaired TCR-dependent c-myc transcription. The data underline a pleiotropic and nonredundant role of Shc, mediated by both YY239/240 and Y317, in T-cell activation and survival.
Collapse
Affiliation(s)
- Laura Patrussi
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, Siena 53100, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Paccani SR, Boncristiano M, Patrussi L, Ulivieri C, Wack A, Valensin S, Hirst TR, Amedei A, Del Prete G, Telford JL, D'Elios MM, Baldari CT. Defective Vav expression and impaired F-actin reorganization in a subset of patients with common variable immunodeficiency characterized by T-cell defects. Blood 2005; 106:626-34. [PMID: 15817684 DOI: 10.1182/blood-2004-05-2051] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Common variable immunodeficiency (CVID) is a primary immune disorder characterized by impaired antibody production, which is in many instances secondary to defective T-cell function (T-CVID). We have previously identified a subset of patients with T-CVID characterized by defective T-cell receptor (TCR)-dependent protein tyrosine phosphorylation. In these patients, ZAP-70 fails to be recruited to the TCR as the result of impaired CD3zeta phosphorylation, which is, however, not dependent on defective Lck expression or activity. Here we show that neither Fyn nor CD45 is affected in these patients. On the other hand, T-CVID T cells show dramatic defects in the Vav/Rac pathway controlling F-actin dynamics. A significant deficiency in Vav protein was indeed observed; in 3 of 4 patients with T-CVID, it was associated with reduced VAV1 mRNA levels. The impairment in Vav expression correlated with defective F-actin reorganization in response to TCR/CD28 co-engagement. Furthermore, TCR/CD28-dependent up-regulation of lipid rafts at the cell surface, which requires F-actin dynamics, was impaired in these patients. The actin cytoskeleton defect could be reversed by reconstitution of Vav1 expression in the patients' T cells. Results demonstrate an essential role of Vav in human T cells and strongly suggest Vav insufficiency in T-CVID.
Collapse
Affiliation(s)
- Silvia Rossi Paccani
- Department of Evolutionary Biology, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Sommers CL, Lee J, Steiner KL, Gurson JM, Depersis CL, El-Khoury D, Fuller CL, Shores EW, Love PE, Samelson LE. Mutation of the phospholipase C-gamma1-binding site of LAT affects both positive and negative thymocyte selection. ACTA ACUST UNITED AC 2005; 201:1125-34. [PMID: 15795236 PMCID: PMC1538971 DOI: 10.1084/jem.20041869] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Linker for activation of T cells (LAT) is a scaffolding adaptor protein that is critical for T cell development and function. A mutation of LAT (Y136F) that disrupts phospholipase C-γ1 activation and subsequent calcium influx causes a partial block in T cell development and leads to a severe lymphoproliferative disease in homozygous knock-in mice. One possible contribution to the fatal disease of LAT Y136F knock-in mice could be from autoreactive T cells generated in these mice because of altered thymocyte selection. To examine the impact of the LAT Y136F mutation on thymocyte positive and negative selection, we bred this mutation onto the HY T cell receptor (TCR) transgenic, recombination activating gene-2 knockout background. Female mice with this genotype showed a severe defect in positive selection, whereas male mice exhibited a phenotype resembling positive selection (i.e., development and survival of CD8hi HY TCR-specific T cells) instead of negative selection. These results support the hypothesis that in non-TCR transgenic, LAT Y136F knock-in mice, altered thymocyte selection leads to the survival and proliferation of autoreactive T cells that would otherwise be negatively selected in the thymus.
Collapse
Affiliation(s)
- Connie L Sommers
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Abstract
Rho GTPases are molecular switches controlling a broad range of cellular processes including lymphocyte activation. Not surprisingly, Rho GTPases are now recognized as pivotal regulators of antigen-specific T cell activation by APCs and immunological synapse formation. This review summarizes recent advances in our understanding of how Rho GTPase-dependent pathways control T lymphocyte motility, polarization and activation.
Collapse
Affiliation(s)
- M Deckert
- INSERM Unit 576, Hôpital de l'Archet, BP3079, 06202 Nice, France.
| | | | | |
Collapse
|
84
|
Razzaq TM, Ozegbe P, Jury EC, Sembi P, Blackwell NM, Kabouridis PS. Regulation of T-cell receptor signalling by membrane microdomains. Immunology 2004; 113:413-26. [PMID: 15554919 PMCID: PMC1782593 DOI: 10.1111/j.1365-2567.2004.01998.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 09/09/2004] [Accepted: 09/15/2004] [Indexed: 01/04/2023] Open
Abstract
There is now considerable evidence suggesting that the plasma membrane of mammalian cells is compartmentalized by functional lipid raft microdomains. These structures are assemblies of specialized lipids and proteins and have been implicated in diverse biological functions. Analysis of their protein content using proteomics and other methods revealed enrichment of signalling proteins, suggesting a role for these domains in intracellular signalling. In T lymphocytes, structure/function experiments and complementary pharmacological studies have shown that raft microdomains control the localization and function of proteins which are components of signalling pathways regulated by the T-cell antigen receptor (TCR). Based on these studies, a model for TCR phosphorylation in lipid rafts is presented. However, despite substantial progress in the field, critical questions remain. For example, it is unclear if membrane rafts represent a homogeneous population and if their structure is modified upon TCR stimulation. In the future, proteomics and the parallel development of complementary analytical methods will undoubtedly contribute in further delineating the role of lipid rafts in signal transduction mechanisms.
Collapse
Affiliation(s)
- Tahir M Razzaq
- Bone and Joint Research Unit, William Harvey Research Institute, Queen Mary's School of Medicine and Dentistry, Queen Mary's College, London
| | | | | | | | | | | |
Collapse
|
85
|
Barda-Saad M, Braiman A, Titerence R, Bunnell SC, Barr VA, Samelson LE. Dynamic molecular interactions linking the T cell antigen receptor to the actin cytoskeleton. Nat Immunol 2004; 6:80-9. [PMID: 15558067 DOI: 10.1038/ni1143] [Citation(s) in RCA: 258] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2004] [Accepted: 11/04/2004] [Indexed: 11/09/2022]
Abstract
T cell receptor (TCR) engagement leads to actin polymerization at the site of T cell contact with antigen-presenting cells. Here we have studied the dynamic activity of proteins involved in regulating actin polymerization in live T cells after activation. Two such adaptor proteins, Nck and the Wiskott-Aldrich syndrome protein (WASp), were recruited to the TCR during initial T cell activation, where they colocalized with the tyrosine kinase Zap70. The recruitment of Nck and WASp depended on TCR-induced tyrosine phosphorylation and the LAT and SLP-76 adaptors. Nck and WASp migrated peripherally and accumulated at an actin-rich circumferential ring. Thus, actin polymerization regulated by the TCR begins at the TCR. Molecules recruited to the TCR regulate actin polymerization and this process drives plasma membrane movement and cellular spreading.
Collapse
Affiliation(s)
- Mira Barda-Saad
- Laboratory of Cellular and Molecular Biology, Division of Basic Sciences, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
86
|
Delaguillaumie A, Harriague J, Kohanna S, Bismuth G, Rubinstein E, Seigneuret M, Conjeaud H. Tetraspanin CD82 controls the association of cholesterol-dependent microdomains with the actin cytoskeleton in T lymphocytes: relevance to co-stimulation. J Cell Sci 2004; 117:5269-82. [PMID: 15454569 DOI: 10.1242/jcs.01380] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
T-cell activation is initiated by the concerted engagement of the T-cell receptor and different co-stimulatory molecules, and requires cytoskeleton-dependent membrane dynamics. Here, we have studied the relationships between tetraspanins, cytoskeleton and raft microdomains, and their relevance in T-cell signaling. Localization studies and density-gradient flotation experiments indicate that part of tetraspanins localizes in raft microdomains linked to the actin cytoskeleton. First, partial coalescence of lipid raft is triggered by tetraspanin cross-linking and results in large caps in which F-actin also concentrates. Second, the amount of tetraspanins, which are recovered in the cholesterol-dependent insoluble fractions of low and intermediate density, and which appears to be membrane vesicles by electron microscopy, is under cytoskeletal influence. Disruption of actin filaments enhances the amount of tetraspanins recovered in typical raft fractions, whereas F-actin-stabilizing agents induce the opposite effect. Our data also reveal that CD82 constitutes a link between raft domains and the actin cytoskeleton, which is functionally relevant. First, tetraspanin signaling induces a selective translocation of CD82 from detergent-resistant membrane fractions to the cytoskeleton-associated pellet. Second, all functional effects linked to CD82 engagement, such as adhesion to culture plates, formation of actin bundles and early events of tyrosine phosphorylation, are abolished, or strongly reduced, by cholesterol depletion. We also show that dynamic relocalization of CD82 and F-actin at the periphery of the immune synapse is induced upon contact of T cells with antigen-presenting cells. This suggests that the tetraspanin web might participate in the membrane dynamics required for proper T-cell signaling. More generally, the interaction of tetraspanins with raft domains and with the actin cytoskeleton might relate with their role in many cellular functions as membrane organizers.
Collapse
MESH Headings
- Actins/chemistry
- Antigens, CD/chemistry
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Biotin/chemistry
- Blotting, Western
- Calcium/metabolism
- Cell Adhesion
- Cell Line
- Cell Membrane/metabolism
- Cells, Cultured
- Centrifugation, Density Gradient
- Cholesterol/chemistry
- Cholesterol/metabolism
- Cytoskeleton/metabolism
- Detergents/pharmacology
- G(M1) Ganglioside/chemistry
- Humans
- Immunoprecipitation
- Jurkat Cells
- Kangai-1 Protein
- Lipids/chemistry
- Membrane Glycoproteins/chemistry
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/physiology
- Membrane Microdomains/chemistry
- Microscopy, Confocal
- Microscopy, Electron
- Microscopy, Fluorescence
- Phosphorylation
- Protein Processing, Post-Translational
- Proto-Oncogene Proteins/chemistry
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins/physiology
- Signal Transduction
- Sucrose/chemistry
- T-Lymphocytes/immunology
- Tyrosine/chemistry
Collapse
Affiliation(s)
- Alix Delaguillaumie
- INSERM U396, Hôpital Saint Louis, 1 avenue Claude Vellefaux 75010 Paris, France
| | | | | | | | | | | | | |
Collapse
|
87
|
Sumen C, Dustin ML, Davis MM. T cell receptor antagonism interferes with MHC clustering and integrin patterning during immunological synapse formation. ACTA ACUST UNITED AC 2004; 166:579-90. [PMID: 15314068 PMCID: PMC2172210 DOI: 10.1083/jcb.200404059] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
T cell activation by nonself peptide–major histocompatibility complex (MHC) antigenic complexes can be blocked by particular sequence variants in a process termed T cell receptor antagonism. The inhibition mechanism is not understood, although such variants are encountered in viral infections and may aid immune evasion. Here, we study the effect of antagonist peptides on immunological synapse formation by T cells. This cellular communication process features early integrin engagement and T cell motility arrest, referred to as the “stop signal.” We find that synapses formed on membranes presenting antagonist–agonist complexes display reduced MHC density, which leads to reduced T cell proliferation that is not overcome by the costimulatory ligands CD48 and B7-1. Most T cells fail to arrest and crawl slowly with a dense ICAM-1 crescent at the leading edge. Similar aberrant patterns of LFA-1/ICAM-1 engagement in live T–B couples correlate with reduced calcium flux and IL-2 secretion. Hence, antagonist peptides selectively disable MHC clustering and the stop signal, whereas LFA-1 valency up-regulation occurs normally.
Collapse
Affiliation(s)
- Cenk Sumen
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | | | | |
Collapse
|
88
|
Mannick EE, Bonomolo JC, Horswell R, Lentz JJ, Serrano MS, Zapata-Velandia A, Gastanaduy M, Himel JL, Rose SL, Udall JN, Hornick CA, Liu Z. Gene expression in mononuclear cells from patients with inflammatory bowel disease. Clin Immunol 2004; 112:247-57. [PMID: 15308118 DOI: 10.1016/j.clim.2004.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Accepted: 03/17/2004] [Indexed: 01/16/2023]
Abstract
OBJECTIVES Discovery of Nod2 as the inflammatory bowel disease 1 (IBD1) susceptibility gene has brought to light the significance of mononuclear cells in inflammatory bowel disease pathogenesis. The purpose of this study was to examine changes in gene expression in peripheral blood mononuclear cells in patients with untreated Crohn's disease (CD) and ulcerative colitis (UC) as compared to patients with other inflammatory gastrointestinal disorders and to healthy controls. METHODS We used a 2400 gene cDNA glass slide array (MICROMAX) to examine gene expression in peripheral blood mononuclear cells from seven patients with Crohn's disease, five patients with ulcerative colitis, 10 patients with other inflammatory gastrointestinal disorders, and 22 age- and sex-matched controls. Results. Novel categories of genes differentially expressed in Crohn's disease and ulcerative colitis patients included genes regulating hematopoietic cell differentiation and leukemogenesis, lipid raft-associated signaling, the actin cytoskeleton, and vesicular trafficking. CONCLUSIONS Altered gene expression in mononuclear cells may contribute to inflammatory bowel disease pathogenesis.
Collapse
|
89
|
Kim EY, Teh HS. Critical Role of TNF Receptor Type-2 (p75) as a Costimulator for IL-2 Induction and T Cell Survival: A Functional Link to CD28. THE JOURNAL OF IMMUNOLOGY 2004; 173:4500-9. [PMID: 15383581 DOI: 10.4049/jimmunol.173.7.4500] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CD28 provides important signals that lower the threshold of T cell activation, augment the production of IL-2, and promote T cell survival. The recent identification of a second family of costimulatory molecules within the TNFR family has reshaped the "two-signal" model of T cell activation. In this study the role of p75 as a T cell costimulatory molecule in controlling cell fate during TCR/CD28-mediated stimulation was examined. We found that p75-deficient T cells possess a profound defect in IL-2 production in response to TCR/CD28-mediated stimulation. Examination of key signaling intermediates revealed that TCR proximal events such as global tyrosine phosphorylation and ZAP70 phosphorylation, as well as downstream MAPK cascades are unperturbed in p75-deficient T cells. In contrast, p75 is nonredundantly coupled to sustained AKT activity and NF-kappaB activation in response to TCR/CD28-mediated stimulation. Moreover, p75-deficient T cells possess a defect in survival during the early phase of T cell activation that is correlated with a striking defect in Bcl-x(L) expression. These data indicate discrete effects of p75 on the intracellular signaling milieu during T cell activation, and reveal the synergistic requirement of TCR, CD28, and p75 toward optimal IL-2 induction and T cell survival. We propose that p75 acts as one of the earliest of the identified costimulatory members of the TNFR family, and is functionally linked to CD28 for initiating and determining T cell fate during activation.
Collapse
MESH Headings
- Adjuvants, Immunologic/biosynthesis
- Adjuvants, Immunologic/deficiency
- Adjuvants, Immunologic/genetics
- Adjuvants, Immunologic/physiology
- Animals
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Antigens, CD/physiology
- CD28 Antigens/physiology
- Cell Survival/genetics
- Cell Survival/immunology
- Cells, Cultured
- Interleukin-2/biosynthesis
- Interleukin-2/deficiency
- Lymphocyte Activation/genetics
- MAP Kinase Signaling System/genetics
- MAP Kinase Signaling System/immunology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- NF-kappa B/metabolism
- Phosphorylation
- Protein Serine-Threonine Kinases/deficiency
- Protein Serine-Threonine Kinases/metabolism
- Proto-Oncogene Proteins/deficiency
- Proto-Oncogene Proteins/metabolism
- Proto-Oncogene Proteins c-akt
- Proto-Oncogene Proteins c-bcl-2/biosynthesis
- Proto-Oncogene Proteins c-bcl-2/deficiency
- Receptors, Antigen, T-Cell/physiology
- Receptors, Tumor Necrosis Factor/biosynthesis
- Receptors, Tumor Necrosis Factor/deficiency
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type II
- Second Messenger Systems/genetics
- Second Messenger Systems/immunology
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- bcl-X Protein
Collapse
Affiliation(s)
- Edward Y Kim
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | | |
Collapse
|
90
|
Spitaler M, Cantrell DA. Protein kinase C and beyond. Nat Immunol 2004; 5:785-90. [PMID: 15282562 DOI: 10.1038/ni1097] [Citation(s) in RCA: 222] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Accepted: 06/07/2004] [Indexed: 11/08/2022]
Abstract
Protein kinase C molecules regulate both positive and negative signal transduction pathways essential for the initiation and homeostasis of immune responses. There are multiple isoforms of protein kinase C that are activated differently by calcium and diacylglycerol, and these are activated mainly by antigen receptors in T cells, B cells and mast cells. Additionally, mammals express several other diacylglycerol binding proteins that are linked to a network of key signal transduction pathways that control lymphocyte biology. Diacylglycerol and protein kinase C regulate a broad range of gene transcription programs but also modulate integrins, chemokine responses and antigen receptors, thereby regulating lymphocyte adhesion, migration, differentiation and proliferation.
Collapse
Affiliation(s)
- Martin Spitaler
- School of Life Sciences, Division of Cell Biology & Immunology, University of Dundee, MSI/WTB Complex, Dow Street, Dundee DD1 5EH, UK
| | | |
Collapse
|
91
|
Avota E, Müller N, Klett M, Schneider-Schaulies S. Measles virus interacts with and alters signal transduction in T-cell lipid rafts. J Virol 2004; 78:9552-9. [PMID: 15308747 PMCID: PMC506914 DOI: 10.1128/jvi.78.17.9552-9559.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
By a contact-dependent surface interaction, the measles virus (MV) glycoprotein complex induces a pronounced inhibition of T-cell proliferation. We now show that MV directly interacts with glycosphingolipid-enriched membrane microdomains on human primary T cells and alters recruitment and segregation of membrane proximal signaling components. Contact-dependent interference with T-cell receptor-stimulated tyrosine phosphorylation and Ca mobilization is a late event seen 24 h after MV treatment. In contrast, stimulated recruitment of pleckstrin homology domain-containing proteins such as Akt and Vav is inhibited early after MV contact, as is segregation of the activated Akt kinase from rafts. Tyrosine phosphorylation of the regulatory subunit of the phosphatidylinositol 3-kinase (PI3K), p85, is apparently normal then, yet this protein fails to partition to the lipid raft fraction, and this is associated with stable expression of its negative regulator Cbl-b. Thus, by interaction with lipid rafts, MV contact initially targets recruitment of PI3K by preventing stimulated Cbl-b degradation and activation of PI3K-dependent signaling components.
Collapse
Affiliation(s)
- Elita Avota
- Institute for Virology and Immunobiology, University of Würzburg, Würzburg, Germany
| | | | | | | |
Collapse
|
92
|
Anvari B, Torres JH, McIntyre BW. Regulation of pseudopodia localization in lymphocytes through application of mechanical forces by optical tweezers. JOURNAL OF BIOMEDICAL OPTICS 2004; 9:865-872. [PMID: 15447007 DOI: 10.1117/1.1778178] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
T-lymphocytes are responsible for cell-mediated immunity, and recognize antigens on target cells (e.g., tumor cells, virus-infected cells) and antigen presenting cells (e.g., macrophages, dendritic cells). While mechanical forces applied to a cell surface can produce alterations in the cytoskeletal structure, leading to global structural rearrangements and changes in the intracellular biochemistry and gene expression, it remains unknown if local mechanical forces acting at the lymphocyte-antigen interaction site play any role in lymphocyte activation following antigen recognition. In this study we investigate the effect of such forces induced by optical tweezers on the lymphocyte's morphological response. We brought optically trapped polystyrene beads, coated with a specific antibody against a clonotypic epitope of the T-cell receptors (TCRs), in contact with individual lymphocytes and applied mechanical forces at the TCR-antibody interaction site. Although bead size was a factor, simple bead contact tended to induce formation of pseudopodia that appeared randomly over the cell's surface, while application of tangential forces at the interaction site redirected pseudopodia formation toward that site and promoted endocytosis activity. We propose that local forces play a key role in the initial lymphocyte adhesion to antigen-bearing cells, and may be implicated in antigen-specific motility, transendothelial migration, and tissue homing to sites of inflammation.
Collapse
Affiliation(s)
- Bahman Anvari
- Rice University, Department of Bioengineering, MS-142, P.O. Box 1892, Houston, Texas 77251-1892, USA.
| | | | | |
Collapse
|
93
|
Longacre A, Koh JS, Hsiao KKH, Gilligan H, Fan H, Patel VA, Levine JS. Macrophages from lupus-prone MRL mice are characterized by abnormalities in Rho activity, cytoskeletal organization, and adhesiveness to extracellular matrix proteins. J Leukoc Biol 2004; 76:971-84. [PMID: 15316033 DOI: 10.1189/jlb.0604346] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Macrophages (mphi) from prediseased mice of the major murine models of lupus have an identical defect in cytokine expression that is triggered by serum and/or apoptotic cells. It is striking that cytokine expression in the absence of serum and apoptotic cells is equivalent to that of nonautoimmune mice. Here, we show that mphi from prediseased lupus-prone MRL/MpJ (MRL/+) or MRL/MpJ-Tnfrsf6(lpr) (MRL/lpr) mice also have reversible abnormalities in morphology, cytoskeletal organization, and adhesive properties. In the presence of serum, MRL mphi adhered in increased numbers to a variety of extracellular matrix proteins compared with mphi from two nonautoimmune strains. However, in the absence of serum, adhesion by MRL mphi was similar to that of nonautoimmune mphi. Increased adhesion by MRL mphi was also observed in the presence of apoptotic, but not necrotic, cells. The morphology and actin-staining pattern of adherent MRL mphi were consistent with reduced activity of Rho, a cytoskeletal regulator. Indeed, MRL mphi cultured in the presence of serum had markedly decreased levels of active Rho compared with nonautoimmune mphi. It is remarkable that when cultured in the absence of serum, MRL mphi displayed normal Rho activity and cytoskeletal morphology. Addition of a Rho inhibitor to normal mphi reproduced the morphologic and cytoskeletal abnormalities observed in MRL mphi. Taken together, our findings support the hypothesis that mphi from MRL and other systemic lupus erythematosus-prone mice have an apoptotic, cell-dependent, autoimmune phenotype that affects a broad range of mphi functions, including cytokine gene expression and Rho-dependent cytoskeletal regulation.
Collapse
Affiliation(s)
- Angelika Longacre
- Section of Nephrology, Department of Medicine, The University of Illinois at Chigaco, Chicago, IL 60612, USA
| | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Functional analyses of changes in the immune response indicate that aging is associated with a decline of adaptive immunity whereas innate immunity is ramped up. Gene expression studies also support age-dependent changes in immunity. Studies using a large panel of methodologies and multiple species show that some of the most dramatic transcriptional changes that occur during aging are associated with immunity. This observation leads to two fundamental questions: (1) Why is the immune response altered with age? (2) Is this a consequence of aging or does it contribute to it? The origin of these changes and the mechanistic relationship among them as well as with aging must be identified. In mammals, this task is complicated by the interdependence of the innate and adaptive immune systems. The value of invertebrates as model organisms to help answer these questions is presented. This includes a description of the immune response in invertebrate models and how it compares with vertebrates, focusing on conserved pathways. Finally, these questions are explored in light of recent reports and data from our laboratory. Experimental alterations of longevity indicate that the differential expression of immunity-related genes during aging is linked to the rate of aging. Long-lived nematodes are more resistant to pathogens and blocking the expression of immune-related genes can prevent lifespan extension. These observations suggest that the immune response has a positive effect on longevity, possibly by increasing fitness. By contrast, it has been reported that activation of the immune system can reduce longevity upon starvation. We also observed that deregulation of the immune response has drastic effects on viability and longevity in Drosophila. These data suggest that the immune response results in a trade-off between beneficial and detrimental effects that might profoundly affect the aging process. Given this, immunity may be an ally early in life, but turns out to be an enemy as we age.
Collapse
Affiliation(s)
- Brian DeVeale
- Department of Biology, BioSciences Complex, Queen's University, Kingston, Ontario K7L 3 N6, Canada
| | | | | |
Collapse
|
95
|
Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, Rastaldi MP, Calvaresi N, Watanabe H, Schwarz K, Faul C, Kretzler M, Davidson A, Sugimoto H, Kalluri R, Sharpe AH, Kreidberg JA, Mundel P. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 2004. [PMID: 15146236 DOI: 10.1172/jci200420402] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Kidney podocytes and their slit diaphragms form the final barrier to urinary protein loss. This explains why podocyte injury is typically associated with nephrotic syndrome. The present study uncovered an unanticipated novel role for costimulatory molecule B7-1 in podocytes as an inducible modifier of glomerular permselectivity. B7-1 in podocytes was found in genetic, drug-induced, immune-mediated, and bacterial toxin-induced experimental kidney diseases with nephrotic syndrome. The clinical significance of our results is underscored by the observation that podocyte expression of B7-1 correlated with the severity of human lupus nephritis. In vivo, exposure to low-dose LPS rapidly upregulates B7-1 in podocytes of WT and SCID mice, leading to nephrotic-range proteinuria. Mice lacking B7-1 are protected from LPS-induced nephrotic syndrome, suggesting a link between podocyte B7-1 expression and proteinuria. LPS signaling through toll-like receptor-4 reorganized the podocyte actin cytoskeleton in vitro, and activation of B7-1 in cultured podocytes led to reorganization of vital slit diaphragm proteins. In summary, upregulation of B7-1 in podocytes may contribute to the pathogenesis of proteinuria by disrupting the glomerular filter and provides a novel molecular target to tackle proteinuric kidney diseases. Our findings suggest a novel function for B7-1 in danger signaling by nonimmune cells.
Collapse
Affiliation(s)
- Jochen Reiser
- Department of Medicine, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Reiser J, von Gersdorff G, Loos M, Oh J, Asanuma K, Giardino L, Rastaldi MP, Calvaresi N, Watanabe H, Schwarz K, Faul C, Kretzler M, Davidson A, Sugimoto H, Kalluri R, Sharpe AH, Kreidberg JA, Mundel P. Induction of B7-1 in podocytes is associated with nephrotic syndrome. J Clin Invest 2004; 113:1390-7. [PMID: 15146236 PMCID: PMC406528 DOI: 10.1172/jci20402] [Citation(s) in RCA: 406] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2003] [Accepted: 03/23/2004] [Indexed: 01/13/2023] Open
Abstract
Kidney podocytes and their slit diaphragms form the final barrier to urinary protein loss. This explains why podocyte injury is typically associated with nephrotic syndrome. The present study uncovered an unanticipated novel role for costimulatory molecule B7-1 in podocytes as an inducible modifier of glomerular permselectivity. B7-1 in podocytes was found in genetic, drug-induced, immune-mediated, and bacterial toxin-induced experimental kidney diseases with nephrotic syndrome. The clinical significance of our results is underscored by the observation that podocyte expression of B7-1 correlated with the severity of human lupus nephritis. In vivo, exposure to low-dose LPS rapidly upregulates B7-1 in podocytes of WT and SCID mice, leading to nephrotic-range proteinuria. Mice lacking B7-1 are protected from LPS-induced nephrotic syndrome, suggesting a link between podocyte B7-1 expression and proteinuria. LPS signaling through toll-like receptor-4 reorganized the podocyte actin cytoskeleton in vitro, and activation of B7-1 in cultured podocytes led to reorganization of vital slit diaphragm proteins. In summary, upregulation of B7-1 in podocytes may contribute to the pathogenesis of proteinuria by disrupting the glomerular filter and provides a novel molecular target to tackle proteinuric kidney diseases. Our findings suggest a novel function for B7-1 in danger signaling by nonimmune cells.
Collapse
Affiliation(s)
- Jochen Reiser
- Department of Medicine, Albert Einstein College of Medicine, New York, New York 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Hinton HJ, Alessi DR, Cantrell DA. The serine kinase phosphoinositide-dependent kinase 1 (PDK1) regulates T cell development. Nat Immunol 2004; 5:539-45. [PMID: 15077109 DOI: 10.1038/ni1062] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Accepted: 02/18/2004] [Indexed: 12/24/2022]
Abstract
T lymphocyte activation is associated with activation of diverse AGC serine kinases (named after family members protein kinase A, protein kinase G and protein kinase C). It has been difficult to assess the function of these molecules in T cell development with simple gene-deletion strategies because different isoforms of AGC kinases are coexpressed in the thymus and have overlapping, redundant functions. To circumvent these problems, we explored the consequences of genetic manipulation of phosphoinositide-dependent kinase 1 (PDK1), a rate-limiting 'upstream' activator of AGC kinases. Here we analyzed the effect of PDK1 deletion on T lineage development. We also assessed the consequences of reducing PDK1 levels to 10% of normal. Complete PDK1 loss blocked T cell differentiation in the thymus, whereas reduced PDK1 expression allowed T cell differentiation but blocked proliferative expansion. These studies show that AGC family kinases are essential for T cell development.
Collapse
Affiliation(s)
- Heather J Hinton
- Lymphocyte Activation Laboratory, Cancer Research UK London Research Institute, Lincoln's Inn Fields, London WC2A 3PX, United Kingdom
| | | | | |
Collapse
|
98
|
Le Bras S, Foucault I, Foussat A, Brignone C, Acuto O, Deckert M. Recruitment of the Actin-binding Protein HIP-55 to the Immunological Synapse Regulates T Cell Receptor Signaling and Endocytosis. J Biol Chem 2004; 279:15550-60. [PMID: 14729663 DOI: 10.1074/jbc.m312659200] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin cytoskeleton dynamics critically regulate T cell activation. We found that the cytoplasmic adaptor HIP-55, a Src/Syk-kinases substrate and member of the drebrin/Abp1 family of actin-binding proteins, localized to the T cell-antigen-presenting cell (APC) contact site in an antigen-dependent manner. Using green fluorescent protein fusion proteins, both Src homology 3 (SH3) and actin binding domains were found necessary for recruitment at the T cell-APC interface. HIP-55 was not implicated in conjugate formation and actin polymerization but regulated distal signaling events through binding and activation of hematopoietic progenitor kinase 1 (HPK1), a germinal center kinase (GCK) family kinase involved in negative signaling in T cells. Using RNA interference and overexpression experiments, the HIP-55-HPK1 complex was found to negatively regulate nuclear factor of activated T cell (NFAT) activation by the T cell antigen receptor. Moreover, we show that HIP-55, which partly co-localized with early endocytic compartments, promoted both basal and ligand-dependent T cell receptor (TCR) down-modulation, resulting in a decreased TCR expression. SH3 and actin-depolymerizing factor homology domains were required for this function. As controls, the expression of CD28 and the glycosylphosphatidylinositol-linked protein CD59 was not affected by HIP-55 overexpression. These results suggest that, in addition to binding to HPK1, HIP-55 might negatively regulate TCR signaling through down-regulation of TCR expression. Our findings show that HIP-55 is a key novel component of the immunological synapse that modulates T cell activation by connecting actin cytoskeleton and TCRs to gene activation and endocytic processes.
Collapse
Affiliation(s)
- Séverine Le Bras
- Institut National de la Santé et de la Recherche Médicale Unité 576, Hôpital de l'Archet, Cedex 3, 06202 Nice, France.
| | | | | | | | | | | |
Collapse
|
99
|
Rivas FV, O'Keefe JP, Alegre ML, Gajewski TF. Actin cytoskeleton regulates calcium dynamics and NFAT nuclear duration. Mol Cell Biol 2004; 24:1628-39. [PMID: 14749378 PMCID: PMC344175 DOI: 10.1128/mcb.24.4.1628-1639.2004] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
T-cell activation by antigen-presenting cells is accompanied by actin polymerization, T-cell receptor (TCR) capping, and formation of the immunological synapse. However, whether actin-dependent events are required for T-cell function is poorly understood. Herein, we provide evidence for an unexpected negative regulatory role of the actin cytoskeleton on TCR-induced cytokine production. Disruption of actin polymerization resulted in prolonged intracellular calcium elevation in response to anti-CD3, thapsigargin, or phorbol myristate acetate plus ionomycin, leading to persistent NFAT (nuclear factor of activated T cells) nuclear duration. These events were dominant, as the net effect of actin blockade was augmented interleukin 2 promoter activity. Increased surface expression of the plasma membrane Ca(2+) ATPase was observed upon stimulation, which was inhibited by cytochalasin D, suggesting that actin polymerization contributes to calcium export. Our results imply a novel role for the actin cytoskeleton in modulating the duration of Ca(2+)-NFAT signaling and indicate that actin dynamics regulate features of T-cell activation downstream of receptor clustering.
Collapse
Affiliation(s)
- Fabiola V Rivas
- Department of Pathology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
100
|
Chen CJ, Shively JE. The Cell-Cell Adhesion Molecule Carcinoembryonic Antigen-Related Cellular Adhesion Molecule 1 Inhibits IL-2 Production and Proliferation in Human T Cells by Association with Src Homology Protein-1 and Down-Regulates IL-2 Receptor. THE JOURNAL OF IMMUNOLOGY 2004; 172:3544-52. [PMID: 15004155 DOI: 10.4049/jimmunol.172.6.3544] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cell adhesion molecule, carcinoembryonic Ag-related cellular adhesion molecule 1, shown by others to both activate and inhibit T cell proliferation, exhibits a reciprocal relationship to IL-2R expression over the time course of activation of PBMCs, and upon Ab ligation, inhibits both the production of IL-2 and cell proliferation. Carcinoembryonic Ag-related cellular adhesion molecule 1 associates with CD3 and is found in lipid rafts of PBMCs, is phosphorylated on the immunoreceptor tyrosine-based inhibitory motifs (ITIMs) of the -4L isoform, and associates with Src homology protein-1, providing an explanation for its inhibitory activity. When the ITIM-containing -4L and non-ITIM-containing -4S isoforms are transfected into Jurkat cells that produce, but do not depend on IL-2 for growth, both IL-2 production and cell proliferation are differentially inhibited, demonstrating that the two isoforms signal via different pathways. When the two isoforms are transfected into Kit-225 cells that depend on IL-2 for growth, IL-2Rbeta and gamma, but not alpha subunits are down-regulated, and the -4L, but not the -4S isoform inhibits cell proliferation by 6-fold in an IL-2 dose-response study.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Antigens, Differentiation/biosynthesis
- Antigens, Differentiation/immunology
- Antigens, Differentiation/metabolism
- Antigens, Differentiation/physiology
- CD3 Complex/metabolism
- Cell Adhesion Molecules
- Cells, Cultured
- Down-Regulation/immunology
- G(M1) Ganglioside/metabolism
- Green Fluorescent Proteins
- Growth Inhibitors/physiology
- Humans
- Immune Sera/pharmacology
- Interleukin-2/antagonists & inhibitors
- Interleukin-2/biosynthesis
- Intracellular Signaling Peptides and Proteins
- Janus Kinase 3
- Jurkat Cells
- Kinetics
- Leukocytes, Mononuclear/enzymology
- Leukocytes, Mononuclear/immunology
- Leukocytes, Mononuclear/metabolism
- Luminescent Proteins/metabolism
- Lymphocyte Activation/immunology
- Membrane Microdomains/immunology
- Membrane Microdomains/metabolism
- Phosphorylation
- Precipitin Tests
- Protein Isoforms/metabolism
- Protein Tyrosine Phosphatase, Non-Receptor Type 6
- Protein Tyrosine Phosphatases/metabolism
- Protein-Tyrosine Kinases/antagonists & inhibitors
- Protein-Tyrosine Kinases/metabolism
- Receptor Aggregation/immunology
- Receptors, Interleukin-2/antagonists & inhibitors
- Receptors, Interleukin-2/biosynthesis
- Receptors, Interleukin-2/metabolism
- T-Lymphocytes/cytology
- T-Lymphocytes/enzymology
- T-Lymphocytes/immunology
- Transfection
- Tyrosine/metabolism
Collapse
Affiliation(s)
- Charng-Jui Chen
- Division of Immunology, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | | |
Collapse
|