51
|
Mechanism of Glucose Water as a Neural Injection: A Perspective on Neuroinflammation. Life (Basel) 2022; 12:life12060832. [PMID: 35743863 PMCID: PMC9225069 DOI: 10.3390/life12060832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/18/2022] [Accepted: 05/30/2022] [Indexed: 12/19/2022] Open
Abstract
The entrapment of peripheral nerves is associated with chronic neuroinflammation and neuropathic pain, and perineural injection therapy with glucose is emerging as an effective treatment for peripheral entrapment neuropathy. However, the mechanism underlying the pharmacological effect of glucose on nerves remains unclear. One of the hypothesized mechanisms is that glucose reduces neurogenic inflammation. Therefore, we investigated the effects of high glucose concentrations on cytokine-induced neuroinflammation in vitro. Human SH-SY5Y neuronal cells were challenged with 10 ng/mL TNF-α for 16 h and subsequently treated with different glucose concentrations (0–25 mM) for 24 h. Cell viability was evaluated using the diphenyltetrazolium bromide assay, and proinflammatory cytokine levels were assessed using ELISA and quantitative PCR. In addition, mRNA levels of NF-κB and cyclooxygenase-2 were analyzed using quantitative PCR. Exposure to 10 ng/mL TNF-α resulted in decreased viability of SH-SY5Y cells and significant upregulation of IL-6, IL-1β, NF-κB, and cyclooxygenase-2. Subsequent exposure to high glucose levels (25 mM) markedly reduced the upregulation of IL-6, IL-1β, cyclooxygenase-2, and NF-κB, and restored the functional metabolism of SH-SY5Y cells, compared with that of the normal glucose control. Our findings suggest that high glucose concentrations can mitigate TNF-α-induced NF-κB activation, upregulation of proinflammatory cytokines, and metabolic dysfunction.
Collapse
|
52
|
Mi L, Min X, Chai Y, Zhang J, Chen X. NLRP1 Inflammasomes: A Potential Target for the Treatment of Several Types of Brain Injury. Front Immunol 2022; 13:863774. [PMID: 35707533 PMCID: PMC9189285 DOI: 10.3389/fimmu.2022.863774] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/28/2022] [Indexed: 12/28/2022] Open
Abstract
NOD-like receptor (NLR) family pyrin domain-containing 1 (NLRP1) is a member of the NLR family. The NLRP1 inflammasome consists of the NLRP1 protein, the adaptor protein apoptosis-associated speck-like protein containing a CARD domain, and the effector molecule pro-caspase-1. When stimulated, the inflammasome initiates the cleavage of pro-caspase-1 and converts it into its active form, caspase-1; then, caspase-1 facilitates the cleavage of the proinflammatory cytokines interleukin-1β and interleukin-18 into their active and secreted forms. In addition, caspase-1 also mediates the cleavage of gasdermin D, which leads to pyroptosis, an inflammatory form of cell death. Pathological events that damage the brain and result in neuropathological conditions can generally be described as brain injury. Neuroinflammation, especially that driven by NLRP1, plays a considerable role in the pathophysiology of brain injury, such as early brain injury (EBI) of subarachnoid hemorrhage, ischemic brain injury during stroke, and traumatic brain injury (TBI). In this article, a thorough overview of NLRP1 is presented, including its structure, mechanism of activation, and role in neuroinflammation. We also present recent studies on NLRP1 as a target for the treatment of EBI, ischemic brain injury, TBI, and other types of brain injury, thus highlighting the perspective of NLRP1 as an effective mediator of catastrophic brain injury.
Collapse
Affiliation(s)
- Liang Mi
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Posttrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xiaobin Min
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Baodi Clinical College, Tianjin Medical University, Tianjin, China
| | - Yan Chai
- Tianjin Neurological Institute, Key Laboratory of Posttrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Jianning Zhang
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Posttrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
| | - Xin Chen
- Department of Neurosurgery, Tianjin Medical University General Hospital, Tianjin, China
- Tianjin Neurological Institute, Key Laboratory of Posttrauma Neurorepair and Regeneration in Central Nervous System, Ministry of Education, Tianjin Key Laboratory of Injuries, Variations and Regeneration of Nervous System, Tianjin, China
- *Correspondence: Xin Chen,
| |
Collapse
|
53
|
Necroptosis in heart disease: Molecular mechanisms and therapeutic implications. J Mol Cell Cardiol 2022; 169:74-83. [PMID: 35597275 DOI: 10.1016/j.yjmcc.2022.05.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 01/11/2023]
Abstract
Cell death is a crucial event underlying cardiac ischemic injury, pathological remodeling, and heart failure. Unlike apoptosis, necrosis had long been regarded as a passive and unregulated process. However, recent studies demonstrate that a significant subset of necrotic cell death is actively mediated through regulated pathways - a process known as "regulated necrosis". As a form of regulated necrosis, necroptosis is mediated by death receptors and executed through the activation of receptor interacting protein kinase 3 (RIPK3) and its downstream substrate mixed lineage kinase-like domain (MLKL). Recent studies have provided compelling evidence that necroptosis plays an important role in myocardial homeostasis, ischemic injury, pathological remodeling, and heart failure. Moreover, it has been shown that genetic and pharmacological manipulations of the necroptosis signaling pathway elicit cardioprotective effects. Important progress has also been made regarding the molecular mechanisms that regulate necroptotic cell death in vitro and in vivo. In this review, we discuss molecular and cellular mechanisms of necroptosis, potential crosstalk between necroptosis and other cell death pathways, functional implications of necroptosis in heart disease, and new therapeutic strategies that target necroptosis signaling.
Collapse
|
54
|
Protein-protein and protein-lipid interactions of pore-forming BCL-2 family proteins in apoptosis initiation. Biochem Soc Trans 2022; 50:1091-1103. [PMID: 35521828 DOI: 10.1042/bst20220323] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 01/26/2023]
Abstract
Apoptosis is a common cell death program that is important in human health and disease. Signaling in apoptosis is largely driven through protein-protein interactions. The BCL-2 family proteins function in protein-protein interactions as key regulators of mitochondrial poration, the process that initiates apoptosis through the release of cytochrome c, which activates the apoptotic caspase cascade leading to cellular demolition. The BCL-2 pore-forming proteins BAK and BAX are the key executors of mitochondrial poration. We review the state of knowledge of protein-protein and protein-lipid interactions governing the apoptotic function of BAK and BAX, as determined through X-ray crystallography and NMR spectroscopy studies. BAK and BAX are dormant, globular α-helical proteins that participate in protein-protein interactions with other pro-death BCL-2 family proteins, transforming them into active, partially unfolded proteins that dimerize and associate with and permeabilize mitochondrial membranes. We compare the protein-protein interactions observed in high-resolution structures with those derived in silico by AlphaFold, making predictions based on combining experimental and in silico approaches to delineate the structural basis for novel protein-protein interaction complexes of BCL-2 family proteins.
Collapse
|
55
|
Huang Z, Zhang B, Liao L, Chen J, Zheng R, Cai D, Huang J. Probiotics improves abnormal behavior and hippocampal injury in pregnant-stressed offspring rats. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2022; 47:443-452. [PMID: 35545339 PMCID: PMC10930160 DOI: 10.11817/j.issn.1672-7347.2022.210231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 06/15/2023]
Abstract
OBJECTIVES During pregnancy, pregnant women are prone to stress reactions due to external stimuli, affecting their own health and fetal development. At present, there is no good treatment for the stress reactions from pregnant women during pregnancy. This study aims to explore the effect of probiotics on abnormal behavior and hippocampal injury in pregnant stressed offspring. METHODS SD pregnant rats were divided into a control group, a stress group, and a probiotics group, with 6 rats in each group. The control group was untreated; the stress group was given restraint stress on the 15th-20th day of pregnancy; the probiotics group was given both bifidobacterium trisporus capsules and restraint stress on the 15th-20th day of pregnancy, and the offspring continued to be fed with probiotics until 60 days after birth (P60). The offspring rats completed behavioral tests such as the open field test, the elevated plus maze test, the new object recognition test, and the barnes maze test at 60-70 d postnatally. Nissl's staining was used to reflect the injury of hippocampal neurons; immunohistochemical staining was used to detect the expression of microglia marker ionized calcium binding adapter molecule 1 (IBA-1) which can reflect microglia activation; ELISA was used to detect the content of plasma TNF-α and IL-1β; Western blotting was used to detect the expression of Bax, Bcl-2, and caspase-3. RESULTS The retention time of offspring rats in the stress group in the central area of the open field was significantly less than that in the control group (P<0.01), and the retention time of offspring rats in the probiotic group in the central area of the open field was significantly more than that in the stress group (P<0.05). The offspring rats in the stress group stayed in the open arm for a shorter time than the control group (P<0.05) and entered the open arm less often than the control group (P<0.01); the offspring rats in the probiotic group stayed in the open arm for a longer time than the stress group and entered the open arm more often than the stress group (both P<0.05). The discrimination ratio for new to old objects in the offspring rats of the stress group was significantly lower than that of the control group (P<0.01), and the discrimination ratio for new to old objects in the offspring rats of the probiotic group was significantly higher than that of the stress group (P<0.05). The offspring rats in the stress group made significantly more mistakes than the control group (P<0.05), and the offspring rats in the probiotic group made significantly fewer mistakes than the stress group (P<0.05). Compared with the control group, the numbers of Nissl bodies in CA1, CA3, and DG area were significantly reduced in the offspring rats of the stress group (all P<0.001), the number of activated microglia in DG area of hippocampus was significantly increased (P<0.01), the contents of TNF-α and IL-1β in peripheral blood were significantly increased (P<0.05 or P<0.01), the protein expression level of Bcl-2 was significantly down-regulated, and the protein expression levels of Bax and caspase-3 were significantly up-regulated (all P<0.001). Compared with the stress group, the numbers of Nissl bodies in CA1, CA3, and DG area were significantly increased in the probiotic group offspring rats (P<0.001, P<0.01, P<0.05), the number of activated microglia in the DG area of hippocampus was significantly reduced (P<0.05), and the TNF-α and IL-1β levels in peripheral blood were significantly decreased (both P<0.05), the protein expression level of Bcl-2 was significantly up-regulated, and the protein expression levels of Bax and caspase-3 were significantly down-regulated (all P<0.001). CONCLUSIONS Probiotic intervention partially ameliorated anxiety and cognitive impairment in rats offspring of pregnancy stress, and the mechanism may be related to increasing the number of neurons, inhibiting the activation of hippocampal microglia, and reducing inflammation and apoptosis.
Collapse
Affiliation(s)
- Zhongjun Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013.
| | - Bin Zhang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013
- Shanghai Pharmaceutical Clinical Research Center Co., Ltd., Shanghai 200032
| | - Libin Liao
- Department of Histology and Embryology, Basic Medical College of Xinjiang Medical University, Urumqi 830011, China
| | - Jie Chen
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013
| | - Ruping Zheng
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013
| | - Deyang Cai
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013
| | - Jufang Huang
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha 410013.
| |
Collapse
|
56
|
Abstract
Apoptosis is an evolutionarily conserved sequential process of cell death to maintain a homeostatic balance between cell formation and cell death. It is a vital process for normal eukaryotic development as it contributes to the renewal of cells and tissues. Further, it plays a crucial role in the elimination of unnecessary cells through phagocytosis and prevents undesirable immune responses. Apoptosis is regulated by a complex signaling mechanism, which is driven by interactions among several protein families such as caspases, inhibitors of apoptosis proteins, B-cell lymphoma 2 (BCL-2) family proteins, and several other proteases such as perforins and granzyme. The signaling pathway consists of both pro-apoptotic and pro-survival members, which stabilize the selection of cellular survival or death. However, any aberration in this pathway can lead to abnormal cell proliferation, ultimately leading to the development of cancer, autoimmune disorders, etc. This review aims to elaborate on apoptotic signaling pathways and mechanisms, interacting members involved in signaling, and how apoptosis is associated with carcinogenesis, along with insights into targeting apoptosis for disease resolution.
Collapse
|
57
|
PIDD1 in cell cycle control, sterile inflammation and cell death. Biochem Soc Trans 2022; 50:813-824. [PMID: 35343572 PMCID: PMC9162469 DOI: 10.1042/bst20211186] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
Abstract
The death fold domain-containing protein PIDD1 has recently attracted renewed attention as a regulator of the orphan cell death-related protease, Caspase-2. Caspase-2 can activate p53 to promote cell cycle arrest in response to centrosome aberrations, and its activation requires formation of the PIDDosome multi-protein complex containing multimers of PIDD1 and the adapter RAIDD/CRADD at its core. However, PIDD1 appears to be able to engage with multiple client proteins to promote an even broader range of biological responses, such as NF-κB activation, translesion DNA synthesis or cell death. PIDD1 shows features of inteins, a class of self-cleaving proteins, to create different polypeptides from a common precursor protein that allow it to serve these diverse functions. This review summarizes structural information and molecular features as well as recent experimental advances that highlight the potential pathophysiological roles of this unique death fold protein to highlight its drug-target potential.
Collapse
|
58
|
Witkop EM, Proestou DA, Gomez-Chiarri M. The expanded inhibitor of apoptosis gene family in oysters possesses novel domain architectures and may play diverse roles in apoptosis following immune challenge. BMC Genomics 2022; 23:201. [PMID: 35279090 PMCID: PMC8917759 DOI: 10.1186/s12864-021-08233-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/06/2021] [Indexed: 11/23/2022] Open
Abstract
Background Apoptosis plays important roles in a variety of functions, including immunity and response to environmental stress. The Inhibitor of Apoptosis (IAP) gene family of apoptosis regulators is expanded in molluscs, including eastern, Crassostrea virginica, and Pacific, Crassostrea gigas, oysters. The functional importance of IAP expansion in apoptosis and immunity in oysters remains unknown. Results Phylogenetic analysis of IAP genes in 10 molluscs identified lineage specific gene expansion in bivalve species. Greater IAP gene family expansion was observed in C. virginica than C. gigas (69 vs. 40), resulting mainly from tandem duplications. Functional domain analysis of oyster IAP proteins revealed 3 novel Baculoviral IAP Repeat (BIR) domain types and 14 domain architecture types across gene clusters, 4 of which are not present in model organisms. Phylogenetic analysis of bivalve IAPs suggests a complex history of domain loss and gain. Most IAP genes in oysters (76% of C. virginica and 82% of C. gigas), representing all domain architecture types, were expressed in response to immune challenge (Ostreid Herpesvirus OsHV-1, bacterial probionts Phaeobacter inhibens and Bacillus pumilus, several Vibrio spp., pathogenic Aliiroseovarius crassostreae, and protozoan parasite Perkinsus marinus). Patterns of IAP and apoptosis-related differential gene expression differed between the two oyster species, where C. virginica, in general, differentially expressed a unique set of IAP genes in each challenge, while C. gigas differentially expressed an overlapping set of IAP genes across challenges. Apoptosis gene expression patterns clustered mainly by resistance/susceptibility of the oyster host to immune challenge. Weighted Gene Correlation Network Analysis (WGCNA) revealed unique combinations of transcripts for 1 to 12 IAP domain architecture types, including novel types, were significantly co-expressed in response to immune challenge with transcripts in apoptosis-related pathways. Conclusions Unprecedented diversity characterized by novel BIR domains and protein domain architectures was observed in oyster IAPs. Complex patterns of gene expression of novel and conserved IAPs in response to a variety of ecologically-relevant immune challenges, combined with evidence of direct co-expression of IAP genes with apoptosis-related transcripts, suggests IAP expansion facilitates complex and nuanced regulation of apoptosis and other immune responses in oysters. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08233-6.
Collapse
|
59
|
An engineered construct of cFLIP provides insight into DED1 structure and interactions. Structure 2022; 30:229-239.e5. [PMID: 34800372 PMCID: PMC8818036 DOI: 10.1016/j.str.2021.10.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/24/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023]
Abstract
Cellular FLICE-like inhibitory protein (cFLIP) is a member of the Death Domain superfamily with pivotal roles in many cellular processes and disease states, including cancer and autoimmune disorders. In the context of the death-inducing signaling complex (DISC), cFLIP isoforms regulate extrinsic apoptosis by controlling procaspase-8 activation. The function of cFLIP is mediated through a series of protein-protein interactions, engaging the two N-terminal death effector domains (DEDs). Here, we solve the structure of an engineered DED1 domain of cFLIP using solution nuclear magnetic resonance (NMR) and we define the interaction with FADD and calmodulin, protein-protein interactions that regulate the function of cFLIP in the DISC. cFLIP DED1 assumes a canonical DED fold characterized by six α helices and is able to bind calmodulin and FADD through two separate interfaces. Our results clearly demonstrate the role of DED1 in the cFLIP/FADD association and contribute to the understanding of the assembly of DISC filaments.
Collapse
|
60
|
Fan X, Jiao L, Jin T. Activation and Immune Regulation Mechanisms of PYHIN Family During Microbial Infection. Front Microbiol 2022; 12:809412. [PMID: 35145495 PMCID: PMC8822057 DOI: 10.3389/fmicb.2021.809412] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/09/2021] [Indexed: 11/29/2022] Open
Abstract
The innate immune system defenses against pathogen infections via patten-recognition receptors (PRRs). PRRs initiate immune responses by recognizing pathogen-associated molecular patterns (PAMPs), including peptidoglycan, lipopolysaccharide, and nucleic acids. Several nucleic acid sensors or families have been identified, such as RIG-I-like receptors (RLRs), Toll-like receptors (TLRs), cyclic GMP-AMP synthase (cGAS), and PYHIN family receptors. In recent years, the PYHIN family cytosolic DNA receptors have increased attention because of their important roles in initiating innate immune responses. The family members in humans include Absent in melanoma 2 (AIM2), IFN-γ inducible protein 16 (IFI16), interferon-inducible protein X (IFIX), and myeloid cell nuclear differentiation antigen (MNDA). The PYHIN family members are also identified in mice, including AIM2, p202, p203, p204, and p205. Herein, we summarize recent advances in understanding the activation and immune regulation mechanisms of the PYHIN family during microbial infection. Furthermore, structural characterizations of AIM2, IFI16, p202, and p204 provide more accurate insights into the signaling mechanisms of PYHIN family receptors. Overall, the molecular details will facilitate the development of reagents to defense against viral infections.
Collapse
Affiliation(s)
- Xiaojiao Fan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Lianying Jiao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- Institute of Molecular and Translational Medicine, Translational Medicine Institute, Xi’an Jiaotong University Health Science Center, Xi’an, China
- *Correspondence: Lianying Jiao,
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- CAS Center for Excellence in Molecular Cell Science, Shanghai, China
- Tengchuan Jin,
| |
Collapse
|
61
|
Diaz-Parga P, de Alba E. Inflammasome regulation by adaptor isoforms, ASC and ASCb, via differential self-assembly. J Biol Chem 2022; 298:101566. [PMID: 35007535 PMCID: PMC8891976 DOI: 10.1016/j.jbc.2022.101566] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/06/2023] Open
Abstract
ASC is an essential adaptor of the inflammasome, a micrometer-size multiprotein complex that processes proinflammatory cytokines. Inflammasome formation depends on ASC self-association into large assemblies via homotypic interactions of its two death domains, PYD and CARD. ASCb, an alternative splicing isoform, activates the inflammasome to a lesser extent compared with ASC. Thus, it has been postulated that adaptor isoforms differentially regulate inflammasome function. At the amino acid level, ASC and ASCb differ only in the length of the linker connecting the two death domains. To understand inflammasome regulation at the molecular level, we investigated the self-association properties of ASC and ASCb using real-time NMR, dynamic light scattering (DLS), size-exclusion chromatography, and transmission electron microscopy (TEM). The NMR data indicate that ASC self-association is faster than that of ASCb; a kinetic model for this oligomerization results in differing values for both the reaction order and the rate constants. Furthermore, DLS analysis indicates that ASC self-associates into more compact macrostructures compared with ASCb. Finally, TEM data show that ASCb has a reduced tendency to form densely packed filaments relative to ASC. Overall, these differences can only be explained by an effect of the linker length, as the NMR results show structural equivalence of the PYD and CARD in both proteins. The effect of linker length was corroborated by molecular docking with the procaspase-1 CARD domain. Altogether, our results indicate that ASC’s faster and less polydisperse polymerization is more efficient, plausibly explaining inflammasome activation differences by ASC isoforms at the molecular level.
Collapse
Affiliation(s)
- Pedro Diaz-Parga
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, California, USA; Quantitative Systems Biology Ph.D. Program, University of California, Merced, Merced, California, USA
| | - Eva de Alba
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, California, USA.
| |
Collapse
|
62
|
Ikedife J, He J, Wei Y. PEA-15 engages in allosteric interactions using a common scaffold in a phosphorylation-dependent manner. Sci Rep 2022; 12:116. [PMID: 34997083 PMCID: PMC8742051 DOI: 10.1038/s41598-021-04099-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/15/2021] [Indexed: 11/10/2022] Open
Abstract
Phosphoprotein enriched in astrocytes, 15 kDa (PEA-15) is a death-effector domain (DED) containing protein involved in regulating mitogen-activated protein kinase and apoptosis pathways. In this molecular dynamics study, we examined how phosphorylation of the PEA-15 C-terminal tail residues, Ser-104 and Ser-116, allosterically mediates conformational changes of the DED and alters the binding specificity from extracellular-regulated kinase (ERK) to Fas-associated death domain (FADD) protein. We delineated that the binding interfaces between the unphosphorylated PEA-15 and ERK2 and between the doubly phosphorylated PEA-15 and FADD are similarly composed of a scaffold that includes both the DED and the C-terminal tail residues of PEA-15. While the unphosphorylated serine residues do not directly interact with ERK2, the phosphorylated Ser-116 engages in strong electrostatic interactions with arginine residues on FADD DED. Upon PEA-15 binding, FADD repositions its death domain (DD) relative to the DED, an essential conformational change to allow the death-inducing signaling complex (DISC) assembly.
Collapse
Affiliation(s)
- Joyce Ikedife
- Department of Chemistry, New Jersey City University, Jersey City, NJ, 07305, USA
| | - Jianlin He
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, Fujian, China
| | - Yufeng Wei
- Department of Chemistry, New Jersey City University, Jersey City, NJ, 07305, USA.
| |
Collapse
|
63
|
Abstract
The receptor-interacting protein kinase 1 (RIPK1) is recognized as a master upstream regulator that controls cell survival and inflammatory signaling as well as multiple cell death pathways, including apoptosis and necroptosis. The activation of RIPK1 kinase is extensively modulated by ubiquitination and phosphorylation, which are mediated by multiple factors that also control the activation of the NF-κB pathway. We discuss current findings regarding the genetic modulation of RIPK1 that controls its activation and interaction with downstream mediators, such as caspase-8 and RIPK3, to promote apoptosis and necroptosis. We also address genetic autoinflammatory human conditions that involve abnormal activation of RIPK1. Leveraging these new genetic and mechanistic insights, we postulate how an improved understanding of RIPK1 biology may support the development of therapeutics that target RIPK1 for the treatment of human inflammatory and neurodegenerative diseases.
Collapse
Affiliation(s)
- Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Chengyu Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| | - Junying Yuan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 201210, China;
| |
Collapse
|
64
|
Song Y, Liu W, Zhao Y, Zang J, Gao H. Fumonisin B1 exposure induces apoptosis of human kidney tubular epithelial cells through regulating PTEN/PI3K/AKT signaling pathway via disrupting lipid raft formation. Toxicon 2021; 204:31-36. [PMID: 34740561 DOI: 10.1016/j.toxicon.2021.10.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Fumonisin B1 (FB1) is a fungal metabolite that causes a variety of toxicological effects to human and animals. In this study, we aimed to investigate the effects of FB1 on kidney injury and clarify the possible mechanism. Human kidney tubular epithelial cells (HK-2) were treated with FB1 for different concentrations. The results demonstrated that FB1 could suppress the viability of HK-2 cells. FB1 could lead to the apoptosis of HK-2 cells in a dose-dependent manner. Furthermore, treatment of FB1 could induce the production of ROS and MDA. And the levels of SOD and GSH were decreased by FB1. The expression of Caspase-3 and Bax increased markedly and BCL2 expression was decreased by FB1 treatment. In addition, FB1 treatment could up-regulate PTEN expression and down-regulate PI3K and AKT expression. Also, FB1 could disrupt lipid raft by decreasing sphingomyelin level. In conclusion, FB1 exposure induces apoptosis of HK-2 cells through regulating PTEN/PI3K/AKT signaling pathway via disrupting lipid raft formation.
Collapse
Affiliation(s)
- Yanyan Song
- Department of Nephrology, The Second Hospital of Jilin University, Changchun, 130021, China
| | - Wei Liu
- Department of Spinal Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yao Zhao
- Department of Bone and Joint Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Junting Zang
- Department of Bone and Joint Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Hang Gao
- Department of Bone and Joint Surgery, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
65
|
Gao S, Zhou Q, Jin H, Shi N, Wang X, Zhang L, Yan M. Effect of pyrroloquinoline quinone on lipopolysaccharide-induced autophagy in HAPI microglia cells. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1377. [PMID: 34733929 PMCID: PMC8506552 DOI: 10.21037/atm-21-730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/04/2021] [Indexed: 12/01/2022]
Abstract
Background Pyrroloquinoline quinone (PQQ) is involved in various physiological and biochemical processes, including antioxidant, cell proliferation, and mitochondrial formation. It plays a vital role in protecting neurons. However, the effect of PQQ on microglia, an inflammatory cell of the central nervous system (CNS), is still unclear. This study aimed to investigate the biological role and neuroprotective mechanism of PQQ in HAPI microglial cells exposed to lipopolysaccharide (LPS). Methods Western blot (WB) was used to detect apoptosis and autophagy-related molecules Bax, Bcl2, active-caspase-3, caspase-3, LC3, lysosomal associated membrane protein 2 (LAMP2), AKT, tumor necrosis factor receptor (TNFR) 1, and TNFR2 expression. The phosphatidylinositol 3-kinase (PI3K)/Akt inhibitor LY294002 was used to block the Akt pathway. WB detected the effects of PI3K on autophagy and TNFR1 and TNFR2 expression. The localization of active-caspase-3, caspase-3, LC3, LAMP2, TNFR1, and TNFR2 in cells was observed by immunofluorescence staining. The effect of PQQ on the cell cycle was examined by flow cytometry. We used 5-Ethynyl-2’-deoxyuridine (EdU) assay to detect cell proliferation. The migration ability of cells under different conditions was detected by scratch test and Transwell assay. Results Our results showed that there were different effects on the apoptosis-related molecules Bcl2/Bax and active-caspase-3/caspase in HAPI microglial cells treated with PQQ at different times. PQQ had no significant effect on the LC3b/a ratio in the early stage, which was upregulated in the later stage. The expression of LAMP2 was significantly increased in both early and late stages after PQQ treatment. At the same time, we found that PQQ can reverse the translocation of LAMP2 from the cytoplasm to the nucleus in LPS-induced HAPI microglia. After PQQ treatment, TNFR1 was significantly decreased, but TNFR2 increased in LPS-induced HAPI microglia. It may be that PQQ works through the PI3K/Akt signaling pathway to up-regulate LC3, LAMP2, and TNFR1 and down-regulate TNFR2 in LPS-induced HAPI microglia. However, PQQ has little effect on LPS-induced proliferation, cell cycle, and migration of HAPI microglia. Conclusions In LPS-induced HAPI microglia, PQQ reduces the apoptosis level and increases that of autophagy. In addition, PQQ changes the distribution of LAMP2 in the cytoplasm and nucleus, which is regulated through the PI3K/Akt signaling pathway.
Collapse
Affiliation(s)
- Shumei Gao
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Qiao Zhou
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Hui Jin
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Naiqi Shi
- School of Chemistry and Molecular Biosciences, the University of Queensland, Brisbane, Queensland, Australia
| | - Xiaoyu Wang
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Li Zhang
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| | - Meijuan Yan
- The Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
66
|
A comprehensive interaction study provides a potential domain interaction network of human death domain superfamily proteins. Cell Death Differ 2021; 28:2991-3008. [PMID: 33993194 PMCID: PMC8564539 DOI: 10.1038/s41418-021-00796-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/04/2023] Open
Abstract
Human death domain superfamily proteins (DDSPs) play important roles in many signaling pathways involved in cell death and inflammation. Disruption or constitutive activation of these DDSP interactions due to inherited gene mutations is closely related to immunodeficiency and/or autoinflammatory diseases; however, responsible gene mutations have not been found in phenotypical diagnosis of these diseases. In this study, we comprehensively investigated the interactions of death-fold domains to explore the signaling network mediated by human DDSPs. We obtained 116 domains of DDSPs and conducted a domain-domain interaction assay of 13,924 reactions in duplicate using amplified luminescent proximity homogeneous assay. The data were mostly consistent with previously reported interactions. We also found new possible interactions, including an interaction between the caspase recruitment domain (CARD) of CARD10 and the tandem CARD-CARD domain of NOD2, which was confirmed by reciprocal co-immunoprecipitation. This study enables prediction of the interaction network of human DDSPs, sheds light on pathogenic mechanisms, and will facilitate identification of drug targets for treatment of immunodeficiency and autoinflammatory diseases.
Collapse
|
67
|
Nardella C, Visconti L, Malagrinò F, Pagano L, Bufano M, Nalli M, Coluccia A, La Regina G, Silvestri R, Gianni S, Toto A. Targeting PDZ domains as potential treatment for viral infections, neurodegeneration and cancer. Biol Direct 2021; 16:15. [PMID: 34641953 PMCID: PMC8506081 DOI: 10.1186/s13062-021-00303-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/24/2021] [Indexed: 02/08/2023] Open
Abstract
The interaction between proteins is a fundamental event for cellular life that is generally mediated by specialized protein domains or modules. PDZ domains are the largest class of protein-protein interaction modules, involved in several cellular pathways such as signal transduction, cell-cell junctions, cell polarity and adhesion, and protein trafficking. Because of that, dysregulation of PDZ domain function often causes the onset of pathologies, thus making this family of domains an interesting pharmaceutical target. In this review article we provide an overview of the structural and functional features of PDZ domains and their involvement in the cellular and molecular pathways at the basis of different human pathologies. We also discuss some of the strategies that have been developed with the final goal to hijack or inhibit the interaction of PDZ domains with their ligands. Because of the generally low binding selectivity of PDZ domain and the scarce efficiency of small molecules in inhibiting PDZ binding, this task resulted particularly difficult to pursue and still demands increasing experimental efforts in order to become completely feasible and successful in vivo.
Collapse
Affiliation(s)
- Caterina Nardella
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Lorenzo Visconti
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Francesca Malagrinò
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Livia Pagano
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy
| | - Marianna Bufano
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Marianna Nalli
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Antonio Coluccia
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Giuseppe La Regina
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy
| | - Romano Silvestri
- Laboratory Affiliated with the Institute Pasteur Italy - Cenci Bolognetti Foundation, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185, Rome, Italy.
| | - Stefano Gianni
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| | - Angelo Toto
- Istituto Pasteur - Fondazione Cenci Bolognetti, Dipartimento di Scienze Biochimiche "A. Rossi Fanelli" and Istituto di Biologia e Patologia Molecolari del CNR, Sapienza Università di Roma, 00185, Rome, Italy.
| |
Collapse
|
68
|
From pyroptosis, apoptosis and necroptosis to PANoptosis: A mechanistic compendium of programmed cell death pathways. Comput Struct Biotechnol J 2021; 19:4641-4657. [PMID: 34504660 PMCID: PMC8405902 DOI: 10.1016/j.csbj.2021.07.038] [Citation(s) in RCA: 249] [Impact Index Per Article: 62.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 02/07/2023] Open
Abstract
Pyroptosis, apoptosis and necroptosis are the most genetically well-defined programmed cell death (PCD) pathways, and they are intricately involved in both homeostasis and disease. Although the identification of key initiators, effectors and executioners in each of these three PCD pathways has historically delineated them as distinct, growing evidence has highlighted extensive crosstalk among them. These observations have led to the establishment of the concept of PANoptosis, defined as an inflammatory PCD pathway regulated by the PANoptosome complex with key features of pyroptosis, apoptosis and/or necroptosis that cannot be accounted for by any of these PCD pathways alone. In this review, we provide a brief overview of the research history of pyroptosis, apoptosis and necroptosis. We then examine the intricate crosstalk among these PCD pathways to discuss the current evidence for PANoptosis. We also detail the molecular evidence for the assembly of the PANoptosome complex, a molecular scaffold for contemporaneous engagement of key molecules from pyroptosis, apoptosis, and/or necroptosis. PANoptosis is now known to be critically involved in many diseases, including infection, sterile inflammation and cancer, and future discovery of novel PANoptotic components will continue to broaden our understanding of the fundamental processes of cell death and inform the development of new therapeutics.
Collapse
|
69
|
Xia S, Chen Z, Shen C, Fu TM. Higher-order assemblies in immune signaling: supramolecular complexes and phase separation. Protein Cell 2021; 12:680-694. [PMID: 33835418 PMCID: PMC8403095 DOI: 10.1007/s13238-021-00839-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/01/2021] [Indexed: 12/31/2022] Open
Abstract
Signaling pathways in innate and adaptive immunity play vital roles in pathogen recognition and the functions of immune cells. Higher-order assemblies have recently emerged as a central principle that governs immune signaling and, by extension, cellular communication in general. There are mainly two types of higher-order assemblies: 1) ordered, solid-like large supramolecular complexes formed by stable and rigid protein-protein interactions, and 2) liquid-like phase-separated condensates formed by weaker and more dynamic intermolecular interactions. This review covers key examples of both types of higher-order assemblies in major immune pathways. By placing emphasis on the molecular structures of the examples provided, we discuss how their structural organization enables elegant mechanisms of signaling regulation.
Collapse
MESH Headings
- Adaptive Immunity
- Animals
- DEAD Box Protein 58/genetics
- DEAD Box Protein 58/immunology
- DEAD Box Protein 58/metabolism
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/immunology
- DEAD-box RNA Helicases/metabolism
- Gene Expression Regulation
- Humans
- Immunity, Innate
- Inflammasomes/genetics
- Inflammasomes/immunology
- Inflammasomes/ultrastructure
- Models, Molecular
- Multiprotein Complexes/genetics
- Multiprotein Complexes/immunology
- Multiprotein Complexes/metabolism
- Protein Conformation
- Protein Interaction Mapping
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Receptors, Antigen, B-Cell/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Immunologic/genetics
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Type I/genetics
- Receptors, Tumor Necrosis Factor, Type I/immunology
- Receptors, Tumor Necrosis Factor, Type I/metabolism
- Signal Transduction/immunology
- Toll-Like Receptors/genetics
- Toll-Like Receptors/immunology
- Toll-Like Receptors/metabolism
Collapse
Affiliation(s)
- Shiyu Xia
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Zhenhang Chen
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA
| | - Chen Shen
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, and Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Pharmacology, The Ohio State University, Columbus, OH, 43210, USA.
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, 43210, USA.
| |
Collapse
|
70
|
Tassia MG, David KT, Townsend JP, Halanych KM. TIAMMAt: Leveraging biodiversity to revise protein domain models, evidence from innate immunity. Mol Biol Evol 2021; 38:5806-5818. [PMID: 34459919 PMCID: PMC8662601 DOI: 10.1093/molbev/msab258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Sequence annotation is fundamental for studying the evolution of protein families, particularly when working with nonmodel species. Given the rapid, ever-increasing number of species receiving high-quality genome sequencing, accurate domain modeling that is representative of species diversity is crucial for understanding protein family sequence evolution and their inferred function(s). Here, we describe a bioinformatic tool called Taxon-Informed Adjustment of Markov Model Attributes (TIAMMAt) which revises domain profile hidden Markov models (HMMs) by incorporating homologous domain sequences from underrepresented and nonmodel species. Using innate immunity pathways as a case study, we show that revising profile HMM parameters to directly account for variation in homologs among underrepresented species provides valuable insight into the evolution of protein families. Following adjustment by TIAMMAt, domain profile HMMs exhibit changes in their per-site amino acid state emission probabilities and insertion/deletion probabilities while maintaining the overall structure of the consensus sequence. Our results show that domain revision can heavily impact evolutionary interpretations for some families (i.e., NLR’s NACHT domain), whereas impact on other domains (e.g., rel homology domain and interferon regulatory factor domains) is minimal due to high levels of sequence conservation across the sampled phylogenetic depth (i.e., Metazoa). Importantly, TIAMMAt revises target domain models to reflect homologous sequence variation using the taxonomic distribution under consideration by the user. TIAMMAt’s flexibility to revise any subset of the Pfam database using a user-defined taxonomic pool will make it a valuable tool for future protein evolution studies, particularly when incorporating (or focusing) on nonmodel species.
Collapse
Affiliation(s)
- Michael G Tassia
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - Kyle T David
- Department of Biological Sciences, Auburn University, Auburn, Alabama
| | - James P Townsend
- Whitman Center, Marine Biological Laboratory, Woods Hole, Massachusetts.,Department of Biology, Providence College, Providence, Rhode Island
| | | |
Collapse
|
71
|
Tian Y, De Jesús Andino F, Khwatenge CN, Li J, Robert J, Sang Y. Virus-Targeted Transcriptomic Analyses Implicate Ranaviral Interaction with Host Interferon Response in Frog Virus 3-Infected Frog Tissues. Viruses 2021; 13:v13071325. [PMID: 34372531 PMCID: PMC8309979 DOI: 10.3390/v13071325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/30/2022] Open
Abstract
Ranaviruses (Iridoviridae), including Frog Virus 3 (FV3), are large dsDNA viruses that cause devastating infections globally in amphibians, fish, and reptiles, and contribute to catastrophic amphibian declines. FV3’s large genome (~105 kb) contains at least 98 putative open reading frames (ORFs) as annotated in its reference genome. Previous studies have classified these coding genes into temporal classes as immediate early, delayed early, and late viral transcripts based on their sequential expression during FV3 infection. To establish a high-throughput characterization of ranaviral gene expression at the genome scale, we performed a whole transcriptomic analysis (RNA-Seq) using total RNA samples containing both viral and cellular transcripts from FV3-infected Xenopus laevis adult tissues using two FV3 strains, a wild type (FV3-WT) and an ORF64R-deleted recombinant (FV3-∆64R). In samples from the infected intestine, liver, spleen, lung, and especially kidney, an FV3-targeted transcriptomic analysis mapped reads spanning the full-genome coverage at ~10× depth on both positive and negative strands. By contrast, reads were only mapped to partial genomic regions in samples from the infected thymus, skin, and muscle. Extensive analyses validated the expression of almost all of the 98 annotated ORFs and profiled their differential expression in a tissue-, virus-, and temporal class-dependent manner. Further studies identified several putative ORFs that encode hypothetical proteins containing viral mimicking conserved domains found in host interferon (IFN) regulatory factors (IRFs) and IFN receptors. This study provides the first comprehensive genome-wide viral transcriptome profiling during infection and across multiple amphibian host tissues that will serve as an instrumental reference. Our findings imply that Ranaviruses like FV3 have acquired previously unknown molecular mimics, interfering with host IFN signaling during evolution.
Collapse
Affiliation(s)
- Yun Tian
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (Y.T.); (C.N.K.); (J.L.)
| | - Francisco De Jesús Andino
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Collins N. Khwatenge
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (Y.T.); (C.N.K.); (J.L.)
| | - Jiuyi Li
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (Y.T.); (C.N.K.); (J.L.)
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Correspondence: (J.R.); (Y.S.); Tel.: +1-585-275-1722 (J.R.); +615-963-5183 (Y.S.)
| | - Yongming Sang
- Department of Agricultural and Environmental Sciences, College of Agriculture, Tennessee State University, 3500 John A. Merritt Boulevard, Nashville, TN 37209, USA; (Y.T.); (C.N.K.); (J.L.)
- Correspondence: (J.R.); (Y.S.); Tel.: +1-585-275-1722 (J.R.); +615-963-5183 (Y.S.)
| |
Collapse
|
72
|
The DNA Sensor IFIX Drives Proteome Alterations To Mobilize Nuclear and Cytoplasmic Antiviral Responses, with Its Acetylation Acting as a Localization Toggle. mSystems 2021; 6:e0039721. [PMID: 34156286 PMCID: PMC8269231 DOI: 10.1128/msystems.00397-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA sensors are critical components of innate immunity that enable cells to recognize infection by pathogens with DNA genomes. The interferon-inducible protein X (IFIX), a member of the PYHIN protein family, is a DNA sensor capable of promoting immune signaling after binding to double-stranded DNA (dsDNA) within either the nucleus or cytoplasm. Here, we investigate the impact of IFIX on the cellular proteome upon introduction of foreign DNA to the nucleus or the cytoplasm as well as regulatory hubs that control IFIX subcellular localization. Using quantitative mass spectrometry, we define the effect of CRISPR-mediated IFIX knockout on nuclear and cytoplasmic proteomes in fibroblasts. Proteomes are probed in response to either nuclear viral DNA, during herpes simplex virus 1 (HSV-1) infection, or cytoplasmic viral DNA, following transfection with dsDNA derived from vaccinia virus (VACV 70-mer). We show that IFIX broadly impacts nuclear and cytoplasmic proteomes, inducing alterations in the abundances of immune signaling, DNA damage response, and vesicle-mediated transport proteins. To characterize IFIX properties that regulate its localization during DNA sensing, we perform deletion and mutagenesis assays. We find that IFIX contains a multipartite nuclear localization signal (NLS) and highlight the main contributing motif for its nuclear localization. Using immunoaffinity purification, we identify IFIX acetylation and phosphorylation sites. Mutations to acetyl or charge mimics demonstrate that K138 acetylation, positioned within the NLS, affects nuclear localization. Altogether, our study establishes a mechanism regulating IFIX subcellular localization and contextualizes this localization with the involvement of IFIX in host cell responses to pathogenic DNA. IMPORTANCE Mammalian cells must be able to detect and respond to invading pathogens to prevent the spread of infection. DNA sensors, such as IFIX, are proteins that bind to pathogen-derived double-stranded DNA and induce antiviral cytokine expression. Here, we characterize the host proteome changes that require IFIX during both viral infection and DNA transfection. We show IFIX mobilizes numerous pathways and proteome alterations within the nucleus and the cytoplasm, pointing to a multifunctional protein with roles in immune signaling, DNA damage response, and transcriptional regulation. We next interrogate the IFIX domains required for nuclear localization, discovering its regulation via a multipartite nuclear localization motif. The acetylation of this motif promotes IFIX cytoplasmic localization, in agreement with its detection of pathogenic DNA in both the nucleus and the cytoplasm. This study established NLS acetylation as a conserved mechanism for regulating the localization of nuclear DNA sensors from the PYHIN family of proteins.
Collapse
|
73
|
Kaur G, Iyer LM, Burroughs AM, Aravind L. Bacterial death and TRADD-N domains help define novel apoptosis and immunity mechanisms shared by prokaryotes and metazoans. eLife 2021; 10:70394. [PMID: 34061031 PMCID: PMC8195603 DOI: 10.7554/elife.70394] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/23/2021] [Indexed: 12/12/2022] Open
Abstract
Several homologous domains are shared by eukaryotic immunity and programmed cell-death systems and poorly understood bacterial proteins. Recent studies show these to be components of a network of highly regulated systems connecting apoptotic processes to counter-invader immunity, in prokaryotes with a multicellular habit. However, the provenance of key adaptor domains, namely those of the Death-like and TRADD-N superfamilies, a quintessential feature of metazoan apoptotic systems, remained murky. Here, we use sensitive sequence analysis and comparative genomics methods to identify unambiguous bacterial homologs of the Death-like and TRADD-N superfamilies. We show the former to have arisen as part of a radiation of effector-associated α-helical adaptor domains that likely mediate homotypic interactions bringing together diverse effector and signaling domains in predicted bacterial apoptosis- and counter-invader systems. Similarly, we show that the TRADD-N domain defines a key, widespread signaling bridge that links effector deployment to invader-sensing in multicellular bacterial and metazoan counter-invader systems. TRADD-N domains are expanded in aggregating marine invertebrates and point to distinctive diversifying immune strategies probably directed both at RNA and retroviruses and cellular pathogens that might infect such communities. These TRADD-N and Death-like domains helped identify several new bacterial and metazoan counter-invader systems featuring underappreciated, common functional principles: the use of intracellular invader-sensing lectin-like (NPCBM and FGS), transcription elongation GreA/B-C, glycosyltransferase-4 family, inactive NTPase (serving as nucleic acid receptors), and invader-sensing GTPase switch domains. Finally, these findings point to the possibility of multicellular bacteria-stem metazoan symbiosis in the emergence of the immune/apoptotic systems of the latter.
Collapse
Affiliation(s)
- Gurmeet Kaur
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Lakshminarayan M Iyer
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| |
Collapse
|
74
|
Jiang Y, Liu H, Yu H, Zhou Y, Zhang J, Xin W, Li Y, He S, Ma C, Zheng X, Zhang L, Zhao X, Wu B, Jiang C, Zhu D. Circular RNA Calm4 Regulates Hypoxia-Induced Pulmonary Arterial Smooth Muscle Cells Pyroptosis via the Circ-Calm4/miR-124-3p/PDCD6 Axis. Arterioscler Thromb Vasc Biol 2021; 41:1675-1693. [PMID: 33657879 PMCID: PMC8057524 DOI: 10.1161/atvbaha.120.315525] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 02/10/2021] [Indexed: 12/30/2022]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cells, Cultured
- Disease Models, Animal
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/physiopathology
- Male
- Mice, Inbred C57BL
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Muscle, Smooth, Vascular/physiopathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pulmonary Artery/physiopathology
- Pyroptosis
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Signal Transduction
- Mice
Collapse
Affiliation(s)
- Yuan Jiang
- Central Laboratory of Harbin Medical University, Daqing, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.X., X. Zhao, D.Z.)
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.Z., X. Zhao, D.Z.)
| | - Huiyu Liu
- Central Laboratory of Harbin Medical University, Daqing, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.X., X. Zhao, D.Z.)
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.Z., X. Zhao, D.Z.)
| | - Hang Yu
- Central Laboratory of Harbin Medical University, Daqing, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.X., X. Zhao, D.Z.)
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.Z., X. Zhao, D.Z.)
| | - Yang Zhou
- Department of Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, China (Y.Z.)
| | - Junting Zhang
- Central Laboratory of Harbin Medical University, Daqing, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.X., X. Zhao, D.Z.)
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.Z., X. Zhao, D.Z.)
| | - Wei Xin
- Central Laboratory of Harbin Medical University, Daqing, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.X., X. Zhao, D.Z.)
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.Z., X. Zhao, D.Z.)
| | - Yiying Li
- Central Laboratory of Harbin Medical University, Daqing, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.X., X. Zhao, D.Z.)
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.Z., X. Zhao, D.Z.)
| | - Siyu He
- Central Laboratory of Harbin Medical University, Daqing, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.X., X. Zhao, D.Z.)
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.Z., X. Zhao, D.Z.)
| | - Cui Ma
- Central Laboratory of Harbin Medical University, Daqing, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.X., X. Zhao, D.Z.)
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.Z., X. Zhao, D.Z.)
| | - Xiaodong Zheng
- Central Laboratory of Harbin Medical University, Daqing, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.X., X. Zhao, D.Z.)
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.Z., X. Zhao, D.Z.)
| | - Lixin Zhang
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.Z., X. Zhao, D.Z.)
| | - Xijuan Zhao
- Central Laboratory of Harbin Medical University, Daqing, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.X., X. Zhao, D.Z.)
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.Z., X. Zhao, D.Z.)
| | - Bingxiang Wu
- Central Laboratory of Harbin Medical University, Daqing, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.X., X. Zhao, D.Z.)
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.Z., X. Zhao, D.Z.)
- Department of Medical Oncology, The Third Affiliated Hospital of Harbin Medical University, China (Y.Z.)
- The Second Affiliated Hospital of Harbin Medical University, Heilongjiang Province, China (B.X.)
- Department of Biology, Georgia State University, Atlanta, GA (C.J.)
- State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Daqing (D.Z.)
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, China (D.Z.)
| | - Chun Jiang
- Department of Biology, Georgia State University, Atlanta, GA (C.J.)
| | - Daling Zhu
- Central Laboratory of Harbin Medical University, Daqing, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.X., X. Zhao, D.Z.)
- Department of Pharmacology, the State-Province Key Laboratories of Biomedicine-Pharmaceutics of China, Key Laboratory of Cardiovascular Research, Ministry of Education, College of Pharmacy, Harbin Medical University, China (Y.J., H.L., H.Y., J.Z., W.X., Y.L., S.H., C.M., X. Zheng, L.Z., X. Zhao, D.Z.)
- State Province Key Laboratories of Biomedicine-Pharmaceutics of China, Daqing (D.Z.)
- Key Laboratory of Cardiovascular Medicine Research, Ministry of Education, Harbin Medical University, China (D.Z.)
| |
Collapse
|
75
|
Huoh YS, Hur S. Death domain fold proteins in immune signaling and transcriptional regulation. FEBS J 2021; 289:4082-4097. [PMID: 33905163 DOI: 10.1111/febs.15901] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/02/2023]
Abstract
Death domain fold (DDF) superfamily comprises of the death domain (DD), death effector domain (DED), caspase activation recruitment domain (CARD), and pyrin domain (PYD). By utilizing a conserved mode of interaction involving six distinct surfaces, a DDF serves as a building block that can densely pack into homomultimers or filaments. Studies of immune signaling components have revealed that DDF-mediated filament formation plays a central role in mediating signal transduction and amplification. The unique ability of DDFs to self-oligomerize upon external signals and induce oligomerization of partner molecules underlies key processes in many innate immune signaling pathways, as exemplified by RIG-I-like receptor signalosome and inflammasome assembly. Recent studies showed that DDFs are not only limited to immune signaling pathways, but also are involved with transcriptional regulation and other biological processes. Considering that DDF annotation still remains a challenge, the current list of DDFs and their functions may represent just the tip of the iceberg within the full spectrum of DDF biology. In this review, we discuss recent advances in our understanding of DDF functions, structures, and assembly architectures with a focus on CARD- and PYD-containing proteins. We also discuss areas of future research and the potential relationship of DDFs with biomolecular condensates formed by liquid-liquid phase separation (LLPS).
Collapse
Affiliation(s)
- Yu-San Huoh
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Blavatnik Institute at Harvard Medical School, Boston, MA, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, MA, USA
| |
Collapse
|
76
|
Xu X, Han D. DNA-Guided Programmable Protein Assemblies for Biomedical Applications. Chempluschem 2021; 86:284-290. [PMID: 33605561 DOI: 10.1002/cplu.202100001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 02/13/2021] [Indexed: 12/22/2022]
Abstract
While the protein assemblies have been found widely existing and playing significant roles in biological systems, their imitation and re-construction is further boosting more applications in biomedical research, such as enzymatic reaction regulation, sensing, and biomedicine. DNA nanotechnology provides a programmable strategy for the fabrication of nanostructures with unprecedented accuracy on the nanoscale. By linking the DNA nanotechnology with proteins of different functions, the precise construction of DNA-guided protein assemblies can be achieved for various biomedical applications. This minireview summarizes the recent advances in the programmable protein assemblies on DNA nanoplatforms and discusses the outlook of DNA-guided protein assemblies in the biomedical research.
Collapse
Affiliation(s)
- Xuemei Xu
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| | - Da Han
- Institute of Molecular Medicine and Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, P. R. China
| |
Collapse
|
77
|
Roser C, Tóth C, Renner M, Herpel E, Schirmacher P. Expression of apoptosis repressor with caspase recruitment domain (ARC) in familial adenomatous polyposis (FAP) adenomas and its correlation with DNA mismatch repair proteins, p53, Bcl-2, COX-2 and beta-catenin. Cell Commun Signal 2021; 19:15. [PMID: 33579312 PMCID: PMC7879509 DOI: 10.1186/s12964-020-00702-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/26/2020] [Indexed: 11/25/2022] Open
Abstract
Background Colorectal familial adenomatous polyposis (FAP) adenomas exhibit a uniform pathogenetic basis caused by a germline mutation in the adenomatous polyposis gene (APC), but the molecular changes leading to their development are incompletely understood. However, dysregulated apoptosis is known to substantially affect the development of colonic adenomas. One of the key regulatory proteins involved in apoptosis is apoptosis repressor with caspase recruitment domain (ARC). Methods The expression of nuclear and cytoplasmic ARC in 212 adenomas from 80 patients was analyzed by immunohistochemistry. We also compared expression levels of ARC with the expression levels of p53, Bcl-2, COX-2, and MMR proteins. Statistical analyses were performed by Spearman’s rank correlation and linear regression test. Results ARC was overexpressed in the nuclei and cytoplasm of most FAP adenomas investigated. Cytoplasmic ARC staining was moderately stronger (score 2) in 49.1% (n = 104/212) and substantially stronger (score 3) in 32.5% (n = 69/212) of adenomas compared to non-tumorous colorectal mucosa. In 18.4% (n = 39/212) of adenomas, cytoplasmic ARC staining was equivalent to that in non-tumorous mucosa. Nuclear expression of ARC in over 75% of cells was present in 30.7% (n = 65/212) of investigated adenomas, and nuclear expression in 10–75% of cells was detected in 62.7% (n = 133/212). ARC expression in under 10% of nuclei was found in 6.6% (n = 14/212) of adenomas. The correlation between nuclear ARC expression and cytoplasmic ARC expression was highly significant (p = 0.001). Moreover, nuclear ARC expression correlated positively with overexpression of Bcl-2, COX-2 p53 and β-catenin. Cytoplasmic ARC also correlated with overexpression of Bcl-2. Sporadic MMR deficiency was detected in very few FAP adenomas and showed no correlation with nuclear or cytoplasmic ARC. Conclusions Our results demonstrated that both cytoplasmic and nuclear ARC are overexpressed in FAP adenomas, thus in a homogenous collective. The highly significant correlation between nuclear ARC and nuclear β-catenin suggested that ARC might be regulated by β-catenin in FAP adenomas. Because of its further correlations with p53, Bcl-2, and COX-2, nuclear ARC might play a substantial role not only in carcinomas but also in precursor lesions. Video Abstract
Collapse
Affiliation(s)
- Christoph Roser
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany. .,Department of Orthodontics and Dentofacial Orthopaedics, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120, Heidelberg, Germany.
| | - Csaba Tóth
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,Trier MVZ for Histology, Cytology and Molecular Diagnostics, Max-Planck-Straße 5, 54296, Trier, Germany
| | - Marcus Renner
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Esther Herpel
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany.,Tissue Bank of the National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, Heidelberg University Hospital, Im Neuenheimer Feld 224, 69120, Heidelberg, Germany
| |
Collapse
|
78
|
Rodríguez Gama A, Miller T, Halfmann R. Mechanics of a molecular mousetrap-nucleation-limited innate immune signaling. Biophys J 2021; 120:1150-1160. [PMID: 33460595 PMCID: PMC8059202 DOI: 10.1016/j.bpj.2021.01.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 12/17/2022] Open
Abstract
Innate immune responses, such as cell death and inflammatory signaling, are typically switch-like in nature. They also involve "prion-like" self-templating polymerization of one or more signaling proteins into massive macromolecular assemblies known as signalosomes. Despite the wealth of atomic-resolution structural information on signalosomes, how the constituent polymers nucleate and whether the switch-like nature of that event at the molecular scale relates to the digital nature of innate immune signaling at the cellular scale remains unknown. In this perspective, we review current knowledge of innate immune signalosome assembly, with an emphasis on structural constraints that allow the proteins to accumulate in inactive soluble forms poised for abrupt polymerization. We propose that structurally encoded nucleation barriers to protein polymerization kinetically regulate the corresponding pathways, which allows for extremely sensitive, rapid, and decisive signaling upon pathogen detection. We discuss how nucleation barriers satisfy the rigorous on-demand functions of the innate immune system but also predispose the system to precocious activation that may contribute to progressive age-associated inflammation.
Collapse
Affiliation(s)
| | - Tayla Miller
- Stowers Institute for Medical Research, Kansas City, Missouri
| | - Randal Halfmann
- Stowers Institute for Medical Research, Kansas City, Missouri; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas.
| |
Collapse
|
79
|
Structure, Activation and Regulation of NLRP3 and AIM2 Inflammasomes. Int J Mol Sci 2021; 22:ijms22020872. [PMID: 33467177 PMCID: PMC7830601 DOI: 10.3390/ijms22020872] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/23/2020] [Accepted: 01/11/2021] [Indexed: 12/12/2022] Open
Abstract
The inflammasome is a three-component (sensor, adaptor, and effector) filamentous signaling platform that shields from multiple pathogenic infections by stimulating the proteolytical maturation of proinflammatory cytokines and pyroptotic cell death. The signaling process initiates with the detection of endogenous and/or external danger signals by specific sensors, followed by the nucleation and polymerization from sensor to downstream adaptor and then to the effector, caspase-1. Aberrant activation of inflammasomes promotes autoinflammatory diseases, cancer, neurodegeneration, and cardiometabolic disorders. Therefore, an equitable level of regulation is required to maintain the equilibrium between inflammasome activation and inhibition. Recent advancement in the structural and mechanistic understanding of inflammasome assembly potentiates the emergence of novel therapeutics against inflammasome-regulated diseases. In this review, we have comprehensively discussed the recent and updated insights into the structure of inflammasome components, their activation, interaction, mechanism of regulation, and finally, the formation of densely packed filamentous inflammasome complex that exists as micron-sized punctum in the cells and mediates the immune responses.
Collapse
|
80
|
Xu Z, Zhou Y, Liu M, Ma H, Sun L, Zahid A, Chen Y, Zhou R, Cao M, Wu D, Zhao W, Li B, Jin T. Homotypic CARD-CARD interaction is critical for the activation of NLRP1 inflammasome. Cell Death Dis 2021; 12:57. [PMID: 33431827 PMCID: PMC7801473 DOI: 10.1038/s41419-020-03342-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 01/07/2023]
Abstract
Cytosolic inflammasomes are supramolecular complexes that are formed in response to intracellular pathogens and danger signals. However, as to date, the detailed description of a homotypic caspase recruitment domain (CARD) interaction between NLRP1 and ASC has not been presented. We found the CARD-CARD interaction between purified NLRP1CARD and ASCCARD experimentally and the filamentous supramolecular complex formation in an in vitro proteins solution. Moreover, we determined a high-resolution crystal structure of the death domain fold of the human ASCCARD. Mutational and structural analysis revealed three conserved interfaces of the death domain superfamily (Type I, II, and III), which mediate the assembly of the NLRP1CARD/ASCCARD complex. In addition, we validated the role of the three major interfaces of CARDs in assembly and activation of NLRP1 inflammasome in vitro. Our findings suggest a Mosaic model of homotypic CARD interactions for the activation of NLRP1 inflammasome. The Mosaic model provides insights into the mechanisms of inflammasome assembly and signal transduction amplification.
Collapse
Affiliation(s)
- Zhihao Xu
- grid.59053.3a0000000121679639Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China ,grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Ying Zhou
- grid.59053.3a0000000121679639Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Muziying Liu
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Huan Ma
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Liangqi Sun
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Ayesha Zahid
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China
| | - Yulei Chen
- grid.411902.f0000 0001 0643 6866College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021 China
| | - Rongbin Zhou
- grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China ,grid.9227.e0000000119573309CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031 China
| | - Minjie Cao
- grid.411902.f0000 0001 0643 6866College of Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021 China
| | - Dabao Wu
- grid.59053.3a0000000121679639Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Weidong Zhao
- grid.59053.3a0000000121679639Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Bofeng Li
- grid.59053.3a0000000121679639Department of Medical Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui China 230001
| | - Tengchuan Jin
- grid.59053.3a0000000121679639Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China ,grid.59053.3a0000000121679639Hefei National Laboratory for Physical Sciences at Microscale, The CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medicine Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027 China ,grid.9227.e0000000119573309CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Science, Shanghai, 200031 China
| |
Collapse
|
81
|
Robert Hollingsworth L, David L, Li Y, Griswold AR, Ruan J, Sharif H, Fontana P, Orth-He EL, Fu TM, Bachovchin DA, Wu H. Mechanism of filament formation in UPA-promoted CARD8 and NLRP1 inflammasomes. Nat Commun 2021; 12:189. [PMID: 33420033 PMCID: PMC7794386 DOI: 10.1038/s41467-020-20320-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/26/2020] [Indexed: 01/29/2023] Open
Abstract
NLRP1 and CARD8 are related cytosolic sensors that upon activation form supramolecular signalling complexes known as canonical inflammasomes, resulting in caspase-1 activation, cytokine maturation and/or pyroptotic cell death. NLRP1 and CARD8 use their C-terminal (CT) fragments containing a caspase recruitment domain (CARD) and the UPA (conserved in UNC5, PIDD, and ankyrins) subdomain for self-oligomerization, which in turn form the platform to recruit the inflammasome adaptor ASC (apoptosis-associated speck-like protein containing a CARD) or caspase-1, respectively. Here, we report cryo-EM structures of NLRP1-CT and CARD8-CT assemblies, in which the respective CARDs form central helical filaments that are promoted by oligomerized, but flexibly linked, UPAs surrounding the filaments. Through biochemical and cellular approaches, we demonstrate that the UPA itself reduces the threshold needed for NLRP1-CT and CARD8-CT filament formation and signalling. Structural analyses provide insights on the mode of ASC recruitment by NLRP1-CT and the contrasting direct recruitment of caspase-1 by CARD8-CT. We also discover that subunits in the central NLRP1CARD filament dimerize with additional exterior CARDs, which roughly doubles its thickness and is unique among all known CARD filaments. Finally, we engineer and determine the structure of an ASCCARD-caspase-1CARD octamer, which suggests that ASC uses opposing surfaces for NLRP1, versus caspase-1, recruitment. Together these structures capture the architecture and specificity of the active NLRP1 and CARD8 inflammasomes in addition to key heteromeric CARD-CARD interactions governing inflammasome signalling.
Collapse
Affiliation(s)
- L Robert Hollingsworth
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA
| | - Liron David
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Yang Li
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Andrew R Griswold
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, NY, USA
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jianbin Ruan
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Immunology, University of Connecticut Health Center, Farmington, CT, USA
| | - Humayun Sharif
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Pietro Fontana
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Elizabeth L Orth-He
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Biological Chemistry and Pharmacology, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Daniel A Bachovchin
- Pharmacology Program, Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, 02115, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, 02115, USA.
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
82
|
Shy AN, Wang H, Feng Z, Xu B. Heterotypic Supramolecular Hydrogels Formed by Noncovalent Interactions in Inflammasomes. Molecules 2020; 26:E77. [PMID: 33375296 PMCID: PMC7795891 DOI: 10.3390/molecules26010077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 01/04/2023] Open
Abstract
The advance of structural biology has revealed numerous noncovalent interactions between peptide sequences in protein structures, but such information is less explored for developing peptide materials. Here we report the formation of heterotypic peptide hydrogels by the two binding motifs revealed by the structures of an inflammasome. Specifically, conjugating a self-assembling motif to the positively or negatively charged peptide sequence from the ASCPYD filaments of inflammasome produces the solutions of the peptides. The addition of the peptides of the oppositely charged and complementary peptides to the corresponding peptide solution produces the heterotypic hydrogels. Rheology measurement shows that ratios of the complementary peptides affect the viscoelasticity of the resulted hydrogel. Circular dichroism indicates that the addition of the complementary peptides results in electrostatic interactions that modulate self-assembly. Transmission electron microscopy reveals that the ratio of the complementary peptides controls the morphology of the heterotypic peptide assemblies. This work illustrates a rational, biomimetic approach that uses the structural information from the protein data base (PDB) for developing heterotypic peptide materials via self-assembly.
Collapse
Affiliation(s)
| | | | | | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South St., Waltham, MA 02453, USA; (A.N.S.); (H.W.); (Z.F.)
| |
Collapse
|
83
|
Ubiquitination of RIPK1 regulates its activation mediated by TNFR1 and TLRs signaling in distinct manners. Nat Commun 2020; 11:6364. [PMID: 33311474 PMCID: PMC7733462 DOI: 10.1038/s41467-020-19935-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
RIPK1 is a death-domain (DD) containing kinase involved in regulating apoptosis, necroptosis and inflammation. RIPK1 activation is known to be regulated by its DD-mediated interaction and ubiquitination, though underlying mechanisms remain incompletely understood. Here we show that K627 in human RIPK1-DD and its equivalent K612 in murine RIPK1-DD is a key ubiquitination site that regulates the overall ubiquitination pattern of RIPK1 and its DD-mediated interactions with other DD-containing proteins. K627R/K612R mutation inhibits the activation of RIPK1 and blocks both apoptosis and necroptosis mediated by TNFR1 signaling. However, Ripk1K612R/K612R mutation sensitizes cells to necroptosis and caspase-1 activation in response to TLRs signaling. Ripk1K612R/K612R mice are viable, but develop age-dependent reduction of RIPK1 expression, spontaneous intestinal inflammation and splenomegaly, which can be rescued by antibiotic treatment and partially by Ripk3 deficiency. Furthermore, we show that the interaction of RIPK1 with FADD contributes to suppressing the activation of RIPK3 mediated by TLRs signaling. Our study demonstrates the distinct roles of K612 ubiquitination in mRIPK1/K627 ubiquitination in hRIPK1 in regulating its pro-death kinase activity in response to TNFα and pro-survival activity in response to TLRs signaling.
Collapse
|
84
|
Bai L, Zhou K, Li H, Qin Y, Wang Q, Li W. Bacteria-induced IMD-Relish-AMPs pathway activation in Chinese mitten crab. FISH & SHELLFISH IMMUNOLOGY 2020; 106:866-875. [PMID: 32889097 DOI: 10.1016/j.fsi.2020.08.046] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
The innate immune response is an important line of defense against invading pathogens in invertebrates. Signaling pathways, including the IMD pathway, play critical roles in the production of antimicrobial peptides (AMPs), which induce the transcription of immune effectors that protect against bacterial invasion. In the present study, the cDNA of IMD from Eriocheir sinensis was cloned (designated EsIMD) and shown to be significantly upregulated following Gram-positive and Gram-negative bacterial infection. In vivo and in vitro studies collectively suggested that both the Gram-negative bacterium Vibrio parahemolyticus and the Gram-positive bacteria Staphylococcus aureus and Bacillus subtilis elicit the translocation of Relish. Moreover, EsIMD positively regulated EsRelish translocation from the cytoplasm to the nucleus following stimulation with both Gram-positive and Gram-negative bacteria. EsRelish knockdown in hemocytes significantly suppressed AMPs' expression. Furthermore, both Lys-type and DAP-type peptidoglycan-containing bacteria activated the IMD pathway and elicited antibacterial responses in crab. Conclusively, these findings demonstrate that both Gram-positive and Gram-negative bacteria activate IMD signaling, via a mechanism that is distinct with that by which Gram-negative bacteria activate IMD signaling in Drosophila. These findings might pave the way for a better understanding of the innate immune system and the fundamental network of the IMD signaling pathway in crustacean.
Collapse
Affiliation(s)
- Longwei Bai
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Kaimin Zhou
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yukai Qin
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Qun Wang
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Weiwei Li
- Laboratory of Invertebrate Immunological Defense & Reproductive Biology, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
85
|
Selective Blockade of TNFR1 Improves Clinical Disease and Bronchoconstriction in Experimental RSV Infection. Viruses 2020; 12:v12101176. [PMID: 33080861 PMCID: PMC7588931 DOI: 10.3390/v12101176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/14/2020] [Accepted: 10/15/2020] [Indexed: 02/07/2023] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of bronchiolitis in infants and young children. Although some clinical studies have speculated that tumor necrosis factor (TNF)-α is a major contributor of RSV-mediated airway disease, experimental evidence remains unclear or conflicting. TNF-α initiates inflammation and cell death through two distinct receptors: TNF-receptor (TNFR)1 and TNFR2. Here we delineate the function of TNF-α by short-lasting blockade of either receptor in an experimental BALB/c mouse model of RSV infection. We demonstrate that antibody-mediated blockade of TNFR1, but not TNFR2, results in significantly improved clinical disease and bronchoconstriction as well as significant reductions of several inflammatory cytokines and chemokines, including IL-1α, IL-1β, IL-6, Ccl3, Ccl4, and Ccl5. Additionally, TNFR1 blockade was found to significantly reduce neutrophil number and activation status, consistent with the concomitant reduction of pro-neutrophilic chemokines Cxcl1 and Cxcl2. Similar protective activity was also observed when a single-dose of TNFR1 blockade was administered to mice following RSV inoculation, although this treatment resulted in improved alveolar macrophage survival rather than reduced neutrophil activation. Importantly, short-lasting blockade of TNFR1 did not affect RSV peak replication in the lung. This study suggests a potential therapeutic approach for RSV bronchiolitis based on selective blockade of TNFR1.
Collapse
|
86
|
Su Z, Dhusia K, Wu Y. Understand the Functions of Scaffold Proteins in Cell Signaling by a Mesoscopic Simulation Method. Biophys J 2020; 119:2116-2126. [PMID: 33113350 DOI: 10.1016/j.bpj.2020.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/24/2020] [Accepted: 10/07/2020] [Indexed: 02/02/2023] Open
Abstract
Scaffold proteins are central players in regulating the spatial-temporal organization of many important signaling pathways in cells. They offer physical platforms to downstream signaling proteins so that their transient interactions in a crowded and heterogeneous environment of cytosol can be greatly facilitated. However, most scaffold proteins tend to simultaneously bind more than one signaling molecule, which leads to the spatial assembly of multimeric protein complexes. The kinetics of these protein oligomerizations are difficult to quantify by traditional experimental approaches. To understand the functions of scaffold proteins in cell signaling, we developed a, to our knowledge, new hybrid simulation algorithm in which both spatial organization and binding kinetics of proteins were implemented. We applied this new technique to a simple network system that contains three molecules. One molecule in the network is a scaffold protein, whereas the other two are its binding targets in the downstream signaling pathway. Each of the three molecules in the system contains two binding motifs that can interact with each other and are connected by a flexible linker. By applying the new simulation method to the model, we show that the scaffold proteins will promote not only thermodynamics but also kinetics of cell signaling given the premise that the interaction between the two signaling molecules is transient. Moreover, by changing the flexibility of the linker between two binding motifs, our results suggest that the conformational fluctuations in a scaffold protein play a positive role in recruiting downstream signaling molecules. In summary, this study showcases the capability of computational simulation in understanding the general principles of scaffold protein functions.
Collapse
Affiliation(s)
- Zhaoqian Su
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Kalyani Dhusia
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York
| | - Yinghao Wu
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, New York.
| |
Collapse
|
87
|
Liu M, Zhou K, Xu Z, Ma H, Cao X, Yin X, Zeng W, Zahid A, Fu S, Ni K, Ye X, Zhou Y, Bai L, Zhou R, Jin T. Crystal structure of caspase-11 CARD provides insights into caspase-11 activation. Cell Discov 2020; 6:70. [PMID: 33083005 PMCID: PMC7552397 DOI: 10.1038/s41421-020-00201-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 07/20/2020] [Indexed: 01/16/2023] Open
Abstract
Murine caspase-11 is the centerpiece of the non-canonical inflammasome pathway that can respond to intracellular LPS and induce pyroptosis. Caspase-11 contains two components, an N-terminal caspase recruitment domain (CARD) and a C-terminal catalytic domain. The aggregation of caspase-11 is thought to promote the auto-processing and activation of caspase-11. However, the activation mechanism of caspase-11 remains unclear. In this study, we purified the caspase-11 CARD fused to an MBP tag and found it tetramerizes in solution. Crystallographic analysis reveals an extensive hydrophobic interface formed by the H1–2 helix mediating homotypic CARD interactions. Importantly, mutations of the helix H1–2 hydrophobic residues abolished the tetramerization of MBP-tagged CARD in solution and failed to induce pyroptosis in cells. Our study provides the first evidence of the homotypic interaction mode for an inflammatory caspase by crystal model. This finding demonstrates that the tetramerization of the N-terminal CARD can promote releasing of the catalytic domain auto-inhibition, leading to the caspase-11 activation.
Collapse
Affiliation(s)
- Muziying Liu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.17 Lujiang Rd, Hefei, Anhui 230001 China.,Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Kang Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Zhihao Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.17 Lujiang Rd, Hefei, Anhui 230001 China.,Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Huan Ma
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Xiaocong Cao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Xueying Yin
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Weihong Zeng
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Ayesha Zahid
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Sicheng Fu
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Kang Ni
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Xiaodong Ye
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026 China
| | - Ying Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.17 Lujiang Rd, Hefei, Anhui 230001 China
| | - Li Bai
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China
| | - Rongbin Zhou
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China.,CAS Center for Excellence in Molecular Cell Science, Shanghai, 200031 China
| | - Tengchuan Jin
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No.17 Lujiang Rd, Hefei, Anhui 230001 China.,Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001 China.,CAS Center for Excellence in Molecular Cell Science, Shanghai, 200031 China
| |
Collapse
|
88
|
Ivanisenko NV, Seyrek K, Kolchanov NA, Ivanisenko VA, Lavrik IN. The role of death domain proteins in host response upon SARS-CoV-2 infection: modulation of programmed cell death and translational applications. Cell Death Discov 2020; 6:101. [PMID: 33072409 PMCID: PMC7547561 DOI: 10.1038/s41420-020-00331-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 08/17/2020] [Indexed: 02/08/2023] Open
Abstract
The current pandemic of novel severe acute respiratory syndrome coronavirus (SARS-CoV-2) poses a significant global public health threat. While urgent regulatory measures in control of the rapid spread of this virus are essential, scientists around the world have quickly engaged in this battle by studying the molecular mechanisms and searching for effective therapeutic strategies against this deadly disease. At present, the exact mechanisms of programmed cell death upon SARS-CoV-2 infection remain to be elucidated, though there is increasing evidence suggesting that cell death pathways play a key role in SARS-CoV-2 infection. There are several types of programmed cell death, including apoptosis, pyroptosis, and necroptosis. These distinct programs are largely controlled by the proteins of the death domain (DD) superfamily, which play an important role in viral pathogenesis and host antiviral response. Many viruses have acquired the capability to subvert the program of cell death and evade the host immune response, mainly by virally encoded gene products that control cell signaling networks. In this mini-review, we will focus on SARS-CoV-2, and discuss the implication of restraining the DD-mediated signaling network to potentially suppress viral replication and reduce tissue damage.
Collapse
Affiliation(s)
- Nikita V. Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Novosibirsk State University, Novosibirsk, Russia
| | - Kamil Seyrek
- Translational Inflammation Research, CDS, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| | - Nikolay A. Kolchanov
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Vladimir A. Ivanisenko
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
| | - Inna N. Lavrik
- The Federal Research Center Institute of Cytology and Genetics SB RAS, Novosibirsk, Russia
- Translational Inflammation Research, CDS, Medical Faculty, Otto von Guericke University, Magdeburg, Germany
| |
Collapse
|
89
|
Devi S, Stehlik C, Dorfleutner A. An Update on CARD Only Proteins (COPs) and PYD Only Proteins (POPs) as Inflammasome Regulators. Int J Mol Sci 2020; 21:E6901. [PMID: 32962268 PMCID: PMC7555848 DOI: 10.3390/ijms21186901] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/17/2020] [Accepted: 09/17/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammasomes are protein scaffolds required for the activation of caspase-1 and the subsequent release of interleukin (IL)-1β, IL-18, and danger signals, as well as the induction of pyroptotic cell death to restore homeostasis following infection and sterile tissue damage. However, excessive inflammasome activation also causes detrimental inflammatory disease. Therefore, extensive control mechanisms are necessary to prevent improper inflammasome responses and inflammatory disease. Inflammasomes are assembled by sequential nucleated polymerization of Pyrin domain (PYD) and caspase recruitment domain (CARD)-containing inflammasome components. Once polymerization is nucleated, this process proceeds in a self-perpetuating manner and represents a point of no return. Therefore, regulation of this key step is crucial for a controlled inflammasome response. Here, we provide an update on two single domain protein families containing either a PYD or a CARD, the PYD-only proteins (POPs) and CARD-only proteins (COPs), respectively. Their structure allows them to occupy and block access to key protein-protein interaction domains necessary for inflammasome assembly, thereby regulating the threshold of these nucleated polymerization events, and consequently, the inflammatory host response.
Collapse
Affiliation(s)
- Savita Devi
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
| | - Christian Stehlik
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
- Department of Biomedical Sciences, and Samuel Oschin Comprehensive Cancer Institute, Cedars Sinai, Los Angeles, CA 90048, USA
| | - Andrea Dorfleutner
- Department of Pathology and Laboratory Medicine, Cedars Sinai, Los Angeles, CA 90048, USA;
- Department of Biomedical Sciences, Cedars Sinai, Los Angeles, CA 90048, USA
| |
Collapse
|
90
|
The Evolutionary Origins of Programmed Cell Death Signaling. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a036442. [PMID: 31818855 DOI: 10.1101/cshperspect.a036442] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Programmed cell death (PCD) pathways are found in many phyla, ranging from developmentally programmed apoptosis in animals to cell-autonomous programmed necrosis pathways that limit the spread of biotrophic pathogens in multicellular assemblies. Prominent examples for the latter include animal necroptosis and pyroptosis, plant hypersensitive response (HR), and fungal heterokaryon incompatibility (HI) pathways. PCD pathways in the different kingdoms show fundamental differences in execution mechanism, morphology of the dying cells, and in the biological sequelae. Nevertheless, recent studies have revealed remarkable evolutionary parallels, including a striking sequence relationship between the "HeLo" domains found in the pore-forming components of necroptosis and some types of plant HR and fungal HI pathways. Other PCD execution components show cross-kingdom conservation as well, or are derived from prokaryotic ancestors. The currently available data suggest a model, wherein the primordial eukaryotic PCD pathway used proteins similar to present-day plant R-proteins and caused necrotic cell death by direct action of Toll and IL-1 receptor (TIR) and HeLo-like domains.
Collapse
|
91
|
Yan Z, Zhan J, Qi W, Lin J, Huang Y, Xue X, Pan X. The Protective Effect of Luteolin in Glucocorticoid-Induced Osteonecrosis of the Femoral Head. Front Pharmacol 2020; 11:1195. [PMID: 32903480 PMCID: PMC7435053 DOI: 10.3389/fphar.2020.01195] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 07/22/2020] [Indexed: 01/22/2023] Open
Abstract
Glucocorticoid-induced osteonecrosis of the femoral head (GIONFH) is a frequently occurring type of nontraumatic osteonecrosis. A failure of the timely treatment can eventually result in the collapse of the subchondral bone structure. Luteolin (Lut), a compound extracted from Rhizoma Drynariae, is reported to possess multiple pharmacological properties including anticancer, antioxidant, antiapoptosis, and antiinflammatory properties. However, whether Lut has a protective effect on the development of GIONFH remains unclear. In this study, we evaluated the effect of Lut on Dexamethasone (Dex)-induced STAT1/caspase3 pathway in vitro and evaluated GIONFH model in vivo. In vitro, Lut inhibited the upregulation of Dex-induced phospho-STAT1, cleaved caspase9, and cleaved caspase3. In addition, Lut inhibited Dex-induced expression of Bax and cytochrome c and increased the expression of B cell lymphoma-2(Bcl-2). In vivo, Lut decreased the proportion of empty lacunae in rats with GIONFH. Taken together, these findings indicate that Lut may have therapeutic potential in the treatment of GIONFH. Further, this effect might be achieved by suppressing mitochondrial apoptosis of osteoblasts via inhibition of STAT1 activity.
Collapse
Affiliation(s)
- Zijian Yan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, WenZhou Medical University, Wenzhou, China
| | - Jingdi Zhan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, WenZhou Medical University, Wenzhou, China
| | - Weihui Qi
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China.,Department of Orthopaedics, Zhejiang Provincial Key Laboratory of Orthpaedics, Wenzhou, China.,The Second School of Medicine, WenZhou Medical University, Wenzhou, China
| | - Jian Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yijiang Huang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xinghe Xue
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaoyun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
92
|
de Alba E. The mysterious role of the NLRP9 pyrin domain in inflammasome assembly. FEBS Lett 2020; 594:2380-2382. [PMID: 32735703 DOI: 10.1002/1873-3468.13889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Eva de Alba
- Department of Bioengineering. School of Engineering, University of California, Merced, CA, USA
| |
Collapse
|
93
|
Kumari P, Russo AJ, Shivcharan S, Rathinam VA. AIM2 in health and disease: Inflammasome and beyond. Immunol Rev 2020; 297:83-95. [PMID: 32713036 DOI: 10.1111/imr.12903] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
Nucleic acid sensing is a critical mechanism by which the immune system monitors for pathogen invasion. A set of germline-encoded innate immune receptors detect microbial DNA in various compartments of the cell, such as endosomes, the cytosol, and the nucleus. Sensing of microbial DNA through these receptors stimulates, in most cases, interferon regulatory factor-dependent type I IFN synthesis followed by JAK/STAT-dependent interferon-stimulated gene expression. In contrast, the detection of DNA in the cytosol by AIM2 assembles a macromolecular complex called the inflammasome, which unleashes the proteolytic activity of a cysteine protease caspase-1. Caspase-1 cleaves and activates the pro-inflammatory cytokines such as IL-1β and IL-18 and a pore-forming protein, gasdermin D, which triggers pyroptosis, an inflammatory form of cell death. Research over the past decade has revealed that AIM2 plays essential roles not only in host defense against pathogens but also in inflammatory diseases, autoimmunity, and cancer in inflammasome-dependent and inflammasome-independent manners. This review discusses the latest advancements in our understanding of AIM2 biology and its functions in health and disease.
Collapse
Affiliation(s)
- Puja Kumari
- Department of Immunology, UConn Health School of Medicine, Farmington, CT, USA
| | - Ashley J Russo
- Department of Immunology, UConn Health School of Medicine, Farmington, CT, USA
| | - Sonia Shivcharan
- Department of Immunology, UConn Health School of Medicine, Farmington, CT, USA
| | - Vijay A Rathinam
- Department of Immunology, UConn Health School of Medicine, Farmington, CT, USA
| |
Collapse
|
94
|
Xue J, Hu S, Huang Y, Zhang Q, Yi X, Pan X, Li S. Arg-GlcNAcylation on TRADD by NleB and SseK1 Is Crucial for Bacterial Pathogenesis. Front Cell Dev Biol 2020; 8:641. [PMID: 32766249 PMCID: PMC7379376 DOI: 10.3389/fcell.2020.00641] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 06/25/2020] [Indexed: 01/01/2023] Open
Abstract
Death receptor signaling is critical for cell death, inflammation, and immune homeostasis. Hijacking death receptors and their corresponding adaptors through type III secretion system (T3SS) effectors has been evolved to be a bacterial evasion strategy. NleB from enteropathogenic Escherichia coli (EPEC) and SseK1/2/3 from Salmonella enterica serovar Typhimurium (S. Typhimurium) can modify some death domain (DD) proteins through arginine-GlcNAcylation. Here, we performed a substrate screen on 12 host DD proteins with conserved arginine during EPEC and Salmonella infection. NleB from EPEC hijacked death receptor signaling through tumor necrosis factor receptor 1 (TNFR1)-associated death domain protein (TRADD), FAS-associated death domain protein (FADD), and receptor-interacting serine/threonine-protein kinase 1 (RIPK1), whereas SseK1 and SseK3 disturbed TNF signaling through the modification of TRADD Arg235/Arg245 and TNFR1 Arg376, respectively. Furthermore, mouse infection studies showed that SseK1 but not SseK3 rescued the bacterial colonization deficiency contributed by the deletion of NleBc (Citrobacter NleB), indicating that TRADD was the in vivo substrate. The result provides an insight into the mechanism by which attaching and effacing (A/E) pathogen manipulate TRADD-mediated signaling and evade host immune defense through T3SS effectors.
Collapse
Affiliation(s)
- Juan Xue
- Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Shufan Hu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Yuxuan Huang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Qi Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xueying Yi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xing Pan
- Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Shan Li
- Taihe Hospital, Institute of Infection and Immunity, Hubei University of Medicine, Shiyan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
95
|
MNDA controls the expression of MCL-1 and BCL-2 in chronic lymphocytic leukemia cells. Exp Hematol 2020; 88:68-82.e5. [PMID: 32682001 DOI: 10.1016/j.exphem.2020.07.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 02/06/2023]
Abstract
The myeloid nuclear differentiation antigen (MNDA) is a stress-induced protein that promotes degradation of the anti-apoptotic factor MCL-1 and apoptosis in myeloid cells. MNDA is also expressed in normal lymphoid cells and in B-cell clones isolated from individuals with chronic lymphocytic leukemia (CLL), a disease characterized by abnormal apoptosis control. We found that MNDA expression levels inversely correlate with the amount of the anti-apoptotic proteins MCL-1 and BCL-2 in human CLL samples. We report that in response to chemotherapeutic agents that induce genotoxic stress, MNDA exits its typical nucleolar localization and accumulates in the nucleoplasm of CLL and lymphoid cells. Then, MNDA binds chromatin at Mcl1 and Bcl2 genes and affects the transcriptional competence of RNA polymerase II. Our data also reveal that MNDA specifically associates with Mcl1 and Bcl2 (pre-) mRNAs and favors their rapid turnover as a prompt response to genotoxic stress. We propose that this rapid dynamic tuning of RNA levels, which leads to the destabilization of Mcl1 and Bcl2 transcripts, represents a post-transcriptional mechanism of apoptosis control in CLL cells. These results provide an explanation of previous clinical data and corroborate the finding that higher MNDA expression levels in CLL are associated with a better clinical course.
Collapse
|
96
|
Roberts O, Paraoan L. PERP-ing into diverse mechanisms of cancer pathogenesis: Regulation and role of the p53/p63 effector PERP. Biochim Biophys Acta Rev Cancer 2020; 1874:188393. [PMID: 32679166 DOI: 10.1016/j.bbcan.2020.188393] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 07/11/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022]
Abstract
The tetraspan plasma membrane protein PERP (p53 apoptosis effector related to PMP22) is a lesser-known transcriptional target of p53 and p63. A member of the PMP22/GAS3/EMP membrane protein family, PERP was originally identified as a p53 target specifically trans-activated during apoptosis, but not during cell-cycle arrest. Several studies have since shown downregulation of PERP expression in numerous cancers, suggesting that PERP is a tumour suppressor protein. This review focusses on the important advances made in elucidating the mechanisms regulating PERP expression and its function as a tumour suppressor in diverse human cancers, including breast cancer and squamous cell carcinoma. Investigating PERP's role in clinically-aggressive uveal melanoma has revealed that PERP engages a positive-feedback loop with p53 to regulate its own expression, and that p63 is required beside p53 to achieve pro-apoptotic levels of PERP in this cancer. Furthermore, the recent discovery of the apoptosis-mediating interaction of PERP with SERCA2b at the plasma membrane-endoplasmic reticulum interface demonstrates a novel mechanism of PERP stabilisation, and how PERP can mediate Ca2+ signalling to facilitate apoptosis. The multi-faceted role of PERP in cancer, involving well-documented functions in mediating apoptosis and cell-cell adhesion is discussed, alongside PERP's emerging roles in epithelial-mesenchymal transition, and PERP crosstalk with inflammation signalling pathways, and other signalling pathways. The potential for restoring PERP expression as a means of cancer therapy is also considered.
Collapse
Affiliation(s)
- Owain Roberts
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Luminita Paraoan
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| |
Collapse
|
97
|
Wang B, Bhattacharya M, Roy S, Tian Y, Yin Q. Immunobiology and structural biology of AIM2 inflammasome. Mol Aspects Med 2020; 76:100869. [PMID: 32660715 DOI: 10.1016/j.mam.2020.100869] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/15/2022]
Abstract
Absent in melanoma 2 (AIM2) is a cytoplasmic sensor that upon recognizing double-stranded DNA assembles with apoptosis-associated speck-like protein containing a CARD (ASC) and procaspase-1 to form the multi-protein complex AIM2 inflammasome. Double-stranded DNA from bacterial, viral, or host cellular origins triggers AIM2 inflammasome assembly and activation, ultimately resulting in secretion of proinflammatory cytokines and pyroptotic cell death in order to eliminate microbial infection. Many pathogens therefore evade or suppress AIM2 inflammasome to establish infection. On the other hand, AIM2 activation is tightly controlled by multiple cellular factors to prevent autoinflammation. Extensive structural studies have captured the molecular details of multiple steps in AIM2 inflammasome assembly. The structures collectively revealed a nucleated polymerization mechanism that not only pervades each step of AIM2 inflammasome assembly, but also underlies assembly of other inflammasomes and complexes in immune signaling. In this article, we briefly review the identification of AIM2 as a cytoplasmic DNA sensor, summarize the importance of AIM2 inflammasome in infections and diseases, and discuss the molecular mechanisms of AIM2 assembly, activation, and regulation using recent cellular, biochemical, and structural results.
Collapse
Affiliation(s)
- Bing Wang
- Department of Biological Science, Florida State University, Tallahassee, FL, 32301, USA
| | - Madhurima Bhattacharya
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32301, USA
| | - Sayantan Roy
- Department of Biological Science, Florida State University, Tallahassee, FL, 32301, USA
| | - Yuan Tian
- Department of Biological Science, Florida State University, Tallahassee, FL, 32301, USA
| | - Qian Yin
- Department of Biological Science, Florida State University, Tallahassee, FL, 32301, USA; Institute of Molecular Biophysics, Florida State University, Tallahassee, FL, 32301, USA.
| |
Collapse
|
98
|
Ha HJ, Park HH. Crystal structure of the human NLRP9 pyrin domain reveals a bent N-terminal loop that may regulate inflammasome assembly. FEBS Lett 2020; 594:2396-2405. [PMID: 32542766 DOI: 10.1002/1873-3468.13866] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/01/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
Abstract
Members of the NLR family pyrin domain containing (NLRPs) are pattern recognition receptors that participate in innate immunity. They form inflammasomes, which are platforms for caspase-1 recruitment and activation. The NLRP pyrin domain (PYD) is critical for the assembly of inflammasomes due to its ability to mediate protein interactions. Despite intensive structural studies on inflammasomes with PYDs, the structure of the PYD of NLRP9-the least studied member of the family-remains unknown. Herein, we report the crystal structure of the human NLRP9 PYD at 2.1 Å resolution, which reveals a kinked N-terminal loop oriented toward the interior of the helical bundle. Based on our findings, we propose a regulatory role for the kinked N-terminal loop of NLRP9 PYD in inflammasome assembly.
Collapse
Affiliation(s)
- Hyun Ji Ha
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| | - Hyun Ho Park
- College of Pharmacy, Chung-Ang University, Seoul, Korea
| |
Collapse
|
99
|
Characterisation of a second gain of function EDAR variant, encoding EDAR380R, in East Asia. Eur J Hum Genet 2020; 28:1694-1702. [PMID: 32499598 DOI: 10.1038/s41431-020-0660-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 04/07/2020] [Accepted: 05/12/2020] [Indexed: 11/08/2022] Open
Abstract
Ectodysplasin A1 receptor (EDAR) is a TNF receptor family member with roles in the development and growth of hair, teeth and glands. A derived allele of EDAR, single-nucleotide variant rs3827760, encodes EDAR:p.(Val370Ala), a receptor with more potent signalling effects than the ancestral EDAR370Val. This allele of rs3827760 is at very high frequency in modern East Asian and Native American populations as a result of ancient positive selection and has been associated with straighter, thicker hair fibres, alteration of tooth and ear shape, reduced chin protrusion and increased fingertip sweat gland density. Here we report the characterisation of another SNV in EDAR, rs146567337, encoding EDAR:p.(Ser380Arg). The derived allele of this SNV is at its highest global frequency, of up to 5%, in populations of southern China, Vietnam, the Philippines, Malaysia and Indonesia. Using haplotype analyses, we find that the rs3827760 and rs146567337 SNVs arose on distinct haplotypes and that rs146567337 does not show the same signs of positive selection as rs3827760. From functional studies in cultured cells, we find that EDAR:p.(Ser380Arg) displays increased EDAR signalling output, at a similar level to that of EDAR:p.(Val370Ala). The existence of a second SNV with partly overlapping geographic distribution, the same in vitro functional effect and similar evolutionary age as the derived allele of rs3827760, but of independent origin and not exhibiting the same signs of strong selection, suggests a northern focus of positive selection on EDAR function in East Asia.
Collapse
|
100
|
Xue J, Pan X, Peng T, Duan M, Du L, Zhuang X, Cai X, Yi X, Fu Y, Li S. Auto Arginine-GlcNAcylation Is Crucial for Bacterial Pathogens in Regulating Host Cell Death. Front Cell Infect Microbiol 2020; 10:197. [PMID: 32432056 PMCID: PMC7214673 DOI: 10.3389/fcimb.2020.00197] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/15/2020] [Indexed: 12/25/2022] Open
Abstract
Many Gram-negative bacterial pathogens utilize the type III secretion system (T3SS) to inject virulence factors, named effectors, into host cells. These T3SS effectors manipulate host cellular signaling pathways to facilitate bacterial pathogenesis. Death receptor signaling plays an important role in eukaryotic cell death pathways. NleB from enteropathogenic Escherichia coli (EPEC) and SseK1/3 from Salmonella enterica serovar Typhimurium (S. Typhimurium) are T3SS effectors. They are defined as a family of arginine GlcNAc transferase to modify a conserved arginine residue in the death domain (DD) of the death receptor TNFR and their corresponding adaptors to hijack death receptor signaling. Here we identified that these enzymes, NleB, SseK1, and SseK3 could catalyze auto-GlcNAcylation. Residues, including Arg13/53/159/293 in NleB, Arg30/158/339 in SseK1, and Arg153/184/305/335 in SseK3 were identified as the auto-GlcNAcylation sites by mass spectrometry. Mutation of the auto-modification sites of NleB, SseK1, and SseK3 abolished or attenuated the capability of enzyme activity toward their death domain targets during infection. Loss of this ability led to the increased susceptibility of the cells to TNF- or TRAIL-induced cell death during bacterial infection. Overall, our study reveals that the auto-GlcNAcylation of NleB, SseK1, and SseK3 is crucial for their biological activity during infection.
Collapse
Affiliation(s)
- Juan Xue
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xing Pan
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Ting Peng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Meimei Duan
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Lijie Du
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Xiaohui Zhuang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xiaobin Cai
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Xueying Yi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| | - Yang Fu
- School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Shan Li
- Institute of Infection and Immunity, Taihe Hospital, Hubei University of Medicine, Shiyan, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China.,College of Biomedicine and Health, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|