51
|
van der Staay FJ. Animal models of behavioral dysfunctions: Basic concepts and classifications, and an evaluation strategy. ACTA ACUST UNITED AC 2006; 52:131-59. [PMID: 16529820 DOI: 10.1016/j.brainresrev.2006.01.006] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2005] [Revised: 01/17/2006] [Accepted: 01/17/2006] [Indexed: 12/31/2022]
Abstract
In behavioral neurosciences, such as neurobiology and biopsychology, animal models make it possible to investigate brain-behavior relations, with the aim of gaining insight into normal and abnormal human behavior and its underlying neuronal and neuroendocrinological processes. Different types of animal models of behavioral dysfunctions are reviewed in this article. In order to determine the precise criteria that an animal model should fulfill, experts from different fields must define the desired characteristics of that model at the neuropathologic and behavioral level. The list of characteristics depends on the purpose of the model. The phenotype-abnormal behavior or behavioral dysfunctions-has to be translated into testable measures in animal experiments. It is essential to standardize rearing, housing, and testing conditions, and to evaluate the reliability, validity (primarily predictive and construct validity), and biological or clinical relevance of putative animal models of human behavioral dysfunctions. This evaluation, guided by a systematic strategy, is central to the development of a model. The necessity of animal models and the responsible use of animals in research are discussed briefly.
Collapse
Affiliation(s)
- F Josef van der Staay
- Wageningen University and Research Center, Animal Sciences Group, PO Box 65, 8200 AB Lelystad, The Netherlands.
| |
Collapse
|
52
|
Dann CT, Alvarado AL, Hammer RE, Garbers DL. Heritable and stable gene knockdown in rats. Proc Natl Acad Sci U S A 2006; 103:11246-51. [PMID: 16844779 PMCID: PMC1544073 DOI: 10.1073/pnas.0604657103] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The rat has served as an excellent model for studies on animal physiology and as a model for human diseases such as diabetes and alcoholism; however, genetic studies have been limited because of the inability to knock out genes. Our goal was to produce heritable deficiencies in specific gene function in the rat using RNA interference to knock down gene expression in vivo. Lentiviral-mediated transgenesis was used to produce rats expressing a short hairpin RNA targeting Dazl, a gene expressed in germ cells and required for fertility in mice. Germ-line transmission of the transgene occurred, and its expression correlated with significant reductions in DAZL protein levels and male sterility, and the knockdown was stable over multiple generations (F(1)-F(3)). This study demonstrates an efficient system by which directed reverse genetic analysis can now be performed in the rat.
Collapse
Affiliation(s)
- Christina Tenenhaus Dann
- *The Cecil H. and Ida Green Center for Reproductive Biology Sciences
- Departments of Pharmacology and
- To whom correspondence may be addressed. E-mail:
or
| | - Alma L. Alvarado
- *The Cecil H. and Ida Green Center for Reproductive Biology Sciences
- Departments of Pharmacology and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9051
| | - Robert E. Hammer
- *The Cecil H. and Ida Green Center for Reproductive Biology Sciences
- Biochemistry, and
| | - David L. Garbers
- *The Cecil H. and Ida Green Center for Reproductive Biology Sciences
- Departments of Pharmacology and
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9051
- To whom correspondence may be addressed. E-mail:
or
| |
Collapse
|
53
|
Hippenstiel S, Opitz B, Schmeck B, Suttorp N. Lung epithelium as a sentinel and effector system in pneumonia--molecular mechanisms of pathogen recognition and signal transduction. Respir Res 2006; 7:97. [PMID: 16827942 PMCID: PMC1533821 DOI: 10.1186/1465-9921-7-97] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2006] [Accepted: 07/08/2006] [Indexed: 12/22/2022] Open
Abstract
Pneumonia, a common disease caused by a great diversity of infectious agents is responsible for enormous morbidity and mortality worldwide. The bronchial and lung epithelium comprises a large surface between host and environment and is attacked as a primary target during lung infection. Besides acting as a mechanical barrier, recent evidence suggests that the lung epithelium functions as an important sentinel system against pathogens. Equipped with transmembranous and cytosolic pathogen-sensing pattern recognition receptors the epithelium detects invading pathogens. A complex signalling results in epithelial cell activation, which essentially participates in initiation and orchestration of the subsequent innate and adaptive immune response. In this review we summarize recent progress in research focussing on molecular mechanisms of pathogen detection, host cell signal transduction, and subsequent activation of lung epithelial cells by pathogens and their virulence factors and point to open questions. The analysis of lung epithelial function in the host response in pneumonia may pave the way to the development of innovative highly needed therapeutics in pneumonia in addition to antibiotics.
Collapse
Affiliation(s)
- Stefan Hippenstiel
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Bastian Opitz
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Bernd Schmeck
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Norbert Suttorp
- Department of Internal Medicine/Infectious Diseases and Respiratory Medicine, Charité – Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
54
|
Eleftherianos I, Marokhazi J, Millichap PJ, Hodgkinson AJ, Sriboonlert A, ffrench-Constant RH, Reynolds SE. Prior infection of Manduca sexta with non-pathogenic Escherichia coli elicits immunity to pathogenic Photorhabdus luminescens: roles of immune-related proteins shown by RNA interference. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2006; 36:517-25. [PMID: 16731347 DOI: 10.1016/j.ibmb.2006.04.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2006] [Revised: 03/31/2006] [Accepted: 04/03/2006] [Indexed: 05/09/2023]
Abstract
Prior infection of Manduca sexta caterpillars with the non-pathogenic bacterium Escherichia coli elicits effective immunity against subsequent infection by the usually lethal and highly virulent insect pathogen Photorhabdus luminescens TT01. Induction of this protective effect is associated with up-regulation of both microbial pattern recognition protein genes (hemolin, immulectin-2 and peptidoglycan recognition protein) and anti-bacterial effector genes (attacin, cecropin, lebocin, lysozyme and moricin). We used RNA interference to knock down over-transcription of members of both these sets of genes one at a time. Interfering with expression of individual recognition proteins had a drastic adverse effect on the E. coli elicited immunity. RNAi knock-down of immulectin-2 caused the greatest reduction in immunity, followed by hemolin and peptidoglycan recognition protein (PGRP) in that order, to the extent that knock-down of any one of these three proteins left the insects more susceptible to P. luminescens infection than insects that had not experienced prior infection with E. coli. Interfering with the expression of individual antibacterial effector proteins and peptides had a much less marked effect on immunity. Knock-down of attacin, cecropin or moricin caused treated insects to be more susceptible to P. luminescens infection than controls that had been pre-infected with E. coli but which had not received the specific RNAi reagents, but they were still less susceptible than insects that had not been pre-infected with E. coli. RNAi knock-down with expression of lebocin or lysozyme had no effect on E. coli-induced immunity to P. luminescens, indicating that these effectors are not involved in the response. By bleeding pre-infected caterpillars and growing the pathogen directly within cell-free insect haemolymph, we showed that at least part of the protection elicited by previous exposure to E. coli is due to the presence of factors within the blood plasma that inhibit the growth of P. luminescens. The production of these factors is inhibited by RNAi treatment with ds-RNA reagents that knock down hemolin, immulectin-2, and PGRP. These results demonstrate that the insect immune system can be effectively primed by prior infection with non-pathogenic bacteria against subsequent infection by a highly virulent pathogen. Given the continuous normal exposure of insects to environmental and symbiotic bacteria, we suggest that prior infection is likely to play a significant and underestimated role in determining the level of insect immunity found in nature.
Collapse
|
55
|
Cahill AL, Herring BE, Fox AP. Stable silencing of SNAP-25 in PC12 cells by RNA interference. BMC Neurosci 2006; 7:9. [PMID: 16445859 PMCID: PMC1373637 DOI: 10.1186/1471-2202-7-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2005] [Accepted: 01/30/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND SNAP-25 is a synaptic protein known to be involved in exocytosis of synaptic vesicles in neurons and of large dense-core vesicles in neuroendocrine cells. Its role in exocytosis has been studied in SNAP-25 knockout mice, in lysed synaptosomes lacking functional SNAP-25 and in cells after treatment with botulinum toxins A or E that specifically cleave SNAP-25. These studies have shown that SNAP-25 appears to be required for most but not all evoked secretion. In order to further study the role of SNAP-25 in catecholamine secretion from PC12 cells we have used the recently developed technique of RNA interference to generate PC12 cell lines with virtually undetectable levels of SNAP-25. RNA interference is the sequence-specific silencing or knockdown of gene expression triggered by the introduction of double-stranded RNA into a cell. RNA interference can be elicited in mammalian cells in a number of ways, one of which is by the expression of small hairpin RNAs from a transfected plasmid. Selection of stably transfected cell lines expressing a small hairpin RNA allows one-time characterization of the degree and specificity of gene silencing and affords a continuing source of well-characterized knockdown cells for experimentation. RESULTS A PC12 cell line stably transfected with a plasmid expressing an shRNA targeting SNAP-25 has been established. This SNAP-25 knockdown cell line has barely detectable levels of SNAP-25, but normal levels of other synaptic proteins. Catecholamine secretion elicited by depolarization of the SNAP-25 knockdown cells was reduced to 37% of control. CONCLUSION Knockdown of SNAP-25 in PC12 cells reduces but does not eliminate evoked secretion of catecholamines. Transient expression of human SNAP-25 in the knockdown cells rescues the deficit in catecholamine secretion.
Collapse
Affiliation(s)
- Anne L Cahill
- Department of Neurobiology, Pharmacology & Physiology, The University of Chicago, Chicago, IL, USA
| | - Bruce E Herring
- Department of Neurobiology, Pharmacology & Physiology, The University of Chicago, Chicago, IL, USA
| | - Aaron P Fox
- Department of Neurobiology, Pharmacology & Physiology, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
56
|
Lee SH, Sinko PJ. siRNA--getting the message out. Eur J Pharm Sci 2006; 27:401-10. [PMID: 16442784 DOI: 10.1016/j.ejps.2005.12.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 11/26/2005] [Accepted: 12/04/2005] [Indexed: 12/27/2022]
Abstract
The recent observation that potent and sequence-specific gene silencing by injection of double-stranded RNA (dsRNA) has sparked the phenomenon known as "RNA interference" (RNAi) and has enabled the gene-specific knockdown of drug transport proteins and metabolizing enzymes. The application of small interfering RNAs (siRNAs) is broad and the potential for use as research tools is now well established in vitro. In vivo use is still a challenge that is primarily focused on the difficulty of delivering siRNAs to target cells. The potential use of siRNAs as therapeutic agents is also exciting and holds great promise for future. For the study of drug transporter function in absorption, distribution, metabolism and excretion (ADME) and in the treatment of diseases, siRNA offers a way to gather interpretable mechanistic data-a distinct advantage over the use of "specific" chemical inhibitors. This mini review provides background information on siRNA as well as examples of the use of siRNA as applied to drug transporters.
Collapse
Affiliation(s)
- S H Lee
- Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ 08854, USA
| | | |
Collapse
|
57
|
Abstract
The discovery of the phenomenon of RNA interference (RNAi) and its existence in mammals quickly suggested a great potential for use in disease therapy. Rapid advances have been made in the development of RNAi-based technologies and promising results have been obtained from studies on mammalian cell culture systems and animal in vivo models. However, the progress in our understanding of the RNAi pathway and the related function of microRNAs (miRNAs) have also raised concerns regarding various types of side effects that may restrict the use of this technology in human therapy. At the same time, our new knowledge about the functional roles of miRNAs as regulators of many cellular processes, including proliferation, differentiation, development, and neuronal function, is revolutionizing cell biology and will have a major impact on medical research. In this review, we focus on the discoveries that have been made in animal models and how this insight can be translated to human medicine and disease therapy. In this connection, we will particularly discuss the challenges associated with the efforts to develop RNAi-based therapeutics.
Collapse
Affiliation(s)
- Anders Fjose
- Department of Molecular Biology, University of Bergen, Norway.
| | | |
Collapse
|
58
|
Abstract
The breakthrough discovery that double-stranded RNA of 21 nucleotides in length (referred to as short or small interfering RNA; siRNA) can trigger sequence-specific gene silencing in mammalian cells has led to the development of a powerful new approach to study gene function (Dillon et al., 2005; Dykxhoorn et al., 2003; Elbashir et al., 2001; Hannon et al., 2004). Effective delivery of siRNA molecules into target cells or tissues is critical for successful RNA interference (RNAi) application. Here, we describe the use of human immunodeficiency virus type 1 (HIV-1)-based lentiviral vectors for delivery of short hairpin RNA (shRNA), a precursor of siRNA, into primary neurons to suppress gene expression. Major advantages of lentiviral vectors are their ability to transduce nondividing cells and to confer long-term expression of transgenes. This chapter covers selection of short hairpin sequences, vector design, production of lentiviral supernatants, transduction of dissociated primary hippocampal neurons, and testing the effectiveness of shRNA-mediated silencing.
Collapse
Affiliation(s)
- Justyna Janas
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | | | | |
Collapse
|
59
|
Chen Y, Chen H, Hoffmann A, Cool DR, Diz DI, Chappell MC, Chen AF, Chen A, Morris M. Adenovirus-mediated small-interference RNA for in vivo silencing of angiotensin AT1a receptors in mouse brain. Hypertension 2005; 47:230-7. [PMID: 16380517 DOI: 10.1161/01.hyp.0000200259.01947.bb] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Because of the lack of pharmacological approaches, molecular genetic methods have been required to differentiate between angiotensin type 1(AT1) receptor subtypes AT1a and AT1b. RNA interference is a new tool for the study of gene function, producing specific downregulation of protein expression. In this study, we used the small hairpin RNA (shRNA) cassette method to screen target sites for selectively silencing AT1a or AT1b receptor subtypes in cultured Neuro-2a cells using real-time RT-PCR. For in vivo functional studies, we used C57BL mice with arterial telemetric probes and computerized licking monitors to test the effect of adenovirus carrying the DNA sequence coding AT1a shRNA (Ad-AT1a-shRNA). Ad-AT1a-shRNA was injected into the lateral ventricle (intracerebroventricular) or the brain stem nucleus tractus solitaries/dorsal vagal nucleus (NTS/DVN) with measurement of water intake, blood pressure (BP), and heart rate (HR) for up to 20 days after injection. Tissue culture studies verified the specificity and the efficiency of the constructs. In animal studies, beta-galactosidase staining and Ang receptor binding assays showed expression of shRNA and downregulation of Ang AT1 receptors in the subfornical organ and NTS/DVN by >70%. Intracerebroventricular injection of Ad-AT1a-shRNA increased water intake with no effect on BP or HR. In contrast, microinjection of Ad-AT1a-shRNA into NTS/DVN caused a decrease in BP with no effect on HR or water intake. Results demonstrate the use of the RNA interference method in site-directed silencing of gene expression and provide a method for the in vivo study of Ang AT1 receptor function.
Collapse
Affiliation(s)
- Yanfang Chen
- Department of Pharmacology and Toxicology, Wright State University Boonshoft School of Medicine, Dayton, OH 45435, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Lewin AS, Glazer PM, Milstone LM. Gene therapy for autosomal dominant disorders of keratin. J Investig Dermatol Symp Proc 2005; 10:47-61. [PMID: 16250209 DOI: 10.1111/j.1087-0024.2005.10207.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Dominant mutations that interfere with the assembly of keratin filaments cause painful and disfiguring epidermal diseases like pachyonychia congenita and epidermolysis bullosa simplex. Genetic therapies for such diseases must either suppress the production of the toxic proteins or correct the genetic defect in the chromosome. Because epidermal skin cells may be genetically modified in tissue culture or in situ, gene correction is a legitimate goal for keratin diseases. In addition, recent innovations, such as RNA interference in animals, make an RNA knockdown approach plausible in the near future. Although agents of RNA reduction (small interfering RNA, ribozymes, triplex oligonucleotides, or antisense DNA) can be delivered as nucleotides, the impermeability of the skin to large charged molecules presents a serious impediment. Using viral vectors to deliver genes for selective inhibitors of gene expression presents an attractive alternative for long-term treatment of genetic disease in the skin.
Collapse
MESH Headings
- Animals
- Darier Disease/genetics
- Darier Disease/therapy
- Dependovirus/genetics
- Ectodermal Dysplasia/genetics
- Ectodermal Dysplasia/therapy
- Epidermolysis Bullosa Simplex/genetics
- Epidermolysis Bullosa Simplex/therapy
- Gene Silencing
- Gene Targeting
- Genes, Dominant
- Genetic Therapy
- Genetic Vectors
- Humans
- Keratins/genetics
- Keratoderma, Palmoplantar/genetics
- Keratoderma, Palmoplantar/therapy
- Mice
- Mutation
- Nails, Malformed/genetics
- Nails, Malformed/therapy
- Oligonucleotides, Antisense/genetics
- Oligonucleotides, Antisense/therapeutic use
- RNA Interference
- RNA, Catalytic/genetics
- RNA, Catalytic/therapeutic use
- RNA, Small Interfering/genetics
- RNA, Small Interfering/therapeutic use
Collapse
Affiliation(s)
- Alfred S Lewin
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville, Florida 32610-0266, USA.
| | | | | |
Collapse
|
61
|
Crallan RA, Georgopoulos NT, Southgate J. Experimental models of human bladder carcinogenesis. Carcinogenesis 2005; 27:374-81. [PMID: 16287878 DOI: 10.1093/carcin/bgi266] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bladder cancer is the fifth most common cancer in the UK, yet human bladder carcinogenesis remains poorly understood and the response of bladder tumours to radio- and chemo-therapy is unpredictable. The aims of this article are to review human bladder carcinogenesis and appraise the different in vitro and in vivo approaches that have been developed to study the process. The review considers how in vitro models based on normal human urothelial (NHU) cells can be applied to human bladder cancer research. We conclude that recent advances in NHU cell culture offer novel approaches for defining urothelial tissue-specific responses to genotoxic and non-genotoxic carcinogens and elucidating the role of specific genes involved in the mechanisms of bladder carcinogenesis and malignant progression.
Collapse
Affiliation(s)
- R A Crallan
- Jack Birch Unit of Molecular Carcinogenesis, Department of Biology, University of York, York, YO10 5YW, UK
| | | | | |
Collapse
|
62
|
Leung RK, Whittaker PA. RNA interference: from gene silencing to gene-specific therapeutics. Pharmacol Ther 2005; 107:222-39. [PMID: 15908010 PMCID: PMC7112686 DOI: 10.1016/j.pharmthera.2005.03.004] [Citation(s) in RCA: 254] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2005] [Indexed: 12/23/2022]
Abstract
In the past 4 years, RNA interference (RNAi) has become widely used as an experimental tool to analyse the function of mammalian genes, both in vitro and in vivo. By harnessing an evolutionary conserved endogenous biological pathway, first identified in plants and lower organisms, double-stranded RNA (dsRNA) reagents are used to bind to and promote the degradation of target RNAs, resulting in knockdown of the expression of specific genes. RNAi can be induced in mammalian cells by the introduction of synthetic double-stranded small interfering RNAs (siRNAs) 21–23 base pairs (bp) in length or by plasmid and viral vector systems that express double-stranded short hairpin RNAs (shRNAs) that are subsequently processed to siRNAs by the cellular machinery. RNAi has been widely used in mammalian cells to define the functional roles of individual genes, particularly in disease. In addition, siRNA and shRNA libraries have been developed to allow the systematic analysis of genes required for disease processes such as cancer using high throughput RNAi screens. RNAi has been used for the knockdown of gene expression in experimental animals, with the development of shRNA systems that allow tissue-specific and inducible knockdown of genes promising to provide a quicker and cheaper way to generate transgenic animals than conventional approaches. Finally, because of the ability of RNAi to silence disease-associated genes in tissue culture and animal models, the development of RNAi-based reagents for clinical applications is gathering pace, as technological enhancements that improve siRNA stability and delivery in vivo, while minimising off-target and nonspecific effects, are developed.
Collapse
|
63
|
Thakker DR, Hoyer D, Cryan JF. Interfering with the brain: use of RNA interference for understanding the pathophysiology of psychiatric and neurological disorders. Pharmacol Ther 2005; 109:413-38. [PMID: 16183135 DOI: 10.1016/j.pharmthera.2005.08.006] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2005] [Accepted: 08/03/2005] [Indexed: 12/31/2022]
Abstract
Psychiatric and neurological disorders are among the most complex, poorly understood, and debilitating diseases in medicine. The burgeoning advances in functional genomic technologies have led to the identification of a vast number of novel genes that are potentially implicated in the pathophysiology of such disorders. However, many of these candidate genes have not yet been functionalized and require validation in vivo. Traditionally, abrogating gene function is one of the primary means of examining the physiological significance of a given gene product. Several methods have been developed for gene ablation or knockdown, however, with limited levels of success. The recent discovery of RNA interference (RNAi), as a highly efficient method for gene knockdown, has been one of the major breakthroughs in molecular medicine. In vivo application of RNAi is further demonstrating the promise of this technology. Recent efforts have focused on applying RNAi-based knockdown to understand the genes implicated in neuropsychiatric disorders. However, the greatest challenge with this approach is translating the success of RNAi from mammalian cell cultures to the brain in animal models of disease and, subsequently, in patients. In this review, we describe the various methods that are being developed to deliver RNAi into the brain for down-regulating gene expression and subsequent phenotyping of genes in vivo. We illustrate the utility of various approaches with a few successful examples and also discuss the potential benefits and pitfalls associated with the use of each delivery approach. Appropriate tailoring of tools that deliver RNAi in the brain may not only aid our understanding of the complex pathophysiology of neuropsychiatric disorders, but may also serve as a valuable therapy for disorders, where there is an immense unmet medical need.
Collapse
Affiliation(s)
- Deepak R Thakker
- Psychiatry Program, Neuroscience Research, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Basel, Switzerland
| | | | | |
Collapse
|
64
|
Ito M, Kawano K, Miyagishi M, Taira K. Genome-wide application of RNAi to the discovery of potential drug targets. FEBS Lett 2005; 579:5988-95. [PMID: 16153642 DOI: 10.1016/j.febslet.2005.08.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2005] [Revised: 08/05/2005] [Accepted: 08/11/2005] [Indexed: 12/23/2022]
Abstract
Progress is being made in the development of RNA interference-based (RNAi-based) strategies for the control of gene expression. It has been demonstrated that small interfering RNAs (siRNAs) can silence the expression of target genes in a sequence-specific manner in mammalian cells. Various groups, including our own, have developed systems for vector-mediated specific RNAi. Vector-based siRNA- (or shRNA) expression libraries directed against the entire human genome and siRNA libraries based on chemically synthesized oligonucleotides now allow the rapid identification of functional genes and potential drug targets. Use of such libraries will enhance our understanding of numerous biological phenomena and contribute to the rational design of drugs against heritable, infectious and malignant diseases.
Collapse
Affiliation(s)
- Masanori Ito
- Gene Function Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 4, 1-1-1 Higashi, Tsukuba Science City 305-8562, Japan
| | | | | | | |
Collapse
|
65
|
Abstract
Silencing of gene expression by RNA interference (RNAi) has become a powerful tool for the functional annotation of the Cae-norhabditis elegans and Drosophila melanogaster genomes. Recent advances in the design and delivery of targeting molecules now permit efficient and highly specific gene silencing in mammalian systems as well. RNAi offers a simple, fast, and cost-effective alternative to existing gene targeting technologies both in cell-based and in vivo settings. Synthetic small interfering RNA (siRNA) and retroviral short hairpin RNA (shRNA) libraries targeting thousands of human and mouse genes are publicly available for high-throughput genetic screens, and knockdown animals can be rapidly generated by lentivirus-mediated transgenesis. RNAi also holds great promise as a novel therapeutic approach. This review provides insight into the current gene silencing techniques in mammalian systems.
Collapse
Affiliation(s)
- Peter Sandy
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | |
Collapse
|
66
|
Abstract
NF-kappaB, a family of related transcription factors, has been a focus of intense scientific research during the past decade. Multiple stimuli, both extracellular and intracellular, lead to its activation. The NF-kappaB pathway regulates expression of a diverse array of genes involved in different biological processes. Various pathological states are characterized by the dysregulated NF-kappaB pathway. Recently, NF-kappaB activation has been connected with multiple aspects of oncogenesis and serves as an important mechanism to regulate cell survival in response to chemotherapy by activating different genes that inhibit apoptosis. Several methods of inhibiting NF-kappaB activation, such as antisense oligonucleotides, proteosome inhibitors and RNA interference (RNAi) are currently under investigation. RNAi represents a powerful tool to better define the role of specific genes in different signal transduction pathways and has recently been used to define the function of genes that regulate the NF-kappaB pathway. This review discusses the emerging role of RNAi to dissect the function of regulatory factors in the NF-kappaB pathway and its potential use as a targeted therapy.
Collapse
Affiliation(s)
- Jun Guo
- Division of Hematology-Oncology, Department of Medicine, Harold Simmons Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | | | | |
Collapse
|
67
|
Rao M, Sockanathan S. Molecular mechanisms of RNAi: Implications for development and disease. ACTA ACUST UNITED AC 2005; 75:28-42. [PMID: 15838922 DOI: 10.1002/bdrc.20030] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Research over the past few years has led to dramatic new discoveries on the role of double-stranded RNA (dsRNA) in the cell. RNA duplexes have been shown to orchestrate epigenetic changes, repress translation, and direct mRNA degradation in a sequence-specific manner. These diverse effects of dsRNA on gene expression have been termed RNA interference (RNAi). In addition to playing a role in viral defense and silencing transposons, RNAi also has a critical function in a number of developmental processes in the embryo. In this review, we explore these roles and discuss the molecular mechanisms behind dsRNA-mediated gene silencing. Further, we address the use of RNAi as a tool to study gene function in biology, and as a strategy for treating human disease.
Collapse
Affiliation(s)
- Meenakshi Rao
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | |
Collapse
|
68
|
Suzuki I, Im S, Tada A, Scott C, Akcali C, Davis MB, Barsh G, Hearing V, Abdel-Malek Z. Participation of the melanocortin-1 receptor in the UV control of pigmentation. J Investig Dermatol Symp Proc 1999; 4:29-34. [PMID: 10537004 DOI: 10.1038/sj.jidsp.5640177] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The cloning of the melanocortin-1 receptor (MC1R) gene from human melanocytes and the demonstration that these cells respond to the melanocortins alpha-melanocyte stimulating hormone (alpha-MSH) and adrenocorticotropic hormone (ACTH) with increased proliferation and melanogenesis have renewed the interest in investigation the physiological role of these hormones in regulating human pigmentation. Alpha-melanocyte stimulating hormone and ACTH are both synthesized in the human epidermis, and their synthesis is upregulated by exposure to ultraviolet radiation (UVR). Activation of the MC1R by ligand binding results in stimulation of cAMP formation, which is a principal mechanism for inducing melanogenesis. The increase in cAMP is required for the pigmentary response of human melanocytes to UVR, and for allowing them to overcome the UVR-induced G1 arrest. Treatment of human melanocytes with alpha-MSH increases eumelanin synthesis, an effect that is expected to enhance photoprotection of the skin. Population studies have revealed more than 20 allelic variants of the MC1R gene. Some of these variants are overexpressed in individuals with skin type I or II, red hair, and poor tanning ability. Future studies will aim at further exploration of the role of these variants in MC1R function, and in determining constitutive human pigmentation, the response to sun exposure, and possibly the susceptibility to skin cancer.
Collapse
Affiliation(s)
- I Suzuki
- Department of Dermatology, University of Cincinnati, Ohio 45267-0592, USA
| | | | | | | | | | | | | | | | | |
Collapse
|