51
|
Zhao Y, Guo R, Li Y, Thulborn KR, Liang ZP. High-resolution sodium imaging using anatomical and sparsity constraints for denoising and recovery of novel features. Magn Reson Med 2021; 86:625-636. [PMID: 33764583 DOI: 10.1002/mrm.28767] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/17/2021] [Accepted: 02/16/2021] [Indexed: 12/28/2022]
Abstract
PURPOSE To develop and evaluate a novel method for reconstruction of high-quality sodium MR images from noisy, limited k-space data. THEORY AND METHODS A novel reconstruction method was developed for reconstruction of high-quality sodium images from noisy, limited k-space data. This method is based on a novel image model that contains a motion-compensated generalized series model and a sparse model. The motion-compensated generalized series model enables effective use of anatomical information from a proton image for denoising and resolution enhancement of sodium data, whereas the sparse model enables high-resolution reconstruction of sodium-dependent novel features. The underlying model estimation problems were solved efficiently using convex optimization algorithms. RESULTS The proposed method has been evaluated using both simulation and experimental data obtained from phantoms, healthy human volunteers, and tumor patients. Results showed a substantial improvement in spatial resolution and SNR over state-of-the-art reconstruction methods, including compressed sensing and anatomically constrained reconstruction methods. Quantitative tissue sodium concentration maps were obtained from both healthy volunteers and brain tumor patients. These tissue sodium concentration maps showed improved lesion fidelity and allowed accurate interrogation of small targets. CONCLUSION A new method has been developed to obtain high-resolution sodium images with good SNR at 3 T. The proposed method makes effective use of anatomical prior information for denoising, while using a sparse model synergistically to recover sodium-dependent novel features. Experimental results have been obtained to demonstrate the feasibility of achieving high-quality tissue sodium concentration maps and their potential for improved detection of spatially heterogeneous responses of tumor to treatment.
Collapse
Affiliation(s)
- Yibo Zhao
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rong Guo
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Yudu Li
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Zhi-Pei Liang
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.,Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
52
|
Adlung A, Samartzi M, Schad LR, Neumaier-Probst E, Fatar M, A Mohamed S. Tissue Sodium Concentration within White Matter Correlates with the Extent of Small Vessel Disease. Cerebrovasc Dis 2021; 50:347-355. [PMID: 33730735 DOI: 10.1159/000514133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 12/22/2020] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Sodium MRI (23Na MRI) derived biomarkers such as tissue sodium concentration (TSC) provide valuable information on cell function and brain tissue viability and has become a reliable tool for the assessment of brain tumors and ischemic stroke beyond pathoanatomical morphology. Patients with major stroke often suffer from different degrees of underlying white matter lesions (WMLs) attributed to chronic small vessel disease. This study aimed to evaluate the WM TSC in patients with an acute ischemic stroke and to correlate the TSC with the extent of small vessel disease. Furthermore, the reliability of relative TSC (rTSC) compared to absolute TSC in these patients was analyzed. METHODOLOGY We prospectively examined 62 patients with acute ischemic stroke (73 ± 13 years) between November 2016 and August 2019 from which 18 patients were excluded and thus 44 patients were evaluated. A 3D 23Na MRI was acquired in addition to a T2-TIRM and a diffusion-weighted image. Coregistration and segmentation were performed with SPM 12 based on the T2-TIRM image. The extension of WM T2 hyperintense lesions in each patient was classified using the Fazekas scale of WMLs. The absolute TSC in the WM region was correlated to the Fazekas grades. The stroke region was manually segmented on the coregistered absolute diffusion coefficient image and absolute, and rTSC was calculated in the stroke region and compared to nonischemic WM region. Statistical significance was evaluated using the Student t-test. RESULTS For patients with Fazekas grade I (n = 25, age: 68.5 ± 15.1 years), mean TSC in WM was 55.57 ± 7.43 mM, and it was not statistically significant different from patients with Fazekas grade II (n = 7, age: 77.9 ± 6.4 years) with a mean TSC in WM of 53.9 ± 6.4 mM, p = 0.58. For patients with Fazekas grade III (n = 9, age: 81.4 ± 7.9 years), mean TSC in WM was 68.7 ± 10.5 mM, which is statistically significantly higher than the TSC in patients with Fazekas grade I and II (p < 0.001 and p = 0.05, respectively). There was a positive correlation between the TSC in WM and the Fazekas grade with r = 0.48 p < 0.001. The rTSC in the stroke region was statistically significant difference between low (0 and I) and high (2 and 3) Fazekas grades (p = 0.0353) whereas there was no statistically significant difference in absolute TSC in the stroke region between low (0 and I) and high (2 and 3) Fazekas grades. CONCLUSION The significant difference in absolute TSC in WM in patients with severe small vessel disease; Fazekas grade 3 can lead to inaccuracies using rTSC quantification for evaluation of acute ischemic stroke using 23 Na MRI. The study, therefore, emphasizes the importance of absolute tissue sodium quantification.
Collapse
Affiliation(s)
- Anne Adlung
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Melina Samartzi
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Department of Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Eva Neumaier-Probst
- Department of Neuroradiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Marc Fatar
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sherif A Mohamed
- Department of Neuroradiology, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,
| |
Collapse
|
53
|
Abstract
BACKGROUND X‑nuclei magnetic resonance imaging (MRI) yields a broad spectrum of metabolic and functional imaging techniques with increasing clinical feasibility. OBJECTIVE Current X‑nuclei techniques in (neuro)oncology with emphasis on potential clinical applications of sodium and oxygen MRI are described and discussed. MATERIALS AND METHODS Review with discussion of state-of-the-art literature on X‑nuclei imaging. RESULTS X‑nuclei MRI employs NMR-sensitive nonproton nuclei to enable both anatomical visualization as well as noninvasive imaging and quantification of physiological processes in the human body. At the moment, sodium MRI represents the most common application of X‑nuclei MRI because of its comparatively high NMR signal. Moreover, its sensitivity to pathological cellular proliferation renders sodium MRI a good candidate for oncological imaging, yielding additional biochemical information to proton MRI. Oxygen MRI is currently primarily investigational, requiring high technical efforts and costs. However, preliminary results show a huge potential of this technique for metabolic characterization of tumors. CONCLUSIONS X‑nuclei MRI is a rapidly evolving field in metabolic and functional imaging. In coming years, sodium MRI is expected to be increasingly used as an additional clinical tool in oncology to enhance diagnostic accuracy.
Collapse
|
54
|
Kim S, Song J, Yoon J, Kim K, Chung J, Noh Y. Voxel-wise partial volume correction method for accurate estimation of tissue sodium concentration in 23 Na-MRI at 7 T. NMR IN BIOMEDICINE 2021; 34:e4448. [PMID: 33270326 PMCID: PMC7816248 DOI: 10.1002/nbm.4448] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 10/22/2020] [Accepted: 11/03/2020] [Indexed: 06/12/2023]
Abstract
Sodium is crucial for the maintenance of cell physiology, and its regulation of the sodium-potassium pump has implications for various neurological conditions. The distribution of sodium concentrations in tissue can be quantitatively evaluated by means of sodium MRI (23 Na-MRI). Despite its usefulness in diagnosing particular disease conditions, tissue sodium concentration (TSC) estimated from 23 Na-MRI can be strongly biased by partial volume effects (PVEs) that are induced by broad point spread functions (PSFs) as well as tissue fraction effects. In this work, we aimed to propose a robust voxel-wise partial volume correction (PVC) method for 23 Na-MRI. The method is based on a linear regression (LR) approach to correct for tissue fraction effects, but it utilizes a 3D kernel combined with a modified least trimmed square (3D-mLTS) method in order to minimize regression-induced inherent smoothing effects. We acquired 23 Na-MRI data with conventional Cartesian sampling at 7 T, and spill-over effects due to the PSF were considered prior to correcting for tissue fraction effects using 3D-mLTS. In the simulation, we found that the TSCs of gray matter (GM) and white matter (WM) were underestimated by 20% and 11% respectively without correcting tissue fraction effects, but the differences between ground truth and PVE-corrected data after the PVC using the 3D-mLTS method were only approximately 0.6% and 0.4% for GM and WM, respectively. The capability of the 3D-mLTS method was further demonstrated with in vivo 23 Na-MRI data, showing significantly lower regression errors (ie root mean squared error) as compared with conventional LR methods (p < 0.001). The results of simulation and in vivo experiments revealed that 3D-mLTS is superior for determining under- or overestimated TSCs while preserving anatomical details. This suggests that the 3D-mLTS method is well suited for the accurate determination of TSC, especially in small focal lesions associated with pathological conditions.
Collapse
Affiliation(s)
- Sang‐Young Kim
- Neuroscience Research InstituteGachon UniversityIncheonRepublic of Korea
| | - Junghyun Song
- Neuroscience Research InstituteGachon UniversityIncheonRepublic of Korea
| | - Jong‐Hyun Yoon
- Neuroscience Research InstituteGachon UniversityIncheonRepublic of Korea
| | - Kyoung‐Nam Kim
- Department of Biomedical EngineeringGachon UniversityIncheonRepublic of Korea
| | - Jun‐Young Chung
- Neuroscience Research InstituteGachon UniversityIncheonRepublic of Korea
- Department of NeuroscienceGachon University College of MedicineIncheonRepublic of Korea
| | - Young Noh
- Neuroscience Research InstituteGachon UniversityIncheonRepublic of Korea
- Department of Neurology, Gil Medical CenterGachon University College of Medicin eIncheonRepublic of Korea
| |
Collapse
|
55
|
Shymanskaya A, Worthoff WA, Stoffels G, Lindemeyer J, Neumaier B, Lohmann P, Galldiks N, Langen KJ, Shah NJ. Comparison of [ 18F]Fluoroethyltyrosine PET and Sodium MRI in Cerebral Gliomas: a Pilot Study. Mol Imaging Biol 2021; 22:198-207. [PMID: 30989437 DOI: 10.1007/s11307-019-01349-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
PURPOSE Positron emission tomography (PET) using O-(2-[18F]fluoroethyl)-L-tyrosine ([18F]FET) improves the diagnostics of cerebral gliomas compared with conventional magnetic resonance imaging (MRI). Sodium MRI is an evolving method to assess tumor metabolism. In this pilot study, we explored the relationship of [18F]FET-PET and sodium MRI in patients with cerebral gliomas in relation to the mutational status of the enzyme isocitrate dehydrogenase (IDH). PROCEDURES Ten patients with untreated cerebral gliomas and one patient with a recurrent glioblastoma (GBM) were investigated by dynamic [18F]FET-PET and sodium MRI using an enhanced simultaneous single-quantum- and triple-quantum-filtered imaging of 23Na (SISTINA) sequence to estimate total (NaT), weighted non-restricted (NaNR, mainly extracellular), and restricted (NaR, mainly intracellular) sodium in tumors and normal brain tissue. [18F]FET uptake and sodium parameters in tumors with a different IDH mutational status were compared. After biopsy or resection, histology and the IDH mutational status were determined neuropathologically. RESULTS NaT (p = 0.05), tumor-to-brain ratios (TBR) of NaT (p = 0.02), NaNR (p = 0.003), and the ratio of NaT/NaR (p < 0.001) were significantly higher in IDH-mutated than in IDH-wild-type gliomas (n = 5 patients each) while NaR was significantly lower in IDH-mutated gliomas (p = 0.01). [18F]FET parameters (TBR, time-to-peak) were not predictive of IDH status in this small cohort of patients. There was no obvious relationship between sodium distribution and [18F]FET uptake. The patient with a recurrent GBM exhibited an additional radiation injury with strong abnormalities in sodium MRI. CONCLUSIONS Sodium MRI appears to be more strongly related to the IDH mutational status than are [18F]FET-PET parameters. A further evaluation of the combination of the two methods in a larger group of high- and low-grade gliomas seems promising.
Collapse
Affiliation(s)
- Aliaksandra Shymanskaya
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Wieland A Worthoff
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| | - Gabriele Stoffels
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Johannes Lindemeyer
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Bernd Neumaier
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Department of Neurology, University of Cologne, Cologne, Germany.,Center of Integrated Oncology (CIO), Universities of Bonn and Cologne, Cologne, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Department of Nuclear Medicine, RWTH Aachen University, Aachen, Germany.,Jülich-Aachen Research Alliance (JARA) - Section JARA-Brain, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine (3, 4, 5, 11), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,Jülich-Aachen Research Alliance (JARA) - Section JARA-Brain, Aachen, Germany.,Department of Neurology, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
56
|
Diffusely appearing white matter in multiple sclerosis: Insights from sodium ( 23Na) MRI. Mult Scler Relat Disord 2021; 49:102752. [PMID: 33486402 DOI: 10.1016/j.msard.2021.102752] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/11/2021] [Indexed: 01/01/2023]
Abstract
BACKGROUND In multiple sclerosis (MS), magnetic resonance imaging (MRI) frequently shows ill-defined areas with intermediate signal intensity between the normal appearing white matter (NAWM) and focal T2-hyperintense lesions, termed "diffusely appearing white matter" (DAWM). Even though several advanced MRI techniques have shown the potential to detect and quantify subtle commonly not visible microscopic tissue changes, to date only a few advanced MRI studies investigated DAWM changes in a quantitative manner. The aim of this study was to detect and quantify tissue abnormalities in the DAWM in comparison to focal lesions and the NAWM in MS patients by sodium (23Na) MRI. METHODS 23Na and conventional MRI were performed in 25 MS patients with DAWM (DAWM+) and in 25 sex- and age matched MS patients without DAWM (DAWM-), as well as in ten healthy controls (HC). Mean total sodium concentrations (TSC) were quantified in the DAWM, NAWM, normal appearing grey matter (NAGM) and in focal MS lesions. RESULTS In MS DAWM+and DAWM-, TSC values were increased in the NAGM (DAWM+: 44.61 ± 4.09 mM; DAWM-: 45.37 ± 3.8 mM) and in the NAWM (DAWM+: 39.85 ± 3.89 mM; DAWM-: 39.82 ± 4.25 mM) compared to normal grey and white matter in HC (GM 40.87 ± 3.25 mM, WM 35.9 ± 1.81 mM; p < 0.05 for all comparisons). Interestingly, the DAWM showed similar sodium concentrations (39.32 ± 4.59 mM) to the NAWM (39.85 ± 3.89 mM), whereas TSC values in T1 hypointense (46.53 ± 7.87 mM) and T1 isointense (41.99 ± 6.10 mM) lesions were significantly higher than in the DAWM (p < 0.001 and 0.017 respectively). CONCLUSION 23Na MRI is confirmed as a sensitive marker of even subtle tissue abnormalities. DAWM sodium levels are increased and comparable to the abnormalities in NAWM, suggesting pathological changes less severe than in focal lesions comparable to what is expected in the NAWM.
Collapse
|
57
|
A Mohamed S, Adlung A, Ruder AM, Hoesl MAU, Schad L, Groden C, Giordano FA, Neumaier-Probst E. MRI Detection of Changes in Tissue Sodium Concentration in Brain Metastases after Stereotactic Radiosurgery: A Feasibility Study. J Neuroimaging 2020; 31:297-305. [PMID: 33351997 DOI: 10.1111/jon.12823] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/28/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE To date, treatment response to stereotactic radiosurgery (SRS) in brain metastases (BM) can only be determined by MRI evaluation of contrast-enhancing lesions in a long-time follow-up. Sodium MRI has been a subject of immense interest in imaging research as the measure of tissue sodium concentration (TSC) can give valuable quantitative information on cell viability. We aimed to analyze the longitudinal changes of TSC in BM measured with 23 Na MRI before and after SRS for assessment of early local tumor effects. METHODS Seven patients with a total of 12 previously untreated BM underwent SRS with 22 Gy. In addition to a standard MRI protocol including dynamic susceptibility-weighted contrast-enhanced perfusion, a 23 Na MRI was performed at three time points: (I) 2 days before, (II) 5 days, and (III) 40 days after SRS. Nine BMs were evaluated. The absolute TSC in the BM, the respective peritumoral edemas, and the normal-appearing corresponding contralateral brain area were assessed and the relative TSC were correlated to the changes in BM longest axial diameters. RESULTS TSC was elevated in nine BM at baseline before SRS with a mean of 73.4 ± 12.3 mM. A further increase in TSC was observed 5 days after SRS in all the nine BM with a mean of 86.9 ± 13 mM. Eight of nine BM showed a mean 60.6 ± 13.3% decrease in the longest axial diameter 40 days after SRS; at this time point, the TSC also had decreased to a mean 65.1 ± 7.9 mM. In contrast, one of the nine BM had a 13.4% increase in the largest axial diameter at time point III. The TSC of this BM showed a further TSC increase of 80.1 mM 40 days after SRS. CONCLUSION Changes in TSC using 23 Na MRI shows the possible capability to detect radiobiological changes in BM after SRS.
Collapse
Affiliation(s)
- Sherif A Mohamed
- Department of Neuroradiology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Anne Adlung
- Department of Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Arne M Ruder
- Department of Radiation Oncology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Michaela A U Hoesl
- Department of Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar Schad
- Department of Computer Assisted Clinical Medicine, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Christoph Groden
- Department of Neuroradiology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Frank A Giordano
- Department of Radiation Oncology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Eva Neumaier-Probst
- Department of Neuroradiology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
58
|
Worthoff WA, Shymanskaya A, Lindemeyer J, Langen KJ, Shah NJ. Relaxometry and quantification in sodium MRI of cerebral gliomas: A FET-PET and MRI small-scale study. NMR IN BIOMEDICINE 2020; 33:e4361. [PMID: 32696547 DOI: 10.1002/nbm.4361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 06/05/2020] [Accepted: 06/06/2020] [Indexed: 06/11/2023]
Abstract
Sodium MRI is a promising method for assessing the metabolic properties of brain tumours. In a recent study, a strong relationship between semi-quantitative abnormalities in sodium MRI and the mutational status of the isocitrate dehydrogenase enzyme (IDH) with untreated cerebral gliomas was observed. Here, sodium relaxometry in brain tumour tissue was investigated in relation to molecular markers in order to reveal quantitative sodium tissue parameters and the differences between healthy tissue and brain tumour. The previous semi-quantitative approach is extended by use of suitable relaxometry methods accompanied by numerical simulation to achieve detailed quantitative analysis of intra- and extracellular sodium concentration using an enhanced SISTINA sequence at 4 T. Using optimised techniques, biexponential sodium relaxation times in tumour (T*2f , T*2s ) and in healthy contralateral brain tissue (T*2f,CL , T*2s,CL ) were estimated in 10 patients, along with intracellular sodium molar fractions (χ, χCL ), volume fractions (η, ηCL ) and concentrations (ρin , ρin,CL ). The total sodium tissue concentrations (ρT , ρT,CL ) were also estimated. The ratios T*2f /T*2f,CL (P = .05), η/ηCL (P = .02) and χ/χCL (P = .02) were significantly lower in IDH mutated than in IDH wildtype gliomas (n = 4 and n = 5 patients, respectively). The Wilcoxon rank-sum test was used to compare sodium MRI parameters in patients with and without IDH mutation. Thus, quantitative analysis of relaxation rates, intra- and extracellular sodium concentrations, intracellular molar and volume fractions based on enhanced SISTINA confirmed a relationship between abnormalities in sodium parameters and the IDH mutational status in cerebral gliomas, hence catering for the potential to provide further insights into the status of the disease.
Collapse
Affiliation(s)
- Wieland A Worthoff
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | | | - Johannes Lindemeyer
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
- Department of Nuclear Medicine, RWTH Aachen University, JARA, Aachen, Germany
| | - N Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich, Jülich, Germany
- Institute of Neuroscience and Medicine - 11, Forschungszentrum Jülich, Jülich, Germany
- Department of Neurology, RWTH Aachen University, JARA, Aachen, Germany
| |
Collapse
|
59
|
Kleimaier D, Schepkin V, Hu R, Schad LR. Protein conformational changes affect the sodium triple-quantum MR signal. NMR IN BIOMEDICINE 2020; 33:e4367. [PMID: 32656956 DOI: 10.1002/nbm.4367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 06/10/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to investigate possible sodium triple-quantum (TQ) signal dependence on pH variation and protein unfolding which may happen in vivo. The model system, composed of bovine serum albumin (BSA), was investigated over a wide pH range of 0.70 to 13.05 and during urea-induced unfolding. In both experimental series, the sodium and BSA concentration were kept constant so that TQ signal changes solely arose from an environmental change. The experiments were performed using unique potential to detect weak TQ signals by implementing a TQ time proportional phase increment pulse sequence. At a pH of 0.70, in which case the effect of the negatively charged groups was minimized, the minimum TQ percentage relative to single-quantum of 1.34% ± 0.05% was found. An increase of the pH up to 13.05 resulted in an increase of the sodium TQ signal by 225%. Urea-induced unfolding of BSA, without changes in pH, led to a smaller increase in the sodium TQ signal of up to 40%. The state of BSA unfolding was verified by fluorescence microscopy. Results of both experiments were well fitted by sigmoid functions. Both TQ signal increases were in agreement with an increase of the availability of negatively charged groups. The results point to vital contributions of the biochemical environment to the TQ MR signals. The sodium TQ signal in vivo could be a valuable biomarker of cell viability, and therefore possible effects of pH and protein unfolding need to be considered for a proper interpretation of changes in sodium TQ signals.
Collapse
Affiliation(s)
- Dennis Kleimaier
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | - Victor Schepkin
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, USA
| | - Ruomin Hu
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| |
Collapse
|
60
|
Fantasia M, Galante A, Maggiorelli F, Retico A, Fontana N, Monorchio A, Alecci M. Numerical and Workbench Design of 2.35 T Double-Tuned (¹H/²³Na) Nested RF Birdcage Coils Suitable for Animal Size MRI. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3175-3186. [PMID: 32310762 DOI: 10.1109/tmi.2020.2988599] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The birdcage Radio Frequency (RF) coil is one of the most used configurations in Magnetic Resonance Imaging (MRI) scanners for the detection of the proton (1H) signal over a large homogeneous volume. More recently, birdcage RF coils have been successfully used also in the field of X-nuclei MRI, where the signal of a second nucleus (e.g. 13C, 23Na, 31P, and many others) needs to be detected with high sensitivity and spatial homogeneity. To this purpose several technical solutions have been adopted to design Double Tuned (DT) volume RF coils, including the recent configuration of the nested birdcage RF coils. One of the main problems in the design of DT RF coils is the decoupling between the 1H and X channels, and a number of solutions have been adopted over the years. In this work, based on numerical and workbench methods, we report the decoupling optimization of DT (1H/23Na) nested RF birdcage coils suitable for 2.35 T MRI scanners encompassing an inner Low-Pass (LP) birdcage used for X-nuclei, an outer High-Pass (HP) birdcage for 1H and an external cylindrical RF shield. We show that a suitable geometrical selection of the two coaxial RF birdcage coils (relative angular orientation, diameters and lengths) and RF shield (diameter, length) allows a significant decoupling optimization. We also provide valuable information about the RF B1+ field homogeneity and efficiency. Our approach was validated both with numerical simulations and workbench testing using DT nested RF coil prototypes.
Collapse
|
61
|
Regnery S, Behl NGR, Platt T, Weinfurtner N, Windisch P, Deike-Hofmann K, Sahm F, Bendszus M, Debus J, Ladd ME, Schlemmer HP, Rieken S, Adeberg S, Paech D. Ultra-high-field sodium MRI as biomarker for tumor extent, grade and IDH mutation status in glioma patients. Neuroimage Clin 2020; 28:102427. [PMID: 33002860 PMCID: PMC7527584 DOI: 10.1016/j.nicl.2020.102427] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/21/2020] [Accepted: 09/08/2020] [Indexed: 12/24/2022]
Abstract
PURPOSE This prospective clinical trial investigated sodium (23Na) MRI at 7 Tesla (T) field strength as biomarker for tumor extent, isocitrate dehydrogenase (IDH) mutation and O6-methylguanine DNA methyltransferase (MGMT) promotor methylation in glioma patients. METHODS 28 glioma patients underwent 23Na MRI on a 7T scanner (Siemens Healthcare, Erlangen, Germany) parallel to standard 3T MRI before chemoradiation. Areas of Gadolinium-contrast enhancement (gdce), non-enhancing T2-hyperintensity (regarded as edema), necrosis, and normal-appearing white matter (nawm) were segmented on 3T MRI imaging and were co-registered with the 23Na images. The median total 23Na concentrations of all areas were compared by pairwise t-tests. Furthermore, areas of gdce and edema were merged to yield the whole tumor area without necrosis. Subsequently, the difference in median of the 23Na concentration of this whole tumor area was compared between IDH-mutated and IDH wild-type gliomas as well as MGMT methylated and MGMT not-methylated glioblastomas using Whitney-Mann U-tests. All p-values were corrected after the Bonferroni-Holm procedure. RESULTS The 23Na concentration increased successively from nawm to necrotic areas (mean ± sd: nawm = 37.84 ± 5.87 mM, edema = 54.69 ± 10.64 mM, gdce = 61.72 ± 12.95 mM, necrosis = 81.88 ± 17.53 mM) and the concentrations differed statistically significantly between all regarded areas (adjusted p-values for all pairwise comparisons < 0.05). Furthermore, IDH-mutated gliomas showed significantly higher 23Na concentrations than IDH wild-type gliomas (median [interquartile range]: IDH wild-type = 52.37 mM [45.98 - 58.56 mM], IDH mutated = 65.02 mM [58.87-67.05 mM], p = 0.039). Among the glioblastomas, there was a trend towards increased 23Na concentration in MGMT methylated tumors that did not reach statistical significance (median [interquartile range]: MGMT methylated = 57.59 mM [50.70 - 59.17 mM], MGMT not methylated = 48.78 mM [45.88 - 53.91 mM], p = 1.0). CONCLUSIONS 23Na MRI correlates with the IDH mutation status and could therefore enhance image guidance towards biopsy sites as wells as image-guided surgery and radiotherapy. Furthermore, the successive decrease of 23Na concentration from central necrosis to normal-appearing white matter suggests a correlation with tumor infiltration.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nicolas G R Behl
- Siemens Healthcare GmbH, Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Tanja Platt
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Nina Weinfurtner
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Paul Windisch
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Katerina Deike-Hofmann
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Heidelberg, Im Neuenheimer Feld 224, 69120 Heidelberg, Germany; CCU Neuropathology, German Consortium for Translational Cancer Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany; Faculty of Physics and Astronomy and Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Sebastian Adeberg
- Department of Radiation Oncology, Heidelberg University Hospital, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany; Clinical Cooperation Unit Radiation Oncology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
62
|
Zaric O, Juras V, Szomolanyi P, Schreiner M, Raudner M, Giraudo C, Trattnig S. Frontiers of Sodium MRI Revisited: From Cartilage to Brain Imaging. J Magn Reson Imaging 2020; 54:58-75. [PMID: 32851736 PMCID: PMC8246730 DOI: 10.1002/jmri.27326] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/20/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022] Open
Abstract
Sodium magnetic resonance imaging (23 Na-MRI) is a highly promising imaging modality that offers the possibility to noninvasively quantify sodium content in the tissue, one of the most relevant parameters for biochemical investigations. Despite its great potential, due to the intrinsically low signal-to-noise ratio (SNR) of sodium imaging generated by low in vivo sodium concentrations, low gyromagnetic ratio, and substantially shorter relaxation times than for proton (1 H) imaging, 23 Na-MRI is extremely challenging. In this article, we aim to provide a comprehensive overview of the literature that has been published in the last 10-15 years and which has demonstrated different technical designs for a range of 23 Na-MRI methods applicable for disease diagnoses and treatment efficacy evaluations. Currently, a wider use of 3.0T and 7.0T systems provide imaging with the expected increase in SNR and, consequently, an increased image resolution and a reduced scanning time. A great interest in translational research has enlarged the field of sodium MRI applications to almost all parts of the body: articular cartilage tendons, spine, heart, breast, muscle, kidney, and brain, etc., and several pathological conditions, such as tumors, neurological and degenerative diseases, and others. The quantitative parameter, tissue sodium concentration, which reflects changes in intracellular sodium concentration, extracellular sodium concentration, and intra-/extracellular volume fractions is becoming acknowledged as a reliable biomarker. Although the great potential of this technique is evident, there must be steady technical development for 23 Na-MRI to become a standard imaging tool. The future role of sodium imaging is not to be considered as an alternative to 1 H MRI, but to provide early, diagnostically valuable information about altered metabolism or tissue function associated with disease genesis and progression. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 1.
Collapse
Affiliation(s)
- Olgica Zaric
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria
| | - Vladimir Juras
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Department of Imaging Methods, Institute of Measurement Science, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Szomolanyi
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Markus Schreiner
- Deartment of Orthopaedics and Trauma Surgery, Medical University of Vienna, Vienna, Austria
| | - Marcus Raudner
- High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Chiara Giraudo
- Radiology Institute, Department of Medicine, DIMED Padova University Via Giustiniani 2, Padova, Italy
| | - Siegfried Trattnig
- Institute for Clinical Molecular MRI in the Musculoskeletal System, Karl Landsteiner Society, Vienna, Austria.,High-Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Clinical Molecular MRI, Christian Doppler Forschungsgesellschaft, Vienna, Austria
| |
Collapse
|
63
|
Petersen KJ, Garza M, Donahue PM, Harkins KD, Marton A, Titze J, Donahue MJ, Crescenzi R. Neuroimaging of Cerebral Blood Flow and Sodium in Women with Lipedema. Obesity (Silver Spring) 2020; 28:1292-1300. [PMID: 32568462 PMCID: PMC7360333 DOI: 10.1002/oby.22837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/16/2020] [Accepted: 04/09/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Lipedema is characterized by pain, fatigue, and excessive adipose tissue and sodium accumulation of the lower extremities. This case-control study aims to determine whether sodium or vascular dysfunction is present in the central nervous system. METHODS Brain magnetic resonance imaging was performed at 3 T in patients with lipedema (n = 15) and control (n = 18) participants matched for sex, age, race, and BMI. Standard anatomical imaging and intracranial angiography were applied to evaluate brain volume and vasculopathy, respectively; arterial spin labeling and sodium magnetic resonance imaging were applied to quantify cerebral blood flow (CBF) (milliliters per 100 grams of tissue/minute) and brain tissue sodium content (millimoles per liter), respectively. A Mann-Whitney U test (significance criteria P < 0.05) was applied to evaluate group differences. RESULTS No differences in tissue volume, white matter hyperintensities, intracranial vasculopathy, or tissue sodium content were observed between groups. Gray matter CBF was elevated (P = 0.03) in patients with lipedema (57.2 ± 9.6 mL per 100 g/min) versus control participants (49.8 ± 9.1 mL per 100 g/min). CONCLUSIONS Findings provide evidence that brain sodium and tissue fractions are similar between patients with lipedema and control participants and that patients with lipedema do not exhibit abnormal radiological indicators of intracranial vasculopathy or ischemic injury. Potential explanations for elevated CBF are discussed in the context of the growing literature on lipedema symptomatology and vascular dysfunction.
Collapse
Affiliation(s)
- Kalen J. Petersen
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville TN, USA
- Corresponding author: Kalen J. Petersen, PhD, Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21 Avenue South, Medical Center North AA-1105B, Nashville, TN 37232, USA, Tel: +1 615.343.7182, Fax: +1 615.322.0734,
| | - Maria Garza
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Paula M.C. Donahue
- Physical Medicine and Rehabilitation, Vanderbilt University School of Medicine, Nashville TN, USA
- Dayani Center for Health and Wellness, Vanderbilt University School of Medicine, Nashville TN, USA
| | - Kevin D. Harkins
- Biomedical Engineering, Vanderbilt University, Nashville TN, USA
| | - Adriana Marton
- Cardiovascular and Metabolic Disease, Duke-National University of Singapore Medical School
| | - Jens Titze
- Cardiovascular and Metabolic Disease, Duke-National University of Singapore Medical School
| | - Manus J. Donahue
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville TN, USA
- Neurology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Psychiatry and Behavioral Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rachelle Crescenzi
- Radiology and Radiological Sciences, Vanderbilt University School of Medicine, Nashville TN, USA
| |
Collapse
|
64
|
Sodium relaxometry using
23
Na MR fingerprinting: A proof of concept. Magn Reson Med 2020; 84:2577-2591. [DOI: 10.1002/mrm.28316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 04/01/2020] [Accepted: 04/20/2020] [Indexed: 02/06/2023]
|
65
|
Yu Z, Madelin G, Sodickson DK, Cloos MA. Simultaneous proton magnetic resonance fingerprinting and sodium MRI. Magn Reson Med 2020; 83:2232-2242. [PMID: 31746048 PMCID: PMC7047525 DOI: 10.1002/mrm.28073] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 10/07/2019] [Accepted: 10/21/2019] [Indexed: 12/15/2022]
Abstract
PURPOSE The goal of this work is to demonstrate a method for the simultaneous acquisition of proton multiparametric maps (T1 , T2 , and proton density) and sodium density images in 1 single scan. We hope that the development of such capabilities will help to ease the implementation of sodium MRI in clinical trials and provide more opportunities for researchers to investigate metabolism through sodium MRI. METHODS We developed a sequence based on magnetic resonance fingerprinting (MRF), which contains interleaved proton (1 H) and sodium (23 Na) excitations followed by a simultaneous center-out radial readout for both nuclei. The receive chain of a 7T scanner was modified to enable simultaneous acquisition of 1 H and 23 Na signal. The obtained signal-to-noise ratio (SNR) was evaluated, and the accuracy of both proton T1 , T2 , and B 1 + and sodium density maps were verified in phantoms. Finally, the method was demonstrated in 2 healthy subjects. RESULTS The SNR obtained using the simultaneous measurement was almost identical to single-nucleus measurements (<1% change). Similarly, the proton T1 and T2 maps remained stable (normalized root mean square error in T1 ≈ 2.2%, in T2 ≈ 1.4%, and B 1 + ≈ 5.4%), which indicates that the proposed sequence and hardware have no significant effects on the signal from either nucleus. In vivo measurements corroborated these results and demonstrated the feasibility of our method for in vivo application. CONCLUSIONS With the proposed approach, we were able to simultaneously acquire sodium density images in addition to proton T1 , T2 , and B 1 + maps as well as proton density images.
Collapse
Affiliation(s)
- Zidan Yu
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Guillaume Madelin
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Daniel K. Sodickson
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| | - Martijn A. Cloos
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, New York University School of Medicine, New York, NY, USA
- The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
66
|
Poku LO, Phil M, Cheng Y, Wang K, Sun X. 23 Na-MRI as a Noninvasive Biomarker for Cancer Diagnosis and Prognosis. J Magn Reson Imaging 2020; 53:995-1014. [PMID: 32219933 PMCID: PMC7984266 DOI: 10.1002/jmri.27147] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/06/2020] [Accepted: 03/07/2020] [Indexed: 12/11/2022] Open
Abstract
The influx of sodium (Na+) ions into a resting cell is regulated by Na+ channels and by Na+/H+ and Na+/Ca2+ exchangers, whereas Na+ ion efflux is mediated by the activity of Na+/K+‐ATPase to maintain a high transmembrane Na+ ion gradient. Dysfunction of this system leads to changes in the intracellular sodium concentration that promotes cancer metastasis by mediating invasion and migration. In addition, the accumulation of extracellular Na+ ions in cancer due to inflammation contributes to tumor immunogenicity. Thus, alterations in the Na+ ion concentration may potentially be used as a biomarker for malignant tumor diagnosis and prognosis. However, current limitations in detection technology and a complex tumor microenvironment present significant challenges for the in vivo assessment of Na+ concentration in tumor. 23Na‐magnetic resonance imaging (23Na‐MRI) offers a unique opportunity to study the effects of Na+ ion concentration changes in cancer. Although challenged by a low signal‐to‐noise ratio, the development of ultrahigh magnetic field scanners and specialized sodium acquisition sequences has significantly advanced 23Na‐MRI. 23Na‐MRI provides biochemical information that reflects cell viability, structural integrity, and energy metabolism, and has been shown to reveal rapid treatment response at the molecular level before morphological changes occur. Here we review the basis of 23Na‐MRI technology and discuss its potential as a direct noninvasive in vivo diagnostic and prognostic biomarker for cancer therapy, particularly in cancer immunotherapy. We propose that 23Na‐MRI is a promising method with a wide range of applications in the tumor immuno‐microenvironment research field and in cancer immunotherapy monitoring. Level of Evidence 2 Technical Efficacy Stage 2
Collapse
Affiliation(s)
| | - M Phil
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Yongna Cheng
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Kai Wang
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| | - Xilin Sun
- NHC and CAMS Key Laboratory of Molecular Probe and Targeted Theranostics, Harbin Medical University, Harbin, China.,Molecular Imaging Research Center (MIRC), Harbin Medical University, Harbin, China.,TOF-PET/CT/MR Center, The Fourth Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
67
|
Djamgoz MBA. Hyponatremia and Cancer Progression: Possible Association with Sodium-Transporting Proteins. Bioelectricity 2020; 2:14-20. [PMID: 34471833 DOI: 10.1089/bioe.2019.0035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hyponatremia, the phenomenon of serum sodium level falling below 135 mmol/L, is seen frequently in cancer patients and has been correlated with poor prognosis. Hyponatremia has classically been attributed to the "syndrome of inappropriate antidiuretic hormone secretion," leading to prolonged fluid retention. However, this is unlikely to be the only mechanism. In this study, we advance the hypothesis that upregulation of various sodium-transporting proteins during the cancer process makes a significant contribution to the pathophysiology of cancer-associated hyponatremia. Such sodium-transporting proteins include voltage-gated sodium channels, especially its hypoxia-promoted persistent current, epithelial sodium channels, and transient receptor potential channels. Thus, hyponatremia follows cancer, whereby drop in blood serum level occurs as a result of uptake of sodium from extracellular fluid by cancer cells. Indeed, the sodium content of cancer cells/tissues is higher than normal. In turn, the rise in the intracellular sodium concentration brings about a range of cellular effects, including extracellular acidification that promotes invasiveness and thus leads to poor prognosis. This perspective offers novel therapies for cancer and the associated hyponatremia.
Collapse
Affiliation(s)
- Mustafa B A Djamgoz
- Department of Life Sciences, Neuroscience Solutions to Cancer Research Group, Imperial College London, London, United Kingdom.,Biotechnology Research Centre, Cyprus International University, Lefkosa, North Cyprus
| |
Collapse
|
68
|
Elingaard-Larsen LO, Rolver MG, Sørensen EE, Pedersen SF. How Reciprocal Interactions Between the Tumor Microenvironment and Ion Transport Proteins Drive Cancer Progression. Rev Physiol Biochem Pharmacol 2020; 182:1-38. [PMID: 32737753 DOI: 10.1007/112_2020_23] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Solid tumors comprise two major components: the cancer cells and the tumor stroma. The stroma is a mixture of cellular and acellular components including fibroblasts, mesenchymal and cancer stem cells, endothelial cells, immune cells, extracellular matrix, and tumor interstitial fluid. The insufficient tumor perfusion and the highly proliferative state and dysregulated metabolism of the cancer cells collectively create a physicochemical microenvironment characterized by altered nutrient concentrations and varying degrees of hypoxia and acidosis. Furthermore, both cancer and stromal cells secrete numerous growth factors, cytokines, and extracellular matrix proteins which further shape the tumor microenvironment (TME), favoring cancer progression.Transport proteins expressed by cancer and stromal cells localize at the interface between the cells and the TME and are in a reciprocal relationship with it, as both sensors and modulators of TME properties. It has been amply demonstrated how acid-base and nutrient transporters of cancer cells enable their growth, presumably by contributing both to the extracellular acidosis and the exchange of metabolic substrates and waste products between cells and TME. However, the TME also impacts other transport proteins important for cancer progression, such as multidrug resistance proteins. In this review, we summarize current knowledge of the cellular and acellular components of solid tumors and their interrelationship with key ion transport proteins. We focus in particular on acid-base transport proteins with known or proposed roles in cancer development, and we discuss their relevance for novel therapeutic strategies.
Collapse
Affiliation(s)
- Line O Elingaard-Larsen
- Translational Type 2 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Gentofte, Denmark
| | - Michala G Rolver
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Ester E Sørensen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Stine F Pedersen
- Section for Cell Biology and Physiology, Department of Biology, Faculty of Science, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
69
|
Lachner S, Ruck L, Niesporek SC, Utzschneider M, Lott J, Hensel B, Dörfler A, Uder M, Nagel AM. Comparison of optimized intensity correction methods for 23Na MRI of the human brain using a 32-channel phased array coil at 7 Tesla. Z Med Phys 2019; 30:104-115. [PMID: 31866116 DOI: 10.1016/j.zemedi.2019.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/21/2019] [Accepted: 10/25/2019] [Indexed: 01/24/2023]
Abstract
PURPOSE To correct for the non-homogeneous receive profile of a phased array head coil in sodium magnetic resonance imaging (23Na MRI). METHODS 23Na MRI of the human brain (n = 8) was conducted on a 7T MR system using a dual-tuned quadrature 1H/23Na transmit/receive birdcage coil, equipped with a 32-channel receive-only array. To correct the inhomogeneous receive profile four different methods were applied: (1) the uncorrected phased array image and an additionally acquired birdcage image as reference image were low-pass filtered and divided by each other. (2) The second method substituted the reference image by a support region. (3) By averaging the individually calculated receive profiles, a universal sensitivity map was obtained and applied. (4) The receive profile was determined by a pre-scanned large uniform phantom. The calculation of the sensitivity maps was optimized in a simulation study using the normalized root-mean-square error (NRMSE). All methods were evaluated in phantom measurements and finally applied to in vivo 23Na MRI data sets. The in vivo measurements were partial volume corrected and for further evaluation the signal ratio between the outer and inner cerebrospinal fluid compartments (CSFout:CSFin) was calculated. RESULTS Phantom measurements show the correction of the intensity profile applying the given methods. Compared to the uncorrected phased array image (NRMSE = 0.46, CSFout:CSFin = 1.71), the quantitative evaluation of simulated and measured intensity corrected human brain data sets indicates the best performance utilizing the birdcage image (NRMSE = 0.39, CSFout:CSFin = 1.00). However, employing a support region (NRMSE = 0.40, CSFout:CSFin = 1.17), a universal sensitivity map (NRMSE = 0.41, CSFout:CSFin = 1.05) or a pre-scanned sensitivity map (NRMSE = 0.42, CSFout:CSFin = 1.07) shows only slightly worse results. CONCLUSION Acquiring a birdcage image as reference image to correct for the receive profile demonstrates the best performance. However, when aiming to reduce acquisition time or for measurements without existing birdcage coil, methods that use a support region as reference image, a universal or a pre-scanned sensitivity map provide good alternatives for correction of the receive profile.
Collapse
Affiliation(s)
- Sebastian Lachner
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Laurent Ruck
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sebastian C Niesporek
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Utzschneider
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Johanna Lott
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; University of Heidelberg, Faculty of Physics and Astronomy, Heidelberg, Germany
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arnd Dörfler
- Department of Neuroradiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
70
|
Feasibility study of a double resonant (1H/23Na) abdominal RF setup at 3 T. Z Med Phys 2019; 29:359-367. [DOI: 10.1016/j.zemedi.2018.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 11/14/2018] [Accepted: 12/08/2018] [Indexed: 01/27/2023]
|
71
|
Leslie TK, James AD, Zaccagna F, Grist JT, Deen S, Kennerley A, Riemer F, Kaggie JD, Gallagher FA, Gilbert FJ, Brackenbury WJ. Sodium homeostasis in the tumour microenvironment. Biochim Biophys Acta Rev Cancer 2019; 1872:188304. [PMID: 31348974 PMCID: PMC7115894 DOI: 10.1016/j.bbcan.2019.07.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/17/2022]
Abstract
The concentration of sodium ions (Na+) is raised in solid tumours and can be measured at the cellular, tissue and patient levels. At the cellular level, the Na+ gradient across the membrane powers the transport of H+ ions and essential nutrients for normal activity. The maintenance of the Na+ gradient requires a large proportion of the cell's ATP. Na+ is a major contributor to the osmolarity of the tumour microenvironment, which affects cell volume and metabolism as well as immune function. Here, we review evidence indicating that Na+ handling is altered in tumours, explore our current understanding of the mechanisms that may underlie these alterations and consider the potential consequences for cancer progression. Dysregulated Na+ balance in tumours may open opportunities for new imaging biomarkers and re-purposing of drugs for treatment.
Collapse
Affiliation(s)
- Theresa K Leslie
- Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Andrew D James
- Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK
| | - Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - James T Grist
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Surrin Deen
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Aneurin Kennerley
- York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK; Department of Chemistry, University of York, Heslington, York YO10 5DD, UK
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Joshua D Kaggie
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Fiona J Gilbert
- Department of Radiology, University of Cambridge, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York YO10 5DD, UK.
| |
Collapse
|
72
|
Riemer F, McHugh D, Zaccagna F, Lewis D, McLean MA, Graves MJ, Gilbert FJ, Parker GJ, Gallagher FA. Measuring tissue sodium concentration: Cross-vendor repeatability and reproducibility of 23 Na-MRI across two sites. J Magn Reson Imaging 2019; 50:1278-1284. [PMID: 30859655 PMCID: PMC6767101 DOI: 10.1002/jmri.26705] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Sodium MRI (23 Na-MRI)-derived biomarkers such as total sodium concentration (TSC) have the potential to provide information on tumor cellularity and the changes in tumor microstructure that occur following therapy. PURPOSE To evaluate the repeatability and reproducibility of TSC measurements in the brains of healthy volunteers, providing evidence for the technical validation of 23 Na-MRI-derived biomarkers. STUDY TYPE Prospective multicenter study. SUBJECTS Eleven volunteers (32 ± 6 years; eight males, three females) were scanned twice at each of two sites. FIELD STRENGTH/SEQUENCE Comparable 3D-cones 23 Na-MRI ultrashort echo time acquisitions at 3T. ASSESSMENT TSC values, quantified from calibration phantoms placed in the field of view, were obtained from white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF), based on automated segmentation of coregistered 1 H T1 -weighted images and hand-drawn regions of interest by two readers. STATISTICAL TESTS Coefficients of variation (CoVs) from mean TSC values were used to assess intrasite repeatability and intersite reproducibility. RESULTS Mean GM TSC concentrations (52.1 ± 7.1 mM) were ∼20% higher than for WM (41.8 ± 6.7 mM). Measurements were highly repeatable at both sites with mean scan-rescan CoVs between volunteers and regions of 2% and 4%, respectively. Mean intersite reproducibility CoVs were 3%, 3%, and 6% for WM, GM, and CSF, respectively. DATA CONCLUSION These results demonstrate technical validation of sodium MRI-derived biomarkers in healthy volunteers. We also show that comparable 23 Na imaging of the brain can be implemented across different sites and scanners with excellent repeatability and reproducibility. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;50:1278-1284.
Collapse
Affiliation(s)
- Frank Riemer
- Department of RadiologyUniversity of CambridgeCambridgeUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| | - Damien McHugh
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
- Division of Neuroscience & Experimental PsychologyThe University of ManchesterManchesterUK
| | - Fulvio Zaccagna
- Department of RadiologyUniversity of CambridgeCambridgeUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| | - Daniel Lewis
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| | - Mary A. McLean
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
| | | | - Fiona J. Gilbert
- Department of RadiologyUniversity of CambridgeCambridgeUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| | - Geoff J.M. Parker
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
- Division of Neuroscience & Experimental PsychologyThe University of ManchesterManchesterUK
- Bioxydyn Ltd.ManchesterUK
| | - Ferdia A. Gallagher
- Department of RadiologyUniversity of CambridgeCambridgeUK
- CRUK & EPSRC Cancer Imaging Centre in Cambridge & ManchesterUK
| |
Collapse
|
73
|
Driver ID, Stobbe RW, Wise RG, Beaulieu C. Venous contribution to sodium MRI in the human brain. Magn Reson Med 2019; 83:1331-1338. [PMID: 31556169 PMCID: PMC6972645 DOI: 10.1002/mrm.27996] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/05/2019] [Accepted: 08/26/2019] [Indexed: 12/24/2022]
Abstract
PURPOSE Sodium MRI shows great promise as a marker for cerebral metabolic dysfunction in stroke, brain tumor, and neurodegenerative pathologies. However, cerebral blood vessels, whose volume and function are perturbed in these pathologies, have elevated sodium concentrations relative to surrounding tissue. This study aims to assess whether this fluid compartment could bias measurements of tissue sodium using MRI. METHODS Density-weighted and B1 corrected sodium MRI of the brain was acquired in 9 healthy participants at 4.7T. Veins were identified using co-registered 1 H T 2 ∗ -weighted images and venous partial volume estimates were calculated by down-sampling the finer spatial resolution venous maps from the T 2 ∗ -weighted images to the coarser spatial resolution of the sodium data. Linear regressions of venous partial volume estimates and sodium signal were performed for regions of interest including just gray matter, just white matter, and all brain tissue. RESULTS Linear regression demonstrated a significant venous sodium contribution above the underlying tissue signal. The apparent venous sodium concentrations derived from regression were 65.8 ± 4.5 mM (all brain tissue), 71.0 ± 7.4 mM (gray matter), and 55.0 ± 4.7 mM (white matter). CONCLUSION Although the partial vein linear regression did not yield the expected sodium concentration in blood (~87 mM), likely the result of point spread function smearing, this regression highlights that blood compartments may bias brain tissue sodium signals across neurological conditions where blood volumes may differ.
Collapse
Affiliation(s)
- Ian D Driver
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Robert W Stobbe
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
74
|
Knowles BR, Friedrich F, Fischer C, Paech D, Ladd ME. Beyond T2 and 3T: New MRI techniques for clinicians. Clin Transl Radiat Oncol 2019; 18:87-97. [PMID: 31341982 PMCID: PMC6630188 DOI: 10.1016/j.ctro.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
Technological advances in Magnetic Resonance Imaging (MRI) in terms of field strength and hybrid MR systems have led to improvements in tumor imaging in terms of anatomy and functionality. This review paper discusses the applications of such advances in the field of radiation oncology with regards to treatment planning, therapy guidance and monitoring tumor response and predicting outcome.
Collapse
Affiliation(s)
- Benjamin R. Knowles
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Friedrich
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Carola Fischer
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E. Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
75
|
Wilferth T, Gast LV, Stobbe RW, Beaulieu C, Hensel B, Uder M, Nagel AM. 23Na MRI of human skeletal muscle using long inversion recovery pulses. Magn Reson Imaging 2019; 63:280-290. [PMID: 31425815 DOI: 10.1016/j.mri.2019.08.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/05/2019] [Accepted: 08/15/2019] [Indexed: 12/20/2022]
Abstract
23Na inversion recovery (IR) imaging allows for a weighting toward intracellular sodium in the human calf muscle and thus enables an improved analysis of pathophysiological changes of the muscular ion homeostasis. However, sodium signal-to-noise ratio (SNR) is low, especially when using IR sequences. 23Na has a nuclear spin of 3/2 and therefore experiences a strong electrical quadrupolar interaction. This results in very short relaxation times as well as in possible residual quadrupolar splitting. Consequently, relaxation effects during a radiofrequency pulse can no longer be neglected and even allow for increasing SNR as has previously been shown for human brain and knee. The aim of this work was to increase the SNR in 23Na IR imaging of the human calf muscle by using long inversion pulses instead of the usually applied short pulses. First, the influence of the inversion pulse length (1 to 20 ms) on the SNR as well as on image contrast was simulated for different model environments and verified by phantom measurements. Depending on the model environment (agarose 4% and 8%, xanthan 2% and 3%), SNR values increased by a factor of 1.15 up to 1.35, while NaCl solution was successfully suppressed. Thus, image contrast between the non-suppressed model compartments changes with IR pulse length. Finally, in vivo measurements of the human calf muscle of ten healthy volunteers were conducted at 3 Tesla. On average, a 1.4-fold increase in SNR could be achieved by increasing the inversion pulse length from 1 ms to 20 ms, leaving all other parameters - including the scan time - constant. This enables 23Na IR MRI with improved spatial resolution or reduced acquisition time.
Collapse
Affiliation(s)
- Tobias Wilferth
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - Lena V Gast
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert W Stobbe
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Christian Beaulieu
- Department of Biomedical Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Bernhard Hensel
- Center for Medical Physics and Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
76
|
Meyer MM, Schmidt A, Benrath J, Konstandin S, Pilz LR, Harrington MG, Budjan J, Meyer M, Schad LR, Schoenberg SO, Haneder S. Cerebral sodium ( 23Na) magnetic resonance imaging in patients with migraine - a case-control study. Eur Radiol 2019; 29:7055-7062. [PMID: 31264011 DOI: 10.1007/s00330-019-06299-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/21/2019] [Accepted: 06/03/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Evaluation of MRI-derived cerebral 23Na concentrations in patients with migraine in comparison with healthy controls. MATERIALS AND METHODS In this case-control study, 24 female migraine patients (mean age, 34 ± 11 years) were enrolled after evaluation of standardized questionnaires. Half (n = 12) of the cohort suffered from migraine, the other half was impaired by both migraine and tension-type headaches (TTH). The combined patient cohort was matched to 12 healthy female controls (mean age, 34 ± 11 years). All participants underwent a cerebral 23Na-magnetic resonance imaging examination at 3.0 T, which included a T1w MP-RAGE sequence and a 3D density-adapted, radial gradient echo sequence for 23Na imaging. Circular regions of interests were placed in predetermined anatomic regions: cerebrospinal fluid (CSF), gray and white matter, brain stem, and cerebellum. External 23Na reference phantoms were used to calculate the total 23Na tissue concentrations. Pearson's correlation, Kendall Tau, and Wilcoxon rank sum test were used for statistical analysis. RESULTS 23Na concentrations of all patients in the CSF were significantly higher than in healthy controls (p < 0.001). The CSF of both the migraine and mixed migraine/TTH group showed significantly increased sodium concentrations compared to the control group (p = 0.007 and p < 0.001). Within the patient cohort, a positive correlation between pain level and TSC in the CSF (r = 0.62) could be observed. CONCLUSION MRI-derived cerebral 23Na concentrations in the CSF of migraine patients were found to be statistically significantly higher than in healthy controls. KEY POINTS • Cerebral sodium MRI supports the theory of ionic imbalances and may aid in the challenging pathophysiologic understanding of migraine. • Case-control study shows significantly higher sodium concentrations in cerebrospinal fluid of migraineurs. • Cerebral sodium MRI may become a non-invasive imaging tool for drugs to modulate sodium, and hence migraine, on a molecular level, and influence patient management.
Collapse
Affiliation(s)
- Melissa M Meyer
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Alexander Schmidt
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Department of Diagnostic and Interventional Radiology, University of Würzburg, Würzburg, Germany
| | - Justus Benrath
- Clinic for Anaesthesiology and Operative Intensive Care, University of Heidelberg, Mannheim, Germany
| | | | - Lothar R Pilz
- Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Johannes Budjan
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Mathias Meyer
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan O Schoenberg
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Stefan Haneder
- Department of Radiology, University Hospital of Cologne, Cologne, Germany
| |
Collapse
|
77
|
Abstract
In this article, an overview of the current developments and research applications for non-proton magnetic resonance imaging (MRI) at ultrahigh magnetic fields (UHFs) is given. Due to technical and methodical advances, efficient MRI of physiologically relevant nuclei, such as Na, Cl, Cl, K, O, or P has become feasible and is of interest to obtain spatially and temporally resolved information that can be used for biomedical and diagnostic applications. Sodium (Na) MRI is the most widespread multinuclear imaging method with applications ranging over all regions of the human body. Na MRI yields the second largest in vivo NMR signal after the clinically used proton signal (H). However, other nuclei such as O and P (energy metabolism) or Cl and K (cell viability) are used in an increasing number of MRI studies at UHF. One major advancement has been the increased availability of whole-body MR scanners with UHFs (B0 ≥7T) expanding the range of detectable nuclei. Nevertheless, efforts in terms of pulse sequence and post-processing developments as well as hardware designs must be made to obtain valuable information in clinically feasible measurement times. This review summarizes the available methods in the field of non-proton UHF MRI, especially for Na MRI, as well as introduces potential applications in clinical research.
Collapse
Affiliation(s)
- Sebastian C Niesporek
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Armin M Nagel
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Institute of Medical Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Tanja Platt
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
78
|
Hu R, Kleimaier D, Malzacher M, Hoesl MA, Paschke NK, Schad LR. X‐nuclei imaging: Current state, technical challenges, and future directions. J Magn Reson Imaging 2019; 51:355-376. [DOI: 10.1002/jmri.26780] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Ruomin Hu
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Dennis Kleimaier
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Matthias Malzacher
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | | | - Nadia K. Paschke
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| | - Lothar R. Schad
- Computer Assisted Clinical MedicineHeidelberg University Mannheim Germany
| |
Collapse
|
79
|
Deen SS, Riemer F, McLean MA, Gill AB, Kaggie JD, Grist JT, Crawford R, Latimer J, Baldwin P, Earl HM, Parkinson CA, Smith SA, Hodgkin C, Moore E, Jimenez-Linan M, Brodie CR, Addley HC, Freeman SJ, Moyle PL, Sala E, Graves MJ, Brenton JD, Gallagher FA. Sodium MRI with 3D-cones as a measure of tumour cellularity in high grade serous ovarian cancer. Eur J Radiol Open 2019; 6:156-162. [PMID: 31032385 PMCID: PMC6477161 DOI: 10.1016/j.ejro.2019.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/10/2019] [Indexed: 12/20/2022] Open
Abstract
The aim of this study was to assess the feasibility of rapid sodium MRI (23Na-MRI) for the imaging of peritoneal cancer deposits in high grade serous ovarian cancer (HGSOC) and to evaluate the relationship of 23Na-MRI with tumour cellularity. 23Na-MRI was performed at 3 T on twelve HGSOC patients using a 3D-cones acquisition technique. Tumour biopsies specimens were collected after imaging and cellularity was measured from histology. Total 23Na-MRI scan time for each patient was approximately 11 min. At an isotropic resolution of 5.6 mm, signal-to-noise ratios (SNRs) of 82.2 ± 15.3 and 15.1 ± 7.1 (mean ± standard deviation) were achieved for imaging of tumour tissue sodium concentration (TSC) and intracellular weighted sodium concentration (IWS) respectively. Tumour TSC and IWS concentrations were: 56.8 ± 19.1 mM and 30.8 ± 9.2 mM respectively and skeletal muscle TSC and IWS concentrations were 33.2 ± 16.3 mM and 20.5 ± 9.9 mM respectively. There were significant sodium concentration differences between cancer and skeletal muscle, Wilcoxon signed-rank test, P < 0.001 for TSC and P = 0.01 for IWS imaging. Tumour cellularity displayed a strong negative correlation with TSC, Spearman's rho = -0.92, P < 0.001, but did not correlate with IWS. This study demonstrates that 23Na-MRI using 3D-cones can rapidly assess sodium concentration in peritoneal deposits of HGSOC and that TSC may serve as a biomarker of tumour cellularity.
Collapse
Affiliation(s)
- Surrin S. Deen
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
| | - Mary A. McLean
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
| | - Andrew B. Gill
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Joshua D. Kaggie
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - James T. Grist
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Robin Crawford
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - John Latimer
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Peter Baldwin
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Helena M. Earl
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Christine A. Parkinson
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Sarah A. Smith
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Charlotte Hodgkin
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Elizabeth Moore
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
| | - Mercedes Jimenez-Linan
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Cara R. Brodie
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
| | - Helen C. Addley
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Susan J. Freeman
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Penelope L. Moyle
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - Evis Sala
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
| | - Martin J. Graves
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| | - James D. Brenton
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, CB2 0RE, United Kingdom
| | - Ferdia A. Gallagher
- Department of Radiology, University of Cambridge, Cambridge, CB2 0QQ, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, CB2 0QQ, United Kingdom
| |
Collapse
|
80
|
Meyer MM, Haneder S, Konstandin S, Budjan J, Morelli JN, Schad LR, Kerl HU, Schoenberg SO, Kabbasch C. Repeatability and reproducibility of cerebral 23Na imaging in healthy subjects. BMC Med Imaging 2019; 19:26. [PMID: 30943911 PMCID: PMC6446283 DOI: 10.1186/s12880-019-0324-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 03/11/2019] [Indexed: 02/04/2023] Open
Abstract
Background Initial reports of 23Na magnetic resonance imaging (MRI) date back to the 1970s. However, methodological challenges of the technique hampered its widespread adoption for many years. Recent technical developments have overcome some of these limitations and have led to more optimal conditions for 23Na-MR imaging. In order to serve as a reliable tool for the assessment of clinical stroke or brain tumor patients, we investigated the repeatability and reproducibility of cerebral sodium (23Na) imaging in healthy subjects. Methods In this prospective, IRB approved study 12 consecutive healthy volunteers (8 female, age 31 ± 8.3) underwent three cerebral 23Na-MRI examinations at 3.0 T (TimTrio, Siemens Healthineers) distributed between two separate visits with an 8 day interval. For each scan a T1w MP-RAGE sequence for anatomical referencing and a 3D-density-adapted, radial GRE-sequence for 23Na-imaging were acquired using a dual-tuned (23Na/1H) head-coil. On 1 day, these scans were repeated consecutively; on the other day, the scans were performed once. 23Na-sequences were reconstructed according to the MP-RAGE sequence, allowing direct cross-referencing of ROIs. Circular ROIs were placed in predetermined anatomic regions: gray and white matter (GM, WM), head of the caudate nucleus (HCN), pons, and cerebellum. External 23Na-reference phantoms were used to calculate the tissue sodium content. Results Excellent correlation was found between repeated measurements on the same day (r2 = 0.94), as well as on a different day (r2 = 0.86). No significant differences were found based on laterality other than in the HCN (63.1 vs. 58.7 mmol/kg WW on the right (p = 0.01)). Pronounced inter-individual differences were identified in all anatomic regions. Moderate to good correlation (0.310 to 0.701) was found between the readers. Conclusion Our study has shown that intra-individual 23Na-concentrations in healthy subjects do not significantly differ after repeated scans on the same day and a pre-set time interval. This confirms the repeatability and reproducibility of cerebral 23Na-imaging. However, with manual ROI placement in predetermined anatomic landmarks, fluctuations in 23Na-concentrations can be observed.
Collapse
Affiliation(s)
- Melissa M Meyer
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Stefan Haneder
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.,Institute of Diagnostic and Interventional Radiology, University Hospital Cologne, University of Cologne, Cologne, Germany
| | | | - Johannes Budjan
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - John N Morelli
- St. John's Medical Center, 1923 South Utica Ave, Tulsa, OK, 74104, USA
| | - Lothar R Schad
- Department of Computer Assisted Clinical Medicine, Heidelberg University, Mannheim, Germany
| | - Hans U Kerl
- Department of Neuroradiology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Stefan O Schoenberg
- Institute of Clinical Radiology and Nuclear Medicine, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Christoph Kabbasch
- Institute of Diagnostic and Interventional Radiology, University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
81
|
Eisele P, Konstandin S, Szabo K, Ebert A, Roßmanith C, Paschke N, Kerschensteiner M, Platten M, Schoenberg SO, Schad LR, Gass A. Temporal evolution of acute multiple sclerosis lesions on serial sodium (23Na) MRI. Mult Scler Relat Disord 2019; 29:48-54. [DOI: 10.1016/j.msard.2019.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 01/11/2019] [Accepted: 01/16/2019] [Indexed: 10/27/2022]
|
82
|
Demirkan I, Unlu MB, Bilen B. Determining sodium diffusion through acoustic impedance measurements using 80 MHz Scanning Acoustic Microscopy: Agarose phantom verification. ULTRASONICS 2019; 94:10-19. [PMID: 30606650 DOI: 10.1016/j.ultras.2018.12.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 12/22/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
The purpose of this study is to explore the feasibility of time-dependent acoustic impedance measurement by Scanning Acoustic Microscopy (SAM) for analyzing the sodium diffusion. The purpose is motivated by the fact that sodium monitoring is challenging and still in the area of exploratory analysis despite its biological importance. To our knowledge, this is the first study in which sodium diffusion has been investigated by time-dependent acoustic impedance measurements provided by SAM. We first tested the idea in an agarose phantom as a proof-of-concept. Accordingly, we designed the agarose phantom which initially contains a well of sodium chloride (NaCl) solution moving radially into the phantom. By using NaCl diffusion in the phantom, we obtained two-dimensional (2D) acoustic impedance (Z) maps over time through SAM operating with 80 MHz ultrasonic transducer having a lateral resolution of 20 μm. A linear correlation between the changes in the concentration profile of the phantom and its acoustic impedance was introduced. Analysis of experimental data proved that spatially changing acoustic impedance could be ascribed to the diffusion process and produced a diffusion coefficient in the order of 10-5 cm2/s which matches well with the literature. Our results showed that SAM could monitor the time-dependent alterations in acoustic impedance resulting from the diffusion of sodium inside the agarose phantom. With this study, SAM shows a promise as a monitoring tool not only to obtain static images but also to perform dynamic investigations of sodium ions with the advantages of providing images in micrometer resolution with a scanning time no longer than 2 min for an image area of 4.8 mm × 4.8 mm.
Collapse
Affiliation(s)
- Irem Demirkan
- Bogazici University, Department of Physics, Istanbul 34342, Turkey.
| | - Mehmet Burcin Unlu
- Bogazici University, Department of Physics, Istanbul 34342, Turkey; Global Station for Quantum Medical Science and Engineering, Global Institution for Collaborative Research and Education (GI-CoRE), Hokkaido University, Sapporo 060-8648, Japan; Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Bukem Bilen
- Bogazici University, Department of Physics, Istanbul 34342, Turkey
| |
Collapse
|
83
|
Malzacher M, Chacon-Caldera J, Paschke N, Schad LR. Feasibility study of a double resonant 8-channel 1H/ 8-channel 23Na receive-only head coil at 3 Tesla. Magn Reson Imaging 2019; 59:97-104. [PMID: 30880113 DOI: 10.1016/j.mri.2019.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 03/09/2019] [Accepted: 03/13/2019] [Indexed: 01/12/2023]
Abstract
Sodium (23Na) magnetic resonance imaging (MRI), especially brain applications are increasingly interesting since sodium MRI can provide additional information about tissue viability and vitality. In order to include sodium MRI in the clinical routine, a single RF setup is preferable which provides high sodium sensitivity and full proton performance in terms of signal-to-noise ratio (SNR) and parallel imaging performance. The aim of this work was to evaluate the feasibility of a double resonant receive (Rx) coil array for proton and sodium head MRI. The coil was designed to provide high sodium SNR and full proton performance comparable to commercial coils which are optimized for sodium MRI or for proton MRI, respectively. A measurement setup was built which comprised an 8-channel Rx degenerate Birdcage for sodium imaging and an 8-channel Rx array for proton imaging. The performance of the coil was evaluated against commercial sodium and proton coils using phantom and in-vivo measurements of two healthy volunteers.
Collapse
Affiliation(s)
- Matthias Malzacher
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| | - Jorge Chacon-Caldera
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nadia Paschke
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Lothar R Schad
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
84
|
Huhn K, Engelhorn T, Linker RA, Nagel AM. Potential of Sodium MRI as a Biomarker for Neurodegeneration and Neuroinflammation in Multiple Sclerosis. Front Neurol 2019; 10:84. [PMID: 30804885 PMCID: PMC6378293 DOI: 10.3389/fneur.2019.00084] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/22/2019] [Indexed: 01/18/2023] Open
Abstract
In multiple sclerosis (MS), experimental and ex vivo studies indicate that pathologic intra- and extracellular sodium accumulation may play a pivotal role in inflammatory as well as neurodegenerative processes. Yet, in vivo assessment of sodium in the microenvironment is hard to achieve. Here, sodium magnetic resonance imaging (23NaMRI) with its non-invasive properties offers a unique opportunity to further elucidate the effects of sodium disequilibrium in MS pathology in vivo in addition to regular proton based MRI. However, unfavorable physical properties and low in vivo concentrations of sodium ions resulting in low signal-to-noise-ratio (SNR) as well as low spatial resolution resulting in partial volume effects limited the application of 23NaMRI. With the recent advent of high-field MRI scanners and more sophisticated sodium MRI acquisition techniques enabling better resolution and higher SNR, 23NaMRI revived. These studies revealed pathologic total sodium concentrations in MS brains now even allowing for the (partial) differentiation of intra- and extracellular sodium accumulation. Within this review we (1) demonstrate the physical basis and imaging techniques of 23NaMRI and (2) analyze the present and future clinical application of 23NaMRI focusing on the field of MS thus highlighting its potential as biomarker for neuroinflammation and -degeneration.
Collapse
Affiliation(s)
- Konstantin Huhn
- Department of Neurology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany
| | - Ralf A Linker
- Department of Neurology, University of Regensburg, Regensburg, Germany
| | - Armin M Nagel
- Department of Radiology, Friedrich-Alexander-University of Erlangen-Nuremberg, Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
85
|
Syeda W, Blunck Y, Kolbe S, Cleary JO, Johnston LA. A continuum of T 2 * components: Flexible fast fraction mapping in sodium MRI. Magn Reson Med 2019; 81:3854-3864. [PMID: 30652360 DOI: 10.1002/mrm.27659] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 11/28/2018] [Accepted: 12/20/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Parameter mapping in sodium MRI data is challenging due to inherently low SNR and spatial resolution, prompting the need to employ robust models and estimation techniques. This work aims to develop a continuum model of sodium T 2 * -decay to overcome the limitations of the commonly employed bi-exponential models. Estimates of mean T 2 * -decay and fast component fraction in tissue are emergent from the inferred continuum model. METHODS A closed-form continuum model was derived assuming a gamma distribution of T 2 * components. Sodium MRI was performed on four healthy human subjects and a phantom consisting of closely packed vials filled with an aqueous solution of varying sodium and agarose concentrations. The continuum model was applied to the phantom and in vivo human multi-echo 7T data. Parameter maps by voxelwise model-fitting were obtained. RESULTS The continuum model demonstrated comparable estimation performance to the bi-exponential model. The parameter maps provided improved contrast between tissue structures. The fast component fraction, an indicator of the heterogeneity of localised sodium motion regimes in tissue, was zero in CSF and high in WM structures. CONCLUSIONS The continuum distribution model provides high quality, high contrast parameter maps, and informative voxelwise estimates of the relative weighting between fast and slow decay components.
Collapse
Affiliation(s)
- Warda Syeda
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, Australia
| | - Yasmin Blunck
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, Australia.,Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| | - Scott Kolbe
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, Australia
| | - Jon O Cleary
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, Australia
| | - Leigh A Johnston
- Melbourne Brain Centre Imaging Unit, The University of Melbourne, Melbourne, Australia.,Department of Biomedical Engineering, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
86
|
Ladd ME, Bachert P, Meyerspeer M, Moser E, Nagel AM, Norris DG, Schmitter S, Speck O, Straub S, Zaiss M. Pros and cons of ultra-high-field MRI/MRS for human application. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 109:1-50. [PMID: 30527132 DOI: 10.1016/j.pnmrs.2018.06.001] [Citation(s) in RCA: 312] [Impact Index Per Article: 44.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 06/06/2018] [Accepted: 06/07/2018] [Indexed: 05/08/2023]
Abstract
Magnetic resonance imaging and spectroscopic techniques are widely used in humans both for clinical diagnostic applications and in basic research areas such as cognitive neuroimaging. In recent years, new human MR systems have become available operating at static magnetic fields of 7 T or higher (≥300 MHz proton frequency). Imaging human-sized objects at such high frequencies presents several challenges including non-uniform radiofrequency fields, enhanced susceptibility artifacts, and higher radiofrequency energy deposition in the tissue. On the other side of the scale are gains in signal-to-noise or contrast-to-noise ratio that allow finer structures to be visualized and smaller physiological effects to be detected. This review presents an overview of some of the latest methodological developments in human ultra-high field MRI/MRS as well as associated clinical and scientific applications. Emphasis is given to techniques that particularly benefit from the changing physical characteristics at high magnetic fields, including susceptibility-weighted imaging and phase-contrast techniques, imaging with X-nuclei, MR spectroscopy, CEST imaging, as well as functional MRI. In addition, more general methodological developments such as parallel transmission and motion correction will be discussed that are required to leverage the full potential of higher magnetic fields, and an overview of relevant physiological considerations of human high magnetic field exposure is provided.
Collapse
Affiliation(s)
- Mark E Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine, University of Heidelberg, Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Peter Bachert
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany.
| | - Martin Meyerspeer
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Ewald Moser
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria; MR Center of Excellence, Medical University of Vienna, Vienna, Austria.
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands; Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany.
| | - Sebastian Schmitter
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany; Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany.
| | - Oliver Speck
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany; German Center for Neurodegenerative Diseases, Magdeburg, Germany; Center for Behavioural Brain Sciences, Magdeburg, Germany; Leibniz Institute for Neurobiology, Magdeburg, Germany.
| | - Sina Straub
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
| | - Moritz Zaiss
- High-Field Magnetic Resonance Center, Max-Planck-Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
87
|
Verius M, Frank F, Gizewski E, Broessner G. Magnetic Resonance Spectroscopy Thermometry at 3 Tesla: Importance of Calibration Measurements. Ther Hypothermia Temp Manag 2018; 9:146-155. [PMID: 30457932 DOI: 10.1089/ther.2018.0027] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
To demonstrate the importance of calibration measurements in 3 Tesla proton magnetic resonance (MR) spectroscopy (1H-MRS) thermometry for human brain temperature estimation for routine clinical applications. In vitro proton MR spectroscopy to obtain calibration constants of the water-chemical shift was conducted at 3 Tesla with a temperature-controlled phantom, containing a pH-buffered aqueous solution of N-acetyl aspartate (NAA), creatine (Cr), methylene protons of Cr (Cr2), dimethyl silapentane sulfonic acid (DSS), and sodium formate (NaFor). Estimations of absolute human brain temperature were performed utilizing the correlation of temperature to the water-chemical shift for the resonances of NAA, Cr, and Cr2. Data for calibration of the metabolites' chemical shift differences and in vivo temperature estimations were acquired with single-voxel point-resolved spectroscopy (PRESS) sequences (repetition time/echo time = 2000/30 ms; voxel size 2 × 2 × 2 cm3). Spectroscopy data were quantified in the time-domain, and a Pearson correlation analysis was performed to estimate the correlation between the chemical shift of metabolites and measured temperatures. The correlation coefficients (r) of our calibration measurements were NAA 0.9975 (±0.0609), Cr -0.9979 (±0.0621), Cr2 - 0.9973 (±0.0577), DSS -0.9976 (±0.0615), and NaFor -0.8132 (±2.348). The mean calculated brain temperature was 37.78 ± 1.447°C, and the mean tympanic temperature was 36.83 ± 0.2456°C. Calculated temperatures derived from Cr and Cr2 provided significant (p = 0.0241 and p = 0.0210, respectively) correlations with measured temperatures (r = 0.4108 and r = -0.4194, respectively). Calibration measurements are vital for 1H-MRS thermometry. Small numeric differences in measured signal and data preprocessing without any calibration measurements reduce accuracy of temperature calculations, which indicates that calculated temperatures should be interpreted with caution. Application of this method for clinical purposes warrants further investigation and a more practical approach.
Collapse
Affiliation(s)
- Michael Verius
- 1 Medizinische Universität Innsbruck, Neuroimaging Research Core Facility, Innsbruck, Austria
| | - Florian Frank
- 2 Medizinische Universität Innsbruck, Universitätsklinik für Neurologie, Innsbruck, Austria
| | - Elke Gizewski
- 1 Medizinische Universität Innsbruck, Neuroimaging Research Core Facility, Innsbruck, Austria.,3 Medizinische Universität Innsbruck, Universitätsklinik für Neuroradiologie, Innsbruck, Austria
| | - Gregor Broessner
- 2 Medizinische Universität Innsbruck, Universitätsklinik für Neurologie, Innsbruck, Austria
| |
Collapse
|
88
|
Broeke NC, Peterson J, Lee J, Martin PR, Farag A, Gomez JA, Moussa M, Gaed M, Chin J, Pautler SE, Ward A, Bauman G, Bartha R, Scholl TJ. Characterization of clinical human prostate cancer lesions using 3.0-T sodium MRI registered to Gleason-graded whole-mount histopathology. J Magn Reson Imaging 2018; 49:1409-1419. [PMID: 30430700 DOI: 10.1002/jmri.26336] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Overtreatment of prostate cancer (PCa) is a healthcare issue. Development of noninvasive imaging tools for improved characterization of prostate lesions might reduce overtreatment. PURPOSE To measure the distribution of tissue sodium concentration (TSC), proton T2 -weighted signal, and apparent diffusion coefficient (ADC) values in human PCa and to test the presence of a correlation between regional differences in imaging metrics and the Gleason grade of lesions determined from histopathology. STUDY TYPE Cross-sectional. SUBJECTS Ten men with biopsy-proven PCa. SEQUENCES/FIELD STRENGTH Sodium, proton T2 -weighted, and diffusion-weighted MRI data were acquired using Broad-Band 3D-Fast-Gradient-Recalled, 3D Cube (Isotropic 3D-Fast-Turbo-Spin-Echo acquisition) and 2D Spin-Echo sequences, respectively, with a 3.0T MR scanner. ASSESSMENT All imaging data were coregistered to Gleason-graded postprostatectomy histology, as the standard for prostate cancer lesion characterization. Regional TSC and T2 data were assessed using percent changes from healthy tissue of the same patient (denoted ΔTSC, ΔT2 ). STATISTICS Differences in ΔTSC, ADC, and ΔT2 as a function of Gleason score were analyzed for each imaging contrast using a one-way analysis of variance or a nonparametric t-test. Correlations between imaging data measures and Gleason score were assessed using a Spearman's ranked correlation. RESULTS Evaluation of the correlation of ΔTSC, ADC, and ΔT2 datasets with Gleason scoring revealed that only the correlation between ΔTSC and Gleason score was statistically significant (rs = 0.791, p < 0.01), whereas the correlations of ADC and ΔT2 with Gleason score were not (rs = -0.306, p = 0.079 and r s = -0.069, p = 0.699, respectively). In addition, all individual patients showed monotonically increasing ΔTSC with Gleason score. DATA CONCLUSION The results of this preliminary study suggest that changes in TSC, assessed by sodium MRI, has utility as a noninvasive imaging assay to accurately characterize PCa lesions. Sodium MRI may provide useful complementary information on mpMRI, which may assist the decision-making of men choosing either active surveillance or treatment. LEVEL OF EVIDENCE 1 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019;49:1409-1419.
Collapse
Affiliation(s)
- Nolan C Broeke
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Justin Peterson
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Joseph Lee
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Peter R Martin
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Adam Farag
- Robarts Research Institute, Western University, London, ON, Canada
| | - Jose A Gomez
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Madeleine Moussa
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Mena Gaed
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - Joseph Chin
- Department of Surgery, Western University, London, ON, Canada.,Department of Oncology, Western University, London, ON, Canada
| | - Stephen E Pautler
- Department of Surgery, Western University, London, ON, Canada.,Department of Oncology, Western University, London, ON, Canada
| | - Aaron Ward
- Department of Medical Biophysics, Western University, London, ON, Canada.,Department of Oncology, Western University, London, ON, Canada
| | - Glenn Bauman
- Department of Medical Biophysics, Western University, London, ON, Canada.,Department of Oncology, Western University, London, ON, Canada
| | - Robert Bartha
- Department of Medical Biophysics, Western University, London, ON, Canada.,Robarts Research Institute, Western University, London, ON, Canada.,Departments of Medical Imaging and Psychiatry, Western University, London, ON, Canada
| | - Timothy J Scholl
- Department of Medical Biophysics, Western University, London, ON, Canada.,Robarts Research Institute, Western University, London, ON, Canada.,Ontario Institute for Cancer Research, Toronto, ON, Canada
| |
Collapse
|
89
|
Abstract
Magnetic resonance spectroscopy (MRS) can be performed in vivo using commercial MRI systems to obtain biochemical information about tissues and cancers. Applications in brain, prostate and breast aid lesion detection and characterisation (differential diagnosis), treatment planning and response assessment. Multi-centre clinical trials have been performed in all these tissues. Single centre studies have been performed in many other tissues including cervix, uterus, musculoskeletal and liver. While generally MRS is used to study endogenous metabolites it has also been used in drug studies, for example those that include 19F as part of their structure. Recently the hyperpolarisation of compounds enriched with 13C such as [1-13C] pyruvate has been demonstrated in animal models and now in preliminary clinical studies, permitting the monitoring of biochemical processes with unprecedented sensitivity. This review briefly introduces the underlying methods and then discusses the current status of these applications.
Collapse
Affiliation(s)
- Geoffrey S Payne
- University Hospitals Southampton NHS Foundation Trust, Tremona Road, Southampton SO16 6YD, United Kingdom
| |
Collapse
|
90
|
Mori N, Tsuchiya K, Sheth D, Mugikura S, Takase K, Katscher U, Abe H. Diagnostic value of electric properties tomography (EPT) for differentiating benign from malignant breast lesions: comparison with standard dynamic contrast-enhanced MRI. Eur Radiol 2018; 29:1778-1786. [DOI: 10.1007/s00330-018-5708-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/17/2018] [Accepted: 08/06/2018] [Indexed: 10/28/2022]
|
91
|
Blunck Y, Moffat BA, Kolbe SC, Ordidge RJ, Cleary JO, Johnston LA. Zero-gradient-excitation ramped hybrid encoding (zG RF -RHE) sodium MRI. Magn Reson Med 2018; 81:1172-1180. [PMID: 30252156 DOI: 10.1002/mrm.27484] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 06/28/2018] [Accepted: 07/14/2018] [Indexed: 01/01/2023]
Abstract
PURPOSE Fast bi-exponential transverse signal decay compounds sodium image quality. This work aims at enhancing image characteristics using a special case of ramped hybrid encoding (RHE). Zero-gradient-excitation (zGRF )-RHE provides (1) gradient-free excitation for high flip angle, artifact-free excitation profiles and (2) gradient ramping during dead-time for the optimization of encoding time (tenc ) to reduce T2 * signal decay influence during acquisition. METHODS Radial zGRF -RHE and standard radial UTE were investigated over a range of receiver bandwidths in simulations, phantom and in vivo brain experiments. Central k-space in zGRF -RHE was acquired through single point measurements at the minimum achievable TE. T2 * blurring artifacts and image SNR and CNR were assessed. RESULTS zGRF -RHE enabled 90° flip angle artifact-free excitation, whereas gradient pre-ramping provided greater tenc efficiency for any readout bandwidths. Experiments confirmed simulation results, revealing sharper edge characteristics particularly at short readout durations (TRO ). Significant SNR improvements of up to 4.8% were observed for longer TRO . CONCLUSION zGRF -RHE allows for artifact-free high flip angle excitation with time-efficient encoding improving on image characteristics. This hybrid encoding concept with gradient pre-ramping is trajectory independent and can be introduced in any center-out UTE trajectory design.
Collapse
Affiliation(s)
- Yasmin Blunck
- Department of Biomedical Engineering, University of Melbourne, Parkville, Australia
| | - Bradford A Moffat
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia
| | - Scott C Kolbe
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia
| | - Roger J Ordidge
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia
| | - Jon O Cleary
- Department of Medicine and Radiology, University of Melbourne, Parkville, Australia.,Department of Radiology, Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom
| | - Leigh A Johnston
- Department of Biomedical Engineering, University of Melbourne, Parkville, Australia
| |
Collapse
|
92
|
Leithner D, Wengert GJ, Helbich TH, Thakur S, Ochoa-Albiztegui RE, Morris EA, Pinker K. Clinical role of breast MRI now and going forward. Clin Radiol 2018; 73:700-714. [PMID: 29229179 PMCID: PMC6788454 DOI: 10.1016/j.crad.2017.10.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 10/31/2017] [Indexed: 02/08/2023]
Abstract
Magnetic resonance imaging (MRI) is a well-established method in breast imaging, with manifold clinical applications, including the non-invasive differentiation between benign and malignant breast lesions, preoperative staging, detection of scar versus recurrence, implant assessment, and the evaluation of high-risk patients. At present, dynamic contrast-enhanced MRI is the most sensitive imaging technique for breast cancer diagnosis, and provides excellent morphological and to some extent also functional information. To compensate for the limited functional information, and to increase the specificity of MRI while preserving its sensitivity, additional functional parameters such as diffusion-weighted imaging and apparent diffusion coefficient mapping, and MR spectroscopic imaging have been investigated and implemented into the clinical routine. Several additional MRI parameters to capture breast cancer biology are still under investigation. MRI at high and ultra-high field strength and advances in hard- and software may also further improve this imaging technique. This article will review the current clinical role of breast MRI, including multiparametric MRI and abbreviated protocols, and provide an outlook on the future of this technique. In addition, the predictive and prognostic value of MRI as well as the evolving field of radiogenomics will be discussed.
Collapse
Affiliation(s)
- D Leithner
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany; Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - G J Wengert
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - T H Helbich
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria
| | - S Thakur
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - R E Ochoa-Albiztegui
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - E A Morris
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - K Pinker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Molecular and Gender Imaging, Medical University of Vienna, Vienna, Austria; Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
93
|
Worthoff WA, Shymanskaya A, Shah NJ. Relaxometry and quantification in simultaneously acquired single and triple quantum filtered sodium MRI. Magn Reson Med 2018; 81:303-315. [DOI: 10.1002/mrm.27387] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 05/07/2018] [Accepted: 05/09/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Wieland A. Worthoff
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH; Jülich Germany
| | - Aliaksandra Shymanskaya
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH; Jülich Germany
- Institute of Neuroscience and Medicine - 11, Forschungszentrum Jülich GmbH; Jülich Germany
| | - N. Jon Shah
- Institute of Neuroscience and Medicine - 4, Forschungszentrum Jülich GmbH; Jülich Germany
- Institute of Neuroscience and Medicine - 11, Forschungszentrum Jülich GmbH; Jülich Germany
- Faculty of Medicine, Department of Neurology; RWTH Aachen University; Aachen Germany
| |
Collapse
|
94
|
Nunes Neto LP, Madelin G, Sood TP, Wu CC, Kondziolka D, Placantonakis D, Golfinos JG, Chi A, Jain R. Quantitative sodium imaging and gliomas: a feasibility study. Neuroradiology 2018; 60:795-802. [PMID: 29862413 DOI: 10.1007/s00234-018-2041-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 05/21/2018] [Indexed: 12/22/2022]
Abstract
PURPOSE Recent advances in sodium brain MRI have allowed for increased signal-to-noise ratio, faster imaging, and the ability of differentiating intracellular from extracellular sodium concentration, opening a new window of opportunity for clinical application. In gliomas, there are significant alterations in sodium metabolism, including increase in the total sodium concentration and extracellular volume fraction. The purpose of this study is to assess the feasibility of using sodium MRI quantitative measurements to evaluate gliomas. METHODS Eight patients with treatment-naïve gliomas were scanned at 3 T with a homemade 1H/23Na head coil, generating maps of pseudo-intracellular sodium concentration (C1), pseudo-extracellular volume fraction (α2), apparent intracellular sodium concentration (aISC), and apparent total sodium concentration (aTSC). Measurements were made within the contralateral normal-appearing putamen, contralateral normal-appearing white matter (NAWM), and solid tumor regions (area of T2-FLAIR abnormality, excluding highly likely areas of edema, cysts, or necrosis). Paired samples t test were performed comparing NAWM and putamen and between NAWM and solid tumor. RESULTS The normal-appearing putamen demonstrated significantly higher values for aTSC, aISC, C1 (p < 0.001), and α2 (p = 0.002) when compared to those of NAWM. The mean average of all solid tumors, when compared to that of NAWM, demonstrated significantly higher values of aTSC and α2 (p < 0.001), and significantly lower values of aISC (p = 0.02) for each patient. There was no significant difference between the values of C1 (p = 0.19). CONCLUSION Quantitative sodium measurements can be done in glioma patients and also has provided further evidence that total sodium and extracellular volume fraction are increased in gliomas.
Collapse
Affiliation(s)
- Lucidio P Nunes Neto
- Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Guillaume Madelin
- Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Terlika Pandit Sood
- Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Chih-Chun Wu
- Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Douglas Kondziolka
- Department of Neurosurgery, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Dimitris Placantonakis
- Department of Neurosurgery, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - John G Golfinos
- Department of Neurosurgery, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Andrew Chi
- Department of Medicine, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA
| | - Rajan Jain
- Department of Radiology, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA. .,Department of Neurosurgery, New York University School of Medicine, 660 1st Avenue, New York, 10016, NY, USA.
| |
Collapse
|
95
|
Huang L, Zhang Z, Qu B, Cui Z, Wang Y, Li J, Wang J, Zuo Z, Zhuo Y, Yu X, Lin Z, Pan L. Imaging of Sodium MRI for Therapy Evaluation of Brain Metastase with Cyberknife at 7T: A Case Report. Cureus 2018; 10:e2502. [PMID: 29928562 PMCID: PMC6005396 DOI: 10.7759/cureus.2502] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Herein we describe the case of an elderly patient who presented with a recent history of impaired vision of the right eye around three months due to brain lesions. He was diagnosed with liver cancer and underwent surgery three months prior. The pathological result is hepatocellular carcinoma. Magnetic resonance imaging (MRI) revealed the diagnosis of brain to be metastatic. The patient selected CyberKnife (Accuray Incorporated, Sunnyvale, USA) radiosurgery for the brain lesion since his physical conditions are not suitable for craniotomy. We adapt the imaging of sodium MRI and proton diffusion mapping at 7T MR system to evaluate the efficacy following CyberKnife early stage treatment. To date, we find the tissue sodium concentration (TSC) changes with the time whereas the proton MRI has no significant change within one month. The time course of sodium concentration in the tumor showed a dramatic increase in the treated brain tumor compared to the pretreatment sodium concentration and 48 hours after stereotactic radiosurgery (SRS), which is correlated to the period of the radiotherapy-induced cellular necrosis. This case demonstrates the possibility of sodium MRI as a biomarker for monitoring early radiotherapy for assessing tumor cellularity.
Collapse
Affiliation(s)
- Lichao Huang
- Department of Neurosurgery, PLA General Hospital, Beijing, CHN
| | - Zihao Zhang
- State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, Chinese Academy of Sciences
| | - Baolin Qu
- Department of Radiation Oncology, PLA General Hospital, Beijing, CHN
| | - Zhiqiang Cui
- Department of Neurosurgery, PLA General Hospital, Beijing, CHN
| | - Yao Wang
- Department of Radiation Oncology, PLA General Hospital, Beijing, CHN
| | - Jiwei Li
- Department of Radiation Oncology, PLA General Hospital, Beijing, CHN
| | - Jinyuan Wang
- Department of Radiation Oncology, PLA General Hospital, Beijing, CHN
| | - Zhentao Zuo
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science Chinese Academy of Sciences
| | - Yan Zhuo
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science Chinese Academy of Sciences
| | - Xinguang Yu
- Department of Neurosurgery, PLA General Hospital, Beijing, CHN
| | - Zhipei Lin
- Department of Neurosurgery, PLA General Hospital, Beijing, CHN
| | - Longsheng Pan
- Department of Neurosurgery, PLA General Hospital, Beijing, CHN
| |
Collapse
|
96
|
Grist JT, Riemer F, McLean MA, Matys T, Zaccagna F, Hilborne SF, Mason JP, Patterson I, Slough R, Kaggie J, Deen SS, Graves MJ, Jones JL, Coles AJ, Gallagher FA. Imaging intralesional heterogeneity of sodium concentration in multiple sclerosis: Initial evidence from 23Na-MRI. J Neurol Sci 2018; 387:111-114. [PMID: 29571845 PMCID: PMC5884312 DOI: 10.1016/j.jns.2018.01.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 01/08/2018] [Accepted: 01/23/2018] [Indexed: 12/02/2022]
Abstract
Sodium MRI (23Na-MRI) has been used to non-invasively quantify tissue sodium but has been limited by low spatial resolution. Here we demonstrate for the first time that high resolution 23Na-MRI reveals the spatial heterogeneity of sodium concentration within a multiple sclerosis (MS) lesion. A patient with treatment-naïve relapsing-remitting MS and a ring-enhancing lesion was imaged using 23Na-MRI. The periphery of the lesion demonstrated an elevated total sodium content compared to the normal appearing white and grey matter (p<0.01), as well as a heterogeneous distribution of both the total tissue sodium concentration and the intracellular-weighted sodium concentration.
Collapse
Affiliation(s)
- James T Grist
- Department of Radiology, University of Cambridge, Cambridge, UK.
| | - Frank Riemer
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Mary A McLean
- Cancer Research UK Cambridge Institute, University of Cambridge, Li Ka Shing Centre, Cambridge, UK
| | - Tomasz Matys
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Fulvio Zaccagna
- Department of Radiology, University of Cambridge, Cambridge, UK
| | | | - Jackie P Mason
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Ilse Patterson
- Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| | - Rhys Slough
- Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| | - Joshua Kaggie
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Surrin S Deen
- Department of Radiology, University of Cambridge, Cambridge, UK
| | - Martin J Graves
- Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| | - Joanne L Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alasdair J Coles
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ferdia A Gallagher
- Department of Radiology, University of Cambridge, Cambridge, UK; Department of Radiology, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
97
|
Ridley B, Nagel AM, Bydder M, Maarouf A, Stellmann JP, Gherib S, Verneuil J, Viout P, Guye M, Ranjeva JP, Zaaraoui W. Distribution of brain sodium long and short relaxation times and concentrations: a multi-echo ultra-high field 23Na MRI study. Sci Rep 2018. [PMID: 29531255 PMCID: PMC5847519 DOI: 10.1038/s41598-018-22711-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Sodium (23Na) MRI proffers the possibility of novel information for neurological research but also particular challenges. Uncertainty can arise in in vivo 23Na estimates from signal losses given the rapidity of T2* decay due to biexponential relaxation with both short (T2*short) and long (T2*long) components. We build on previous work by characterising the decay curve directly via multi-echo imaging at 7 T in 13 controls with the requisite number, distribution and range to assess the distribution of both in vivo T2*short and T2*long and in variation between grey and white matter, and subregions. By modelling the relationship between signal and reference concentration and applying it to in vivo 23Na-MRI signal, 23Na concentrations and apparent transverse relaxation times of different brain regions were measured for the first time. Relaxation components and concentrations differed substantially between regions of differing tissue composition, suggesting sensitivity of multi-echo 23Na-MRI toward features of tissue composition. As such, these results raise the prospect of multi-echo 23Na-MRI as an adjunct source of information on biochemical mechanisms in both physiological and pathophysiological states.
Collapse
Affiliation(s)
- Ben Ridley
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France. .,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France.
| | - Armin M Nagel
- University Hospital Erlangen, Institute of Radiology, Erlangen, Germany.,Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Mark Bydder
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| | - Adil Maarouf
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| | - Jan-Patrick Stellmann
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| | - Soraya Gherib
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| | - Jeremy Verneuil
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| | - Patrick Viout
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| | - Wafaa Zaaraoui
- Aix-Marseille Univ, CNRS, CRMBM UMR 7339, Marseille, France.,APHM, Hôpitaux de la Timone, CEMEREM, Marseille, France
| |
Collapse
|
98
|
Thulborn KR. Quantitative sodium MR imaging: A review of its evolving role in medicine. Neuroimage 2018; 168:250-268. [PMID: 27890804 PMCID: PMC5443706 DOI: 10.1016/j.neuroimage.2016.11.056] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/23/2016] [Accepted: 11/22/2016] [Indexed: 12/26/2022] Open
Abstract
Sodium magnetic resonance (MR) imaging in humans has promised metabolic information that can improve medical management in important diseases. This technology has yet to find a role in clinical practice, lagging proton MR imaging by decades. This review covers the literature that demonstrates that this delay is explained by initial challenges of low sensitivity at low magnetic fields and the limited performance of gradients and electronics available in the 1980s. These constraints were removed by the introduction of 3T and now ultrahigh (≥7T) magnetic field scanners with superior gradients and electronics for proton MR imaging. New projection pulse sequence designs have greatly improved sodium acquisition efficiency. The increased field strength has provided the expected increased sensitivity to achieve resolutions acceptable for metabolic interpretation even in small target tissues. Consistency of quantification of the sodium MR image to provide metabolic parametric maps has been demonstrated by several different pulse sequences and calibration procedures. The vital roles of sodium ion in membrane transport and the extracellular matrix will be reviewed to indicate the broad opportunities that now exist for clinical sodium MR imaging. The final challenge is for the technology to be supplied on clinical ≥3T scanners.
Collapse
Affiliation(s)
- Keith R Thulborn
- Center for Magnetic Resonance Research, University of Illinois at Chicago, 1801 West Taylor Street, Chicago, IL 60612, United States.
| |
Collapse
|
99
|
Lommen JM, Flassbeck S, Behl NG, Niesporek S, Bachert P, Ladd ME, Nagel AM. Probing the microscopic environment of 23
Na ions in brain tissue by MRI: On the accuracy of different sampling schemes for the determination of rapid, biexponential T2* decay at low signal-to-noise ratio. Magn Reson Med 2018; 80:571-584. [DOI: 10.1002/mrm.27059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/21/2017] [Accepted: 12/05/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Jonathan M. Lommen
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Sebastian Flassbeck
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Nicolas G.R. Behl
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Sebastian Niesporek
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
| | - Peter Bachert
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy; Heidelberg Germany
| | - Mark E. Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
- University of Heidelberg, Faculty of Physics and Astronomy; Heidelberg Germany
- University of Heidelberg, Faculty of Medicine; Heidelberg Germany
| | - Armin M. Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ); Heidelberg Germany
- Institute of Radiology; University Hospital Erlangen; Erlangen Germany
| |
Collapse
|
100
|
Wenz D, Kuehne A, Huelnhagen T, Nagel AM, Waiczies H, Weinberger O, Oezerdem C, Stachs O, Langner S, Seeliger E, Flemming B, Hodge R, Niendorf T. Millimeter spatial resolution in vivo sodium MRI of the human eye at 7 T using a dedicated radiofrequency transceiver array. Magn Reson Med 2018; 80:672-684. [DOI: 10.1002/mrm.27053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 10/18/2017] [Accepted: 11/30/2017] [Indexed: 12/23/2022]
Affiliation(s)
- Daniel Wenz
- Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | | | - Till Huelnhagen
- Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Armin M. Nagel
- Institute of Radiology; University Hospital Erlangen; Erlangen Germany
- Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ); Heidelberg Germany
| | | | - Oliver Weinberger
- Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Celal Oezerdem
- Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Oliver Stachs
- Department of Ophthalmology; University of Rostock; Rostock Germany
| | - Soenke Langner
- Institute for Diagnostic Radiology and Neuroradiology; University Medicine Greifswald; Greifswald Germany
| | - Erdmann Seeliger
- Institute of Physiology; Charité University Medicine; Berlin Germany
| | - Bert Flemming
- Institute of Physiology; Charité University Medicine; Berlin Germany
| | - Russell Hodge
- Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility, Max Delbrueck Center for Molecular Medicine in the Helmholtz Association; Berlin Germany
- MRI.TOOLS GmbH; Berlin Germany
| |
Collapse
|