51
|
Lee DJ, Ahmed HU, Moore CM, Emberton M, Ehdaie B. Multiparametric magnetic resonance imaging in the management and diagnosis of prostate cancer: current applications and strategies. Curr Urol Rep 2014; 15:390. [PMID: 24430171 DOI: 10.1007/s11934-013-0390-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Magnetic resonance imaging (MRI) has become increasingly used worldwide in the diagnosis and management of prostate cancer. With advances in multiparametric MRI (mpMRI) technology, such as the use of dynamic contrast-enhanced and diffusion-weighted imaging sequences, observational studies have evaluated the utility for mpMRI in the continuum of prostate cancer management, from improving the detection of clinically significant prostate cancer, to planning radical prostatectomy and radiation therapy and the early detection of local recurrence. Furthermore, the potential for advanced imaging to reduce the burden of routine serial prostate needle biopsies for men on active surveillance is a promising area of research. MRI technology continues to evolve, and the potential applications in the management of prostate cancer care will require well-designed multi-institutional prospective clinical trials and rigorous efforts to standardize reporting and improve dissemination of expertise across institutions.
Collapse
Affiliation(s)
- Daniel J Lee
- Department of Urology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA
| | | | | | | | | |
Collapse
|
52
|
Choi H, Underwood M, Boonsirikamchai P, Matin S, Troncoso P, Ma J. Technical challenges in 3 T magnetic resonance spectroscopic imaging of the prostate-A single-institution experience. Quant Imaging Med Surg 2014; 4:251-8. [PMID: 25202660 DOI: 10.3978/j.issn.2223-4292.2014.07.09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2014] [Accepted: 07/16/2014] [Indexed: 11/14/2022]
Abstract
The magnetic resonance spectroscopic imaging (MRSI) is the only technique that is currently available in the clinical practice to provide the metabolic status of prostate tissue at the cellular level with a great potential to improve the clinical patient care. Increasing the field strength from 1.5 to 3 T can theoretically provide proportionately higher signal-to-noise ratio (SNR) and improve spectral separation between prostatic metabolite peaks. The technique, however, has been limited to a few academic institutions that are equipped with a team of experts primarily due to due to serious technical challenges in optimizing the spectral quality. High quality shimming is key to the successful MRSI acquisition. Without optimization of the increased field inhomogeneity and radiofrequency (RF) dielectric effect at 3 T, the spectral peak broadening and residual signal from the periprostatic fat tissue may render the overall spectra non-diagnostic. The purpose of this technical note is to present the practical steps of successful acquisition of 3 T MRSI and to address several important technical challenges in minimizing the effect of the increased magnetic field and RF field inhomogeneity in order to obtain highest possible spectral quality based on our initial experience in using 3 T MRSI prototype software.
Collapse
Affiliation(s)
- Haesun Choi
- 1 Department of Diagnostic Radiology, 2 Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA ; 3 Department of Diagnostic Radiology, King Chulalongkorn Memorial Hospital, Pathum Wan, Bangkok, Thailand ; 4 Department of Urology, 5 Department of Pathology, 6 Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Michelle Underwood
- 1 Department of Diagnostic Radiology, 2 Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA ; 3 Department of Diagnostic Radiology, King Chulalongkorn Memorial Hospital, Pathum Wan, Bangkok, Thailand ; 4 Department of Urology, 5 Department of Pathology, 6 Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Piyaporn Boonsirikamchai
- 1 Department of Diagnostic Radiology, 2 Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA ; 3 Department of Diagnostic Radiology, King Chulalongkorn Memorial Hospital, Pathum Wan, Bangkok, Thailand ; 4 Department of Urology, 5 Department of Pathology, 6 Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Surena Matin
- 1 Department of Diagnostic Radiology, 2 Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA ; 3 Department of Diagnostic Radiology, King Chulalongkorn Memorial Hospital, Pathum Wan, Bangkok, Thailand ; 4 Department of Urology, 5 Department of Pathology, 6 Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Patricia Troncoso
- 1 Department of Diagnostic Radiology, 2 Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA ; 3 Department of Diagnostic Radiology, King Chulalongkorn Memorial Hospital, Pathum Wan, Bangkok, Thailand ; 4 Department of Urology, 5 Department of Pathology, 6 Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jingfei Ma
- 1 Department of Diagnostic Radiology, 2 Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA ; 3 Department of Diagnostic Radiology, King Chulalongkorn Memorial Hospital, Pathum Wan, Bangkok, Thailand ; 4 Department of Urology, 5 Department of Pathology, 6 Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
53
|
Zhang Y, Zhou J, Bottomley PA. Minimizing lipid signal bleed in brain (1) H chemical shift imaging by post-acquisition grid shifting. Magn Reson Med 2014; 74:320-9. [PMID: 25168657 DOI: 10.1002/mrm.25438] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 08/01/2014] [Accepted: 08/13/2014] [Indexed: 12/27/2022]
Abstract
PURPOSE Low spatial resolution in conventional 1H brain chemical shifting imaging (CSI) studies causes partial volume error (PVE) or signal "bleed" that is especially deleterious to voxels near the scalp. The standard spatial apodization approach adversely affects spatial resolution. Here, a novel automated post-processing strategy of partial volume correction employing grid shifting ("PANGS") is presented, which minimizes residual PVE without compromising spatial resolution. METHODS PANGS shifts the locations of the reconstruction coordinates in a designated region of image space-the scalp, to match the tissue "centers-of-mass" instead of the geometric centers of each voxel, by iteratively minimizing the PVE from the scalp into outside voxels. PANGS' performance was evaluated by numerical simulation, and in 3 Tesla 1H CSI human studies employing outer volume suppression and long echo times. RESULTS PANGS reduced lipid contamination of cortical spectra by up to 86% (54% on average). Metabolite maps exhibited significantly less lipid artifact than conventional and spatially-filtered CSI. All methods generated quantitatively identical spectral peak areas from central brain locations, but spatial filtering increased spectral linewidths and reduced spatial resolution. CONCLUSION PANGS significantly reduces lipid artifacts in 1H brain CSI spectra and metabolite maps, and improves metabolite detection in cortical regions without compromising resolution.
Collapse
Affiliation(s)
- Yi Zhang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Paul A Bottomley
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
54
|
|
55
|
Multiparametric magnetic resonance imaging for the assessment of extracapsular invasion and other staging parameters in patients with prostate cancer candidates for radical prostatectomy. Actas Urol Esp 2014; 38:290-7. [PMID: 24387827 DOI: 10.1016/j.acuro.2013.11.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 11/25/2013] [Indexed: 11/22/2022]
Abstract
INTRODUCTION the proper evaluation of the extracapsular extension (ECE), the invasion of seminal vesicles and regional lymph nodes are necessary to plan the treatment of localized prostate cancer. A model that assesses the risk of ECE in the specimen considering the clinical, histological and imaging findings is defined. MATERIAL AND METHODS prospective study in 85 patients with prostate cancer treated with radical prostatectomy. Prostate biopsy was performed 4 weeks before multiparametric study (mpMRI). mpMRI included T2-weighted endorectal magnetic resonance imaging (T2W-MRI), diffusion-weighted magnetic resonance imaging (DW-MRI) and dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). The apparent diffusion coefficient (ADC) was also measured. A study of consistency (k) was assessed comparing receiver operating characteristic (ROC) curve and area under the curve (AUC), which were obtained in each case (Z). Finally, a regression model was performed to predict ECE. RESULTS the mean age was 63.7 ± 6.9 years and the mean value of PSA 12.6 ± 13.8. In 31.7% of cases, digital rectal examination was suspicious for malignancy. Prostatectomy specimen showed pT2a in 12 cases (14%), pT2b in 3 (3%), pT2c in 37 (43%), pT3a in 19(22%) and pT3b 14 cases (17%). ECE was evidenced in 33 (39%) of the specimens, seminal vesicle invasion in 14 (16.5%) and pelvic node involvement in 5 patients (6%). The consistency in the evaluation of ECE (image and pathological studies) was .35 for MRI (sensitivity .33, specificity .96) and .62 for mpMRI (sensitivity .58, specificity .98). Mean value of ADC was .76 ± .2 in patients with ECE. This value was not associated with Gleason score (P = .2) or with PSA value (P = .6). AUC value as predictor of ECE was of 65% for MRI, 78% for mpMRI and 50% ADC (Z = .008). Univariate analysis demonstrated that ECE probability increases with each Gleason score point, whilst this probability increases 1.06 times with each PSA point, and decreases .3 times with each point of ADC. Multivariate analysis confirmed that ADC value is a slight protective factor against ECE (OR = .01; CI 95% .002-.14). The consistency in the evaluation of seminal vesicles was .43 for MRI and .67 for mpMRI. AUC was 69% and 82% respectively (Z = .02). The consistency in the evaluation of positive lymph nodes was .4 for MRI and .7 for mpMRI. AUC was 68% and 88% respectively (Z = .36). CONCLUSIONS multiparametric study allows to carry out a more proper preoperative evaluation of ECE than convectional MRI. The most reliable predictors of ECE are DW-MRI combined with DCE-MRI, ADC coefficient and Gleason score. The superiority of mpMRI is also demonstrated for detection of seminal vesicles invasion, but not for the evaluation of lymph nodes invasion.
Collapse
|
56
|
Multiparametric MRI for recurrent prostate cancer post radical prostatectomy and postradiation therapy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:316272. [PMID: 24967355 PMCID: PMC4055489 DOI: 10.1155/2014/316272] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 04/25/2014] [Indexed: 12/30/2022]
Abstract
The clinical suspicion of local recurrence of prostate cancer (PCa) after radical prostatectomy (RP) and after radiation therapy (RT) is based on the onset of biochemical failure. The aim of this paper was to review the current role of multiparametric-MRI (mp-MRI) in the detection of locoregional recurrence. A systematic literature search using the Medline and Cochrane Library databases was performed from January 1995 up to November 2013. Bibliographies of retrieved and review articles were also examined. Only those articles reporting complete data with clinical relevance for the present review were selected. This review article is divided into two major parts: the first one considers the role of mp-MRI in the detection of PCa local recurrence after RP; the second part provides an insight about the impact of mp-MRI in the depiction of locoregional recurrence after RT (interstitial or external beam). Published data indicate an emerging role for mp-MRI in the detection and localization of locally recurrent PCa both after RP and RT which represents an information of paramount importance to perform focal salvage treatments.
Collapse
|
57
|
Johnson LM, Turkbey B, Figg WD, Choyke PL. Multiparametric MRI in prostate cancer management. Nat Rev Clin Oncol 2014; 11:346-53. [PMID: 24840072 DOI: 10.1038/nrclinonc.2014.69] [Citation(s) in RCA: 116] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Prostate cancer is the second most common cancer in men worldwide. The clinical behaviour of prostate cancer ranges from low-grade indolent tumours that never develop into clinically significant disease to aggressive, invasive tumours that may progress rapidly to metastatic disease and death. Therefore, there is an urgent clinical need to detect high-grade cancers and to differentiate them from the indolent, slow-growing tumours. Conventional methods of cancer detection-such as levels of prostate-specific antigen (PSA) in serum, digital rectal examination, and random biopsies-are limited in their sensitivity, specificity, or both. The combination of conventional anatomical MRI and functional magnet resonance sequences-known as multiparametric MRI (mp-MRI)-is emerging as an accurate tool for identifying clinically relevant tumours owing to its ability to localize them. In this Review, we discuss the value of mp-MRI in localized and metastatic prostate cancer, highlighting its role in the detection, staging, and treatment planning of prostate cancer.
Collapse
Affiliation(s)
- Linda M Johnson
- Molecular Pharmacology Section, Medical Oncology Branch, National Cancer Institute, 10 Center Drive, MSC 1182 Building 10, Bethesda, MD 20892-1088, USA
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, 10 Center Drive, MSC 1182 Building 10, Bethesda, MD 20892-1088, USA
| | - William D Figg
- Clinical Pharmacology Program, Center for Cancer Research, National Cancer Institute, 10 Center Drive, MSC 1182 Building 10, Bethesda, MD 20892-1088, USA
| | - Peter L Choyke
- Molecular Imaging Program, National Cancer Institute, 10 Center Drive, MSC 1182 Building 10, Bethesda, MD 20892-1088, USA
| |
Collapse
|
58
|
Abtahi SM, Mao Y, Prapruttam D, Elmi A, Hedgire SS. Magnetic resonance imaging of pelvic metastases in male patients. Magn Reson Imaging Clin N Am 2014; 22:201-15, vi. [PMID: 24792678 DOI: 10.1016/j.mric.2014.01.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Magnetic resonance (MR) imaging offers a noninvasive tool for diagnosis of primary and metastatic pelvic tumors. The diagnosis of a pelvic metastatic lesion implies an adverse prognosis and dictates the management strategies. Knowledge of normal MR imaging anatomy of the pelvis and the signal characteristics of normal and abnormal structures is essential for accurate interpretation of pelvic MR imaging. This article reviews imaging manifestations of nodal, visceral, and musculoskeletal metastatic lesions of the pelvis along with current and evolving MR imaging techniques.
Collapse
Affiliation(s)
- Seyed Mahdi Abtahi
- Division of Abdominal Imaging and Interventional Radiology, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA 02114, USA
| | - Yun Mao
- Division of Abdominal Imaging and Interventional Radiology, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA 02114, USA
| | - Duangkamon Prapruttam
- Division of Abdominal Imaging and Interventional Radiology, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA 02114, USA
| | - Azadeh Elmi
- Division of Abdominal Imaging and Interventional Radiology, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA 02114, USA
| | - Sandeep S Hedgire
- Division of Abdominal Imaging and Interventional Radiology, Massachusetts General Hospital, 55 Fruit Street, White 270, Boston, MA 02114, USA.
| |
Collapse
|
59
|
Thapar R, Titus MA. Recent Advances in Metabolic Profiling And Imaging of Prostate Cancer. ACTA ACUST UNITED AC 2014; 2:53-69. [PMID: 25632377 DOI: 10.2174/2213235x02666140301002510] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cancer is a metabolic disease. Cancer cells, being highly proliferative, show significant alterations in metabolic pathways such as glycolysis, respiration, the tricarboxylic acid (TCA) cycle, oxidative phosphorylation, lipid metabolism, and amino acid metabolism. Metabolites like peptides, nucleotides, products of glycolysis, the TCA cycle, fatty acids, and steroids can be an important read out of disease when characterized in biological samples such as tissues and body fluids like urine, serum, etc. The cancer metabolome has been studied since the 1960s by analytical techniques such as mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Current research is focused on the identification and validation of biomarkers in the cancer metabolome that can stratify high-risk patients and distinguish between benign and advanced metastatic forms of the disease. In this review, we discuss the current state of prostate cancer metabolomics, the biomarkers that show promise in distinguishing indolent from aggressive forms of the disease, the strengths and limitations of the analytical techniques being employed, and future applications of metabolomics in diagnostic imaging and personalized medicine of prostate cancer.
Collapse
Affiliation(s)
- Roopa Thapar
- Department of Biochemistry and Cell Biology, Rice University, Houston, TX 77251-1892, USA
| | - Mark A Titus
- Department of Genitourinary Medical Oncology, The University of Texas M.D. Anderson Cancer Center, Houston TX 77030, USA
| |
Collapse
|
60
|
Anwar M, Westphalen AC, Jung AJ, Noworolski SM, Simko JP, Kurhanewicz J, Roach M, Carroll PR, Coakley FV. Role of endorectal MR imaging and MR spectroscopic imaging in defining treatable intraprostatic tumor foci in prostate cancer: quantitative analysis of imaging contour compared to whole-mount histopathology. Radiother Oncol 2014; 110:303-8. [PMID: 24444524 PMCID: PMC3969841 DOI: 10.1016/j.radonc.2013.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 10/02/2013] [Accepted: 12/22/2013] [Indexed: 11/23/2022]
Abstract
PURPOSE To investigate the role of endorectal MR imaging and MR spectroscopic imaging in defining the contour of treatable intraprostatic tumor foci in prostate cancer, since targeted therapy requires accurate target volume definition. MATERIALS AND METHODS We retrospectively identified 20 patients with prostate cancer who underwent endorectal MR imaging and MR spectroscopic imaging prior to radical prostatectomy and subsequent creation of detailed histopathological tumor maps from whole-mount step sections. Two experienced radiologists independently reviewed all MR images and electronically contoured all suspected treatable (≥0.5 cm(3)) tumor foci. Deformable co-registration in MATLAB was used to calculate the margin of error between imaging and histopathological contours at both capsular and non-capsular surfaces and the treatment margin required to ensure at least 95% tumor coverage. RESULTS Histopathology showed 17 treatable tumor foci in 16 patients, of which 8 were correctly identified by both readers and an additional 2 were correctly identified by reader 2. For all correctly identified lesions, both readers accurately identified that tumor contacted the prostatic capsule, with no error in contour identification. On the non-capsular border, the median distance between the imaging and histopathological contour was 1.4mm (range, 0-12). Expanding the contour by 5mm at the non-capsular margin included 95% of tumor volume not initially covered within the MR contour. CONCLUSIONS Endorectal MR imaging and MR spectroscopic imaging can be used to accurately contour treatable intraprostatic tumor foci; adequate tumor coverage is achieved by expanding the treatment contour at the non-capsular margin by 5mm.
Collapse
Affiliation(s)
- Mekhail Anwar
- Department of Radiation Oncology, University of California San Francisco, USA.
| | - Antonio C Westphalen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Adam J Jung
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA
| | - Susan M Noworolski
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, USA; The Graduate Group in Bioengineering, University of California San Francisco, USA; University of California Berkeley, USA
| | - Jeffry P Simko
- Department of Anatomic Pathology, University of California San Francisco, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, USA
| | - John Kurhanewicz
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, USA; The Graduate Group in Bioengineering, University of California San Francisco, USA; University of California Berkeley, USA
| | - Mack Roach
- Department of Radiation Oncology, University of California San Francisco, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, USA
| | - Peter R Carroll
- Department of Urology, University of California San Francisco, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, USA
| | - Fergus V Coakley
- Department of Radiology and Biomedical Imaging, University of California San Francisco, USA; Department of Urology, University of California San Francisco, USA; UCSF Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, USA
| |
Collapse
|
61
|
Kobus T, Wright AJ, Weiland E, Heerschap A, Scheenen TWJ. Metabolite ratios in 1H MR spectroscopic imaging of the prostate. Magn Reson Med 2014; 73:1-12. [PMID: 24488656 DOI: 10.1002/mrm.25122] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 11/18/2013] [Accepted: 12/17/2013] [Indexed: 12/24/2022]
Abstract
In (1)H MR spectroscopic imaging ((1)H-MRSI) of the prostate the spatial distribution of the signal levels of the metabolites choline, creatine, polyamines, and citrate are assessed. The ratio of choline (plus spermine as the main polyamine) plus creatine over citrate [(Cho+(Spm+)Cr)/Cit] is derived from these metabolites and is used as a marker for the presence of prostate cancer. In this review, the factors that are of importance for the metabolite ratio are discussed. This is relevant, because the appearance of the metabolites in the spectrum depends not only on the underlying anatomy, metabolism, and physiology of the tissue, but also on acquisition parameters. These parameters influence especially the spectral shapes of citrate and spermine resonances, and consequently, the (Cho+(Spm+)Cr)/Cit ratio. Both qualitative and quantitative approaches can be used for the evaluation of (1)H-MRSI spectra of the prostate. For the quantitative approach, the (Cho+(Spm+)Cr)/Cit ratio can be determined by integration or by a fit based on model signals. Using the latter, the influence of the acquisition parameters on citrate can be taken into account. The strong overlap between the choline, creatine, and spermine resonances complicates fitting of the individual metabolites. This overlap and (unknown, possibly tissue-related) variations in T1, T2, and J-modulation hamper the application of corrections needed for a "normalized" (Cho+(Spm+)Cr)/Cit ratio that would enable comparison of spectra measured with different prostate MR spectroscopy protocols. Quantitative (Cho+(Spm+)Cr)/Cit thresholds for the evaluation of prostate cancer are therefore commonly established per institution or per protocol. However, if the same acquisition and postprocessing protocol were used, the ratio and the thresholds would be institution-independent, promoting the clinical usability of prostate (1)H-MRSI.
Collapse
Affiliation(s)
- Thiele Kobus
- Radboud University Medical Centre, Radiology Department, Nijmegen, The Netherlands
| | - Alan J Wright
- Radboud University Medical Centre, Radiology Department, Nijmegen, The Netherlands
| | | | - Arend Heerschap
- Radboud University Medical Centre, Radiology Department, Nijmegen, The Netherlands
| | - Tom W J Scheenen
- Radboud University Medical Centre, Radiology Department, Nijmegen, The Netherlands
| |
Collapse
|
62
|
Fütterer JJ, Barentsz JO, Heijmijnk STWPJ. Imaging modalities for prostate cancer. Expert Rev Anticancer Ther 2014; 9:923-37. [DOI: 10.1586/era.09.63] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
63
|
Ukimura O. Evolution of precise and multimodal MRI and TRUS in detection and management of early prostate cancer. Expert Rev Med Devices 2014; 7:541-54. [PMID: 20583890 DOI: 10.1586/erd.10.24] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Osamu Ukimura
- Kyoto Prefectural University of Medicine, Kyoto, Japan.
| |
Collapse
|
64
|
Wallace T, Torre T, Grob M, Yu J, Avital I, Brücher BLDM, Stojadinovic A, Man Y. Current approaches, challenges and future directions for monitoring treatment response in prostate cancer. J Cancer 2014; 5:3-24. [PMID: 24396494 PMCID: PMC3881217 DOI: 10.7150/jca.7709] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 11/01/2013] [Indexed: 01/23/2023] Open
Abstract
Prostate cancer is the most commonly diagnosed non-cutaneous neoplasm in men in the United States and the second leading cause of cancer mortality. One in 7 men will be diagnosed with prostate cancer during their lifetime. As a result, monitoring treatment response is of vital importance. The cornerstone of current approaches in monitoring treatment response remains the prostate-specific antigen (PSA). However, with the limitations of PSA come challenges in our ability to monitor treatment success. Defining PSA response is different depending on the individual treatment rendered potentially making it difficult for those not trained in urologic oncology to understand. Furthermore, standard treatment response criteria do not apply to prostate cancer further complicating the issue of treatment response. Historically, prostate cancer has been difficult to image and no single modality has been consistently relied upon to measure treatment response. However, with newer imaging modalities and advances in our understanding and utilization of specific biomarkers, the future for monitoring treatment response in prostate cancer looks bright.
Collapse
Affiliation(s)
- T.J. Wallace
- 1. Bon Secours Cancer Institute, Bon Secours Health Care System, Richmond VA, USA
- 2. Division of Radiation Oncology, Bon Secours Health Care System, Richmond VA, USA
- 3. Virginia Urology, Richmond VA, USA
| | - T. Torre
- 1. Bon Secours Cancer Institute, Bon Secours Health Care System, Richmond VA, USA
- 2. Division of Radiation Oncology, Bon Secours Health Care System, Richmond VA, USA
- 3. Virginia Urology, Richmond VA, USA
| | - M. Grob
- 4. Department of Urology, Virginia Commonwealth University Health System, Richmond VA, USA
| | - J. Yu
- 5. Department of Radiology, Virginia Commonwealth University Health System, Richmond VA, USA
| | - I. Avital
- 1. Bon Secours Cancer Institute, Bon Secours Health Care System, Richmond VA, USA
- 6. Division of Surgical Oncology, Bon Secours Health Care System, Richmond VA, USA
| | - BLDM Brücher
- 1. Bon Secours Cancer Institute, Bon Secours Health Care System, Richmond VA, USA
- 6. Division of Surgical Oncology, Bon Secours Health Care System, Richmond VA, USA
- 7. INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Adademy
| | - A. Stojadinovic
- 1. Bon Secours Cancer Institute, Bon Secours Health Care System, Richmond VA, USA
- 6. Division of Surgical Oncology, Bon Secours Health Care System, Richmond VA, USA
- 7. INCORE, International Consortium of Research Excellence of the Theodor-Billroth-Adademy
| | - Y.G. Man
- 1. Bon Secours Cancer Institute, Bon Secours Health Care System, Richmond VA, USA
- 6. Division of Surgical Oncology, Bon Secours Health Care System, Richmond VA, USA
- 8. South Hospital of Nanjing, Nanjing, China
| |
Collapse
|
65
|
Kobus T, Wright AJ, Scheenen TWJ, Heerschap A. Mapping of prostate cancer by 1H MRSI. NMR IN BIOMEDICINE 2014; 27:39-52. [PMID: 23761200 DOI: 10.1002/nbm.2973] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 04/08/2013] [Accepted: 04/13/2013] [Indexed: 06/02/2023]
Abstract
In many studies, it has been demonstrated that (1)H MRSI of the human prostate has great potential to aid prostate cancer management, e.g. in the detection and localisation of cancer foci in the prostate or in the assessment of its aggressiveness. It is particularly powerful in combination with T2 -weighted MRI. Nevertheless, the technique is currently mainly used in a research setting. This review provides an overview of the state-of-the-art of three-dimensional MRSI, including the specific hardware required, dedicated data acquisition sequences and information on the spectral content with background on the MR-visible metabolites. In clinical practice, it is important that relevant MRSI results become available rapidly, reliably and in an easy digestible way. However, this functionality is currently not fully available for prostate MRSI, which is a major obstacle for routine use by inexperienced clinicians. Routine use requires more automation in the processing of raw data than is currently available. Therefore, we pay specific attention in this review on the status and prospects of the automated handling of prostate MRSI data, including quality control. The clinical potential of three-dimensional MRSI of the prostate is illustrated with literature examples on prostate cancer detection, its localisation in the prostate, its role in the assessment of cancer aggressiveness and in the selection and monitoring of therapy.
Collapse
Affiliation(s)
- Thiele Kobus
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | | | | | | |
Collapse
|
66
|
Imaging and Markers as Novel Diagnostic Tools in Detecting Insignificant Prostate Cancer: A Critical Overview. INTERNATIONAL SCHOLARLY RESEARCH NOTICES 2014; 2014:243080. [PMID: 27351008 PMCID: PMC4897503 DOI: 10.1155/2014/243080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Accepted: 05/19/2014] [Indexed: 11/22/2022]
Abstract
Recent therapeutic advances for managing low-risk prostate cancer include the active surveillance and focal treatment. However, locating a tumor and detecting its volume by adequate sampling is still problematic. Development of predictive biomarkers guiding individual therapeutic choices remains an ongoing challenge. At the same time, prostate cancer magnetic resonance imaging is gaining increasing importance for prostate diagnostics. The high morphological resolution of T2-weighted imaging and functional MRI methods may increase the specificity and sensitivity of diagnostics. Also, recent studies founded an ability of novel biomarkers to identify clinically insignificant prostate cancer, risk of progression, and association with poor differentiation and, therefore, with clinical significance. Probably, the above mentioned methods would improve tumor characterization in terms of its volume, aggressiveness, and focality. In this review, we attempted to evaluate the applications of novel imaging techniques and biomarkers in assessing the significance of the prostate cancer.
Collapse
|
67
|
Novel functional magnetic resonance imaging biomarkers for assessing response to therapy in hepatocellular carcinoma. Clin Transl Oncol 2013; 16:599-605. [PMID: 24356932 DOI: 10.1007/s12094-013-1147-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/26/2013] [Indexed: 12/19/2022]
Abstract
The established and adapted image biomarkers based on size for tumor burden measurement continue to be applied to hepatocellular carcinoma (HCC) as size measurement can easily be used in clinical practice. However, in the setting of novel targeted therapies and liver directed treatments, simple tumor anatomical changes can be less informative and usually appear later than biological changes. Functional magnetic resonance imaging (MRI) has a potential to be a promising technique for assessment of HCC response to therapy. In this review, we discuss various functional MRI biomarkers that play an increasingly important role in evaluation of HCC response after treatment.
Collapse
|
68
|
Zhang Y, Gabr RE, Zhou J, Weiss RG, Bottomley PA. Highly-accelerated quantitative 2D and 3D localized spectroscopy with linear algebraic modeling (SLAM) and sensitivity encoding. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 237:125-138. [PMID: 24188921 PMCID: PMC3976201 DOI: 10.1016/j.jmr.2013.09.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 05/22/2023]
Abstract
Noninvasive magnetic resonance spectroscopy (MRS) with chemical shift imaging (CSI) provides valuable metabolic information for research and clinical studies, but is often limited by long scan times. Recently, spectroscopy with linear algebraic modeling (SLAM) was shown to provide compartment-averaged spectra resolved in one spatial dimension with many-fold reductions in scan-time. This was achieved using a small subset of the CSI phase-encoding steps from central image k-space that maximized the signal-to-noise ratio. Here, SLAM is extended to two- and three-dimensions (2D, 3D). In addition, SLAM is combined with sensitivity-encoded (SENSE) parallel imaging techniques, enabling the replacement of even more CSI phase-encoding steps to further accelerate scan-speed. A modified SLAM reconstruction algorithm is introduced that significantly reduces the effects of signal nonuniformity within compartments. Finally, main-field inhomogeneity corrections are provided, analogous to CSI. These methods are all tested on brain proton MRS data from a total of 24 patients with brain tumors, and in a human cardiac phosphorus 3D SLAM study at 3T. Acceleration factors of up to 120-fold versus CSI are demonstrated, including speed-up factors of 5-fold relative to already-accelerated SENSE CSI. Brain metabolites are quantified in SLAM and SENSE SLAM spectra and found to be indistinguishable from CSI measures from the same compartments. The modified reconstruction algorithm demonstrated immunity to maladjusted segmentation and errors from signal heterogeneity in brain data. In conclusion, SLAM demonstrates the potential to supplant CSI in studies requiring compartment-average spectra or large volume coverage, by dramatically reducing scan-time while providing essentially the same quantitative results.
Collapse
Affiliation(s)
- Yi Zhang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Refaat E Gabr
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, TX, USA
| | - Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Robert G Weiss
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; Division of Cardiology, Department of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Paul A Bottomley
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, MD, USA; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
69
|
Muller BG, Fütterer JJ, Gupta RT, Katz A, Kirkham A, Kurhanewicz J, Moul JW, Pinto PA, Rastinehad AR, Robertson C, de la Rosette J, Sanchez-Salas R, Jones JS, Ukimura O, Verma S, Wijkstra H, Marberger M. The role of magnetic resonance imaging (MRI) in focal therapy for prostate cancer: recommendations from a consensus panel. BJU Int 2013; 113:218-27. [PMID: 24215670 DOI: 10.1111/bju.12243] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To establish a consensus on the utility of multiparametric magnetic resonance imaging (mpMRI) to identify patients for focal therapy. METHODS Urological surgeons, radiologists, and basic researchers, from Europe and North America participated in a consensus meeting about the use of mpMRI in focal therapy of prostate cancer. The consensus process was face-to-face and specific clinical issues were raised and discussed with agreement sought when possible. All participants are listed among the authors. Topics specifically did not include staging of prostate cancer, but rather identifying the optimal requirements for performing MRI, and the current status of optimally performed mpMRI to (i) determine focality of prostate cancer (e.g. localising small target lesions of ≥0.5 mL), (ii) to monitor and assess the outcome of focal ablation therapies, and (iii) to identify the diagnostic advantages of new MRI methods. In addition, the need for transperineal template saturation biopsies in selecting patients for focal therapy was discussed, if a high quality mpMRI is available. In other words, can mpMRI replace the role of transperineal saturation biopsies in patient selection for focal therapy? RESULTS Consensus was reached on most key aspects of the meeting; however, on definition of the optimal requirements for mpMRI, there was one dissenting voice. mpMRI is the optimum approach to achieve the objectives needed for focal therapy, if made on a high quality machine (3T with/without endorectal coil or 1.5T with endorectal coil) and judged by an experienced radiologist. Structured and standardised reporting of prostate MRI is paramount. State of the art mpMRI is capable of localising small tumours for focal therapy. State of the art mpMRI is the technique of choice for follow-up of focal ablation. CONCLUSIONS The present evidence for MRI in focal therapy is limited. mpMRI is not accurate enough to consistently grade tumour aggressiveness. Template-guided saturation biopsies are no longer necessary when a high quality state of the art mpMRI is available; however, suspicious lesions should always be confirmed by (targeted) biopsy.
Collapse
Affiliation(s)
- Berrend G Muller
- Department of Urology, AMC University Hospital, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Hegde JV, Mulkern RV, Panych LP, Fennessy FM, Fedorov A, Maier SE, Tempany CMC. Multiparametric MRI of prostate cancer: an update on state-of-the-art techniques and their performance in detecting and localizing prostate cancer. J Magn Reson Imaging 2013; 37:1035-54. [PMID: 23606141 DOI: 10.1002/jmri.23860] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 09/04/2012] [Indexed: 12/15/2022] Open
Abstract
Magnetic resonance (MR) examinations of men with prostate cancer are most commonly performed for detecting, characterizing, and staging the extent of disease to best determine diagnostic or treatment strategies, which range from biopsy guidance to active surveillance to radical prostatectomy. Given both the exam's importance to individual treatment plans and the time constraints present for its operation at most institutions, it is essential to perform the study effectively and efficiently. This article reviews the most commonly employed modern techniques for prostate cancer MR examinations, exploring the relevant signal characteristics from the different methods discussed and relating them to intrinsic prostate tissue properties. Also, a review of recent articles using these methods to enhance clinical interpretation and assess clinical performance is provided. J. Magn. Reson. Imaging 2013;37:1035-1054. © 2013 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- John V Hegde
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
71
|
Coakley FV, Foster BR, Farsad K, Hung AY, Wilder KJ, Amling CL, Caughey AB. Pelvic applications of MR-guided high intensity focused ultrasound. ABDOMINAL IMAGING 2013; 38:1120-1129. [PMID: 23589077 DOI: 10.1007/s00261-013-9999-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
MR-guided high intensity focused ultrasound (MRg HIFU) is a novel method of tissue ablation that incorporates high energy focused ultrasound for tissue heating and necrosis within an MR scanner that provides simultaneous stereotactic tissue targeting and thermometry. To date, MRg HIFU has been used primarily to treat uterine fibroids, but many additional applications in the pelvis are in development. This article reviews the basic technology of MRg HIFU, and the use of MRg HIFU to treat uterine fibroids, adenomyosis, and prostate cancer.
Collapse
Affiliation(s)
- Fergus V Coakley
- Department of Diagnostic Radiology, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Mail Code: L340, Portland, OR, 97239, USA,
| | | | | | | | | | | | | |
Collapse
|
72
|
Ganie FA, Wani MS, Shaheen F, Wani ML, Ganie SA, Mir MF, Wani SN, Masaratul-Gani. Endorectal coil MRI and MR-spectroscopic imaging in patients with elevated serum prostate specific antigen with negative trus transrectal ultrasound guided biopsy. Urol Ann 2013; 5:172-8. [PMID: 24049380 PMCID: PMC3764898 DOI: 10.4103/0974-7796.115741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/12/2012] [Indexed: 11/17/2022] Open
Abstract
Background: The aim of this study was to see the efficacy of endorectal coil MRI and MR spectroscopic imaging in patients with elevated serum PSA and negative transrectal ultrasonography (TRUS)-guided biopsy. Materials and Methods: This study was conducted on 87 patients presented with: • Elevated prostatic specific antigen levels >5 ng/ml • Symptoms and signs of prostatic carcinoma • Patients with negative TRUS-guided biopsy • Suspicious lesion on TRU. All the patients were subjected to TRUS and followed by TRUS-guided biopsy of the lesion identified on endorectal coil MRI and MR-Spectroscopy. TRUS-guided biopsy of prostate was done with a Siemens Sonoline Adana Scanner. The scanning was performed by mechanical probe 5-7.5 MHz. Results: Out of 87 patients, 43 (49.4%) had hypointense lesion, 11 (12.6%) had hyperintense lesion. Out of 87 patients, MR-spectroscopy showed peak choline-creatine in 74 patients. Normal citrate peak was seen in 13 patients. Patients who had choline-creatine peak, among them 28 (37.8%) had peak in left peripheral zone, 23 (31.1%) had peak in the right peripheral zone, 2 (2.7%) had peak in the central zone, 17 had (23%) peak bilaterally. Four patients (5.4%) had peaks in right and central zones. The difference was statistically significant (P < 0.001). Conclusion: Prostatic biopsy directed with endorectal coil MRI and MR-spectroscopic imaging findings in patients with elevated serum PSA and prior negative biopsy, improves the early diagnosis of prostatic carcinoma and accurate localization of prostate cancer within the gland.
Collapse
|
73
|
|
74
|
Rischke HC, Nestle U, Fechter T, Doll C, Volegova-Neher N, Henne K, Scholber J, Knippen S, Kirste S, Grosu AL, Jilg CA. 3 Tesla multiparametric MRI for GTV-definition of Dominant Intraprostatic Lesions in patients with Prostate Cancer--an interobserver variability study. Radiat Oncol 2013; 8:183. [PMID: 23875672 PMCID: PMC3828667 DOI: 10.1186/1748-717x-8-183] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Accepted: 07/20/2013] [Indexed: 01/28/2023] Open
Abstract
PURPOSE To evaluate the interobserver variability of gross tumor volume (GTV) - delineation of Dominant Intraprostatic Lesions (DIPL) in patients with prostate cancer using published MRI criteria for multiparametric MRI at 3 Tesla by 6 different observers. MATERIAL AND METHODS 90 GTV-datasets based on 15 multiparametric MRI sequences (T2w, diffusion weighted (DWI) and dynamic contrast enhanced (DCE)) of 5 patients with prostate cancer were generated for GTV-delineation of DIPL by 6 observers. The reference GTV-dataset was contoured by a radiologist with expertise in diagnostic imaging of prostate cancer using MRI. Subsequent GTV-delineation was performed by 5 radiation oncologists who received teaching of MRI-features of primary prostate cancer before starting contouring session. GTV-datasets were contoured using Oncentra Masterplan® and iplan® Net. For purposes of comparison GTV-datasets were imported to the Artiview® platform (Aquilab®), GTV-values and the similarity indices or Kappa indices (KI) were calculated with the postulation that a KI > 0.7 indicates excellent, a KI > 0.6 to < 0.7 substantial and KI > 0.5 to < 0.6 moderate agreement. Additionally all observers rated difficulties of contouring for each MRI-sequence using a 3 point rating scale (1 = easy to delineate, 2 = minor difficulties, 3 = major difficulties). RESULTS GTV contouring using T2w (KI-T2w = 0.61) and DCE images (KI-DCE = 0.63) resulted in substantial agreement. GTV contouring using DWI images resulted in moderate agreement (KI-DWI = 0.51). KI-T2w and KI-DCE was significantly higher than KI-DWI (p = 0.01 and p = 0.003). Degree of difficulty in contouring GTV was significantly lower using T2w and DCE compared to DWI-sequences (both p < 0.0001). Analysis of delineation differences revealed inadequate comparison of functional (DWI, DCE) to anatomical sequences (T2w) and lack of awareness of non-specific imaging findings as a source of erroneous delineation. CONCLUSIONS Using T2w and DCE sequences at 3 Tesla for GTV-definition of DIPL in prostate cancer patients by radiation oncologists with knowledge of MRI features results in substantial agreement compared to an experienced MRI-radiologist, but for radiotherapy purposes higher KI are desirable, strengthen the need for expert surveillance. DWI sequence for GTV delineation was considered as difficult in application.
Collapse
Affiliation(s)
- Hans Christian Rischke
- Department of Radiation Oncology, University of Freiburg, Robert Koch Str. 3, 79106 Freiburg, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Bauman G, Haider M, Van der Heide UA, Ménard C. Boosting imaging defined dominant prostatic tumors: a systematic review. Radiother Oncol 2013; 107:274-81. [PMID: 23791306 DOI: 10.1016/j.radonc.2013.04.027] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 04/08/2013] [Accepted: 04/21/2013] [Indexed: 11/27/2022]
Abstract
INTRODUCTION Dominant cancer foci within the prostate are associated with sites of local recurrence post radiotherapy. In this systematic review we sought to address the question: "what is the clinical evidence to support differential boosting to an imaging defined GTV volume within the prostate when delivered by external beam or brachytherapy". MATERIALS AND METHODS A systematic review was conducted to identify clinical series reporting the use of radiation boosts to imaging defined GTVs. RESULTS Thirteen papers describing 11 unique patient series and 833 patients in total were identified. Methods and details of GTV definition and treatment varied substantially between series. GTV boosts were on average 8 Gy (range 3-35 Gy) for external beam, or 150% for brachytherapy (range 130-155%) and GTV volumes were small (<10 ml). Reported toxicity rates were low and may reflect the modest boost doses, small volumes and conservative DVH constraints employed in most studies. Variability in patient populations, study methodologies and outcomes reporting precluded conclusions regarding efficacy. CONCLUSIONS Despite a large cohort of patients treated differential boosts to imaging defined intra-prostatic targets, conclusions regarding optimal techniques and/or efficacy of this approach are elusive, and this approach cannot be considered standard of care. There is a need to build consensus and evidence. Ongoing prospective randomized trials are underway and will help to better define the role of differential prostate boosts based on imaging defined GTVs.
Collapse
Affiliation(s)
- Glenn Bauman
- Department of Oncology, London Health Sciences Centre and University of Western Ontario and Western University, Canada.
| | | | | | | |
Collapse
|
76
|
Turkbey B, Mena E, Aras O, Garvey B, Grant K, Choyke PL. Functional and molecular imaging: applications for diagnosis and staging of localised prostate cancer. Clin Oncol (R Coll Radiol) 2013; 25:451-60. [PMID: 23722008 DOI: 10.1016/j.clon.2013.05.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Accepted: 05/02/2013] [Indexed: 01/13/2023]
Abstract
Prostate cancer is currently the most common solid organ cancer type among men in the Western world. Currently, all decision-making algorithms and nomograms rely on demographics, clinicopathological data and symptoms. Such an approach can easily miss significant cancers while detecting many insignificant cancers. In this review, novel functional and molecular imaging techniques used in the diagnosis and staging of localised prostate cancer and their effect on treatment decisions are discussed.
Collapse
Affiliation(s)
- B Turkbey
- Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1088, USA.
| | | | | | | | | | | |
Collapse
|
77
|
Ang JE, Kaye S, Banerji U. Tissue-based approaches to study pharmacodynamic endpoints in early phase oncology clinical trials. Curr Drug Targets 2013; 13:1525-34. [PMID: 22974395 PMCID: PMC3531821 DOI: 10.2174/138945012803530062] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2010] [Revised: 01/12/2010] [Accepted: 09/07/2012] [Indexed: 01/10/2023]
Abstract
Anti-cancer clinical drug development is currently costly and slow with a high attrition rate. There is thus an urgent and unmet need to integrate pharmacodynamic biomarkers into early phase clinical trials in the framework provided by the “pharmacologic audit trail” in order to overcome this challenge. This review discusses the rationale, advantages and disadvantages, as well as the practical considerations of various tissue-based approaches to perform pharmacodynamic studies in early phase oncology clinical trials using case histories of molecular targeting agents such as PI3K, m-TOR, HSP90, HDAC and PARP inhibitors. These approaches include the use of normal “surrogate” tissues such as peripheral blood mononuclear cells, platelet-rich plasma, plucked hair follicles, skin biopsies, plasma-based endocrine assays, proteomics, metabolomics and circulating endothelial cells. In addition, the review discusses the use of neoplastic tissues including tumor biopsies, circulating tumor DNA and tumor cells and metabolomic approaches. The utilization of these tissues and technology platforms to study biomarkers will help accelerate the development of molecularly targeted agents for the treatment of cancer.
Collapse
Affiliation(s)
- Joo Ern Ang
- The Institute of Cancer Research, Sutton, UK
| | | | | |
Collapse
|
78
|
Chang ST, Westphalen AC, Jha P, Jung AJ, Carroll PR, Kurhanewicz J, Coakley FV. Endorectal MRI and MR spectroscopic imaging of prostate cancer: developing selection criteria for MR-guided focal therapy. J Magn Reson Imaging 2013; 39:519-25. [PMID: 23681669 DOI: 10.1002/jmri.24187] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Accepted: 03/28/2013] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To investigate criteria that can identify dominant treatable prostate cancer foci with high certainty at endorectal magnetic resonance imaging (MRI) and MR spectroscopic (MRS) imaging, and thus facilitate selection of patients who are radiological candidates for MR-guided focal therapy. MATERIALS AND METHODS We retrospectively identified 88 patients with biopsy-proven prostate cancer who underwent endorectal MRI and MRS imaging prior to radical prostatectomy with creation of histopathological tumor maps. Two independent readers noted the largest tumor foci at MRI, if visible, and the volume of concordant abnormal tissue at MRS imaging, if present. A logistic random intercept model was used to determine the association between clinical and MR findings and correct identification of treatable (over 0.5 cm3) dominant intraprostatic tumor foci. RESULTS Readers 1 and 2 identified dominant tumor foci in 50 (57%) and 58 (65%) of 88 patients; 42 (84%) and 48 (83%) of these were dominant treatable lesions at histopathology, respectively. Within the statistical model, the volume of concordant spectroscopic abnormality was the only factor that predicted correct identification of a dominant treatable lesion on T2-weighted images (odds ratio=1.75; 95% confidence interval=1.08 to 2.82; P value=0.02). In particular, all visible lesions on T2-weighted imaging associated with at least 0.54 cm3 of concordant spectroscopic abnormality were correctly identified dominant treatable tumor foci. CONCLUSION Patients with dominant intraprostatic tumor foci seen on T2-weighted MRI and associated with at least 0.54 cm3 of concordant MRS imaging abnormality may be radiological candidates for MR-guided focal therapy.
Collapse
Affiliation(s)
- Stephanie T Chang
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, California, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Hedgire SS, Oei TN, McDermott S, Cao K, Patel M Z, Harisinghani MG. Multiparametric magnetic resonance imaging of prostate cancer. Indian J Radiol Imaging 2013; 22:160-9. [PMID: 23599562 PMCID: PMC3624737 DOI: 10.4103/0971-3026.107176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
In India, prostate cancer has an incidence rate of 3.9 per 100,000 men and is responsible for 9% of cancer-related mortality. It is the only malignancy that is diagnosed with an apparently blind technique, i.e., transrectal sextant biopsy. With increasing numbers of high-Tesla magnetic resonance imaging (MRI) equipment being installed in India, the radiologist needs to be cognizant about endorectal MRI and multiparametric imaging for prostate cancer. In this review article, we aim to highlight the utility of multiparamteric MRI in prostate cancer. It plays a crucial role, mainly in initial staging, restaging, and post-treatment follow-up.
Collapse
Affiliation(s)
- Sandeep S Hedgire
- Department of Abdominal Imaging and Intervention, Massachusetts General Hospital 55 Fruit St, Boston, 02114 Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
80
|
Li B, Du Y, Yang H, Huang Y, Meng J, Xiao D. Magnetic resonance imaging for prostate cancer clinical application. Chin J Cancer Res 2013; 25:240-9. [PMID: 23592906 DOI: 10.3978/j.issn.1000-9604.2013.03.06] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2012] [Accepted: 12/14/2012] [Indexed: 01/16/2023] Open
Abstract
As prostate cancer is a biologically heterogeneous disease for which a variety of treatment options are available, the major objective of prostate cancer imaging is to achieve more precise disease characterization. In clinical practice, magnetic resonance imaging (MRI) is one of the imaging tools for the evaluation of prostate cancer, the fusion of MRI or dynamic contrast-enhanced MRI (DCE-MRI) with magnetic resonance spectroscopic imaging (MRSI) is improving the evaluation of cancer location, size, and extent, while providing an indication of tumor aggressiveness. This review summarizes the role of MRI in the application of prostate cancer and describes molecular MRI techniques (including MRSI and DCE-MRI) for aiding prostate cancer management.
Collapse
Affiliation(s)
- Bing Li
- Sichuan Key Laboratory of Medical Imaging, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China ; Department of Radiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, China
| | | | | | | | | | | |
Collapse
|
81
|
Panych LP, Roebuck JR, Chen NK, Tang Y, Madore B, Tempany CM, Mulkern RV. Investigation of the PSF-choice method for reduced lipid contamination in prostate MR spectroscopic imaging. Magn Reson Med 2013; 68:1376-82. [PMID: 22648701 DOI: 10.1002/mrm.24132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The purpose of this work was to evaluate a previously proposed approach that aims to improve the point spread function (PSF) of MR spectroscopic imaging (MRSI) to avoid corruption by lipid signal arising from neighboring voxels. Retrospective spatial filtering can be used to alter the PSF; however, this either reduces spatial resolution or requires extending the acquisition in k-space at the cost of increased imaging time. Alternatively, the method evaluated here, PSF-choice, can modify the PSF localization to reduce the contamination from adjacent lipids by conforming the signal response more closely to the desired MRSI voxel grid. This is done without increasing scan time or degrading SNR of important metabolites. PSF-choice achieves improvements in spatial localization through modifications to the radiofrequency excitation pulses. An implementation of this method is reported for MRSI of the prostate, where it is demonstrated that, in 13 of 16 pilot prostate MRSI scans, intravoxel spectral contamination from lipid was significantly reduced when using PSF-choice. Phantom studies were also performed that demonstrate, compared with MRSI with standard Fourier phase encoding, out-of-voxel signal contamination of spectra was significantly reduced in MRSI with PSF-choice.
Collapse
Affiliation(s)
- Lawrence P Panych
- Department of Radiology, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
82
|
Spur EM, Decelle EA, Cheng LL. Metabolomic imaging of prostate cancer with magnetic resonance spectroscopy and mass spectrometry. Eur J Nucl Med Mol Imaging 2013; 40 Suppl 1:S60-71. [PMID: 23549758 DOI: 10.1007/s00259-013-2379-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 12/14/2022]
Abstract
Metabolomic imaging of prostate cancer (PCa) aims to improve in vivo imaging capability so that PCa tumors can be localized noninvasively to guide biopsy and evaluated for aggressiveness prior to prostatectomy, as well as to assess and monitor PCa growth in patients with asymptomatic PCa newly diagnosed by biopsy. Metabolomics studies global variations of metabolites with which malignancy conditions can be evaluated by profiling the entire measurable metabolome, instead of focusing only on certain metabolites or isolated metabolic pathways. At present, PCa metabolomics is mainly studied by magnetic resonance spectroscopy (MRS) and mass spectrometry (MS). With MRS imaging, the anatomic image, obtained from magnetic resonance imaging, is mapped with values of disease condition-specific metabolomic profiles calculated from MRS of each location. For example, imaging of removed whole prostates has demonstrated the ability of metabolomic profiles to differentiate cancerous foci from histologically benign regions. Additionally, MS metabolomic imaging of prostate biopsies has uncovered metabolomic expression patterns that could discriminate between PCa and benign tissue. Metabolomic imaging offers the potential to identify cancer lesions to guide prostate biopsy and evaluate PCa aggressiveness noninvasively in vivo, or ex vivo to increase the power of pathology analysis. Potentially, this imaging ability could be applied not only to PCa, but also to different tissues and organs to evaluate other human malignancies and metabolic diseases.
Collapse
Affiliation(s)
- Eva-Margarete Spur
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, CNY-6, 149 13th Street, Charlestown, Boston, MA 02129, USA
| | | | | |
Collapse
|
83
|
Nagel KNA, Schouten MG, Hambrock T, Litjens GJS, Hoeks CMA, Haken BT, Barentsz JO, Fütterer JJ. Differentiation of Prostatitis and Prostate Cancer by Using Diffusion-weighted MR Imaging and MR-guided Biopsy at 3 T. Radiology 2013; 267:164-172. [DOI: 10.1148/radiol.12111683] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
|
84
|
Influence of imaging and histological factors on prostate cancer detection and localisation on multiparametric MRI: a prospective study. Eur Radiol 2013; 23:2019-29. [PMID: 23494494 DOI: 10.1007/s00330-013-2795-0] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/06/2013] [Accepted: 01/11/2013] [Indexed: 01/18/2023]
|
85
|
Wallace T, Avital I, Stojadinovic A, Brücher BLDM, Cote E, Yu J. Multi-Parametric MRI-Directed Focal Salvage Permanent Interstitial Brachytherapy for Locally Recurrent Adenocarcinoma of the Prostate: A Novel Approach. J Cancer 2013; 4:146-51. [PMID: 23412660 PMCID: PMC3572406 DOI: 10.7150/jca.5419] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 01/15/2013] [Indexed: 11/15/2022] Open
Abstract
Even with the technological advances of dose-escalated IMRT with the addition of the latest image guidance technologies, local failures still occur. The combination of MRI-based imaging techniques can yield quantitative information that reflects on the biological properties of prostatic tissues. These techniques provide unique information that can be used for tumor detection in the treated gland. With the advent of these improved imaging modalities, it has become possible to more effectively image local recurrences within the prostate gland. With better imaging, these focal recurrences can be differentially targeted with salvage brachytherapy minimizing rectal and bladder toxicity. Here we report a novel use of MRI-directed focal brachytherapy after local recurrence. This technique offers a unique opportunity to safely and successfully treat recurrent prostate cancer, previously treated with definitive radiation therapy. The use of multi-parametric MRI-directed focal salvage permanent interstitial brachytherapy for locally recurrent adenocarcinoma of the prostate is a promising strategy to avoid more aggressive and expensive treatments that are associated with increased morbidity, potentially improving survival at potentially lower costs.
Collapse
Affiliation(s)
- T Wallace
- 1. Bon Secours Cancer Institute, Bon Secours Health System, Richmond VA, USA; ; 2. Division of Radiation Oncology, Bon Secours Health system, Richmond VA, USA
| | | | | | | | | | | |
Collapse
|
86
|
Tan N, Margolis DJA, McClure TD, Thomas A, Finley DS, Reiter RE, Huang J, Raman SS. Radical prostatectomy: value of prostate MRI in surgical planning. ACTA ACUST UNITED AC 2013; 37:664-74. [PMID: 21993567 DOI: 10.1007/s00261-011-9805-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The introduction of serum prostate-specific antigen to the prostate cancer screening algorithm has led to an increase in prostate cancer diagnosis as well as a migration toward lower-stage cancer at the time of diagnosis. This stage migration has coincided with changes in treatment options; these include active surveillance, new therapies, and advances in surgical techniques. Use of robot-assisted radical prostatectomy (RARP) as a surgical technique has seen a significant increase over the past several years: the number of patients undergoing RARP has risen from 1% to 40% of all prostatectomies from 2001-2006 to as many as 80% in 2010. The robotic interface provides a 3D magnified view of the surgical field, intuitive instrument manipulation, motion scaling, tremor filtration, and excellent dexterity and range of motion. However, in some cases, the lack of tactile (haptic) feedback may limit the surgeon's decision making ability in assessing malignant involvement of the neurovascular bundles. Pre-operative planning relies on nomograms based on limited clinical and prostate biopsy information. The surgical decision to spare or resect the neurovascular bundles is based on clinical information which is not spatially or anatomically based. Advances in magnetic resonance imaging (MRI) may provide spatially localized information to fill this void and aid surgical planning, particularly for robotic surgeons. In this review, we discuss the potential role of pre-operative MRI in surgical planning for radical prostatectomy.
Collapse
Affiliation(s)
- Nelly Tan
- Department of Radiology, University of California, Los Angeles, 90095, USA.
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Armitage JN, Igali L, Ball RY, Mills RD, Kumar V. Comparison of body-array MRI and Partin tables for predicting extracapsular prostate cancer. JOURNAL OF CLINICAL UROLOGY 2013. [DOI: 10.1177/1875974212465572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Objective: The objective of this article is to evaluate the performance of magnetic resonance imaging (MRI) and Partin tables at predicting extracapsular disease (ECD) in men with prostate cancer. Patients and methods: We identified all patients who had a radical prostatectomy at our institution in 2008. MRI and Partin predictions of ECD were compared with the histopathological stage. Oncological outcome at one year was assessed by biochemical recurrence (BCR) (prostate-specific antigen (PSA) ≥ 0.4 ng/dl followed by another rise). Results: Staging and follow-up data were available for 69 of the 80 patients (86%) who had had radical prostatectomy. Thirty-five of 69 patients had a body-array MRI scan. MRI predicted ECD (≥ rT3) with a sensitivity of 41% and specificity of 69%. Partin tables (> 50% risk ECD) had a sensitivity of 81% and specificity of 54%. Of the 35 patients who had an MRI scan, 22 (63%) had ECD and nine (26%) had BCR. Of the 34 men who were not staged with an MRI, only 10 (29%) had ECD and four (12%) had BCR. Conclusion: MRI performed no better than Partin tables at predicting ECD. Furthermore, patients who did not have an MRI, because of favourable prognostic clinical variables, had a low risk of ECD and BCR. We question the role of body-array MRI for staging prostate cancer and recognise an urgent need for prospective evaluation of multiparametric MRI.
Collapse
Affiliation(s)
- James N Armitage
- Norfolk and Norwich University Hospitals NHS Foundation Trust, UK
| | - Laszlo Igali
- Norfolk and Norwich University Hospitals NHS Foundation Trust, UK
| | - Richard Y Ball
- Norfolk and Norwich University Hospitals NHS Foundation Trust, UK
| | - Robert D Mills
- Norfolk and Norwich University Hospitals NHS Foundation Trust, UK
| | | |
Collapse
|
88
|
WEIS J, ORTIZ-NIETO F, AHLSTR^|^Ouml;M H. MR Spectroscopy of the Prostate at 3T: Measurements of Relaxation Times and Quantification of Prostate Metabolites using Water as an Internal Reference. Magn Reson Med Sci 2013; 12:289-96. [DOI: 10.2463/mrms.2013-0017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
89
|
Nagarajan R, Margolis DJ, Raman SS, Ouellette D, Sarma MK, Reiter RE, Thomas MA. MR Spectroscopic Imaging of Peripheral Zone in Prostate Cancer Using a 3T MRI Scanner: Endorectal versus External Phased Array Coils. MAGNETIC RESONANCE INSIGHTS 2013; 6:51-8. [PMID: 25114544 PMCID: PMC4089813 DOI: 10.4137/mri.s10861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Magnetic resonance spectroscopic imaging (MRSI) detects alterations in major prostate metabolites, such as citrate (Cit), creatine (Cr), and choline (Ch). We evaluated the sensitivity and accuracy of three-dimensional MRSI of prostate using an endorectal compared to an external phased array “receive” coil on a 3T MRI scanner. Eighteen patients with prostate cancer (PCa) who underwent endorectal MR imaging and proton (1H) MRSI were included in this study. Immediately after the endorectal MRSI scan, the PCa patients were scanned with the external phased array coil. The endorectal coil-detected metabolite ratio [(Ch+Cr)/Cit] was significantly higher in cancer locations (1.667 ± 0.663) compared to non-cancer locations (0.978 ± 0.420) (P < 0.001). Similarly, for the external phased array, the ratio was significantly higher in cancer locations (1.070 ± 0.525) compared to non-cancer locations (0.521 ± 0.310) (P < 0.001). The sensitivity and accuracy of cancer detection were 81% and 78% using the endorectal ‘receive’ coil, and 69% and 75%, respectively using the external phased array ‘receive’ coil.
Collapse
Affiliation(s)
- Rajakumar Nagarajan
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Daniel Ja Margolis
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Steven S Raman
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - David Ouellette
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Manoj K Sarma
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Robert E Reiter
- Urology, University of California Los Angeles, Los Angeles, CA, USA
| | - M Albert Thomas
- Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
90
|
Caivano R, Cirillo P, Balestra A, Lotumolo A, Fortunato G, Macarini L, Zandolino A, Vita G, Cammarota A. Prostate cancer in magnetic resonance imaging: diagnostic utilities of spectroscopic sequences. J Med Imaging Radiat Oncol 2012; 56:606-16. [PMID: 23210579 DOI: 10.1111/j.1754-9485.2012.02449.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Accepted: 05/24/2012] [Indexed: 11/28/2022]
Abstract
OBJECTIVE The aim of our work is to determine the efficacy of a combined study 3 Tesla Magnetic Resonance Imaging (3T MRI), with phased-array coil, for the detection of prostate cancer using magnetic resonance spectroscopy (MRS) and diffusion-weighted images (DWI) in identifying doubt nodules. SUBJECTS AND METHODS In this study, we prospectively studied 46 patients who consecutively underwent digital-rectal exploration for high doses of prostate specific antigen (PSA), as well as a MRI examination and a subsequent rectal biopsy. The study of magnetic resonance imaging was performed with a Philips Achieva 3T scanner and phased-array coil. The images were obtained with turbo spin-echo sequences T2-weighted images, T1-weighted before and after the administration of contrast medium, DWI sequences and 3D spectroscopic sequences. The ultrasound-guided prostate biopsy was performed approximately 15 days after the MRI. The data obtained from MR images and spectroscopy were correlated with histological data. RESULTS MRI revealed sensitivity and specificity of 88% and 61% respectively and positive predictive value (PPV) of 73%, negative predicted value (NPV) of 81% and accuracy of 76%. In identifying the location of prostate cancer, the sensitivity of 3T MRS was 92%, with a specificity of 89%, PPV of 87%, NPV of 88% and accuracy of 87%; DWI showed a sensitivity of 88%, specificity of 61%, PPV of 73%, NPV of 81% and accuracy of 76%. CONCLUSIONS The 3T MR study with phased-array coil and the use of DWI and spectroscopic sequences, in addition to T2-weighted sequences, revealed to be accurate in the diagnosis of prostate cancer and in the identification of nodules to be biopsied. It may be indicated as a resolute way before biopsy in patients with elevated PSA value and can be proposed in the staging and follow-up.
Collapse
Affiliation(s)
- Rocchina Caivano
- Department of Radiology, I.R.C.C.S. - C.R.O.B., Rionero in Vulture (Pz), Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Russo G, Mischi M, Scheepens W, De la Rosette JJ, Wijkstra H. Angiogenesis in prostate cancer: onset, progression and imaging. BJU Int 2012; 110:E794-808. [DOI: 10.1111/j.1464-410x.2012.11444.x] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
92
|
Zhu Y, Chen Y, Qi T, Jiang J, Qi J, Yu Y, Yao X, Guan W. Prostate cancer detection with real-time elastography using a bi-plane transducer: comparison with step section radical prostatectomy pathology. World J Urol 2012; 32:329-33. [DOI: 10.1007/s00345-012-0922-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 07/24/2012] [Indexed: 11/29/2022] Open
|
93
|
|
94
|
Jung AJ, Coakley FV, Shinohara K, Carroll PR, Kurhanewicz J, Cowan JE, Westphalen AC. Local staging of prostate cancer: comparative accuracy of T2-weighted endorectal MR imaging and transrectal ultrasound. Clin Imaging 2012; 36:547-52. [PMID: 22920360 DOI: 10.1016/j.clinimag.2011.11.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 09/20/2011] [Accepted: 11/21/2011] [Indexed: 10/28/2022]
Abstract
OBJECTIVE The objective of this study was to compare the accuracy of T2-weighted magnetic resonance (MR) imaging and transrectal ultrasound (TRUS) for staging of prostate cancer. MATERIAL AND METHODS A total of 101 men with biopsy-proven prostate cancer undergoing both T2-weighted endorectal MR imaging and B-mode TRUS for local tumor staging prior to radical prostatectomy were retrospectively identified. Three MR readers rated the likelihood of locally advanced disease using a 5-point scale. An ultrasound reader performed the same rating. Staging accuracy was compared using receiver operating characteristic curves. RESULTS Staging accuracy was not significantly different between MR imaging (A(z) = 0.69-0.70) and TRUS (A(z) = 0.81, P>.05). CONCLUSIONS T2-weighted MR imaging demonstrates comparable accuracy to B-mode TRUS for depicting locally invasive prostate cancer.
Collapse
Affiliation(s)
- Adam J Jung
- Department of Radiology and Biomedical Imaging, University of California San Francisco, 505 Parnassus Ave, San Francisco, CA 94143-0628, USA.
| | | | | | | | | | | | | |
Collapse
|
95
|
Zechmann CM, Menze BH, Kelm BM, Zamecnik P, Ikinger U, Giesel FL, Thieke C, Delorme S, Hamprecht FA, Bachert P. Automated vs. manual pattern recognition of 3D (1)H MRSI data of patients with prostate cancer. Acad Radiol 2012; 19:675-84. [PMID: 22578226 DOI: 10.1016/j.acra.2012.02.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Revised: 11/14/2011] [Accepted: 02/12/2012] [Indexed: 10/28/2022]
Abstract
RATIONALE AND OBJECTIVES The aim of this study was to assess (1) automated analysis methods versus manual evaluation by human experts of three-dimensional proton magnetic resonance spectroscopic imaging (MRSI) data from patients with prostate cancer and (2) the contribution of spatial information to decision making. MATERIALS AND METHODS Three-dimensional proton MRSI was applied at 1.5 T. MRSI data from 10 patients with histologically proven prostate adenocarcinoma, scheduled either for prostatectomy or intensity-modulated radiation therapy, were evaluated. First, two readers manually labeled spectra using spatial information to identify the localization of spectra and neighborhood information, establishing the reference set of this study. Then, spectra were labeled again manually in a blinded and randomized manner and evaluated automatically using software that applied spectral line fitting as well as pattern recognition routines. Statistical analysis of the results of the different approaches was performed. RESULTS Altogether, 1018 spectra were evaluable by all methods. Numbers of evaluable spectra differed significantly depending on patient and evaluation method. Compared to automated analysis, the readers made rather binary decisions, using information from neighboring spectra in ambiguous cases, when evaluating MRSI data as a whole. Differences between anatomically blinded and unblinded evaluation were larger than differences between evaluations using blinded data and automated techniques. CONCLUSIONS An automated approach, which evaluates each spectrum individually, can be as good as an anatomy-blinded human reader. Spatial information is routinely used by human experts to support their final decisions. Automated procedures that consider anatomic information for spectral evaluation will enhance the diagnostic impact of MRSI of the human prostate.
Collapse
|
96
|
Nagarajan R, Margolis D, Raman S, Sarma MK, Sheng K, King CR, Verma G, Sayre J, Reiter RE, Thomas MA. MR spectroscopic imaging and diffusion-weighted imaging of prostate cancer with Gleason scores. J Magn Reson Imaging 2012; 36:697-703. [DOI: 10.1002/jmri.23676] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/14/2012] [Indexed: 01/22/2023] Open
|
97
|
Kauppinen RA, Peet AC. Using magnetic resonance imaging and spectroscopy in cancer diagnostics and monitoring: preclinical and clinical approaches. Cancer Biol Ther 2012; 12:665-79. [PMID: 22004946 DOI: 10.4161/cbt.12.8.18137] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nuclear Magnetic Resonance (MR) based imaging has become an integrated domain in today's oncology research and clinical management of cancer patients. MR is a unique imaging modality among numerous other imaging modalities by providing access to anatomical, physiological, biochemical and molecular details of tumour with excellent spatial and temporal resolutions. In this review we will cover established and investigational MR imaging (MRI) and MR spectroscopy (MRS) techniques used for cancer imaging and demonstrate wealth of information on tumour biology and clinical applications MR techniques offer for oncology research both in preclinical and clinical settings. Emphasis is given not only to the variety of information which may be obtained but also the complementary nature of the techniques. This ability to determine tumour type, grade, invasiveness, degree of hypoxia, microvacular characteristics, and metabolite phenotype, has already profoundly transformed oncology research and patient management. It is evident from the data reviewed that MR techniques will play a key role in uncovering molecular fingerprints of cancer, developing targeted treatment strategies and assessing responsiveness to treatment for personalized patient management, thereby allowing rapid translation of imaging research conclusions into the benefit of clinical oncology.
Collapse
|
98
|
Venugopal N, McCurdy B, Hovdebo J, Al Mehairi S, Alamri A, Sandhu GS, Sivalingam S, Drachenberg D, Ryner L. Automatic conformal prescription of very selective saturation bands for in vivo 1H-MRSI of the prostate. NMR IN BIOMEDICINE 2012; 25:643-653. [PMID: 22162346 DOI: 10.1002/nbm.1780] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 07/11/2011] [Accepted: 07/13/2011] [Indexed: 05/31/2023]
Abstract
An important step in the implementation of three-dimensional in vivo proton magnetic resonance spectroscopic imaging ((1)H-MRSI) of the prostate is the placement of spatial saturation pulses around the region of interest (ROI) for the removal of unwanted contaminating signals from peripheral tissue. The present study demonstrates the use of a technique called conformal voxel magnetic resonance spectroscopy (CV-MRS). This method automates the placement, orientation, timing and flip angle of very selective saturation (VSS) pulses around an irregularly-shaped, user-defined ROI. The method employs a user adjustable number of automatically positioned VSS pulses (20 used in the present study) which null the signal from periprostatic lipids while closely conforming the shape of the excitation voxel to the shape of the prostate. A standard endorectal coil in combination with a torso-phased array coil was used for all in vivo prostate studies. Three-dimensional in vivo prostate (1)H-MRSI data were obtained using the proposed semi-automated CV-MRS technique, and compared with a standard point resolved spectroscopy (PRESS) technique at TE = 130 ms using manual placement of saturation pulses. The in vivo prostate (1)H-MRSI data collected from 12 healthy subjects using the CV-MRS method showed significantly reduced lipid contamination throughout the prostate, and reduced baseline distortions. On average there was a 50 ± 17% (range 12% - 68%) reduction in lipids throughout the prostate. A voxel-by-voxel benchmark test of over 850 voxels showed that there were 63% more peaks fitted using the LCModel when using a Cramer-Rao Lower Bound (CRLB) cut-off of 40% when using the optimized conformal voxel technique in comparison to the manual placement approach. The evaluation of this CV-MRS technique has demonstrated the potential for easy automation of the graphical prescription of saturation bands for use in (1)H-MRSI.
Collapse
Affiliation(s)
- N Venugopal
- Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Tiwari P, Kurhanewicz J, Viswanath S, Sridhar A, Madabhushi A. Multimodal wavelet embedding representation for data combination (MaWERiC): integrating magnetic resonance imaging and spectroscopy for prostate cancer detection. NMR IN BIOMEDICINE 2012; 25:607-619. [PMID: 21960175 PMCID: PMC3298634 DOI: 10.1002/nbm.1777] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 05/28/2023]
Abstract
Recently, both Magnetic Resonance (MR) Imaging (MRI) and Spectroscopy (MRS) have emerged as promising tools for detection of prostate cancer (CaP). However, due to the inherent dimensionality differences in MR imaging and spectral information, quantitative integration of T(2) weighted MRI (T(2)w MRI) and MRS for improved CaP detection has been a major challenge. In this paper, we present a novel computerized decision support system called multimodal wavelet embedding representation for data combination (MaWERiC) that employs, (i) wavelet theory to extract 171 Haar wavelet features from MRS and 54 Gabor features from T(2)w MRI, (ii) dimensionality reduction to individually project wavelet features from MRS and T(2)w MRI into a common reduced Eigen vector space, and (iii), a random forest classifier for automated prostate cancer detection on a per voxel basis from combined 1.5 T in vivo MRI and MRS. A total of 36 1.5 T endorectal in vivo T(2)w MRI and MRS patient studies were evaluated per voxel by MaWERiC using a three-fold cross validation approach over 25 iterations. Ground truth for evaluation of results was obtained by an expert radiologist annotations of prostate cancer on a per voxel basis who compared each MRI section with corresponding ex vivo wholemount histology sections with the disease extent mapped out on histology. Results suggest that MaWERiC based MRS T(2)w meta-classifier (mean AUC, μ = 0.89 ± 0.02) significantly outperformed (i) a T(2)w MRI (using wavelet texture features) classifier (μ = 0.55 ± 0.02), (ii) a MRS (using metabolite ratios) classifier (μ = 0.77 ± 0.03), (iii) a decision fusion classifier obtained by combining individual T(2)w MRI and MRS classifier outputs (μ = 0.85 ± 0.03), and (iv) a data combination method involving a combination of metabolic MRS and MR signal intensity features (μ = 0.66 ± 0.02).
Collapse
Affiliation(s)
- Pallavi Tiwari
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| | - John Kurhanewicz
- University of California, Department of Radiology, San Francisco, CA, 94143
| | - Satish Viswanath
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| | - Akshay Sridhar
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| | - Anant Madabhushi
- Department of Biomedical Engineering, Rutgers University, 599 Taylor Road, Piscataway, NJ 08854
| |
Collapse
|
100
|
Kumar V, Jagannathan NR, Thulkar S, Kumar R. Prebiopsy magnetic resonance spectroscopy and imaging in the diagnosis of prostate cancer. Int J Urol 2012; 19:602-13. [PMID: 22435389 DOI: 10.1111/j.1442-2042.2012.02995.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Existing screening investigations for the diagnosis of early prostate cancer lack specificity, resulting in a high negative biopsy rate. There is increasing interest in the use of various magnetic resonance methods for improving the yield of transrectal ultrasound-guided biopsies of the prostate in men suspected to have prostate cancer. We review the existing status of such investigations. METHODS A literature search was carried out using the Pubmed database to identify articles related to magnetic resonance methods for diagnosing prostate cancer. References from these articles were also extracted and reviewed. RESULTS Recent studies have focused on prebiopsy magnetic resonance investigations using conventional magnetic resonance imaging, dynamic contrast enhanced magnetic resonance imaging, diffusion weighted magnetic resonance imaging, magnetization transfer imaging and magnetic resonance spectroscopy of the prostate. This marks a shift from the earlier strategy of carrying out postbiopsy magnetic resonance investigations. Prebiopsy magnetic resonance investigations has been useful in identifying patients who are more likely to have a biopsy positive for malignancy. CONCLUSIONS Prebiopsy magnetic resonance investigations has a potential role in increasing specificity of screening for early prostate cancer. It has a role in the targeting of biopsy sites, avoiding unnecessary biopsies and predicting the outcome of biopsies.
Collapse
Affiliation(s)
- Virendra Kumar
- Department of Radio-diagnosis, All India Institute of Medical Sciences, New Delhi, India
| | | | | | | |
Collapse
|