51
|
Eddinger TJ. Smooth muscle-protein translocation and tissue function. Anat Rec (Hoboken) 2015; 297:1734-46. [PMID: 25125185 DOI: 10.1002/ar.22970] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 03/18/2014] [Accepted: 03/18/2014] [Indexed: 01/25/2023]
Abstract
Smooth muscle (SM) tissue is a complex organization of multiple cell types and is regulated by numerous signaling molecules (neurotransmitters, hormones, cytokines, etc.). SM contractile function can be regulated via expression and distribution of the contractile and cytoskeletal proteins, and activation of any of the second messenger pathways that regulate them. Spatial-temporal changes in the contractile, cytoskeletal or regulatory components of SM cells (SMCs) have been proposed to alter SM contractile activity. Ca(2+) sensitization/desensitization can occur as a result of changes at any of these levels, and specific pathways have been identified at all of these levels. Understanding when and how proteins can translocate within the cytoplasm, or to-and-from the plasmalemma and the cytoplasm to alter contractile activity is critical. Numerous studies have reported translocation of proteins associated with the adherens junction and G protein-coupled receptor activation pathways in isolated SMC systems. Specific examples of translocation of vinculin to and from the adherens junction and protein kinase C (PKC) and 17 kDa PKC-potentiated inhibitor of myosin light chain phosphatase (CPI-17) to and from the plasmalemma in isolated SMC systems but not in intact SM tissues are discussed. Using both isolated SMC systems and SM tissues in parallel to pursue these studies will advance our understanding of both the role and mechanism of these pathways as well as their possible significance for Ca(2+) sensitization in intact SM tissues and organ systems.
Collapse
Affiliation(s)
- Thomas J Eddinger
- Department of Biological Sciences, Marquette University, Milwaukee, Wisconsin
| |
Collapse
|
52
|
Ye GJC, Nesmith AP, Parker KK. The role of mechanotransduction on vascular smooth muscle myocytes' [corrected] cytoskeleton and contractile function. Anat Rec (Hoboken) 2015; 297:1758-69. [PMID: 25125187 DOI: 10.1002/ar.22983] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 06/06/2014] [Indexed: 12/29/2022]
Abstract
Smooth muscle (SM) exhibits a highly organized structural hierarchy that extends over multiple spatial scales to perform a wide range of functions at the cellular, tissue, and organ levels. Early efforts primarily focused on understanding vascular SM (VSM) function through biochemical signaling. However, accumulating evidence suggests that mechanotransduction, the process through which cells convert mechanical stimuli into biochemical cues, is requisite for regulating contractility. Cytoskeletal proteins that comprise the extracellular, intercellular, and intracellular domains are mechanosensitive and can remodel their structure and function in response to external mechanical cues. Pathological stimuli such as malignant hypertension can act through the same mechanotransductive pathways to induce maladaptive remodeling, leading to changes in cellular shape and loss of contractile function. In both health and disease, the cytoskeletal architecture integrates the mechanical stimuli and mediates structural and functional remodeling in the VSM.
Collapse
Affiliation(s)
- George J C Ye
- Disease Biophysics Group, Wyss Institute for Biologically Inspired Engineering and the School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | | | | |
Collapse
|
53
|
Hong Z, Reeves KJ, Sun Z, Li Z, Brown NJ, Meininger GA. Vascular smooth muscle cell stiffness and adhesion to collagen I modified by vasoactive agonists. PLoS One 2015; 10:e0119533. [PMID: 25745858 PMCID: PMC4351978 DOI: 10.1371/journal.pone.0119533] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 01/22/2015] [Indexed: 11/25/2022] Open
Abstract
In vascular smooth muscle cells (VSMCs) integrin-mediated adhesion to extracellular matrix (ECM) proteins play important roles in sustaining vascular tone and resistance. The main goal of this study was to determine whether VSMCs adhesion to type I collagen (COL-I) was altered in parallel with the changes in the VSMCs contractile state induced by vasoconstrictors and vasodilators. VSMCs were isolated from rat cremaster skeletal muscle arterioles and maintained in primary culture without passage. Cell adhesion and cell E-modulus were assessed using atomic force microscopy (AFM) by repetitive nano-indentation of the AFM probe on the cell surface at 0.1 Hz sampling frequency and 3200 nm Z-piezo travelling distance (approach and retraction). AFM probes were tipped with a 5 μm diameter microbead functionalized with COL-I (1mg\ml). Results showed that the vasoconstrictor angiotensin II (ANG-II; 10−6) significantly increased (p<0.05) VSMC E-modulus and adhesion probability to COL-I by approximately 35% and 33%, respectively. In contrast, the vasodilator adenosine (ADO; 10−4) significantly decreased (p<0.05) VSMC E-modulus and adhesion probability by approximately −33% and −17%, respectively. Similarly, the NO donor (PANOate, 10−6 M), a potent vasodilator, also significantly decreased (p<0.05) the VSMC E-modulus and COL-I adhesion probability by −38% and −35%, respectively. These observations support the hypothesis that integrin-mediated VSMC adhesion to the ECM protein COL-I is dynamically regulated in parallel with VSMC contractile activation. These data suggest that the signal transduction pathways modulating VSMC contractile activation and relaxation, in addition to ECM adhesion, interact during regulation of contractile state.
Collapse
Affiliation(s)
- Zhongkui Hong
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
| | - Kimberley J. Reeves
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Zhe Sun
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
| | - Zhaohui Li
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| | - Nicola J. Brown
- Department of Oncology, University of Sheffield, Sheffield, United Kingdom
| | - Gerald A. Meininger
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
- Department of Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States of America
- * E-mail:
| |
Collapse
|
54
|
Wang T, Wang R, Cleary RA, Gannon OJ, Tang DD. Recruitment of β-catenin to N-cadherin is necessary for smooth muscle contraction. J Biol Chem 2015; 290:8913-24. [PMID: 25713069 DOI: 10.1074/jbc.m114.621003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Indexed: 01/26/2023] Open
Abstract
β-Catenin is a key component that connects transmembrane cadherin with the actin cytoskeleton at the cell-cell interface. However, the role of the β-catenin/cadherin interaction in smooth muscle has not been well characterized. Here stimulation with acetylcholine promoted the recruitment of β-catenin to N-cadherin in smooth muscle cells/tissues. Knockdown of β-catenin by lentivirus-mediated shRNA attenuated smooth muscle contraction. Nevertheless, myosin light chain phosphorylation at Ser-19 and actin polymerization in response to contractile activation were not reduced by β-catenin knockdown. In addition, the expression of the β-catenin armadillo domain disrupted the recruitment of β-catenin to N-cadherin. Force development, but not myosin light chain phosphorylation and actin polymerization, was reduced by the expression of the β-catenin armadillo domain. Furthermore, actin polymerization and microtubules have been implicated in intracellular trafficking. In this study, the treatment with the inhibitor latrunculin A diminished the interaction of β-catenin with N-cadherin in smooth muscle. In contrast, the exposure of smooth muscle to the microtubule depolymerizer nocodazole did not affect the protein-protein interaction. Together, these findings suggest that smooth muscle contraction is mediated by the recruitment of β-catenin to N-cadherin, which may facilitate intercellular mechanotransduction. The association of β-catenin with N-cadherin is regulated by actin polymerization during contractile activation.
Collapse
Affiliation(s)
- Tao Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Ruping Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Rachel A Cleary
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Olivia J Gannon
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Dale D Tang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| |
Collapse
|
55
|
Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters. Sci Rep 2015; 5:7924. [PMID: 25603780 PMCID: PMC4300460 DOI: 10.1038/srep07924] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/11/2014] [Indexed: 12/11/2022] Open
Abstract
Single molecule localization microscopy (SMLM) techniques allow for sub-diffraction imaging with spatial resolutions better than 10 nm reported. Much has been discussed relating to different variations of SMLM and all-inclusive microscopes can now be purchased, removing the need for in-house software or hardware development. However, little discussion has occurred examining the reliability and quality of the images being produced, as well as the potential for overlooked preparative artifacts. As a result of the up to an order-of-magnitude improvement in spatial resolution, substantially more detail is observed, including changes in distribution and ultrastructure caused by the many steps required to fix, permeabilize, and stain a sample. Here we systematically investigate many of these steps including different fixatives, fixative concentration, permeabilization concentration and timing, antibody concentration, and buffering. We present three well-optimized fixation protocols for staining microtubules, mitochondria and actin in a mammalian cell line and then discuss various artifacts in relation to images obtained from samples prepared using the protocols. The potential for such errors to go undetected in SMLM images and the complications in defining a ‘good’ image using previous parameters applied to confocal microscopy are also discussed.
Collapse
|
56
|
Fediuk J, Dakshinamurti S. A role for actin polymerization in persistent pulmonary hypertension of the newborn. Can J Physiol Pharmacol 2015; 93:185-94. [PMID: 25695400 DOI: 10.1139/cjpp-2014-0413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Persistent pulmonary hypertension of the newborn (PPHN) is defined as the failure of normal pulmonary vascular relaxation at birth. Hypoxia is known to impede postnatal disassembly of the actin cytoskeleton in pulmonary arterial myocytes, resulting in elevation of smooth muscle α-actin and γ-actin content in elastic and resistance pulmonary arteries in PPHN compared with age-matched controls. This review examines the original histological characterization of PPHN with attention to cytoskeletal structural remodeling and actin isoform abundance, reviews the existing evidence for understanding the biophysical and biochemical forces at play during neonatal circulatory transition, and specifically addresses the role of the cortical actin architecture, primarily identified as γ-actin, in the transduction of mechanical force in the hypoxic PPHN pulmonary circuit.
Collapse
Affiliation(s)
- Jena Fediuk
- Biology of Breathing Group, Manitoba Institute of Child Health, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada., Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
57
|
Abd-Elrahman KS, Walsh MP, Cole WC. Abnormal Rho-associated kinase activity contributes to the dysfunctional myogenic response of cerebral arteries in type 2 diabetes. Can J Physiol Pharmacol 2015; 93:177-84. [PMID: 25660561 DOI: 10.1139/cjpp-2014-0437] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The structural and functional integrity of the brain, and therefore, cognition, are critically dependent on the appropriate control of blood flow within the cerebral circulation. Inadequate flow leads to ischemia, whereas excessive flow causes small vessel rupture and (or) blood-brain-barrier disruption. Cerebral blood flow is controlled through the interplay of several physiological mechanisms that regulate the contractile state of vascular smooth muscle cells (VSMCs) within the walls of cerebral resistance arteries and arterioles. The myogenic response of cerebral VSMCs is a key mechanism that is responsible for maintaining constant blood flow during variations in systemic pressure, i.e., flow autoregulation. Inappropriate myogenic control of cerebral blood flow is associated with, and prognostic of, neurological deterioration and poor outcome in patients with several conditions, including type 2 diabetes. Here, we review recent advances in our understanding of the role of inappropriate Rho-associated kinase activity as a cause of impaired myogenic regulation of cerebral arterial diameter in type 2 diabetes.
Collapse
Affiliation(s)
- Khaled S Abd-Elrahman
- The Smooth Muscle Research Group, Libin Cardiovascular Institute, Hotchkiss Brain Institute, and the Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada
| | | | | |
Collapse
|
58
|
Wang T, Cleary RA, Wang R, Tang DD. Glia maturation factor-γ phosphorylation at Tyr-104 regulates actin dynamics and contraction in human airway smooth muscle. Am J Respir Cell Mol Biol 2015; 51:652-9. [PMID: 24818551 DOI: 10.1165/rcmb.2014-0125oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Actin dynamics plays an essential role in regulating airway smooth muscle contraction. The mechanisms that regulate actin dynamics in smooth muscle are not completely understood. Glia maturation factor (GMF) is a protein that has been reported to inhibit actin nucleation and to induce actin network debranching in vitro. The role of GMF in human smooth muscle cells and tissues has not been investigated. In this study, knockdown of GMF-γ by RNA interference enhanced actin polymerization and contraction in human airway smooth muscle (HASM) cells and tissues without affecting myosin phosphorylation (another important biochemical change during contractile activation). Activation of HASM cells and tissues with acetylcholine induced dissociation of GMF-γ from Arp2 of the Arp2/3 complex. Acetylcholine stimulation also increased GMF-γ phosphorylation at Tyr-104. GMF-γ phosphorylation at this residue was mediated by c-Abl tyrosine kinase. The GMF-γ mutant Y104F (phenylalanine substitution at Tyr-104) had higher association with Arp2 in HASM cells upon contractile activation. Furthermore, expression of mutant Y104F GMF-γ attenuated actin polymerization and contraction in smooth muscle. Thus, we propose a novel mechanism for the regulation of actin dynamics and smooth muscle contraction. In unstimulated smooth muscle, GMF-γ binds to the Arp2/3 complex, which induces actin disassembly and retains lower levels of F-actin. Upon contractile stimulation, phosphorylation at Tyr-104 mediated by c-Abl tyrosine kinase leads to the dissociation of GMF-γ from Arp2/3, by which GMF-γ no longer induces actin disassembly. Reduced actin disassembly renders F-actin in higher level, which facilitates smooth muscle contraction.
Collapse
Affiliation(s)
- Tao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | | | | | | |
Collapse
|
59
|
Ohanian J, Pieri M, Ohanian V. Non-receptor tyrosine kinases and the actin cytoskeleton in contractile vascular smooth muscle. J Physiol 2014; 593:3807-14. [PMID: 25433074 DOI: 10.1113/jphysiol.2014.284174] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 11/14/2014] [Indexed: 01/01/2023] Open
Abstract
The contractility of vascular smooth muscle cells within the walls of arteries is regulated by mechanical stresses and vasoactive signals. Transduction of these diverse stimuli into a cellular response occurs through many different mechanisms, one being reorganisation of the actin cytoskeleton. In addition to a structural role in maintaining cellular architecture it is now clear that the actin cytoskeleton of contractile vascular smooth muscle cells is a dynamic structure reacting to changes in the cellular environment. Equally clear is that disrupting the cytoskeleton or interfering with its rearrangement, has profound effects on artery contractility. The actin cytoskeleton associates with dense plaques, also called focal adhesions, at the plasma membrane of smooth muscle cells. Vasoconstrictors and mechanical stress induce remodelling of the focal adhesions, concomitant with cytoskeletal reorganisation. Recent work has shown that non-receptor tyrosine kinases and tyrosine phosphorylation of focal adhesion proteins such as paxillin and Hic-5 are important for actin cytoskeleton and focal adhesion remodelling and contraction.
Collapse
Affiliation(s)
- Jacqueline Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Services Centre, University of Manchester, Manchester, UK
| | - Maria Pieri
- Institute of Cardiovascular Sciences, Manchester Academic Health Services Centre, University of Manchester, Manchester, UK
| | - Vasken Ohanian
- Institute of Cardiovascular Sciences, Manchester Academic Health Services Centre, University of Manchester, Manchester, UK
| |
Collapse
|
60
|
Fediuk J, Sikarwar AS, Nolette N, Dakshinamurti S. Thromboxane-induced actin polymerization in hypoxic neonatal pulmonary arterial myocytes involves Cdc42 signaling. Am J Physiol Lung Cell Mol Physiol 2014; 307:L877-87. [DOI: 10.1152/ajplung.00036.2014] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In hypoxic pulmonary arterial (PA) myocytes, challenge with thromboxane mimetic U46619 induces marked actin polymerization and contraction, phenotypic features of persistent pulmonary hypertension of the newborn (PPHN). Rho GTPases regulate the actin cytoskeleton. We previously reported that U46619-induced actin polymerization in hypoxic PA myocytes occurs independently of the RhoA pathway and hypothesized involvement of the Cdc42 pathway. PA myocytes grown in normoxia or hypoxia for 72 h were stimulated with U46619, then analyzed for Rac/Cdc42 activation by affinity precipitation, phosphatidylinositide-3-kinase (PI3K) activity by phospho-Akt, phospho-p21-activated kinase (PAK) by immunoblot, and association of Cdc42 with neuronal Wiskott Aldrich Syndrome protein (N-WASp) by immunoprecipitation. The effect of Rac or PAK inhibition on filamentous actin was quantified by laser-scanning cytometry and by cytoskeletal fractionation; effects of actin-modifying agents were measured by isometric myography. Basal Cdc42 activity increased in hypoxia, whereas Rac activity decreased. U46619 challenge increased Cdc42 and Rac activity in hypoxic cells, independently of PI3K. Hypoxia increased phospho-PAK, unaltered by U46619. Association of Cdc42 with N-WASp decreased in hypoxia but increased after U46619 exposure. Hypoxia doubled filamentous-to-globular ratios of α- and γ-actin isoforms. Jasplakinolide stabilized γ-filaments, increasing force; cytochalasin D depolymerized all actin isoforms, decreasing force. Rac and PAK inhibition decreased filamentous actin in tissues although without decrease in force. Rho inhibition decreased myosin phosphorylation and force. Hypoxia induces actin polymerization in PA myocytes, particularly increasing filamentous α- and γ-actin, contributing to U46619-induced contraction. Hypoxic PA myocytes challenged with a thromboxane mimetic polymerize actin via the Cdc42 pathway, reflecting increased Cdc42 association with N-WASp. Mechanisms regulating thromboxane-mediated actin polymerization are potential targets for future PPHN pharmacotherapy.
Collapse
Affiliation(s)
- Jena Fediuk
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
- Department of Physiology University of Manitoba, Winnipeg, Manitoba, Canada
| | - Anurag S. Sikarwar
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
- Department of Physiology University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nora Nolette
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Shyamala Dakshinamurti
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
- Department of Physiology University of Manitoba, Winnipeg, Manitoba, Canada
- Department of Pediatrics, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
61
|
Moreno-Domínguez A, El-Yazbi AF, Zhu HL, Colinas O, Zhong XZ, Walsh EJ, Cole DM, Kargacin GJ, Walsh MP, Cole WC. Cytoskeletal reorganization evoked by Rho-associated kinase- and protein kinase C-catalyzed phosphorylation of cofilin and heat shock protein 27, respectively, contributes to myogenic constriction of rat cerebral arteries. J Biol Chem 2014; 289:20939-52. [PMID: 24914207 PMCID: PMC4110300 DOI: 10.1074/jbc.m114.553743] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 06/03/2014] [Indexed: 12/31/2022] Open
Abstract
Our understanding of the molecular events contributing to myogenic control of diameter in cerebral resistance arteries in response to changes in intravascular pressure, a fundamental mechanism regulating blood flow to the brain, is incomplete. Myosin light chain kinase and phosphatase activities are known to be increased and decreased, respectively, to augment phosphorylation of the 20-kDa regulatory light chain subunits (LC20) of myosin II, which permits cross-bridge cycling and force development. Here, we assessed the contribution of dynamic reorganization of the actin cytoskeleton and thin filament regulation to the myogenic response and serotonin-evoked constriction of pressurized rat middle cerebral arteries. Arterial diameter and the levels of phosphorylated LC(20), calponin, caldesmon, cofilin, and HSP27, as well as G-actin content, were determined. A decline in G-actin content was observed following pressurization from 10 mm Hg to between 40 and 120 mm Hg and in three conditions in which myogenic or agonist-evoked constriction occurred in the absence of a detectable change in LC20 phosphorylation. No changes in thin filament protein phosphorylation were evident. Pressurization reduced G-actin content and elevated the levels of cofilin and HSP27 phosphorylation. Inhibitors of Rho-associated kinase and PKC prevented the decline in G-actin; reduced cofilin and HSP27 phosphoprotein content, respectively; and blocked the myogenic response. Furthermore, phosphorylation modulators of HSP27 and cofilin induced significant changes in arterial diameter and G-actin content of myogenically active arteries. Taken together, our findings suggest that dynamic reorganization of the cytoskeleton involving increased actin polymerization in response to Rho-associated kinase and PKC signaling contributes significantly to force generation in myogenic constriction of cerebral resistance arteries.
Collapse
Affiliation(s)
| | - Ahmed F. El-Yazbi
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Hai-Lei Zhu
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Olaia Colinas
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - X. Zoë Zhong
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Emma J. Walsh
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Dylan M. Cole
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Gary J. Kargacin
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| | - Michael P. Walsh
- Biochemistry & Molecular Biology, Libin Cardiovascular Institute and Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta T2N 4N1, Canada
| | - William C. Cole
- From the Smooth Muscle Research Group, Departments of Physiology & Pharmacology and
| |
Collapse
|
62
|
Li J, Chen S, Cleary RA, Wang R, Gannon OJ, Seto E, Tang DD. Histone deacetylase 8 regulates cortactin deacetylation and contraction in smooth muscle tissues. Am J Physiol Cell Physiol 2014; 307:C288-95. [PMID: 24920679 DOI: 10.1152/ajpcell.00102.2014] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Histone deacetylases (HDACs) are a family of enzymes that mediate nucleosomal histone deacetylation and gene expression. Some members of the HDAC family have also been implicated in nonhistone protein deacetylation, which modulates cell-cycle control, differentiation, and cell migration. However, the role of HDACs in smooth muscle contraction is largely unknown. Here, HDAC8 was localized both in the cytoplasm and the nucleus of mouse and human smooth muscle cells. Knockdown of HDAC8 by lentivirus-encoding HDAC8 shRNA inhibited force development in response to acetylcholine. Treatment of smooth muscle tissues with HDAC8 inhibitor XXIV (OSU-HDAC-44) induced relaxation of precontracted smooth muscle tissues. In addition, cortactin is an actin-regulatory protein that undergoes deacetylation during migration of NIH 3T3 cells. In this study, acetylcholine stimulation induced cortactin deacetylation in mouse and human smooth muscle tissues, as evidenced by immunoblot analysis using antibody against acetylated lysine. Knockdown of HDAC8 by RNAi or treatment with the inhibitor attenuated cortactin deacetylation and actin polymerization without affecting myosin activation. Furthermore, expression of a charge-neutralizing cortactin mutant inhibited contraction and actin dynamics during contractile activation. These results suggest a novel mechanism for the regulation of smooth muscle contraction. In response to contractile stimulation, HDAC8 may mediate cortactin deacetylation, which subsequently promotes actin filament polymerization and smooth muscle contraction.
Collapse
Affiliation(s)
- Jia Li
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Shu Chen
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Rachel A Cleary
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Ruping Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Olivia J Gannon
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| | - Edward Seto
- Molecular Oncology Department, Moffitt Cancer Center, Tampa, Florida
| | - Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York; and
| |
Collapse
|
63
|
Koopmans T, Anaparti V, Castro-Piedras I, Yarova P, Irechukwu N, Nelson C, Perez-Zoghbi J, Tan X, Ward JPT, Wright DB. Ca2+ handling and sensitivity in airway smooth muscle: emerging concepts for mechanistic understanding and therapeutic targeting. Pulm Pharmacol Ther 2014; 29:108-20. [PMID: 24831539 DOI: 10.1016/j.pupt.2014.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Revised: 03/28/2014] [Accepted: 05/01/2014] [Indexed: 02/01/2023]
Abstract
Free calcium ions within the cytosol serve as a key secondary messenger system for a diverse range of cellular processes. Dysregulation of cytosolic Ca(2+) handling in airway smooth muscle (ASM) has been implicated in asthma, and it has been hypothesised that this leads, at least in part, to associated changes in both the architecture and function of the lung. Significant research is therefore directed towards furthering our understanding of the mechanisms which control ASM cytosolic calcium, in addition to those regulating the sensitivity of its downstream effector targets to calcium. Key aspects of the recent developments in this field were discussed at the 8th Young Investigators' Symposium on Smooth Muscle (2013, Groningen, The Netherlands), and are outlined in this review.
Collapse
Affiliation(s)
- T Koopmans
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands
| | - V Anaparti
- Department of Immunology, University of Manitoba, Winnipeg, Canada
| | - I Castro-Piedras
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - P Yarova
- Cardiff School of Biosciences, Cardiff University, UK
| | - N Irechukwu
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - C Nelson
- School of Science & Technology, Nottingham Trent University, Nottingham, UK
| | - J Perez-Zoghbi
- Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, TX, USA
| | - X Tan
- Lung Inflammation & Infection Lab, QIMR Berghofer Medical Research Institute, Herston, Queensland, Australia
| | - J P T Ward
- Division of Asthma, Allergy and Lung Biology, King's College London, UK
| | - D B Wright
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Division of Asthma, Allergy and Lung Biology, King's College London, UK.
| |
Collapse
|
64
|
Jernigan NL, Resta TC. Calcium Homeostasis and Sensitization in Pulmonary Arterial Smooth Muscle. Microcirculation 2014; 21:259-71. [DOI: 10.1111/micc.12096] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Accepted: 09/25/2013] [Indexed: 01/10/2023]
Affiliation(s)
- Nikki L. Jernigan
- Vascular Physiology Group; Department of Cell Biology and Physiology; University of New Mexico Health Sciences Center; Albuquerque New Mexico USA
| | - Thomas C. Resta
- Vascular Physiology Group; Department of Cell Biology and Physiology; University of New Mexico Health Sciences Center; Albuquerque New Mexico USA
| |
Collapse
|
65
|
Turner SR, MacDonald JA. Novel Contributions of the Smoothelin-like 1 Protein in Vascular Smooth Muscle Contraction and its Potential Involvement in Myogenic Tone. Microcirculation 2014; 21:249-58. [DOI: 10.1111/micc.12108] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 11/04/2013] [Indexed: 12/19/2022]
Affiliation(s)
- Sara R. Turner
- The Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta; Department of Biochemistry & Molecular Biology; University of Calgary; Calgary Alberta Canada
| | - Justin A. MacDonald
- The Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta; Department of Biochemistry & Molecular Biology; University of Calgary; Calgary Alberta Canada
| |
Collapse
|
66
|
Wang R, Cleary RA, Wang T, Li J, Tang DD. The association of cortactin with profilin-1 is critical for smooth muscle contraction. J Biol Chem 2014; 289:14157-69. [PMID: 24700464 DOI: 10.1074/jbc.m114.548099] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Profilin-1 (Pfn-1) is an actin-regulatory protein that has a role in modulating smooth muscle contraction. However, the mechanisms that regulate Pfn-1 in smooth muscle are not fully understood. Here, stimulation with acetylcholine induced an increase in the association of the adapter protein cortactin with Pfn-1 in smooth muscle cells/tissues. Furthermore, disruption of the protein/protein interaction by a cell-permeable peptide (CTTN-I peptide) attenuated actin polymerization and smooth muscle contraction without affecting myosin light chain phosphorylation at Ser-19. Knockdown of cortactin by lentivirus-mediated RNAi also diminished actin polymerization and smooth muscle force development. However, cortactin knockdown did not affect myosin activation. In addition, cortactin phosphorylation has been implicated in nonmuscle cell migration. In this study, acetylcholine stimulation induced cortactin phosphorylation at Tyr-421 in smooth muscle cells. Phenylalanine substitution at this position impaired cortactin/Pfn-1 interaction in response to contractile activation. c-Abl is a tyrosine kinase that is necessary for actin dynamics and contraction in smooth muscle. Here, c-Abl silencing inhibited the agonist-induced cortactin phosphorylation and the association of cortactin with Pfn-1. Finally, treatment with CTTN-I peptide reduced airway resistance and smooth muscle hyperreactivity in a murine model of asthma. These results suggest that the interaction of cortactin with Pfn-1 plays a pivotal role in regulating actin dynamics, smooth muscle contraction, and airway hyperresponsiveness in asthma. The association of cortactin with Pfn-1 is regulated by c-Abl-mediated cortactin phosphorylation.
Collapse
Affiliation(s)
- Ruping Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Rachel A Cleary
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Tao Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Jia Li
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Dale D Tang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| |
Collapse
|
67
|
Chaterji S, Kim P, Choe SH, Tsui JH, Lam CH, Ho DS, Baker AB, Kim DH. Synergistic effects of matrix nanotopography and stiffness on vascular smooth muscle cell function. Tissue Eng Part A 2014; 20:2115-26. [PMID: 24694244 DOI: 10.1089/ten.tea.2013.0455] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vascular smooth muscle cells (vSMCs) retain the ability to undergo modulation in their phenotypic continuum, ranging from a mature contractile state to a proliferative, secretory state. vSMC differentiation is modulated by a complex array of microenvironmental cues, which include the biochemical milieu of the cells and the architecture and stiffness of the extracellular matrix. In this study, we demonstrate that by using UV-assisted capillary force lithography (CFL) to engineer a polyurethane substratum of defined nanotopography and stiffness, we can facilitate the differentiation of cultured vSMCs, reduce their inflammatory signature, and potentially promote the optimal functioning of the vSMC contractile and cytoskeletal machinery. Specifically, we found that the combination of medial tissue-like stiffness (11 MPa) and anisotropic nanotopography (ridge width_groove width_ridge height of 800_800_600 nm) resulted in significant upregulation of calponin, desmin, and smoothelin, in addition to the downregulation of intercellular adhesion molecule-1, tissue factor, interleukin-6, and monocyte chemoattractant protein-1. Further, our results allude to the mechanistic role of the RhoA/ROCK pathway and caveolin-1 in altered cellular mechanotransduction pathways via differential matrix nanotopography and stiffness. Notably, the nanopatterning of the stiffer substrata (1.1 GPa) resulted in the significant upregulation of RhoA, ROCK1, and ROCK2. This indicates that nanopatterning an 800_800_600 nm pattern on a stiff substratum may trigger the mechanical plasticity of vSMCs resulting in a hypercontractile vSMC phenotype, as observed in diabetes or hypertension. Given that matrix stiffness is an independent risk factor for cardiovascular disease and that CFL can create different matrix nanotopographic patterns with high pattern fidelity, we are poised to create a combinatorial library of arterial test beds, whether they are healthy, diseased, injured, or aged. Such high-throughput testing environments will pave the way for the evolution of the next generation of vascular scaffolds that can effectively crosstalk with the scaffold microenvironment and result in improved clinical outcomes.
Collapse
Affiliation(s)
- Somali Chaterji
- 1 Department of Biomedical Engineering, Cockrell School of Engineering, The University of Texas at Austin , Austin, Texas
| | | | | | | | | | | | | | | |
Collapse
|
68
|
Saphirstein RJ, Morgan KG. The contribution of vascular smooth muscle to aortic stiffness across length scales. Microcirculation 2014; 21:201-7. [PMID: 24635219 PMCID: PMC8588963 DOI: 10.1111/micc.12101] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/17/2013] [Indexed: 01/09/2023]
Abstract
The operation of the cardiovascular system in health and disease is inherently mechanical. Clinically, aortic stiffness has proven to be of critical importance as an early biomarker for subsequent cardiovascular disease; however, the mechanisms involved in aortic stiffening are still unclear. The etiology of aortic stiffening with age has been thought to primarily involve changes in extracellular matrix protein composition and quantity, but recent studies suggest a significant involvement of the differentiated contractile vascular smooth muscle cells in the vessel wall. Here, we provide an overview of vascular physiology and biomechanics at different spatial scales. The processes involved in aortic stiffening are examined with particular attention given to recent discoveries regarding the role of vascular smooth muscle.
Collapse
|
69
|
Jensen MH, Morris EJ, Gallant CM, Morgan KG, Weitz DA, Moore JR. Mechanism of calponin stabilization of cross-linked actin networks. Biophys J 2014; 106:793-800. [PMID: 24559982 PMCID: PMC3944828 DOI: 10.1016/j.bpj.2013.12.042] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 11/11/2013] [Accepted: 12/23/2013] [Indexed: 01/06/2023] Open
Abstract
The actin-binding protein calponin has been previously implicated in actin cytoskeletal regulation and is thought to act as an actin stabilizer, but the mechanism of its function is poorly understood. To investigate this underlying physical mechanism, we studied an in vitro model system of cross-linked actin using bulk rheology. Networks with basic calponin exhibited a delayed onset of strain stiffening (10.0% without calponin, 14.9% with calponin) and were able to withstand a higher maximal strain before failing (35% without calponin, 56% with calponin). Using fluorescence microscopy to study the mechanics of single actin filaments, we found that calponin increased the flexibility of actin filaments, evident as a decrease in persistence length from 17.6 μm without to 7.7 μm with calponin. Our data are consistent with current models of affine strain behavior in semiflexible polymer networks, and suggest that calponin stabilization of actin networks can be explained purely by changes in single-filament mechanics. We propose a model in which calponin stabilizes actin networks against shear through a reduction of persistence length of individual filaments.
Collapse
Affiliation(s)
- Mikkel Herholdt Jensen
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Eliza J Morris
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Cynthia M Gallant
- Department of Health Sciences, Boston University, Boston, Massachusetts
| | - Kathleen G Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts
| | - David A Weitz
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Jeffrey R Moore
- Department of Physiology and Biophysics, Boston University, Boston, Massachusetts.
| |
Collapse
|
70
|
Hong Z, Sun Z, Li M, Li Z, Bunyak F, Ersoy I, Trzeciakowski JP, Staiculescu MC, Jin M, Martinez-Lemus L, Hill MA, Palaniappan K, Meininger GA. Vasoactive agonists exert dynamic and coordinated effects on vascular smooth muscle cell elasticity, cytoskeletal remodelling and adhesion. J Physiol 2014; 592:1249-66. [PMID: 24445320 DOI: 10.1113/jphysiol.2013.264929] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In this study, we examined the ability of vasoactive agonists to induce dynamic changes in vascular smooth muscle cell (VSMC) elasticity and adhesion, and tested the hypothesis that these events are coordinated with rapid remodelling of the cortical cytoskeleton. Real-time measurement of cell elasticity was performed with atomic force microscopy (AFM) and adhesion was assessed with AFM probes coated with fibronectin (FN). Temporal data were analysed using an Eigen-decomposition method. Elasticity in VSMCs displayed temporal oscillations with three components at approximately 0.001, 0.004 and 0.07 Hz, respectively. Similarly, adhesion displayed a similar oscillatory pattern. Angiotensin II (ANG II, 10(-6) M) increased (+100%) the amplitude of the oscillations, whereas the vasodilator adenosine (ADO, 10(-4) M) reduced oscillation amplitude (-30%). To test whether the oscillatory changes were related to the architectural alterations in cortical cytoskeleton, the topography of the submembranous actin cytoskeleton (100-300 nm depth) was acquired with AFM. These data were analysed to compare cortical actin fibre distribution and orientation before and after treatment with vasoactive agonists. The results showed that ANG II increased the density of stress fibres by 23%, while ADO decreased the density of the stress fibres by 45%. AFM data were supported by Western blot and confocal microscopy. Collectively, these observations indicate that VSMC cytoskeletal structure and adhesion to the extracellular matrix are dynamically altered in response to agonist stimulation. Thus, vasoactive agonists probably invoke unique mechanisms that dynamically alter the behaviour and structure of both the VSMC cytoskeleton and focal adhesions to efficiently support the normal contractile behaviour of VSMCs.
Collapse
Affiliation(s)
- Zhongkui Hong
- Dalton Cardiovascular Center, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Huang Y, Day RN, Gunst SJ. Vinculin phosphorylation at Tyr1065 regulates vinculin conformation and tension development in airway smooth muscle tissues. J Biol Chem 2013; 289:3677-88. [PMID: 24338477 DOI: 10.1074/jbc.m113.508077] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Vinculin localizes to membrane adhesion junctions in smooth muscle tissues, where its head domain binds to talin and its tail domain binds to filamentous actin, thus linking actin filaments to the extracellular matrix. Vinculin can assume a closed conformation, in which the head and tail domains bind to each other and mask the binding sites for actin and talin, and an open activated conformation that exposes the binding sites for talin and actin. Acetylcholine stimulation of tracheal smooth muscle tissues induces the recruitment of vinculin to the cell membrane and its interaction with talin and actin, which is required for active tension development. Vinculin phosphorylation at Tyr(1065) on its C terminus increases concurrently with tension development in tracheal smooth muscle tissues. In the present study, the role of vinculin phosphorylation at Tyr(1065) in regulating the conformation and function of vinculin during airway smooth muscle contraction was evaluated. Vinculin constructs with point mutations at Tyr(1065) (vinculin Y1065F and vinculin Y1065E) and vinculin conformation-sensitive FRET probes were expressed in smooth muscle tissues to determine how Tyr(1065) phosphorylation affects smooth muscle contraction and the conformation and cellular functions of vinculin. The results show that vinculin phosphorylation at tyrosine 1065 is required for normal tension generation in airway smooth muscle during contractile stimulation and that Tyr(1065) phosphorylation regulates the conformation and scaffolding activity of the vinculin molecule. We conclude that the phosphorylation of vinculin at tyrosine 1065 provides a mechanism for regulating the function of vinculin in airway smooth muscle in response to contractile stimulation.
Collapse
Affiliation(s)
- Youliang Huang
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202-5120
| | | | | |
Collapse
|
72
|
Na+/H+ exchanger inhibitor augments hyperosmolarity-induced vasoconstriction by enhancing actin polymerization. Vascul Pharmacol 2013; 59:120-6. [DOI: 10.1016/j.vph.2013.07.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/28/2013] [Accepted: 07/11/2013] [Indexed: 11/23/2022]
|
73
|
Abstract
Excessive narrowing of the airways due to airway smooth muscle (ASM) contraction is a major cause of asthma exacerbation. ASM is therefore a direct target for many drugs used in asthma therapy. The contractile mechanism of smooth muscle is not entirely clear. A major advance in the field in the last decade was the recognition and appreciation of the unique properties of smooth muscle--mechanical and structural plasticity, characterized by the muscle's ability to rapidly alter the structure of its contractile apparatus and cytoskeleton and adapt to the mechanically dynamic environment of the lung. This article describes a possible mechanism for smooth muscle to adapt and function over a large length range by adding or subtracting contractile units in series spanning the cell length; it also describes a mechanism by which actin-myosin-actin connectivity might be influenced by thin and thick filament lengths, thus altering the muscle response to mechanical perturbation. The new knowledge is extremely useful for our understanding of ASM behavior in the lung and could provide new and more effective targets for drugs aimed at relaxing the muscle or keeping the muscle from excessive shortening in the asthmatic airways.
Collapse
Affiliation(s)
- Chun Y Seow
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
| | | |
Collapse
|
74
|
Wang T, Cleary RA, Wang R, Tang DD. Role of the adapter protein Abi1 in actin-associated signaling and smooth muscle contraction. J Biol Chem 2013; 288:20713-22. [PMID: 23740246 DOI: 10.1074/jbc.m112.439877] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Actin filament polymerization plays a critical role in the regulation of smooth muscle contraction. However, our knowledge regarding modulation of the actin cytoskeleton in smooth muscle just begins to accumulate. In this study, stimulation with acetylcholine (ACh) induced an increase in the association of the adapter protein c-Abl interactor 1 (Abi1) with neuronal Wiskott-Aldrich syndrome protein (N-WASP) (an actin-regulatory protein) in smooth muscle cells/tissues. Furthermore, contractile stimulation activated N-WASP in live smooth muscle cells as evidenced by changes in fluorescence resonance energy transfer efficiency of an N-WASP sensor. Abi1 knockdown by lentivirus-mediated RNAi inhibited N-WASP activation, actin polymerization, and contraction in smooth muscle. However, Abi1 silencing did not affect myosin regulatory light chain phosphorylation at Ser-19 in smooth muscle. In addition, c-Abl tyrosine kinase and Crk-associated substrate (CAS) have been shown to regulate smooth muscle contraction. The interaction of Abi1 with c-Abl and CAS has not been investigated. Here, contractile activation induced formation of a multiprotein complex including c-Abl, CAS, and Abi1. Knockdown of c-Abl and CAS attenuated the activation of Abi1 during contractile activation. More importantly, Abi1 knockdown inhibited c-Abl phosphorylation at Tyr-412 and the interaction of c-Abl with CAS. These results suggest that Abi1 is an important component of the cellular process that regulates N-WASP activation, actin dynamics, and contraction in smooth muscle. Abi1 is activated by the c-Abl-CAS pathway, and Abi1 reciprocally controls the activation of its upstream regulator c-Abl.
Collapse
Affiliation(s)
- Tao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208, USA
| | | | | | | |
Collapse
|
75
|
Poythress RH, Gallant C, Vetterkind S, Morgan KG. Vasoconstrictor-induced endocytic recycling regulates focal adhesion protein localization and function in vascular smooth muscle. Am J Physiol Cell Physiol 2013; 305:C215-27. [PMID: 23703522 DOI: 10.1152/ajpcell.00103.2013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Turnover of focal adhesions (FAs) is known to be critical for cell migration and adhesion of proliferative vascular smooth muscle (VSM) cells. However, it is often assumed that FAs in nonmigratory, differentiated VSM (dVSM) cells embedded in the wall of healthy blood vessels are stable structures. Recent work has demonstrated agonist-induced actin polymerization and Src-dependent FA phosphorylation in dVSM cells, suggesting that agonist-induced FA remodeling occurs. However, the mechanisms and extent of FA remodeling are largely unknown in dVSM. Here we show, for the first time, that a distinct subpopulation of dVSM FA proteins, but not the entire FA, remodels in response to the α-agonist phenylephrine. Vasodilator-stimulated phosphoprotein and zyxin displayed the largest redistributions, while β-integrin and FA kinase showed undetectable redistribution. Vinculin, metavinculin, Src, Crk-associated substrate, and paxillin displayed intermediate degrees of redistribution. Redistributions into membrane fractions were especially prominent, suggesting endosomal mechanisms. Deconvolution microscopy, quantitative colocalization analysis, and Duolink proximity ligation assays revealed that phenylephrine increases the association of FA proteins with early endosomal markers Rab5 and early endosomal antigen 1. Endosomal disruption with the small-molecule inhibitor primaquine inhibits agonist-induced redistribution of FA proteins, confirming endosomal recycling. FA recycling was also inhibited by cytochalasin D, latrunculin B, and colchicine, indicating that the redistribution is actin- and microtubule-dependent. Furthermore, inhibition of endosomal recycling causes a significant inhibition of the rate of development of agonist-induced dVSM contractions. Thus these studies are consistent with the concept that FAs in dVSM cells, embedded in the wall of the aorta, remodel during the action of a vasoconstrictor.
Collapse
Affiliation(s)
- Ransom H Poythress
- Department of Health Sciences, Boston University, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
76
|
Saphirstein RJ, Gao YZ, Jensen MH, Gallant CM, Vetterkind S, Moore JR, Morgan KG. The focal adhesion: a regulated component of aortic stiffness. PLoS One 2013; 8:e62461. [PMID: 23626821 PMCID: PMC3633884 DOI: 10.1371/journal.pone.0062461] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/21/2013] [Indexed: 01/16/2023] Open
Abstract
Increased aortic stiffness is an acknowledged predictor and cause of cardiovascular disease. The sources and mechanisms of vascular stiffness are not well understood, although the extracellular matrix (ECM) has been assumed to be a major component. We tested here the hypothesis that the focal adhesions (FAs) connecting the cortical cytoskeleton of vascular smooth muscle cells (VSMCs) to the matrix in the aortic wall are a component of aortic stiffness and that this component is dynamically regulated. First, we examined a model system in which magnetic tweezers could be used to monitor cellular cortical stiffness, serum-starved A7r5 aortic smooth muscle cells. Lysophosphatidic acid (LPA), an activator of myosin that increases cell contractility, increased cortical stiffness. A small molecule inhibitor of Src-dependent FA recycling, PP2, was found to significantly inhibit LPA-induced increases in cortical stiffness, as well as tension-induced increases in FA size. To directly test the applicability of these results to force and stiffness development at the level of vascular tissue, we monitored mouse aorta ring stiffness with small sinusoidal length oscillations during agonist-induced contraction. The alpha-agonist phenylephrine, which also increases myosin activation and contractility, increased tissue stress and stiffness in a PP2- and FAK inhibitor 14-attenuated manner. Subsequent phosphotyrosine screening and follow-up with phosphosite-specific antibodies confirmed that the effects of PP2 and FAK inhibitor 14 in vascular tissue involve FA proteins, including FAK, CAS, and paxillin. Thus, in the present study we identify, for the first time, the FA of the VSMC, in particular the FAK-Src signaling complex, as a significant subcellular regulator of aortic stiffness and stress.
Collapse
Affiliation(s)
- Robert J. Saphirstein
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Yuan Z. Gao
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Mikkel H. Jensen
- Department of Physics, Boston University, Boston, Massachusetts, United States of America
- Department of Physiology and Biophysics, Boston University Medical School, Boston, Massachusetts, United States of America
| | - Cynthia M. Gallant
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Susanne Vetterkind
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| | - Jeffrey R. Moore
- Department of Physiology and Biophysics, Boston University Medical School, Boston, Massachusetts, United States of America
| | - Kathleen G. Morgan
- Department of Health Sciences, Boston University, Boston, Massachusetts, United States of America
| |
Collapse
|
77
|
Papke CL, Cao J, Kwartler CS, Villamizar C, Byanova KL, Lim SM, Sreenivasappa H, Fischer G, Pham J, Rees M, Wang M, Chaponnier C, Gabbiani G, Khakoo AY, Chandra J, Trache A, Zimmer W, Milewicz DM. Smooth muscle hyperplasia due to loss of smooth muscle α-actin is driven by activation of focal adhesion kinase, altered p53 localization and increased levels of platelet-derived growth factor receptor-β. Hum Mol Genet 2013; 22:3123-37. [PMID: 23591991 DOI: 10.1093/hmg/ddt167] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Mutations in ACTA2, encoding the smooth muscle cell (SMC)-specific isoform of α-actin (α-SMA), cause thoracic aortic aneurysms and dissections and occlusive vascular diseases, including early onset coronary artery disease and stroke. We have shown that occlusive arterial lesions in patients with heterozygous ACTA2 missense mutations show increased numbers of medial or neointimal SMCs. The contribution of SMC hyperplasia to these vascular diseases and the pathways responsible for linking disruption of α-SMA filaments to hyperplasia are unknown. Here, we show that the loss of Acta2 in mice recapitulates the SMC hyperplasia observed in ACTA2 mutant SMCs and determine the cellular pathways responsible for SMC hyperplasia. Acta2(-/-) mice showed increased neointimal formation following vascular injury in vivo, and SMCs explanted from these mice demonstrated increased proliferation and migration. Loss of α-SMA induced hyperplasia through focal adhesion (FA) rearrangement, FA kinase activation, re-localization of p53 from the nucleus to the cytoplasm and increased expression and ligand-independent activation of platelet-derived growth factor receptor beta (Pdgfr-β). Disruption of α-SMA in wild-type SMCs also induced similar cellular changes. Imatinib mesylate inhibited Pdgfr-β activation and Acta2(-/-) SMC proliferation in vitro and neointimal formation with vascular injury in vivo. Loss of α-SMA leads to SMC hyperplasia in vivo and in vitro through a mechanism involving FAK, p53 and Pdgfr-β, supporting the hypothesis that SMC hyperplasia contributes to occlusive lesions in patients with ACTA2 missense mutations.
Collapse
Affiliation(s)
- Christina L Papke
- Department of Internal Medicine, University of Texas Health Science Center at Houston, 6431 Fannin, MSB 6.100, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Hocking KM, Baudenbacher FJ, Putumbaka G, Venkatraman S, Cheung-Flynn J, Brophy CM, Komalavilas P. Role of cyclic nucleotide-dependent actin cytoskeletal dynamics:Ca(2+)](i) and force suppression in forskolin-pretreated porcine coronary arteries. PLoS One 2013; 8:e60986. [PMID: 23593369 PMCID: PMC3625185 DOI: 10.1371/journal.pone.0060986] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 03/06/2013] [Indexed: 11/18/2022] Open
Abstract
Initiation of force generation during vascular smooth muscle contraction involves a rise in intracellular calcium ([Ca(2+)]i) and phosphorylation of myosin light chains (MLC). However, reversal of these two processes alone does not account for the force inhibition that occurs during relaxation or inhibition of contraction, implicating that other mechanisms, such as actin cytoskeletal rearrangement, play a role in the suppression of force. In this study, we hypothesize that forskolin-induced force suppression is dependent upon changes in actin cytoskeletal dynamics. To focus on the actin cytoskeletal changes, a physiological model was developed in which forskolin treatment of intact porcine coronary arteries (PCA) prior to treatment with a contractile agonist resulted in complete suppression of force. Pretreatment of PCA with forskolin suppressed histamine-induced force generation but did not abolish [Ca(2+)]i rise or MLC phosphorylation. Additionally, forskolin pretreatment reduced filamentous actin in histamine-treated tissues, and prevented histamine-induced changes in the phosphorylation of the actin-regulatory proteins HSP20, VASP, cofilin, and paxillin. Taken together, these results suggest that forskolin-induced complete force suppression is dependent upon the actin cytoskeletal regulation initiated by the phosphorylation changes of the actin regulatory proteins and not on the MLC dephosphorylation. This model of complete force suppression can be employed to further elucidate the mechanisms responsible for smooth muscle tone, and may offer cues to pathological situations, such as hypertension and vasospasm.
Collapse
Affiliation(s)
- Kyle M. Hocking
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Franz J. Baudenbacher
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Gowthami Putumbaka
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Sneha Venkatraman
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Joyce Cheung-Flynn
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Colleen M. Brophy
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Padmini Komalavilas
- Department of Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
79
|
Staiculescu MC, Galiñanes EL, Zhao G, Ulloa U, Jin M, Beig MI, Meininger GA, Martinez-Lemus LA. Prolonged vasoconstriction of resistance arteries involves vascular smooth muscle actin polymerization leading to inward remodelling. Cardiovasc Res 2013; 98:428-36. [PMID: 23417038 DOI: 10.1093/cvr/cvt034] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIMS Inward remodelling of the resistance vasculature is predictive of hypertension and life-threatening cardiovascular events. We hypothesize that the contractile mechanisms responsible for maintaining a reduced diameter over time in response to prolonged stimulation with vasoconstrictor agonists are in part responsible for the initial stages of the remodelling process. Here we investigated the role of vascular smooth muscle (VSM) actin polymerization on agonist-induced vasoconstriction and development of inward remodelling. METHODS AND RESULTS Experiments were conducted in Sprague-Dawley rat resistance vessels isolated from the cremaster and mesentery. Within blood vessels, actin dynamics of VSM were monitored by confocal microscopy after introduction of fluorescent actin monomers through electroporation and by differential centrifugation to probe globular (G) and filamentous (F) actin content. Results indicated that 4 h of agonist-dependent vasoconstriction induced inward remodelling and caused significant actin polymerization, elevating the F-/total-actin ratio. Inhibition of actin polymerization prevented vessels from maintaining prolonged vasoconstriction and developing inward remodelling. Activation of the small GTPases Rho/Rac/Cdc42 also increased the F-/total-actin ratio and induced inward remodelling, while inhibition of Rho kinase or Rac-1 prevented inward remodelling. Disruption of the actin cytoskeleton reversed the inward remodelling caused by prolonged vasoconstriction, but did not affect the passive diameter of freshly isolated vessels. CONCLUSION These results indicate that vasoconstriction-induced inward remodelling is in part caused by the polymerization of actin within VSM cells through activation of small GTPases.
Collapse
Affiliation(s)
- Marius C Staiculescu
- Dalton Cardiovascular Research Center, University of Missouri-Columbia, 134 Research Park Dr, Columbia, MO 65211, USA
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Sun J, Zhang D, Zheng Y, Zhao Q, Zheng M, Kovacevic Z, Richardson DR. Targeting the metastasis suppressor, NDRG1, using novel iron chelators: regulation of stress fiber-mediated tumor cell migration via modulation of the ROCK1/pMLC2 signaling pathway. Mol Pharmacol 2013; 83:454-69. [PMID: 23188716 DOI: 10.1124/mol.112.083097] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The iron-regulated metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), is up-regulated by cellular iron depletion mediated by iron chelators and can inhibit cancer cell migration. However, the mechanism of how NDRG1 achieves this effect remains unclear. In this study, we implemented established and newly constructed NDRG1 overexpression and knockdown models using the DU145, HT29, and HCT116 cancer cell lines to investigate the molecular basis by which NDRG1 exerts its inhibitory effect on cell migration. Using these models, we demonstrated that NDRG1 overexpression inhibits cell migration by preventing actin-filament polymerization, stress fiber assembly and formation. In contrast, NDRG1 knockdown had the opposite effect. Moreover, we identified that NDRG1 inhibited an important regulatory pathway mediated by the Rho-associated, coiled-coil containing protein kinase 1 (ROCK1)/phosphorylated myosin light chain 2 (pMLC2) pathway that modulates stress fiber assembly. The phosphorylation of MLC2 is a key process in inducing stress fiber contraction, and this was shown to be markedly decreased or increased by NDRG1 overexpression or knockdown, respectively. The mechanism involved in the inhibition of MLC2 phosphorylation by NDRG1 was mediated by a significant (P < 0.001) decrease in ROCK1 expression that is a key kinase involved in MLC2 phosphorylation. Considering that NDRG1 is up-regulated after cellular iron depletion, novel thiosemicarbazone iron chelators (e.g., di-2-pyridylketone 4,4-dimethyl-3-thiosemicarbazone) were demonstrated to inhibit ROCK1/pMLC2-modulated actin-filament polymerization, stress fiber assembly, and formation via a mechanism involving NDRG1. These results highlight the role of the ROCK1/pMLC2 pathway in the NDRG1-mediated antimetastatic signaling network and the therapeutic potential of iron chelators at inhibiting metastasis.
Collapse
Affiliation(s)
- Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | |
Collapse
|
81
|
Sasahara T, Yayama K, Okamoto H. p38 Mitogen-Activated Protein Kinase Mediates Hyperosmolarity-Induced Vasoconstriction through Myosin Light Chain Phosphorylation and Actin Polymerization in Rat Aorta. Biol Pharm Bull 2013; 36:1849-56. [DOI: 10.1248/bpb.b13-00563] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tomoya Sasahara
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University
| | - Katsutoshi Yayama
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University
| | - Hiroshi Okamoto
- Laboratory of Cardiovascular Pharmacology, Department of Biopharmaceutical Sciences, Kobe Gakuin University
| |
Collapse
|
82
|
Abstract
The myogenic response has a critical role in regulation of blood flow to the brain. Increased intraluminal pressure elicits vasoconstriction, whereas decreased intraluminal pressure induces vasodilatation, thereby maintaining flow constant over the normal physiologic blood pressure range. Improved understanding of the molecular mechanisms underlying the myogenic response is crucial to identify deficiencies with pathologic consequences, such as cerebral vasospasm, hypertension, and stroke, and to identify potential therapeutic targets. Three mechanisms have been suggested to be involved in the myogenic response: (1) membrane depolarization, which induces Ca(2+) entry, activation of myosin light chain kinase, phosphorylation of the myosin regulatory light chains (LC(20)), increased actomyosin MgATPase activity, cross-bridge cycling, and vasoconstriction; (2) activation of the RhoA/Rho-associated kinase (ROCK) pathway, leading to inhibition of myosin light chain phosphatase by phosphorylation of MYPT1, the myosin targeting regulatory subunit of the phosphatase, and increased LC(20) phosphorylation; and (3) activation of the ROCK and protein kinase C pathways, leading to actin polymerization and the formation of enhanced connections between the actin cytoskeleton, plasma membrane, and extracellular matrix to augment force transmission. This review describes these three mechanisms, emphasizing recent developments regarding the importance of dynamic actin polymerization in the myogenic response of the cerebral vasculature.
Collapse
|
83
|
Moreno-Domínguez A, Colinas O, El-Yazbi A, Walsh EJ, Hill MA, Walsh MP, Cole WC. Ca2+ sensitization due to myosin light chain phosphatase inhibition and cytoskeletal reorganization in the myogenic response of skeletal muscle resistance arteries. J Physiol 2012; 591:1235-50. [PMID: 23230233 DOI: 10.1113/jphysiol.2012.243576] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract The myogenic response of resistance arteries to intravascular pressure elevation is a fundamental physiological mechanism of crucial importance for blood pressure regulation and organ-specific control of blood flow. The importance of Ca(2+) entry via voltage-gated Ca(2+) channels leading to phosphorylation of the 20 kDa myosin regulatory light chains (LC20) in the myogenic response is well established. Recent studies, however, have suggested a role for Ca(2+) sensitization via activation of the RhoA/Rho-associated kinase (ROK) pathway in the myogenic response. The possibility that enhanced actin polymerization is also involved in myogenic vasoconstriction has been suggested. Here, we have used pressurized resistance arteries from rat gracilis and cremaster skeletal muscles to assess the contribution to myogenic constriction of Ca(2+) sensitization due to: (1) phosphorylation of the myosin targeting subunit of myosin light chain phosphatase (MYPT1) by ROK; (2) phosphorylation of the 17 kDa protein kinase C (PKC)-potentiated protein phosphatase 1 inhibitor protein (CPI-17) by PKC; and (3) dynamic reorganization of the actin cytoskeleton evoked by ROK and PKC. Arterial diameter, MYPT1, CPI-17 and LC20 phosphorylation, and G-actin content were determined at varied intraluminal pressures ± H1152, GF109203X or latrunculin B to suppress ROK, PKC and actin polymerization, respectively. The myogenic response was associated with an increase in MYPT1 and LC20 phosphorylation that was blocked by H1152. No change in phospho-CPI-17 content was detected although the PKC inhibitor, GF109203X, suppressed myogenic constriction. Basal LC20 phosphorylation at 10 mmHg was high at ∼40%, increased to a maximal level of ∼55% at 80 mmHg, and exhibited no additional change on further pressurization to 120 and 140 mmHg. Myogenic constriction at 80 mmHg was associated with a decline in G-actin content by ∼65% that was blocked by inhibition of ROK or PKC. Taken together, our findings indicate that two mechanisms of Ca(2+) sensitization (ROK-mediated phosphorylation of MYPT1-T855 with augmentation of LC20 phosphorylation, and a ROK- and PKC-evoked increase in actin polymerization) contribute to force generation in the myogenic response of skeletal muscle arterioles.
Collapse
Affiliation(s)
- Alejandro Moreno-Domínguez
- The Smooth Muscle Research Group, Department of Physiology and Pharmacology, Libin Cardiovascular Institute and Hotchkiss Brain Institute, Faculty of Medicine, University of Calgary, 3330 Hospital Drive N.W., Calgary, Alberta, Canada T2N 4N1
| | | | | | | | | | | | | |
Collapse
|
84
|
Matarrese P, Petitta C, Scirocco A, Ascione B, Ammoscato F, Di Natale G, Anastasi E, Marconi M, Chirletti P, Malorni W, Severi C. Antioxidants counteract lipopolysaccharide-triggered alterations of human colonic smooth muscle cells. Free Radic Biol Med 2012; 53:2102-11. [PMID: 23044262 DOI: 10.1016/j.freeradbiomed.2012.09.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 09/06/2012] [Accepted: 09/17/2012] [Indexed: 02/08/2023]
Abstract
Gut dysmotility develops in individuals during and after recovering from infective acute gastroenteritis and it is apparently due to a direct effect of circulating lipopolysaccharides (LPS). This is an endotoxin with a prooxidant activity derived from gram-negative bacteria. Due to the lack of human models available so far, the mechanisms underlying LPS-induced gut dysmotility are, however, poorly investigated. In the present work long-term effects of LPS and their reversibility have been assessed by means of different analytical cytology methods on pure primary cultures of human colonic smooth muscle cells. We found that LPS triggered the following alterations: (i) a redox imbalance with profound changes of contractile microfilament network, and (ii) the induction of cell cycle progression with dedifferentiation from a contractile to a synthetic phenotype. These alterations persisted also after LPS removal. Importantly, two unrelated antioxidants, alpha-tocopherol and N-acetylcysteine, were able to reverse the cytopathic effects of LPS and to restore normal muscle cell function. The present data indicate that LPS is capable of triggering a persistent and long-term response that could contribute to muscle dysfunction occurring after an infective and related inflammatory burst and suggest a reappraisal of antioxidants in the management of postinfective motor disorders of the gut.
Collapse
Affiliation(s)
- Paola Matarrese
- Department of Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Huang Q, Babu GJ, Periasamy M, Eddinger TJ. SMB myosin heavy chain knockout enhances tonic contraction and reduces the rate of force generation in ileum and stomach antrum. Am J Physiol Cell Physiol 2012; 304:C194-206. [PMID: 23135699 DOI: 10.1152/ajpcell.00280.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of SMA and SMB smooth muscle myosin heavy chain (MHC) isoforms in tonic and phasic contractions was studied in phasic (longitudinal ileum and stomach circular antrum) and tonic (stomach circular fundus) smooth muscle tissues of SMB knockout mice. Knocking out the SMB MHC gene eliminated SMB MHC protein expression and resulted in upregulation of the SMA MHC protein without altering the total MHC protein level. Switching from SMB to SMA MHC protein expression decreased the rate of the force transient and increased the sustained tonic force in SMB((-/-)) ileum and antrum with high potassium (KPSS) but not with carbachol (CCh) stimulation. The increased tonic contraction under the depolarized condition was not through changes in second messenger signaling pathways (PKC/CPI-17 or Rho/ROCK signaling pathway) or LC(20) phosphorylation. Biochemical analyses showed that the expression of contractile regulatory proteins (MLCK, MLCP, PKCδ, and CPI-17) did not change significantly in tissues tested except for PKCα protein expression being significantly decreased in the SMB((-/-)) antrum. However, specifically activating PKCα with phorbol dibutyrate (PDBu) was not significantly different in knockout and wild-type tissues, with total force being a fraction of the force generation with KPSS or CCh stimulation in SMB((-/-)) ileum and antrum. Taken together, these data show removing the SMB MHC protein expression with a compensatory increase in the SMA MHC protein results in enhanced sustained KPSS-induced tonic contraction with a reduced rate of force generation in these phasic tissues.
Collapse
Affiliation(s)
- Qian Huang
- Department of Biological Sciences, Marquette University, Milwaukee, WI, 53201, USA
| | | | | | | |
Collapse
|
86
|
Min J, Reznichenko M, Poythress RH, Gallant CM, Vetterkind S, Li Y, Morgan KG. Src modulates contractile vascular smooth muscle function via regulation of focal adhesions. J Cell Physiol 2012; 227:3585-92. [PMID: 22287273 DOI: 10.1002/jcp.24062] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Src is a known regulator of focal adhesion turnover in migrating cells; but, in contrast, Src is generally assumed to play little role in differentiated, contractile vascular smooth muscle (dVSM). The goal of the present study was to determine if Src-family kinases regulate focal adhesion proteins and how this might affect contractility of non-proliferative vascular smooth muscle. We demonstrate here, through the use of phosphotyrosine screening, deconvolution microscopy imaging, and differential centrifugation, that the activity of Src family kinases in aorta is regulated by the alpha agonist and vasoconstrictor phenylephrine, and leads to focal adhesion protein phosphorylation and remodeling in dVSM. Furthermore, Src inhibition via morpholino knockdown of Src or by the small molecule inhibitor PP2 prevents phenylephrine-induced adhesion protein phosphorylation, markedly slows the tissue's ability to contract, and decreases steady state contractile force amplitude. Significant vasoconstrictor-induced and Src-dependent phosphorylation of Cas pY-165, FAK pY-925, paxillin pY-118, and Erk1/2 were observed. However, increases in FAK 397 phosphorylation were not seen, demonstrating differences between cells in tissue versus migrating, proliferating cells. We show here that Src, in a cause and effect manner, regulates focal adhesion protein function and, consequently, modulates contractility during the action of a vasoconstrictor. These data point to the possibility that vascular focal adhesion proteins may be useful drug discovery targets for novel therapeutic approaches to cardiovascular disease.
Collapse
Affiliation(s)
- Jianghong Min
- Department of Health Sciences, Boston University, Boston, MA 02215, USA
| | | | | | | | | | | | | |
Collapse
|
87
|
Zhang W, Huang Y, Gunst SJ. The small GTPase RhoA regulates the contraction of smooth muscle tissues by catalyzing the assembly of cytoskeletal signaling complexes at membrane adhesion sites. J Biol Chem 2012; 287:33996-4008. [PMID: 22893699 DOI: 10.1074/jbc.m112.369603] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The activation of the small GTPase RhoA is necessary for ACh-induced actin polymerization and airway smooth muscle (ASM) contraction, but the mechanism by which it regulates these events is unknown. Actin polymerization in ASM is catalyzed by the actin filament nucleation activator, N-WASp and the polymerization catalyst, Arp2/3 complex. Activation of the small GTPase cdc42, a specific N-WASp activator, is also required for actin polymerization and tension generation. We assessed the mechanism by which RhoA regulates actin dynamics and smooth muscle contraction by expressing the dominant negative mutants RhoA T19N and cdc42 T17N, and non-phosphorylatable paxillin Y118/31F and paxillin ΔLD4 deletion mutants in SM tissues. Their effects were evaluated in muscle tissue extracts and freshly dissociated SM cells. Protein interactions and cellular localization were analyzed using proximity ligation assays (PLA), immunofluorescence, and GTPase and kinase assays. RhoA inhibition prevented ACh-induced cdc42 activation, N-WASp activation and the interaction of N-WASp with the Arp2/3 complex at the cell membrane. ACh induced paxillin phosphorylation and its association with the cdc42 GEFS, DOCK180 and α/βPIX. Paxillin tyrosine phosphorylation and its association with βPIX were RhoA-dependent, and were required for cdc42 activation. The ACh-induced recruitment of paxillin and FAK to the cell membrane was dependent on RhoA. We conclude that RhoA regulates the contraction of ASM by catalyzing the assembly and activation of cytoskeletal signaling modules at membrane adhesomes that initiate signaling cascades that regulate actin polymerization and tension development in response to contractile agonist stimulation. Our results suggest that the RhoA-mediated assembly of adhesome complexes is a fundamental step in the signal transduction process in response to agonist -induced smooth muscle contraction.
Collapse
Affiliation(s)
- Wenwu Zhang
- Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
88
|
Baranwal S, Naydenov NG, Harris G, Dugina V, Morgan KG, Chaponnier C, Ivanov AI. Nonredundant roles of cytoplasmic β- and γ-actin isoforms in regulation of epithelial apical junctions. Mol Biol Cell 2012; 23:3542-53. [PMID: 22855531 PMCID: PMC3442403 DOI: 10.1091/mbc.e12-02-0162] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The functional effects of cytoplasmic actins on epithelial junctions are examined by using isoform-specific siRNAs and cell-permeable inhibitory peptides. Unique roles of cytoplasmic actin isoforms in regulating structure and remodeling of adherens and tight junctions are revealed. Association with the actin cytoskeleton is critical for normal architecture and dynamics of epithelial tight junctions (TJs) and adherens junctions (AJs). Epithelial cells express β-cytoplasmic (β-CYA) and γ-cytoplasmic (γ-CYA) actins, which have different cellular localization and functions. This study elucidates the roles of cytoplasmic actins in regulating structure and remodeling of AJs and TJs in model intestinal epithelia. Immunofluorescence labeling and latrunculin B treatment reveal affiliation of dynamic β-CYA filaments with newly assembled and mature AJs, whereas an apical γ-CYA pool is composed of stable perijunctional bundles and rapidly turning-over nonjunctional filaments. The functional effects of cytoplasmic actins on epithelial junctions are examined by using isoform-specific small interfering RNAs and cell-permeable inhibitory peptides. These experiments demonstrate unique roles of β-CYA and γ-CYA in regulating the steady-state integrity of AJs and TJs, respectively. Furthermore, β-CYA is selectively involved in establishment of apicobasal cell polarity. Both actin isoforms are essential for normal barrier function of epithelial monolayers, rapid AJ/TJ reassembly, and formation of three-dimensional cysts. Cytoplasmic actin isoforms play unique roles in regulating structure and permeability of epithelial junctions.
Collapse
Affiliation(s)
- Somesh Baranwal
- Department of Medicine, University of Rochester, Rochester, NY 14642, USA
| | | | | | | | | | | | | |
Collapse
|
89
|
Hong Z, Sun Z, Li Z, Mesquitta WT, Trzeciakowski JP, Meininger GA. Coordination of fibronectin adhesion with contraction and relaxation in microvascular smooth muscle. Cardiovasc Res 2012; 96:73-80. [PMID: 22802110 DOI: 10.1093/cvr/cvs239] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
AIMS The regulation of vascular diameter by vasoconstrictors and vasodilators requires that vascular smooth muscle cells (VSMCs) be physically coupled to extracellular matrix (ECM) and neighbouring cells in order for a vessel to mechanically function and transfer force. The hypothesis was tested that integrin-mediated adhesion to the ECM is dynamically up-regulated in VSMCs during contractile activation in response to a vasoconstrictor and likewise down-regulated during relaxation in response to a vasodilator. METHODS AND RESULTS VSMCs were isolated from the Sprague-Dawley rat cremaster muscles. Atomic force microscopy (AFM) with fibronectin (FN)-functionalized probes was employed to investigate the biomechanical responses and adhesion of VSMCs. Responses to angiotensin II (Ang II; 10(-6) M) and adenosine (Ado; 10(-4) M) were recorded by measurements of cell cortical elasticity and cell adhesion. The results showed that Ang II caused an immediate increase in adhesion (+27%) between the probe and cell. Cell stiffness increased (+70%) in parallel with the adhesion change. Ado decreased adhesion (-15%) to FN and reduced (-30%) stiffness. CONCLUSION Changes in the receptor-mediated activation of the contractile apparatus cause parallel alterations in cell adhesion and cell cortical elasticity. These studies support the hypothesis that the regulation of cell adhesion is coordinated with contraction and demonstrate the dynamic nature of cell adhesion to the ECM. It is proposed that coordination of adhesion and VSMC contraction is an important mechanism that allows for an efficient transfer of force between the contractile apparatus of the cell and the extracellular environment.
Collapse
Affiliation(s)
- Zhongkui Hong
- Dalton Cardiovascular Research Center, University of Missouri, 134 Research Park Dr., Columbia, MO 65211, USA
| | | | | | | | | | | |
Collapse
|
90
|
Ge Q, Moir LM, Trian T, Niimi K, Poniris M, Shepherd PR, Black JL, Oliver BG, Burgess JK. The phosphoinositide 3'-kinase p110δ modulates contractile protein production and IL-6 release in human airway smooth muscle. J Cell Physiol 2012; 227:3044-52. [PMID: 22015454 DOI: 10.1002/jcp.23046] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transforming growth factor (TGF) β1 increases pro-inflammatory cytokines and contractile protein expression by human airway smooth muscle (ASM) cells, which could augment airway inflammation and hyperresponsiveness. Phosphoinositide 3' kinase (PI3K) is one of the signaling pathways implicated in TGFβ1 stimulation, and may be altered in asthmatic airways. This study compared the expression of PI3K isoforms by ASM cells from donors with asthma (A), chronic obstructive pulmonary disease (COPD), or neither disease (NA), and investigated the role of PI3K isoforms in the production of TGFβ1 induced pro-inflammatory cytokine and contractile proteins in ASM cells. A cells expressed higher basal levels of p110δ mRNA compared to NA and COPD cells; however COPD cells produced more p110δ protein. TGFβ1 increased 110δ mRNA expression to the same extent in the three groups. Neither the p110δ inhibitor IC87114 (1, 10, 30 µM), the p110β inhibitor TGX221 (0.1, 1, 10 µM) nor the PI3K pan inhibitor LY294002 (3, 10 µM) had any effect on basal IL-6, calponin or smooth muscle α-actin (α-SMA) expression. However, TGFβ1 increased calponin and α-SMA expression was inhibited by IC87114 and LY294002 in all three groups. IC87114, TGX221, and LY294002 reduced TGFβ1 induced IL-6 release in a dose related manner in all groups of ASM cells. PI3K p110δ is important for TGFβ1 induced production of the contractile proteins calponin and α-SMA and the proinflammatory cytokine IL-6 in ASM cells, and may therefore be relevant as a potential therapeutic target to treat both inflammation and airway remodeling.
Collapse
Affiliation(s)
- Qi Ge
- Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Justewicz DM, Shokes JE, Reavis B, Boyd SA, Burnette TB, Halberstadt CR, Spencer T, Ludlow JW, Bertram TA, Jain D. Characterization of the human smooth muscle cell secretome for regenerative medicine. Tissue Eng Part C Methods 2012; 18:797-816. [PMID: 22530582 DOI: 10.1089/ten.tec.2012.0054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Smooth muscle cells (SMC) play a central role in maintaining the structural and functional integrity of muscle tissue. Little is known about the early in vitro events that guide the assembly of 'bioartificial tissue' (constructs) and recapitulate the key aspects of smooth muscle differentiation and development before surgical implantation. Biomimetic approaches have been proposed that enable the identification of in vitro processes which allow standardized manufacturing, thus improving both product quality and the consistency of patient outcomes. One essential element of this approach is the description of the SMC secretome, that is, the soluble and deposited factors produced within the three-dimensional (3D) extracellular matrix (ECM) microenvironment. In this study, we utilized autologous SMC from multiple tissue types that were expanded ex vivo and generated with a rigorous focus on operational phenotype and genetic stability. The objective of this study was to characterize the spatiotemporal dynamics of the first week of organoid maturation using a well-defined in vitro-like, 3D-engineered scale model of our validated manufacturing process. Functional proteomics was used to identify the topological properties of the networks of interacting proteins that were derived from the SMC secretome, revealing overlapping central nodes related to SMC differentiation and proliferation, actin cytoskeleton regulation, and balanced ECM accumulation. The critical functions defined by the Ingenuity Pathway Analysis included cell signaling, cellular movement and proliferation, and cellular and organismal development. The results confirm the phenotypic and functional similarity of the SMC generated by our platform technology at the molecular level. Furthermore, these data validate the biomimetic approaches that have been established to maintain manufacturing consistency.
Collapse
Affiliation(s)
- Dominic M Justewicz
- Department of Bioprocess Research & Development, Tengion, Inc., 3929 Westpoint Blvd., Suite G, Winston-Salem, NC 27103, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Yamin R, Morgan KG. Deciphering actin cytoskeletal function in the contractile vascular smooth muscle cell. J Physiol 2012; 590:4145-54. [PMID: 22687615 DOI: 10.1113/jphysiol.2012.232306] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This review focuses on the vascular smooth muscle cells present in the medial layer of the blood vessels wall in the fully differentiated state (dVSMCs). The dVSMC contractile phenotype enables these cells to respond in a highly regulated manner to changes in extracellular stimuli. Through modulation of vascular contractile force and vascular compliance dVSMCs regulate blood pressure and blood flow. The cellular and molecular mechanisms by which vascular smooth muscle contractile functions are regulated are not completely elucidated. Recent studies have documented a critical role for actin polymerization and cytoskeletal dynamics in the regulation of contractile function. Here we will review the current understanding of actin cytoskeletal dynamics and focal adhesion function in dVSMCs in order to better understand actin cytoskeleton connections to the extracellular matrix and the effects of cytoskeletal remodelling on vascular contractility and vascular stiffness in health and disease.
Collapse
Affiliation(s)
- Rina Yamin
- Health Sciences Department, Boston University, 635 Commonwealth Ave, Boston, MA 02215, USA
| | | |
Collapse
|
93
|
Lehman W, Morgan KG. Structure and dynamics of the actin-based smooth muscle contractile and cytoskeletal apparatus. J Muscle Res Cell Motil 2012; 33:461-9. [PMID: 22311558 DOI: 10.1007/s10974-012-9283-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 01/16/2012] [Indexed: 01/04/2023]
Abstract
The thin filaments of differentiated smooth muscle cells are composed of actin and tropomyosin isoforms and numerous ancillary actin-binding proteins that assemble together into distinct thin filament classes. These different filament classes are segregated in smooth muscle cells into structurally and functionally separated contractile and cytoskeletal cellular domains. Typically, thin filaments in smooth muscle cells have been considered to be relatively stable structures like those in striated cells. However, recent efforts have shown that smooth muscle thin filaments indeed are dynamic and that remodeling of the actin cytoskeleton, in particular, regulates smooth muscle function. Thus, the cytoskeleton of differentiated smooth muscle cells appears to function midway between that of less dynamic striated muscle cells and that of very plastic proliferative cells such as fibroblasts. Michael and Kate Bárány keenly followed and participated in some of these studies, consistent with their broad interest in actin function and smooth muscle mechanisms. As a way of honoring the memory of these two pioneer members of the muscle research community, we review data on distribution and remodeling of thin filaments in smooth muscle cells, one of the many research topics that intrigued them.
Collapse
Affiliation(s)
- William Lehman
- Department of Physiology and Biophysics, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA.
| | | |
Collapse
|
94
|
Jensen MH, Watt J, Hodgkinson J, Gallant C, Appel S, El-Mezgueldi M, Angelini TE, Morgan KG, Lehman W, Moore JR. Effects of basic calponin on the flexural mechanics and stability of F-actin. Cytoskeleton (Hoboken) 2012; 69:49-58. [PMID: 22135101 PMCID: PMC3355516 DOI: 10.1002/cm.20548] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2011] [Revised: 10/28/2011] [Accepted: 11/14/2011] [Indexed: 01/12/2023]
Abstract
The cellular actin cytoskeleton plays a central role in the ability of cells to properly sense, propagate, and respond to external stresses and other mechanical stimuli. Calponin, an actin-binding protein found both in muscle and non-muscle cells, has been implicated in actin cytoskeletal organization and regulation. In this work, we studied the mechanical and structural interaction of actin with basic calponin, a differentiation marker in smooth muscle cells, on a single filament level. We imaged fluorescently labeled thermally fluctuating actin filaments and found that at moderate calponin binding densities, actin filaments were more flexible, evident as a reduction in persistence length from 8.0 to 5.8 μm. When calponin-decorated actin filaments were subjected to shear, we observed a marked reduction of filament lengths after decoration with calponin, which we argue was due to shear-induced filament rupture rather than depolymerization. This increased shear susceptibility was exacerbated with calponin concentration. Cryo-electron microscopy results confirmed previously published negative stain electron microscopy results and suggested alterations in actin involving actin subdomain 2. A weakening of F-actin intermolecular association is discussed as the underlying cause of the observed mechanical perturbations.
Collapse
Affiliation(s)
- Mikkel Herholdt Jensen
- Boston University, School of Medicine, Boston, MA
- Boston University, Department of Physics, Boston, MA
| | - James Watt
- Boston University, School of Medicine, Boston, MA
| | - Julie Hodgkinson
- Medical School Hannover, Department of Molecular and Cell Physiology, Hannover, Germany
| | - Cynthia Gallant
- Boston University, Department of Health Sciences, Boston, MA
| | - Sarah Appel
- Boston University, Department of Health Sciences, Boston, MA
| | | | - Thomas E. Angelini
- University of Florida, Department of Mechanical and Aerospace Engineering, Gainesville, FL
| | | | | | | |
Collapse
|
95
|
Fediuk J, Gutsol A, Nolette N, Dakshinamurti S. Thromboxane-induced actin polymerization in hypoxic pulmonary artery is independent of Rho. Am J Physiol Lung Cell Mol Physiol 2012; 302:L13-26. [DOI: 10.1152/ajplung.00016.2011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Actin polymerization (APM), regulated by Rho GTPases, promotes myocyte force generation. Hypoxia is known to impede postnatal disassembly of the actin cytoskeleton in pulmonary arterial (PA) myocytes. We compared basal and agonist-induced APM in myocytes from PA and descending aorta (Ao), under hypoxic and normoxic conditions. We also examined effects of thromboxane challenge on force generation and cytoskeletal assembly in resistance PA and renal arteries from neonatal swine with persistent pulmonary hypertension (PPHN) induced by 72-h normobaric hypoxia, compared with age-matched controls. Synthetic and contractile phenotype myocytes from neonatal porcine PA or Ao were grown in hypoxia (10% O2) or normoxia (21% O2) for 7 days, then challenged with 10−6 M thromboxane mimetic U46619. F/G actin ratio was quantified by laser-scanning cytometry and by cytoskeletal fractionation. Thromboxane receptor (TP) G protein coupling was measured by immunoprecipitation and probing for Gαq, G12, or G13, RhoA activation by Rhotekin-RBD affinity precipitation, and LIM kinase (LIMK) and cofilin phosphorylation by Western blot. Isometric force to serial concentrations of U46619 was measured in muscular pulmonary and renal arteries from PPHN and control swine; APM was quantified in fixed contracted vessels. Contractile PA myocytes exhibit marked Rho-dependent APM in hypoxia, with increased active RhoA and LIMK phosphorylation. Their additional APM response to U46619 challenge is independent of RhoA, reflecting decreased TP association with G12/13 in favor of Gαq. In contrast, hypoxic contractile Ao myocytes polymerize actin modestly and depolymerize to U46619. Both basal APM and the APM response to U46619 are increased in PPHN PA. APM corresponds with increased force generation to U46619 challenge in PPHN PA but not renal arteries.
Collapse
Affiliation(s)
- Jena Fediuk
- Departments of 1Physiology and
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Alexey Gutsol
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Nora Nolette
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| | - Shyamala Dakshinamurti
- Departments of 1Physiology and
- Pediatrics, University of Manitoba
- Biology of Breathing Group, Manitoba Institute of Child Health, Winnipeg, Manitoba, Canada
| |
Collapse
|
96
|
Gallant C, Appel S, Graceffa P, Leavis P, Lin JJC, Gunning PW, Schevzov G, Chaponnier C, DeGnore J, Lehman W, Morgan KG. Tropomyosin variants describe distinct functional subcellular domains in differentiated vascular smooth muscle cells. Am J Physiol Cell Physiol 2011; 300:C1356-65. [PMID: 21289288 DOI: 10.1152/ajpcell.00450.2010] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tropomyosin (Tm) is known to be an important gatekeeper of actin function. Tm isoforms are encoded by four genes, and each gene produces several variants by alternative splicing, which have been proposed to play roles in motility, proliferation, and apoptosis. Smooth muscle studies have focused on gizzard smooth muscle, where a heterodimer of Tm from the α-gene (Tmsm-α) and from the β-gene (Tmsm-β) is associated with contractile filaments. In this study we examined Tm in differentiated mammalian vascular smooth muscle (dVSM). Liquid chromatography-tandem mass spectrometry (LC MS/MS) analysis and Western blot screening with variant-specific antibodies revealed that at least five different Tm proteins are expressed in this tissue: Tm6 (Tmsm-α) and Tm2 from the α-gene, Tm1 (Tmsm-β) from the β-gene, Tm5NM1 from the γ-gene, and Tm4 from the δ-gene. Tm6 is by far most abundant in dVSM followed by Tm1, Tm2, Tm5NM1, and Tm4. Coimmunoprecipitation and coimmunofluorescence studies demonstrate that Tm1 and Tm6 coassociate with different actin isoforms and display different intracellular localizations. Using an antibody specific for cytoplasmic γ-actin, we report here the presence of a γ-actin cortical cytoskeleton in dVSM cells. Tm1 colocalizes with cortical cytoplasmic γ-actin and coprecipitates with γ-actin. Tm6, on the other hand, is located on contractile bundles. These data indicate that Tm1 and Tm6 do not form a classical heterodimer in dVSM but rather describe different functional cellular compartments.
Collapse
Affiliation(s)
- Cynthia Gallant
- Health Sciences Dept., Boston University, 635 Commonwealth Ave., Boston, MA 02215, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
97
|
Peng HF, Liu JY, Andreadis ST, Swartz DD. Hair follicle-derived smooth muscle cells and small intestinal submucosa for engineering mechanically robust and vasoreactive vascular media. Tissue Eng Part A 2011; 17:981-90. [PMID: 21083418 DOI: 10.1089/ten.tea.2010.0109] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Our laboratory recently reported a new source of smooth muscle cells (SMCs) derived from hair follicle (HF) mesenchymal stem cells. HF-SMCs demonstrated high proliferation and clonogenic potential as well as contractile function. In this study, we aimed at engineering the vascular media using HF-SMCs and a natural biomaterial, namely small intestinal submucosa (SIS). Engineering functional vascular constructs required application of mechanical force, resulting in actin reorganization and cellular alignment. In turn, cell alignment was necessary for development of receptor- and nonreceptor-mediated contractility as soon as 24 h after cell seeding. Within 2 weeks in culture, the cells migrated into SIS and secreted collagen and elastin, the two major extracellular matrix components of the vessel wall. At 2 weeks, vascular reactivity increased significantly up to three- to fivefold and mechanical properties were similar to those of native ovine arteries. Taken together, our data demonstrate that the combination of HF-SMCs with SIS resulted in mechanically strong, biologically functional vascular media with potential for arterial implantation.
Collapse
Affiliation(s)
- Hao-Fan Peng
- Department of Chemical and Biological Engineering, Women and Children's Hospital of Buffalo, University at Buffalo, State University of New York, Amherst, New York 14260-4200, USA
| | | | | | | |
Collapse
|
98
|
Bednarek ML, Speich JE, Miner AS, Ratz PH. Active tension adaptation at a shortened arterial muscle length: inhibition by cytochalasin-D. Am J Physiol Heart Circ Physiol 2011; 300:H1166-73. [PMID: 21239639 DOI: 10.1152/ajpheart.00009.2010] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Unlike the static length-tension curve of striated muscle, airway and urinary bladder smooth muscles display a dynamic length-tension curve. Much less is known about the plasticity of the length-tension curve of vascular smooth muscle. The present study demonstrates that there were significant increases of ∼15% in the phasic phase and ∼10% in the tonic phase of a third KCl-induced contraction of a rabbit femoral artery ring relative to the first contraction after a 20% decrease in length from an optimal muscle length (L(0)) to 0.8-fold L(0). Typically, three repeated contractions were necessary for full length adaptation to occur. The tonic phase of a third KCl-induced contraction was increased by ∼50% after the release of tissues from 1.25-fold to 0.75-fold L(o). The mechanism for this phenomenon did not appear to lie in thick filament regulation because there was no increase in myosin light chain (MLC) phosphorylation to support the increase in tension nor was length adaptation abolished when Ca(2+) entry was limited by nifedipine and when Rho kinase (ROCK) was blocked by H-1152. However, length adaptation of both the phasic and tonic phases was abolished when actin polymerization was inhibited through blockade of the plus end of actin by cytochalasin-D. Interestingly, inhibition of actin polymerization when G-actin monomers were sequestered by latrunculin-B increased the phasic phase and had no effect on the tonic phase of contraction during length adaptation. These data suggest that for a given level of cytosolic free Ca(2+), active tension in the femoral artery can be sensitized not only by regulation of MLC phosphatase via ROCK and protein kinase C, as has been reported by others, but also by a nonmyosin regulatory mechanism involving actin polymerization. Dysregulation of this form of active tension modulation may provide insight into alterations of large artery stiffness in hypertension.
Collapse
Affiliation(s)
- Melissa L Bednarek
- Departments of Physiology, School of Engineering, Virginia Commonwealth University, Richmond, 23298-0614, USA.
| | | | | | | |
Collapse
|
99
|
Beamish JA, He P, Kottke-Marchant K, Marchant RE. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. TISSUE ENGINEERING PART B-REVIEWS 2011; 16:467-91. [PMID: 20334504 DOI: 10.1089/ten.teb.2009.0630] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The molecular regulation of smooth muscle cell (SMC) behavior is reviewed, with particular emphasis on stimuli that promote the contractile phenotype. SMCs can shift reversibly along a continuum from a quiescent, contractile phenotype to a synthetic phenotype, which is characterized by proliferation and extracellular matrix (ECM) synthesis. This phenotypic plasticity can be harnessed for tissue engineering. Cultured synthetic SMCs have been used to engineer smooth muscle tissues with organized ECM and cell populations. However, returning SMCs to a contractile phenotype remains a key challenge. This review will integrate recent work on how soluble signaling factors, ECM, mechanical stimulation, and other cells contribute to the regulation of contractile SMC phenotype. The signal transduction pathways and mechanisms of gene expression induced by these stimuli are beginning to be elucidated and provide useful information for the quantitative analysis of SMC phenotype in engineered tissues. Progress in the development of tissue-engineered scaffold systems that implement biochemical, mechanical, or novel polymer fabrication approaches to promote contractile phenotype will also be reviewed. The application of an improved molecular understanding of SMC biology will facilitate the design of more potent cell-instructive scaffold systems to regulate SMC behavior.
Collapse
Affiliation(s)
- Jeffrey A Beamish
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, Ohio 44106-7207, USA
| | | | | | | |
Collapse
|
100
|
Huang Y, Zhang W, Gunst SJ. Activation of vinculin induced by cholinergic stimulation regulates contraction of tracheal smooth muscle tissue. J Biol Chem 2010; 286:3630-44. [PMID: 21071443 DOI: 10.1074/jbc.m110.139923] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Vinculin localizes to membrane adhesion junctions where it links actin filaments to the extracellular matrix by binding to the integrin-binding protein talin at its head domain (Vh) and to actin filaments at its tail domain (Vt). Vinculin can assume an inactive (closed) conformation in which Vh and Vt bind to each other, masking the binding sites for actin and talin, and an active (open) conformation in which the binding sites for talin and actin are exposed. We hypothesized that the contractile activation of smooth muscle tissues might regulate the activation of vinculin and thereby contribute to the regulation of contractile tension. Stimulation of tracheal smooth muscle tissues with acetylcholine (ACh) induced the recruitment of vinculin to cell membrane and its interaction with talin and increased the phosphorylation of membrane-localized vinculin at the C-terminal Tyr-1065. Expression of recombinant vinculin head domain peptide (Vh) in smooth muscle tissues, but not the talin-binding deficient mutant head domain, VhA50I, inhibited the ACh-induced recruitment of endogenous vinculin to the membrane and the interaction of vinculin with talin and also inhibited vinculin phosphorylation. Expression of Vh peptide also inhibited ACh-induced smooth muscle contraction and inhibited ACh-induced actin polymerization; however, it did not affect myosin light chain phosphorylation, which is necessary for cross-bridge cycling. Inactivation of RhoA inhibited vinculin activation in response to ACh. We conclude that ACh stimulation regulates vinculin activation in tracheal smooth muscle via RhoA and that vinculin activation contributes to the regulation of active tension by facilitating connections between actin filaments and talin-integrin adhesion complexes and by mediating the initiation of actin polymerization.
Collapse
Affiliation(s)
- Youliang Huang
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|