51
|
A biomimetic gelatin-based platform elicits a pro-differentiation effect on podocytes through mechanotransduction. Sci Rep 2017; 7:43934. [PMID: 28262745 PMCID: PMC5338254 DOI: 10.1038/srep43934] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 02/01/2017] [Indexed: 01/12/2023] Open
Abstract
Using a gelatin microbial transglutaminase (gelatin-mTG) cell culture platform tuned to exhibit stiffness spanning that of healthy and diseased glomeruli, we demonstrate that kidney podocytes show marked stiffness sensitivity. Podocyte-specific markers that are critical in the formation of the renal filtration barrier are found to be regulated in association with stiffness-mediated cellular behaviors. While podocytes typically de-differentiate in culture and show diminished physiological function in nephropathies characterized by altered tissue stiffness, we show that gelatin-mTG substrates with Young’s modulus near that of healthy glomeruli elicit a pro-differentiation and maturation response in podocytes better than substrates either softer or stiffer. The pro-differentiation phenotype is characterized by upregulation of gene and protein expression associated with podocyte function, which is observed for podocytes cultured on gelatin-mTG gels of physiological stiffness independent of extracellular matrix coating type and density. Signaling pathways involved in stiffness-mediated podocyte behaviors are identified, revealing the interdependence of podocyte mechanotransduction and maintenance of their physiological function. This study also highlights the utility of the gelatin-mTG platform as an in vitro system with tunable stiffness over a range relevant for recapitulating mechanical properties of soft tissues, suggesting its potential impact on a wide range of research in cellular biophysics.
Collapse
|
52
|
De Silva TM, Faraci FM. Reactive Oxygen Species and the Regulation of Cerebral Vascular Tone. STUDIES ON ATHEROSCLEROSIS 2017. [DOI: 10.1007/978-1-4899-7693-2_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
53
|
Mennens SFB, van den Dries K, Cambi A. Role for Mechanotransduction in Macrophage and Dendritic Cell Immunobiology. Results Probl Cell Differ 2017; 62:209-242. [PMID: 28455711 DOI: 10.1007/978-3-319-54090-0_9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Tissue homeostasis is not only controlled by biochemical signals but also through mechanical forces that act on cells. Yet, while it has long been known that biochemical signals have profound effects on cell biology, the importance of mechanical forces has only been recognized much more recently. The types of mechanical stress that cells experience include stretch, compression, and shear stress, which are mainly induced by the extracellular matrix, cell-cell contacts, and fluid flow. Importantly, macroscale tissue deformation through stretch or compression also affects cellular function.Immune cells such as macrophages and dendritic cells are present in almost all peripheral tissues, and monocytes populate the vasculature throughout the body. These cells are unique in the sense that they are subject to a large variety of different mechanical environments, and it is therefore not surprising that key immune effector functions are altered by mechanical stimuli. In this chapter, we describe the different types of mechanical signals that cells encounter within the body and review the current knowledge on the role of mechanical signals in regulating macrophage, monocyte, and dendritic cell function.
Collapse
Affiliation(s)
- Svenja F B Mennens
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Koen van den Dries
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands
| | - Alessandra Cambi
- Department of Cell Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
54
|
Embry AE, Mohammadi H, Niu X, Liu L, Moe B, Miller-Little WA, Lu CY, Bruggeman LA, McCulloch CA, Janmey PA, Miller RT. Biochemical and Cellular Determinants of Renal Glomerular Elasticity. PLoS One 2016; 11:e0167924. [PMID: 27942003 PMCID: PMC5152842 DOI: 10.1371/journal.pone.0167924] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 11/22/2016] [Indexed: 12/22/2022] Open
Abstract
The elastic properties of renal glomeruli and their capillaries permit them to maintain structural integrity in the presence of variable hemodynamic forces. Measured by micro-indentation, glomeruli have an elastic modulus (E, Young's modulus) of 2.1 kPa, and estimates from glomerular perfusion studies suggest that the E of glomeruli is between 2 and 4 kPa. F-actin depolymerization by latrunculin, inhibition of acto-myosin contractility by blebbistatin, reduction in ATP synthesis, and reduction of the affinity of adhesion proteins by EDTA reduced the glomerular E to 1.26, 1.7, 1.5, and 1.43 kPa, respectively. Actin filament stabilization with jasplakinolide and increasing integrin affinity with Mg2+ increased E to 2.65 and 2.87 kPa, respectively. Alterations in glomerular E are reflected in commensurate changes in F/G actin ratios. Disruption of vimentin intermediate filaments by withaferin A reduced E to 0.92 kPa. The E of decellularized glomeruli was 0.74 kPa, indicating that cellular components of glomeruli have dominant effects on their elasticity. The E of glomerular basement membranes measured by magnetic bead displacement was 2.4 kPa. Podocytes and mesangial cells grown on substrates with E values between 3 and 5 kPa had actin fibers and focal adhesions resembling those of podocytes in vivo. Renal ischemia and ischemia-reperfusion reduced the E of glomeruli to 1.58 kPa. These results show that the E of glomeruli is between 2 and 4 kPa. E of the GBM, 2.4 kPa, is consistent with this value, and is supported by the behavior of podocytes and mesangial cells grown on variable stiffness matrices. The podocyte cytoskeleton contributes the major component to the overall E of glomeruli, and a normal E requires ATP synthesis. The reduction in glomerular E following ischemia and in other diseases indicates that reduced glomerular E is a common feature of many forms of glomerular injury and indicative of an abnormal podocyte cytoskeleton.
Collapse
Affiliation(s)
- Addie E. Embry
- Nephrology and Medicine, U.T. Southwestern Medical School, Dallas, Texas, United States of America
| | - Hamid Mohammadi
- Center for Matrix Biology, University of Toronto, Toronto, Ontario, Canada
| | - Xinying Niu
- Nephrology and Medicine, U.T. Southwestern Medical School, Dallas, Texas, United States of America
| | - Liping Liu
- Nephrology and Medicine, U.T. Southwestern Medical School, Dallas, Texas, United States of America
| | - Borren Moe
- Nephrology and Medicine, U.T. Southwestern Medical School, Dallas, Texas, United States of America
| | - William A. Miller-Little
- Nephrology and Medicine, U.T. Southwestern Medical School, Dallas, Texas, United States of America
| | - Christopher Y. Lu
- Nephrology and Medicine, U.T. Southwestern Medical School, Dallas, Texas, United States of America
| | - Leslie A. Bruggeman
- Nephrology, MetroHealth Medical Center, Case-Western Reserve University, Cleveland, Ohio, United States of America
| | | | - Paul A. Janmey
- Physiology and Biophysics, Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - R. Tyler Miller
- Nephrology and Medicine, U.T. Southwestern Medical School, Dallas, Texas, United States of America
- Medicine, Dallas VAMC, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
55
|
Meehan DT, Delimont D, Dufek B, Zallocchi M, Phillips G, Gratton MA, Cosgrove D. Endothelin-1 mediated induction of extracellular matrix genes in strial marginal cells underlies strial pathology in Alport mice. Hear Res 2016; 341:100-108. [PMID: 27553900 PMCID: PMC5086449 DOI: 10.1016/j.heares.2016.08.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/21/2016] [Accepted: 08/15/2016] [Indexed: 12/20/2022]
Abstract
Alport syndrome, a type IV collagen disorder, manifests as glomerular disease associated with hearing loss with thickening of the glomerular and strial capillary basement membranes (SCBMs). We have identified a role for endothelin-1 (ET-1) activation of endothelin A receptors (ETARs) in glomerular pathogenesis. Here we explore whether ET-1 plays a role in strial pathology. Wild type (WT) and Alport mice were treated with the ETAR antagonist, sitaxentan. The stria vascularis was analyzed for SCBM thickness and for extracellular matrix (ECM) proteins. Additional WT and Alport mice were exposed to noise or hypoxia and the stria analyzed for hypoxia-related and ECM genes. A strial marginal cell line cultured under hypoxic conditions, or stimulated with ET-1 was analyzed for expression of hypoxia-related and ECM transcripts. Noise exposure resulted in significantly elevated ABR thresholds in Alport mice relative to wild type littermates. Alport stria showed elevated expression of collagen α1(IV), laminin α2, and laminin α5 proteins relative to WT. SCBM thickening and elevated ECM protein expression was ameliorated by ETAR blockade. Stria from normoxic Alport mice and hypoxic WT mice showed upregulation of hypoxia-related, ECM, and ET-1 transcripts. Both ET-1 stimulation and hypoxia up-regulated ECM transcripts in cultured marginal cells. We conclude that ET-1 mediated activation of ETARs on strial marginal cells results in elevated expression of ECM genes and thickening of the SCBMs in Alport mice. SCBM thickening results in hypoxic stress further elevating ECM and ET-1 gene expression, exacerbating strial pathology.
Collapse
Affiliation(s)
| | | | - Brianna Dufek
- Boys Town National Research Hospital, Omaha, NE, USA
| | | | | | | | - Dominic Cosgrove
- Boys Town National Research Hospital, Omaha, NE, USA; University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
56
|
Biophysical Properties and Motility of Human Mature Dendritic Cells Deteriorated by Vascular Endothelial Growth Factor through Cytoskeleton Remodeling. Int J Mol Sci 2016; 17:ijms17111756. [PMID: 27809226 PMCID: PMC5133777 DOI: 10.3390/ijms17111756] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/06/2016] [Accepted: 10/11/2016] [Indexed: 12/31/2022] Open
Abstract
Dendritic cells (DCs), the most potent antigen-presenting cells, play a central role in the initiation, regulation, and maintenance of the immune responses. Vascular endothelial growth factor (VEGF) is one of the important cytokines in the tumor microenvironment (TME) and can inhibit the differentiation and functional maturation of DCs. To elucidate the potential mechanisms of DC dysfunction induced by VEGF, the effects of VEGF on the biophysical characteristics and motility of human mature DCs (mDCs) were investigated. The results showed that VEGF had a negative influence on the biophysical properties, including electrophoretic mobility, osmotic fragility, viscoelasticity, and transmigration. Further cytoskeleton structure analysis by confocal microscope and gene expression profile analyses by gene microarray and real-time PCR indicated that the abnormal remodeling of F-actin cytoskeleton may be the main reason for the deterioration of biophysical properties, motility, and stimulatory capability of VEGF-treated mDCs. This is significant for understanding the biological behavior of DCs and the immune escape mechanism of tumors. Simultaneously, the therapeutic efficacies may be improved by blocking the signaling pathway of VEGF in an appropriate manner before the deployment of DC-based vaccinations against tumors.
Collapse
|
57
|
Abstract
Alport syndrome is the result of mutations in any of three type IV collagen genes, COL4A3, COL4A4, or COL4A5. Because the three collagen chains form heterotrimers, there is an absence of all three proteins in the basement membranes where they are expressed. In the glomerulus, the mature glomerular basement membrane type IV collagen network, normally comprised of two separate networks, α3(IV)/α4(IV)/α5(IV) and α1(IV)/α2(IV), is comprised entirely of collagen α1(IV)/α2. This review addresses the current state of our knowledge regarding the consequence of this change in basement membrane composition, including both the direct, via collagen receptor binding, and indirect, regarding influences on glomerular biomechanics. The state of our current understanding regarding mechanisms of glomerular disease initiation and progression will be examined, as will the current state of the art regarding emergent therapeutic approaches to slow or arrest glomerular disease in Alport patients.
Collapse
|
58
|
Cosgrove D, Liu S. Collagen IV diseases: A focus on the glomerular basement membrane in Alport syndrome. Matrix Biol 2016; 57-58:45-54. [PMID: 27576055 DOI: 10.1016/j.matbio.2016.08.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/05/2016] [Accepted: 08/17/2016] [Indexed: 12/21/2022]
Abstract
Alport syndrome is the result of mutations in any of three type IV collagen genes, COL4A3, COL4A4, or COL4A5. Because the three collagen chains form heterotrimers, there is an absence of all three proteins in the basement membranes where they are expressed. In the glomerulus, the mature glomerular basement membrane type IV collagen network, normally comprised of two separate networks, α3(IV)/α4(IV)/α5(IV) and α1(IV)/α2(IV), is comprised entirely of collagen α1(IV)/α2. This review addresses the current state of our knowledge regarding the consequence of this change in basement membrane composition, including both the direct, via collagen receptor binding, and indirect, regarding influences on glomerular biomechanics. The state of our current understanding regarding mechanisms of glomerular disease initiation and progression will be examined, as will the current state of the art regarding emergent therapeutic approaches to slow or arrest glomerular disease in Alport patients.
Collapse
|
59
|
Bondzie PA, Chen HA, Cao MZ, Tomolonis JA, He F, Pollak MR, Henderson JM. Non-muscle myosin-IIA is critical for podocyte f-actin organization, contractility, and attenuation of cell motility. Cytoskeleton (Hoboken) 2016; 73:377-95. [PMID: 27232264 DOI: 10.1002/cm.21313] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 05/20/2016] [Accepted: 05/25/2016] [Indexed: 12/12/2022]
Abstract
Several glomerular pathologies resulting from podocyte injury are linked to genetic variation involving the MYH9 gene, which encodes the heavy chain of non-muscle myosin-IIA (NM-IIA). However, the functional role of NM-IIA has not been studied extensively in podocytes. We hypothesized that NM-IIA is critical for maintenance of podocyte structure and mechanical function. To test this hypothesis, we studied murine podocytes in vitro subjected to blebbistatin inhibition of NM-II activity, or RNA interference-mediated, isoform-specific ablation of Myh9 gene and protein (NM-IIA) or its paralog Myh10 gene and protein (NM-IIB). Using quantitative immunofluorescence microscopy, traction force microscopy, and attachment and "wound healing" assays, we found that NM-IIA ablation altered podocyte actin cytoskeletal structure and focal adhesion distribution, decreased cell attachment and contractility, and increased cell motility. Blebbistatin treatment had similar effects. NM-IIB ablation produced cells that exhibited poor attachment, but cytoskeletal structural organization, contractility and motility were maintained. These findings indicate that NM-IIA is essential for maintenance of podocyte cytoskeletal structure and mechanical function in vitro, and NM-IIB does not replace it in this role when NM-IIA expression is altered. We conclude that critical podocyte functions may be affected by MYH9 mutations or disease-associated haplotypes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Philip A Bondzie
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Hui A Chen
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Mei Zhen Cao
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Julie A Tomolonis
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| | - Fangfang He
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Martin R Pollak
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Joel M Henderson
- Department of Pathology and Laboratory Medicine, Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
60
|
Wu C, Wang B, Zhang C, Wysk RA, Chen YW. Bioprinting: an assessment based on manufacturing readiness levels. Crit Rev Biotechnol 2016; 37:333-354. [DOI: 10.3109/07388551.2016.1163321] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Changsheng Wu
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ben Wang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA, USA
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Chuck Zhang
- Georgia Tech Manufacturing Institute, Georgia Institute of Technology, Atlanta, GA, USA
- School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Richard A. Wysk
- Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, NC, USA
| | - Yi-Wen Chen
- Institute of Clinical Medical Science, China Medical University, Taichung, Taiwan, ROC
- 3D Printing Medical Research Center, China Medical University Hospital, Taichung, Taiwan, ROC
| |
Collapse
|
61
|
Microvascular Dysfunction and Cognitive Impairment. Cell Mol Neurobiol 2016; 36:241-58. [PMID: 26988697 DOI: 10.1007/s10571-015-0308-1] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/19/2015] [Indexed: 12/18/2022]
Abstract
The impact of vascular risk factors on cognitive function has garnered much interest in recent years. The appropriate distribution of oxygen, glucose, and other nutrients by the cerebral vasculature is critical for proper cognitive performance. The cerebral microvasculature is a key site of vascular resistance and a preferential target for small vessel disease. While deleterious effects of vascular risk factors on microvascular function are known, the contribution of this dysfunction to cognitive deficits is less clear. In this review, we summarize current evidence for microvascular dysfunction in brain. We highlight effects of select vascular risk factors (hypertension, diabetes, and hyperhomocysteinemia) on the pial and parenchymal circulation. Lastly, we discuss potential links between microvascular disease and cognitive function, highlighting current gaps in our understanding.
Collapse
|
62
|
Bae J, Ouchi T, Hayward RC. Measuring the Elastic Modulus of Thin Polymer Sheets by Elastocapillary Bending. ACS APPLIED MATERIALS & INTERFACES 2015; 7:14734-14742. [PMID: 26135700 DOI: 10.1021/acsami.5b02567] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We describe bending by liquid/liquid or liquid/air interfaces as a simple and broadly applicable technique for measuring the elastic modulus of thin elastic sheets. The balance between bending and surface energies allows for the characterization of a wide range of materials with moduli ranging from kilopascals to gigapascals in both vapor and liquid environments, as demonstrated here by measurements of both soft hydrogel layers and stiff glassy polymer films. Compared to existing approaches, this method is especially useful for characterizing soft materials (<megapascals in modulus), thin sheets with sub-millimeter in-plane dimensions, and samples immersed in a variety of liquid media. The measurement is independent of the three-phase (liquid/solid/medium) contact angle for appropriately chosen wetting conditions, therefore requiring only knowledge of the liquid/medium surface tension and the sheet thickness to characterize sheets with specified shapes. Using the method, we characterize photo-cross-linkable polyelectrolyte hydrogel sheets swelled to equilibrium in an aqueous medium and demonstrate good agreement with predicted scalings of the modulus and swelling ratio with cross-link density.
Collapse
Affiliation(s)
- Jinhye Bae
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Tetsu Ouchi
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Ryan C Hayward
- Polymer Science and Engineering Department, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
63
|
Abstract
The function of the kidney, filtering blood and concentrating metabolic waste into urine, takes place in an intricate and functionally elegant structure called the renal glomerulus. Normal glomerular function retains circulating cells and valuable macromolecular components of plasma in blood, resulting in urine with just trace amounts of proteins. Endothelial cells of glomerular capillaries, the podocytes wrapped around them, and the fused extracellular matrix these cells form altogether comprise the glomerular filtration barrier, a dynamic and highly selective filter that sieves on the basis of molecular size and electrical charge. Current understanding of the structural organization and the cellular and molecular basis of renal filtration draws from studies of human glomerular diseases and animal models of glomerular dysfunction.
Collapse
Affiliation(s)
- Rizaldy P Scott
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Susan E Quaggin
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
64
|
Miller RT, Janmey PA. Relationship of and cross-talk between physical and biologic properties of the glomerulus. Curr Opin Nephrol Hypertens 2015; 24:393-400. [PMID: 26050128 PMCID: PMC4493859 DOI: 10.1097/mnh.0000000000000138] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
PURPOSE OF REVIEW Cells and tissues must respond to physical stresses. Cells exist in an elastic environment determined by their matrix, matrix contacts, cell-cell contacts, and cytoskeletal structure. We discuss the determinants of the elastic environment of cells and its potential roles in glomerular disease. RECENT FINDINGS Control of the mechanical environment is sufficient to induce and maintain the differentiated state of cells including myofibroblasts. New experimental techniques permit precise measurement of the elastic characteristics of normal and diseased tissues and cells, and analysis of cell behavior and cytoskeletal structure in response to mechanical and elastic stimuli. Glomeruli become soft early in the course of several disease models, yet late stages are characterized by increased stiffness and fibrosis with loss of organ function. Work in hepatic fibrosis, arterial disease, and oncology demonstrate that increased collagen crosslinking by lysyl oxidase, an early step in the diseases, can result in a sufficient increase in tissue stiffness to alter cell behavior, leading to disease progression. SUMMARY The elastic environment of cells and tissues provides essential signals in development, differentiation, and disease. Identifying the mechanisms that determine the mechanical environment of glomerular cells will complement other approaches to reduce pathologic fibrosis and loss of tissue function.
Collapse
Affiliation(s)
- R. Tyler Miller
- Professor of Medicine, U.T. Southwestern Medical Center, Chief, Medical Service, Dallas VAMC, 4500 S. Lancaster Rd, Dallas, TX 75216, Tel 214-857-0409
| | - Paul A. Janmey
- Professor of Physiology, Physics, and Astronomy, Institute for Medicine and Engineering, University of Pennsylvania, 1010 Vagelos Research Laboratories, 3340 Smith Walk, Philadelphia, PA 19104, 215-573-7380
| |
Collapse
|
65
|
Alpha-actinin binding kinetics modulate cellular dynamics and force generation. Proc Natl Acad Sci U S A 2015; 112:6619-24. [PMID: 25918384 DOI: 10.1073/pnas.1505652112] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The actin cytoskeleton is a key element of cell structure and movement whose properties are determined by a host of accessory proteins. Actin cross-linking proteins create a connected network from individual actin filaments, and though the mechanical effects of cross-linker binding affinity on actin networks have been investigated in reconstituted systems, their impact on cellular forces is unknown. Here we show that the binding affinity of the actin cross-linker α-actinin 4 (ACTN4) in cells modulates cytoplasmic mobility, cellular movement, and traction forces. Using fluorescence recovery after photobleaching, we show that an ACTN4 mutation that causes human kidney disease roughly triples the wild-type binding affinity of ACTN4 to F-actin in cells, increasing the dissociation time from 29 ± 13 to 86 ± 29 s. This increased affinity creates a less dynamic cytoplasm, as demonstrated by reduced intracellular microsphere movement, and an approximate halving of cell speed. Surprisingly, these less motile cells generate larger forces. Using traction force microscopy, we show that increased binding affinity of ACTN4 increases the average contractile stress (from 1.8 ± 0.7 to 4.7 ± 0.5 kPa), and the average strain energy (0.4 ± 0.2 to 2.1 ± 0.4 pJ). We speculate that these changes may be explained by an increased solid-like nature of the cytoskeleton, where myosin activity is more partitioned into tension and less is dissipated through filament sliding. These findings demonstrate the impact of cross-linker point mutations on cell dynamics and forces, and suggest mechanisms by which such physical defects lead to human disease.
Collapse
|
66
|
Effect of Supercoiling on the Mechanical and Permeability Properties of Model Collagen IV Networks. Ann Biomed Eng 2014; 43:1695-705. [PMID: 25408357 DOI: 10.1007/s10439-014-1187-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Accepted: 11/11/2014] [Indexed: 11/27/2022]
Abstract
Collagen IV networks in the glomerular basement membrane (GBM) are essential for the maintenance and regulation of blood filtration in the kidneys. The GBM contains two different types of collagen IV networks: [α1(IV)]2α2(IV) and α3(IV)α4(IV)α5(IV), the latter of which has a higher number of supercoils (two or more collagens coiling around each other). To investigate the effects of supercoiling on the mechanical and permeability properties of collagen IV networks, we generated model collagen IV networks in the GBM and reconnected them to create different levels of supercoiling. We found that supercoiling greatly increases the stiffness of collagen IV networks but only minimally decreases the permeability. Also, doubling the amount of supercoils in a network had a bigger effect than doubling the stiffness of the supercoils. Our results suggest that the formation of supercoils is a specialized mechanism by the GBM that provides with a network stiff and strong enough to withstand the high hydrostatic pressures of filtration, yet porous enough that filtration is not hindered. Clinically, understanding the effects of supercoiling gives us insight into the mechanisms of GBM failure in some disease states where the normal collagen IV structure is disrupted.
Collapse
|
67
|
Savige J. Alport syndrome: its effects on the glomerular filtration barrier and implications for future treatment. J Physiol 2014; 592:4013-23. [PMID: 25107927 DOI: 10.1113/jphysiol.2014.274449] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The glomerular filtration barrier comprises a fenestrated capillary endothelium, glomerular basement membrane and podocyte slit diaphragm. Over the past decade we have come to realise that permselectivity depends on size and not necessarily charge, that the molecular sieve depends on the podocyte contractile apparatus and is highly dynamic, and that protein uptake by proximal tubular epithelial cells stimulates signalling and the production of transcription factors and inflammatory mediators. Alport syndrome is the second commonest monogenic cause of renal failure after autosomal dominant polycystic kidney disease. Eighty per cent of patients have X-linked disease caused by mutations in the COL4A5 gene. Most of these result in the replacement of the collagen IV α3α4α5 network with the α1α1α2 heterotrimer. Affected membranes also have ectopic laminin and increased matrix metalloproteinase levels, which makes them more susceptible to proteolysis. Mechanical stress, due to the less elastic membrane and hypertension, interferes with integrin-mediated podocyte-GBM adhesion. Proteinuria occurs when urinary levels exceed tubular reabsorption rates, and initiates tubulointerstitial fibrosis. The glomerular mesangial cells produce increased TGFβ and CTGF which also contribute to glomerulosclerosis. Currently there is no specific therapy for Alport syndrome. However treatment with angiotensin converting enzyme (ACE) inhibitors delays renal failure progression by reducing intraglomerular hypertension, proteinuria, and fibrosis. Our greater understanding of the mechanisms underlying the GBM changes and their consequences in Alport syndrome have provided us with further novel therapeutic targets.
Collapse
Affiliation(s)
- Judy Savige
- University of Melbourne, Royal Melbourne Hospital, Parkville, Victoria, 3050, Australia
| |
Collapse
|
68
|
Pogoda K, Chin L, Georges PC, Byfield FJ, Bucki R, Kim R, Weaver M, Wells RG, Marcinkiewicz C, Janmey PA. Compression stiffening of brain and its effect on mechanosensing by glioma cells. NEW JOURNAL OF PHYSICS 2014; 16:075002. [PMID: 25844043 PMCID: PMC4380293 DOI: 10.1088/1367-2630/16/7/075002] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Many cell types, including neurons, astrocytes and other cells of the central nervous system respond to changes in extracellular matrix or substrate viscoelasticity, and increased tissue stiffness is a hallmark of several disease states including fibrosis and some types of cancers. Whether the malignant tissue in brain, an organ that lacks the protein-based filamentous extracellular matrix of other organs, exhibits the same macroscopic stiffening characteristic of breast, colon, pancreatic, and other tumors is not known. In this study we show that glioma cells like normal astrocytes, respond strongly in vitro to substrate stiffness in the range of 100 to 2000 Pa, but that macroscopic (mm to cm) tissue samples isolated from human glioma tumors have elastic moduli on the order of 200 Pa that are indistinguishable from those of normal brain. However, both normal brain and glioma tissues increase their shear elastic moduli under modest uniaxial compression, and glioma tissue stiffens more strongly under compression than does normal brain. These findings suggest that local tissue stiffness has the potential to alter glial cell function, and that stiffness changes in brain tumors might arise not from increased deposition or crosslinking of collagen-rich extracellular matrix but from pressure gradients that form within the tumors in vivo.
Collapse
Affiliation(s)
- Katarzyna Pogoda
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, USA ; The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland
| | - LiKang Chin
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, USA
| | - Penelope C Georges
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, USA
| | - FitzRoy J Byfield
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, USA
| | - Robert Bucki
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, USA ; The Faculty of Health Sciences of the Jan Kochanowski University, Kielce, Poland
| | - Richard Kim
- Department of Neurosurgery, Temple University Hospital, Philadelphia, PA, USA
| | - Michael Weaver
- Department of Neurosurgery, Temple University Hospital, Philadelphia, PA, USA
| | - Rebecca G Wells
- Department of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, 3340 Smith Walk, Philadelphia, PA, USA ; Departments of Physiology and Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
69
|
Kong T, Wang L, Wyss HM, Shum HC. Capillary micromechanics for core-shell particles. SOFT MATTER 2014; 10:3271-3276. [PMID: 24626294 DOI: 10.1039/c3sm53066c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this work, we have developed a facile, economical microfluidic approach as well as a simple model description to measure and predict the mechanical properties of composite core-shell microparticles made from materials with dramatically different elastic properties. By forcing the particles through a tapered capillary and analyzing their deformation, the shear and compressive moduli can be measured in one single experiment. We have also formulated theoretical models that accurately capture the moduli of the microparticles in both the elastic and the non-linear deformation regimes. Our results show how the moduli of these core-shell structures depend on the material composition of the core-shell microparticles, as well as on their microstructures. The proposed technique and the understanding enabled by it also provide valuable insights into the mechanical behavior of analogous biomaterials, such as liposomes and cells.
Collapse
Affiliation(s)
- Tiantian Kong
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | | | | | | |
Collapse
|
70
|
Monocytic cells become less compressible but more deformable upon activation. PLoS One 2014; 9:e92814. [PMID: 24676335 PMCID: PMC3968036 DOI: 10.1371/journal.pone.0092814] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/25/2014] [Indexed: 11/29/2022] Open
Abstract
Aims Monocytes play a significant role in the development of atherosclerosis. During the process of inflammation, circulating monocytes become activated in the blood stream. The consequent interactions of the activated monocytes with the blood flow and endothelial cells result in reorganization of cytoskeletal proteins, in particular of the microfilament structure, and concomitant changes in cell shape and mechanical behavior. Here we investigate the full elastic behavior of activated monocytes in relation to their cytoskeletal structure to obtain a better understanding of cell behavior during the progression of inflammatory diseases such as atherosclerosis. Methods and Results The recently developed Capillary Micromechanics technique, based on exposing a cell to a pressure difference in a tapered glass microcapillary, was used to measure the deformation of activated and non-activated monocytic cells. Monitoring the elastic response of individual cells up to large deformations allowed us to obtain both the compressive and the shear modulus of a cell from a single experiment. Activation by inflammatory chemokines affected the cytoskeletal organization and increased the elastic compressive modulus of monocytes with 73–340%, while their resistance to shape deformation decreased, as indicated by a 25–88% drop in the cell’s shear modulus. This decrease in deformability is particularly pronounced at high strains, such as those that occur during diapedesis through the vascular wall. Conclusion Overall, monocytic cells become less compressible but more deformable upon activation. This change in mechanical response under different modes of deformation could be important in understanding the interplay between the mechanics and function of these cells. In addition, our data are of direct relevance for computational modeling and analysis of the distinct monocytic behavior in the circulation and the extravascular space. Lastly, an understanding of the changes of monocyte mechanical properties will be important in the development of diagnostic tools and therapies concentrating on circulating cells.
Collapse
|
71
|
Ferrell N, Cameron KO, Groszek JJ, Hofmann CL, Li L, Smith RA, Bian A, Shintani A, Zydney AL, Fissell WH. Effects of pressure and electrical charge on macromolecular transport across bovine lens basement membrane. Biophys J 2013; 104:1476-84. [PMID: 23561524 DOI: 10.1016/j.bpj.2013.01.062] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/23/2013] [Accepted: 01/28/2013] [Indexed: 10/27/2022] Open
Abstract
Molecular transport through the basement membrane is important for a number of physiological functions, and dysregulation of basement membrane architecture can have serious pathological consequences. The structure-function relationships that govern molecular transport in basement membranes are not fully understood. The basement membrane from the lens capsule of the eye is a collagen IV-rich matrix that can easily be extracted and manipulated in vitro. As such, it provides a convenient model for studying the functional relationships that govern molecular transport in basement membranes. Here we investigate the effects of increased transmembrane pressure and solute electrical charge on the transport properties of the lens basement membrane (LBM) from the bovine eye. Pressure-permeability relationships in LBM transport were governed primarily by changes in diffusive and convective contributions to solute flux and not by pressure-dependent changes in intrinsic membrane properties. The solute electrical charge had a minimal but statistically significant effect on solute transport through the LBM that was opposite of the expected electrokinetic behavior. The observed transport characteristics of the LBM are discussed in the context of established membrane transport modeling and previous work on the effects of pressure and electrical charge in other basement membrane systems.
Collapse
Affiliation(s)
- Nicholas Ferrell
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University, Nashville, Tennessee, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PCDP, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 2013; 341:1240104. [PMID: 23990565 DOI: 10.1126/science.1240104] [Citation(s) in RCA: 1327] [Impact Index Per Article: 120.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissues can be soft like fat, which bears little stress, or stiff like bone, which sustains high stress, but whether there is a systematic relationship between tissue mechanics and differentiation is unknown. Here, proteomics analyses revealed that levels of the nucleoskeletal protein lamin-A scaled with tissue elasticity, E, as did levels of collagens in the extracellular matrix that determine E. Stem cell differentiation into fat on soft matrix was enhanced by low lamin-A levels, whereas differentiation into bone on stiff matrix was enhanced by high lamin-A levels. Matrix stiffness directly influenced lamin-A protein levels, and, although lamin-A transcription was regulated by the vitamin A/retinoic acid (RA) pathway with broad roles in development, nuclear entry of RA receptors was modulated by lamin-A protein. Tissue stiffness and stress thus increase lamin-A levels, which stabilize the nucleus while also contributing to lineage determination.
Collapse
Affiliation(s)
- Joe Swift
- Molecular and Cell Biophysics Laboratory, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Bakar AA, Nakajima M, Hu C, Tajima H, Maruyama S, Fukuda T. Fabrication of 3D Photoresist Structure for Artificial Capillary Blood Vessel. JOURNAL OF ROBOTICS AND MECHATRONICS 2013. [DOI: 10.20965/jrm.2013.p0673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We propose a new method for fabricating artificial capillaries using direct laser writing. IP-L and Ormocomp are tested as photoresist materials. Three different microstructures were fabricated from IP-L: a porous hollow pipe microstructure, a 3 × 3 array of twig microstructures, and an array of hollow twig microstructures. Porous hollow pipe microstructures of different diameters were fabricated from Ormocomp, a biocompatible photoresist. These designs resemble capillaries. IP-L and Ormocomp fabrication parameters, such as laser power, numerical aperture, fabrication time, and fabrication model, are compared. Fabrication time is related to the fabrication model chosen during the direct laser writing process. Combined model fabrication is recommended over solid model fabrication because it results in shorter fabrication time and a more robust microstructure that is more likely to maintain its shape on the substrate after development. Laser power is another important parameter controlling fabrication. IP-L fabrication withstands up to 20 mW of laser power, unlike Ormocomp microstructures, which require laser power of less than 18 mW. IP-L and Ormocomp photoresist stiffness is also evaluated. The fabrication of artificial capillaries is important in developing vascular simulators that enable researchers to understand, for example, blood pressure in the kidney glomerulus.
Collapse
|
74
|
Zallocchi M, Johnson BM, Meehan DT, Delimont D, Cosgrove D. α1β1 integrin/Rac1-dependent mesangial invasion of glomerular capillaries in Alport syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1269-1280. [PMID: 23911822 DOI: 10.1016/j.ajpath.2013.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 06/11/2013] [Accepted: 06/14/2013] [Indexed: 01/27/2023]
Abstract
Alport syndrome, hereditary glomerulonephritis with hearing loss, results from mutations in type IV collagen COL4A3, COL4A4, or COL4A5 genes. The mechanism for delayed glomerular disease onset is unknown. Comparative analysis of Alport mice and CD151 knockout mice revealed progressive accumulation of laminin 211 in the glomerular basement membrane. We show mesangial processes invading the capillary loops of both models as well as in human Alport glomeruli, as the likely source of this laminin. L-NAME salt-induced hypertension accelerated mesangial cell process invasion. Cultured mesangial cells showed reduced migratory potential when treated with either integrin-linked kinase inhibitor or Rac1 inhibitor, or by deletion of integrin α1. Treatment of Alport mice with Rac1 inhibitor or deletion of integrin α1 reduced mesangial cell process invasion of the glomerular capillary tuft. Laminin α2-deficient Alport mice show reduced mesangial process invasion, and cultured laminin α2-null cells showed reduced migratory potential, indicating a functional role for mesangial laminins in progression of Alport glomerular pathogenesis. Collectively, these findings predict a role for biomechanical insult in the induction of integrin α1β1-dependent Rac1-mediated mesangial cell process invasion of the glomerular capillary tuft as an initiation mechanism of Alport glomerular pathology.
Collapse
Affiliation(s)
- Marisa Zallocchi
- Department of Genetics, Boys Town National Research Hospital, Omaha, Nebraska
| | - Brianna M Johnson
- Department of Genetics, Boys Town National Research Hospital, Omaha, Nebraska
| | - Daniel T Meehan
- Department of Genetics, Boys Town National Research Hospital, Omaha, Nebraska
| | - Duane Delimont
- Department of Genetics, Boys Town National Research Hospital, Omaha, Nebraska
| | - Dominic Cosgrove
- Department of Genetics, Boys Town National Research Hospital, Omaha, Nebraska; Department of Biochemistry, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
75
|
Abstract
The glomerular basement membrane (GBM) is the central, non-cellular layer of the glomerular filtration barrier that is situated between the two cellular components--fenestrated endothelial cells and interdigitated podocyte foot processes. The GBM is composed primarily of four types of extracellular matrix macromolecule--laminin-521, type IV collagen α3α4α5, the heparan sulphate proteoglycan agrin, and nidogen--which produce an interwoven meshwork thought to impart both size-selective and charge-selective properties. Although the composition and biochemical nature of the GBM have been known for a long time, the functional importance of the GBM versus that of podocytes and endothelial cells for establishing the glomerular filtration barrier to albumin is still debated. Together with findings from genetic studies in mice, the discoveries of four human mutations affecting GBM components in two inherited kidney disorders, Alport syndrome and Pierson syndrome, support essential roles for the GBM in glomerular permselectivity. Here, we explain in detail the proposed mechanisms whereby the GBM can serve as the major albumin barrier and discuss possible approaches to circumvent GBM defects associated with loss of permselectivity.
Collapse
|
76
|
Gyoneva L, Segal Y, Dorfman KD, Barocas VH. Mechanical response of wild-type and Alport murine lens capsules during osmotic swelling. Exp Eye Res 2013; 113:87-91. [PMID: 23707242 DOI: 10.1016/j.exer.2013.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 05/06/2013] [Accepted: 05/13/2013] [Indexed: 01/05/2023]
Abstract
The mechanical support of basement membranes, such as the lens capsule, is believed to arise from one of their main constituents - collagen IV. The basement membranes of the lens, kidney, and ear normally contain two different types of collagen IV networks, referred to as the major and minor chain networks. In Alport syndrome, a mutation in one of the minor chain COL4 genes leads to the absence of the minor chain network, causing life-threatening disturbances. We hypothesized that the absence of the minor chain network increases basement membrane distensibility, as measured in wild-type (n = 25) and Alport syndrome (n = 21) mice using the lens capsule as a model. Osmotic swelling experiments revealed direction-dependent changes. As a reflection of lens capsule properties, Alport lenses strained significantly more than wild-type lenses in the anterior-posterior direction, i.e. along their thickness, but not in the equatorial direction (p = 0.03 and p = 0.08, respectively). This is consistent with clinical data: Alport patients develop conical protrusions on the anterior and posterior lenticular poles. There was no evidence of significant change in total amount of collagen between Alport and wild-type lenses (p = 0.6). The observed differences in distensibility could indicate that the major chain network alone cannot fully compensate for the absence of the more highly cross-linked minor chain network, which is believed to be stronger, more stable, and resistant to deformation. The addition of mechanical information on Alport syndrome to the currently available biological data provides a fuller picture into the progression of the disease.
Collapse
Affiliation(s)
- Lazarina Gyoneva
- Department of Biomedical Engineering, University of Minnesota, 7-105 Nils Hasselmo Hall, 312 Church St. SE, Minneapolis, MN 55455, United States.
| | | | | | | |
Collapse
|
77
|
Anderson M, Kim EY, Hagmann H, Benzing T, Dryer SE. Opposing effects of podocin on the gating of podocyte TRPC6 channels evoked by membrane stretch or diacylglycerol. Am J Physiol Cell Physiol 2013; 305:C276-89. [PMID: 23657570 DOI: 10.1152/ajpcell.00095.2013] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Gain-of-function mutations in the transient receptor potential (TRP) cation channel subfamily C member 6 (TRPC6) gene and mutations in the NPHS2 gene encoding podocin result in nephrotic syndromes. The purpose of this study was to determine the functional significance of biochemical interactions between these proteins. We observed that gating of TRPC6 channels in podocytes is markedly mechanosensitive and can be activated by hyposmotic stretch or indentation of the plasma membrane. Stretch activation of cationic currents was blocked by small interfering RNA knockdown of TRPC6, as well as by SKF-96365 or micromolar La(3+). Stretch activation of podocyte TRPC6 persisted in the presence of inhibitors of phospholipase C (U-73122) and phospholipase A2 (ONO-RS-082). Robust stretch responses also persisted when recording electrodes contained guanosine 5'-O-(2-thiodiphosphate) at concentrations that completely suppressed responses to ANG II. Stretch responses were enhanced by cytochalasin D but were abolished by the peptide GsMTx4, suggesting that forces are transmitted to the channels through the plasma membrane. Podocin and TRPC6 interact at their respective COOH termini. Knockdown of podocin markedly increased stretch-evoked activation of TRPC6 but nearly abolished TRPC6 activation evoked by a diacylglycerol analog. These data suggest that podocin acts as a switch to determine the preferred mode of TRPC6 activation. They also suggest that podocin deficiencies will result in Ca(2+) overload in foot processes, as with gain-of-function mutations in the TRPC6 gene. Finally, they suggest that mechanical activation of TRP family channels and the preferred mode of TRP channel activation may depend on whether members of the stomatin/prohibitin family of hairpin loop proteins are present.
Collapse
Affiliation(s)
- Marc Anderson
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | | | | | | | | |
Collapse
|
78
|
Barocas VH, Dorfman KD, Segal Y. A model of strain-dependent glomerular basement membrane maintenance and its potential ramifications in health and disease. J Biomech Eng 2013; 134:081006. [PMID: 22938359 DOI: 10.1115/1.4007098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A model is developed and analyzed for type IV collagen turnover in the kidney glomerular basement membrane (GBM), which is the primary structural element in the glomerular capillary wall. The model incorporates strain dependence in both deposition and removal of the GBM, leading to an equilibrium tissue strain at which deposition and removal are balanced. The GBM thickening decreases tissue strain per unit of transcapillary pressure drop according to the law of Laplace, but increases the transcapillary pressure drop required to maintain glomerular filtration. The model results are in agreement with the observed GBM alterations in Alport syndrome and thin basement membrane disease, and the model-predicted linear relation between the inverse capillary radius and inverse capillary thickness at equilibrium is consistent with published data on different mammals. In addition, the model predicts a minimum achievable strain in the GBM based on the geometry, properties, and mechanical environment; that is, an infinitely thick GBM would still experience a finite strain. Although the model assumptions would be invalid for an extremely thick GBM, the minimum achievable strain could be significant in diseases, such as Alport syndrome, characterized by focal GBM thickening. Finally, an examination of reasonable values for the model parameters suggests that the oncotic pressure drop-the osmotic pressure difference between the plasma and the filtrate due to large molecules-plays an important role in setting the GBM strain and, thus, leakage of protein into the urine may be protective against some GBM damage.
Collapse
Affiliation(s)
- Victor H Barocas
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
79
|
Abstract
Glomerular hypertension (ie, increased glomerular capillary pressure), has been shown to cause podocyte damage progressing to glomerulosclerosis in animal models. Increased glomerular capillary pressure results in an increase in wall tension that acts primarily as circumferential tensile stress on the capillary wall. The elastic properties of the glomerular basement membrane (GBM) and the elastic as well as contractile properties of the cytoskeleton of the endothelium and of podocyte foot processes resist circumferential tensile stress. Whether the contractile forces generated by podocytes are able to equal circumferential tensile stress to effectively counteract wall tension is an open question. Mechanical stress is transmitted from the GBM to the actin cytoskeleton of podocyte foot processes via cell-matrix contacts that contain mainly integrin α3β1 and a variety of linker, scaffolding, and signaling proteins, which are not well characterized in podocytes. We know from in vitro studies that podocytes are sensitive to stretch, however, the crucial mechanosensor in podocytes remains unclear. On the other hand, in vitro studies have shown that in stretched podocytes specific signaling cascades are activated, the synthesis and secretion of various hormones and their receptors are increased, cell-cycle arrest is reinforced, cell adhesion is altered through secretion of matricellular proteins and changes in integrin expression, and the actin cytoskeleton is reorganized in a way that stress fibers are lost. In summary, current evidence suggests that in glomerular hypertension podocytes primarily aim to maintain the delicate architecture of interdigitating foot processes in the face of an expanding GBM area.
Collapse
Affiliation(s)
- Nicole Endlich
- Department of Anatomy and Cell Biology, University Medicine Greifswald, Greifswald, Germany
| | | |
Collapse
|
80
|
Rezende R, Pereira F, Kasyanov V, Kemmoku D, Maia I, da Silva J, Mironov V. Scalable Biofabrication of Tissue Spheroids for Organ Printing. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/j.procir.2013.01.054] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
81
|
Steenhard BM, Vanacore R, Friedman D, Zelenchuk A, Stroganova L, Isom K, St. John PL, Hudson BG, Abrahamson DR. Upregulated expression of integrin α1 in mesangial cells and integrin α3 and vimentin in podocytes of Col4a3-null (Alport) mice. PLoS One 2012; 7:e50745. [PMID: 23236390 PMCID: PMC3517557 DOI: 10.1371/journal.pone.0050745] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 10/22/2012] [Indexed: 01/19/2023] Open
Abstract
Alport disease in humans, which usually results in proteinuria and kidney failure, is caused by mutations to the COL4A3, COL4A4, or COL4A5 genes, and absence of collagen α3α4α5(IV) networks found in mature kidney glomerular basement membrane (GBM). The Alport mouse harbors a deletion of the Col4a3 gene, which also results in the lack of GBM collagen α3α4α5(IV). This animal model shares many features with human Alport patients, including the retention of collagen α1α2α1(IV) in GBMs, effacement of podocyte foot processes, gradual loss of glomerular barrier properties, and progression to renal failure. To learn more about the pathogenesis of Alport disease, we undertook a discovery proteomics approach to identify proteins that were differentially expressed in glomeruli purified from Alport and wild-type mouse kidneys. Pairs of cy3- and cy5-labeled extracts from 5-week old Alport and wild-type glomeruli, respectively, underwent 2-dimensional difference gel electrophoresis. Differentially expressed proteins were digested with trypsin and prepared for mass spectrometry, peptide ion mapping/fingerprinting, and protein identification through database searching. The intermediate filament protein, vimentin, was upregulated ∼2.5 fold in Alport glomeruli compared to wild-type. Upregulation was confirmed by quantitative real time RT-PCR of isolated Alport glomeruli (5.4 fold over wild-type), and quantitative confocal immunofluorescence microscopy localized over-expressed vimentin specifically to Alport podocytes. We next hypothesized that increases in vimentin abundance might affect the basement membrane protein receptors, integrins, and screened Alport and wild-type glomeruli for expression of integrins likely to be the main receptors for GBM type IV collagen and laminin. Quantitative immunofluorescence showed an increase in integrin α1 expression in Alport mesangial cells and an increase in integrin α3 in Alport podocytes. We conclude that overexpression of mesangial integrin α1 and podocyte vimentin and integrin α3 may be important features of glomerular Alport disease, possibly affecting cell-signaling, cell shape and cellular adhesion to the GBM.
Collapse
Affiliation(s)
- Brooke M. Steenhard
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Roberto Vanacore
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - David Friedman
- Department of Biochemistry, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Adrian Zelenchuk
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Larysa Stroganova
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Kathryn Isom
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Patricia L. St. John
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Billy G. Hudson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dale R. Abrahamson
- Department of Anatomy and Cell Biology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- * E-mail:
| |
Collapse
|
82
|
Wan W, Dixon JB, Gleason RL. Constitutive modeling of mouse carotid arteries using experimentally measured microstructural parameters. Biophys J 2012; 102:2916-25. [PMID: 22735542 DOI: 10.1016/j.bpj.2012.04.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 04/13/2012] [Accepted: 04/24/2012] [Indexed: 10/28/2022] Open
Abstract
Changes in the local mechanical environment and tissue mechanical properties affect the biological activity of cells and play a key role in a variety of diseases, such as cancer, arthritis, nephropathy, and cardiovascular disease. Constitutive relations have long been used to predict the local mechanical environment within biological tissues and to investigate the relationship between biological responses and mechanical stimuli. Recent constitutive relations for soft tissues consider both material and structural properties by incorporating parameters that describe microstructural organization, such as fiber distributions, fiber angles, fiber crimping, and constituent volume fractions. The recently developed technique of imaging the microstructure of a single artery as it undergoes multiple deformations provides quantitative structural data that can reduce the number of estimated parameters by using parameters that are truly experimentally intractable. Here, we employed nonlinear multiphoton microscopy to quantify collagen fiber organization in mouse carotid arteries and incorporated measured fiber distribution data into structurally motivated constitutive relations. Microscopy results demonstrate that collagen fibers deform in an affine manner over physiologically relevant deformations. The incorporation of measured fiber angle distributions into constitutive relations improves the model's predictive accuracy and does not significantly reduce the goodness of fit. The use of measured structural parameters rather than estimated structural parameters promises to improve the predictive capabilities of the local mechanical environment, and to extend the utility of intravital imaging methods for estimating the mechanical behavior of tissues using in situ structural information.
Collapse
Affiliation(s)
- William Wan
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia, USA
| | | | | |
Collapse
|
83
|
Stewart MP, Toyoda Y, Hyman AA, Müller DJ. Tracking mechanics and volume of globular cells with atomic force microscopy using a constant-height clamp. Nat Protoc 2012; 7:143-54. [DOI: 10.1038/nprot.2011.434] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
84
|
Roberts-Pilgrim AM, Makareeva E, Myles MH, Besch-Williford CL, Brodeur AC, Walker AL, Leikin S, Franklin CL, Phillips CL. Deficient degradation of homotrimeric type I collagen, α1(I)3 glomerulopathy in oim mice. Mol Genet Metab 2011; 104:373-82. [PMID: 21855382 PMCID: PMC3205245 DOI: 10.1016/j.ymgme.2011.07.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 07/27/2011] [Accepted: 07/27/2011] [Indexed: 01/15/2023]
Abstract
Col1a2-deficient (oim) mice synthesize homotrimeric type I collagen due to nonfunctional proα2(I) collagen chains. Our previous studies revealed a postnatal, progressive type I collagen glomerulopathy in this mouse model, but the mechanism of the sclerotic collagen accumulation within the renal mesangium remains unclear. The recent demonstration of the resistance of homotrimeric type I collagen to cleavage by matrix metalloproteinases (MMPs), led us to investigate the role of MMP-resistance in the glomerulosclerosis of Col1a2-deficient mice. We measured the pre- and post-translational expression of type I collagen and MMPs in glomeruli from heterozygous and homozygous animals. Both the heterotrimeric and homotrimeric isotypes of type I collagen were equally present in whole kidneys of heterozygous mice by immunohistochemistry and biochemical analysis, but the sclerotic glomerular collagen was at least 95-98% homotrimeric, suggesting homotrimeric type I collagen is the pathogenic isotype of type I collagen in glomerular disease. Although steady-state MMP and Col1a1 mRNA levels increased with the disease progression, we found these changes to be a secondary response to the deficient clearance of MMP-resistant homotrimers. Increased renal MMP expression was not sufficient to prevent homotrimeric type I collagen accumulation.
Collapse
Affiliation(s)
- Anna M. Roberts-Pilgrim
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
| | - Elena Makareeva
- NICHD, National Institutes of Health, Bethesda, MD 20892, USA. ,
| | - Matthew H. Myles
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA. , ,
| | | | - Amanda C. Brodeur
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
- Department of Child Health, University of Missouri, Columbia, Missouri 65212, USA. ,
| | - Andrew L. Walker
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
| | - Sergey Leikin
- NICHD, National Institutes of Health, Bethesda, MD 20892, USA. ,
| | - Craig L. Franklin
- Department of Veterinary Pathobiology, University of Missouri, Columbia, Missouri 65211, USA. , ,
| | - Charlotte L. Phillips
- Department of Biochemistry, University of Missouri, Columbia, Missouri 65211, USA. , , and ,
- Department of Child Health, University of Missouri, Columbia, Missouri 65212, USA. ,
- Correspondence and Reprint Requests: Charlotte L. Phillips, Ph.D., Associate Professor, Departments of Biochemistry and Child Health, University of Missouri, 117 Schweitzer Hall, Columbia, MO 65211 USA, Phone: 1-573-882-5122, Fax: 1-573-882-5635,
| |
Collapse
|
85
|
Lang E, Qadri SM, Zelenak C, Gu S, Rotte A, Draeger A, Lang F. Inhibition of suicidal erythrocyte death by blebbistatin. Am J Physiol Cell Physiol 2011; 301:C490-8. [PMID: 21593446 DOI: 10.1152/ajpcell.00043.2011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Blebbistatin, a myosin II inhibitor, interferes with myosin-actin interaction and microtubule assembly. By influencing cytoskeletal dynamics blebbistatin counteracts apoptosis of several types of nucleated cells. Even though lacking nuclei and mitochondria, erythrocytes may undergo suicidal cell death or eryptosis, which is characterized by cell shrinkage and cell membrane scrambling with phosphatidylserine exposure at the cell surface. Triggers of eryptosis include energy depletion and osmotic shock, which enhance cytosolic Ca(2+) activity with subsequent Ca(2+)-sensitive cell shrinkage and cell membrane scrambling. The present study explored the effect of blebbistatin on eryptosis. Cell membrane scrambling was estimated from binding of annexin V to phosphatidylserine at the erythrocyte surface, cell volume from forward scatter in fluorescence-activated cell sorting analysis and cytosolic Ca(2+) concentration from Fluo3 fluorescence. Exposure to blebbistatin on its own (1-50 μM) did not significantly modify cytosolic Ca(2+) concentration, forward scatter, or annexin V binding. Glucose depletion (48 h) was followed by a significant increase of Fluo3 fluorescence and annexin V binding, effects significantly blunted by blebbistatin (Fluo3 fluorescence ≥ 25 μM, annexin V binding ≥ 10 μM). Osmotic shock (addition of 550 mM sucrose) again significantly increased Fluo3 fluorescence and annexin binding, effects again significantly blunted by blebbistatin (Fluo3 fluorescence ≥ 25 μM, annexin V binding ≥ 25 μM). The present observations disclose a novel effect of blebbistatin, i.e., an influence on Ca(2+) entry and suicidal erythrocyte death following energy depletion and osmotic shock.
Collapse
Affiliation(s)
- Elisabeth Lang
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
The responses of cells to chemical signals are relatively well characterized and understood. Cells also respond to mechanical signals in the form of externally applied force and forces generated by cell-matrix and cell-cell contacts. Many features of cell function that are generally considered to be under the control of chemical stimuli, such as motility, proliferation, differentiation and survival, can also be altered by changes in the stiffness of the substrate to which the cells are adhered, even when their chemical environment remains unchanged. Many examples from clinical and whole animal studies have shown that changes in tissue stiffness are related to specific disease characteristics and that efforts to restore normal tissue mechanics have the potential to reverse or prevent cell dysfunction and disease. How cells detect stiffness is largely unknown, but the cellular structures that measure stiffness and the general principles by which they work are beginning to be revealed. This Commentary highlights selected recent reports of mechanical signaling during disease development, discusses open questions regarding the physical mechanisms by which cells sense stiffness, and examines the relationship between studies in vitro on flat substrates and the more complex three-dimensional setting in vivo.
Collapse
Affiliation(s)
- Paul A Janmey
- Institute for Medicine and Engineering, University of Pennsylvania, 1010 Vagelos Laboratories, 3340 Smith Walk, PA 19104, USA.
| | | |
Collapse
|
87
|
Pozzi A. Diseased renal glomeruli are getting soft. Focus on "Biophysical properties of normal and diseased renal glomeruli". Am J Physiol Cell Physiol 2010; 300:C394-6. [PMID: 21178112 DOI: 10.1152/ajpcell.00511.2010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|