51
|
Matalon S, Lazrak A, Jain L, Eaton DC. Invited review: biophysical properties of sodium channels in lung alveolar epithelial cells. J Appl Physiol (1985) 2002; 93:1852-9. [PMID: 12381774 DOI: 10.1152/japplphysiol.01241.2001] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Amiloride-sensitive sodium channels in the lung play an important role in lung fluid balance. Particularly in the alveoli, sodium transport is closely regulated to maintain an appropriate fluid layer on the surface of the alveoli. Alveolar type II cells appear to play an important role in this sodium transport, with the role of alveolar type I cells being less clear. In alveolar type II cells, there are a variety of different amiloride-sensitive, sodium-permeable channels. This significant diversity appears to play a role in both normal lung physiology and in pathological states. In many epithelial tissues, amiloride-sensitive epithelial sodium channels (ENaC) are formed from three subunit proteins, designated alpha-, beta-, and gamma-ENaC. At least part of the diversity of sodium-permeable channels in lung arises from the assembling of different combinations of these subunits to form channels with different biophysical properties and different mechanisms for regulation. This leads to epithelial tissue in the lung, which has enormous flexibility to alter the magnitude and regulation of salt and water transport. In this review, we discuss the biophysical properties and occurrence of these various channels and some of the mechanisms for their regulation.
Collapse
Affiliation(s)
- Sadis Matalon
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA
| | | | | | | |
Collapse
|
52
|
Abstract
Early studies of fluid transport across the pulmonary epithelium were conducted in intact animals or isolated lungs. Although the location and cells responsible for transport cannot be determined with studies in whole mammalian lungs, such preparations remain indispensable for determining the physiological and clinical relevance of in vitro investigations of cells and their transport proteins. Three different approaches have been used to study transport and exchange between the vascular and air space compartments in intact lungs. Some of the advantages and limitations of these methods are briefly reviewed here.
Collapse
Affiliation(s)
- Edward D Crandall
- Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, California 90033, USA.
| | | |
Collapse
|
53
|
Matthay MA, Folkesson HG, Clerici C. Lung epithelial fluid transport and the resolution of pulmonary edema. Physiol Rev 2002; 82:569-600. [PMID: 12087129 DOI: 10.1152/physrev.00003.2002] [Citation(s) in RCA: 496] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The discovery of mechanisms that regulate salt and water transport by the alveolar and distal airway epithelium of the lung has generated new insights into the regulation of lung fluid balance under both normal and pathological conditions. There is convincing evidence that active sodium and chloride transporters are expressed in the distal lung epithelium and are responsible for the ability of the lung to remove alveolar fluid at the time of birth as well as in the mature lung when pathological conditions lead to the development of pulmonary edema. Currently, the best described molecular transporters are the epithelial sodium channel, the cystic fibrosis transmembrane conductance regulator, Na+-K+-ATPase, and several aquaporin water channels. Both catecholamine-dependent and -independent mechanisms can upregulate isosmolar fluid transport across the distal lung epithelium. Experimental and clinical studies have made it possible to examine the role of these transporters in the resolution of pulmonary edema.
Collapse
Affiliation(s)
- Michael A Matthay
- Cardiovascular Research Institute and Department of Medicine, University of California, San Francisco, California 94143-0624, USA.
| | | | | |
Collapse
|
54
|
Matthay MA. Regulation of ion and fluid transport across the distal pulmonary epithelia: new insights. Am J Physiol Lung Cell Mol Physiol 2002. [DOI: 10.1152/ajplung.00473.2001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- Michael A. Matthay
- American Journal of Physiology-
- Lung Cellular and Molecular Physiology
- April 2002, Volume 282 (26)
| |
Collapse
|
55
|
Chen XJ, Eaton DC, Jain L. Beta-adrenergic regulation of amiloride-sensitive lung sodium channels. Am J Physiol Lung Cell Mol Physiol 2002; 282:L609-20. [PMID: 11880285 DOI: 10.1152/ajplung.00356.2001] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the mechanism by which cAMP increases sodium transport in lung epithelial cells. Alveolar type II (ATII) cells have two types of amiloride-sensitive, cation channels: a nonselective cation channel (NSC) and a highly selective channel (HSC). Exposure of ATII cells to cAMP, beta-adrenergic agonists, or other agents that increase adenylyl cyclase activity increased activity of both channel types, albeit by different mechanisms. NSC open probability (P(o)) increased severalfold when exposed to terbutaline, isoproterenol, forskolin, or cAMP analogs without any change in NSC number. In contrast, terbutaline increased HSC number with no significant change in HSC P(o). For both channels, the effect of terbutaline was blocked by propranolol and H-89, suggesting a protein kinase A (PKA) requirement for beta-adrenergic-induced changes in channel activity. Terbutaline increased cAMP levels in ATII cells, but intracellular calcium also increased. Calcium sequestration with BAPTA blocked beta-adrenergic-induced increases in NSC P(o) but did not alter HSC activity. These observations suggest that beta-adrenergic stimulation increases intracellular cAMP and activates PKA. PKA increases HSC number and increases intracellular calcium. The increase in calcium increases NSC P(o). Thus increased cAMP levels are likely to increase lung sodium transport regardless of which channel type is present.
Collapse
Affiliation(s)
- Xi-Juan Chen
- Department of Pediatrics, Emory University School of Medicine, 2040 Ridgewood Drive NE, Atlanta, GA 30322, USA
| | | | | |
Collapse
|
56
|
Borok Z, Liebler JM, Lubman RL, Foster MJ, Zhou B, Li X, Zabski SM, Kim KJ, Crandall ED. Na transport proteins are expressed by rat alveolar epithelial type I cells. Am J Physiol Lung Cell Mol Physiol 2002; 282:L599-608. [PMID: 11880284 DOI: 10.1152/ajplung.00130.2000] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Despite a presumptive role for type I (AT1) cells in alveolar epithelial transport, specific Na transporters have not previously been localized to these cells. To evaluate expression of Na transporters in AT1 cells, double labeling immunofluorescence microscopy was utilized in whole lung and in cytocentrifuged preparations of partially purified alveolar epithelial cells (AEC). Expression of Na pump subunit isoforms and the alpha-subunit of the rat (r) epithelial Na channel (alpha-ENaC) was evaluated in isolated AT1 cells identified by their immunoreactivity with AT1 cell-specific antibody markers (VIIIB2 and/or anti-aquaporin-5) and lack of reactivity with antibodies specific for AT2 cells (anti-surfactant protein A) or leukocytes (anti-leukocyte common antigen). Expression of the Na pump alpha(1)-subunit in AEC was assessed in situ. Na pump subunit isoform and alpha-rENaC expression was also evaluated by RT-PCR in highly purified (approximately 95%) AT1 cell preparations. Labeling of isolated AT1 cells with anti-alpha(1) and anti-beta(1) Na pump subunit and anti-alpha-rENaC antibodies was detected, while reactivity with anti-alpha(2) Na pump subunit antibody was absent. AT1 cells in situ were reactive with anti-alpha(1) Na pump subunit antibody. Na pump alpha(1)- and beta(1)- (but not alpha(2)-) subunits and alpha-rENaC were detected in highly purified AT1 cells by RT-PCR. These data demonstrate that AT1 cells express Na pump and Na channel proteins, supporting a role for AT1 cells in active transalveolar epithelial Na transport.
Collapse
Affiliation(s)
- Zea Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary and Critical Care Medicine, University of Southern California, 2020 Zonal Ave., Los Angeles, CA 90033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Joseph D, Tirmizi O, Zhang XL, Crandall ED, Lubman RL. Polarity of alveolar epithelial cell acid-base permeability. Am J Physiol Lung Cell Mol Physiol 2002; 282:L675-83. [PMID: 11880292 DOI: 10.1152/ajplung.00330.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated acid-base permeability properties of electrically resistive monolayers of alveolar epithelial cells (AEC) grown in primary culture. AEC monolayers were grown on tissue culture-treated polycarbonate filters. Filters were mounted in a partitioned cuvette containing two fluid compartments (apical and basolateral) separated by the adherent monolayer, cells were loaded with the pH-sensitive dye 2',7'-bis(2-carboxyethyl)-5(6)-carboxyfluorescein, and intracellular pH was determined. Monolayers in HCO-free Na(+) buffer (140 mM Na(+), 6 mM HEPES, pH 7.4) maintained a transepithelial pH gradient between the two fluid compartments over 30 min. Replacement of apical fluid by acidic (6.4) or basic (8.0) buffer resulted in minimal changes in intracellular pH. Replacement of basolateral fluid by acidic or basic buffer resulted in transmembrane proton fluxes and intracellular acidification or alkalinization. Intracellular alkalinization was blocked > or =80% by 100 microM dimethylamiloride, an inhibitor of Na(+)/H(+) exchange, whereas acidification was not affected by a series of acid/base transport inhibitors. Additional experiments in which AEC monolayers were grown in the presence of acidic (6.4) or basic (8.0) medium revealed differential effects on bioelectric properties depending on whether extracellular pH was altered in apical or basolateral fluid compartments bathing the cells. Acid exposure reduced (and base exposure increased) short-circuit current from the basolateral side; apical exposure did not affect short-circuit current in either case. We conclude that AEC monolayers are relatively impermeable to transepithelial acid/base fluxes, primarily because of impermeability of intercellular junctions and of the apical, rather than basolateral, cell membrane. The principal basolateral acid exit pathway observed under these experimental conditions is Na(+)/H(+) exchange, whereas proton uptake into cells occurs across the basolateral cell membrane by a different, undetermined mechanism. These results are consistent with the ability of the alveolar epithelium to maintain an apical-to-basolateral (air space-to-blood) pH gradient in situ.
Collapse
Affiliation(s)
- Dilip Joseph
- Division of Pulmonary and Critical Care Medicine, Will Rogers Institute Pulmonary Research Center, University of Southern California, Keck School of Medicine, 2011 Zonal Avenue, Los Angeles, CA 90033, USA
| | | | | | | | | |
Collapse
|
58
|
Mairbäurl H, Mayer K, Kim KJ, Borok Z, Bärtsch P, Crandall ED. Hypoxia decreases active Na transport across primary rat alveolar epithelial cell monolayers. Am J Physiol Lung Cell Mol Physiol 2002; 282:L659-65. [PMID: 11880290 DOI: 10.1152/ajplung.00355.2001] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Hypoxia has been reported to inhibit activity and expression of ion transporters of alveolar epithelial cells. This study extended those observations by investigating the mechanisms underlying inhibition of active Na transport across primary cultured adult rat alveolar epithelial cell monolayers grown on polycarbonate filters. Cell monolayers were exposed to normoxia and hypoxia (1.5% and 5% O(2), 5% CO(2)), and resultant changes in bioelectric properties [i.e., short-circuit current (I(sc)) and transepithelial resistance (R(t))] were measured in Ussing chambers. Results showed that I(sc) decreased with duration of exposure to hypoxia, while relatively little change was observed for R(t). In normoxia, amiloride inhibited approximately 70% of I(sc). The amiloride-sensitive portion of I(sc) decreased over time of exposure to hypoxia, whereas the magnitude of the amiloride-insensitive portion of I(sc) was not affected. Na pump capacity measured after permeabilization of the apical plasma membrane with amphotericin B decreased in monolayers exposed to 1.5% O(2) for 24 h, as did the capacity of amiloride-sensitive Na uptake measured after imposing an apical to basolateral Na gradient and permeabilization of the basolateral membrane. These results demonstrate that exposure to hypoxia inhibits alveolar epithelial Na reabsorption by reducing the rates of both apical amiloride-sensitive Na entry and basolateral Na extrusion.
Collapse
Affiliation(s)
- Heimo Mairbäurl
- Medical Clinic and Polyclinic, Department of Internal Medicine VII, Sports Medicine, University of Heidelberg, Hospitalstrasse 3, Geb. 4100, 69115 Heidelberg, Germany.
| | | | | | | | | | | |
Collapse
|
59
|
Fang X, Fukuda N, Barbry P, Sartori C, Verkman AS, Matthay MA. Novel role for CFTR in fluid absorption from the distal airspaces of the lung. J Gen Physiol 2002; 119:199-207. [PMID: 11815669 PMCID: PMC2233804 DOI: 10.1085/jgp.119.2.199] [Citation(s) in RCA: 168] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The active absorption of fluid from the airspaces of the lung is important for the resolution of clinical pulmonary edema. Although ENaC channels provide a major route for Na(+) absorption, the route of Cl(-) transport has been unclear. We applied a series of complementary approaches to define the role of Cl(-) transport in fluid clearance in the distal airspaces of the intact mouse lung, using wild-type and cystic fibrosis Delta F508 mice. Initial studies in wild-type mice showed marked inhibition of fluid clearance by Cl(-) channel inhibitors and Cl(-) ion substitution, providing evidence for a transcellular route for Cl(-) transport. In response to cAMP stimulation by isoproterenol, clearance was inhibited by the CFTR inhibitor glibenclamide in both wild-type mice and the normal human lung. Although isoproterenol markedly increased fluid absorption in wild-type mice, there was no effect in Delta F508 mice. Radioisotopic clearance studies done at 23 degrees C (to block active fluid absorption) showed approximately 20% clearance of (22)Na in 30 min both without and with isoproterenol. However, the clearance of (36)Cl was increased by 47% by isoproterenol in wild-type mice but was not changed in Delta F508 mice, providing independent evidence for involvement of CFTR in cAMP-stimulated Cl(-) transport. Further, CFTR played a major role in fluid clearance in a mouse model of acute volume-overload pulmonary edema. After infusion of saline (40% body weight), the lung wet-to-dry weight ratio increased by 28% in wild-type versus 64% in Delta F508 mice. These results provide direct evidence for a functionally important role for CFTR in the distal airspaces of the lung.
Collapse
Affiliation(s)
- X Fang
- Cardiovascular Research Institute, Department of Medicine, University of California, San Francisco, CA 94143, USA
| | | | | | | | | | | |
Collapse
|
60
|
Borok Z, Harboe-Schmidt JE, Brody SL, You Y, Zhou B, Li X, Cannon PM, Kim KJ, Crandall ED, Kasahara N. Vesicular stomatitis virus G-pseudotyped lentivirus vectors mediate efficient apical transduction of polarized quiescent primary alveolar epithelial cells. J Virol 2001; 75:11747-54. [PMID: 11689655 PMCID: PMC114760 DOI: 10.1128/jvi.75.23.11747-11754.2001] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We investigated the use of lentivirus vectors for gene transfer to quiescent alveolar epithelial cells. Primary rat alveolar epithelial cells (AEC) grown on plastic or as polarized monolayers on tissue culture-treated polycarbonate semipermeable supports were transduced with a replication-defective human immunodeficiency virus-based lentivirus vector pseudotyped with the vesicular stomatitis virus G (VSV-G) protein and encoding an enhanced green fluorescent protein reporter gene. Transduction efficiency, evaluated by confocal microscopy and quantified by fluorescence-activated cell sorting, was dependent on the dose of vector, ranging from 4% at a multiplicity of infection (MOI) of 0.1 to 99% at an MOI of 50 for AEC grown on plastic. At a comparable titer and MOI, transduction of these cells by a similarly pseudotyped murine leukemia virus vector was approximately 30-fold less than by the lentivirus vector. Importantly, comparison of lentivirus-mediated gene transfer from the apical or basolateral surface of confluent AEC monolayers (R(t) > 2 kOmega. cm(2); MOI = 10) revealed efficient transduction only when VSV-G-pseudotyped lentivirus was applied apically. Furthermore, treatment with EGTA to increase access to the basolateral surface did not increase transduction of apically applied virus, indicating that transduction was primarily via the apical membrane domain. In contrast, differentiated tracheal epithelial cells were transduced by apically applied lentivirus only in the presence of EGTA and at a much lower overall efficiency (approximately 15-fold) than was observed for AEC. Efficient transduction of AEC from the apical cell surface supports the feasibility of using VSV-G-pseudotyped lentivirus vectors for gene transfer to the alveolar epithelium and suggests that differences exist between upper and lower airways in the polarity of available receptors for the VSV-G protein.
Collapse
Affiliation(s)
- Z Borok
- Department of Medicine and Will Rogers Institute Pulmonary Research Center, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Kemp PJ, Kim KJ, Borok Z, Crandall ED. Re-evaluating the Na(+) conductance of adult rat alveolar type II pneumocytes: evidence for the involvement of cGMP-activated cation channels. J Physiol 2001; 536:693-701. [PMID: 11691865 PMCID: PMC2278905 DOI: 10.1111/j.1469-7793.2001.t01-1-00693.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
1. Alveolar epithelial type II pneumocytes were isolated and purified from adult rat lung by elastase digestion and differential adhesion, and cultured in serum-free medium for approximately 2 days on glass coverslips for subsequent patch-clamp studies employing symmetrical sodium isethionate solutions. 2. Whole-cell Na(+) currents exhibited essentially linear current-voltage relationships which were mildly inhibited (by approximately 25 %) by 10 microM amiloride. In contrast, 1 mM Zn(2+) inhibited the currents by approximately 55 % with an IC(50) of approximately 134 microM and maximal blockade achieved between 5 and 10 mM. The effects of Zn(2+) and amiloride were additive, and independent of the order of blocker addition. 3. Gd(2+), Zn(2+) and La(3+) at 10 mM were all effective at rapidly, reversibly and significantly blocking the amiloride-insensitive currents by approximately 60%. in contrast, Ni(2+) was a very weak inhibitor (30 % inhibition at 10 mM). 4. Pimozide (10 microM) caused inhibition of whole-cell cation conductance by approximately 55 %. The inhibitory effect of pimozide was concentration dependent with an IC(50) of approximately 1 microM and was maximally effective between 10 and 30 microM. Sequential addition of Zn(2+) and pimozide, in either order, revealed no overlapping inhibitory effect on the amiloride-insensitive conductance, and supported the notion that the Zn(2+)- and pimozide-sensitive currents are identical. 5. The amiloride-insensitive, Zn(2+)-blockable conductance was characterised by a Na(+)/K(+) permeability ratio (P(Na)/P(K)) of 0.73 +/- 0.02. 6. 8Br-cGMP (100 microM), a membrane-permeable analogue of cGMP, evoked a robust activation of whole-cell cation conductance to 220 % of control. This activation was apparent in either the absence or the presence of 10 microM amiloride, but was completely abolished in the presence of Zn(2+). 7. These data support the in vivo and in situ observations of a substantial amiloride-resistant Na(+) conductance, demonstrate directly that cyclic nucleotide-gated non-selective cation channels are functionally expressed in alveolar epithelial type II cells, and suggest that these channels may contribute to the fluid-reabsorptive driving force in adult lung.
Collapse
Affiliation(s)
- P J Kemp
- School of Biomedical Sciences, Worsely Medical and Dental Building, University of Leeds, Leeds LS2 9JT, UK.
| | | | | | | |
Collapse
|
62
|
Hardiman KM, Matalon S. Modification of sodium transport and alveolar fluid clearance by hypoxia: mechanisms and physiological implications. Am J Respir Cell Mol Biol 2001; 25:538-41. [PMID: 11713094 DOI: 10.1165/ajrcmb.25.5.f219] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Affiliation(s)
- K M Hardiman
- Department of Physiology, Schools of Medicine and Dentistry, University of Alabama at Birmingham, 35294-0006, USA
| | | |
Collapse
|
63
|
Uhal BD. Fas and apoptosis in the alveolar epithelium: holes in the dike? Am J Physiol Lung Cell Mol Physiol 2001; 281:L326-7. [PMID: 11435206 DOI: 10.1152/ajplung.2001.281.2.l326] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
64
|
Roum JH, Aledia AS, Carungcong LA, Kim KJ, Borok Z. Extracellular glutathione inhibits oxygen-induced permeability changes in alveolar epithelial monolayers. J Appl Physiol (1985) 2001; 91:748-54. [PMID: 11457790 DOI: 10.1152/jappl.2001.91.2.748] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Exposure to high fractional inspired oxygen for 24 h increases permeability of the alveolar epithelium, contributing to the clinical manifestations of oxygen toxicity. Utilizing a model of the alveolar epithelium in which isolated rat type II cells form polarized monolayers on polycarbonate filters [transepithelial resistance (R(t)) > 1 k Omega x cm(2) by day 4], we evaluated the ability of reduced glutathione (GSH) to ameliorate these changes. On day 4, apical fluid was replaced with culture medium containing 1) no additives, 2) GSH (500 microM), or 3) GSH (500 microM) + glutathione reductase (0.5 U/ml) + nicotinamide adenine dinucleotide phosphate (250 microM). Monolayers were exposed (for 24 h) to room air (control) or 95% O(2), each containing 5% CO(2). After 24 h of hyperoxia, R(t) for condition 1 decreased by 45% compared with control (P < 0.001). In conditions 2 and 3, R(t) did not decrease significantly (P = not significant). Hyperoxia-induced decreases in active ion transport were observed for conditions 1 and 2 (P < 0.05), but not for condition 3 (P = not significant). These findings indicate that extracellular GSH may protect the alveolar epithelium against hyperoxia-induced injury. Addition of glutathione reductase and nicotinamide adenine dinucleotide phosphate may further augment these protective effects of GSH.
Collapse
Affiliation(s)
- J H Roum
- Department of Medicine, University of California Irvine Medical Center, Orange 92868
| | | | | | | | | |
Collapse
|
65
|
Warshamana GS, Corti M, Brody AR. TNF-alpha, PDGF, and TGF-beta(1) expression by primary mouse bronchiolar-alveolar epithelial and mesenchymal cells: tnf-alpha induces TGF-beta(1). Exp Mol Pathol 2001; 71:13-33. [PMID: 11502094 DOI: 10.1006/exmp.2001.2376] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The bronchiolar-alveolar epithelium (BAE) is a primary target site for inhaled agents that cause lung injury. These cells, consequently, release a broad range of mediators that influence other cell populations, including interstitial lung fibroblasts that are central to the development of interstitial pulmonary fibrosis (IPF). A number of peptide growth factors (GF) have been postulated to be essential in the pathogenesis of IPF. We demonstrate here that primary populations of mouse BAE and mesenchymal cells, maintained in culture, synthesize four potent GF. These are platelet-derived growth factor isoforms (PDGF) A and B, transforming growth factor beta-1 (TGF-beta(1)), and tumor necrosis factor alpha (TNF-alpha). A mouse lung epithelial cell isolation technique pioneered in this laboratory has been used to purify the BAE cells to greater than 85% (80 +/- 5.6% alveolar type II and 9 +/- 2.3% Clara cells) in culture. Northern analysis, RNase protection assay, and immunocytochemistry (ICC) were used to establish mRNA and protein expression of the GF over time in the cultured BAE and mesenchymal cells. We show for the first time in these primary mouse lung cells that treatment of both cell types with TNF-alpha upregulates expression of TGF-beta(1). The four GF are produced by both epithelial and mesenchymal cells but with different temporal patterns. TGF-beta(1) is expressed constitutively by BAE and mesenchymal cells, whereas TNF-alpha expression wanes over time. The findings by ICC were consistent with levels of mRNA expression in both cell types. As genetically defined and altered mouse strains are becoming increasingly valuable for modeling lung disease, studying the gene expression patterns of target cells from these animals in vitro would be useful in sorting out the complex responses by individual cell types of the lung and the interactions among the multitude of mediators that are released during lung cell injury.
Collapse
Affiliation(s)
- G S Warshamana
- Lung Biology Program, Tulane University Health Sciences Center, New Orleans, Louisiana 70112, USA
| | | | | |
Collapse
|
66
|
Dagenais A, Denis C, Vives MF, Girouard S, Massé C, Nguyen T, Yamagata T, Grygorczyk C, Kothary R, Berthiaume Y. Modulation of alpha-ENaC and alpha1-Na+-K+-ATPase by cAMP and dexamethasone in alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2001; 281:L217-30. [PMID: 11404265 DOI: 10.1152/ajplung.2001.281.1.l217] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
cAMP and dexamethasone are known to modulate Na+ transport in epithelial cells. We investigated whether dibutyryl cAMP (DBcAMP) and dexamethasone modulate the mRNA expression of two key elements of the Na+ transport system in isolated rat alveolar epithelial cells: alpha-, beta-, and gamma-subunits of the epithelial Na+ channel (ENaC) and the alpha1- and beta1-subunits of Na+-K+-ATPase. The cells were treated for up to 48 h with DBcAMP or dexamethasone to assess their long-term impact on the steady-state level of ENaC and Na+-K+-ATPase mRNA. DBcAMP induced a twofold transient increase of alpha-ENaC and alpha1-Na+-K+-ATPase mRNA that peaked after 8 h of treatment. It also upregulated beta- and gamma-ENaC mRNA but not beta1-Na+-K+-ATPase mRNA. Dexamethasone augmented alpha-ENaC mRNA expression 4.4-fold in cells treated for 24 h and also upregulated beta- and gamma-ENaC mRNA. There was a 1.6-fold increase at 8 h of beta1-Na+-K+-ATPase mRNA but no significant modulation of alpha1-Na+-K+-ATPase mRNA expression. Because DBcAMP and dexamethasone did not increase the stability of alpha-ENaC mRNA, we cloned 3.2 kb of the 5' sequences flanking the mouse alpha-ENaC gene to study the impact of DBcAMP and dexamethasone on alpha-ENaC promoter activity. The promoter was able to drive basal expression of the chloramphenicol acetyltransferase (CAT) reporter gene in A549 cells. Dexamethasone increased the activity of the promoter by a factor of 5.9. To complete the study, the physiological effects of DBcAMP and dexamethasone were investigated by measuring transepithelial current in treated and control cells. DBcAMP and dexamethasone modulated transepithelial current with a time course reminiscent of the profile observed for alpha-ENaC mRNA expression. DBcAMP had a greater impact on transepithelial current (2.5-fold increase at 8 h) than dexamethasone (1.8-fold increase at 24 h). These results suggest that modulation of alpha-ENaC and Na+-K+-ATPase gene expression is one of the mechanisms that regulates Na+ transport in alveolar epithelial cells.
Collapse
Affiliation(s)
- A Dagenais
- Département de Médecine, Centre Hospitalier de l'Université de Montréal-Hôtel-Dieu, Université de Montréal, Montreal, Quebec H2W 1T8, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Fukuda N, Jayr C, Lazrak A, Wang Y, Lucas R, Matalon S, Matthay MA. Mechanisms of TNF-alpha stimulation of amiloride-sensitive sodium transport across alveolar epithelium. Am J Physiol Lung Cell Mol Physiol 2001; 280:L1258-65. [PMID: 11350806 DOI: 10.1152/ajplung.2001.280.6.l1258] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Because tumor necrosis factor (TNF)-alpha can upregulate alveolar fluid clearance (AFC) in pneumonia or septic peritonitis, the mechanisms responsible for the TNF-alpha-mediated increase in epithelial fluid transport were studied. In rats, 5 microg of TNF-alpha in the alveolar instillate increased AFC by 67%. This increase was inhibited by amiloride but not by propranolol. We also tested a triple-mutant TNF-alpha that is deficient in the lectinlike tip portion of the molecule responsible for its membrane conductance effect; the mutant also has decreased binding affinity to both TNF-alpha receptors. The triple-mutant TNF-alpha did not increase AFC. Perfusion of human A549 cells, patched in the whole cell mode, with TNF-alpha (120 ng/ml) resulted in a sustained increase in Na(+) currents from 82 +/- 9 to 549 +/- 146 pA (P < 0.005; n = 6). The TNF-alpha-elicited Na(+) current was inhibited by amiloride, and there was no change when A549 cells were perfused with the triple-mutant TNF-alpha or after preincubation with blocking antibodies to the two TNF-alpha receptors before perfusion with TNF-alpha. In conclusion, although TNF- alpha can initiate acute inflammation and edema formation in the lung, TNF-alpha can also increase AFC by an amiloride-sensitive, cAMP-independent mechanism that enhances the resolution of alveolar edema in pathological conditions by either binding to its receptors or activating Na(+) channels by means of its lectinlike domain.
Collapse
MESH Headings
- Adrenergic beta-Agonists/administration & dosage
- Adrenergic beta-Antagonists/administration & dosage
- Amiloride/administration & dosage
- Amino Acid Substitution
- Animals
- Antibodies, Blocking/pharmacology
- Antigens, CD/metabolism
- Biological Transport/drug effects
- Biological Transport/physiology
- Cell Line
- Humans
- Instillation, Drug
- Male
- Membrane Potentials/drug effects
- Mutation
- Patch-Clamp Techniques
- Propranolol/administration & dosage
- Pulmonary Alveoli/drug effects
- Pulmonary Alveoli/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptors, Tumor Necrosis Factor/antagonists & inhibitors
- Receptors, Tumor Necrosis Factor/metabolism
- Receptors, Tumor Necrosis Factor, Type I
- Receptors, Tumor Necrosis Factor, Type II
- Respiratory Mucosa/drug effects
- Respiratory Mucosa/metabolism
- Sodium/metabolism
- Sodium Channels/drug effects
- Sodium Channels/metabolism
- Tumor Necrosis Factor-alpha/administration & dosage
- Tumor Necrosis Factor-alpha/genetics
Collapse
Affiliation(s)
- N Fukuda
- Cardiovascular Research Institute, University of California, 505 Parnassus Ave., San Francisco, CA 94143-0130, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Crandall ED, Matthay MA. Alveolar epithelial transport. Basic science to clinical medicine. Am J Respir Crit Care Med 2001; 163:1021-9. [PMID: 11282783 DOI: 10.1164/ajrccm.163.4.2006116] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- E D Crandall
- Department of Medicine, University of Southern California, Los Angeles, USA
| | | |
Collapse
|
69
|
Guo Y, Martinez-Williams C, Yellowley CE, Donahue HJ, Rannels DE. Connexin expression by alveolar epithelial cells is regulated by extracellular matrix. Am J Physiol Lung Cell Mol Physiol 2001; 280:L191-202. [PMID: 11158997 DOI: 10.1152/ajplung.2001.280.2.l191] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular matrix (ECM) proteins promote attachment, spreading, and differentiation of cultured alveolar type II epithelial cells. The present studies address the hypothesis that the ECM also regulates expression and function of gap junction proteins, connexins, in this cell population. Expression of cellular fibronectin and connexin (Cx) 43 increase in parallel during early type II cell culture as Cx26 expression declines. Gap junction intercellular communication is established over the same interval. Cells plated on a preformed, type II cell-derived, fibronectin-rich ECM demonstrate accelerated formation of gap junction plaques and elevated gap junction intercellular communication. These effects are blocked by antibodies against fibronectin, which cause redistribution of Cx43 protein from the plasma membrane to the cytoplasm. Conversely, cells cultured on a laminin-rich ECM, Matrigel, express low levels of Cx43 but high levels of Cx26, reflecting both transcriptional and translational regulation. Cx26 and Cx43 thus demonstrate reciprocal regulation by ECM constituents.
Collapse
Affiliation(s)
- Y Guo
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, USA
| | | | | | | | | |
Collapse
|
70
|
Jiang X, Ingbar DH, O'Grady SM. Selectivity properties of a Na-dependent amino acid cotransport system in adult alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2000; 279:L911-5. [PMID: 11053027 DOI: 10.1152/ajplung.2000.279.5.l911] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated the amino acid specificity of a Na-dependent amino acid cotransport system that contributes to transepithelial Na absorption in the apical membrane of cultured adult rat alveolar epithelial cell monolayers. Short-circuit current was increased by basic, uncharged polar, and nonpolar amino acids but not by L-aspartic acid or L-proline. EC(50) values for L-lysine and L-histidine were 0.16 and 0.058 mM, respectively. The L-lysine-stimulated short-circuit current was Na dependent, with a concentration causing a half-maximal stimulation by Na of 44.24 mM. L-Serine, L-glutamine, and L-cysteine had EC(50) values of 0.095, 0.25, and 0.12 mM, respectively. L-Alanine had the highest affinity, with an EC(50) of 0.027 mM. We conclude that monolayer cultures of adult rat alveolar epithelial cells possess a broad-specificity Na-dependent amino acid cotransport system with properties consistent with system B(0,+). We suggest that this cotransport system plays a critical role in recycling of constituent amino acids that make up glutathione, thus ensuring efficient replenishment of this important antioxidant within the alveolar fluid.
Collapse
Affiliation(s)
- X Jiang
- Department of Physiology, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
71
|
Castro R, Barlow-Walden L, Woodson T, Kerecman JD, Zhang GH, Martinez JR. Ion transport in an immortalized rat submandibular cell line SMG-C6. PROCEEDINGS OF THE SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE. SOCIETY FOR EXPERIMENTAL BIOLOGY AND MEDICINE (NEW YORK, N.Y.) 2000. [PMID: 10998197 DOI: 10.1046/j.1525-1373.2000.22505.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The immortalized rat submandibular epithelial cell line, SMG-C6, cultured on porous tissue culture supports, forms polarized, tight-junction epithelia facilitating bioelectric characterization in Ussing chambers. The SMG-C6 epithelia generated transepithelial resistances of 956+/-84Omega.cm2 and potential differences (PD) of -16.9 +/- 1.5mV (apical surface negative) with a basal short-circuit current (Isc) of 23.9 +/- 1.7 microA/cm2 (n = 69). P2 nucleotide receptor agonists, ATP or UTP, applied apically or basolaterally induced a transient increase in Isc, followed by a sustained decreased below baseline value. The peak DeltaIsc increase was partly sensitive to Cl- and K+ channel inhibitors, DPC, glibenclamide, and tetraethylammonium (TEA) and was completely abolished following Ca2+ chelation with BAPTA or bilateral substitution of gluconate for Cl-. The major component of basal Isc was sensitive to apical Na+ replacement or amiloride (half-maximal inhibitory concentration 392 nM). Following pretreatment with amiloride, ATP induced a significantly greater Isc; however, the poststimulatory decline was abolished, suggesting an ATP-induced inhibition of amiloride-sensitive Na+ transport. Consistent with the ion transport properties found in Ussing chambers, SMG-C6 cells express the rat epithelial Na+ channel alpha-subunit (alpha-rENaC). Thus, cultured SMG-C6 cells produce tight polarized epithelia on permeable support with stimulated Cl- secretory conductance and an inward Isc accounted for by amiloride-sensitive Na+ absorption.
Collapse
Affiliation(s)
- R Castro
- Department of Pediatrics, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78284-7812, USA.
| | | | | | | | | | | |
Collapse
|
72
|
Dickie AJ, Rafii B, Piovesan J, Davreux C, Ding J, Tanswell AK, Rotstein O, O'Brodovich H. Preventing endotoxin-stimulated alveolar macrophages from decreasing epithelium Na+ channel (ENaC) mRNA levels and activity. Pediatr Res 2000; 48:304-10. [PMID: 10960494 DOI: 10.1203/00006450-200009000-00007] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The acute respiratory distress syndrome is characterized by impairment of the alveolar-capillary barrier. Our laboratory has shown that distal lung epithelial cell (DLEC) amiloride-sensitive Na+ transport is impaired by in vitro coculture with endotoxin (lipopolysaccharide)-stimulated alveolar macrophages (AM) through an L-arginine-dependent mechanism. To investigate the effect of this model on mRNA levels of the rat epithelial Na+ channel, mature fetal rat DLEC monolayers were incubated for 16 h with rat AM (1 x 10(7)) and lipopolysaccharide (10 microg/mL), or the cell-free supernatant of lipopolysaccharide-stimulated rat AM. Such exposure resulted in a profound decrease in mRNA expression for all subunits (alpha, beta, and gamma) of the rat epithelial Na+ channel, without affecting 18S RNA levels. This effect was prevented by the antioxidant N-acetylcysteine. In separate experiments, confluent DLEC monolayers were exposed to lipopolysaccharide-stimulated AM supernatant for 16 h with or without N-acetylcysteine and DTT and studied in Ussing chambers. As previously demonstrated in our laboratory, AM supernatant resulted in a significant (p < 0.05) impairment of DLEC Na+ transport, as reflected by a decrease in the amiloride-sensitive component of short-circuit current (control, 3.96 +/- 0.18 microA/cm2 versus supernatant, 2.34 +/- 0.56 microA/cm2; p < 0.05). This effect was significantly reversed by N-acetylcysteine (3.55 +/- 0.48 microA/cm2), but not by DTT (1.87 +/- 0.21 microA/cm2). N-acetylcysteine, but not DTT, increased DLEC thiol levels. These studies elucidate mechanisms by which activated AM impair alveolar epithelial barrier function in an in vitro model of acute lung injury.
Collapse
Affiliation(s)
- A J Dickie
- Department of Surgery, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Tschumperlin DJ, Oswari J, Margulies AS. Deformation-induced injury of alveolar epithelial cells. Effect of frequency, duration, and amplitude. Am J Respir Crit Care Med 2000; 162:357-62. [PMID: 10934053 DOI: 10.1164/ajrccm.162.2.9807003] [Citation(s) in RCA: 243] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The onset of ventilator-induced lung injury (VILI) is linked to a number of possible mechanisms. To isolate the possible role of alveolar epithelial deformation in the development of VILI, we have developed an in vitro system in which changes in alveolar epithelial cell viability can be measured after exposure to tightly controlled and physiologically relevant deformations. We report here a study of the relative effect of deformation frequency, duration, and amplitude on cell viability. We exposed rat primary alveolar epithelial cells to a variety of biaxial stretch protocols, and assessed deformation-induced cell injury quantitatively, using a fluorescent cell viability assay. Deformation-induced injury was found to depend on repetitive stretching, with cyclic deformations significantly more damaging than tonically held deformations. In cyclically deformed cells, injury occurred rapidly, with the majority of cell death occurring during the first 5 min of deformation. Deformation-induced injury was increased with the frequency of sustained cyclic deformations, but was not dependent on the deformation rate during a single stretch. Reducing the amplitude of cell deformations by superimposing small cyclic deformations on a tonic deformation significantly reduced cell death as compared with large-amplitude deformations with the same peak deformation.
Collapse
Affiliation(s)
- D J Tschumperlin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
74
|
Lubman RL, Zhang XL, Zheng J, Ocampo L, Lopez MZ, Veeraraghavan S, Zabski SM, Danto SI, Borok Z. Integrin alpha(3)-subunit expression modulates alveolar epithelial cell monolayer formation. Am J Physiol Lung Cell Mol Physiol 2000; 279:L183-93. [PMID: 10893217 DOI: 10.1152/ajplung.2000.279.1.l183] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated expression of the alpha(3)-integrin subunit by rat alveolar epithelial cells (AECs) grown in primary culture as well as the effects of monoclonal antibodies with blocking activity against the alpha(3)-integrin subunit on AEC monolayer formation. alpha(3)-Integrin subunit mRNA and protein were detectable in AECs on day 1 and increased with time in culture. alpha(3)- and beta(1)-integrin subunits coprecipitated in immunoprecipitation experiments with alpha(3)- and beta(1)-subunit-specific antibodies, consistent with their association as the alpha(3)beta(1)-integrin receptor at the cell membrane. Treatment with blocking anti-alpha(3) monoclonal antibody from day 0 delayed development of transepithelial resistance, reduced transepithelial resistance through day 5 compared with that in untreated AECs, and resulted in large subconfluent patches in monolayers viewed by scanning electron microscopy on day 3. These data indicate that alpha(3)- and beta(1)-integrin subunits are expressed in AEC monolayers where they form the heterodimeric alpha(3)beta(1)-integrin receptor at the cell membrane. Blockade of the alpha(3)-integrin subunit inhibits formation of confluent AEC monolayers. We conclude that the alpha(3)-integrin subunit modulates formation of AEC monolayers by virtue of the key role of the alpha(3)beta(1)-integrin receptor in AEC adhesion.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/pharmacology
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Antigens, CD/physiology
- Blotting, Northern
- Blotting, Western
- Cell Adhesion/drug effects
- Cell Nucleus/ultrastructure
- Cells, Cultured
- Epithelial Cells/physiology
- Epithelial Cells/ultrastructure
- Fluorescent Antibody Technique
- Integrin alpha3
- Integrins/immunology
- Integrins/metabolism
- Integrins/physiology
- Male
- Microscopy, Electron, Scanning
- Precipitin Tests
- Pulmonary Alveoli/cytology
- Pulmonary Alveoli/physiology
- Pulmonary Alveoli/ultrastructure
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- R L Lubman
- Division of Pulmonary and Critical Care Medicine and Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Stern M, Ulrich K, Robinson C, Copeland J, Griesenbach U, Masse C, Cheng S, Munkonge F, Geddes D, Berthiaume Y, Alton E. Pretreatment with cationic lipid-mediated transfer of the Na+K+-ATPase pump in a mouse model in vivo augments resolution of high permeability pulmonary oedema. Gene Ther 2000; 7:960-6. [PMID: 10849556 DOI: 10.1038/sj.gt.3301193] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Resolution of pulmonary oedema is mediated by active absorption of liquid across the alveolar epithelium. A key component of this process is the sodium-potassium ATPase (Na+K+-ATPase) enzyme located on the basolateral surface of epithelial cells and up-regulated during oedema resolution. We hypothesised that lung liquid clearance could be further up-regulated by lipid-mediated transfer and expression of exogenous Na+K+-ATPase cDNA. We demonstrate proof of this principle in a model of high permeability pulmonary oedema induced by intraperitoneal injection of thiourea (2.5 mg/kg) in C57/BL6 mice. Pretreatment of mice (24 h before thiourea) by nasal sniffing of cationic liposome (lipid #67)-DNA complexes encoding the alpha and beta subunits of Na+K+-ATPase (160 microg per mouse), significantly (P<0.01) decreased the wet:dry weight ratios measured 2 h after thiourea injection compared with control animals, pretreated with an equivalent dose of an irrelevant gene. Whole lung Na+K+-ATPase activity was significantly (P<0.05) increased in mice pretreated with Na+K+-ATPase cDNA compared both with untreated control animals as well as animals pretreated with the irrelevant gene. Nested RT-PCR on whole lung homogenates confirmed gene transfer by detection of vector-specific mRNA in three of four mice studied 24 h after gene transfer. This demonstration of a significant reduction in pulmonary oedema following in vivo gene transfer raises the possibility of gene therapy as a novel, localised approach for pulmonary oedema in clinical settings such as ARDS and lung transplantation.
Collapse
Affiliation(s)
- M Stern
- Department of Gene Therapy, Imperial College at the National Heart and Lung Institute, London, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Matsukawa Y, Yamahara H, Yamashita F, Lee VH, Crandall ED, Kim KJ. Rates of protein transport across rat alveolar epithelial cell monolayers. J Drug Target 2000; 7:335-42. [PMID: 10721795 DOI: 10.3109/10611869909085516] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The transport of model proteins, ranging from 12,300 to 150,000 Da, across tight rat alveolar epithelial cell monolayers (> 2000omegacm2) grown on polycarbonate filters, was studied. Model proteins were 14C-cytochrome c, 14C-ovalbumin, granulocyte-colony stimulating factor (G-CSF), 14C-bovine serum albumin (BSA), 125I-transferrin, and 14C-immunoglobulin G. Cytochrome c was extensively metabolized, as indicated by < 10% of the dose being translocated in intact form. This contrasts with 20-80% for the other model proteins studied. The flux of cytochrome c and G-CSF was symmetric in the apical-to-basolateral (ab) and basolateral-to-apical (ba) directions. By contrast, the flux of intact ovalbumin, BSA, transferrin and immunoglobulin G showed asymmetry, with the ab flux being higher by 2-5 times. There was no relationship between ab or ba fluxes and the molecular weights of these four model proteins. Since some of the proteins were translocated at much greater rates than are consistent with restricted diffusion or pinocytosis, receptor-mediated or adsorptive transcytosis may be involved.
Collapse
Affiliation(s)
- Y Matsukawa
- Department of Pharmaceutical Sciences, Will Rogers Institute Pulmonary Research Center, University of Southern California, Los Angeles 90033, USA
| | | | | | | | | | | |
Collapse
|
77
|
Pasternak AS, Miller WM. Measurement of trans-epithelial electrical resistance in perfusion: Potential application for in vitro ocular toxicity testing. Biotechnol Bioeng 2000; 50:568-79. [DOI: 10.1002/(sici)1097-0290(19960605)50:5<568::aid-bit12>3.0.co;2-f] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
78
|
Kim YK, Hwang MY, Woo JS, Jung JS, Lee SH. Effect of arachidonic acid metabolic inhibitors on hypoxia/reoxygenation-induced renal cell injury. Ren Fail 2000; 22:143-57. [PMID: 10803760 DOI: 10.1081/jdi-100100860] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The present study was undertaken to examine the role of arachidonic acid (AA) metabolites in hypoxia/reoxygenation (H/R)-induced renal cell injury in rabbit renal cortical slices using AA metabolic inhibitors. Inhibitors of cyclooxygenase (indomethacin and diclofenac sodium) and lipoxygenase pathways (nordihydroguaiaretic acid, caffeic acid, and eicosapentaenoic acid) reduced H/R-induced LDH release in a dose-dependent manner, whereas an inhibitor of cytochrome P-450 monooxygenase pathway ethoxyresorufin was not effective. AA increased LDH release in control slices, and the effect was not altered by indomethacin and nordihydroguaiaretic acid. The protective effect of indomethacin was not affected by addition of PGE2, a main product of cyclooxygenase pathway in the kidney. H2O2-induced LDH release was prevented by inhibitors of lipoxygenase but not by inhibitors of cyclooxygenase and cytochrome P-450 monooxygenase H/R-induced LDH release was not altered by iron chelators, phenanthroline and deferoxamine, and a potent antioxidant, N,N'-diphenyl-p-phenylenediamine, suggesting that the H/R-induced cell injury is not attributed to a generation of reactive oxygen species. Morphological studies showed that H/R-induced structural changes including cell necrosis were significantly prevented by indomethacin. These results suggest that inhibitors of cyclooxygenase and lipoxygenase pathways exert a direct protective effect against the H/R-induced cell injury in renal tubules. Whether these effects are mediated by alterations of AA metabolic pathways is not certain.
Collapse
Affiliation(s)
- Y K Kim
- Department of Physiology, College of Medicine, Pusan National University, Korea.
| | | | | | | | | |
Collapse
|
79
|
Madesh M, Ramachandran A, Pulimood A, Vadranam M, Balasubramanian KA. Attenuation of intestinal ischemia/reperfusion injury with sodium nitroprusside: studies on mitochondrial function and lipid changes. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1500:204-16. [PMID: 10657590 DOI: 10.1016/s0925-4439(99)00107-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Reactive oxygen species have been implicated in cellular injury during ischemia/reperfusion (I/R). Mitochondria are one of the main targets of oxygen free radicals and damage to this organelle leads to cell death. Reports suggest that nitric oxide (NO) may offer protection from damage during I/R. This study has looked at the functional changes and lipid alteration to mitochondria during intestinal I/R and the protection offered by NO. It was observed that I/R of the intestine is associated with functional alterations in the mitochondria as suggested by MTT reduction, respiratory control ratio and mitochondrial swelling. Mitochondrial lipid changes suggestive of activation of phospholipase A(2) and phospholipase D were also seen after (I/R) mediated injury. These changes were prevented by the simultaneous presence of a NO donor in the lumen of the intestine. These studies have suggested that structural and functional alterations of mitochondria are prominent features of I/R injury to the intestine which can be ameliorated by NO.
Collapse
Affiliation(s)
- M Madesh
- The Wellcome Trust Research Laboratory, Department of Gastrointestinal Sciences, Christian Medical College and Hospital, Vellore, India
| | | | | | | | | |
Collapse
|
80
|
Dodoo AN, Bansal SS, Barlow DJ, Bennet F, Hider RC, Lansley AB, Lawrence MJ, Marriott C. Use of alveolar cell monolayers of varying electrical resistance to measure pulmonary peptide transport. J Pharm Sci 2000; 89:223-31. [PMID: 10688751 DOI: 10.1002/(sici)1520-6017(200002)89:2<223::aid-jps9>3.0.co;2-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The apparent permeability coefficient (P(app)) of two fluorescently tagged model hydrophilic peptides, acXASNH(2) and acXAS(GAS)(7)NH(2), and (14)C-mannitol across monolayers of cultured rat alveolar epithelial cells of varying transepithelial electrical resistance (TER) has been examined. In line with their design features, the peptides were not degraded under the conditions of the test. Furthermore, no concentration dependence of transport of the tripeptide acXASNH(2) was observed over the concentration range studied, nor was any directional transport seen for either of the model peptides, indicating that under the conditions of the test they were not substrates for any transporters or efflux pumps. From the hydrophilic nature of the peptides (as assessed by their log P), and their inverse dependence of transport with molecular weight and TER, it was assumed that the peptides were transported across the cell monolayer passively via the paracellular route. The observed P(app) for the transport of (14)C-mannitol and the peptides across rat alveolar epithelial cell monolayers were found to be inversely (though not linearly) related to the measured TER and could be well-modeled assuming the presence of two populations of "pores" in the cell monolayer, namely, cylindrical pores of diameter 1.5 nm and large pores of diameter 20 nm. The relative populations of the two types of pores varied with the TER of the monolayer, with the number of large pores decreasing with an increase in TER (and the number of small pores taken as fixed). These results suggest that if the cell monolayer is well characterized with respect to the passage of a range of probe molecules across monolayers of varying electrical resistance, it should be possible to predict the P(app) of any hydrophilic peptide or drug crossing the membrane by the paracellular route at any desired TER using a monolayer of any electrical resistance, above a minimum value.
Collapse
Affiliation(s)
- A N Dodoo
- Department of Pharmacy, King's College London, University of London, The Franklin-Wilkins Building, 150 Stamford Street, London, SE1 8WA.
| | | | | | | | | | | | | | | |
Collapse
|
81
|
Lazrak A, Nielsen VG, Matalon S. Mechanisms of increased Na(+) transport in ATII cells by cAMP: we agree to disagree and do more experiments. Am J Physiol Lung Cell Mol Physiol 2000; 278:L233-8. [PMID: 10666105 DOI: 10.1152/ajplung.2000.278.2.l233] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Existing evidence supports the presence of active transport of Na(+) across the mammalian alveolar epithelium and its upregulation by agents that increase cytoplasmic cAMP levels. However, there is controversy regarding the mechanisms responsible for this upregulation. Herein we present the results of various patch-clamp studies indicating the presence of 25- to 27-pS, amiloride-sensitive, moderately selective Na(+) channels (Na(+)-to-K(+) permeability ratio = 7:1) located on the apical membranes of rat alveolar type II (ATII) cells maintained in primary culture. The addition of terbutaline to the bath solution increased the open probability of single channels present in cell-attached patches of ATII cells without affecting their conductance. A similar increase in open probability was seen after the addition of protein kinase A, ATP, and Mg(2+) to the cytoplasmic side of inside-out patches. Measurement of short-circuit currents across confluent monolayers of rat or rabbit ATII cells indicates that terbutaline and 8-(4-chlorophenylthio)-cAMP increase vectorial Na(+) transport and activate Cl(-) channels. Currently, there is a controversy as to whether the cAMP-induced increase in Na(+) transport is due solely to hyperpolarization of the cytoplasmic side of the ATII cell membrane due to Cl(-) influx or whether it results from simultaneous stimulation of both Cl(-) and Na(+) conductive pathways. Additional studies are needed to resolve this issue.
Collapse
Affiliation(s)
- A Lazrak
- Department of Anesthesiology, The University of Alabama at Birmingham, Birmingham, Alabama 35249, USA
| | | | | |
Collapse
|
82
|
Widdcombe JH. How does cAMP increase active Na absorption across alveolar epithelium? Am J Physiol Lung Cell Mol Physiol 2000; 278:L231-2. [PMID: 10666104 DOI: 10.1152/ajplung.2000.278.2.l231] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
83
|
O'Grady SM, Jiang X, Ingbar DH. Cl-channel activation is necessary for stimulation of Na transport in adult alveolar epithelial cells. Am J Physiol Lung Cell Mol Physiol 2000; 278:L239-44. [PMID: 10666106 DOI: 10.1152/ajplung.2000.278.2.l239] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this review, we discuss evidence that supports the hypothesis that adrenergic stimulation of transepithelial Na absorption across the alveolar epithelium occurs indirectly by activation of apical Cl channels, resulting in hyperpolarization and an increased driving force for Na uptake through amiloride-sensitive Na channels. This hypothesis differs from the prevailing idea that adrenergic-receptor activation increases the open probability of Na channels, leading to an increase in apical membrane Na permeability and an increase in Na and fluid uptake from the alveolar space. We review results from cultured alveolar epithelial cell monolayer experiments that show increases in apical membrane Cl conductance in the absence of any change in Na conductance after stimulation by selective beta-adrenergic-receptor agonists. We also discuss possible reasons for differences in Na-channel regulation in cells grown in monolayer culture compared with that in dissociated alveolar epithelial cells. Finally, we describe some preliminary in vivo data that suggest a role for Cl-channel activation in the process of amiloride-sensitive alveolar fluid absorption.
Collapse
Affiliation(s)
- S M O'Grady
- Departments of Physiology and Animal Science, University of Minnesota, St. Paul 55108, Minnesota 55455, USA.
| | | | | |
Collapse
|
84
|
DeCoursey TE. Hypothesis: do voltage-gated H(+) channels in alveolar epithelial cells contribute to CO(2) elimination by the lung? Am J Physiol Cell Physiol 2000; 278:C1-C10. [PMID: 10644504 DOI: 10.1152/ajpcell.2000.278.1.c1] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Although alveolar epithelial cells were the first mammalian cells in which voltage-gated H(+) currents were recorded, no specific function has yet been proposed. Here we consider whether H(+) channels contribute to one of the main functions of the lung: CO(2) elimination. This idea builds on several observations: 1) some cell membranes have low CO(2) permeability, 2) carbonic anhydrase is present in alveolar epithelium and contributes to CO(2) extrusion by facilitating diffusion, 3) the transepithelial potential difference favors selective activation of H(+) channels in apical membranes, and 4) the properties of H(+) channels are ideally suited to the proposed role. H(+) channels open only when the electrochemical gradient for H(+) is outward, imparting directionality to the diffusion process. Unlike previous facilitated diffusion models, HCO(-)(3) and H(+) recombine to form CO(2) in the alveolar subphase. Rough quantitative considerations indicate that the proposed mechanism is plausible and indicate a significant capacity for CO(2) elimination by the lung by this route. Fully activated alveolar H(+) channels extrude acid equivalents at three times the resting rate of CO(2) production.
Collapse
Affiliation(s)
- T E DeCoursey
- Department of Molecular Biophysics and Physiology, Rush Presbyterian St. Luke's Medical Center, Chicago, Illinois 60612, USA.
| |
Collapse
|
85
|
WANG CHIACHUAN, WILLIS WILLIAMD, WESTLUND KARINN. Ascending projections from the area around the spinal cord central canal: A Phaseolus vulgaris leucoagglutinin study in rats. J Comp Neurol 1999; 415:341-67. [PMID: 10553119 PMCID: PMC7875518 DOI: 10.1002/(sici)1096-9861(19991220)415:3<341::aid-cne3>3.0.co;2-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A single small iontophoretic injection of Phaseolus vulgaris leucoagglutinin labels projections from the area surrounding the spinal cord central canal at midthoracic (T6-T9) or lumbosacral (L6-S1) segments of the spinal cord. The projections from the midthoracic or lumbosacral level of the medial spinal cord are found: 1) ascending ipsilaterally in the dorsal column near the dorsal intermediate septum or the midline of the gracile fasciculus, respectively; 2) terminating primarily in the dorsal, lateral rim of the gracile nucleus and the medial rim of the cuneate nucleus or the dorsomedial rim of the gracile nucleus, respectively; and 3) ascending bilaterally with slight contralateral predominance in the ventrolateral quadrant of the spinal cord and terminating in the ventral and medial medullary reticular formation. Other less dense projections are to the pons, midbrain, thalamus, hypothalamus, and other forebrain structures. Projections arising from the lumbosacral level are also found in Barrington's nucleus. The results of the present study support previous retrograde tract tracing and physiological studies from our group demonstrating that the neurons in the area adjacent to the central canal of the midthoracic or lumbosacral level of the spinal cord send long ascending projections to the dorsal column nucleus that are important in the transmission of second-order afferent information for visceral nociception. Thus, the axonal projections through both the dorsal and the ventrolateral white matter from the CC region terminate in many regions of the brain providing spinal input for sensory integration, autonomic regulation, motor and emotional responses, and limbic activation.
Collapse
Affiliation(s)
| | | | - KARIN N. WESTLUND
- Correspondence to: Karin N. Westlund High, Department of Anatomy and Neurosciences, Member, Marine Biomedical Institute, University of Texas Medical Branch, Galveston, TX 77555-1069.
| |
Collapse
|
86
|
Shen J, Elbert KJ, Yamashita F, Lehr CM, Kim KJ, Lee VH. Organic cation transport in rabbit alveolar epithelial cell monolayers. Pharm Res 1999; 16:1280-7. [PMID: 10468032 DOI: 10.1023/a:1014814017316] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To characterize organic cation (OC) transport in primary cultured rabbit alveolar epithelial cell monolayers, using [14C]-guanidine as a model substrate. METHODS Type II alveolar epithelial cells from the rabbit lung were isolated by elastase digestion and cultured on permeable filters precoated with fibronectin and collagen. Uptake and transport studies of [14C]-guanidine were conducted in cell monolayers of 5 to 6 days in culture. RESULTS The cultured alveolar epithelial cell monolayers exhibited the characteristics of a tight barrier. [14C]-Guanidine uptake was temperature dependent, saturable, and inhibited by OC compounds such as amiloride, cimetidine, clonidine, procainamide, propranolol, tetraethylammonium, and verapamil. Apical guanidine uptake (Km = 129 +/- 41 microM, Vmax = 718 +/- 72 pmol/mg protein/5 min) was kinetically different from basolateral uptake (Km = 580 +/- 125 microM, Vmax = 1,600 +/- 160 pmol/mg protein/5 min). [14C]-Guanidine transport across the alveolar epithelial cell monolayer in the apical to basolateral direction revealed a permeability coefficient (Papp) of (7.3 +/- 0.4) x 10(-7) cm/sec, about seven times higher than that for the paracellular marker [14C]-mannitol. CONCLUSIONS Our findings are consistent with the existence of carrier-mediated OC transport in cultured rabbit alveolar epithelial cells.
Collapse
Affiliation(s)
- J Shen
- Department of Pharmaceutical Sciences, University of Southern California, Los Angeles 90033, USA
| | | | | | | | | | | |
Collapse
|
87
|
Borok Z, Mihyu S, Fernandes VF, Zhang XL, Kim KJ, Lubman RL. KGF prevents hyperoxia-induced reduction of active ion transport in alveolar epithelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 276:C1352-60. [PMID: 10362598 DOI: 10.1152/ajpcell.1999.276.6.c1352] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We evaluated the effects of acute hyperoxic exposure on alveolar epithelial cell (AEC) active ion transport and on expression of Na+ pump (Na+-K+-ATPase) and rat epithelial Na+ channel subunits. Rat AEC were cultivated in minimal defined serum-free medium (MDSF) on polycarbonate filters. Beginning on day 5, confluent monolayers were exposed to either 95% air-5% CO2 (normoxia) or 95% O2-5% CO2 (hyperoxia) for 48 h. Transepithelial resistance (Rt) and short-circuit current (Isc) were determined before and after exposure. Na+ channel alpha-, beta-, and gamma-subunit and Na+-K+-ATPase alpha1- and beta1-subunit mRNA levels were quantified by Northern analysis. Na+ pump alpha1- and beta1-subunit protein abundance was quantified by Western blotting. After hyperoxic exposure, Isc across AEC monolayers decreased by approximately 60% at 48 h relative to monolayers maintained under normoxic conditions. Na+ channel beta-subunit mRNA expression was reduced by hyperoxia, whereas alpha- and gamma-subunit mRNA expression was unchanged. Na+ pump alpha1-subunit mRNA was unchanged, whereas beta1-subunit mRNA was decreased approximately 80% by hyperoxia in parallel with a reduction in beta1-subunit protein. Because keratinocyte growth factor (KGF) has recently been shown to upregulate AEC active ion transport and expression of Na+-K+-ATPase under normoxic conditions, we assessed the ability of KGF to prevent hyperoxia-induced changes in active ion transport by supplementing medium with KGF (10 ng/ml) from day 2. The presence of KGF prevented the effects of hyperoxia on ion transport (as measured by Isc) relative to normoxic controls. Levels of beta1 mRNA and protein were relatively preserved in monolayers maintained in MDSF and KGF compared with those cultivated in MDSF alone. These results indicate that AEC net active ion transport is decreased after 48 h of hyperoxia, likely as a result of a decrease in the number of functional Na+ pumps per cell. KGF largely prevents this decrease in active ion transport, at least in part, by preserving Na+ pump expression.
Collapse
Affiliation(s)
- Z Borok
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary and Critical Care Medicine, University of Southern California, Los Angeles, California 90033, USA.
| | | | | | | | | | | |
Collapse
|
88
|
Elbert KJ, Schäfer UF, Schäfers HJ, Kim KJ, Lee VH, Lehr CM. Monolayers of human alveolar epithelial cells in primary culture for pulmonary absorption and transport studies. Pharm Res 1999; 16:601-8. [PMID: 10349999 DOI: 10.1023/a:1018887501927] [Citation(s) in RCA: 123] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To develop a cell culture model of human alveolar epithelial cells in primary culture for the in vitro study of pulmonary absorption and transport. METHODS Type II pneumocytes isolated from normal human distal lung tissue by enzyme treatment and subsequent purification were plated on fibronectin/collagen coated polyester filter inserts, and cultured using a low-serum growth medium. Characterization of the cell culture was achieved by bioelectric measurements, cell-specific lectin binding, immunohistochemical detection of cell junctions, and by assessment of transepithelial transport of dextrans of varying molecular weights. RESULTS In culture, the isolated cells spread into confluent monolayers, exhibiting peak transepithelial resistance of 2,180 +/- 62 ohms x cm2 and potential difference of 13.5 +/- 1.0 mV (n = 30-48), and developing tight junctions as well as desmosomes. As assessed by lectin-binding, the cell monolayers consisted of mainly type I cells with some interspersed type II cells, thus well mimicking the situation in vivo. The permeability of hydrophilic macromolecular FITC-dextrans across the cell monolayer was found to be inversely related to their molecular size, with Papp values ranging from 1.7 to 0.2 x 10(-8) cm/sec. CONCLUSIONS A primary cell culture model of human alveolar epithelial cells has been established, which appears to be a valuable in vitro model for pulmonary drug delivery and transport studies.
Collapse
Affiliation(s)
- K J Elbert
- Department of Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
| | | | | | | | | | | |
Collapse
|
89
|
Matalon S, O'Brodovich H. Sodium channels in alveolar epithelial cells: molecular characterization, biophysical properties, and physiological significance. Annu Rev Physiol 1999; 61:627-61. [PMID: 10099704 DOI: 10.1146/annurev.physiol.61.1.627] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
At birth, fetal distal lung epithelial (FDLE) cells switch from active chloride secretion to active sodium (Na+) reabsorption. Sodium ions enter the FDLE and alveolar type II (ATII) cells mainly through apical nonselective cation and Na(+)-selective channels, with conductances of 4-26 pS (picoSiemens) in FDLE and 20-25 pS in ATII cells. All these channels are inhibited by amiloride with a 50% inhibitory concentration of < 1 microM, and some are also inhibited by [N-ethyl-N-isopropyl]-2'-4'-amiloride (50% inhibitory concentration of < 1 microM). Both FDLE and ATII cells contain the alpha-, beta-, and gamma-rENaC (rat epithelial Na+ channels) mRNAs; reconstitution of an ATII cell Na(+)-channel protein into lipid bilayers revealed the presence of 25-pS Na+ single channels, inhibited by amiloride and [N-ethyl-N-isopropyl]-2'-4'-amiloride. A variety of agents, including cAMP, oxygen, glucocorticoids, and in some cases Ca2+, increased the activity and/or rENaC mRNA levels. The phenotypic properties of these channels differ from those observed in other Na(+)-absorbing epithelia. Pharmacological blockade of alveolar Na+ transport in vivo, as well as experiments with newborn alpha-rENaC knock-out mice, demonstrate the importance of active Na+ transport in the reabsorption of fluid from the fetal lung and in reabsorbing alveolar fluid in the injured adult lung. Indeed, in a number of inflammatory diseases, increased production of reactive oxygen-nitrogen intermediates, such as peroxynitrite (ONOO-), may damage ATII and FDLE Na+ channels, decrease Na+ reabsorption in vivo, and thus contribute to the formation of alveolar edema.
Collapse
Affiliation(s)
- S Matalon
- Department of Anesthesiology, University of Alabama at Birmingham 35233, USA.
| | | |
Collapse
|
90
|
Berthiaume Y, Lesur O, Dagenais A. Treatment of adult respiratory distress syndrome: plea for rescue therapy of the alveolar epithelium. Thorax 1999; 54:150-60. [PMID: 10325922 PMCID: PMC1745424 DOI: 10.1136/thx.54.2.150] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Y Berthiaume
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
91
|
Hay M, McKenzie H, Lindsley K, Dietz N, Bradley SR, Conn PJ, Hasser EM. Heterogeneity of metabotropic glutamate receptors in autonomic cell groups of the medulla oblongata of the rat. J Comp Neurol 1999. [DOI: 10.1002/(sici)1096-9861(19990125)403:4<486::aid-cne5>3.0.co;2-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
92
|
Chapter 13 Inhibition of Vectorial Na+ Transport across Alveolar Epithelial Cells by Nitrogen-Oxygen Reactive Species. CURRENT TOPICS IN MEMBRANES 1999. [DOI: 10.1016/s0070-2161(08)60961-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
93
|
Jiang X, Ingbar DH, O'Grady SM. Adrenergic stimulation of Na+ transport across alveolar epithelial cells involves activation of apical Cl- channels. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C1610-20. [PMID: 9843723 DOI: 10.1152/ajpcell.1998.275.6.c1610] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Alveolar epithelial cells were isolated from adult Sprague-Dawley rats and grown to confluence on membrane filters. Most of the basal short-circuit current (Isc; 60%) was inhibited by amiloride (IC50 0. 96 microM) or benzamil (IC50 0.5 microM). Basolateral addition of terbutaline (2 microM) produced a rapid decrease in Isc, followed by a slow recovery back to its initial amplitude. When Cl- was replaced with methanesulfonic acid, the basal Isc was reduced and the response to terbutaline was inhibited. In permeabilized monolayer experiments, both terbutaline and amiloride produced sustained decreases in current. The current-voltage relationship of the terbutaline-sensitive current had a reversal potential of -28 mV. Increasing Cl- concentration in the basolateral solution shifted the reversal potential to more depolarized voltages. These results were consistent with the existence of a terbutaline-activated Cl- conductance in the apical membrane. Terbutaline did not increase the amiloride-sensitive Na+ conductance. We conclude that beta-adrenergic stimulation of adult alveolar epithelial cells results in an increase in apical Cl- permeability and that amiloride-sensitive Na+ channels are not directly affected by this stimulation.
Collapse
Affiliation(s)
- X Jiang
- Departments of Physiology and Medicine, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | | | | |
Collapse
|
94
|
Nielsen VG, Duvall MD, Baird MS, Matalon S. cAMP activation of chloride and fluid secretion across the rabbit alveolar epithelium. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:L1127-33. [PMID: 9843850 DOI: 10.1152/ajplung.1998.275.6.l1127] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Active Na+ transport by alveolar epithelial cells has been demonstrated to contribute significantly to alveolar fluid clearance. However, the contribution of transepithelial Cl- movement to the reabsorption of isosmotic fluid across the alveolar epithelium in vivo has not been elucidated. We hypothesized that Cl- transport could be increased across the alveolar epithelium in vivo and across cultured alveolar type II cells by agents that increase intracellular cAMP (e.g., forskolin). In studies where 5% albumin in sodium methanesulfonate (a Cl--free solution) was administered into the lung, forskolin administration significantly increased intracellular influx of Cl- and fluid into the alveolar space. In vitro studies with cultured rabbit alveolar type II cell monolayers in Ussing chambers demonstrated that elevations in intracellular cAMP increase short-circuit current by increasing both Cl- secretion and Na+ reabsorption. The cystic fibrosis transmembrane conductance regulator channel blocker glibenclamide and the loop diuretic bumetanide partially decreased the forskolin-induced increase in short-circuit current. These data may explain the failure of agonist that stimulated intracellular cAMP to increase alveolar fluid clearance in the rabbit. Moreover, the data suggest that in the event Na+ absorptive pathways are damaged, transepithelial Cl- secretion and the consequent intra-alveolar fluid influx may be upregulated.
Collapse
Affiliation(s)
- V G Nielsen
- Department of Anesthesiology, The University of Alabama at Birmingham, Birmingham, Alabama 35233, USA
| | | | | | | |
Collapse
|
95
|
Minakata Y, Suzuki S, Grygorczyk C, Dagenais A, Berthiaume Y. Impact of beta-adrenergic agonist on Na+ channel and Na+-K+-ATPase expression in alveolar type II cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:L414-22. [PMID: 9700104 DOI: 10.1152/ajplung.1998.275.2.l414] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
It has been shown that short-term (hours) treatment with beta-adrenergic agonists can stimulate lung liquid clearance via augmented Na+ transport across alveolar epithelial cells. This increase in Na+ transport with short-term beta-agonist treatment has been explained by activation of the Na+ channel or Na+-K+-ATPase by cAMP. However, because the effect of sustained stimulation (days) with beta-adrenergic agonists on the Na+ transport mechanism is unknown, we examined this question in cultured rat alveolar type II cells. Na+-K+-ATPase activity was increased in these cells by 10(-4) M terbutaline in an exposure time-dependent manner over 7 days in culture. This increased activity was also associated with an elevation in transepithelial current that was inhibited by amiloride. The enzyme's activity was also augmented by continuous treatment with dibutyryl-cAMP (DBcAMP) for 5 days. This increase in Na+-K+-ATPase activity by 10(-4) M terbutaline was associated with an increased expression of alpha1-Na+-K+-ATPase mRNA and protein. beta-Adrenergic agonist treatment also enhanced the expression of the alpha-subunit of the epithelial Na+ channel (ENaC). These increases in gene expression were inhibited by propranolol. Amiloride also suppressed this long-term effect of terbutaline and DBcAMP on Na+-K+-ATPase activity. In conclusion, beta-adrenergic agonists enhance the gene expression of Na+-K+-ATPase, which results in an increased quantity and activity of the enzyme. This heightened expression is also associated with augmented ENaC expression. Although the cAMP system is involved, the inhibition of enhanced enzyme activity with amiloride suggests that increased Na+ entry at the apical surface plays a role in this process.
Collapse
Affiliation(s)
- Y Minakata
- Centre de Recherche, Centre Hospitalier de l'Université de Montréal, Montreal, Quebec H2W 1T8, Canada
| | | | | | | | | |
Collapse
|
96
|
Gambling L, Olver RE, Fyfe GK, Kemp PJ, Baines DL. Differential regulation of Na+ and Cl- conductances by PTX-sensitive G proteins in fetal lung apical membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1372:187-97. [PMID: 9675277 DOI: 10.1016/s0005-2736(98)00056-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In apical membrane vesicles (AMV) prepared from late gestation fetal guinea pig lung we show that conductive 22Na+ uptake is modulated by at least two pathways involving pertussis toxin (PTX)-sensitive G proteins. Intravesicular incorporation of 100 microM GTPgammaS into vesicles resuspended in NaCl caused a significant stimulation (P<0. 05) of conductive Na+ uptake in AMV to 150+/-10% (n=10) of control, whereas GDPbetaS reduced uptake to 65+/-9% (n=4) of control. This contrasting response to GTPgammaS and GDPbetaS is characteristic of a G protein mediated pathway. GTPgammaS induced a significantly smaller stimulation, 125+/-8% (n=5) of control, in the presence of the relatively impermeant anion isethionate (Ise-). Taken together, these data indicate modulation of both Na+ and Cl- channels in the apical membrane by co-localised G protein(s). Treatment with PTX stimulated conductive 22Na+ uptake to 171+/-20% (n=13) of control in AMV resuspended in NaCl, but did not have a significant effect, 94+/-19% of control, in the presence of NaIse indicating the existence of tonic activation of Cl- channels in these AMV under resting conditions. As the combined effects of PTX and GTPgammaS diminished uptake, we propose that the G protein(s) responsible for Na+ channel activation in response to GTPgammaS is PTX-sensitive and that additional PTX-insensitive G proteins might also modulate 22Na+ uptake in these AMV. The presence of Gialpha1, Gialpha2, Gialpha3 and Goalpha in this apical membrane preparation was confirmed by PTX catalysed [32P]ADP-dependent ribosylation and Western blotting. Incubation of AMV with 200 microM DTT caused an inhibition of conductive Na+ uptake in AMV resuspended in NaCl or NaIse to 66+/-8% (n=11) and 64+/-8% (n=6) of control respectively. Pre-treatment with DTT did not affect the ability of GTPgammaS to stimulate conductive Na+ uptake suggesting that the regulation of 22Na+ uptake in late gestation guinea pig fetal lung AMV is unlikely to involve an associated regulatory protein.
Collapse
Affiliation(s)
- L Gambling
- Lung Membrane Transport Group, Department of Child Health, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, UK
| | | | | | | | | |
Collapse
|
97
|
Danto SI, Borok Z, Zhang XL, Lopez MZ, Patel P, Crandall ED, Lubman RL. Mechanisms of EGF-induced stimulation of sodium reabsorption by alveolar epithelial cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:C82-92. [PMID: 9688838 DOI: 10.1152/ajpcell.1998.275.1.c82] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We investigated the effects of epidermal growth factor (EGF) on active Na+ absorption by alveolar epithelium. Rat alveolar epithelial cells (AEC) were isolated and cultivated in serum-free medium on tissue culture-treated polycarbonate filters. mRNA for rat epithelial Na+ channel (rENaC) alpha-, beta-, and gamma-subunits and Na+ pump alpha1- and beta1-subunits were detected in day 4 monolayers by Northern analysis and were unchanged in abundance in day 5 monolayers in the absence of EGF. Monolayers cultivated in the presence of EGF (20 ng/ml) for 24 h from day 4 to day 5 showed an increase in both alpha1 and beta1 Na+ pump subunit mRNA but no increase in rENaC subunit mRNA. EGF-treated monolayers showed parallel increases in Na+ pump alpha1- and beta1-subunit protein by immunoblot relative to untreated monolayers. Fixed AEC monolayers demonstrated predominantly membrane-associated immunofluorescent labeling with anti-Na+ pump alpha1- and beta1-subunit antibodies, with increased intensity of cell labeling for both subunits seen at 24 h following exposure to EGF. These changes in Na+ pump mRNA and protein preceded a delayed (>12 h) increase in short-current circuit (measure of active transepithelial Na+ transport) across monolayers treated with EGF compared with untreated monolayers. We conclude that EGF increases active Na+ resorption across AEC monolayers primarily via direct effects on Na+ pump subunit mRNA expression and protein synthesis, leading to increased numbers of functional Na+ pumps in the basolateral membranes.
Collapse
Affiliation(s)
- S I Danto
- Will Rogers Institute Pulmonary Research Center, Division of Pulmonary and Critical Care Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | | | | | | | | | |
Collapse
|
98
|
Lindell S, Nobel M, Rankin M, D'Alessandro A, Southard JH. Optimal pH for simple cold storage or machine perfusion of dog kidneys with UW solution. Transpl Int 1998. [DOI: 10.1111/j.1432-2277.1998.tb00803.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
99
|
Guo Y, DuVall MD, Crow JP, Matalon S. Nitric oxide inhibits Na+ absorption across cultured alveolar type II monolayers. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L369-77. [PMID: 9530172 DOI: 10.1152/ajplung.1998.274.3.l369] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We examined the mechanisms by which nitric oxide (.NO) decreased vectorial Na+ transport across confluent monolayers of rat alveolar type II (ATII) cells grown on permeable supports. Amiloride (10 microM) applied to the apical side of monolayers inhibited approximately 90% of the equivalent (Ieq) and the short-circuit (Isc) current, with an half-maximal inhibitory concentration (IC50) of 0.85 microM, indicating that Na+ entry into ATII cells occurred through amiloride-sensitive Na+ channels. .NO generated by spermine NONOate and papa NONOate added to both sides of the monolayers decreased Ieq and increased transepithelial resistance in a concentration-dependent fashion (IC50 = 0.4 microM .NO). These changes were prevented or reversed by addition of oxyhemoglobin (50 microM). Incubation of ATII monolayers with 8-bromoguanosine 3',5'-cyclic monophosphate (400 microM) had no effect on transepithelial Na+ transport. When the basolateral membranes of ATII cells were permeabilized with amphotericin B (10 microM) in the presence of a mucosal-to-serosal Na+ gradient (145:25 mM), .NO (generated by 100 microM papa NONOate) inhibited approximately 60% of the amiloride-sensitive Isc. In addition, after permeabilization of the apical membranes, .NO inhibited the Isc [a measure of Na(+)-K(+)-adenosinetriphosphatase (ATPase) activity] by approximately 60%. We concluded that .NO at noncytotoxic concentrations decreased Na+ absorption across cultured ATII monolayers by inhibiting both the amiloride-sensitive Na+ channels and Na(+)-K(+)-ATPase through guanosine 3',5'-cyclic monophosphate-independent mechanisms.
Collapse
Affiliation(s)
- Y Guo
- Department of Anesthesiology, University of Alabama at Birmingham 35294, USA
| | | | | | | |
Collapse
|
100
|
Ding JW, Dickie J, O'Brodovich H, Shintani Y, Rafii B, Hackam D, Marunaka Y, Rotstein OD. Inhibition of amiloride-sensitive sodium-channel activity in distal lung epithelial cells by nitric oxide. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L378-87. [PMID: 9530173 DOI: 10.1152/ajplung.1998.274.3.l378] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Distal lung epithelial cells (DLECs) play an active role in fluid clearance from the alveolus by virtue of their ability to actively transport Na+ from the alveolus to the interstitial space. The present study evaluated the ability of activated macrophages to modulate the bioelectric properties of DLECs. Low numbers of lipopolysaccharide (LPS)-treated macrophages were able to significantly reduce amiloride-sensitive short-circuit current (Isc) without affecting total Isc or monolayer resistance. This was associated with a rise in the flufenamic acid-sensitive component of the Isc. The effect was reversed by the addition of N-monomethyl-L-arginine to the medium, implying a role for nitric oxide. We hypothesized that macrophages exerted their effect by expressing inducible nitric oxide synthase (iNOS) in DLECs. The products of LPS-treated macrophages increased the levels of iNOS protein and mRNA transcripts in DLECs as well as causing a rise in iNOS activity. Immunofluorescence microscopy of LPS-stimulated macrophage-DLEC cocultures with anti-nitrotyrosine antibodies provided evidence for the generation of peroxynitrite in macrophages but not in DLECs. These data indicate that activated macrophages in the lung may contribute to impaired resolution of acute respiratory distress syndrome and suggest a novel mechanism whereby nitric oxide might alter cell function by altering its ion-transporting phenotype.
Collapse
Affiliation(s)
- J W Ding
- Department of Surgery, Toronto Hospital, University of Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|