51
|
Payne JA, Ferrell C, Chung CY. Endogenous and exogenous Na-K-Cl cotransporter expression in a low K-resistant mutant MDCK cell line. Am J Physiol Cell Physiol 2001; 280:C1607-15. [PMID: 11350756 DOI: 10.1152/ajpcell.2001.280.6.c1607] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A low K-resistant mutant Madin-Darby canine kidney (MDCK) cell line, LK-C1, has been shown previously to lack functional Na-K-Cl cotransporter (NKCC) activity, indicating that it may be a useful NKCC “knockout” cell line for structure-function studies. Using immunological probes, we first characterized the defect in the endogenous NKCC protein of the LK-C1 cells and then fully restored NKCC activity in these cells by stably expressing the human secretory NKCC1 protein (hNKCC1). The endogenous NKCC protein of the LK-C1 cells was expressed at significantly lower levels than in wild-type MDCK cells and was not properly glycosylated. This latter finding indicated that the lack of functional NKCC activity in the LK-C1 cells may be due to the inability to process the protein to the plasma membrane. In contrast, exogenously expressed hNKCC1 protein was properly processed and fully functional at the plasma membrane. Significantly, the exogenous hNKCC1 protein was regulated in a manner similar to the protein in native secretory cells as it was robustly activated by cell shrinkage, calyculin A, and low-Cl incubation. Furthermore, when the LK-C1 cells formed an epithelium on permeable supports, the exogenous hNKCC1 protein was properly polarized and functional at the basolateral membrane. The low levels of endogenous NKCC protein expression, the absence of any endogenous NKCC transport activity, and the ability to form a polarized epithelium indicate that the LK-C1 cells offer an excellent expression system with which to study the molecular physiology of the cation Cl cotransporters.
Collapse
Affiliation(s)
- J A Payne
- Department of Human Physiology, School of Medicine, University of California, One Shields Ave, Davis, CA 95616, USA.
| | | | | |
Collapse
|
52
|
Schomberg SL, Su G, Haworth RA, Sun D. Stimulation of Na-K-2Cl cotransporter in neurons by activation of Non-NMDA ionotropic receptor and group-I mGluRs. J Neurophysiol 2001; 85:2563-75. [PMID: 11387401 DOI: 10.1152/jn.2001.85.6.2563] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In a previous study, we found that Na(+)-K(+)-2Cl(-) cotransporter in immature cortical neurons was stimulated by activation of the ionotropic N-methyl-D-aspartate (NMDA) glutamate receptor in a Ca(2+)-dependent manner. In this report, we investigated whether the Na(+)-K(+)-2Cl(-) cotransporter in immature cortical neurons is stimulated by non-NMDA glutamate receptor-mediated signaling pathways. Expression of the Na(+)-K(+)-2Cl(-) cotransporter and metabotropic glutamate receptors (mGluR1 and 5) was detected in cortical neurons via immunoblotting and immunofluorescence staining. Significant stimulation of cotransporter activity was observed in the presence of both trans-(+/-)-1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD) (10 microM), a metabotropic glutamate receptor (mGluR) agonist, and (RS)-3,5-dihydroxyphenylglycine (DHPG) (20 microM), a selective group-I mGluR agonist. Both trans-ACPD and DHPG-mediated effects on the cotransporter were eradicated by bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid-AM, a Ca(2+) chelator. In addition, DHPG-induced stimulation of the cotransporter activity was inhibited in the presence of mGluRs antagonist (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA) (1 mM) and also with selective mGluR1 antagonist 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) (100 microM). A DHPG-induced rise in intracellular Ca(2+) in cortical neurons was detected with Fura-2. Moreover, DHPG-mediated stimulation of the cotransporter was abolished by inhibition of Ca(2+)/CaM kinase II. Interestingly, the cotransporter activity was increased by activation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor. These results suggest that the Na(+)-K(+)-2Cl(-) cotransporter in immature cortical neurons is stimulated by group-I mGluR- and AMPA-mediated signal transduction pathways. The effects are dependent on a rise of intracellular Ca(2+).
Collapse
Affiliation(s)
- S L Schomberg
- Department of Neurological Surgery, University of Wisconsin Medical School, Madison, Wisconsin 53792, USA
| | | | | | | |
Collapse
|
53
|
Tiidus PM, Holden D, Bombardier E, Zajchowski S, Enns D, Belcastro A. Estrogen effect on post-exercise skeletal muscle neutrophil infiltration and calpain activity. Can J Physiol Pharmacol 2001. [DOI: 10.1139/y01-011] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We hypothesized that estrogen administration would attenuate skeletal muscle neutrophil infiltration, indices of muscle membrane disruption, and muscle calpain activity shortly after the termination of exercise. Ovariectomized female rats were implanted with either an estogen pellet (25 mg β-estradiol) or a placebo pellet. Two weeks post-implant, animals were killed either at rest or 1 h after running exercise (60 min at 21 m·min1, 12% grade). The 4 experimental groups (n = 12) used were: unexercised placebo (UP), unexercised estrogen (UE), exercised placebo (EP), and exercised estrogen (EE). Blood samples were analyzed for creatine kinase (CK) activity and estradiol content. Plantaris and gastrocnemius muscles were removed and histochemical determination of neutrophil content or biochemical determination of myeloperoxidase (MPO), glucose-6-phosphate dehydrogenase (G6PD), and calpain-like activity determined. Estrogen supplemented animals had 1020-fold higher circulating estradiol levels than placebo animals. EP animals had significantly higher (P < 0.05) circulating CK activities than EE or unexercised animals. Muscle neutrophil concentrations were significantly (P < 0.01) elevated in EP and EE groups compared with unexercised controls, with EP muscle neutrophil levels also being over 60% greater (P < 0.05) than in EE animals. EP animals also had higher (P < 0.05) muscle MPO activities than unexercised or EE animals. Muscle G6PD activities were not significantly different between any groups. Muscle caplain-like activities were 80% higher (P < 0.01) in EP animals than EE animals with calpain-like activities in EE animals similar to unexercised groups. These results indicate that estrogen supplementation in ovariectomized rats attenuated 1-h post-exercise serum CK activities, muscle neutrophil infiltration, MPO activities, and calpain-like activities when compared with exercised, unsupplemented animals. This supports the possibility of a relationship between estrogen, calpain dependent production of neutrophil chemo-attractant peptides, and 1-h post-exercise skeletal muscle neutrophil infiltration.Key words: neutrophils, calpain, estrogen, skeletal muscle, muscle damage.
Collapse
|
54
|
Mairbäurl H, Schulz S, Hoffman JF. Cation transport and cell volume changes in maturing rat reticulocytes. Am J Physiol Cell Physiol 2000; 279:C1621-30. [PMID: 11029310 DOI: 10.1152/ajpcell.2000.279.5.c1621] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During maturation, reticulocytes lose membrane material, including transporters, and this is accompanied by a loss of cell water and volume. Here we determined a possible role of ion transport in adjusting cell volume during maturation. Reticulocytes and red blood cells of different ages were prepared from erythropoietin-treated rats by density gradient fractionation. Cell volume and ion transport were measured in freshly prepared cells and in reticulocytes during in vitro maturation. Reticulocytes had an increased K content and cell volume, whereas intracellular Na was decreased. All parameters approached whole blood values after 2 days in culture. Na-K pump was elevated in reticulocytes and decreased during maturation. Na-K-2Cl cotransport (NKCC) activity was lower in reticulocytes and was activated 8- and 20-fold by shrinkage and okadaic acid, respectively, whereas stimulation was barely detectable in high-buoyant density red blood cells. The ouabain- and bumetanide-insensitive Na flux in reticulocytes decreased on maturation. Most of it was inhibited by amiloride, indicating the presence of Na/proton exchange. Our results show that, although the Na-K-pump activity in reticulocytes is very much increased, the enhanced capacity of NKCC is essentially cryptic until stimulated. Both types of capacities (activities) decrease during maturation, indicating a possible loss of transport protein. The decrease was constrained to the period of reticulocyte maturation. Loss of transport capacity appears to exceed the loss of membrane surface area. Reticulocyte age-related changes in the net electrochemical driving force indicate that the increasing NKCC activity might contribute to the reduction in cell water.
Collapse
Affiliation(s)
- H Mairbäurl
- Department of Sports Medicine, University of Heidelberg, 69115 Heidelberg, Germany.
| | | | | |
Collapse
|
55
|
Abstract
Carrier-mediated drug transport is relatively unexplored in comparison with passive transcellular and paracellular drug transport. Yet, there is a host of transporter proteins that can be targeted for improving epithelial drug absorption. Generally, these are transport mechanisms for amino acids, dipeptides, monosaccharides, monocarboxylic acids, organic cations, phosphates, nucleosides, and water-soluble vitamins. Among them, the dipeptide transporter mechanism has received the most attention. Dipeptide transporters are H(+)-coupled, energy-dependent transporters that are known to play an essential role in the oral absorption of beta-lactam antibiotics, angiotensin-converting enzyme (ACE) inhibitors, renin inhibitors, and an anti-tumor drug, bestatin. Moreover, several investigators have demonstrated the utility of the dipeptide transporter as a platform for improving the oral bioavailability of drugs such as zidovudine and acyclovir through dipeptide prodrug derivatization. Thus far, at least four proton-coupled peptide transporters have been cloned. The first one cloned was PepT1 from the rabbit small intestine. The focus of this presentation will be structure-function, intracellular trafficking, and regulation of PepT1. Disease, dietary, and possible excipient influences on PepT1 function will also be discussed.
Collapse
Affiliation(s)
- V H Lee
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Southern California, 1985 Zonal Avenue, PSC 708, Los Angeles, CA 90089-9121, USA.
| |
Collapse
|
56
|
Abstract
The Na-K-Cl cotransporters are a class of ion transport proteins that transport Na, K, and Cl ions into and out of cells in an electrically neutral manner, in most cases with a stoichiometry of 1Na:1K:2Cl. To date, two Na-K-Cl cotransporter isoforms have been identified: NKCC1, which is present in a wide variety of secretory epithelia and non-epithelial cells; and NKCC2, which is present exclusively in the kidney, in the epithelial cells of the thick ascending limb of Henle's loop and of the macula densa. Both NKCC isoforms represent part of a diverse family of cation-chloride cotransport proteins that share a common predicted membrane topology; this family also includes Na-Cl cotransporters and multiple K-Cl cotransporter isoforms. In secretory epithelia, the regulation of NKCC1, which is typically present on the basolateral membrane, is tightly coordinated with that of other transporters, including apical Cl channels, to maintain cell volume and integrity during active salt and fluid secretion. Changes in intracellular [Cl] ([Cl]i) appear to be involved in this regulation of NKCC1, which is directly phosphorylated by an unknown protein kinase in response to various secretagogues as well as reductions in [Cl]i and cell volume. This review focuses on structure-function relationships within NKCC1 and on recent developments pertaining to NKCC1 regulation at cellular and molecular levels.
Collapse
Affiliation(s)
- M Haas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| | | |
Collapse
|
57
|
Roig J, Huang Z, Lytle C, Traugh JA. p21-activated protein kinase gamma-PAK is translocated and activated in response to hyperosmolarity. Implication of Cdc42 and phosphoinositide 3-kinase in a two-step mechanism for gamma-PAK activation. J Biol Chem 2000; 275:16933-40. [PMID: 10748040 DOI: 10.1074/jbc.m001627200] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A member of the family of p21-activated protein kinases, gamma-PAK, has cytostatic properties and is activated during apoptosis and in response to DNA damage. To determine whether gamma-PAK is activated by other types of cell stress and to assess its mechanism of activation, the response of gamma-PAK to hyperosmotic stress was examined. In 3T3-L1 mouse fibroblasts, there are two pools of gamma-PAK: the majority of the protein kinase is soluble and has low specific activity, whereas gamma-PAK associated with the particulate fraction has significantly higher specific activity. Hyperosmolarity promotes translocation of gamma-PAK from the soluble to the particulate fraction; this parallels activation of the protein kinase. Activation but not translocation of gamma-PAK is wortmannin-sensitive, suggesting the involvement of a phosphoinositide 3-kinase-related activity. gamma-PAK translocation in response to hyperosmolarity parallels Cdc42 translocation to the particulate fraction in vivo and can be induced in vitro by guanosine 5'-3-O-(thio)triphosphate. Cotransfection of gamma-PAK with constitutively active Cdc42 induces gamma-PAK activation and translocation, whereas inactive Cdc42 inhibits both processes in response to hyperosmotic stress, suggesting that Cdc42 has a role in the translocation and activation of gamma-PAK. alpha-PAK is not activated in response to hyperosmolarity in 3T3-L1 cells. A two-step model of gamma-PAK activation is presented.
Collapse
Affiliation(s)
- J Roig
- Department of Biochemistry and Biomedical Sciences, University of California, Riverside, California 92521, USA
| | | | | | | |
Collapse
|
58
|
Roof RL, Hall ED. Gender differences in acute CNS trauma and stroke: neuroprotective effects of estrogen and progesterone. J Neurotrauma 2000; 17:367-88. [PMID: 10833057 DOI: 10.1089/neu.2000.17.367] [Citation(s) in RCA: 477] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Increasing evidence has demonstrated striking sex differences in the pathophysiology of and outcome after acute neurological injury. Lesser susceptibility to postischemic and posttraumatic brain injury in females has been observed in experimental models. Additional evidence suggests this sex difference extends to humans as well. The greater neuroprotection afforded to females is likely due to the effects of circulating estrogens and progestins. In fact, exogenous administration of both hormones has been shown to improve outcome after cerebral ischemia and traumatic brain injury in experimental models. The neuroprotection provided by periinjury administration of these hormones extends to males as well. The mechanisms by which estrogen and progesterone provide such neuroprotection are likely multifactorial, and probably depend on the type and severity of injury as well as the type and concentration of hormone present. Both genomic and nongenomic mechanisms may be involved. Estrogen's putative effects include preservation of autoregulatory function, an antioxidant effect, reduction of A beta production and neurotoxicity, reduced excitotoxicity, increased expression of the antiapoptotic factor bcl-2, and activation of mitogen activated protein kinase pathways. It is hypothesized that several of these neuroprotective mechanisms can be linked back to estrogen's ability to act as a potent chemical (i.e., electron-donating) antioxidant. Progesterone, on the other hand, has a membrane stabilizing effect that also serves to reduce the damage caused by lipid peroxidation. In addition, it may also provide neuroprotection by suppressing neuronal hyperexcitability. The following review will discuss experimental and clinical evidence for sex differences in outcome after acute brain trauma and stroke, review the evidence implicating estrogens and progestins as mediators of this neuroprotection following acute neurological injury, and finally, address the specific mechanisms by which these hormones may protect the brain following acute neurological injury.
Collapse
Affiliation(s)
- R L Roof
- Neuroscience Therapeutics, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert, Ann Arbor, Michigan 48105, USA.
| | | |
Collapse
|
59
|
Gibson JS, Cossins AR, Ellory JC. Oxygen-sensitive membrane transporters in vertebrate red cells. J Exp Biol 2000; 203:1395-407. [PMID: 10751155 DOI: 10.1242/jeb.203.9.1395] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Oxygen is essential for all higher forms of animal life. It is required for oxidative phosphorylation, which forms the bulk of the energy supply of most animals. In many vertebrates, transport of O(2) from respiratory to other tissues, and of CO(2) in the opposite direction, involves red cells. These are highly specialised, adapted for their respiratory function. Intracellular haemoglobin, carbonic anhydrase and the membrane anion exchanger (AE1) increase the effective O(2)- and CO(2)-carrying capacity of red cells by approximately 100-fold. O(2) also has a pathological role. It is a very reactive species chemically, and oxidation, free radical generation and peroxide formation can be major hazards. Cells that come into contact with potentially damaging levels of O(2) have a variety of systems to protect them against oxidative damage. Those in red cells include catalase, superoxide dismutase and glutathione. In this review, we focus on a third role of O(2), as a regulator of membrane transport systems, a role with important consequences for the homeostasis of the red cell and also the organism as a whole. We show that regulation of red cell transporters by O(2) is widespread throughout the vertebrate kingdom. The effect of O(2) is selective but involves a wide range of transporters, including inorganic and organic systems, and both electroneutral and conductive pathways. Finally, we discuss what is known about the mechanism of the O(2) effect and comment on its physiological and pathological roles.
Collapse
Affiliation(s)
- J S Gibson
- Veterinary Preclinical Sciences and School of Biological Sciences, University of Liverpool, Liverpool L69 3BX, UK.
| | | | | |
Collapse
|
60
|
Abstract
Anion transport proteins in mammalian cells participate in a wide variety of cell and intracellular organelle functions, including regulation of electrical activity, pH, volume, and the transport of osmolites and metabolites, and may even play a role in the control of immunological responses, cell migration, cell proliferation, and differentiation. Although significant progress over the past decade has been achieved in understanding electrogenic and electroneutral anion transport proteins in sarcolemmal and intracellular membranes, information on the molecular nature and physiological significance of many of these proteins, especially in the heart, is incomplete. Functional and molecular studies presently suggest that four primary types of sarcolemmal anion channels are expressed in cardiac cells: channels regulated by protein kinase A (PKA), protein kinase C, and purinergic receptors (I(Cl.PKA)); channels regulated by changes in cell volume (I(Cl.vol)); channels activated by intracellular Ca(2+) (I(Cl.Ca)); and inwardly rectifying anion channels (I(Cl.ir)). In most animal species, I(Cl.PKA) is due to expression of a cardiac isoform of the epithelial cystic fibrosis transmembrane conductance regulator Cl(-) channel. New molecular candidates responsible for I(Cl.vol), I(Cl.Ca), and I(Cl.ir) (ClC-3, CLCA1, and ClC-2, respectively) have recently been identified and are presently being evaluated. Two isoforms of the band 3 anion exchange protein, originally characterized in erythrocytes, are responsible for Cl(-)/HCO(3)(-) exchange, and at least two members of a large vertebrate family of electroneutral cotransporters (ENCC1 and ENCC3) are responsible for Na(+)-dependent Cl(-) cotransport in heart. A 223-amino acid protein in the outer mitochondrial membrane of most eukaryotic cells comprises a voltage-dependent anion channel. The molecular entities responsible for other types of electroneutral anion exchange or Cl(-) conductances in intracellular membranes of the sarcoplasmic reticulum or nucleus are unknown. Evidence of cardiac expression of up to five additional members of the ClC gene family suggest a rich new variety of molecular candidates that may underlie existing or novel Cl(-) channel subtypes in sarcolemmal and intracellular membranes. The application of modern molecular biological and genetic approaches to the study of anion transport proteins during the next decade holds exciting promise for eventually revealing the actual physiological, pathophysiological, and clinical significance of these unique transport processes in cardiac and other mammalian cells.
Collapse
Affiliation(s)
- J R Hume
- Department of Physiology, University of Nevada School of Medicine, Reno, Nevada, USA.
| | | | | | | | | |
Collapse
|
61
|
Sawada M, Alkayed NJ, Goto S, Crain BJ, Traystman RJ, Shaivitz A, Nelson RJ, Hurn PD. Estrogen receptor antagonist ICI182,780 exacerbates ischemic injury in female mouse. J Cereb Blood Flow Metab 2000; 20:112-8. [PMID: 10616799 DOI: 10.1097/00004647-200001000-00015] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Recent findings in animals emphasize that experimental ischemic brain damage can be strikingly reduced by estrogen: however, the neuroprotective mechanisms are not well understood. It was hypothesized that estrogen signaling via cognate estrogen receptors (ERs) within the vasculature is an important aspect of cerebral ischemic protection in the female brain, in part by amplifying intraischemic cerebral blood flow (CBF). In the present study, the hypothesis that chronic treatment with the pure ER antagonist ICI182,780 (ICI) would increase ischemic brain damage by a blood flow-mediated mechanism was investigated. Adult C57B1/6J mice were pretreated with either subcutaneous ICI (100 microg/day) or oil/ethanol vehicle for 1 week before 2 hours of middle cerebral artery occlusion (MCAO) and 22 hours of reperfusion. End-ischemic regional CBF was evaluated in additional cohorts using [14C]iodoantipyrine autoradiography. Infarction volume as measured by cresyl violet histology was greater in the striatum of ICI-treated females (70 +/- 3% of contralateral striatum vs. 40 +/- 12% in vehicle-treated females). Cortical injury was not enhanced relative to control animals (39 +/- 6% of contralateral cortex in ICI group vs. 27 +/- 8% in vehicle-treated group). Physiologic variables and ischemic reduction of the ipsilateral cortical laser-Doppler flow signal were similar between groups. Further, ICI treatment did not alter end-ischemic cortical or striatal CBF. The deleterious effect of ICI was limited to females, as there were no differences in stroke damage or CBF between male treatment groups. These data suggest that estrogen inhibits ischemic brain injury in striatum of the female by receptor-mediated mechanisms that are not linked to preservation of intraischemic CBF.
Collapse
Affiliation(s)
- M Sawada
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Plata C, Rubio V, Gamba G. Protein kinase C activation reduces the function of the Na(+):K(+):2Cl(-) cotransporter in Xenopus laevis oocytes. Arch Med Res 2000; 31:21-7. [PMID: 10767476 DOI: 10.1016/s0188-4409(99)00070-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND The basolateral isoform of the Na(+):K(+):2Cl(-) cotransporter is expressed in several epithelial and non-epithelial cells, in which it is involved in ion secretion processes and in cell volume regulation. In humans, this cotransporter has been implicated in the development of primary hypertension. The major goal of the present study was to characterize the effect of protein kinase C activation on the function of the Na(+):K(+):2Cl(-) cotransporter isoform present in Xenopus laevis oocytes. METHODS Oocytes were surgically harvested from adult female Xenopus laevis frogs, defolliculated by incubation in frog ringer containing collagenase B (2 mg/mL) under vigorous shaking, and by hand under the microscope. Only stage V-VI oocytes were used in the study. After overnight incubation in regular frog Ringer, oocytes were switched to a Cl(-)-free ringer for at least 12 h before beginning uptake experiments. The function of the Na(+):K(+):2Cl(-) cotransporter was determined by assessing tracer 22Na(+) uptake in the control group as well as under several experimental conditions, such as changes in extracellular osmolarity, absence of one of the cotransported ions, or the presence of drugs such as the specific cotransporter inhibitor bumetanide, phorbol esters (TPA, PDBu, or 4alphaPDD), and the PKC inhibitor bisindolylmaleimide I. At the end of the uptake period, tracer Na(+) uptake was counted by liquid scintillation of each individual oocyte previously dissolved in SDS. RESULTS Xenopus oocytes exhibited a bumetanide-sensitive Na(+):K(+):2Cl(-) cotransporter in the plasma membrane activated by hypertonicity and inhibited by hypotonicity. The bumetanide-sensitive fraction of Na(+) uptake was significantly reduced by the addition of phorbol esters TPA or PDBu to the uptake media. This inhibitory effect of PKC activators was dose- and time-dependent. Phorbol ester 4alphaPDD, which cannot activate PKC, exhibited no effect on Na(+):K(+):2Cl(-) cotransporter function. In addition, pretreatment of oocytes with the PKC inhibitor bisindolylmaleimide I partially abolished TPA-induced reduction in the cotransporter function. CONCLUSION In defolliculated Xenopus laevis oocytes, phorbol esters reduce the function of the Na(+):K(+):2Cl(-) cotransporter by a mechanism that includes the activation of an endogenous PKC.
Collapse
Affiliation(s)
- C Plata
- Unidad de Fisiología Molecular, Instituto Nacional de la Nutrición Salvador Zubirán, México, D.F., Mexico
| | | | | |
Collapse
|
63
|
Jennings ML. Volume-sensitive K(+)/Cl(-) cotransport in rabbit erythrocytes. Analysis of the rate-limiting activation and inactivation events. J Gen Physiol 1999; 114:743-58. [PMID: 10578012 PMCID: PMC2230653 DOI: 10.1085/jgp.114.6.743] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/1999] [Accepted: 10/08/1999] [Indexed: 11/20/2022] Open
Abstract
The kinetics of activation and inactivation of K(+)/Cl(-) cotransport (KCC) have been measured in rabbit red blood cells for the purpose of determining the individual rate constants for the rate-limiting activation and inactivation events. Four different interventions (cell swelling, N-ethylmaleimide [NEM], low intracellular pH, and low intracellular Mg(2+)) all activate KCC with a single exponential time course; the kinetics are consistent with the idea that there is a single rate-limiting event in the activation of transport by all four interventions. In contrast to LK sheep red cells, the KCC flux in Mg(2+)-depleted rabbit red cells is not affected by cell volume. KCC activation kinetics were examined in cells pretreated with NEM at 0 degrees C, washed, and then incubated at higher temperatures. The forward rate constant for activation has a very high temperature dependence (E(a) approximately 32 kCal/mol), but is not affected measurably by cell volume. Inactivation kinetics were examined by swelling cells at 37 degrees C to activate KCC, and then resuspending at various osmolalities and temperatures to inactivate most of the transporters. The rate of transport inactivation increases steeply as cell volume decreases, even in a range of volumes where nearly all the transporters are inactive in the steady state. This finding indicates that the rate-limiting inactivation event is strongly affected by cell volume over the entire range of cell volumes studied, including normal cell volume. The rate-limiting inactivation event may be mediated by a protein kinase that is inhibited, either directly or indirectly, by cell swelling, low Mg(2+), acid pH, and NEM.
Collapse
Affiliation(s)
- M L Jennings
- Department of Physiology, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USA.
| |
Collapse
|
64
|
Niisato N, Ito Y, Marunaka Y. cAMP stimulates Na(+) transport in rat fetal pneumocyte: involvement of a PTK- but not a PKA-dependent pathway. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L727-36. [PMID: 10516213 DOI: 10.1152/ajplung.1999.277.4.l727] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To study a cAMP-mediated signaling pathway in the regulation of amiloride-sensitive Na(+) transport in rat fetal distal lung epithelial cells, we measured an amiloride-sensitive short-circuit current (Na(+) transport). Forskolin, which increases the cytosolic cAMP concentration, stimulated the Na(+) transport. Forskolin also activated cAMP-dependent protein kinase (PKA). A beta-adrenergic agonist and cAMP mimicked the forskolin action. PKA inhibitors KT-5720, H-8, and myristoylated PKA-inhibitory peptide amide-(14-22) did not influence the forskolin action. These results suggest that forskolin stimulates Na(+) transport through a PKA-independent pathway. Furthermore, forskolin increased tyrosine phosphorylation of approximately 70- to 80-, approximately 97-, and approximately 110- to 120-kDa proteins. Protein tyrosine kinase (PTK) inhibitors (tyrphostin A23 and genistein) abolished the forskolin action. Moreover, 5-nitro-2-(3-phenylpropylamino)benzoate (a Cl(-)-channel blocker) prevented the stimulatory action of forskolin on Na(+) transport via abolishment of the forskolin-induced cell shrinkage and tyrosine phosphorylation. Based on these results, we conclude that forskolin (and cAMP) stimulates Na(+) transport in a PTK-dependent but not a PKA-dependent pathway by causing cell shrinkage, which activates PTK in rat fetal distal lung epithelial cells.
Collapse
Affiliation(s)
- N Niisato
- Lung and Cell Biology, Medical Research Council Group in Lung Development, Department of Pediatrics, Institute of Medical Science, The Hospital for Sick Children Research Institute, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada
| | | | | |
Collapse
|
65
|
Meng QH, Höckerstedt A, Heinonen S, Wähälä K, Adlercreutz H, Tikkanen MJ. Antioxidant protection of lipoproteins containing estrogens: in vitro evidence for low- and high-density lipoproteins as estrogen carriers. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1439:331-40. [PMID: 10446421 DOI: 10.1016/s1388-1981(99)00108-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Some recent studies have reported that low-density lipoprotein (LDL) isolated from estrogen-treated postmenopausal women exhibited increased oxidation resistance ex vivo. However, the underlying mechanisms responsible for this effect are not clear. We explored the possibility that lipophilic derivatives of 17beta-estradiol (E(2)) could be incorporated into LDL and high-density lipoprotein (HDL) particles inhibiting lipoprotein oxidation. Introduction of small amounts of esterified E(2) into lipoproteins by means of incubation of free E(2) and E(2) 17-stearate in plasma did not result in any antioxidant effect. Using an artificial transfer system (Celite dispersion), larger amounts of E(2) esters could be incorporated into lipoproteins. Concentrations ranging between 0.27 and 1.38 molecules/LDL particle for E(2) 17-stearate and between 0.36 and 1.93 molecules/LDL particle for E(2) 17-oleate resulted in increased Cu(2+)-induced oxidation resistance of LDL as indicated by statistically significant lag time prolongations. Significant prolongations of lag times were also observed for HDL following incorporation of E(2) esters using Celite as transfer system. Our results suggest that free E(2) can be esterified and incorporated into lipoproteins during incubation in plasma. However, incorporation of supraphysiologic concentrations of E(2) esters into lipoproteins by means of the artificial transfer system was required in order to reduce their oxidation susceptibility.
Collapse
Affiliation(s)
- Q H Meng
- Department of Medicine, Helsinki University Central Hospital, Haartmaninkatu 4, 00290, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
66
|
Peters LL, Jindel HK, Gwynn B, Korsgren C, John KM, Lux SE, Mohandas N, Cohen CM, Cho MR, Golan DE, Brugnara C. Mild spherocytosis and altered red cell ion transport in protein 4. 2-null mice. J Clin Invest 1999; 103:1527-37. [PMID: 10359562 PMCID: PMC408368 DOI: 10.1172/jci5766] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Protein 4.2 is a major component of the red blood cell (RBC) membrane skeleton. We used targeted mutagenesis in embryonic stem (ES) cells to elucidate protein 4.2 functions in vivo. Protein 4. 2-null (4.2(-/-)) mice have mild hereditary spherocytosis (HS). Scanning electron microscopy and ektacytometry confirm loss of membrane surface in 4.2(-/-) RBCs. The membrane skeleton architecture is intact, and the spectrin and ankyrin content of 4. 2(-/-) RBCs are normal. Band 3 and band 3-mediated anion transport are decreased. Protein 4.2(-/-) RBCs show altered cation content (increased K+/decreased Na+)resulting in dehydration. The passive Na+ permeability and the activities of the Na-K-2Cl and K-Cl cotransporters, the Na/H exchanger, and the Gardos channel in 4. 2(-/-) RBCs are significantly increased. Protein 4.2(-/-) RBCs demonstrate an abnormal regulation of cation transport by cell volume. Cell shrinkage induces a greater activation of Na/H exchange and Na-K-2Cl cotransport in 4.2(-/-) RBCs compared with controls. The increased passive Na+ permeability of 4.2(-/-) RBCs is also dependent on cell shrinkage. We conclude that protein 4.2 is important in the maintenance of normal surface area in RBCs and for normal RBC cation transport.
Collapse
Affiliation(s)
- L L Peters
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA Department of Biomedical Research, St. Elizabeth's Medical Center, Boston, Massachusetts 02135, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Muzyamba MC, Cossins AR, Gibson JS. Regulation of Na+-K+-2Cl- cotransport in turkey red cells: the role of oxygen tension and protein phosphorylation. J Physiol 1999; 517 ( Pt 2):421-9. [PMID: 10332092 PMCID: PMC2269353 DOI: 10.1111/j.1469-7793.1999.0421t.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
1. Na+-K+-2Cl- cotransport (NKCC) was studied in turkey red cells using Na+ dependence or bumetanide sensitivity of 86Rb+ influx to monitor activity of the transporter. 2. Deoxygenation was the major physiological stimulus for NKCC activity: oxygen tensions (PO2) over the physiological range modulated the transporter, with a PO2 for half-maximal activation of about 41 mmHg (n = 3). In air, activity of NKCC was also stimulated by shrinkage and isoproteronol (isoprenaline, 5 microgr;M). By contrast, in deoxygenated cells, although the transporter activity was markedly elevated, it was no longer sensitive to volume or beta-adrenergic stimulation. 3. Calyculin A, a protein phosphatase inhibitor, stimulated cotransport with a lag of about 5 min. N-Ethylmaleimide (NEM) inhibited cotransport and also blocked the stimulatory effect of calyculin A if administered before calyculin A. Stimulation by calyculin A and deoxygenation were not additive. Staurosporine (2 microM) inhibited deoxygenated-stimulated K+ influxes, but not those stimulated by calyculin A. NEM added during calyculin A stimulation, i.e. during the 5 min lag, caused transport activity to be clamped at levels intermediate between maximal (calyculin A alone) and control. Cells treated with calyculin A alone or with calyculin A followed by NEM were no longer sensitive to volume, isoproteronol or PO2. 4. The results have characterized the interaction between deoxygenation and other stimuli of NKCC activity. They have also shown that it is possible to manipulate the transporter in a reciprocal way to that shown previously for K+-Cl- cotransport.
Collapse
Affiliation(s)
- M C Muzyamba
- Department of Veterinary Preclinical Sciences, University of Liverpool, Liverpool L69 3BX, UK
| | | | | |
Collapse
|
68
|
Sun D, Murali SG. Na+-K+-2Cl- cotransporter in immature cortical neurons: A role in intracellular Cl- regulation. J Neurophysiol 1999; 81:1939-48. [PMID: 10200228 DOI: 10.1152/jn.1999.81.4.1939] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Na+-K+-2Cl- cotransporter has been suggested to contribute to active intracellular Cl- accumulation in neurons at both early developmental and adult stages. In this report, we extensively characterized the Na+-K+-2Cl- cotransporter in primary culture of cortical neurons that were dissected from cerebral cortex of rat fetus at embryonic day 17. The Na+-K+-2Cl- cotransporter was expressed abundantly in soma and dendritic processes of cortical neurons evaluated by immunocytochemical staining. Western blot analysis revealed that an approximately 145-kDa cotransporter protein was present in cerebral cortex at the early postnatal (P0-P9) and adult stages. There was a time-dependent upregulation of the cotransporter activity in cortical neurons during the early postnatal development. A substantial level of bumetanide-sensitive K+ influx was detected in neurons cultured for 4-8 days in vitro (DIV 4-8). The cotransporter activity was increased significantly at DIV 12 and maintained at a steady level throughout DIV 12-14. Bumetanide-sensitive K+ influx was abolished completely in the absence of either extracellular Na+ or Cl-. Opening of gamma-aminobutyric acid (GABA)-activated Cl- channel or depletion of intracellular Cl- significantly stimulated the cotransporter activity. Moreover, the cotransporter activity was elevated significantly by activation of N-methyl-D-aspartate ionotropic glutamate receptor via a Ca2+-dependent mechanism. These results imply that the inwardly directed Na+-K+-2Cl- cotransporter is important in active accumulation of intracellular Cl- and may be responsible for GABA-mediated excitatory effect in immature cortical neurons.
Collapse
Affiliation(s)
- D Sun
- Department of Neurological Surgery, School of Medicine, University of Wisconsin, Madison, Wisconsin 53792, USA
| | | |
Collapse
|
69
|
Wang Q, Santizo R, Baughman VL, Pelligrino DA, Iadecola C. Estrogen provides neuroprotection in transient forebrain ischemia through perfusion-independent mechanisms in rats. Stroke 1999; 30:630-7. [PMID: 10066863 DOI: 10.1161/01.str.30.3.630] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Estrogen-related neuroprotection in association with animal models of transient forebrain and focal ischemia has been documented in several recent reports. Some of those studies indicated that part of that benefit was a function of improved intraischemic vasodilating capacity. In the present study we examined whether chronic estrogen depletion and repletion affected ischemic neuropathology through perfusion-independent mechanisms. METHODS Normal, ovariectomized (OVX), and OVX female rats treated with 17beta-estradiol (E2) were subjected to 30 minutes of transient forebrain ischemia (right common carotid occlusion plus hemorrhagic hypotension) and reperfusion. Neurological function and brain histopathology were assessed over the 72-hour recovery period. In all rats, preischemic and intraischemic cortical cerebral blood flow (CBF) levels were monitored with laser-Doppler flowmetry. In additional rats, CBF changes in the striatum and hippocampus were also monitored with laser-Doppler flowmetry probes and radiolabeled microspheres. In each experiment, the level of ischemia was targeted to a 75% to 80% reduction in cortical CBF. RESULTS The similarity in ischemic severity among groups was supported by measurements of comparable patterns of electroencephalographic power changes during the ischemic period. Compared with normal females, OVX rats showed diminished neurological outcomes and more severe histopathology in the hippocampus and striatum. Two-week treatment of OVX rats with E2 was accompanied by postischemic neuropathological changes similar to those seen in normal females. Intraischemic CBF reductions in the hippocampus and striatum were similar in all groups (to 35% to 50% of the preischemic value) but significantly less than the cortical CBF reductions. CONCLUSIONS These findings indicate that estrogen provides ischemic neuroprotection through mechanisms unrelated to improvement of intraischemic cerebral perfusion.
Collapse
Affiliation(s)
- Q Wang
- Department of Anesthesiology, Neuroanesthesia Research Laboratory, University of Illinois at Chicago, USA
| | | | | | | | | |
Collapse
|
70
|
Duan D, Cowley S, Horowitz B, Hume JR. A serine residue in ClC-3 links phosphorylation-dephosphorylation to chloride channel regulation by cell volume. J Gen Physiol 1999; 113:57-70. [PMID: 9874688 PMCID: PMC2222988 DOI: 10.1085/jgp.113.1.57] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/1998] [Accepted: 11/12/1998] [Indexed: 01/30/2023] Open
Abstract
In many mammalian cells, ClC-3 volume-regulated chloride channels maintain a variety of normal cellular functions during osmotic perturbation. The molecular mechanisms of channel regulation by cell volume, however, are unknown. Since a number of recent studies point to the involvement of protein phosphorylation/dephosphorylation in the control of volume-regulated ionic transport systems, we studied the relationship between channel phosphorylation and volume regulation of ClC-3 channels using site-directed mutagenesis and patch-clamp techniques. In native cardiac cells and when overexpressed in NIH/3T3 cells, ClC-3 channels were opened by cell swelling or inhibition of endogenous PKC, but closed by PKC activation, phosphatase inhibition, or elevation of intracellular Ca2+. Site-specific mutational studies indicate that a serine residue (serine51) within a consensus PKC-phosphorylation site in the intracellular amino terminus of the ClC-3 channel protein represents an important volume sensor of the channel. These results provide direct molecular and pharmacological evidence indicating that channel phosphorylation/dephosphorylation plays a crucial role in the regulation of volume sensitivity of recombinant ClC-3 channels and their native counterpart, ICl.vol.
Collapse
Affiliation(s)
- D Duan
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, Reno, Nevada 89557-0046, USA
| | | | | | | |
Collapse
|