51
|
Russo E, Fiorindi C, Giudici F, Amedei A. Immunomodulation by probiotics and prebiotics in hepatocellular carcinoma. World J Hepatol 2022; 14:372-385. [PMID: 35317185 PMCID: PMC8891667 DOI: 10.4254/wjh.v14.i2.372] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/21/2021] [Accepted: 01/25/2022] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary malignancy in patients suffering from chronic liver diseases and cirrhosis. Recent attention has been paid to the involvement of the gut-liver axis (GLA) in HCC pathogenesis. This axis results from a bidirectional, anatomical and functional relationship between the gastrointestinal system and the liver. Moreover, the complex network of interactions between the intestinal microbiome and the liver plays a crucial role in modulation of the HCC-tumor microenvironment, contributing to the pathogenesis of HCC by exposing the liver to pathogen-associated molecular patterns, such as bacterial lipopolysaccharides, DNA, peptidoglycans and flagellin. Indeed, the alteration of gut microflora may disturb the intestinal barrier, bringing several toll-like receptor ligands to the liver thus activating the inflammatory response. This review explores the new therapeutic opportunities that may arise from novel insights into the mechanisms by which microbiota immunomodulation, represented by probiotics, and prebiotics, affects HCC through the GLA.
Collapse
Affiliation(s)
- Edda Russo
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Tuscany, Italy
| | - Camila Fiorindi
- Department of Health Professions, Dietary Production Line and Nutrition, University Hospital of Careggi, Florence 50134, Italy
| | - Francesco Giudici
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Tuscany, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Tuscany, Italy
| |
Collapse
|
52
|
Lin Y, Zhou Z, Xie L, Huang Y, Qiu Z, Ye L, Cui C. Effects of miR-939 and miR-376A on ulcerative colitis using a decoy strategy to inhibit NF-κB and NFAT expression. Eur J Histochem 2022; 66. [PMID: 35164480 PMCID: PMC8875791 DOI: 10.4081/ejh.2022.3316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 12/09/2021] [Indexed: 11/23/2022] Open
Abstract
The aim of this study was to explore the effects of miR-939 and miR-376A on the pathogenesis of ulcerative colitis (UC) by using a decoy strategy to regulate the expression of nuclear transcription factor kappa B (NF-κB) and nuclear factor of activated T cells (NFAT). Such strategies represent a potential novel treatment for UC. Quantitative polymerase chain reaction (qPCR) analysis was used to detect the differences between the expression of miR-939, miR-376a, NF-κB, NFAT in the tissue samples from the resting and active stages of UC and healthy controls, and analyzed the correlation. The electrophoretic mobility shift assay was used to validate the ability of miRNAs to bind to NF-κB and NFAT. The expression of components of the intestinal barrier in UC and changes in apoptosis-related factors were examined by western blotting, qPCR, and immunofluorescence. After a dextran sulfate sodium (DSS)-induced mouse model of UC was established, the morphological changes in the colonic tissues of mice, the changes in serum inflammatory factors, and the changes in urine protein or urine leukocytes, liver enzymes, and prothrombin time were measured to examine intestinal permeability. The expression of miR-939 and miR-376a in human UC tissue was significantly lower than that in the normal control tissue, and was negatively correlated with the expression of NF-κB and NFAT. miR-939 and miR-376a decoy strategies resulted in a beneficial increase in the expression of claudins, occludins, and ZO-1 protein and inhibited apoptosis in intestinal epithelial cells. The disease activity index of the UC model group was significantly higher than that of the normal control group. The expression of inflammatory factors in the decoy group was higher than that in the UC model group. Therefore, from the experimental results, it can be concluded that using miR-939 and miR-376a to trap NF-κB and NFAT inhibits the activation of transcription factors NF-κB and NFAT, which in turn inhibits the expression of inflammatory factors and results in partial recovery of the intestinal barrier in UC. The decoy strategy inhibited apoptosis in the target cells and had a therapeutic effect in the mice model of UC. This study provides new ideas for the development of future clinical therapies for UC.
Collapse
|
53
|
Voluntary Wheel Running in Old C57BL/6 Mice Reduces Age-Related Inflammation in the Colon but Not in the Brain. Cells 2022; 11:cells11030566. [PMID: 35159375 PMCID: PMC8834481 DOI: 10.3390/cells11030566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/27/2022] [Accepted: 02/02/2022] [Indexed: 12/04/2022] Open
Abstract
Inflammation is considered a possible cause of cognitive decline during aging. This study investigates the influence of physical activity and social isolation in old mice on their cognitive functions and inflammation. The Barnes maze task was performed to assess spatial learning and memory in 3, 9, 15, 24, and 28 months old male C57BL/6 mice as well as following voluntary wheel running (VWR) and social isolation (SI) in 20 months old mice. Inflammatory gene expression was analyzed in hippocampal and colonic samples by qPCR. Cognitive decline occurs in mice between 15 and 24 months of age. VWR improved cognitive functions while SI had negative effects. Expression of inflammatory markers changed during aging in the hippocampus (Il1a/Il6/S100b/Iba1/Adgre1/Cd68/Itgam) and colon (Tnf/Il6/Il1ra/P2rx7). VWR attenuates inflammaging specifically in the colon (Ifng/Il10/Ccl2/S100b/Iba1), while SI regulates intestinal Il1b and Gfap. Inflammatory markers in the hippocampus were not altered following VWR and SI. The main finding of our study is that both the hippocampus and colon exhibit an increase in inflammatory markers during aging, and that voluntary wheel running in old age exclusively attenuates intestinal inflammation. Based on the existence of the gut-brain axis, our results extend therapeutic approaches preserving cognitive functions in the elderly to the colon.
Collapse
|
54
|
Astó E, Huedo P, Altadill T, Aguiló García M, Sticco M, Perez M, Espadaler-Mazo J. Probiotic Properties of Bifidobacterium longum KABP042 and Pediococcus pentosaceus KABP041 Show Potential to Counteract Functional Gastrointestinal Disorders in an Observational Pilot Trial in Infants. Front Microbiol 2022; 12:741391. [PMID: 35095783 PMCID: PMC8790238 DOI: 10.3389/fmicb.2021.741391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 12/23/2021] [Indexed: 12/22/2022] Open
Abstract
Functional gastrointestinal disorders (FGIDs) are a common concern during the first year of life. Recognized as gut-brain axis disorders by Rome IV criteria, FGIDs etiology is linked to altered gut-brain interaction, intestinal physiology, and microbiota. In this regard, probiotics have emerged as a promising therapy for infant FGIDs. In this study, we have investigated the probiotic potential of the strains Bifidobacterium longum KABP042 and Pediococcus pentosaceus KABP041-isolated from healthy children's feces-in the treatment of FGIDs. To this scope, genome sequences of both strains were obtained and subjected to in silico analyses. No virulence factors were detected for any strain and only the non-transferable erm(49) gene, which confers resistance to erythromycin and clindamycin, was identified in the genome of B. longum KABP042. Safety of both strains was confirmed by acute oral toxicity in rats. In vitro characterization revealed that the strains tolerate gastric and bile challenges and display a great adhesion capacity to human intestinal cells. The two strains mediate adhesion by different mechanisms and, when combined, synergically induce the expression of Caco-2 tight junction proteins. Moreover, growth inhibition experiments demonstrated the ability of the two strains alone and in combination to antagonize diverse Gram-negative and Gram-positive bacterial pathogens during sessile and planktonic growth. Pathogens' inhibition was mostly mediated by the production of organic acids, but neutralization experiments strongly suggested the presence of additional antimicrobial compounds in probiotic culture supernatants such as the bacteriocin Lantibiotic B, whose gene was detected in the genome of B. longum KABP042. Finally, an exploratory, observational, pilot study involving 36 infants diagnosed with at least one FGID (infant colic and/or functional constipation) showed the probiotic formula was well tolerated and FGID severity was significantly reduced after 14 days of treatment with the 2 strains. Overall, this work provides evidence of the probiotic and synergic properties of strains B. longum KABP042 and P. pentosaceus KABP041, and of their potential to treat pediatric FGIDs. Clinical Trial Registration: [www.ClinicalTrials.gov], [identifier NCT04944628].
Collapse
Affiliation(s)
- Erola Astó
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
- Basic Sciences Department, Universitat Internacional de Catalunya, Barcelona, Spain
| | - Pol Huedo
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
| | - Tatiana Altadill
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
- Basic Sciences Department, Universitat Internacional de Catalunya, Barcelona, Spain
| | | | - Maura Sticco
- Pediatric Primary Care Local Health Authority, ASL Caserta, Caserta, Italy
| | - Marta Perez
- R&D Department, AB-Biotics S.A. (Part of Kaneka Corporation), Barcelona, Spain
| | | |
Collapse
|
55
|
Bloom PP, Tapper EB, Young VB, Lok AS. Microbiome therapeutics for hepatic encephalopathy. J Hepatol 2021; 75:1452-1464. [PMID: 34453966 PMCID: PMC10471317 DOI: 10.1016/j.jhep.2021.08.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/20/2021] [Accepted: 08/02/2021] [Indexed: 12/13/2022]
Abstract
Hepatic encephalopathy (HE) is a complication of cirrhosis characterised by neuropsychiatric and motor dysfunction. Microbiota-host interactions play an important role in HE pathogenesis. Therapies targeting microbial community composition and function have been explored for the treatment of HE. Prebiotics, probiotics and faecal microbiota transplant (FMT) have been used with the aim of increasing the abundance of potentially beneficial taxa, while antibiotics have been used to decrease the abundance of potentially harmful taxa. Other microbiome therapeutics, including postbiotics and absorbents, have been used to target microbial products. Microbiome-targeted therapies for HE have had some success, notably lactulose and rifaximin, with probiotics and FMT also showing promise. However, there remain several challenges to the effective application of microbiome therapeutics in HE, including the resilience of the microbiome to sustainable change and unpredictable clinical outcomes from microbiota alterations. Future work in this space should focus on rigorous trial design, microbiome therapy selection, and a personalised approach to HE.
Collapse
Affiliation(s)
- Patricia P Bloom
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, USA.
| | - Elliot B Tapper
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, USA
| | - Vincent B Young
- Department of Internal Medicine, Division of Infectious Disease, University of Michigan, USA; Department of Microbiology and Immunology, University of Michigan, USA
| | - Anna S Lok
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, University of Michigan, USA
| |
Collapse
|
56
|
Zhao L, Liang J, Chen F, Tang X, Liao L, Liu Q, Luo J, Du Z, Li Z, Luo W, Yang S, Rahimnejad S. High carbohydrate diet induced endoplasmic reticulum stress and oxidative stress, promoted inflammation and apoptosis, impaired intestinal barrier of juvenile largemouth bass (Micropterus salmoides). FISH & SHELLFISH IMMUNOLOGY 2021; 119:308-317. [PMID: 34662728 DOI: 10.1016/j.fsi.2021.10.019] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 05/12/2023]
Abstract
This study assessed the effects of feed carbohydrate content on intestinal physical barrier and immunity in juvenile largemouth bass (Micropterus salmoides). Triplicate groups of juvenile fish (4.1 ± 0.2 g) were fed low (LCD, 7%), medium (MCD, 12%) and high (HCD, 17%) carbohydrate diets for eight weeks. Gut histology revealed the slight infiltration of inflammatory cells and moderate loss of mucous membrane layer in HCD group. Expression of ZO1, occluding, and claudin7 genes and epidermal growth factor receptor (EGFR) gene were significantly decreased in HCD group indicating the impairment of tight junction and epithelial cell regeneration. The results showed the significant (P < 0.05) reduction of antioxidant capacity in HCD group compared to LCD. Furthermore, expression of intestinal ERS-related genes such as IRE1, Eif2α, GRP78, CHOPα and CHOPβ in HCD group was significantly higher than the LCD group. In addition, HCD induced the up-regulated expression of inflammatory (IL-8, IL-1β, TNFα and COX2) and apoptosis (TRAF2, bax, casepase3, caspase8 and casepase9) related genes in fish intestine. The data generated in this study clearly demonstrated that HCD induced ERS and oxidative stress, which promoted intestinal inflammation and apoptosis in juvenile largemouth bass.
Collapse
Affiliation(s)
- Liulan Zhao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Ji Liang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Fukai Chen
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Xiaohong Tang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Lei Liao
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Qiao Liu
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Jie Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zongjun Du
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Zhiqiong Li
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Wei Luo
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Song Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, China.
| | - Samad Rahimnejad
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, University of South Bohemia in České Budějovice, Vodňany, Czech Republic.
| |
Collapse
|
57
|
Targeting tight junctions to fight against viral neuroinvasion. Trends Mol Med 2021; 28:12-24. [PMID: 34810086 DOI: 10.1016/j.molmed.2021.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 11/23/2022]
Abstract
The clinical impact of viral neuroinvasion on the central nervous system (CNS) ranges from barely detectable to deadly, including acute and chronic outcomes. Developing innovative therapeutic strategies is important to mitigate virus-induced neurological and psychiatric disorders. A key gatekeeper to the CNS is the neurovascular unit (NVU), a major obstacle to viral neuroinvasion and antiviral therapies. The NVU isolates the brain from the blood through firm sealing operated by the tight junctions (TJs) of endothelial cells. Here, we make the thought-provoking assumption that TJs can be targets to prevent or treat viral neuroinvasion and resulting disorders. This review aims at defining the conceptual diverse mode of actions of such approaches, evaluates their feasibility, and discusses future challenges in the field.
Collapse
|
58
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Corrigendum: Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:790387. [PMID: 34790692 PMCID: PMC8591313 DOI: 10.3389/fnut.2021.790387] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 12/18/2022] Open
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
59
|
Čužić S, Antolić M, Ognjenović A, Stupin-Polančec D, Petrinić Grba A, Hrvačić B, Dominis Kramarić M, Musladin S, Požgaj L, Zlatar I, Polančec D, Aralica G, Banić M, Urek M, Mijandrušić Sinčić B, Čubranić A, Glojnarić I, Bosnar M, Eraković Haber V. Claudins: Beyond Tight Junctions in Human IBD and Murine Models. Front Pharmacol 2021; 12:682614. [PMID: 34867313 PMCID: PMC8635807 DOI: 10.3389/fphar.2021.682614] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Claudins are transmembrane proteins constituting one of three tight junction protein families. In patients with inflammatory bowel disease (IBD), disease activity–dependent changes in expression of certain claudins have been noted, thus making certain claudin family members potential therapy targets. A study was undertaken with the aim of exploring expression of claudins in human disease and two different animal models of IBD: dextrane sulfate sodium–induced colitis and adoptive transfer model of colitis. The expression of sealing claudin-1, claudin-3, claudin-4, and claudin-8, and pore-forming claudin-2 in humans and rodents has been evaluated by immunohistochemistry and quantitative polymerase chain reaction. Claudins were expressed by epithelial and cells of mesodermal origin and were found to be situated at the membrane, within the cytoplasm, or within the nuclei. Claudin expression by human mononuclear cells isolated from lamina propria has been confirmed by Western blot and flow cytometry. The claudin expression pattern in uninflamed and inflamed colon varied between species and murine strains. In IBD and both animal models, diverse alterations in claudin expression by epithelial and inflammatory cells were recorded. Tissue mRNA levels for each studied claudin reflected changes within cell lineage and, at the same time, mirrored the ratio between various cell types. Based on the results of the study, it can be concluded that 1) claudins are not expressed exclusively by epithelial cells, but by certain types of cells of mesodermal origin as well; 2) changes in the claudin mRNA level should be interpreted in the context of overall tissue alterations; and 3) both IBD animal models that were analyzed can be used for investigating claudins as a therapy target, respecting their similarities and differences highlighted in this study.
Collapse
Affiliation(s)
- Snježana Čužić
- Fidelta, Zagreb, Croatia
- *Correspondence: Snježana Čužić, ; Vesna Eraković Haber,
| | | | | | | | | | | | | | | | | | | | | | - Gorana Aralica
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Pathology Clinical Hospital Dubrava, Zagreb, Croatia
| | - Marko Banić
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Internal Medicine Clinical Hospital Dubrava, Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marija Urek
- School of Medicine, University Zagreb, Zagreb, Croatia
- Department of Pathology Clinical Hospital Dubrava, Zagreb, Croatia
| | - Brankica Mijandrušić Sinčić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Internal Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | - Aleksandar Čubranić
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- Department of Internal Medicine, Clinical Hospital Center Rijeka, Rijeka, Croatia
| | | | | | - Vesna Eraković Haber
- Fidelta, Zagreb, Croatia
- Faculty of Medicine, University of Rijeka, Rijeka, Croatia
- *Correspondence: Snježana Čužić, ; Vesna Eraković Haber,
| |
Collapse
|
60
|
Godínez-Méndez LA, Gurrola-Díaz CM, Zepeda-Nuño JS, Vega-Magaña N, Lopez-Roa RI, Íñiguez-Gutiérrez L, García-López PM, Fafutis-Morris M, Delgado-Rizo V. In Vivo Healthy Benefits of Galacto-Oligosaccharides from Lupinus albus (LA-GOS) in Butyrate Production through Intestinal Microbiota. Biomolecules 2021; 11:1658. [PMID: 34827656 PMCID: PMC8615603 DOI: 10.3390/biom11111658] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/19/2022] Open
Abstract
Animal digestive systems host microorganism ecosystems, including integrated bacteria, viruses, fungi, and others, that produce a variety of compounds from different substrates with healthy properties. Among these substrates, α-galacto-oligosaccharides (GOS) are considered prebiotics that promote the grow of gut microbiota with a metabolic output of Short Chain Fatty Acids (SCFAs). In this regard, we evaluated Lupinus albus GOS (LA-GOS) as a natural prebiotic using different animal models. Therefore, the aim of this work was to evaluate the effect of LA-GOS on the gut microbiota, SCFA production, and intestinal health in healthy and induced dysbiosis conditions (an ulcerative colitis (UC) model). Twenty C57BL/6 mice were randomly allocated in four groups (n = 5/group): untreated and treated non-induced animals, and two groups induced with 2% dextran sulfate sodium to UC with and without LA-GOS administration (2.5 g/kg bw). We found that the UC treated group showed a higher goblet cell number, lower disease activity index, and reduced histopathological damage in comparison to the UC untreated group. In addition, the abundance of positive bacteria to butyryl-CoA transferase in gut microbiota was significantly increased by LA-GOS treatment, in healthy conditions. We measured the SCFA production with significant differences in the butyrate concentration between treated and untreated healthy groups. Finally, the pH level in cecum feces was reduced after LA-GOS treatment. Overall, we point out the in vivo health benefits of LA-GOS administration on the preservation of the intestinal ecosystem and the promotion of SCFA production.
Collapse
Affiliation(s)
- Lucila A. Godínez-Méndez
- Departamento de Fisiología, CIINDE, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (L.A.G.-M.); (L.Í.-G.); (M.F.-M.)
| | - Carmen M. Gurrola-Díaz
- Departamento de Biología Molecular y Genómica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico;
| | - José Sergio Zepeda-Nuño
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (J.S.Z.-N.); (N.V.-M.)
| | - Natali Vega-Magaña
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (J.S.Z.-N.); (N.V.-M.)
| | - Rocio Ivette Lopez-Roa
- Departamento de Farmacobiología, Centro Universitaro de Ciencias Exactas e Ingenierias, Universidad de Guadalajara, Guadalajara 44430, Jalisco, Mexico;
| | - Liliana Íñiguez-Gutiérrez
- Departamento de Fisiología, CIINDE, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (L.A.G.-M.); (L.Í.-G.); (M.F.-M.)
| | - Pedro M. García-López
- Departamento de Botánica y Zoología, Centro Universitario de Ciencias Biologíco y Agropecuarias, Universidad de Guadalajara, Guadalajara 45200, Jalisco, Mexico;
| | - Mary Fafutis-Morris
- Departamento de Fisiología, CIINDE, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (L.A.G.-M.); (L.Í.-G.); (M.F.-M.)
| | - Vidal Delgado-Rizo
- Departamento de Fisiología, CIINDE, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Jalisco, Mexico; (L.A.G.-M.); (L.Í.-G.); (M.F.-M.)
| |
Collapse
|
61
|
Khanna S, Bishnoi M, Kondepudi KK, Shukla G. Synbiotic (Lactiplantibacillus pentosus GSSK2 and isomalto-oligosaccharides) supplementation modulates pathophysiology and gut dysbiosis in experimental metabolic syndrome. Sci Rep 2021; 11:21397. [PMID: 34725349 PMCID: PMC8560755 DOI: 10.1038/s41598-021-00601-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/12/2021] [Indexed: 01/07/2023] Open
Abstract
Metabolic syndrome a lifestyle disease, where diet and gut microbiota play a prodigious role in its initiation and progression. Prophylactic bio-interventions employing probiotics and prebiotics offer an alternate nutritional approach towards attenuating its progression. The present study aimed to evaluate the protective efficacy of a novel synbiotic (Lactiplantibacillus pentosus GSSK2 + isomalto-oligosaccharides) in comparison to orlistat in an experimental model of metabolic syndrome. It was observed that supplementation of synbiotic for 12 weeks to Sprague Dawley rats fed with high fat diet (HFD), ameliorated the morphometric parameters i.e. weight gain, abdominal circumference, Lee's index, BMI and visceral fat deposition along with significantly increased fecal Bacteroidetes to Firmicutes ratio, elevated population of Lactobacillus spp., Akkermansia spp., Faecalibacterium spp., Roseburia spp. and decreased Enterobacteriaceae compared with HFD animals. Additionally, synbiotic administration to HFD animals exhibited improved glucose clearance, lipid biomarkers, alleviated oxidative stress, prevented leaky gut phenotype, reduced serum lipopolysaccharides and modulated the inflammatory, lipid and glucose metabolism genes along with restored histomorphology of adipose tissue, colon and liver compared with HFD animals. Taken together, the study highlights the protective potential of synbiotic in comparison with its individual components in ameliorating HFD-induced metabolic complications.
Collapse
Affiliation(s)
- Sakshi Khanna
- Department of Microbiology, Basic Medical Sciences Block A, South Campus, Panjab University, Chandigarh, 160014, India
| | - Mahendra Bishnoi
- Healthy Gut Research Group, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India
| | - Kanthi Kiran Kondepudi
- Healthy Gut Research Group, Food & Nutrition Biotechnology Division, National Agri-Food Biotechnology Institute (NABI), S.A.S. Nagar, Punjab, 140306, India.
| | - Geeta Shukla
- Department of Microbiology, Basic Medical Sciences Block A, South Campus, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
62
|
Cao R, Wu X, Guo H, Pan X, Huang R, Wang G, Liu J. Naringin Exhibited Therapeutic Effects against DSS-Induced Mice Ulcerative Colitis in Intestinal Barrier-Dependent Manner. Molecules 2021; 26:6604. [PMID: 34771012 PMCID: PMC8588024 DOI: 10.3390/molecules26216604] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/29/2021] [Indexed: 01/08/2023] Open
Abstract
Naringin is a kind of multi-source food additive which has been explored broadly for its various biological activities and therapeutic potential. In the present study, the protective effect and mechanism of naringin on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice were investigated. The results showed that naringin significantly alleviated DSS-induced colitis symptoms, including disease activity index (DAI), colon length shortening, and colon pathological damage. The tissue and serum secretion of inflammatory cytokines, as well as the oxidative stress, were decreased accordingly upon naringin intervention. Naringin also decreased the proteins involved in inflammation and increased the expression of tight junction (TJ) proteins. Moreover, naringin increased the relative abundance of Firmicutes/Bacteroides and reduced the content of Proteobacteria to improve the intestinal flora disorder caused by DSS, which promotes the intestinal health of mice. It was concluded that naringin can significantly ameliorate the pathogenic symptoms of UC through inhibiting inflammatory response and regulating intestinal microbiota, which might be a promising natural therapeutic agent for the dietary treatment of UC and the improvement of intestinal symbiosis.
Collapse
Affiliation(s)
- Ruige Cao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| | - Xing Wu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| | - Hui Guo
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| | - Xin Pan
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| | - Rong Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| | - Gangqiang Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, Non-Power Nuclear Technology Collaborative Innovation Center, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Jikai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China; (R.C.); (X.W.); (H.G.); (X.P.)
| |
Collapse
|
63
|
Fortea M, Albert-Bayo M, Abril-Gil M, Ganda Mall JP, Serra-Ruiz X, Henao-Paez A, Expósito E, González-Castro AM, Guagnozzi D, Lobo B, Alonso-Cotoner C, Santos J. Present and Future Therapeutic Approaches to Barrier Dysfunction. Front Nutr 2021; 8:718093. [PMID: 34778332 PMCID: PMC8582318 DOI: 10.3389/fnut.2021.718093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
There is converging and increasing evidence, but also uncertainty, for the role of abnormal intestinal epithelial barrier function in the origin and development of a growing number of human gastrointestinal and extraintestinal inflammatory disorders, and their related complaints. Despite a vast literature addressing factors and mechanisms underlying changes in intestinal permeability in humans, and its connection to the appearance and severity of clinical symptoms, the ultimate link remains to be established in many cases. Accordingly, there are no directives or clinical guidelines related to the therapeutic management of intestinal permeability disorders that allow health professionals involved in the management of these patients to carry out a consensus treatment based on clinical evidence. Instead, there are multiple pseudoscientific approaches and commercial propaganda scattered on the internet that confuse those affected and health professionals and that often lack scientific rigor. Therefore, in this review we aim to shed light on the different therapeutic options, which include, among others, dietary management, nutraceuticals and medical devices, microbiota and drugs, and epigenetic and exosomes-manipulation, through an objective evaluation of the scientific publications in this field. Advances in the knowledge and management of intestinal permeability will sure enable better options of dealing with this group of common disorders to enhance quality of life of those affected.
Collapse
Affiliation(s)
- Marina Fortea
- Laboratory for Enteric NeuroScience, Translational Research Center for GastroIntestinal Disorders, University of Leuven, Leuven, Belgium
| | - Mercé Albert-Bayo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Mar Abril-Gil
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - John-Peter Ganda Mall
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Xavier Serra-Ruiz
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Alejandro Henao-Paez
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Elba Expósito
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Ana María González-Castro
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
| | - Danila Guagnozzi
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Lobo
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | - Carmen Alonso-Cotoner
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| | - Javier Santos
- Laboratory of Neuro-Immuno-Gastroenterology, Digestive System Research Unit, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Department of Gastroenterology, Vall d'Hebron Hospital Universitari, Barcelona, Spain
- Facultad de Medicina, Universitat Autònoma de Barcelona, Bellaterra, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERHED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
64
|
He S, Li H, Yu Z, Zhang F, Liang S, Liu H, Chen H, Lü M. The Gut Microbiome and Sex Hormone-Related Diseases. Front Microbiol 2021; 12:711137. [PMID: 34650525 PMCID: PMC8506209 DOI: 10.3389/fmicb.2021.711137] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/25/2021] [Indexed: 12/14/2022] Open
Abstract
The role of the gut microbiome has been a hot topic in recent years. One aim of this review is to shed light on the crosstalk between sex hormones and the gut microbiome. Researchers have observed a sex bias of the composition of the gut microbiome in mice and have proved that sex differences influence the composition of the gut microbiome, although the influence is usually obscured by genetic variations. Via cell studies, animal studies and some observational studies in humans, researchers have confirmed that the gut microbiome can be shaped by the hormonal environment. On other hand, some theories suggest that the gut microbiota regulates the levels of sex hormones via interactions among its metabolites, the immune system, chronic inflammation and some nerve-endocrine axes, such as the gut-brain axis. In addition, bidirectional interactions between the microbiome and the hormonal system have also been observed, and the mechanisms of these interactions are being explored. We further describe the role of the gut microbiome in sex hormone-related diseases, such as ovarian cancer, postmenopausal osteoporosis (PMOP), polycystic ovary syndrome and type 1 diabetes. Among these diseases, PMOP is described in detail. Finally, we discuss the treatments of these diseases and the application prospects of microbial intervention.
Collapse
Affiliation(s)
- Song He
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao Li
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Zehui Yu
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Faming Zhang
- The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Sicheng Liang
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hang Liu
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hongwei Chen
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - MuHan Lü
- The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
65
|
Barbara G, Barbaro MR, Fuschi D, Palombo M, Falangone F, Cremon C, Marasco G, Stanghellini V. Inflammatory and Microbiota-Related Regulation of the Intestinal Epithelial Barrier. Front Nutr 2021; 8:718356. [PMID: 34589512 PMCID: PMC8475765 DOI: 10.3389/fnut.2021.718356] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/12/2021] [Indexed: 12/19/2022] Open
Abstract
The intestinal epithelial barrier (IEB) is one of the largest interfaces between the environment and the internal milieu of the body. It is essential to limit the passage of harmful antigens and microorganisms and, on the other side, to assure the absorption of nutrients and water. The maintenance of this delicate equilibrium is tightly regulated as it is essential for human homeostasis. Luminal solutes and ions can pass across the IEB via two main routes: the transcellular pathway or the paracellular pathway. Tight junctions (TJs) are a multi-protein complex responsible for the regulation of paracellular permeability. TJs control the passage of antigens through the IEB and have a key role in maintaining barrier integrity. Several factors, including cytokines, gut microbiota, and dietary components are known to regulate intestinal TJs. Gut microbiota participates in several human functions including the modulation of epithelial cells and immune system through the release of several metabolites, such as short-chain fatty acids (SCFAs). Mediators released by immune cells can induce epithelial cell damage and TJs dysfunction. The subsequent disruption of the IEB allows the passage of antigens into the mucosa leading to further inflammation. Growing evidence indicates that dysbiosis, immune activation, and IEB dysfunction have a role in several diseases, including irritable bowel syndrome (IBS), inflammatory bowel disease (IBD), and gluten-related conditions. Here we summarize the interplay between the IEB and gut microbiota and mucosal immune system and their involvement in IBS, IBD, and gluten-related disorders.
Collapse
Affiliation(s)
- Giovanni Barbara
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Maria Raffaella Barbaro
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Daniele Fuschi
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Marta Palombo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Francesca Falangone
- Medical-Surgical Department of Clinical Sciences and Translational Medicine, University Sapienza, Rome, Italy
| | - Cesare Cremon
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Giovanni Marasco
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Vincenzo Stanghellini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
66
|
Coculture Strategy for Developing Lactobacillus paracasei PS23 Fermented Milk with Anti-Colitis Effect. Foods 2021; 10:foods10102337. [PMID: 34681392 PMCID: PMC8535234 DOI: 10.3390/foods10102337] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/27/2022] Open
Abstract
Few studies have documented the effects of fermented milk on intestinal colitis, which are mediated by regulating various microbial and inflammatory processes. Here, we investigated the effects of fermented milk with Lactobacillus paracasei PS23 on intestinal epithelial cells in vitro and dextran sulfate sodium (DSS)-induced colitis in vivo. As L. paracasei PS23 grew poorly in milk, a coculture strategy with yogurt culture was provided to produce fermented milk (FM). The results indicated that the coculture exhibited a symbiotic effect, contributing to the better microbial and physicochemical property of the fermented milk products. We further evaluated the anti-colitis effect of fermented milk with L. paracasei PS23 in vitro. Both PS23-fermented milk (PS23 FM) and its heat-killed counterpart (HK PS23 FM) could protect or reverse the increased epithelial permeability by strengthening the epithelial barrier function in vitro by increasing transepithelial electrical resistance (TEER). In vivo analysis of the regulation of intestinal physiology demonstrated that low-dose L. paracasei PS23-fermented ameliorated DSS-induced colitis, with a significant attenuation of the bleeding score and reduction of fecal calprotectin levels. This anti-colitis effect may be exerted by deactivating the inflammatory cascade and strengthening the tight junction through the modification of specific cecal bacteria and upregulation of short-chain fatty acids. Our findings can clarify the role of L. paracasei PS23 in FM products when cocultured with yogurt culture and can elucidate the mechanisms of the anti-colitis effect of L. paracasei PS23 FM, which may be considered for therapeutic intervention.
Collapse
|
67
|
Boonma P, Shapiro JM, Hollister EB, Badu S, Wu Q, Weidler EM, Abraham BP, Devaraj S, Luna RA, Versalovic J, Heitkemper MM, Savidge TC, Shulman RJ. Probiotic VSL#3 Treatment Reduces Colonic Permeability and Abdominal Pain Symptoms in Patients With Irritable Bowel Syndrome. FRONTIERS IN PAIN RESEARCH 2021; 2:691689. [PMID: 35295488 PMCID: PMC8915646 DOI: 10.3389/fpain.2021.691689] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/25/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Little is known regarding the clinical impact of treatment and treatment duration of probiotic VSL#3 on gut and microbiome function in irritable bowel syndrome (IBS). As part of a safety trial, we assessed the effect of VSL#3 treatment duration on abdominal pain, stooling, gut permeability, microbiome composition and function. Methods: Adults with IBS were randomized into an open label trial to receive the probiotic VSL#3 for 4 or 8 weeks. Adverse events, abdominal pain, and stooling patterns were recorded daily. Gut permeability, fecal bile acid levels, and microbiome composition were profiled at baseline and after treatment. Results: Fifteen subjects completed the trial (4-week: n = 8; 8-week: n = 7). Number of pain episodes decreased in both groups (P = 0.049 and P = 0.034; 4- vs. 8-week, respectively). Probiotic organisms contained in VSL#3 were detected in feces by whole shotgun metagenomic sequencing analysis and relative abundances of Streptococcus thermophilus, Bifidobacterium animalis, Lactobacillus plantarum, and Lactobacillus casei subsp. paraccasei correlated significantly with improved abdominal pain symptoms and colonic permeability at study completion. Although abdominal pain correlated significantly with the detection of probiotic species at study completion, a composite view of gut microbiome structure showed no changes in community diversity or composition after VSL#3 treatment. Conclusions: Probiotic organisms identified in stool correlated significantly with improvement in colonic permeability and clinical symptoms, prompting future studies to investigate the mechanistic role of VSL#3 and colonic permeability in IBS pathophysiology in a larger randomized controlled trial. Clinical Trial Registration:www.clinicaltrials.gov, Identifier: NCT00971711.
Collapse
Affiliation(s)
- Prapaporn Boonma
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Faculty of Medicine, King Mongkut's Institute of Technology Ladkrabang, Bangkok, Thailand
| | - Jordan M. Shapiro
- Department of Medicine, Baylor College of Medicine,Houston, TX, United States
| | - Emily B. Hollister
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Shyam Badu
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Qinglong Wu
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Erica M. Weidler
- Center for Pediatric Abdominal Pain Research, Texas Children's Hospital, Houston, TX, United States
- Children's Nutrition Research Center, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
| | - Bincy P. Abraham
- Division of Gastroenterology, Houston Methodist Hospital, Houston, TX, United States
| | - Sridevi Devaraj
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Ruth Ann Luna
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - James Versalovic
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Margaret M. Heitkemper
- Department of Biobehavioral Nursing and Health Informatics, University of Washington, Seattle, WA, United States
| | - Tor C. Savidge
- Department of Pathology, Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
| | - Robert J. Shulman
- Center for Pediatric Abdominal Pain Research, Texas Children's Hospital, Houston, TX, United States
- Children's Nutrition Research Center, Houston, TX, United States
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, United States
- *Correspondence: Robert J. Shulman
| |
Collapse
|
68
|
Sinapic Acid Alleviated Inflammation-Induced Intestinal Epithelial Barrier Dysfunction in Lipopolysaccharide- (LPS-) Treated Caco-2 Cells. Mediators Inflamm 2021; 2021:5514075. [PMID: 34539242 PMCID: PMC8443358 DOI: 10.1155/2021/5514075] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/17/2021] [Indexed: 12/15/2022] Open
Abstract
The integrity and permeability of the intestinal epithelial barrier are important indicators of intestinal health. Impaired intestinal epithelial barrier function and increased intestinal permeability are closely linked to the onset and progression of various intestinal diseases. Sinapic acid (SA) is a phenolic acid that has anti-inflammatory, antihyperglycemic, and antioxidant activities; meanwhile, it is also effective in the protection of inflammatory bowel disease (IBD), but the specific mechanisms remain unclear. Here, we evaluated the anti-inflammatory of SA and investigated its potential therapeutic activity in LPS-induced intestinal epithelial barrier and tight junction (TJ) protein dysfunction. SA improved cell viability; attenuated epithelial permeability; restored the protein and mRNA expression of claudin-1, ZO-1, and occludin; and reversed the redistribution of the ZO-1 and claudin-1 proteins in LPS-treated Caco-2 cells. Moreover, SA reduced the inflammatory response by downregulating the activation of the TLR4/NF-κB pathway and attenuated LPS-induced intestinal barrier dysfunction by decreasing the activation of the MLCK/MLC pathway. This study demonstrated that SA has strong anti-inflammatory activity and can alleviate the occurrence of high intercellular permeability in Caco-2 cells exposed to LPS.
Collapse
|
69
|
Miknevicius P, Zulpaite R, Leber B, Strupas K, Stiegler P, Schemmer P. The Impact of Probiotics on Intestinal Mucositis during Chemotherapy for Colorectal Cancer: A Comprehensive Review of Animal Studies. Int J Mol Sci 2021; 22:9347. [PMID: 34502251 PMCID: PMC8430988 DOI: 10.3390/ijms22179347] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/26/2021] [Accepted: 08/21/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the second most commonly diagnosed cancer in females (incidence 16.4/10,000) and the third in males (incidence 23.4/10,000) worldwide. Surgery, chemotherapy (CTx), radiation therapy (RTx), or a combined treatment of those are the current treatment modalities for primary CRC. Chemotherapeutic drug-induced gastrointestinal (GIT) toxicity mainly presents as mucositis and diarrhea. Preclinical studies revealed that probiotic supplementation helps prevent CTx-induced side effects by reducing oxidative stress and proinflammatory cytokine production and promoting crypt cell proliferation. Moreover, probiotics showed significant results in preventing the loss of body weight (BW) and reducing diarrhea. However, further clinical studies are needed to elucidate the exact doses and most promising combination of strains to reduce or prevent chemotherapy-induced side effects. The aim of this review is to overview currently available literature on the impact of probiotics on CTx-induced side effects in animal studies concerning CRC treatment and discuss the potential mechanisms based on experimental studies' outcomes.
Collapse
Affiliation(s)
- Povilas Miknevicius
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Ruta Zulpaite
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Bettina Leber
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
| | - Kestutis Strupas
- Faculty of Medicine, Vilnius University, 03101 Vilnius, Lithuania;
| | - Philipp Stiegler
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
| | - Peter Schemmer
- General, Visceral and Transplant Surgery, Department of Surgery, Medical University of Graz, Auenbruggerpl. 2, 8036 Graz, Austria; (P.M.); (R.Z.); (B.L.); (P.S.)
| |
Collapse
|
70
|
Jergens AE, Parvinroo S, Kopper J, Wannemuehler MJ. Rules of Engagement: Epithelial-Microbe Interactions and Inflammatory Bowel Disease. Front Med (Lausanne) 2021; 8:669913. [PMID: 34513862 PMCID: PMC8432614 DOI: 10.3389/fmed.2021.669913] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/05/2021] [Indexed: 12/12/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn's disease (CD) and ulcerative colitis (UC), are complex, multifactorial disorders that lead to chronic and relapsing intestinal inflammation. The exact etiology remains unknown, however multiple factors including the environment, genetic, dietary, mucosal immunity, and altered microbiome structure and function play important roles in disease onset and progression. Supporting this notion that the gut microbiota plays a pivotal role in IBD pathogenesis, studies in gnotobiotic mice have shown that mouse models of intestinal inflammation require a microbial community to develop colitis. Additionally, antimicrobial therapy in some IBD patients will temporarily induce remission further demonstrating an association between gut microbes and intestinal inflammation. Finally, a dysfunctional intestinal epithelial barrier is also recognized as a key pathogenic factor in IBD. The intestinal epithelium serves as a barrier between the luminal environment and the mucosal immune system and guards against harmful molecules and microorganisms while being permeable to essential nutrients and solutes. Beneficial (i.e., mutualists) bacteria promote mucosal health by strengthening barrier integrity, increasing local defenses (mucin and IgA production) and inhibiting pro-inflammatory immune responses and apoptosis to promote mucosal homeostasis. In contrast, pathogenic bacteria and pathobionts suppress expression and localization of tight junction proteins, cause dysregulation of apoptosis/proliferation and increase pro-inflammatory signaling that directly damages the intestinal mucosa. This review article will focus on the role of intestinal epithelial cells (IECs) and the luminal environment acting as mediators of barrier function in IBD. We will also share some of our translational observations of interactions between IECs, immune cells, and environmental factors contributing to maintenance of mucosal homeostasis, as it relates to GI inflammation and IBD in different animal models.
Collapse
Affiliation(s)
- Albert E. Jergens
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Shadi Parvinroo
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Jamie Kopper
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Michael J. Wannemuehler
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
71
|
Brusatol-Enriched Brucea javanica Oil Ameliorated Dextran Sulfate Sodium-Induced Colitis in Mice: Involvement of NF- κB and RhoA/ROCK Signaling Pathways. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5561221. [PMID: 34414236 PMCID: PMC8370821 DOI: 10.1155/2021/5561221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 07/09/2021] [Accepted: 07/28/2021] [Indexed: 01/24/2023]
Abstract
Brucea javanica oil (BJO) is beneficial for the treatment of ulcerative colitis (UC), and that quassinoids in particular brusatol are bioactive components. However, it is still uncertain whether or not other components in BJO, such as oleic acid and fatty acids, have an anti-UC effect. The present study is aimed at comparing the anti-UC effects between brusatol-enriched BJO (BE-BJO) and brusatol-free BJO (BF-BJO) and at exploring the effects and mechanisms of BE-BJO on colon inflammation and intestinal epithelial barrier function. Balb/C mice received 3% (wt/vol) DSS for one week to establish the UC model. Different doses of BE-BJO, BF-BJO, or BJO were treated. The result illustrated that BE-BJO alleviated DSS-induced loss of body weight, an increase of disease activity index (DAI), and a shortening of colon, whereas BF-BJO did not have these protective effects. BE-BJO treatment improved the morphology of colon tissue, inhibited the production and release of TNF-α, IFN-γ, IL-6, and IL-1β in the colon tissue, and reversed the decreased expressions of ZO-1, occludin, claudin-1, and E-cadherin induced by DSS but augmented claudin-2 expression. Mechanistically, BE-BJO repressed phosphorylation of NF-κB subunit p65, suppressed RhoA activation, downregulated ROCK, and prevented phosphorylation of myosin light chain (MLC) in DSS-treated mice, indicating that the protective effect of BE-BJO is attributed to suppression of NF-κB and RhoA/ROCK signaling pathways. These findings confirm that brusatol is an active component from BJO in the treatment of UC.
Collapse
|
72
|
Breitrück A, Weigel M, Hofrichter J, Sempert K, Kerkhoff C, Mohebali N, Mitzner S, Hain T, Kreikemeyer B. Smectite as a Preventive Oral Treatment to Reduce Clinical Symptoms of DSS Induced Colitis in Balb/c Mice. Int J Mol Sci 2021; 22:8699. [PMID: 34445403 PMCID: PMC8395406 DOI: 10.3390/ijms22168699] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 11/16/2022] Open
Abstract
Natural smectites have demonstrated efficacy in the treatment of diarrhea. The present study evaluated the prophylactic effect of a diosmectite (FI5pp) on the clinical course, colon damage, expression of tight junction (TJ) proteins and the composition of the gut microbiota in dextran sulfate sodium (DSS) colitis. Diosmectite was administered daily to Balb/c mice from day 1 to 7 by oral gavage, followed by induction of acute DSS-colitis from day 8 to 14 ("Control", n = 6; "DSS", n = 10; "FI5pp + DSS", n = 11). Mice were sacrificed on day 21. Clinical symptoms (body weight, stool consistency and occult blood) were checked daily after colitis induction. Colon tissue was collected for histological damage scoring and quantification of tight junction protein expression. Stool samples were collected for microbiome analysis. Our study revealed prophylactic diosmectite treatment attenuated the severity of DSS colitis, which was apparent by significantly reduced weight loss (p = 0.022 vs. DSS), disease activity index (p = 0.0025 vs. DSS) and histological damage score (p = 0.023 vs. DSS). No significant effects were obtained for the expression of TJ proteins (claudin-2 and claudin-3) after diosmectite treatment. Characterization of the microbial composition by 16S amplicon NGS showed that diosmectite treatment modified the DSS-associated dysbiosis. Thus, diosmectites are promising candidates for therapeutic approaches to target intestinal inflammation and to identify possible underlying mechanisms of diosmectites in further studies.
Collapse
Affiliation(s)
- Anne Breitrück
- Extracorporeal Immunomodulation Unit (EXIM), Fraunhofer Institute for Cell Therapy and Immunology (IZI), 18057 Rostock, Germany; (J.H.); (S.M.)
- Division of Nephrology, Department of Internal Medicine, University Medicine Rostock, 18057 Rostock, Germany
| | - Markus Weigel
- Institute of Medical Microbiology, Justus Liebig University, 35392 Giessen, Germany;
| | - Jacqueline Hofrichter
- Extracorporeal Immunomodulation Unit (EXIM), Fraunhofer Institute for Cell Therapy and Immunology (IZI), 18057 Rostock, Germany; (J.H.); (S.M.)
| | - Kai Sempert
- Queensland Brain Institute, The University of Queensland, 4072 St Lucia, Brisbane 4000, Australia;
| | - Claus Kerkhoff
- Department of Human Sciences, School of Human Sciences, University of Osnabrück, 49076 Osnabrück, Germany;
| | - Nooshin Mohebali
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| | - Steffen Mitzner
- Extracorporeal Immunomodulation Unit (EXIM), Fraunhofer Institute for Cell Therapy and Immunology (IZI), 18057 Rostock, Germany; (J.H.); (S.M.)
- Division of Nephrology, Department of Internal Medicine, University Medicine Rostock, 18057 Rostock, Germany
| | - Torsten Hain
- Institute of Medical Microbiology, Justus Liebig University, 35392 Giessen, Germany;
- German Center for Infection Research (DZIF), Partner Site Giessen-Marburg-Langen, 35392 Giessen, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| |
Collapse
|
73
|
Yamashita T, Tai S, Tsukahara T, Inoue R. Fusobacterium nucleatum impedes remission of colitis in a mouse model. Biosci Biotechnol Biochem 2021; 85:1235-1242. [PMID: 33674867 DOI: 10.1093/bbb/zbab029] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022]
Abstract
The role of Fusobacterium nucleatum, often associated with intestinal diseases, in the remission of dextran sulfate sodium (DSS)-induced colitis was investigated. Female mice were divided into groups DC (DSS control) and DF (DSS + F. nucleatum). F. nucleatum (1.0 × 1010 cfu/mouse/day) in phosphate-buffered saline (PBS) was orally given to DF, while DC had PBS only. All mice had DSS in drinking water. In Experiment 1, mice underwent 2 inflammation phases, an in-between recovery phase and had their disease activity indices (DAI) calculated. Experiment 2 was similarly conducted, except that mice were dissected 3 days postrecovery, and had blood and colonic mucosal samples collected. In Experiment 1, DF had significantly (P < .05) higher DAI than DC, during the recovery and 2nd inflammation phases. In Experiment 2, genus Bacteroides was significantly (P < .05) higher and family Lachnospiraceae significantly lower in cecal mucosa-associated microbiota of DF than in that of DC. We concluded that F. nucleatum can impede colitis remission.
Collapse
Affiliation(s)
- Taiga Yamashita
- Laboratory of Animal Science, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.,Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| | - Shoya Tai
- Laboratory of Animal Science, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | | | - Ryo Inoue
- Laboratory of Animal Science, Division of Applied Life Sciences, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan.,Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Hirakata, Osaka, Japan
| |
Collapse
|
74
|
Stürzl M, Kunz M, Krug SM, Naschberger E. Angiocrine Regulation of Epithelial Barrier Integrity in Inflammatory Bowel Disease. Front Med (Lausanne) 2021; 8:643607. [PMID: 34409045 PMCID: PMC8365087 DOI: 10.3389/fmed.2021.643607] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 07/07/2021] [Indexed: 12/16/2022] Open
Abstract
Inflammatory bowel disease describes chronic inflammatory disorders. The incidence of the disease is rising. A major step in disease development is the breakdown of the epithelial cell barrier. Numerous blood vessels are directly located underneath this barrier. Diseased tissues are heavily vascularized and blood vessels significantly contribute to disease progression. The gut-vascular barrier (GVB) is an additional barrier controlling the entry of substances into the portal circulation and to the liver after passing the first epithelial barrier. The presence of the GVB rises the question, whether the vascular and endothelial barriers may communicate bi-directionally in the regulation of selective barrier permeability. Communication from epithelial to endothelial cells is well-accepted. In contrast, little is known on the respective backwards communication. Only recently, perfusion-independent angiocrine functions of endothelial cells were recognized in a way that endothelial cells release specific soluble factors that may directly act on the epithelial barrier. This review discusses the putative involvement of angiocrine inter-barrier communication in the pathogenesis of IBD.
Collapse
Affiliation(s)
- Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| | - Meik Kunz
- Chair of Medical Informatics, Friedrich-Alexander-University (FAU) of Erlangen-Nürnberg, Erlangen, and Fraunhofer Institute of Toxicology and Experimental Medicine, Hannover, Germany
| | - Susanne M. Krug
- Clinical Physiology/Nutritional Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
75
|
Bureš J, Kohoutová D, Květina J, Radochová V, Pavlík M, Tichý A, Rejchrt S, Kopáčová M, Douda T, Vysloužil D, Pejchal J. The Effect of Lactobacillus casei on Experimental Porcine Inflammatory Bowel Disease Induced by Dextran Sodium Sulphate. ACTA MEDICA (HRADEC KRÁLOVÉ) 2021; 64:85-90. [PMID: 34331427 DOI: 10.14712/18059694.2021.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Gastrointestinal injury caused by dextran sodium sulphate (DSS) is a reliable porcine experimental model of inflammatory bowel disease (IBD). The purpose of this study was to evaluate the effect of probiotic Lactobacillus casei DN 114001 (LC) on DSS-induced experimental IBD. RESULTS Eighteen female pigs (Sus scrofa f. domestica, weight 33-36 kg, age 4-5 months) were divided into 3 groups (6 animals per group): controls with no treatment, DSS, and DSS + LC. LC was administered to overnight fasting animals in a dietary bolus in the morning on days 1-7 (4.5 × 1010 live bacteria/day). DSS was applied simultaneously on days 3-7 (0.25 g/kg/day). On day 8, the pigs were sacrificed. Histopathological score and length of crypts/glands (stomach, jejunum, ileum, transverse colon), length and width of villi (jejunum, ileum), and mitotic and apoptotic indices (jejunum, ileum, transverse colon) were assessed. DSS increased the length of glands in the stomach, length of crypts and villi in the jejunum and ileum, and the histopathological score of gastrointestinal damage, length of crypts and mitotic activity in the transverse colon. Other changes did not achieve any statistical significance. Administration of LC reduced the length of villi in the jejunum and ileum to control levels and decreased the length of crypts in the jejunum. CONCLUSIONS Treatment with a probiotic strain of LC significantly accelerated regeneration of the small intestine in a DSS-induced experimental porcine model of IBD.
Collapse
Affiliation(s)
- Jan Bureš
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital, Hradec Králové, Czech Republic.
| | - Darina Kohoutová
- The Royal Marsden NHS Foundation Trust, London, United Kingdom.,2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital, Hradec Králové, Czech Republic
| | - Jaroslav Květina
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital, Hradec Králové, Czech Republic
| | - Věra Radochová
- Animal Laboratory, University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - Michal Pavlík
- Animal Laboratory, University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - Aleš Tichý
- Department of Radiobiology, University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - Stanislav Rejchrt
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital, Hradec Králové, Czech Republic
| | - Marcela Kopáčová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital, Hradec Králové, Czech Republic
| | - Tomáš Douda
- 2nd Department of Internal Medicine - Gastroenterology, Charles University, Faculty of Medicine in Hradec Králové, University Hospital, Hradec Králové, Czech Republic
| | - David Vysloužil
- Department of Toxicology and Military Pharmacy, University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| | - Jaroslav Pejchal
- Department of Toxicology and Military Pharmacy, University of Defence, Faculty of Military Health Sciences, Hradec Králové, Czech Republic
| |
Collapse
|
76
|
Su X, Wei J, Qi H, Jin M, Zhang Q, Zhang Y, Zhang C, Yang R. LRRC19 Promotes Permeability of the Gut Epithelial Barrier Through Degrading PKC-ζ and PKCι/λ to Reduce Expression of ZO1, ZO3, and Occludin. Inflamm Bowel Dis 2021; 27:1302-1315. [PMID: 33501933 DOI: 10.1093/ibd/izaa354] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND A dysfunctional gut epithelial barrier allows the augmented permeation of endotoxins, luminal antigens, and bacteria into the bloodstream, causing disease. The maintenance of gut epithelial barrier integrity may be regulated by multiple factors. Herein we analyze the role of leucine-rich repeat-containing protein 19 (LRRC19) in regulating the permeability of the gut epithelial barrier. METHODS We utilized Lrrc19 knockout (KO) mice and clinical samples through transmission electron, intestinal permeability assay, Western blot, and immunofluorescence staining to characterize the role of LRRC19 in the permeability of the gut epithelial barrier. RESULTS We found that LRRC19, which is expressed in gut epithelial cells, impairs gut barrier function. Transmission electron micrographs revealed a tighter junction and narrower gaps in the colon epithelium cells in LRRC19 KO mice. There were lower levels of serum lipopolysaccharide and 4 kDa-fluorescein isothiocyanate-dextran after gavage in LRRC19 KO mice than in wild-type mice. We found that LRRC19 could reduce the expression of zonula occludens (ZO)-1, ZO-3, and occludin in the colonic epithelial cells. The decreased expression of ZO-1, ZO-3, and occludin was dependent on degrading protein kinase C (PKC) ζ and PKCι/λ through K48 ubiquitination by LRRC19. The expression of LRRC19 was also negatively correlated with ZO-1, ZO-3, occludin, PKCζ, and PKCι/λ in human colorectal cancers. CONCLUSIONS The protein LRRC19 can promote the permeability of the gut epithelial barrier through degrading PKC ζ and PKCι/λ to reduce the expression of ZO-1, ZO-3, and occludin.
Collapse
Affiliation(s)
- Xiaomin Su
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Jianmei Wei
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Houbao Qi
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Mengli Jin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Qianjing Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Chunze Zhang
- Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Rongcun Yang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| |
Collapse
|
77
|
Cai L, Wei Z, Zhao X, Li Y, Li X, Jiang X. Gallic acid mitigates LPS-induced inflammatory response via suppressing NF-κB signalling pathway in IPEC-J2 cells. J Anim Physiol Anim Nutr (Berl) 2021; 106:1000-1008. [PMID: 34288130 DOI: 10.1111/jpn.13612] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 05/12/2021] [Accepted: 07/04/2021] [Indexed: 01/26/2023]
Abstract
Gallic acid is a phenolic compound that exhibits antibacterial, antioxidative and anti-inflammatory functions. In a previous study, we found that dietary supplementation with gallic acid decreased incidence of diarrhoea and protected intestinal integrity in weaning piglets. However, the underlying mechanism remains unclear. Here, a pig intestinal epithelial cell line (IPEC-J2) was used as an in vitro model to explore the antioxidant and anti-inflammatory capacity of gallic acid. IPEC-J2 cells were stimulated with hydrogen peroxide (H2 O2 ) and lipopolysaccharide (LPS) to establish oxidative and inflammatory models, respectively. Results showed that H2 O2 significantly decreased catalase (CAT) secretion and CAT mRNA abundance in the cells (p < 0.05), while pretreatment with gallic acid did not prevent the decrease in CAT expression induced by H2 O2 . However, gallic acid pretreatment mitigated the increased expression of the tumour necrosis factor-α and interleukin-8 genes caused by LPS in IPEC-J2 cells (p < 0.05). In addition, pretreatment with gallic acid significantly suppressed phosphorylation of NF-κB and IκBα in LPS-stimulated IPEC-J2 cells. Moreover, LPS stimulation decreased the protein abundance of zona occludens 1 (ZO-1) and occludin, while pretreatment with gallic acid preserved expression level of tight junction proteins ZO-1 and occludin in LPS-stimulated IPEC-J2 cells (p < 0.05). In conclusion, gallic acid may mitigate LPS-induced inflammatory responses by inhibiting the NF-κB signalling pathway, exerting positive effects on the barrier function of IPEC-J2 cells.
Collapse
Affiliation(s)
- Long Cai
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zixi Wei
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuemei Zhao
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanpin Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xilong Li
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xianren Jiang
- Key Laboratory of Feed Biotechnology of Ministry of Agriculture and Rural Affairs, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
78
|
Dowdell P, Chankhamhaengdecha S, Panbangred W, Janvilisri T, Aroonnual A. Probiotic Activity of Enterococcus faecium and Lactococcus lactis Isolated from Thai Fermented Sausages and Their Protective Effect Against Clostridium difficile. Probiotics Antimicrob Proteins 2021; 12:641-648. [PMID: 30888623 PMCID: PMC7306037 DOI: 10.1007/s12602-019-09536-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Lactic acid bacteria, Enterococcus faecium and Lactococcus lactis, previously isolated from Thai fermented sausages were elucidated their probiotic properties especially in the control of Clostridium difficile 630. Both isolates survived in simulated gastric solution at pH 3 followed in simulated intestinal solution at pH 8. The presence of skimmed milk also helped the bacteria to survive through acidic and alkaline in gastrointestinal conditions. The adhesion properties of both isolates were tested using a human colon adenocarcinoma cell line. The result showed that both isolates exhibited desirable probiotic properties which adhered to Caco-2 cells. The neutralized cell-free supernatant of both isolates demonstrated that no cytotoxicity toward Caco-2 cells vice versa cell-free supernatant of C. difficile 630 toward Caco-2 cell demonstrated high toxicity. The immunomodulation effect in response to bacterial neutralized cell-free supernatant and cell-free supernatant was also studied. The expression level of pro-inflammatory cytokine of Caco-2 cell which are tumor necrosis factor-α and interleukin-8 was evaluated using quantitative reverse transcriptase PCR. Both isolates were able to diminish the expression level of TNF-α and IL-8 induced by the cell-free supernatant of C. difficile 630. Hence, these isolates would be able to improve the gut health through counteracting the C. difficile-associated intestinal inflammation in human cell lines. These results may contribute to the development of the isolates using as probiotics.
Collapse
Affiliation(s)
- Panya Dowdell
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | | | - Watanalai Panbangred
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Tavan Janvilisri
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Amornrat Aroonnual
- Department of Tropical Nutrition and Food Science, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
79
|
Zheng Y, Liu G, Wang W, Wang Y, Cao Z, Yang H, Li S. Lactobacillus casei Zhang Counteracts Blood-Milk Barrier Disruption and Moderates the Inflammatory Response in Escherichia coli-Induced Mastitis. Front Microbiol 2021; 12:675492. [PMID: 34248887 PMCID: PMC8264260 DOI: 10.3389/fmicb.2021.675492] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/07/2021] [Indexed: 12/16/2022] Open
Abstract
Escherichia coli is a common mastitis-causing pathogen that can disrupt the blood-milk barrier of mammals. Although Lactobacillus casei Zhang (LCZ) can alleviate mice mastitis, whether it has a prophylactic effect on E. coli-induced mastitis through intramammary infusion, as well as its underlying mechanism, remains unclear. In this study, E. coli-induced injury models of bovine mammary epithelial cells (BMECs) and mice in lactation were used to fill this research gap. In vitro tests of BMECs revealed that LCZ significantly inhibited the E. coli adhesion (p < 0.01); reduced the cell desmosome damage; increased the expression of the tight junction proteins claudin-1, claudin-4, occludin, and zonula occludens-1 (ZO-1; p < 0.01); and decreased the expression of the inflammatory cytokines tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 (p < 0.01), thereby increasing trans-epithelial electric resistance (p < 0.01) and attenuating the lactate dehydrogenase release induced by E. coli (p < 0.01). In vivo tests indicated that LCZ significantly reduced the injury and histological score of mice mammary tissues in E. coli-induced mastitis (p < 0.01) by significantly promoting the expression of the tight junction proteins claudin-3, occludin, and ZO-1 (p < 0.01), which ameliorated blood-milk barrier disruption, and decreasing the expression of the inflammatory cytokines (TNF-α, IL-1β, and IL-6) in mice mammary tissue (p < 0.01). Our study suggested that LCZ counteracted the disrupted blood-milk barrier and moderated the inflammatory response in E. coli-induced injury models, indicating that LCZ can ameliorate the injury of mammary tissue in mastitis.
Collapse
Affiliation(s)
- Yuhui Zheng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Gang Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Wei Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Yajing Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Zhijun Cao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Hongjian Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Shengli Li
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
80
|
Rose EC, Odle J, Blikslager AT, Ziegler AL. Probiotics, Prebiotics and Epithelial Tight Junctions: A Promising Approach to Modulate Intestinal Barrier Function. Int J Mol Sci 2021; 22:6729. [PMID: 34201613 PMCID: PMC8268081 DOI: 10.3390/ijms22136729] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
Disruptions in the intestinal epithelial barrier can result in devastating consequences and a multitude of disease syndromes, particularly among preterm neonates. The association between barrier dysfunction and intestinal dysbiosis suggests that the intestinal barrier function is interactive with specific gut commensals and pathogenic microbes. In vitro and in vivo studies demonstrate that probiotic supplementation promotes significant upregulation and relocalization of interepithelial tight junction proteins, which form the microscopic scaffolds of the intestinal barrier. Probiotics facilitate some of these effects through the ligand-mediated stimulation of several toll-like receptors that are expressed by the intestinal epithelium. In particular, bacterial-mediated stimulation of toll-like receptor-2 modulates the expression and localization of specific protein constituents of intestinal tight junctions. Given that ingested prebiotics are robust modulators of the intestinal microbiota, prebiotic supplementation has been similarly investigated as a potential, indirect mechanism of barrier preservation. Emerging evidence suggests that prebiotics may additionally exert a direct effect on intestinal barrier function through mechanisms independent of the gut microbiota. In this review, we summarize current views on the effects of pro- and prebiotics on the intestinal epithelial barrier as well as on non-epithelial cell barrier constituents, such as the enteric glial cell network. Through continued investigation of these bioactive compounds, we can maximize their therapeutic potential for preventing and treating gastrointestinal diseases associated with impaired intestinal barrier function and dysbiosis.
Collapse
Affiliation(s)
- Elizabeth C. Rose
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| | - Jack Odle
- Laboratory of Developmental Nutrition, Department of Animal Science, College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27607, USA;
| | - Anthony T. Blikslager
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| | - Amanda L. Ziegler
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA; (E.C.R.); (A.T.B.)
| |
Collapse
|
81
|
Ma X, Zhang Y, Xu T, Qian M, Yang Z, Zhan X, Han X. Early-Life Intervention Using Exogenous Fecal Microbiota Alleviates Gut Injury and Reduce Inflammation Caused by Weaning Stress in Piglets. Front Microbiol 2021; 12:671683. [PMID: 34177852 PMCID: PMC8222923 DOI: 10.3389/fmicb.2021.671683] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/19/2021] [Indexed: 12/11/2022] Open
Abstract
Fecal microbiota transplantation (FMT) could shape the structure of intestinal microbiota in animals. This study was conducted to explore the changes that happen in the structure and function of microbiota caused by weaning stress, and whether early-life FMT could alleviate weaning stress through modifying intestinal microbiota in weaned piglets. Diarrheal (D) and healthy (H) weaned piglets were observed, and in the same farm, a total of nine litters newborn piglets were randomly allocated to three groups: sucking normally (S), weaned at 21 d (W), and early-life FMT + weaned at 21 d (FW). The results demonstrated that differences of fecal microbiota existed in group D and H. Early-life FMT significantly decreased diarrhea incidence of weaned piglets. Intestinal morphology and integrity were improved in the FW group. Both ZO-1 and occludin (tight junction proteins) of jejunum were greatly enhanced, while the zonulin expression was significantly down-regulated through early-life FMT. The expression of IL-6 and TNF-α (intestinal mucosal inflammatory cytokines) were down-regulated, while IL-10 (anti-inflammatory cytokines) was up-regulated by early-life FMT. In addition, early-life FMT increased the variety of the intestinal microbial population and the relative amounts of some beneficial bacteria such as Spirochaetes, Akkermansia, and Alistipes. Functional alteration of the intestinal microbiota revealed that lipid biosynthesis and aminoacyl-tRNA biosynthesis were enriched in the FW group. These findings suggested that alteration of the microbiota network caused by weaning stress induced diarrhea, and early-life FMT alleviated weaning stress in piglets, which was characterized by decreased diarrhea incidence, improved intestinal morphology, reduced intestinal inflammation, and modified intestinal bacterial composition and function.
Collapse
Affiliation(s)
- Xin Ma
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Yuchen Zhang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Tingting Xu
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Mengqi Qian
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Zhiren Yang
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China.,Hainan Institute of Zhejiang University, Hainan, China
| | - Xiuan Zhan
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China
| | - Xinyan Han
- The Key Laboratory of Molecular Animal Nutrition, Ministry of Education, College of Animal Science, Zhejiang University, Hangzhou, China.,Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou, China.,Hainan Institute of Zhejiang University, Hainan, China
| |
Collapse
|
82
|
Rao J, Xie R, Lin L, Jiang J, Du L, Zeng X, Li G, Wang C, Qiao Y. Fecal microbiota transplantation ameliorates gut microbiota imbalance and intestinal barrier damage in rats with stress‐induced depressive‐like behavior. Eur J Neurosci 2021; 53:3598-3611. [DOI: 10.1111/ejn.15192] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/21/2021] [Accepted: 03/16/2021] [Indexed: 02/06/2023]
Affiliation(s)
- Jingjing Rao
- Cheeloo College of MedicineShandong University Jinan China
| | - Ruining Xie
- Department of Public Health Jining Medical University Jining China
| | - Li Lin
- Department of Public Health Jining Medical University Jining China
| | - Jian Jiang
- Department of Public Health Jining Medical University Jining China
| | - Lei Du
- Department of Public Health Jining Medical University Jining China
| | - Xindie Zeng
- Department of Public Health Jining Medical University Jining China
| | - Gongying Li
- Department of Mental Health Jining Medical University Jining China
| | - Chunmei Wang
- Neurobiology InstituteJining Medical University Jining China
| | - Yi Qiao
- Department of Public Health Jining Medical University Jining China
| |
Collapse
|
83
|
Minić I, Pejčić A, Bradić-Vasić M. Effect of the local probiotics in the therapy of periodontitis A randomized prospective study. Int J Dent Hyg 2021; 20:401-407. [PMID: 33964104 DOI: 10.1111/idh.12509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/28/2021] [Accepted: 05/02/2021] [Indexed: 02/01/2023]
Abstract
OBJECTIVES The use of local probiotics in the therapy of periodontitis is reflected in their ability to antagonize periodontopathogens and modulates the immune response of the host to the presence of pathogenic microorganisms. The aim of this study was to investigate the use of local probiotics in the treatment of periodontitis as an adjunctive therapy to scaling and root planning (SRP). METHODS The study involved 80 patients diagnosed with periodontitis. All participants underwent SRP therapy. Semi-solid probiotic was then locally applied to the periodontal pocket in randomly selected patients for the test group (40 of them). The other 40 patients were in the control group. Clinical parameters including periodontal pocket depth (PPD), bleeding on probing (BOP) and plaque index (PI) were measured at baseline, and at 7 and 30 days after treatment. RESULTS Seven days after the applied therapy in the test and control group, there was a significant decrease in the values or BOP (p < .001), while the values of other parameters did not show a statistically significant difference (p < .05). One month after the therapy in both groups, there was a statistically significant difference in the values of all clinical parameters (p < .001). CONCLUSIONS Based on the results of this pilot study, it can be said that, during periodontal treatment, topical application of probiotics in combination with SRP increases the effectiveness of conventional non-surgical therapy of periodontitis.
Collapse
Affiliation(s)
- Ivan Minić
- Department of Periodontology and Oral medicine, Medical faculty, University of Nis, Nis, Serbia
| | - Ana Pejčić
- Department of Periodontology and Oral medicine, Medical faculty, University of Nis, Nis, Serbia
| | - Marija Bradić-Vasić
- Department of Periodontology and Oral medicine, Medical faculty, University of Nis, Nis, Serbia
| |
Collapse
|
84
|
Suslov AV, Chairkina E, Shepetovskaya MD, Suslova IS, Khotina VA, Kirichenko TV, Postnov AY. The Neuroimmune Role of Intestinal Microbiota in the Pathogenesis of Cardiovascular Disease. J Clin Med 2021; 10:1995. [PMID: 34066528 PMCID: PMC8124579 DOI: 10.3390/jcm10091995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 04/19/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023] Open
Abstract
Currently, a bidirectional relationship between the gut microbiota and the nervous system, which is considered as microbiota-gut-brain axis, is being actively studied. This axis is believed to be a key mechanism in the formation of somatovisceral functions in the human body. The gut microbiota determines the level of activation of the hypothalamic-pituitary system. In particular, the intestinal microbiota is an important source of neuroimmune mediators in the pathogenesis of cardiovascular disease. This review reflects the current state of publications in PubMed and Scopus databases until December 2020 on the mechanisms of formation and participation of neuroimmune mediators associated with gut microbiota in the development of cardiovascular disease.
Collapse
Affiliation(s)
- Andrey V. Suslov
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Elizaveta Chairkina
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Maria D. Shepetovskaya
- I.M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, 8-2 Trubetskaya Str., 119992 Moscow, Russia; (A.V.S.); (E.C.); (M.D.S.)
| | - Irina S. Suslova
- Central State Medical Academy of the Administrative Department of the President of the Russian Federation, 19-1A Marshal Timoshenko Str., 121359 Moscow, Russia;
| | - Victoria A. Khotina
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- Institute of General Pathology and Pathophysiology, 8 Baltiyskaya Str., 125315 Moscow, Russia
| | - Tatiana V. Kirichenko
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| | - Anton Y. Postnov
- Research Institute of Human Morphology, 3 Tsyurupy Str., 117418 Moscow, Russia; (V.A.K.); (A.Y.P.)
- National Medical Research Center of Cardiology, 15A 3-rd Cherepkovskaya Str., 121552 Moscow, Russia
| |
Collapse
|
85
|
Chánez-Paredes S, Montoya-García A, Castro-Ochoa KF, García-Cordero J, Cedillo-Barrón L, Shibayama M, Nava P, Flemming S, Schlegel N, Gautreau AM, Vargas-Robles H, Mondragón-Flores R, Schnoor M. The Arp2/3 Inhibitory Protein Arpin Is Required for Intestinal Epithelial Barrier Integrity. Front Cell Dev Biol 2021; 9:625719. [PMID: 34012961 PMCID: PMC8128147 DOI: 10.3389/fcell.2021.625719] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/17/2021] [Indexed: 12/23/2022] Open
Abstract
The intestinal epithelial barrier (IEB) depends on stable interepithelial protein complexes such as tight junctions (TJ), adherens junctions (AJ), and the actin cytoskeleton. During inflammation, the IEB is compromised due to TJ protein internalization and actin remodeling. An important actin regulator is the actin-related protein 2/3 (Arp2/3) complex, which induces actin branching. Activation of Arp2/3 by nucleation-promoting factors is required for the formation of epithelial monolayers, but little is known about the relevance of Arp2/3 inhibition and endogenous Arp2/3 inhibitory proteins for IEB regulation. We found that the recently identified Arp2/3 inhibitory protein arpin was strongly expressed in intestinal epithelial cells. Arpin expression decreased in response to tumor necrosis factor (TNF)α and interferon (IFN)γ treatment, whereas the expression of gadkin and protein interacting with protein C-kinase α-subunit 1 (PICK1), other Arp2/3 inhibitors, remained unchanged. Of note, arpin coprecipitated with the TJ proteins occludin and claudin-1 and the AJ protein E-cadherin. Arpin depletion altered the architecture of both AJ and TJ, increased actin filament content and actomyosin contractility, and significantly increased epithelial permeability, demonstrating that arpin is indeed required for maintaining IEB integrity. During experimental colitis in mice, arpin expression was also decreased. Analyzing colon tissues from ulcerative colitis patients by Western blot, we found different arpin levels with overall no significant changes. However, in acutely inflamed areas, arpin was significantly reduced compared to non-inflamed areas. Importantly, patients receiving mesalazine had significantly higher arpin levels than untreated patients. As arpin depletion (theoretically meaning more active Arp2/3) increased permeability, we wanted to know whether Arp2/3 inhibition would show the opposite. Indeed, the specific Arp2/3 inhibitor CK666 ameliorated TNFα/IFNγ-induced permeability in established Caco-2 monolayers by preventing TJ disruption. CK666 treatment also attenuated colitis development, colon tissue damage, TJ disruption, and permeability in dextran sulphate sodium (DSS)-treated mice. Our results demonstrate that loss of arpin triggers IEB dysfunction during inflammation and that low arpin levels can be considered a novel hallmark of acute inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Mineko Shibayama
- Department of Infectomics and Molecular Pathogenesis, CINVESTAV-IPN, Mexico City, Mexico
| | - Porfirio Nava
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Mexico City, Mexico
| | - Sven Flemming
- Department of Surgery I, University Hospital Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of Surgery I, University Hospital Würzburg, Würzburg, Germany
| | | | | | | | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN, Mexico City, Mexico
| |
Collapse
|
86
|
Marongiu L, Burkard M, Venturelli S, Allgayer H. Dietary Modulation of Bacteriophages as an Additional Player in Inflammation and Cancer. Cancers (Basel) 2021; 13:cancers13092036. [PMID: 33922485 PMCID: PMC8122878 DOI: 10.3390/cancers13092036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/15/2021] [Accepted: 04/21/2021] [Indexed: 01/06/2023] Open
Abstract
Natural compounds such as essential oils and tea have been used successfully in naturopathy and folk medicine for hundreds of years. Current research is unveiling the molecular role of their antibacterial, anti-inflammatory, and anticancer properties. Nevertheless, the effect of these compounds on bacteriophages is still poorly understood. The application of bacteriophages against bacteria has gained a particular interest in recent years due to, e.g., the constant rise of antimicrobial resistance to antibiotics, or an increasing awareness of different types of microbiota and their potential contribution to gastrointestinal diseases, including inflammatory and malignant conditions. Thus, a better knowledge of how dietary products can affect bacteriophages and, in turn, the whole gut microbiome can help maintain healthy homeostasis, reducing the risk of developing diseases such as diverse types of gastroenteritis, inflammatory bowel disease, or even cancer. The present review summarizes the effect of dietary compounds on the physiology of bacteriophages. In a majority of works, the substance class of polyphenols showed a particular activity against bacteriophages, and the primary mechanism of action involved structural damage of the capsid, inhibiting bacteriophage activity and infectivity. Some further dietary compounds such as caffeine, salt or oregano have been shown to induce or suppress prophages, whereas others, such as the natural sweeter stevia, promoted species-specific phage responses. A better understanding of how dietary compounds could selectively, and specifically, modulate the activity of individual phages opens the possibility to reorganize the microbial network as an additional strategy to support in the combat, or in prevention, of gastrointestinal diseases, including inflammation and cancer.
Collapse
Affiliation(s)
- Luigi Marongiu
- Department of Experimental Surgery—Cancer Metastasis, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany;
| | - Markus Burkard
- Department of Biochemistry of Nutrition, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
| | - Sascha Venturelli
- Department of Biochemistry of Nutrition, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany;
- Department of Vegetative and Clinical Physiology, University Hospital of Tuebingen, Otfried-Müllerstr. 27, 72076 Tuebingen, Germany
- Correspondence: (S.V.); (H.A.); Tel.: +49-(0)711-459-24113 (ext. 24195) (S.V.); +49-(0)621-383-71630 (ext. 71635) (H.A.); Fax: +49-(0)-711-459-23822 (S.V.); +49-(0)-621-383-71631 (H.A.)
| | - Heike Allgayer
- Department of Experimental Surgery—Cancer Metastasis, Medical Faculty Mannheim, Ruprecht-Karls University of Heidelberg, Ludolf-Krehl-Str. 13-17, 68167 Mannheim, Germany;
- Correspondence: (S.V.); (H.A.); Tel.: +49-(0)711-459-24113 (ext. 24195) (S.V.); +49-(0)621-383-71630 (ext. 71635) (H.A.); Fax: +49-(0)-711-459-23822 (S.V.); +49-(0)-621-383-71631 (H.A.)
| |
Collapse
|
87
|
Probiotic Supplements on Oncology Patients' Treatment-Related Side Effects: A Systematic Review of Randomized Controlled Trials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18084265. [PMID: 33920572 PMCID: PMC8074215 DOI: 10.3390/ijerph18084265] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/12/2022]
Abstract
Cancer affects more than 19.3 million people and has become the second leading cause of death worldwide. Chemo- and radiotherapy, the most common procedures in these patients, often produce unpleasant treatment-related side effects that have a direct impact on the quality of life of these patients. However, innovative therapeutic strategies such as probiotics are being implemented to manage these complications. Thus, this study aimed to evaluate the efficacy of probiotics supplements as a therapeutic strategy in adult oncology treatment-related side effects. A systematic review of randomized controlled trials was conducted in PubMed, Scielo, ProQuest and OVID databases up to and including January 2021, following the PRISMA guidelines. The quality of the included studies was assessed by the Jadad Scale. Twenty clinical trials published between 1988 and 2020 were included in this review. Seventeen studies (85%) revealed predominantly positive results when using probiotics to reduce the incidence of treatment-related side effects in oncology patients, while three studies (15%) reported no impact in their findings. This study sheds some light on the significance of chemotherapy and radiotherapy in altering the composition of gut microbiota, where probiotic strains may play an important role in preventing or mitigating treatment-related side effects.
Collapse
|
88
|
Liu AR, Yang SP, Zhang XL. Effects of interaction between mesenchymal stem cells and gut microbiota in treatment of inflammatory bowel disease. Shijie Huaren Xiaohua Zazhi 2021; 29:312-318. [DOI: 10.11569/wcjd.v29.i6.312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Inflammatory bowel disease (IBD) is considered a chronic recurrent non-specific enteropathy whose etiology and pathology have yet been fully elucidated. Abnormal immune regulation between gut microbiota and the intestinal mucosa plays a crucial role in the development of IBD. Accordingly, intestinal microecological therapy to correct the imbalance of gut microbiota has important clinical significance. The application of mesenchymal stem cells (MSCs) in IBD has shown a promising therapeutic prospect based on its ability of immunosuppression and tissue repair, and more importantly, MSCs contribute to restoring the diversity and abundance of gut microbiota. And in the same way, gut microbiota produces indispensable effects in regulating the functional activities of MSCs. Therefore, the combined application of MSCs and intestinal microecological therapy may lead to higher clinical remission rates in the context of IBD. This paper reviews the characteristics of gut microbiota in IBD, the current status of microbe-targeted therapies, the gut microbiota-intestinal mucosal epithelium interaction, and the effects of interaction between MSCs and gut microbiota interaction in the treatment of IBD, with an aim to provide meaningful guidance for the further investigation of MSCs-gut microbiota interaction in this new field.
Collapse
Affiliation(s)
- Ai-Ru Liu
- Department of Gastroenterology, the Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China
| | - Shao-Peng Yang
- Department of Gastroenterology, the Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China
| | - Xiao-Lan Zhang
- Department of Gastroenterology, the Second Hospital of Hebei Medical University, Shijiazhuang 050035, Hebei Province, China
| |
Collapse
|
89
|
Promotive effects of sesamin on proliferation and adhesion of intestinal probiotics and its mechanism of action. Food Chem Toxicol 2021; 149:112049. [DOI: 10.1016/j.fct.2021.112049] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/28/2021] [Accepted: 02/02/2021] [Indexed: 12/22/2022]
|
90
|
Al-Sadi R, Nighot P, Nighot M, Haque M, Rawat M, Ma TY. Lactobacillus acidophilus Induces a Strain-specific and Toll-Like Receptor 2-Dependent Enhancement of Intestinal Epithelial Tight Junction Barrier and Protection Against Intestinal Inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2021; 191:872-884. [PMID: 33607043 DOI: 10.1016/j.ajpath.2021.02.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/20/2021] [Accepted: 02/04/2021] [Indexed: 12/21/2022]
Abstract
Defective intestinal tight junction (TJ) barrier is an important pathogenic factor of inflammatory bowel disease. To date, no effective therapies that specifically target the intestinal TJ barrier are available. The purpose of this study was to identify probiotic bacterial species or strains that induce a rapid and sustained enhancement of intestinal TJ barrier and protect against the development of intestinal inflammation by targeting the TJ barrier. After high-throughput screening of >20 Lactobacillus and other probiotic bacterial species or strains, a specific strain of Lactobacillus acidophilus, referred to as LA1, uniquely produced a marked enhancement of the intestinal TJ barrier. LA1 attached to the apical membrane surface of intestinal epithelial cells in a Toll-like receptor (TLR)-2-dependent manner and caused a rapid increase in enterocyte TLR-2 membrane expression and TLR-2/TLR-1 and TLR-2/TLR-6 hetero-complex-dependent enhancement in intestinal TJ barrier function. Oral administration of LA1 caused a rapid enhancement in mouse intestinal TJ barrier, protected against a dextran sodium sulfate (DSS) increase in intestinal permeability, and prevented the DSS-induced colitis in a TLR-2- and intestinal TJ barrier-dependent manner. In conclusion, we report for the first time that a specific strain of LA causes a strain-specific enhancement of intestinal TJ barrier through a novel mechanism that involves the TLR-2 receptor complex and protects against the DSS-induced colitis by targeting the intestinal TJ barrier.
Collapse
Affiliation(s)
- Rana Al-Sadi
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania.
| | - Prashant Nighot
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Meghali Nighot
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Mohammad Haque
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania
| | - Manmeet Rawat
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Thomas Y Ma
- Penn State College of Medicine, Hershey Medical Center, Hershey, Pennsylvania.
| |
Collapse
|
91
|
Koh GY, Kane AV, Wu X, Crott JW. Parabacteroides distasonis attenuates tumorigenesis, modulates inflammatory markers and promotes intestinal barrier integrity in azoxymethane-treated A/J mice. Carcinogenesis 2021; 41:909-917. [PMID: 32115637 DOI: 10.1093/carcin/bgaa018] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 01/28/2020] [Accepted: 02/25/2020] [Indexed: 12/13/2022] Open
Abstract
Imbalance of the gut microbial community promotes inflammation and colorectal cancer (CRC). Previously, we demonstrated that freeze-dried Parabacteroides distasonis (Pd) suppressed obesity-driven colorectal tumorigenesis in mice. Here, we investigated if Pd could suppress the development of colon tumors in mice independent of obesity. Six-week-old male A/J mice were assigned to receive: (i) chow diet (CTR); (ii) chow with 0.04% wt/wt freeze-dried Pd (Pd-Early) or (iii) chow diet before switching to 0.04% Pd diet (Pd-Late). Mice remained on diet for 25 weeks with the switch for Pd-Late mice occurring after 19 weeks. All mice received 6 weekly injections of the colon carcinogen azoxymethane (AOM; 10 mg/kg I.P.) starting after 1 week on diet. Colon tumors were observed in 77, 55 and 40% in CTR, Pd-Early and Pd-Late mice, respectively (X2 = 0.047). Colonic expression of toll-like receptor 4, IL-4 and TNF-α was 40% (P < 0.01), 58% (P = 0.05) and 55% (P < 0.001) lower, respectively, in Pd-Early compared with CTR mice. Pd-Late mice displayed a 217% (P = 0.05) and 185% (P < 0.001) increase in colonic IL-10 and TGF-β expression, respectively, compared with CTR mice and similar increases in protein abundances were detected (47-145%; P < 0.05). Pd-Early and Pd-Late mice both demonstrated increased colonic expression of the tight junction proteins Zonula occludens-1 (P < 0.001) and occludin (P < 0.001) at the transcript (2-3-fold; P < 0.01) and protein level (30-50%; P < 0.05) relative to CTR. Our results support a protective role for Pd in colonic tumorigenesis and maintenance of intestinal epithelial barrier in AOM-treated mice.
Collapse
Affiliation(s)
- Gar Yee Koh
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Anne V Kane
- Phoenix Laboratory, Tufts University Medical Center, Boston, MA, USA
| | - Xian Wu
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| | - Jimmy W Crott
- Vitamins and Carcinogenesis Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, USA
| |
Collapse
|
92
|
Abstract
Inflammatory Bowel Disease (IBD) is a term used to describe a group of complex disorders of the gastrointestinal (GI) tract. IBDs include two main forms: Crohn’s Disease (CD) and Ulcerative Colitis (UC), which share similar clinical symptoms but differ in the anatomical distribution of the inflammatory lesions. The etiology of IBDs is undetermined. Several hypotheses suggest that Crohn’s Disease and Ulcerative Colitis result from an abnormal immune response against endogenous flora and luminal antigens in genetically susceptible individuals. While there is no cure for IBDs, most common treatments (medication and surgery) aim to reduce inflammation and help patients to achieve remission. There is growing evidence and focus on the prophylactic and therapeutic potential of probiotics in IBDs. Probiotics are live microorganisms that regulate the mucosal immune system, the gut microbiota and the production of active metabolites such as Short-Chain Fatty Acids (SCFAs). This review will focus on the role of intestinal dysbiosis in the immunopathogenesis of IBDs and understanding the health-promoting effects of probiotics and their metabolites.
Collapse
|
93
|
Citrus limon Peel Powder Reduces Intestinal Barrier Defects and Inflammation in a Colitic Murine Experimental Model. Foods 2021; 10:foods10020240. [PMID: 33503995 PMCID: PMC7912126 DOI: 10.3390/foods10020240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022] Open
Abstract
This study examines the ameliorative effects of lemon (Citrus limon) peel (LP) powder on intestinal inflammation and barrier defects in dextran sulfate sodium (DSS)-induced colitic mice. The whole LP powder was fractionated into methanol (MetOH) extract and its extraction residue (MetOH residue), which were rich in polyphenolic compounds and dietary fibers, respectively. Mice were fed diets containing whole LP powder, MetOH extract, and MetOH residue for 16 d. DSS administration for 9 d induced bodyweight loss, reduced colon length, reduced the colonic expression of tight junction proteins including zonula occludens-1 and -2, and claudin-3 and -7, and upregulated colonic mRNA expression of interleukin 6, chemokine (C-X-C motif) ligand 2, and C-C motif chemokine ligand 2. Feeding LP powder restored these abnormalities, and the MetOH residue, but not MetOH extract, also showed similar restorations. Feeding LP powder and MetOH residue increased fecal concentrations of acetate and n-butyrate. Taken together, LP powder reduced intestinal damage through the protection of tight junction barriers and suppressed an inflammatory reaction in colitic mice. These results suggest that acetate and n-butyrate produced from the microbial metabolism of dietary fibers in LP powder contributed to reducing colitis.
Collapse
|
94
|
Camilleri M. Human Intestinal Barrier: Effects of Stressors, Diet, Prebiotics, and Probiotics. Clin Transl Gastroenterol 2021; 12:e00308. [PMID: 33492118 PMCID: PMC7838004 DOI: 10.14309/ctg.0000000000000308] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
The objectives of this article are to understand the effects of stressors (nonsteroidal antiinflammatory drug, exercise, and pregnancy) and components in the diet, specifically prebiotics and probiotics, on intestinal barrier function. Stressors generally reduce barrier function, and these effects can be reversed by supplements such as zinc or glutamine that are among the substances that enhance the barrier. Other dietary factors in the diet that improve the barrier are vitamins A and D, tryptophan, cysteine, and fiber; by contrast, ethanol, fructose, and dietary emulsifiers increase permeability. Effects of prebiotics on barrier function are modest; on the other hand, probiotics exert direct and indirect antagonism of pathogens, and there are documented effects of diverse probiotic species, especially combination agents, on barrier function in vitro, in vivo in animal studies, and in human randomized controlled trials conducted in response to stress or disease. Clinical observations of benefits with combination probiotics in inflammatory diseases have simultaneously not appraised effects on intestinal permeability. In summary, probiotics and synbiotics enhance intestinal barrier function in response to stressor or disease states. Future studies should address the changes in barrier function and microbiota concomitant with assessment of clinical outcomes.
Collapse
Affiliation(s)
- Michael Camilleri
- Division of Gastroenterology and Hepatology, Clinical Enteric Neuroscience Translational and Epidemiological Research (C.E.N.T.E.R.), Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
95
|
Study on the additive protective effect of PGLYRP3 and Bifidobacterium adolescentis Reuter 1963 on severity of DSS-induced colitis in Pglyrp3 knockout (Pglyrp3 -/-) and wild-type (WT) mice. Immunobiology 2020; 226:152028. [PMID: 33242664 DOI: 10.1016/j.imbio.2020.152028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/05/2020] [Accepted: 11/02/2020] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Pglyrp3 is a bactericidal innate immunity protein known to sustain the habitual gut microbiome and protect against experimental colitis. Intestinal inflammation and metaflammation are commonly associated with a marked reduction of commensal bifidobacteria. Whether Pglyrp3 and bifidobacteria interact synergistically or additively to alleviate metaflammation is unknown. We investigated the extent to which Pglyrp3 and bifidobacteria regulate metaflammation and gut bacterial dysbiosis in DSS-induced mouse models of intestinal inflammation. MATERIAL & METHODS 8-10 weeks old male mice were used. In both WT and Pglyrp3 -/- experiments, the mice were randomly divided into three groups of 16 mice per group: (1) a control group receiving sterile tap water, (2) an experimental group receiving sterile tap water supplemented with only 5% DSS, and (3) an experimental group receiving sterile tap water supplemented with 5% DSS and 1 × 109 CFU/ml of Bifidobacterium adolescentis (B.a.) for 7 days. Wild-type (WT) littermates of the respective gene (i.e. Pglyrp3) were used as controls throughout the study. Clinical signs of general health and inflammation were monitored daily. Faecal pellet samples were analysed by qRT-PCR for microbial composition. Histology of relevant organs was carried out on day 8. Metabolic parameters and liver inflammation were determined in serum samples. RESULTS Intestinal inflammation in mice of group 2 were significantly increased compared to those of control group 1. There was a significant difference in mean scores for inflammation severity between DSS-treated WT and DSS-treated Pglyrp3 -/- mice. Buildup of key serum metabolic markers (cholesterol, triglyceride and glucose) was set off by colonic inflammation. qRT-PCR quantification showed that DSS significantly decreased the Clostridium coccoides and Bifidobacterium cell counts while increasing those of Bacteroides group in both WT and Pglyrp3 -/- mice. These manifestations of DSS-induced dysbiosis were significantly attenuated by feeding B.a. Both the local and systemic ill-being of the mice alleviated when they received B.a. DISCUSSION This study shows that Pglyrp3 facilitates recognition of bifidobacterial cell wall-derived peptidoglycan, thus leading additively to a reduction of metaflammation through an increase in the number of bifidobacteria, which were able to mitigate intestinal immunopathology in the context of Pglyrp3 blockade.
Collapse
|
96
|
Khoshbin K, Camilleri M. Effects of dietary components on intestinal permeability in health and disease. Am J Physiol Gastrointest Liver Physiol 2020; 319:G589-G608. [PMID: 32902315 PMCID: PMC8087346 DOI: 10.1152/ajpgi.00245.2020] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Altered intestinal permeability plays a role in many pathological conditions. Intestinal permeability is a component of the intestinal barrier. This barrier is a dynamic interface between the body and the food and pathogens that enter the gastrointestinal tract. Therefore, dietary components can directly affect this interface, and many metabolites produced by the host enzymes or the gut microbiota can act as signaling molecules or exert direct effects on this barrier. Our aim was to examine the effects of diet components on the intestinal barrier in health and disease states. Herein, we conducted an in-depth PubMed search based on specific key words (diet, permeability, barrier, health, disease, and disorder), as well as cross references from those articles. The normal intestinal barrier consists of multiple components in the lumen, epithelial cell layer and the lamina propria. Diverse methods are available to measure intestinal permeability. We focus predominantly on human in vivo studies, and the literature is reviewed to identify dietary factors that decrease (e.g., emulsifiers, surfactants, and alcohol) or increase (e.g., fiber, short-chain fatty acids, glutamine, and vitamin D) barrier integrity. Effects of these dietary items in disease states, such as metabolic syndrome, liver disease, or colitis are documented as examples of barrier dysfunction in the multifactorial diseases. Effects of diet on intestinal barrier function are associated with precise mechanisms in some instances; further research of those mechanisms has potential to clarify the role of dietary interventions in treating diverse pathologic states.
Collapse
Affiliation(s)
- Katayoun Khoshbin
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| | - Michael Camilleri
- Clinical Enteric Neuroscience Translational and Epidemiological Research, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
97
|
Chen YC, Miao ZF, Yip KL, Cheng YA, Liu CJ, Li LH, Lin CY, Wang JW, Wu DC, Cheng TL, Wang JY. Gut Fecal Microbiota Transplant in a Mouse Model of Orthotopic Rectal Cancer. Front Oncol 2020; 10:568012. [PMID: 33194651 PMCID: PMC7658813 DOI: 10.3389/fonc.2020.568012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022] Open
Abstract
The gut microbiota is reported to play an important role in carcinogenesis and the treatment of CRC. SW480 and SW620 colon cancer cells integrated with infrared fluorescent proteins were injected into the rectal submucosa of nude mice. In the subsequent 30 days, we observed tumor growth weekly using an in vivo imaging system. The bacterial solution was infused anally into the mice to perform bacterial transplant. Phosphate-buffered saline, Acinetobacter lwoffii, and Bifidobacterium longum solutions were infused individually. The 16S ribosomal DNA (rDNA) and polymerase chain reaction of murine feces were investigated to confirm the colonization of target bacteria. In the SW620 orthotopic xenograft rectal cancer model, 4 of 5 mice developed rectal cancer by 30 days after submucosal injection. In the SW480 orthotopic xenograft rectal cancer model, 2 of 6 mice developed rectal cancer by 30 days after submucosal injection. For the 16S rDNA analysis, the mice receiving the bacterial solution infusion demonstrated positive findings for A. lwoffii and B. longum. With the successful establishment of a mouse model of orthotopic rectal cancer and transplant of target bacteria, we can further explore the relationship between gut microbiota and CRC. The role of fecal microbiota transplant in the treatment and alleviation of adverse events of chemotherapy in CRC could be clarified in subsequent studies.
Collapse
Affiliation(s)
- Yen-Cheng Chen
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Zhi-Feng Miao
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Kwan-Ling Yip
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yi-An Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chung-Jung Liu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ling-Hui Li
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, Taipei, Taiwan
| | - Jiunn-Wei Wang
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.,Department of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tian-Lu Cheng
- Department of Biomedical Science and Environmental Biology, Kaohsiung Medical University, Kaohsiung, Taiwan.,Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Jaw-Yuan Wang
- Division of Colorectal Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,College of Medicine, Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Surgery, Faculty of Medicine, College of Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Cancer Research, Kaohsiung Medical University, Kaohsiung, Taiwan.,Center for Liquid Biopsy and Cohort Research, Kaohsiung Medical University, Kaohsiung, Taiwan
| |
Collapse
|
98
|
Liang H, Luo Z, Miao Z, Shen X, Li M, Zhang X, Chen J, Ze X, Chen Q, He F. Lactobacilli and bifidobacteria derived from infant intestines may activate macrophages and lead to different IL-10 secretion. Biosci Biotechnol Biochem 2020; 84:2558-2568. [PMID: 32862788 DOI: 10.1080/09168451.2020.1811948] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this study, three strains of lactobacilli and bifidobacteria originally isolated from healthy infants, were tested for their abilities to activate RAW264.7 cells. Gene expression and cytokine production of interleukin-10 (IL-10) of RAW264.7 cells were evaluated. The activation of extracellular regulated protein kinases 1/2 (ERK1/2), p38, and nuclear factor-κB (NK-κB) were also assessed. These results suggest lactobacilli and bifidobacteria in infants may promote production of IL-10 in macrophages, conferring a protective effect in hosts suffering from inflammation. Dimerization of TLR2 and MyD88 and subsequent phosphorylation of the key downstream signaling molecules, such as MAPKs and NK-κB, may be one of the key underlying mechanisms of activation of macrophages by these microbes. Bifidobacteria and lactobacilli induced macrophages to secrete IL-10 in a different manner, which may relate to their abilities to activate key signaling pathways mediated by TLR2 and MyD88.
Collapse
Affiliation(s)
- Huijing Liang
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu, China
| | - Zihao Luo
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu, China
| | - Zhonghua Miao
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu, China
| | - Xi Shen
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu, China
| | - Ming Li
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu, China
| | - Xuguang Zhang
- Nutrition and Health Research Centre, By-Health Co., Ltd , Guangzhou, China
| | - Jiehua Chen
- Nutrition and Health Research Centre, By-Health Co., Ltd , Guangzhou, China
| | - Xiaolei Ze
- Nutrition and Health Research Centre, By-Health Co., Ltd , Guangzhou, China
| | - Qiwei Chen
- Department of Pathogenic Biology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University , Chengdu, China
| | - Fang He
- Department of Nutrition, Food Hygiene and Toxicology, West China School of Public Health and West China Fourth Hospital, Sichuan University , Chengdu, China
| |
Collapse
|
99
|
The Infant-Derived Bifidobacterium bifidum Strain CNCM I-4319 Strengthens Gut Functionality. Microorganisms 2020; 8:microorganisms8091313. [PMID: 32872165 PMCID: PMC7565306 DOI: 10.3390/microorganisms8091313] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/21/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Bifidobacteria are among the first colonisers of the gastrointestinal tract of breast-fed newborns due to, among other things, their ability to metabolise oligosaccharides naturally occurring in human milk. The presence of bifidobacteria in the infant gut has been shown to promote intestinal health and homeostasis as well as to preserve a functional gut barrier, thus positively influencing host health and well-being. Among human-associated gut commensals, Bifidobacterium bifidum has been described as the only species capable of the extracellular degradation of both mucin-type glycans and HMOs, thereby giving this species a special role as a commensal gut forager of both host and diet-derived glycans. In the present study, we assess the possible beneficial properties and probiotic potential of B. bifidum strain CNCM I-4319. In silico genome analysis and growth experiments confirmed the expected ability of this strain to consume HMOs and mucin. By employing various animal models, we were also able to assess the ability of B. bifidum CNCM I-4319 to preserve gut integrity and functionality from stress-induced and inflammatory damage, thereby enforcing its potential as an effective probiotic strain.
Collapse
|
100
|
Wang G, Huang S, Cai S, Yu H, Wang Y, Zeng X, Qiao S. Lactobacillus reuteri Ameliorates Intestinal Inflammation and Modulates Gut Microbiota and Metabolic Disorders in Dextran Sulfate Sodium-Induced Colitis in Mice. Nutrients 2020; 12:nu12082298. [PMID: 32751784 PMCID: PMC7468961 DOI: 10.3390/nu12082298] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/11/2022] Open
Abstract
Lactobacillus reuteri, a commensal intestinal bacteria, has various health benefits including the regulation of immunity and intestinal microbiota. We examined whether L. reuteri I5007 could protect mice against colitis in ameliorating inflammation, modulating microbiota, and metabolic composition. In vitro, HT-29 cells were cultured with L. reuteri I5007 or lipopolysaccharide treatment under three different conditions, i.e., pre-, co- (simultaneous), and posttreatment. Pretreatment with L. reuteri I5007 effectively relieves inflammation in HT-29 cells challenged with lipopolysaccharide. In vivo, mice were given L. reuteri I5007 by gavage throughout the study, starting one week prior to dextran sulfate sodium (DSS) treatment for one week followed by two days without DSS. L. reuteri I5007 improved DSS-induced colitis, which was confirmed by reduced weight loss, colon length shortening, and histopathological damage, restored the mucus layer, as well as reduced pro-inflammatory cytokines levels. Analysis of 16S rDNA sequences and metabolome demonstrates that L. reuteri I5007 significantly alters colonic microbiota and metabolic structural and functional composition. Overall, the results demonstrate that L. reuteri I5007 pretreatment could effectively alleviate intestinal inflammation by regulating immune responses and altering the composition of gut microbiota structure and function, as well as improving metabolic disorders in mice with colitis.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.W.); (S.H.); (S.C.); (H.Y.); (Y.W.); (X.Z.)
- Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing 100193, China
| | - Shuo Huang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.W.); (S.H.); (S.C.); (H.Y.); (Y.W.); (X.Z.)
- Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing 100193, China
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.W.); (S.H.); (S.C.); (H.Y.); (Y.W.); (X.Z.)
- Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing 100193, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.W.); (S.H.); (S.C.); (H.Y.); (Y.W.); (X.Z.)
- Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing 100193, China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.W.); (S.H.); (S.C.); (H.Y.); (Y.W.); (X.Z.)
- Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing 100193, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.W.); (S.H.); (S.C.); (H.Y.); (Y.W.); (X.Z.)
- Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (G.W.); (S.H.); (S.C.); (H.Y.); (Y.W.); (X.Z.)
- Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing 100193, China
- Correspondence: ; Tel.: +86-10-6273-1456
| |
Collapse
|