51
|
Agabiti-Rosei C, Paini A, De Ciuceis C, Withers S, Greenstein A, Heagerty AM, Rizzoni D. Modulation of Vascular Reactivity by Perivascular Adipose Tissue (PVAT). Curr Hypertens Rep 2018; 20:44. [PMID: 29736674 DOI: 10.1007/s11906-018-0835-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW In this review, we discuss the role of perivascular adipose tissue (PVAT) in the modulation of vascular contractility and arterial pressure, focusing on the role of the renin-angiotensin-aldosterone system and oxidative stress/inflammation. RECENT FINDINGS PVAT possesses a relevant endocrine-paracrine activity, which may be altered in several pathophysiological and clinical conditions. During the last two decades, it has been shown that PVAT may modulate vascular reactivity. It has also been previously demonstrated that inflammation in adipose tissue may be implicated in vascular dysfunction. In particular, adipocytes secrete a number of adipokines with various functions, as well as several vasoactive factors, together with components of the renin-angiotensin system which may act at local or at systemic level. It has been shown that the anti-contractile effect of PVAT is lost in obesity, probably as a consequence of the development of adipocyte hypertrophy, inflammation, and oxidative stress. Adipose tissue dysfunction is interrelated with inflammation and oxidative stress, thus contributing to endothelial dysfunction observed in several pathological and clinical conditions such as obesity and hypertension. Decreased local adiponectin level, macrophage recruitment and infiltration, and activation of renin-angiotensin-aldosterone system could play an important role in this regard.
Collapse
Affiliation(s)
- Claudia Agabiti-Rosei
- Department of Medicine, Manchester University, Manchester, UK. .,Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy.
| | - Anna Paini
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| | - Carolina De Ciuceis
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| | - Sarah Withers
- Department of Medicine, Manchester University, Manchester, UK
| | - Adam Greenstein
- Department of Medicine, Manchester University, Manchester, UK
| | | | - Damiano Rizzoni
- Clinica Medica, Department of Medical and Surgical Sciences, University of Brescia, c/o 2a Medicina Spedali Civili di Brescia, Piazza Spedali Civili 1, 25100, Brescia, Italy
| |
Collapse
|
52
|
Baylie R, Ahmed M, Bonev AD, Hill-Eubanks DC, Heppner TJ, Nelson MT, Greenstein AS. Lack of direct effect of adiponectin on vascular smooth muscle cell BK Ca channels or Ca 2+ signaling in the regulation of small artery pressure-induced constriction. Physiol Rep 2018; 5:5/16/e13337. [PMID: 28830977 PMCID: PMC5582259 DOI: 10.14814/phy2.13337] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 05/18/2017] [Accepted: 05/20/2017] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate mechanisms by which adiponectin influences vascular Ca2+ signaling, K+ channel activity and thus contractile tone of small arteries. Vasodilation to adiponectin was studied in mesenteric resistance arteries constricted with intraluminal pressure. Ca2+ signals were characterized using high speed confocal microscopy of intact arteries. Patch clamp investigated the effect of adiponectin on individual VSMC potassium (K+) channel currents. Adiponectin dilated arteries constricted with pressure‐induced tone by approximately 5% and the induced vasodilation was only transient. The dilation to adiponectin was reduced by pharmacological interruption of the Ca2+ spark/large conductance activated K+ (BK) channel pathway but from a physiological perspective, interpretation of the data was limited by the small effect. Neither Adiponectin nor the presence of intact perivascular adipose tissue (PVAT) influenced Ca2+ spark or Ca2+ wave frequency or characteristics. Studied using a perforated patch approach, Adiponectin marginally increased current through the VSMC BK channel but this effect was lost using the whole cell technique with dialysis of the cytoplasm. Adiponectin did not change the frequency or amplitude of Ca2+ spark‐induced transient outward currents (STOC). Overall, our study shows that Adiponectin induces only a small and transient dilation of pressure constricted mesenteric arteries. This vasodilatory effect is likely to be independent of Ca2+ sparks or direct BK channel activation.
Collapse
Affiliation(s)
- Rachael Baylie
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Majid Ahmed
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Adrian D Bonev
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | | | - Thomas J Heppner
- Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Mark T Nelson
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.,Department of Pharmacology, University of Vermont, Burlington, Vermont
| | - Adam S Greenstein
- Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
53
|
Boedtkjer E. Acid-base regulation and sensing: Accelerators and brakes in metabolic regulation of cerebrovascular tone. J Cereb Blood Flow Metab 2018; 38:588-602. [PMID: 28984162 PMCID: PMC5888856 DOI: 10.1177/0271678x17733868] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 08/10/2017] [Accepted: 09/06/2017] [Indexed: 12/29/2022]
Abstract
Metabolic regulation of cerebrovascular tone directs blood flow to areas of increased neuronal activity and during disease states partially compensates for insufficient perfusion by enhancing blood flow in collateral blood vessels. Acid-base disturbances frequently occur as result of enhanced metabolism or insufficient blood supply, but despite definitive evidence that acid-base disturbances alter arterial tone, effects of individual acid-base equivalents and the underlying signaling mechanisms are still being debated. H+ is an important intra- and extracellular messenger that modifies cerebrovascular tone. In addition, low extracellular [HCO3-] promotes cerebrovascular contraction through an endothelium-dependent mechanism. CO2 alters arterial tone development via changes in intra- and extracellular pH but it is still controversial whether CO2 also has direct vasomotor effects. Vasocontractile responses to low extracellular [HCO3-] and acute CO2-induced decreases in intracellular pH can counteract H+-mediated vasorelaxation during metabolic and respiratory acidosis, respectively, and may thereby reduce the risk of capillary damage and cerebral edema that could be consequences of unopposed vasodilation. In this review, the signaling mechanisms for acid-base equivalents in cerebral arteries and the mechanisms of intracellular pH control in the arterial wall are discussed in the context of metabolic regulation of cerebrovascular tone and local perfusion.
Collapse
Affiliation(s)
- Ebbe Boedtkjer
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
54
|
Saxton SN, Ryding KE, Aldous RG, Withers SB, Ohanian J, Heagerty AM. Role of Sympathetic Nerves and Adipocyte Catecholamine Uptake in the Vasorelaxant Function of Perivascular Adipose Tissue. Arterioscler Thromb Vasc Biol 2018; 38:880-891. [PMID: 29496660 DOI: 10.1161/atvbaha.118.310777] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 02/06/2018] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Healthy perivascular adipose tissue (PVAT) exerts an anticontractile effect on resistance arteries which is vital in regulating arterial tone. Activation of β3-adrenoceptors by sympathetic nerve-derived NA (noradrenaline) may be implicated in this effect and may stimulate the release of the vasodilator adiponectin from adipocytes. Understanding the mechanisms responsible is vital for determining how PVAT may modify vascular resistance in vivo. APPROACH AND RESULTS Electrical field stimulation profiles of healthy C57BL/6J mouse mesenteric resistance arteries were characterized using wire myography. During electrical field stimulation, PVAT elicits a reproducible anticontractile effect, which is endothelium independent. To demonstrate the release of an anticontractile factor, the solution surrounding stimulated exogenous PVAT was transferred to a PVAT-denuded vessel. Post-transfer contractility was significantly reduced confirming that stimulated PVAT releases a transferable anticontractile factor. Sympathetic denervation of PVAT using tetrodotoxin or 6-hydroxydopamine completely abolished the anticontractile effect. β3-adrenoceptor antagonist SR59203A reduced the anticontractile effect, although the PVAT remained overall anticontractile. When the antagonist was used in combination with an OCT3 (organic cation transporter 3) inhibitor, corticosterone, the anticontractile effect was completely abolished. Application of an adiponectin receptor-1 blocking peptide significantly reduced the anticontractile effect in +PVAT arteries. When used in combination with the β3-adrenoceptor antagonist, there was no further reduction. In adiponectin knockout mice, the anticontractile effect is absent. CONCLUSIONS The roles of PVAT are 2-fold. First, sympathetic stimulation in PVAT triggers the release of adiponectin via β3-adrenoceptor activation. Second, PVAT acts as a reservoir for NA, preventing it from reaching the vessel and causing contraction.
Collapse
Affiliation(s)
- Sophie N Saxton
- From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N.S., K.E.R., R.G.A., S.B.W., J.O., A.M.H.); and School of Environment and Life Sciences, University of Salford, United Kingdom (S.B.W.)
| | - Katie E Ryding
- From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N.S., K.E.R., R.G.A., S.B.W., J.O., A.M.H.); and School of Environment and Life Sciences, University of Salford, United Kingdom (S.B.W.)
| | - Robert G Aldous
- From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N.S., K.E.R., R.G.A., S.B.W., J.O., A.M.H.); and School of Environment and Life Sciences, University of Salford, United Kingdom (S.B.W.)
| | - Sarah B Withers
- From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N.S., K.E.R., R.G.A., S.B.W., J.O., A.M.H.); and School of Environment and Life Sciences, University of Salford, United Kingdom (S.B.W.)
| | - Jacqueline Ohanian
- From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N.S., K.E.R., R.G.A., S.B.W., J.O., A.M.H.); and School of Environment and Life Sciences, University of Salford, United Kingdom (S.B.W.)
| | - Anthony M Heagerty
- From the Division of Cardiovascular Sciences, University of Manchester, United Kingdom (S.N.S., K.E.R., R.G.A., S.B.W., J.O., A.M.H.); and School of Environment and Life Sciences, University of Salford, United Kingdom (S.B.W.).
| |
Collapse
|
55
|
Vascular smooth muscle cell peroxisome proliferator-activated receptor γ protects against endothelin-1-induced oxidative stress and inflammation. J Hypertens 2018; 35:1390-1401. [PMID: 28234672 DOI: 10.1097/hjh.0000000000001324] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS Peroxisome proliferator-activated receptor γ (PPARγ) agonists reduce blood pressure and vascular injury in hypertensive rodents. Pparγ inactivation in vascular smooth muscle cells (VSMC) enhances vascular injury. Transgenic mice overexpressing endothelin (ET)-1 selectively in the endothelium (eET-1) exhibit endothelial dysfunction, increased oxidative stress and inflammation. We hypothesized that inactivation of the Pparγ gene in VSMC (smPparγ-/-) would exaggerate ET-1-induced vascular injury. METHODS AND RESULTS eET-1, smPparγ-/- and eET-1/smPparγ-/- mice were treated with tamoxifen for 5 days and studied 4 weeks later. SBP was higher in eET-1 and unaffected by smPparγ inactivation. Mesenteric artery vasodilatory responses to acetylcholine were impaired only in smPparγ-/-. N(omega)-Nitro-L-arginine methyl ester abrogated relaxation responses, and the Ednra/Ednrb mRNA ratio was decreased in eET-1/smPparγ-/-, which could indicate that nitric oxide production was enhanced by ET-1 stimulation of endothelin type B receptors. Mesenteric artery media/lumen was greater only in eET-1/smPparγ-/-. Mesenteric artery reactive oxygen species increased in smPparγ and were further enhanced in eET-1/smPparγ-/-. Perivascular fat monocyte/macrophage infiltration was higher in eET-1 and smPparγ and increased further in eET-1/smPparγ-/-. Spleen CD11b+ cells were increased in smPparγ-/- and further enhanced in eET-1/smPparγ-/-, whereas Ly-6C(hi) monocytes increased in eET-1 and smPparγ-/- but not in eET-1/smPparγ-/-. Spleen T regulatory lymphocytes increased in smPparγ and decreased in eET-1, and decreased further in eET-1/smPparγ-/-. CONCLUSION VSMC Pparγ inactivation exaggerates ET-1-induced vascular injury, supporting a protective role for PPARγ in hypertension through modulation of pro-oxidant and proinflammatory pathways. Paradoxically, ET-1 overexpression preserved endothelial function in smPparγ-/- mice, presumably by enhancing nitric oxide through stimulation of endothelin type B receptors.
Collapse
|
56
|
Restini CBA, Ismail A, Kumar RK, Burnett R, Garver H, Fink GD, Watts SW. Renal perivascular adipose tissue: Form and function. Vascul Pharmacol 2018; 106:37-45. [PMID: 29454047 DOI: 10.1016/j.vph.2018.02.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 12/05/2017] [Accepted: 02/11/2018] [Indexed: 12/21/2022]
Abstract
Renal sympathetic activity affects blood pressure in part by increasing renovascular resistance via release of norepinephrine (NE) from sympathetic nerves onto renal arteries. Here we test the idea that adipose tissue adjacent to renal blood vessels, i.e. renal perivascular adipose tissue (RPVAT), contains a pool of NE which can be released to alter renal vascular function. RPVAT was obtained from around the main renal artery/vein of the male Sprague Dawley rats. Thoracic aortic PVAT and mesenteric PVAT also were studied as brown-like and white fat comparators respectively. RPVAT was identified as a mix of white and brown adipocytes, because of expression of both brown-like (e.g. uncoupling protein 1) and white adipogenic genes. All PVATs contained NE (ng/g tissue, RPVAT:524 ± 68, TAPVAT:740 ± 16, MPVAT:96 ± 24). NE was visualized specifically in RPVAT adipocytes by immunohistochemistry. The presence of RPVAT (+RPVAT) did not alter the response of isolated renal arteries to NE compared to responses of arteries without RPVAT (-RPVAT). By contrast, the maximum contraction to the sympathomimetic tyramine was ~2× greater in the renal artery +PVAT versus -PVAT. Tyramine-induced contraction in +RPVAT renal arteries was reduced by the α1-adrenoceptor antagonist prazosin and the NE transporter inhibitor nisoxetine. These results suggest that tyramine caused release of NE from RPVAT. Renal denervation significantly (>50%) reduced NE content of RPVAT but did not modify tyramine-induced contraction of +RPVAT renal arteries. Collectively, these data support the existence of a releasable pool of NE in RPVAT that is independent of renal sympathetic innervation and has the potential to change renal arterial function.
Collapse
Affiliation(s)
- Carolina Baraldi A Restini
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Alex Ismail
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Ramya K Kumar
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Robert Burnett
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Hannah Garver
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Gregory D Fink
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI 48824-1317, United States.
| |
Collapse
|
57
|
Hildebrand S, Stümer J, Pfeifer A. PVAT and Its Relation to Brown, Beige, and White Adipose Tissue in Development and Function. Front Physiol 2018; 9:70. [PMID: 29467675 PMCID: PMC5808192 DOI: 10.3389/fphys.2018.00070] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 01/19/2018] [Indexed: 12/12/2022] Open
Abstract
Adipose tissue is commonly categorized into three types with distinct functions, phenotypes, and anatomical localizations. White adipose tissue (WAT) is the major energy store; the largest depots of WAT are found in subcutaneous or intravisceral sites. Brown adipose tissue (BAT) is responsible for energy dissipation during cold-exposure (i.e., non-shivering thermogenesis) and is primarily located in the interscapular region. Beige or brite (brown-in-white) adipose tissue can be found interspersed in WAT and can attain a brown-like phenotype. These three types of tissues also have endocrine functions and play major roles in whole body metabolism especially in obesity and its co-morbidities, such as cardiovascular disease. Over the last years, perivascular adipose tissue (PVAT) has emerged as an adipose organ with endocrine and paracrine functions. Pro and anti-inflammatory agents released by PVAT affect vascular health, and are implicated in the inflammatory aspects of atherosclerosis. PVAT shares several of the defining characteristics of brown adipose tissue, including its cellular morphology and expression of thermogenic genes characteristic for brown adipocytes. However, PVATs from different vessels are phenotypically different, and significant developmental differences exist between PVAT and other adipose tissues. Whether PVAT represents classical BAT, beige adipose tissue, or WAT with changing characteristics, is unclear. In this review, we summarize the current knowledge on how PVAT relates to other types of adipose tissue, both in terms of functionality, developmental origins, and its role in obesity-related cardiovascular disease and inflammation.
Collapse
Affiliation(s)
- Staffan Hildebrand
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jasmin Stümer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Alexander Pfeifer
- Institute of Pharmacology and Toxicology, University Hospital Bonn, University of Bonn, Bonn, Germany
| |
Collapse
|
58
|
Fernández-Alfonso MS, Somoza B, Tsvetkov D, Kuczmanski A, Dashwood M, Gil-Ortega M. Role of Perivascular Adipose Tissue in Health and Disease. Compr Physiol 2017; 8:23-59. [PMID: 29357124 DOI: 10.1002/cphy.c170004] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Perivascular adipose tissue (PVAT) is cushion of fat tissue surrounding blood vessels, which is phenotypically different from other adipose tissue depots. PVAT is composed of adipocytes and stromal vascular fraction, constituted by different populations of immune cells, endothelial cells, and adipose-derived stromal cells. It expresses and releases an important number of vasoactive factors with paracrine effects on vascular structure and function. In healthy individuals, these factors elicit a net anticontractile and anti-inflammatory paracrine effect aimed at meeting hemodynamic and metabolic demands of specific organs and regions of the body. Pathophysiological situations, such as obesity, diabetes or hypertension, induce changes in its amount and in the expression pattern of vasoactive factors leading to a PVAT dysfunction in which the beneficial paracrine influence of PVAT is shifted to a pro-oxidant, proinflammatory, contractile, and trophic environment leading to functional and structural cardiovascular alterations and cardiovascular disease. Many different PVATs surrounding a variety of blood vessels have been described and exhibit regional differences. Both protective and deleterious influence of PVAT differs regionally depending on the specific vascular bed contributing to variations in the susceptibility of arteries and veins to vascular disease. PVAT therefore, might represent a novel target for pharmacological intervention in cardiovascular disease. © 2018 American Physiological Society. Compr Physiol 8:23-59, 2018.
Collapse
Affiliation(s)
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| | - Dmitry Tsvetkov
- Department of Anestesiology, Perioperative and Pain Medicine, HELIOS Klinikum, Berlin-Buch GmbH, Germany.,Institute of Experimental and Clinical Pharmacology and Toxicology, Department of Pharmacology and Experimental Therapy, Eberhard Karls University Hospitals and Clinics, and Interfaculty Center of Pharmacogenomics and Drug Research, Tübingen, Germany
| | - Artur Kuczmanski
- Department of Anestesiology, Perioperative and Pain Medicine, HELIOS Klinikum, Berlin-Buch GmbH, Germany
| | - Mick Dashwood
- Royal Free Hospital Campus, University College Medical School, London, United Kingdom
| | - Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, Madrid, Spain
| |
Collapse
|
59
|
Amor S, Martín-Carro B, Rubio C, Carrascosa JM, Hu W, Huang Y, García-Villalón AL, Granado M. Study of insulin vascular sensitivity in aortic rings and endothelial cells from aged rats subjected to caloric restriction: Role of perivascular adipose tissue. Exp Gerontol 2017; 109:126-136. [PMID: 29055722 DOI: 10.1016/j.exger.2017.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 02/05/2023]
Abstract
The prevalence of metabolic syndrome is dramatically increasing among elderly population. Metabolic syndrome in aged individuals is associated with hyperinsulinemia and insulin resistance both in metabolic tissues and in the cardiovascular system, with this fact being associated with the cardiometabolic alterations associated to this condition. Caloric restriction (CR) improves insulin sensitivity and is one of the dietetic strategies most commonly used to enlarge life and to prevent aging induced cardiovascular alterations. The aim of this study was to analyze the possible beneficial effects of CR in aging-induced vascular insulin resistance both in aortic rings and in primary culture of endothelial cells. In addition, the inflammatory profile of perivascular adipose tissue (PVAT) and its possible role in the impairment of vascular insulin sensitivity associated with aging was also assessed. Three experimental groups of male Wistar rats were used: 3 (3m), 24 (24m) fed ad libitum and 24months old rats subjected to 20% CR during their three last months of life (24m-CR). Aorta rings surrounded or not by PVAT were mounted in an organ bath and precontracted with phenylephrine (10-7.5M). Changes in isometric tension were recorded in response to cumulative insulin concentrations (10-8-10-5.5M) in the presence or absence of L-NAME (10-4M). Aortic rings and primary aortic endothelial cells were incubated in presence/absence of insulin (10-7M) and the activation of the PI3K/Akt and MAPK pathways as well as nitrite and nitrates concentrations and the mRNA levels of eNOS, insulin receptor, and GLUT-4 were assessed. CR prevented the aging-induced decrease in the vasodilator response to insulin and the aging-induced increase in the vasoconstrictor response to high insulin concentrations. Changes between 24m and 24m-CR aorta rings were abolished in the presence of L-NAME. CR induced-improvement in insulin vascular sensitivity was related with activation of the PI3K/Akt both in aortic rings and in aortic endothelial cells in response to insulin. CR attenuated the overexpression of iNOS, TNF-α and IL-1β in the PVAT of aged rats although aortic rings surrounded by PVAT from 24m rats showed and increased vasorelaxation in response to insulin compared to aortic rings from 3m and 24m-CR rats. In conclusion, a moderate protocol of CR improves insulin vascular sensitivity and prevents the aging induced overexpression of pro-inflammatory cytokines in PVAT.
Collapse
Affiliation(s)
- S Amor
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - B Martín-Carro
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - C Rubio
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Spain
| | - J M Carrascosa
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Spain
| | - W Hu
- School of Biomedical Sciences, Institute of Vascular Medicine, Faculty of Medicine, Chinese University of Hong Kong, China
| | - Y Huang
- School of Biomedical Sciences, Institute of Vascular Medicine, Faculty of Medicine, Chinese University of Hong Kong, China
| | - A L García-Villalón
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | - M Granado
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain; CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
60
|
Zaborska KE, Wareing M, Austin C. Comparisons between perivascular adipose tissue and the endothelium in their modulation of vascular tone. Br J Pharmacol 2017; 174:3388-3397. [PMID: 27747871 PMCID: PMC5610163 DOI: 10.1111/bph.13648] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/16/2016] [Accepted: 09/28/2016] [Indexed: 01/06/2023] Open
Abstract
The endothelium is an established modulator of vascular tone; however, the recent discovery of the anti-contractile nature of perivascular adipose tissue (PVAT) suggests that the fat, which surrounds many blood vessels, can also modulate vascular tone. Both the endothelium and PVAT secrete vasoactive substances, which regulate vascular function. Many of these factors are common to both the endothelium and PVAT; therefore, this review will highlight the potential shared mechanisms in the modulation of vascular tone. Endothelial dysfunction is a hallmark of many vascular diseases, including hypertension and obesity. Moreover, PVAT dysfunction is now being reported in several cardio-metabolic disorders. Thus, this review will also discuss the mechanistic insights into endothelial and PVAT dysfunction in order to evaluate whether PVAT modulation of vascular contractility is similar to that of the endothelium in health and disease. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- K E Zaborska
- Institute of Cardiovascular SciencesUniversity of ManchesterUK
| | - M Wareing
- Maternal and Fetal Health Research Centre, Institute of Human DevelopmentUniversity of ManchesterUK
| | - C Austin
- Faculty of Health and Social CareEdge Hill UniversityUK
| |
Collapse
|
61
|
Ahmad AA, Randall MD, Roberts RE. Sex differences in the role of phospholipase A 2 -dependent arachidonic acid pathway in the perivascular adipose tissue function in pigs. J Physiol 2017; 595:6623-6634. [PMID: 28877347 DOI: 10.1113/jp274831] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/21/2017] [Indexed: 12/18/2022] Open
Abstract
KEY POINTS The fat surrounding blood vessels (perivascular adipose tissue or PVAT) releases vasoactive compounds that regulate vascular smooth muscle tone. There are sex differences in the regulation of vascular tone, but, to date, no study has investigated whether there are sex differences in the regulation of blood vessel tone by PVAT. This study has identified that the cyclooxygenase products thromboxane and PGF2α are released from coronary artery PVAT from pigs. Thromboxane appears to mediate the PVAT-induced contraction in arteries from females, whereas PGF2α appears to mediate the contraction in arteries from males. These sex differences in the role of these prostanoids in the PVAT-induced contraction can be explained by a greater release of thromboxane from PVAT from female animals and greater sensitivity to PGF2α in the porcine coronary artery from males. ABSTRACT Previous studies have demonstrated that perivascular adipose tissue (PVAT) causes vasoconstriction. In this present study, we determined the role of cyclooxygenase-derived prostanoids in this contractile response and determined whether there were any sex differences in the regulation of vascular tone by PVAT. Contractions in isolated segments of coronary arteries were determined using isolated tissue baths and isometric tension recording. Segments were initially cleaned of PVAT, which was then re-added to the tissue bath and changes in tone measured over 1 h. Levels of PGF2α and thromboxane B2 (TXB2 ) were quantified by ELISA, and PGF2α (FP) and thromboxane A2 (TP) receptor expression determined by Western blotting. In arteries from both male and female pigs, re-addition of PVAT caused a contraction, which was partially inhibited by the cyclooxygenase inhibitors indomethacin and flurbiprofen. The FP receptor antagonist AL8810 attenuated the PVAT-induced contraction in arteries from males, whereas the TP receptor antagonist GR32191B inhibited the PVAT-induced contraction in arteries from females. Although there was no difference in PGF2α levels in PVAT between females and males, PGF2α produced a larger contraction in arteries from males, correlating with a higher FP receptor expression. In contrast, release of TXB2 from PVAT from females was greater than from males, but there was no difference in the contraction by the TXA2 agonist U46619, or TP receptor expression in arteries from different sexes. These findings demonstrate clear sex differences in PVAT function in which PGF2α and TXA2 antagonists can inhibit the PVAT-induced vasoconstriction in male and female PCAs, respectively.
Collapse
Affiliation(s)
- Abdulla A Ahmad
- Cell Signalling and Pharmacology Research Group, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Michael D Randall
- Cell Signalling and Pharmacology Research Group, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| | - Richard E Roberts
- Cell Signalling and Pharmacology Research Group, School of Life Sciences, University of Nottingham Medical School, Queen's Medical Centre, Nottingham, NG7 2UH, UK
| |
Collapse
|
62
|
Ahmad AA, Randall MD, Roberts RE. Sex differences in the regulation of porcine coronary artery tone by perivascular adipose tissue: a role of adiponectin? Br J Pharmacol 2017; 174:2773-2783. [PMID: 28593738 DOI: 10.1111/bph.13902] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 05/19/2017] [Accepted: 05/22/2017] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE As there is sexual dimorphism in the regulation of vascular tone, the aim of this present study was to determine whether there are sex differences in perivascular adipose tissue (PVAT)-mediated regulation of the porcine coronary artery (PCA) tone. EXPERIMENTAL APPROACH Isometric tension recording system was used to record changes in tone in PCAs. Western blot analysis was performed to examine the expression of adiponectin in PVAT and adiponectin receptors and adiponectin binding protein (APPL1) in PCA. The level of adiponectin released from PVAT was measured using elisa. KEY RESULTS In the presence of adherent PVAT, contractions to the thromboxane mimetic U46619 and endothelin-1 were significantly reduced in PCAs from females, but not males. In PCAs pre-contracted with U46619, re-addition of PVAT caused relaxation in PCAs from females, but not males. This relaxant response in females was attenuated by combined inhibition of NOS (with L-NAME) and COX (with indomethacin). Pre-incubation with an anti-adiponectin antibody abolished the relaxant effects of PVAT. The adiponectin receptor agonist (adipoRon) produced a greater relaxation in PCAs from females compared with males. However, there was no difference in either the expression or release of adiponectin from PVAT between sexes. Similarly, there was no difference in the expression of adiponectin receptors or the adiponectin receptor adaptor protein APPL1 in PCAs. CONCLUSION AND IMPLICATIONS These findings demonstrate a clear sex difference in the regulation of coronary arterial tone in response to adiponectin receptor stimulation, which may underlie the anticontractile effects of PVAT in females.
Collapse
Affiliation(s)
- Abdulla A Ahmad
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Michael D Randall
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| | - Richard E Roberts
- School of Life Sciences, Faculty of Medicine and Health Sciences, University of Nottingham, Nottingham, UK
| |
Collapse
|
63
|
Crankshaw DJ, O'Brien YM, Crosby DA, Morrison JJ. Maternal body mass index and spontaneous contractility of human myometrium in pregnancy. J Perinatol 2017; 37:492-497. [PMID: 28125101 DOI: 10.1038/jp.2016.271] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 11/28/2016] [Accepted: 12/01/2016] [Indexed: 11/09/2022]
Abstract
OBJECTIVE There is controversy as to whether maternal body mass index (BMI) influences the contractility of human myometrium in pregnancy. The aim of this study was to examine spontaneous contractile activity of human pregnant myometrium in vitro, with respect to maternal BMI. STUDY DESIGN Myometrial tissue specimens were obtained at cesarean delivery from 74 women with BMI values ranging from 19 to 50.1 kg m-2. By recording in vitro from eight strips per donor (590 strips in total), several parameters of spontaneous contractile activity were monitored. The relationship between BMI and contractility was evaluated using linear regression analysis. RESULTS There was a significant correlation between maximum amplitude (P=0.007) and mean contractile force (P=0.001) with increasing BMI. However, the time to onset of contractions (P=0.009), and time taken to reach maximal amplitude (P=0.020) also increased with increasing BMI. No significant correlation was observed with BMI for other parameters studied. The mean maximum amplitude value for spontaneous contractions was 37±1 mN, the mean contractile force for spontaneous contractions was 4.1±0.1 mN, the average time to the first spontaneous contraction was 11.3±0.6 min and the average frequency of contractions was 6.5±0.2 per hour. CONCLUSIONS These results suggest that the time to onset of contractions is increased with increasing maternal BMI, but that the force developed is greater. In all other respects, human uterine contractility is unaffected by increasing BMI. These findings underline the complexity of regulation of uterine contractility in labor with elevated maternal BMI.
Collapse
Affiliation(s)
- D J Crankshaw
- Department of Obstetrics and Gynecology, National University of Ireland Galway, Galway University Hospital, Galway, Ireland
| | - Y M O'Brien
- Department of Obstetrics and Gynecology, National University of Ireland Galway, Galway University Hospital, Galway, Ireland
| | - D A Crosby
- Department of Obstetrics and Gynecology, National University of Ireland Galway, Galway University Hospital, Galway, Ireland
| | - J J Morrison
- Department of Obstetrics and Gynecology, National University of Ireland Galway, Galway University Hospital, Galway, Ireland
| |
Collapse
|
64
|
Candela J, Wang R, White C. Microvascular Endothelial Dysfunction in Obesity Is Driven by Macrophage-Dependent Hydrogen Sulfide Depletion. Arterioscler Thromb Vasc Biol 2017; 37:889-899. [DOI: 10.1161/atvbaha.117.309138] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 03/12/2017] [Indexed: 11/16/2022]
Abstract
Objective—
The function of perivascular adipose tissue as an anticontractile mediator in the microvasculature is lost during obesity. Obesity results in inflammation and recruitment of proinflammatory macrophages to the perivascular adipose tissue that is paralleled by depletion of the vasorelaxant signaling molecule hydrogen sulfide (H
2
S) in the vessel. The current objective was to assess the role of macrophages in determining vascular [H
2
S] and defining how this impinged on vasodilation.
Approach and Results—
Contractility and [H
2
S] were measured in mesenteric resistance arterioles from lean and obese mice by using pressure myography and confocal microscopy, respectively. Vasodilation was impaired and smooth muscle and endothelial [H
2
S] decreased in vessels from obese mice compared with those from lean controls. Coculturing vessels from lean mice with macrophages from obese mice, or macrophage-conditioned media, recapitulated obese phenotypes in vessels. These effects were mediated by low molecular weight species and dependent on macrophage inducible nitric oxide synthase activity.
Conclusions—
The inducible nitric oxide synthase activity of perivascular adipose tissue–resident proinflammatory macrophages promotes microvascular endothelial dysfunction by reducing the bioavailability of H
2
S in the vessel. These findings support a model in which vascular H
2
S depletion underpins the loss of perivascular adipose tissue anticontractile function in obesity.
Collapse
Affiliation(s)
- Joseph Candela
- From the Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL (J.C., C.W.); and Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada (R.W.)
| | - Rui Wang
- From the Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL (J.C., C.W.); and Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada (R.W.)
| | - Carl White
- From the Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL (J.C., C.W.); and Cardiovascular and Metabolic Research Unit, Laurentian University, Sudbury, Canada (R.W.)
| |
Collapse
|
65
|
Laskowski M, Andersson C, Eliasson E, Golubinskaya V, Nilsson H. Potassium-Channel-Independent Relaxing Influence of Adipose Tissue on Mouse Carotid Artery. J Vasc Res 2017; 54:51-57. [PMID: 28334715 DOI: 10.1159/000458421] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/27/2017] [Indexed: 11/19/2022] Open
Abstract
Since the cardiovascular consequences of obesity reportedly vary in different types of obesity, we investigated the influence of adipose tissue from different locales on the phenylephrine-induced tone of the mouse carotid artery. Vessels were mounted in a Mulvany-Halpern-type wire myograph, and adipose tissue, from the back (brown) or mesenteric or inguinal subcutaneous (white), was placed around the artery. Contractile responses to phenylephrine were not affected by brown adipose tissue but were reduced (p < 0.001) by either type of white adipose tissue, with no difference between the 2 locales. The relaxing effect persisted in the presence of the Kv7 channel inhibitor XE991 (10,10-bis(4-pyridinylmethyl)-9(10H)-anthracenone), the KATP channel inhibitor glibenclamide (1 µM), or the KV channel inhibitor 4-amino pyridine (1 mM), as well as after elevation of the extracellular potassium concentration to 30 mM. Contractions of rat carotid artery were equally reduced by mouse and rat subcutaneous adipose tissue. Thus, white, but not brown, adipose tissue reduces the adrenergic contractions of the carotid artery with no differences between the locales of origin, and the effect appears largely independent of potassium channels.
Collapse
Affiliation(s)
- Marta Laskowski
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | | | | | | | | |
Collapse
|
66
|
Eosinophils are key regulators of perivascular adipose tissue and vascular functionality. Sci Rep 2017; 7:44571. [PMID: 28303919 PMCID: PMC5356000 DOI: 10.1038/srep44571] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
Obesity impairs the relaxant capacity of adipose tissue surrounding the vasculature (PVAT) and has been implicated in resultant obesity-related hypertension and impaired glucose intolerance. Resident immune cells are thought to regulate adipocyte activity. We investigated the role of eosinophils in mediating normal PVAT function. Healthy PVAT elicits an anti-contractile effect, which was lost in mice deficient in eosinophils, mimicking the obese phenotype, and was restored upon eosinophil reconstitution. Ex vivo studies demonstrated that the loss of PVAT function was due to reduced bioavailability of adiponectin and adipocyte-derived nitric oxide, which was restored after eosinophil reconstitution. Mechanistic studies demonstrated that adiponectin and nitric oxide are released after activation of adipocyte-expressed β3 adrenoceptors by catecholamines, and identified eosinophils as a novel source of these mediators. We conclude that adipose tissue eosinophils play a key role in the regulation of normal PVAT anti-contractile function.
Collapse
|
67
|
Friederich-Persson M, Nguyen Dinh Cat A, Persson P, Montezano AC, Touyz RM. Brown Adipose Tissue Regulates Small Artery Function Through NADPH Oxidase 4–Derived Hydrogen Peroxide and Redox-Sensitive Protein Kinase G-1α. Arterioscler Thromb Vasc Biol 2017; 37:455-465. [DOI: 10.1161/atvbaha.116.308659] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 12/06/2016] [Indexed: 12/30/2022]
Abstract
Objective—
Biomedical interest in brown adipose tissue (BAT) has increased since the discovery of functionally active BAT in adult humans. Although white adipose tissue (WAT) influences vascular function, vascular effects of BAT are elusive. Thus, we investigated the regulatory role and putative vasoprotective effects of BAT, focusing on hydrogen peroxide, nicotinamide adenine dinucleotide phosphate oxidase 4 (Nox4), and redox-sensitive signaling.
Approach and Results—
Vascular reactivity was assessed in wild-type and Nox4-knockout mice (Nox4
−/−
) by wire myography in the absence and presence of perivascular adipose tissue of different phenotypes from various adipose depots: (1) mixed WAT/BAT (inguinal adipose tissue) and (2) WAT (epididymal visceral fat) and BAT (intrascapular fat). In wild-type mice, epididymal visceral fat and perivascular adipose tissue increased EC
50
to noradrenaline without affecting maximum contraction. BAT increased EC
50
and significantly decreased maximum contraction, which were prevented by a hydrogen peroxide scavenger (polyethylene glycated catalase) and a specific cyclic GMP–dependent protein kinase G type-1α inhibitor (DT-3), but not by inhibition of endothelial nitric oxide synthase or guanylate cyclase. BAT induced dimerization of cyclic GMP–dependent protein kinase G type-1α and reduced phosphorylation of myosin light chain phosphatase subunit 1 and myosin light chain 20. BAT from Nox4-knockout mice displayed reduced hydrogen peroxide levels and no anticontractile effects. Perivascular adipose tissue from β
3
agonist–treated mice displayed browned perivascular adipose tissue and an increased anticontractile effect.
Conclusions—
We identify a novel vasoprotective action of BAT through an anticontractile effect that is mechanistically different to WAT. Specifically, BAT, via Nox4-derived hydrogen peroxide, induces cyclic GMP–dependent protein kinase G type-1α activation, resulting in reduced vascular contractility. BAT may constitute an interesting therapeutic target to restore vascular function and prevent vascular complications in cardiovascular diseases.
Collapse
Affiliation(s)
- Malou Friederich-Persson
- From the Institute of Cardiovascular Medicine and Sciences, University of Glasgow, United Kingdom
| | - Aurelie Nguyen Dinh Cat
- From the Institute of Cardiovascular Medicine and Sciences, University of Glasgow, United Kingdom
| | - Patrik Persson
- From the Institute of Cardiovascular Medicine and Sciences, University of Glasgow, United Kingdom
| | - Augusto C. Montezano
- From the Institute of Cardiovascular Medicine and Sciences, University of Glasgow, United Kingdom
| | - Rhian M. Touyz
- From the Institute of Cardiovascular Medicine and Sciences, University of Glasgow, United Kingdom
| |
Collapse
|
68
|
Affiliation(s)
- Maik Gollasch
- Medical Clinic for Nephrology and Internal Intensive Care, Charité Campus Virchow Klinikum, and Experimental and Clinical Research Center, a joint cooperation of the Charité – University Medicine Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, 13125 Berlin, Germany;
| |
Collapse
|
69
|
Vanhoutte PM, Shimokawa H, Feletou M, Tang EHC. Endothelial dysfunction and vascular disease - a 30th anniversary update. Acta Physiol (Oxf) 2017; 219:22-96. [PMID: 26706498 DOI: 10.1111/apha.12646] [Citation(s) in RCA: 581] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 10/27/2015] [Accepted: 12/17/2015] [Indexed: 02/06/2023]
Abstract
The endothelium can evoke relaxations of the underlying vascular smooth muscle, by releasing vasodilator substances. The best-characterized endothelium-derived relaxing factor (EDRF) is nitric oxide (NO) which activates soluble guanylyl cyclase in the vascular smooth muscle cells, with the production of cyclic guanosine monophosphate (cGMP) initiating relaxation. The endothelial cells also evoke hyperpolarization of the cell membrane of vascular smooth muscle (endothelium-dependent hyperpolarizations, EDH-mediated responses). As regards the latter, hydrogen peroxide (H2 O2 ) now appears to play a dominant role. Endothelium-dependent relaxations involve both pertussis toxin-sensitive Gi (e.g. responses to α2 -adrenergic agonists, serotonin, and thrombin) and pertussis toxin-insensitive Gq (e.g. adenosine diphosphate and bradykinin) coupling proteins. New stimulators (e.g. insulin, adiponectin) of the release of EDRFs have emerged. In recent years, evidence has also accumulated, confirming that the release of NO by the endothelial cell can chronically be upregulated (e.g. by oestrogens, exercise and dietary factors) and downregulated (e.g. oxidative stress, smoking, pollution and oxidized low-density lipoproteins) and that it is reduced with ageing and in the course of vascular disease (e.g. diabetes and hypertension). Arteries covered with regenerated endothelium (e.g. following angioplasty) selectively lose the pertussis toxin-sensitive pathway for NO release which favours vasospasm, thrombosis, penetration of macrophages, cellular growth and the inflammatory reaction leading to atherosclerosis. In addition to the release of NO (and EDH, in particular those due to H2 O2 ), endothelial cells also can evoke contraction of the underlying vascular smooth muscle cells by releasing endothelium-derived contracting factors. Recent evidence confirms that most endothelium-dependent acute increases in contractile force are due to the formation of vasoconstrictor prostanoids (endoperoxides and prostacyclin) which activate TP receptors of the vascular smooth muscle cells and that prostacyclin plays a key role in such responses. Endothelium-dependent contractions are exacerbated when the production of nitric oxide is impaired (e.g. by oxidative stress, ageing, spontaneous hypertension and diabetes). They contribute to the blunting of endothelium-dependent vasodilatations in aged subjects and essential hypertensive and diabetic patients. In addition, recent data confirm that the release of endothelin-1 can contribute to endothelial dysfunction and that the peptide appears to be an important contributor to vascular dysfunction. Finally, it has become clear that nitric oxide itself, under certain conditions (e.g. hypoxia), can cause biased activation of soluble guanylyl cyclase leading to the production of cyclic inosine monophosphate (cIMP) rather than cGMP and hence causes contraction rather than relaxation of the underlying vascular smooth muscle.
Collapse
Affiliation(s)
- P. M. Vanhoutte
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| | - H. Shimokawa
- Department of Cardiovascular Medicine; Tohoku University; Sendai Japan
| | - M. Feletou
- Department of Cardiovascular Research; Institut de Recherches Servier; Suresnes France
| | - E. H. C. Tang
- State Key Laboratory of Pharmaceutical Biotechnology and Department of Pharmacology and Pharmacy; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
- School of Biomedical Sciences; Li Ka Shing Faculty of Medicine; The University of Hong Kong; Hong Kong City Hong Kong
| |
Collapse
|
70
|
Bonde L, Shokouh P, Jeppesen PB, Boedtkjer E. Crosstalk between cardiomyocyte-rich perivascular tissue and coronary arteries is reduced in the Zucker Diabetic Fatty rat model of type 2 diabetes mellitus. Acta Physiol (Oxf) 2017; 219:227-238. [PMID: 27042951 DOI: 10.1111/apha.12685] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 12/20/2022]
Abstract
AIM We tested the hypothesis that crosstalk between cardiomyocyte-rich perivascular tissue (PVT) and coronary arteries is altered in diabetes. METHODS We studied the vasoactive effects of PVT in arteries from the Zucker Diabetic Fatty (ZDF) rat model of type 2 diabetes, streptozotocin (STZ)-treated Wistar rats with type 1 diabetes, and corresponding - heterozygous Zucker Lean (ZL) or vehicle-treated Wistar - control rats. Vasocontractile and vasorelaxant functions of coronary septal arteries with and without PVT were investigated using wire myography. RESULTS After careful removal of PVT, vasoconstriction in response to serotonin and thromboxane analogue U46619 was similar in arteries from ZDF and ZL rats, whereas depolarization-induced vasoconstriction - caused by elevating extracellular [K+ ] - was reduced in arteries from ZDF compared to ZL rats. PVT inhibited serotonin-, U46619- and depolarization-induced vasoconstriction in arteries from ZL rats, but this anticontractile influence of PVT was attenuated in arteries from ZDF rats. Methacholine-induced vasorelaxation was smaller in arteries from ZDF than ZL rats both with and without PVT, and the antirelaxant influence of PVT was comparable between arteries from ZDF and ZL rats. We observed no differences in vasoconstriction, vasorelaxation or PVT-dependent vasoactive effects between arteries from STZ- and vehicle-treated Wistar rats. CONCLUSION Anticontractile influences of PVT are attenuated in coronary arteries from ZDF rats but unaffected in arteries from STZ-treated rats. Signs of endothelial dysfunction are evident in coronary septal arteries - with and without PVT - from ZDF rats but not STZ-treated rats. We propose that altered signalling between cardiomyocyte-rich PVT and coronary arteries can contribute to cardiovascular complications in type 2 diabetes mellitus.
Collapse
Affiliation(s)
- L. Bonde
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| | - P. Shokouh
- Department of Endocrinology and Diabetes; Department of Clinical Medicine; Aarhus University; Aarhus Denmark
- The Danish Diabetes Academy; Aarhus Denmark
| | - P. B. Jeppesen
- Department of Endocrinology and Internal Medicine; Aarhus University Hospital; Aarhus Denmark
| | - E. Boedtkjer
- Department of Biomedicine; Aarhus University; Aarhus Denmark
| |
Collapse
|
71
|
Schinzari F, Tesauro M, Cardillo C. Vascular hyperpolarization in human physiology and cardiovascular risk conditions and disease. Acta Physiol (Oxf) 2017; 219:124-137. [PMID: 28009486 DOI: 10.1111/apha.12630] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/05/2015] [Accepted: 11/05/2015] [Indexed: 12/11/2022]
Abstract
Hyperpolarization causing smooth muscle relaxation contributes to the maintenance of vascular homeostasis, particularly in small-calibre arteries and arterioles. It may also become a compensatory vasodilator mechanism upregulated in states with impaired nitric oxide (NO) availability. Bioassay of vascular hyperpolarization in the human circulation has been hampered by the complexity of mechanisms involved and the limited availability of investigational tools. Firm evidence, however, supports the notion that hyperpolarization participates in the regulation of resting vasodilator tone and vascular reactivity in healthy subjects. In addition, an enhanced endothelium-derived hyperpolarization contributes to both resting and agonist-stimulated vasodilation in a variety of cardiovascular risk conditions and disease. Thus, hyperpolarization mediated by epoxyeicosatrienoic acids (EETs) and H2 O2 has been observed in coronary arterioles of patients with coronary artery disease. Similarly, ouabain-sensitive and EETs-mediated hyperpolarization has been observed to compensate for NO deficiency in patients with essential hypertension. Moreover, in non-hypertensive patients with multiple cardiovascular risk factors and in hypercholesterolaemia, KCa channel-mediated vasodilation appears to be activated. A novel paradigm establishes that perivascular adipose tissue (PVAT) is an additional regulator of vascular tone/function and endothelium is not the only agent in vascular hyperpolarization. Indeed, some PVAT-derived relaxing substances, such as adiponectin and angiotensin 1-7, may exert anticontractile and vasodilator actions by the opening of KCa channels in smooth muscle cells. Conversely, PVAT-derived factors impair coronary vasodilation via differential inhibition of some K+ channels. In view of adipose tissue abnormalities occurring in human obesity, changes in PVAT-dependent hyperpolarization may be relevant for vascular dysfunction also in this condition.
Collapse
Affiliation(s)
- F. Schinzari
- Department of Internal Medicine; Catholic University; Rome Italy
| | - M. Tesauro
- Department of Internal Medicine; Tor Vergata University; Rome Italy
| | - C. Cardillo
- Department of Internal Medicine; Catholic University; Rome Italy
| |
Collapse
|
72
|
Ayala-Lopez N, Watts SW. New actions of an old friend: perivascular adipose tissue's adrenergic mechanisms. Br J Pharmacol 2016; 174:3454-3465. [PMID: 27813085 DOI: 10.1111/bph.13663] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/03/2016] [Accepted: 10/21/2016] [Indexed: 12/17/2022] Open
Abstract
The revolutionary discovery in 1991 by Soltis and Cassis that perivascular adipose tissue (PVAT) has an anti-contractile effect changed how we think about the vasculature. Most experiments on vascular pharmacology begin by removing the fat surrounding vessels. Thus, PVAT was thought to have a minor role in vascular function and its presence was just for structural support. The need to rethink PVAT's role was precipitated by observations that obesity carries a high cardiovascular risk and PVAT dysfunction is associated with obesity. PVAT is a vascular-adipose organ that has intimate connections with the nervous and immune system. A complex world of physiology resides in PVAT, including the presence of an 'adrenergic system' that is able to release, take up and metabolize noradrenaline. Adipocytes, stromal vascular cells and nerves within PVAT contain components that make up this adrenergic system. Some of the great strides in PVAT research came from studying adipose tissue as a whole. Adipose tissue has many roles and participates in regulating energy balance, energy stores, inflammation and thermoregulation. However, PVAT is dissimilar from non-PVAT adipose tissues. PVAT is intimately connected with the vasculature, which is what makes its role in body homeostasis unique. The adrenergic system within PVAT may be an integral link connecting the effects of obesity with the vascular dysfunction observed in obesity-associated hypertension, a condition in which the sympathetic nervous system has a significant role. This review will explore what is known about the adrenergic system in adipose tissue and PVAT, plus the translational importance of these findings. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- Nadia Ayala-Lopez
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
73
|
Illison J, Tian L, McClafferty H, Werno M, Chamberlain LH, Leiss V, Sassmann A, Offermanns S, Ruth P, Shipston MJ, Lukowski R. Obesogenic and Diabetogenic Effects of High-Calorie Nutrition Require Adipocyte BK Channels. Diabetes 2016; 65:3621-3635. [PMID: 27605626 DOI: 10.2337/db16-0245] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 08/16/2016] [Indexed: 11/13/2022]
Abstract
Elevated adipose tissue expression of the Ca2+- and voltage-activated K+ (BK) channel was identified in morbidly obese men carrying a BK gene variant, supporting the hypothesis that K+ channels affect the metabolic responses of fat cells to nutrients. To establish the role of endogenous BKs in fat cell maturation, storage of excess dietary fat, and body weight (BW) gain, we studied a gene-targeted mouse model with global ablation of the BK channel (BKL1/L1) and adipocyte-specific BK-deficient (adipoqBKL1/L2) mice. Global BK deficiency afforded protection from BW gain and excessive fat accumulation induced by a high-fat diet (HFD). Expansion of white adipose tissue-derived epididymal BKL1/L1 preadipocytes and their differentiation to lipid-filled mature adipocytes in vitro, however, were improved. Moreover, BW gain and total fat masses of usually superobese ob/ob mice were significantly attenuated in the absence of BK, together supporting a central or peripheral role for BKs in the regulatory system that controls adipose tissue and weight. Accordingly, HFD-fed adipoqBKL1/L2 mutant mice presented with a reduced total BW and overall body fat mass, smaller adipocytes, and reduced leptin levels. Protection from pathological weight gain in the absence of adipocyte BKs was beneficial for glucose handling and related to an increase in body core temperature as a result of higher levels of uncoupling protein 1 and a low abundance of the proinflammatory interleukin-6, a common risk factor for diabetes and metabolic abnormalities. This suggests that adipocyte BK activity is at least partially responsible for excessive BW gain under high-calorie conditions, suggesting that BK channels are promising drug targets for pharmacotherapy of metabolic disorders and obesity.
Collapse
Affiliation(s)
- Julia Illison
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, Tübingen, Germany
| | - Lijun Tian
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, U.K
| | - Heather McClafferty
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, U.K
| | - Martin Werno
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, U.K
| | - Luke H Chamberlain
- Strathclyde Institute of Pharmacy and Biomedical Sciences, Strathclyde University, Glasgow, U.K
| | - Veronika Leiss
- Department of Pharmacology and Experimental Therapy, Institute of Experimental and Clinical Pharmacology and Toxicology, University Hospital Tübingen, Tübingen, Germany
| | - Antonia Sassmann
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Stefan Offermanns
- Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Peter Ruth
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, Tübingen, Germany
| | - Michael J Shipston
- Centre for Integrative Physiology, College of Medicine and Veterinary Medicine, University of Edinburgh, Edinburgh, U.K
| | - Robert Lukowski
- Pharmakologie, Toxikologie und Klinische Pharmazie, Institut für Pharmazie, Tübingen, Germany
| |
Collapse
|
74
|
Xia N, Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. Br J Pharmacol 2016; 174:3425-3442. [PMID: 27761903 PMCID: PMC5610151 DOI: 10.1111/bph.13650] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/29/2016] [Accepted: 10/06/2016] [Indexed: 12/18/2022] Open
Abstract
Under physiological conditions, perivascular adipose tissue (PVAT) attenuates agonist‐induced vasoconstriction by releasing vasoactive molecules including hydrogen peroxide, angiotensin 1–7, adiponectin, methyl palmitate, hydrogen sulfide, NO and leptin. This anticontractile effect of PVAT is lost under conditions of obesity. The central mechanism underlying this PVAT dysfunction in obesity is likely to be an ‘obesity triad’ (consisting of PVAT hypoxia, inflammation and oxidative stress) that leads to the impairment of PVAT‐derived vasoregulators. The production of hydrogen sulfide, NO and adiponectin by PVAT is reduced in obesity, whereas the vasodilator response to leptin is impaired (vascular leptin resistance). Strikingly, the vasodilator response to acetylcholine is reduced only in PVAT‐containing, but not in PVAT‐free thoracic aorta isolated from diet‐induced obese mice, indicating a unique role for PVAT in obesity‐induced vascular dysfunction. Furthermore, PVAT dysfunction has also been observed in small arteries isolated from the gluteal/visceral fat biopsy samples of obese individuals. Therefore, PVAT may represent a new therapeutic target for vascular complications in obesity. A number of approaches are currently being tested under experimental conditions. Potential therapeutic strategies improving PVAT function include body weight reduction, enhancing PVAT hydrogen sulfide release (e.g. rosiglitazone, atorvastatin and cannabinoid CB1 receptor agonists) and NO production (e.g. arginase inhibitors), inhibition of the renin–angiotensin–aldosterone system, inhibition of inflammation with melatonin or cytokine antagonists, activators of AMP‐activated kinase (e.g. metformin, resveratrol and diosgenin) and adiponectin releasers or expression enhancers. Linked Articles This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue – Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc
Collapse
Affiliation(s)
- Ning Xia
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Huige Li
- Department of Pharmacology, Johannes Gutenberg University Medical Center, Mainz, Germany.,Center for Translational Vascular Biology (CTVB), Johannes Gutenberg University, Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, Mainz, Germany
| |
Collapse
|
75
|
Vascular structural and functional changes: their association with causality in hypertension: models, remodeling and relevance. Hypertens Res 2016; 40:311-323. [PMID: 27784889 DOI: 10.1038/hr.2016.145] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 09/09/2016] [Accepted: 09/26/2016] [Indexed: 12/22/2022]
Abstract
Essential hypertension is a complex multifactorial disease process that involves the interaction of multiple genes at various loci throughout the genome, and the influence of environmental factors such as diet and lifestyle, to ultimately determine long-term arterial pressure. These factors converge with physiological signaling pathways to regulate the set-point of long-term blood pressure. In hypertension, structural changes in arteries occur and show differences within and between vascular beds, between species, models and sexes. Such changes can also reflect the development of hypertension, and the levels of circulating humoral and vasoactive compounds. The role of perivascular adipose tissue in the modulation of vascular structure under various disease states such as hypertension, obesity and metabolic syndrome is an emerging area of research, and is likely to contribute to the heterogeneity described in this review. Diversity in structure and related function is the norm, with morphological changes being causative in some beds and states, and in others, a consequence of hypertension. Specific animal models of hypertension have advantages and limitations, each with factors influencing the relevance of the model to the human hypertensive state/s. However, understanding the fundamental properties of artery function and how these relate to signalling mechanisms in real (intact) tissues is key for translating isolated cell and model data to have an impact and relevance in human disease etiology. Indeed, the ultimate aim of developing new treatments to correct vascular dysfunction requires understanding and recognition of the limitations of the methodologies used.
Collapse
|
76
|
Lian X, Gollasch M. A Clinical Perspective: Contribution of Dysfunctional Perivascular Adipose Tissue (PVAT) to Cardiovascular Risk. Curr Hypertens Rep 2016; 18:82. [DOI: 10.1007/s11906-016-0692-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
77
|
Almabrouk TAM, Ugusman AB, Katwan OJ, Salt IP, Kennedy S. Deletion of AMPKα1 attenuates the anticontractile effect of perivascular adipose tissue (PVAT) and reduces adiponectin release. Br J Pharmacol 2016; 174:3398-3410. [PMID: 27668984 DOI: 10.1111/bph.13633] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/23/2016] [Accepted: 08/29/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND AND PURPOSE Perivascular adipose tissue (PVAT) surrounds most blood vessels and secretes numerous active substances, including adiponectin, which produce a net anticontractile effect in healthy individuals. AMPK is a key mediator of cellular energy balance and may mediate the vascular effects of adiponectin. In this study, we investigated the role of AMPK within PVAT in mediating the anticontractile effect of PVAT. EXPERIMENTAL APPROACH Endothelium-denuded aortic rings from wild-type (WT; Sv129) and α1 AMPK knockout (KO) mice were mounted on a wire myograph. Dose-response curves to the AMPK-independent vasodilator cromakalim were studied in vessels with and without PVAT, and effect of pre-incubation with conditioned media and adiponectin on relaxation was also studied. The effect of AMPKα1 KO on the secretory profile of PVAT was assessed by elisa. KEY RESULTS Thoracic aortic PVAT from KO mice was morphologically indistinct from that of WT and primarily composed of brown adipose tissue. PVAT augmented relaxation to cromakalim in WT but not KO aortic rings. Addition of WT PVAT augmented relaxation in KO aortic rings but KO PVAT had no effect in WT rings. PVAT from KO mice secreted significantly less adiponectin and addition of adiponectin to either KO or WT aortic rings without PVAT augmented relaxation to cromakalim. An adiponectin blocking peptide significantly attenuated relaxation in WT rings with PVAT but not in KO rings. CONCLUSIONS AND IMPLICATIONS AMPKα1 has a critical role in maintaining the anticontractile actions of PVAT; an effect independent of the endothelium but likely mediated through altered adiponectin secretion or sensitivity. LINKED ARTICLES This article is part of a themed section on Molecular Mechanisms Regulating Perivascular Adipose Tissue - Potential Pharmacological Targets? To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.20/issuetoc.
Collapse
Affiliation(s)
- Tarek A M Almabrouk
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Pharmacology, School of Medicine, University of Zawia, Zawia, Libya
| | - Azizah B Ugusman
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Omar J Katwan
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK.,Department of Biochemistry, College of Medicine, University of Diyala, Baqubah, Iraq
| | - Ian P Salt
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Simon Kennedy
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
78
|
Dai M, Zhang Y, Yu M, Tian W. Therapeutic applications of conditioned medium from adipose tissue. Cell Prolif 2016; 49:561-7. [PMID: 27487984 PMCID: PMC6496245 DOI: 10.1111/cpr.12281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/23/2016] [Indexed: 02/05/2023] Open
Abstract
For the past number of decades, adipose tissue has attracted significant interest due to its complicated composition and versatile functions. Adipose tissue is no longer considered to be just an energy-storing fat pad, but is also a key ring player in interaction networks between various organs and tissues. A wide range of factors released by adipose tissue are responsible for regulation of adipose tissue and other distant target tissues and cells, such as kidneys, skeletal muscle, the cardiovascular system and the immune system, in an auto-/paracrine manner. A mixture of bioactive molecules makes up the conditioned medium of adipose tissue. The beneficial role played by these bioactive molecules in angiogenesis, wound healing, tissue regeneration and immunomodulation has been demonstrated by various studies. Study of this conditioned medium helps deepen our understanding of underlying mechanisms and broadens the potential for therapeutic applications. In this review, we have aimed to improve fundamental understanding of conditioned medium from adipose tissue and to summarize recent efforts to study its therapeutic applications.
Collapse
Affiliation(s)
- Minjia Dai
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Yan Zhang
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, 610041, China
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, China
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Mei Yu
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, China.
| | - Weidong Tian
- State Key Laboratory of Oral Disease, West China School of Stomatology, Sichuan University, Chengdu, 610041, China.
- National Engineering Laboratory for Oral Regenerative Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan Province, China.
- Department of Oral and Maxillofacial Surgery, West China College of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
79
|
Contreras GA, Thelen K, Ayala-Lopez N, Watts SW. The distribution and adipogenic potential of perivascular adipose tissue adipocyte progenitors is dependent on sexual dimorphism and vessel location. Physiol Rep 2016; 4:e12993. [PMID: 27738018 PMCID: PMC5064145 DOI: 10.14814/phy2.12993] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 09/15/2016] [Indexed: 12/12/2022] Open
Abstract
There are sex associated differences in the risk for cardiovascular comorbidities in obesity and metabolic syndrome. A common clinical finding in these diseases is the expansion of perivascular adipose tissues (PVAT) which is associated with alterations in their role as regulators of vessel function. PVAT hyperplasia and hypertrophy are dependent on the biology of populations of adipocyte progenitor cells (APC). It is currently unclear if PVAT enlargement diverges between males and females and the mechanisms linking APC biology with sexual dimorphism remain poorly understood. This study tested the hypothesis that vessel location and sexual dimorphism affect the distribution and adipogenic capacity of APC in cardiovascular disease risk relevant PVAT sites. PVAT from thoracic aorta (aPVAT) and mesenteric resistance arteries (mPVAT) was collected from 10-week-old female and male Sprague-Dawley rats. Differences in APC distribution in stromal vascular fraction cells from PVAT were determined. APC were defined as cells expressing CD34, CD44, and platelet derived growth factor α In both sexes aPVAT had fewer APC compared to mPVAT and perigonadal adipose tissue (GON). Sex-related differences were observed in the expression of CD34, where females had fewer CD34+ cells in PVATs. APC proliferation and adipogenic capacity in vitro were not affected by sex. However, APC from aPVAT had a lower proliferation capacity compared to mPVAT These data demonstrate that the distribution of APC within PVAT exhibits sexual dimorphism and is affected by anatomical location.
Collapse
Affiliation(s)
- G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Kyan Thelen
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing, Michigan
| | - Nadia Ayala-Lopez
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan
| |
Collapse
|
80
|
Hu H, Patel S, Hanisch JJ, Santana JM, Hashimoto T, Bai H, Kudze T, Foster TR, Guo J, Yatsula B, Tsui J, Dardik A. Future research directions to improve fistula maturation and reduce access failure. Semin Vasc Surg 2016; 29:153-171. [PMID: 28779782 DOI: 10.1053/j.semvascsurg.2016.08.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
With the increasing prevalence of end-stage renal disease, there is a growing need for hemodialysis. Arteriovenous fistulae (AVF) are the preferred type of vascular access for hemodialysis, but maturation and failure continue to present significant barriers to successful fistula use. AVF maturation integrates outward remodeling with vessel wall thickening in response to drastic hemodynamic changes in the setting of uremia, systemic inflammation, oxidative stress, and pre-existent vascular pathology. AVF can fail due to both failure to mature adequately to support hemodialysis and development of neointimal hyperplasia that narrows the AVF lumen, typically near the fistula anastomosis. Failure due to neointimal hyperplasia involves vascular cell activation and migration and extracellular matrix remodeling with complex interactions of growth factors, adhesion molecules, inflammatory mediators, and chemokines, all of which result in maladaptive remodeling. Different strategies have been proposed to prevent and treat AVF failure based on current understanding of the modes and pathology of access failure; these approaches range from appropriate patient selection and use of alternative surgical strategies for fistula creation, to the use of novel interventional techniques or drugs to treat failing fistulae. Effective treatments to prevent or treat AVF failure require a multidisciplinary approach involving nephrologists, vascular surgeons, and interventional radiologists, careful patient selection, and the use of tailored systemic or localized interventions to improve patient-specific outcomes. This review provides contemporary information on the underlying mechanisms of AVF maturation and failure and discusses the broad spectrum of options that can be tailored for specific therapy.
Collapse
Affiliation(s)
- Haidi Hu
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Department of Vascular and Thyroid Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Sandeep Patel
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT; Royal Free Hospital, University College London, London, UK
| | - Jesse J Hanisch
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Jeans M Santana
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Takuya Hashimoto
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Hualong Bai
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Tambudzai Kudze
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Trenton R Foster
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Jianming Guo
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Bogdan Yatsula
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT
| | - Janice Tsui
- Royal Free Hospital, University College London, London, UK
| | - Alan Dardik
- Department of Surgery, Yale University School of Medicine, 10 Amistad Street, Room 437, PO Box 208089, New Haven, CT 06520-8089; Vascular Biology and Therapeutics Program, Yale University, New Haven, CT; VA Connecticut Healthcare System, West Haven, CT.
| |
Collapse
|
81
|
Nava E, Llorens S. The paracrine control of vascular motion. A historical perspective. Pharmacol Res 2016; 113:125-145. [PMID: 27530204 DOI: 10.1016/j.phrs.2016.08.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 07/13/2016] [Accepted: 08/01/2016] [Indexed: 12/26/2022]
Abstract
During the last quarter of the past century, the leading role the endocrine and nervous systems had on the regulation of vasomotion, shifted towards a more paracrine-based regulation. This begun with the recognition of endothelial cells as active players of vascular control, when the vessel's intimal layer was identified as the main source of prostacyclin and was followed by the discovery of an endothelium-derived smooth muscle cell relaxing factor (EDRF). The new position acquired by endothelial cells prompted the discovery of other endothelium-derived regulatory products: vasoconstrictors, generally known as EDCFs, endothelin, and other vasodilators with hyperpolarizing properties (EDHFs). While this research was taking place, a quest for the discovery of the nature of EDRF carried back to a research line commenced a decade earlier: the recently found intracellular messenger cGMP and nitrovasodilators. Both were smooth muscle relaxants and appeared to interact in a hormonal fashion. Prejudice against an unconventional gaseous molecule delayed the acceptance that EDRF was nitric oxide (NO). When this happened, a new era of research that exceeded the vascular field commenced. The discovery of the pathway for NO synthesis from L-arginine involved the clever assembling of numerous unrelated observations of different areas of knowledge. The last ten years of research on the paracrine regulation of the vascular wall has shifted to perivascular fat (PVAT), which is beginning to be regarded as the fourth layer of the vascular wall. Starting with the discovery of an adipose-derived relaxing substance (ADRF), the role that different adipokines have on the paracrine control of vasomotion is now filling the research activity of many vascular pharmacology labs, and surprising interactions between the endothelium, PVAT and smooth muscle are being unveiled.
Collapse
Affiliation(s)
- Eduardo Nava
- Area of Physiology, Department of Medical Sciences, University of Castilla-La Mancha, School of Medicine and Regional Centre for Biomedical Research (CRIB), Albacete, Spain.
| | - Silvia Llorens
- Area of Physiology, Department of Medical Sciences, University of Castilla-La Mancha, School of Medicine and Regional Centre for Biomedical Research (CRIB), Albacete, Spain
| |
Collapse
|
82
|
Tsvetkov D, Tano JY, Kassmann M, Wang N, Schubert R, Gollasch M. The Role of DPO-1 and XE991-Sensitive Potassium Channels in Perivascular Adipose Tissue-Mediated Regulation of Vascular Tone. Front Physiol 2016; 7:335. [PMID: 27540364 PMCID: PMC4973012 DOI: 10.3389/fphys.2016.00335] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Accepted: 07/20/2016] [Indexed: 11/13/2022] Open
Abstract
The anti-contractile effect of perivascular adipose tissue (PVAT) is an important mechanism in the modulation of vascular tone in peripheral arteries. Recent evidence has implicated the XE991-sensitive voltage-gated KV (KCNQ) channels in the regulation of arterial tone by PVAT. However, until now the in vivo pharmacology of the involved vascular KV channels with regard to XE991 remains undetermined, since XE991 effects may involve Ca(2+) activated BKCa channels and/or voltage-dependent KV1.5 channels sensitive to diphenyl phosphine oxide-1 (DPO-1). In this study, we tested whether KV1.5 channels are involved in the control of mesenteric arterial tone and its regulation by PVAT. Our study was also aimed at extending our current knowledge on the in situ vascular pharmacology of DPO-1 and XE991 regarding KV1.5 and BKCa channels, in helping to identify the nature of K(+) channels that could contribute to PVAT-mediated relaxation. XE991 at 30 μM reduced the anti-contractile response of PVAT, but had no effects on vasocontraction induced by phenylephrine (PE) in the absence of PVAT. Similar effects were observed for XE991 at 0.3 μM, which is known to almost completely inhibit mesenteric artery VSMC KV currents. 30 μM XE991 did not affect BKCa currents in VSMCs. Kcna5 (-/-) arteries and wild-type arteries incubated with 1 μM DPO-1 showed normal vasocontractions in response to PE in the presence and absence of PVAT. KV current density and inhibition by 30 μM XE991 were normal in mesenteric artery VSMCs isolated from Kcna5 (-/-) mice. We conclude that KV channels are involved in the control of arterial vascular tone by PVAT. These channels are present in VSMCs and very potently inhibited by the KCNQ channel blocker XE991. BKCa channels and/or DPO-1 sensitive KV1.5 channels in VSMCs are not the downstream mediators of the XE991 effects on PVAT-dependent arterial vasorelaxation. Further studies will need to be undertaken to examine the role of other KV channels in the phenomenon.
Collapse
Affiliation(s)
- Dmitry Tsvetkov
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research Centres Berlin, Germany
| | - Jean-Yves Tano
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research Centres Berlin, Germany
| | - Mario Kassmann
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research Centres Berlin, Germany
| | - Ning Wang
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research Centres Berlin, Germany
| | - Rudolf Schubert
- Research Division Cardiovascular Physiology, Centre for Biomedicine and Medical Technology Mannheim, Medical Faculty Mannheim of the University Heidelberg Mannheim, Germany
| | - Maik Gollasch
- Experimental and Clinical Research Center, A Joint Cooperation between the Charité Medical Faculty and the Max Delbrück Center for Molecular Medicine in the Helmholtz Association of German Research CentresBerlin, Germany; Medical Clinic for Nephrology and Internal Intensive Care, Charité University MedicineBerlin, Germany
| |
Collapse
|
83
|
Darios ES, Winner BM, Charvat T, Krasinksi A, Punna S, Watts SW. The adipokine chemerin amplifies electrical field-stimulated contraction in the isolated rat superior mesenteric artery. Am J Physiol Heart Circ Physiol 2016; 311:H498-507. [PMID: 27371688 DOI: 10.1152/ajpheart.00998.2015] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 06/24/2016] [Indexed: 01/13/2023]
Abstract
The adipokine chemerin causes arterial contraction and is implicated in blood pressure regulation, especially in obese subjects with elevated levels of circulating chemerin. Because chemerin is expressed in the perivascular adipose tissue (PVAT) that surrounds the sympathetic innervation of the blood vessel, we tested the hypothesis that chemerin (endogenous and exogenous) amplifies the sympathetic nervous system in mediating electrical field-stimulated (EFS) contraction. The superior mesenteric artery, with or without PVAT and with endothelium and sympathetic nerve intact, was mounted into isolated tissue baths and used for isometric contraction and stimulation. Immunohistochemistry validated a robust expression of chemerin in the PVAT surrounding the superior mesenteric artery. EFS (0.3-20 Hz) caused a frequency-dependent contraction in isolated arteries that was reduced by the chemerin receptor ChemR23 antagonist CCX832 alone (100 nM; with, but not without, PVAT), but not by the inactive congener CCX826 (100 nM). Exogenous chemerin-9 (1 μM)-amplified EFS-induced contraction in arteries (with and without PVAT) was blocked by CCX832 and the α-adrenergic receptor antagonist prazosin. CCX832 did not directly inhibit, nor did chemerin directly amplify, norepinephrine-induced contraction. Whole mount immunohistochemical experiments support colocalization of ChemR23 with the sympathetic nerve marker tyrosine hydroxylase in superior mesenteric PVAT and, to a lesser extent, in arteries and veins. These studies support the idea that exogenous chemerin modifies sympathetic nerve-mediated contraction through ChemR23 and that ChemR23 may be endogenously activated. This is significant because of the well-appreciated role of the sympathetic nervous system in blood pressure control.
Collapse
Affiliation(s)
- Emma S Darios
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; and
| | - Brittany M Winner
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; and
| | | | | | | | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan; and
| |
Collapse
|
84
|
Loss of anti-contractile effect of perivascular adipose tissue in offspring of obese rats. Int J Obes (Lond) 2016; 40:1205-14. [PMID: 27102050 PMCID: PMC4973217 DOI: 10.1038/ijo.2016.62] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 02/26/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Rationale: Maternal obesity pre-programmes offspring to develop obesity and associated cardiovascular disease. Perivascular adipose tissue (PVAT) exerts an anti-contractile effect on the vasculature, which is reduced in hypertension and obesity. Objective: The objective of this study was to determine whether maternal obesity pre-programmes offspring to develop PVAT dysfunction in later life. Methods: Female Sprague–Dawley rats were fed a diet containing 10% (control) or 45% fat (high fat diet, HFD) for 12 weeks prior to mating and during pregnancy and lactation. Male offspring were killed at 12 or 24 weeks of age and tension in PVAT-intact or -denuded mesenteric artery segments was measured isometrically. Concentration–response curves were constructed to U46619 and norepinephrine. Results: Only 24-week-old HFD offspring were hypertensive (P<0.0001), although the anti-contractile effect of PVAT was lost in vessels from HFD offspring of each age. Inhibition of nitric oxide (NO) synthase with 100 μMl-NMMA attenuated the anti-contractile effect of PVAT and increased contractility of PVAT-denuded arteries (P<0.05, P<0.0001). The increase in contraction was smaller in PVAT-intact than PVAT-denuded vessels from 12-week-old HFD offspring, suggesting decreased PVAT-derived NO and release of a contractile factor (P<0.07). An additional, NO-independent effect of PVAT was evident only in norepinephrine-contracted vessels. Activation of AMP-activated kinase (with 10 μM A769662) was anti-contractile in PVAT-denuded (P<0.0001) and -intact (P<0.01) vessels and was due solely to NO in controls; the AMPK effect was similar in HFD offspring vessels (P<0.001 and P<0.01, respectively) but was partially NO-independent. Conclusions: The diminished anti-contractile effects of PVAT in offspring of HFD dams are primarily due to release of a PVAT-derived contractile factor and reduced NO bioavailability.
Collapse
|
85
|
BK channel β1-subunit deficiency exacerbates vascular fibrosis and remodelling but does not promote hypertension in high-fat fed obesity in mice. J Hypertens 2016; 33:1611-23. [PMID: 26049174 DOI: 10.1097/hjh.0000000000000590] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Reduced expression or increased degradation of BK (large conductance Ca-activated K) channel β1-subunits has been associated with increased vascular tone and hypertension in some metabolic diseases. The contribution of BK channel function to control of blood pressure (BP), heart rate (HR) and vascular function/structure was determined in wild-type and BK channel β1-subunit knockout mice fed a high-fat or control diet. METHODS AND RESULTS After 24 weeks of high-fat diet, wild-type and BK β1-knockout mice were obese, diabetic, but normotensive. High-fat-BK β1-knockout mice had decreased HR, while high-fat-wild-type mice had increased HR compared with mice on the control diet. Ganglion blockade caused a greater fall in BP and HR in mice on a high-fat diet than in mice on the control diet. β1-adrenergic receptor blockade reduced BP and HR equally in all groups. α1-adrenergic receptor blockade decreased BP in high-fat-BK β1-knockout mice only. Echocardiographic evaluation revealed left ventricular hypertrophy in high-fat-BK β1-knockout mice. Although under anaesthesia, mice on a high-fat diet had higher absolute stroke volume and cardiac output, these measures were similar to control mice when adjusted for body weight. Mesenteric arteries from high-fat-BK β1-knockout mice had higher norepinephrine reactivity, greater wall thickness and collagen accumulation than high-fat-wild-type mesenteric arteries. Compared with control-wild-type mesenteric arteries, high-fat-wild-type mesenteric arteries had blunted contractile responses to a BK channel blocker, although BK α-subunit (protein) and β1-subunit (mRNA) expression were unchanged. CONCLUSION BK channel deficiency promotes increased sympathetic control of BP, and vascular dysfunction, remodelling and fibrosis, but does not cause hypertension in high-fat fed mice.
Collapse
|
86
|
Human perivascular adipose tissue dysfunction as a cause of vascular disease: Focus on vascular tone and wall remodeling. Eur J Pharmacol 2015; 766:16-24. [DOI: 10.1016/j.ejphar.2015.09.012] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/18/2015] [Accepted: 09/09/2015] [Indexed: 12/24/2022]
|
87
|
Villacorta L, Chang L. The role of perivascular adipose tissue in vasoconstriction, arterial stiffness, and aneurysm. Horm Mol Biol Clin Investig 2015; 21:137-47. [PMID: 25719334 DOI: 10.1515/hmbci-2014-0048] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 01/14/2015] [Indexed: 12/12/2022]
Abstract
Since the "rediscovery" of brown adipose tissue in adult humans, significant scientific efforts are being pursued to identify the molecular mechanisms to promote a phenotypic change of white adipocytes into brown-like cells, a process called "browning". It is well documented that white adipose tissue (WAT) mass and factors released from WAT influence the vascular function and positively correlate with cardiac arrest, stroke, and other cardiovascular complications. Similar to other fat depots, perivascular adipose tissue (PVAT) is an active endocrine organ and anatomically surrounds vessels. Both brown-like and white-like PVAT secrete various adipokines, cytokines, and growth factors that either prevent or promote the development of cardiovascular diseases (CVDs) depending on the relative abundance of each type and their bioactivity in the neighboring vasculature. Notably, pathophysiological conditions, such as obesity, hypertension, or diabetes, induce the imbalance of PVAT-derived vasoactive products that promote the infiltration of inflammatory cells. This then triggers derangements in vascular smooth muscle cells and endothelial cell dysfunction, resulting in the development of vascular diseases. In this review, we discuss the recent advances on the contribution of PVAT in CVDs. Specifically, we summarize the current proposed roles of PVAT in relationship with vascular contractility, endothelial dysfunction, neointimal formation, arterial stiffness, and aneurysm.
Collapse
|
88
|
Affiliation(s)
- Mark W Majesky
- From the Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, WA; and Departments of Pediatrics and Pathology, University of Washington, Seattle.
| |
Collapse
|
89
|
Aalbaek F, Bonde L, Kim S, Boedtkjer E. Perivascular tissue inhibits rho-kinase-dependent smooth muscle Ca(2+) sensitivity and endothelium-dependent H2 S signalling in rat coronary arteries. J Physiol 2015; 593:4747-64. [PMID: 26350036 DOI: 10.1113/jp271006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/24/2015] [Indexed: 11/08/2022] Open
Abstract
Interactions between perivascular tissue (PVT) and the vascular wall modify artery tone and contribute to local blood flow regulation. Using isometric myography, fluorescence microscopy, membrane potential recordings and phosphospecific immunoblotting, we investigated the cellular mechanisms by which PVT affects constriction and relaxation of rat coronary septal arteries. PVT inhibited vasoconstriction to thromboxane, serotonin and α1 -adrenergic stimulation but not to depolarization with elevated extracellular [K(+) ]. When PVT was wrapped around isolated arteries or placed at the bottom of the myograph chamber, a smaller yet significant inhibition of vasoconstriction was observed. Resting membrane potential, depolarization to serotonin or thromboxane stimulation, and resting and serotonin-stimulated vascular smooth muscle [Ca(2+) ]-levels were unaffected by PVT. Serotonin-induced vasoconstriction was almost abolished by rho-kinase inhibitor Y-27632 and modestly reduced by protein kinase C inhibitor bisindolylmaleimide X. PVT reduced phosphorylation of myosin phosphatase targeting subunit (MYPT) at Thr850 by ∼40% in serotonin-stimulated arteries but had no effect on MYPT-phosphorylation in arteries depolarized with elevated extracellular [K(+) ]. The net anti-contractile effect of PVT was accentuated after endothelial denudation. PVT also impaired vasorelaxation and endothelial Ca(2+) responses to cholinergic stimulation. Methacholine-induced vasorelaxation was mediated by NO and H2 S, and particularly the H2 S-dependent (dl-propargylglycine- and XE991-sensitive) component was attenuated by PVT. Vasorelaxation to NO- and H2 S-donors was maintained in arteries with PVT. In conclusion, cardiomyocyte-rich PVT surrounding coronary arteries releases diffusible factors that reduce rho-kinase-dependent smooth muscle Ca(2+) sensitivity and endothelial Ca(2+) responses. These mechanisms inhibit agonist-induced vasoconstriction and endothelium-dependent vasorelaxation and suggest new signalling pathways for metabolic regulation of blood flow.
Collapse
Affiliation(s)
- Filip Aalbaek
- Department of Biomedicine, Aarhus University, Denmark
| | - Lisbeth Bonde
- Department of Biomedicine, Aarhus University, Denmark
| | - Sukhan Kim
- Department of Biomedicine, Aarhus University, Denmark
| | | |
Collapse
|
90
|
Romantsova TI, Ovsyannikovna AV. Perivascular adipose tissue: role in the pathogenesis of obesity, type 2 diabetes mellitus and cardiovascular pathology. ACTA ACUST UNITED AC 2015. [DOI: 10.14341/omet201545-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Perivascular adipose tissue is a part of blood vessel wall, regulating endovascular homeostasis, endothelial and smooth muscle cells functioning. Under physiological conditions, perivascular tissue provides beneficial anticontractile effect, though undergoes structural and functional changes in obesity, atherosclerosis and diabetes mellitus type2.Collected data suggest the possible key role of perivascular adipose tissue in the pathogenesis of these diseases. Perivascular tissue has been determined as an independent cardiovascular risk factor, regardless of visceral obesity. General mechanisms include a local low-grade inflammation, oxidative stress, tissue renin-angiotensin-aldosterone system activation, paracrine and metabolic alterations. Properties of perivascular adipose tissue depend on the certain type of adipocytes it contains. Brown adipocytes are well known for their metabolic preferences, however it has been shown recently that brown perivascular tissue can contribute to dyslipidemia under some conditions. The aim of this review is to discuss the current literature understanding of perivascular adipose tissue specifics, changes in its activity, secretory and genetic profilein a course of the most common non-infectious diseases development, as well as molecular mechanisms of its functioning. We also discuss perspectives of target interventions using metabolic pathways and genes of perivascular tissue, for the effective prevention of obesity, diabetes mellitus type2 and cardiovascular diseases.
Collapse
|
91
|
Dreier R, Asferg C, Berg JO, Andersen UB, Flyvbjerg A, Frystyk J, Linneberg A, Jeppesen JL, Edvinsson L, Skovsted GF. Similar Adiponectin Levels in Obese Normotensive and Obese Hypertensive Men and No Vasorelaxant Effect of Adiponectin on Human Arteries. Basic Clin Pharmacol Toxicol 2015; 118:128-35. [DOI: 10.1111/bcpt.12452] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/16/2015] [Indexed: 12/21/2022]
Affiliation(s)
- Rasmus Dreier
- Department of Internal Medicine Glostrup Hospital University of Copenhagen Glostrup Denmark
- Department of Clinical Physiology Nuclear Medicine & PET Rigshospitalet University of Copenhagen Glostrup Denmark
| | - Camilla Asferg
- Department of Internal Medicine Glostrup Hospital University of Copenhagen Glostrup Denmark
- Department of Clinical Physiology Nuclear Medicine & PET Rigshospitalet University of Copenhagen Glostrup Denmark
| | - Jais O. Berg
- Department of Plastic Surgery Herlev Hospital University of Copenhagen Herlev Denmark
| | - Ulrik B. Andersen
- Department of Clinical Physiology Nuclear Medicine & PET Rigshospitalet University of Copenhagen Glostrup Denmark
| | - Allan Flyvbjerg
- Department of Clinical Medicine, Health Medical Research Laboratory Aarhus University Aarhus Denmark
- Department of Endocrinology and Internal Medicine Aarhus University Hospital Aarhus Denmark
| | - Jan Frystyk
- Department of Clinical Medicine, Health Medical Research Laboratory Aarhus University Aarhus Denmark
- Department of Endocrinology and Internal Medicine Aarhus University Hospital Aarhus Denmark
| | - Allan Linneberg
- Research Centre for Prevention and Health Glostrup Hospital University of Copenhagen Glostrup Denmark
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Jørgen L. Jeppesen
- Department of Internal Medicine Glostrup Hospital University of Copenhagen Glostrup Denmark
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
| | - Lars Edvinsson
- Glostrup Research Institute Glostrup Hospital University of Copenhagen Glostrup Denmark
| | - Gry F. Skovsted
- Faculty of Health and Medical Sciences University of Copenhagen Copenhagen Denmark
- Glostrup Research Institute Glostrup Hospital University of Copenhagen Glostrup Denmark
| |
Collapse
|
92
|
Aroor AR, Sowers JR, Jia G, DeMarco VG. Pleiotropic effects of the dipeptidylpeptidase-4 inhibitors on the cardiovascular system. Am J Physiol Heart Circ Physiol 2015; 307:H477-92. [PMID: 24929856 DOI: 10.1152/ajpheart.00209.2014] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Dipeptidylpeptidase-4 (DPP-4) is a ubiquitously expressed transmembrane protein that removes NH2-terminal dipeptides from various substrate hormones, chemokines, neuropeptides, and growth factors. Two known substrates of DPP-4 include the incretin hormones glucagon-like peptide-1 (GLP-1) and gastric inhibitory peptide, which are secreted by enteroendocrine cells in response to postprandial hyperglycemia and account for 60–70% of postprandial insulin secretion. DPP-4 inhibitors (DPP-4i) block degradation of GLP-1 and gastric inhibitory peptide, extend their insulinotropic effect, and improve glycemia. Since 2006, several DPP-4i have become available for treatment of type 2 diabetes mellitus. Clinical trials confirm that DPP-4i raises GLP-1 levels in plasma and improves glycemia with very low risk for hypoglycemia and other side effects. Recent studies also suggest that DPP-4i confers cardiovascular and kidney protection, beyond glycemic control, which may reduce the risk for further development of the multiple comorbidities associated with obesity/type 2 diabetes mellitus, including hypertension and cardiovascular disease (CVD) and kidney disease. The notion that DPP-4i may improve CVD outcomes by mechanisms beyond glycemic control is due to both GLP-1-dependent and GLP-1-independent effects. The CVD protective effects by DPP-4i result from multiple factors including insulin resistance, oxidative stress, dyslipidemia, adipose tissue dysfunction, dysfunctional immunity, and antiapoptotic properties of these agents in the heart and vasculature. This review focuses on cellular and molecular mechanisms mediating the CVD protective effects of DPP-4i beyond favorable effects on glycemic control.
Collapse
|
93
|
Gil-Ortega M, Somoza B, Huang Y, Gollasch M, Fernández-Alfonso MS. Regional differences in perivascular adipose tissue impacting vascular homeostasis. Trends Endocrinol Metab 2015; 26:367-75. [PMID: 26008879 DOI: 10.1016/j.tem.2015.04.003] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 02/06/2023]
Abstract
Perivascular adipose tissue (PVAT) releases several important vasoactive factors with physiological and pathophysiological paracrine effects. A large body of evidence suggests regional phenotypic and functional differences among PVAT depots, depending on the specific vascular bed or different regions in the vascular bed where the PVAT is located. These non-uniform and separate PVATs exert various paracrine effects on vascular structure and function that largely impact disease states, such as endothelial dysfunction, atherosclerosis, or insulin resistance. This emerging view of PVAT function requires considering heterogeneous PVAT as a specialized organ that can differentially regulate vascular function depending on its anatomical location. In this context, the adipose-vascular axis may represent a novel target for pharmacological intervention in vasculopathy in cardiometabolic disorders.
Collapse
Affiliation(s)
- Marta Gil-Ortega
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - Beatriz Somoza
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad CEU-San Pablo, 28668 Madrid, Spain
| | - Yu Huang
- Institute of Vascular Medicine, Chinese University of Hong Kong, 20001 Hong Kong, China; Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, 20001 Hong Kong, China
| | - Maik Gollasch
- Nephrology and Intensive Care, Experimental and Clinical Research Center (ECRC), Charité Campus Virchow, 13125 Berlin, Germany
| | - Maria S Fernández-Alfonso
- Instituto Pluridisciplinar, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain.
| |
Collapse
|
94
|
Padilla J, Vieira-Potter VJ, Jia G, Sowers JR. Role of perivascular adipose tissue on vascular reactive oxygen species in type 2 diabetes: a give-and-take relationship. Diabetes 2015; 64:1904-6. [PMID: 25999534 PMCID: PMC4439571 DOI: 10.2337/db15-0096] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO Department of Child Health, University of Missouri, Columbia, MO
| | | | - Guanghong Jia
- Department of Research and Development, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri School of Medicine, Columbia, MO
| | - James R Sowers
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO Department of Research and Development, Harry S. Truman Memorial Veterans' Hospital, Columbia, MO Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, University of Missouri School of Medicine, Columbia, MO Department of Medical Pharmacology and Physiology, University of Missouri School of Medicine, Columbia, MO
| |
Collapse
|
95
|
Beaulieu-Jones BR, O'Brien DM, Hopkins SE, Moore JH, Boyer BB, Gilbert-Diamond D. Sex, Adiposity, and Hypertension Status Modify the Inverse Effect of Marine Food Intake on Blood Pressure in Alaska Native (Yup'ik) People. J Nutr 2015; 145:931-8. [PMID: 25788581 PMCID: PMC4408740 DOI: 10.3945/jn.114.209619] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 01/26/2015] [Accepted: 02/24/2015] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Alaska Native people currently have a higher prevalence of hypertension than do nonnative Alaskans, although in the 1950s hypertension was rare among Alaska Native people. A novel biomarker of marine foods, the nitrogen isotope ratio (δ¹⁵N) in RBCs was shown to be negatively associated with systolic and diastolic blood pressure. Few studies have examined how individual characteristics modify the association of marine food intake with blood pressure. OBJECTIVE This exploratory analysis examined whether sex, adiposity, and hypertension modify the inverse association between marine food intake and blood pressure. METHODS We used covariate-adjusted linear models to describe the association between δ¹⁵N and blood pressure in 873 adult Alaska Native (Yup'ik) people who resided in 8 communities in southwest Alaska. We separately stratified by sex, body mass index (BMI) group, abdominal obesity, and hypertension status and assessed the interaction between δ¹⁵N and participant characteristics on blood pressure via likelihood ratio tests. RESULTS The association between δ¹⁵N and systolic blood pressure was modified by sex, BMI status, and abdominal obesity, with the inverse association observed only in the male (β = -1.5; 95% CI: -2.4, -0.6 : , nonobese BMI (β = -1.7; 95% CI: -2.5, -1.0), and non-abdominally obese (β = -1.6; 95% CI: -2.4, -0.9) strata (all P-interaction < 0.0001). A reduction in diastolic blood pressure associated with δ¹⁵N was observed in the nonobese BMI (β = -1.1; 95% CI: -1.7, -0.5) and non-abdominally obese (β = -1.1; 95% CI: -1.7, -0.5) strata, although only the interaction between BMI group and δ¹⁵N with diastolic blood pressure was significant. The inverse association between δ¹⁵N and both systolic and diastolic blood pressure was observed in nonhypertensive individuals, although the comparison had limited power. The results were consistent with those identified by using combined RBC concentrations of eicosapentaenoic acid and docosahexaenoic acid as the biomarker of marine food intake, although the associations identified by using δ¹⁵N were larger. CONCLUSIONS Obesity status modified the inverse association between marine food intake and both systolic and diastolic blood pressure in adult Alaska Native (Yup'ik) people. The inverse association between δ¹⁵N and systolic blood pressure was also modified by sex.
Collapse
Affiliation(s)
| | - Diane M O'Brien
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK
| | - Scarlett E Hopkins
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK
| | - Jason H Moore
- Department of Genetics, and Institute for Quantitative Biomedical Sciences, Geisel School of Medicine, Dartmouth College, Lebanon, NH
| | - Bert B Boyer
- Center for Alaska Native Health Research, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, AK
| | - Diane Gilbert-Diamond
- Department of Epidemiology, Institute for Quantitative Biomedical Sciences, Geisel School of Medicine, Dartmouth College, Lebanon, NH;
| |
Collapse
|
96
|
Noblet JN, Owen MK, Goodwill AG, Sassoon DJ, Tune JD. Lean and Obese Coronary Perivascular Adipose Tissue Impairs Vasodilation via Differential Inhibition of Vascular Smooth Muscle K+ Channels. Arterioscler Thromb Vasc Biol 2015; 35:1393-400. [PMID: 25838427 DOI: 10.1161/atvbaha.115.305500] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 03/24/2015] [Indexed: 12/19/2022]
Abstract
OBJECTIVE The effects of coronary perivascular adipose tissue (PVAT) on vasomotor tone are influenced by an obese phenotype and are distinct from other adipose tissue depots. The purpose of this investigation was to examine the effects of lean and obese coronary PVAT on end-effector mechanisms of coronary vasodilation and to identify potential factors involved. APPROACH AND RESULTS Hematoxylin and eosin staining revealed similarities in coronary perivascular adipocyte size between lean and obese Ossabaw swine. Isometric tension studies of isolated coronary arteries from Ossabaw swine revealed that factors derived from lean and obese coronary PVAT attenuated vasodilation to adenosine. Lean coronary PVAT inhibited K(Ca) and KV7, but not KATP channel-mediated dilation in lean arteries. In the absence of PVAT, vasodilation to K(Ca) and KV7 channel activation was impaired in obese arteries relative to lean arteries. Obese PVAT had no effect on K(Ca) or KV7 channel-mediated dilation in obese arteries. In contrast, obese PVAT inhibited KATP channel-mediated dilation in both lean and obese arteries. The differential effects of obese versus lean PVAT were not associated with changes in either coronary KV7 or K(ATP) channel expression. Incubation with calpastatin attenuated coronary vasodilation to adenosine in lean but not in obese arteries. CONCLUSIONS These findings indicate that lean and obese coronary PVAT attenuates vasodilation via inhibitory effects on vascular smooth muscle K(+) channels and that alterations in specific factors such as calpastatin are capable of contributing to the initiation or progression of smooth muscle dysfunction in obesity.
Collapse
Affiliation(s)
- Jillian N Noblet
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.)
| | - Meredith K Owen
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.)
| | - Adam G Goodwill
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.)
| | - Daniel J Sassoon
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.)
| | - Johnathan D Tune
- From the Department of Cellular and Integrative Physiology, Indiana University School of Medicine, Indianapolis (J.N.N., A.G.G., D.J.S., J.D.T.); and Department of Cell Biology and Physiology, University of North Carolina School of Medicine, Chapel Hill (M.K.O.).
| |
Collapse
|
97
|
A short review of adipokines, smooth muscle and uterine contractility. Life Sci 2015; 125:2-8. [PMID: 25711427 DOI: 10.1016/j.lfs.2015.02.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 02/02/2015] [Indexed: 12/11/2022]
Abstract
Obesity is a major health problem worldwide. The prevalence of obesity is increasing in both developed and developing countries. In the UK, for example, 60% of adults are overweight and 25% are obese. Obesity is associated with many pathological complications including respiratory, cardiovascular and endocrine, but it also affects fertility and is associated with many reproductive complications. This has led us and others to investigate links between women with high BMI, pregnancy outcome and uterine function. These studies in turn have led investigators to ask how obesity can have such an impact on reproduction and, as part of this, to consider the role of the adipokines released from adipose tissues. Our focus in this short review is on adipokines and myometrial activity, and for completeness we overview their effects on other smooth muscles. To date four adipokines (leptin, visfatin, apelin and ghrelin) have been investigated and all affect myometrial contractility, but some more potently than others. We consider the possible mechanisms involved in how adipokines may modify uterine contractility, and discuss the potential impact on labor and delivery.
Collapse
|
98
|
Anticontractile activity of perivascular fat in obese mice and the effect of long-term treatment with melatonin. J Hypertens 2015; 32:1264-74. [PMID: 24751595 DOI: 10.1097/hjh.0000000000000178] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
AIMS It has been demonstrated previously that inflammation in perivascular adipose tissue (PVAT) may be implicated in vascular dysfunction. The aim of this study was to investigate the functional responses of small mesenteric arteries in a hyperphagic animal model of obesity after chronic treatment with melatonin, an endogenous hormone with antioxidant and vasculoprotective properties. METHODS AND RESULTS Ten obese mice (ob/ob) and 10 control lean mice (CLM) were treated with melatonin 100 mg/kg per day in the drinking water for 8 weeks. Mesenteric small resistance arteries were dissected and mounted on a wire myograph and a concentration-response to norepinephrine was evaluated in vessels with intact PVAT and after PVAT was removed and in the presence of iberiotoxin, a selective blocker of BKCA channels as well as under conditions of induced hypoxia in vitro. The presence of PVAT reduced the contractile response to norepinephrine in both ob/ob and CLM; however, the effect was significantly reduced in ob/ob. The anticontractile effect of PVAT completely disappeared with iberiotoxin preincubation. After melatonin treatment, inflammation was significantly ameliorated, and the contractile response in ob/ob and CLM was significantly reduced when PVAT was removed. Anticontractile effect of PVAT that is lost in obesity can be rescued using melatonin. A reduced expression of adiponectin and adiponectin receptor was observed in perivascular fat of ob/ob, whereas significant increase was observed in ob/ob treated with melatonin. CONCLUSION Melatonin seems to exert a protective effect on arteries from both ob/ob and CLM, counteracting the adverse effect of hypoxia and iberiotoxin.
Collapse
|
99
|
Araujo HN, Valgas da Silva CP, Sponton ACS, Clerici SP, Davel APC, Antunes E, Zanesco A, Delbin MA. Perivascular adipose tissue and vascular responses in healthy trained rats. Life Sci 2015; 125:79-87. [PMID: 25637684 DOI: 10.1016/j.lfs.2014.12.032] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 11/04/2014] [Accepted: 12/30/2014] [Indexed: 01/20/2023]
Affiliation(s)
- Hygor N Araujo
- Department of Physical Education, Institute of Biosciences, Univ. Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Carmem P Valgas da Silva
- Department of Physical Education, Institute of Biosciences, Univ. Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Amanda C S Sponton
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Stefano P Clerici
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Ana P C Davel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Edson Antunes
- Department of Pharmacology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Angelina Zanesco
- Department of Physical Education, Institute of Biosciences, Univ. Estadual Paulista (UNESP), Rio Claro, SP, Brazil
| | - Maria A Delbin
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
100
|
Oriowo MA. Perivascular adipose tissue, vascular reactivity and hypertension. Med Princ Pract 2015; 24 Suppl 1:29-37. [PMID: 24503717 PMCID: PMC6489082 DOI: 10.1159/000356380] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2013] [Accepted: 10/09/2013] [Indexed: 12/13/2022] Open
Abstract
Most blood vessels are surrounded by a variable amount of adventitial adipose tissue, perivascular adipose tissue (PVAT), which was originally thought to provide mechanical support for the vessel. It is now known that PVAT secretes a number of bioactive substances including vascular endothelial growth factor, tumor necrosis factor-alpha (TNF-α), leptin, adiponectin, insulin-like growth factor, interleukin-6, plasminogen activator substance, resistin and angiotensinogen. Several studies have shown that PVAT significantly modulated vascular smooth muscle contractions induced by a variety of agonists and electrical stimulation by releasing adipocyte-derived relaxing (ADRF) and contracting factors. The identity of ADRF is not yet known. However, several vasodilators have been suggested including adiponectin, angiotensin 1-7, hydrogen sulfide and methyl palmitate. The anticontractile effect of PVAT is mediated through the activation of potassium channels since it is abrogated by inhibiting potassium channels. Hypertension is characterized by a reduction in the size and amount of PVAT and this is associated with the attenuated anticontractile effect of PVAT in hypertension. However, since a reduction in size and amount of PVAT and the attenuated anticontractile effect of PVAT were already evident in prehypertensive rats with no evidence of impaired release of ADRF, there is the possibility that the anticontractile effect of PVAT was not directly related to an altered function of the adipocytes per se. Hypertension is characterized by low-grade inflammation and infiltration of macrophages. One of the adipokines secreted by macrophages is TNF-α. It has been shown that exogenously administered TNF-α enhanced agonist-induced contraction of a variety of vascular smooth muscle preparations and reduced endothelium-dependent relaxation. Other procontractile factors released by the PVAT include angiotensin II and superoxide. It is therefore possible that the loss could be due to an increased amount of these proinflammatory and procontractile factors. More studies are definitely required to confirm this.
Collapse
Affiliation(s)
- Mabayoje A Oriowo
- Department of Pharmacology and Toxicology, Faculty of Medicine, Health Sciences Centre, Kuwait University, Jabriya, Kuwait
| |
Collapse
|