51
|
Bielen K, 's Jongers B, Malhotra-Kumar S, Jorens PG, Goossens H, Kumar-Singh S. Animal models of hospital-acquired pneumonia: current practices and future perspectives. ANNALS OF TRANSLATIONAL MEDICINE 2017; 5:132. [PMID: 28462212 DOI: 10.21037/atm.2017.03.72] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lower respiratory tract infections are amongst the leading causes of mortality and morbidity worldwide. Especially in hospital settings and more particularly in critically ill ventilated patients, nosocomial pneumonia is one of the most serious infectious complications frequently caused by opportunistic pathogens. Pseudomonas aeruginosa is one of the most important causes of ventilator-associated pneumonia as well as the major cause of chronic pneumonia in cystic fibrosis patients. Animal models of pneumonia allow us to investigate distinct types of pneumonia at various disease stages, studies that are not possible in patients. Different animal models of pneumonia such as one-hit acute pneumonia models, ventilator-associated pneumonia models and biofilm pneumonia models associated with cystic fibrosis have been extensively studied and have considerably aided our understanding of disease pathogenesis and testing and developing new treatment strategies. The present review aims to guide investigators in choosing appropriate animal pneumonia models by describing and comparing the relevant characteristics of each model using P. aeruginosa as a model etiology for hospital-acquired pneumonia. Key to establishing and studying these animal models of infection are well-defined end-points that allow precise monitoring and characterization of disease development that could ultimately aid in translating these findings to patient populations in order to guide therapy. In this respect, and discussed here, is the development of humanized animal models of bacterial pneumonia that could offer unique advantages to study bacterial virulence factor expression and host cytokine production for translational purposes.
Collapse
Affiliation(s)
- Kenny Bielen
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.,Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Bart 's Jongers
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.,Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Philippe G Jorens
- Department of Critical Care Medicine, Antwerp University Hospital and University of Antwerp, LEMP, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Herman Goossens
- Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Samir Kumar-Singh
- Molecular Pathology Group, Faculty of Medicine and Health Sciences, Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium.,Laboratory of Medical Microbiology - Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
52
|
Inflammasomes in the lung. Mol Immunol 2017; 86:44-55. [PMID: 28129896 DOI: 10.1016/j.molimm.2017.01.014] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/11/2022]
Abstract
Innate immune responses act as first line defences upon exposure to potentially noxious stimuli. The innate immune system has evolved numerous intracellular and extracellular receptors that undertake surveillance for potentially damaging particulates. Inflammasomes are intracellular innate immune multiprotein complexes that form and are activated following interaction with these stimuli. Inflammasome activation leads to the cleavage of pro-IL-1β and release of the pro-inflammatory cytokine, IL-1β, which initiates acute phase pro-inflammatory responses, and other responses are also involved (IL-18, pyroptosis). However, excessive activation of inflammasomes can result in chronic inflammation, which has been implicated in a range of chronic inflammatory diseases. The airways are constantly exposed to a wide variety of stimuli. Inflammasome activation and downstream responses clears these stimuli. However, excessive activation may drive the pathogenesis of chronic respiratory diseases such as severe asthma and chronic obstructive pulmonary disease. Thus, there is currently intense interest in the role of inflammasomes in chronic inflammatory lung diseases and in their potential for therapeutic targeting. Here we review the known associations between inflammasome-mediated responses and the development and exacerbation of chronic lung diseases.
Collapse
|
53
|
Hoover JL, Lewandowski TF, Mininger CL, Singley CM, Sucoloski S, Rittenhouse S. A Robust Pneumonia Model in Immunocompetent Rodents to Evaluate Antibacterial Efficacy against S. pneumoniae, H. influenzae, K. pneumoniae, P. aeruginosa or A. baumannii. J Vis Exp 2017. [PMID: 28117818 PMCID: PMC5408714 DOI: 10.3791/55068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Efficacy of candidate antibacterial treatments must be demonstrated in animal models of infection as part of the discovery and development process, preferably in models which mimic the intended clinical indication. A method for inducing robust lung infections in immunocompetent rats and mice is described which allows for the assessment of treatments in a model of serious pneumonia caused by S. pneumoniae, H. influenzae, P. aeruginosa, K. pneumoniae or A. baumannii. Animals are anesthetized, and an agar-based inoculum is deposited deep into the lung via nonsurgical intratracheal intubation. The resulting infection is consistent, reproducible, and stable for at least 48 h and up to 96 h for most isolates. Studies with marketed antibacterials have demonstrated good correlation between in vivo efficacy and in vitro susceptibility, and concordance between pharmacokinetic/pharmacodynamic targets determined in this model and clinically accepted targets has been observed. Although there is an initial time investment when learning the technique, it can be performed quickly and efficiently once proficiency is achieved. Benefits of the model include elimination of the neutropenic requirement, increased robustness and reproducibility, ability to study more pathogens and isolates, improved flexibility in study design and establishment of a challenging infection in an immunocompetent host.
Collapse
|
54
|
Variable ventilation improves pulmonary function and reduces lung damage without increasing bacterial translocation in a rat model of experimental pneumonia. Respir Res 2016; 17:158. [PMID: 27887604 PMCID: PMC5124241 DOI: 10.1186/s12931-016-0476-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 11/22/2016] [Indexed: 01/08/2023] Open
Abstract
Background Variable ventilation has been shown to improve pulmonary function and reduce lung damage in different models of acute respiratory distress syndrome. Nevertheless, variable ventilation has not been tested during pneumonia. Theoretically, periodic increases in tidal volume (VT) and airway pressures might worsen the impairment of alveolar barrier function usually seen in pneumonia and could increase bacterial translocation into the bloodstream. We investigated the impact of variable ventilation on lung function and histologic damage, as well as markers of lung inflammation, epithelial and endothelial cell damage, and alveolar stress, and bacterial translocation in experimental pneumonia. Methods Thirty-two Wistar rats were randomly assigned to receive intratracheal of Pseudomonas aeruginosa (PA) or saline (SAL) (n = 16/group). After 24-h, animals were anesthetized and ventilated for 2 h with either conventional volume-controlled (VCV) or variable volume-controlled ventilation (VV), with mean VT = 6 mL/kg, PEEP = 5cmH2O, and FiO2 = 0.4. During VV, tidal volume varied randomly with a coefficient of variation of 30% and a Gaussian distribution. Additional animals assigned to receive either PA or SAL (n = 8/group) were not ventilated (NV) to serve as controls. Results In both SAL and PA, VV improved oxygenation and lung elastance compared to VCV. In SAL, VV decreased interleukin (IL)-6 expression compared to VCV (median [interquartile range]: 1.3 [0.3–2.3] vs. 5.3 [3.6–7.0]; p = 0.02) and increased surfactant protein-D expression compared to NV (2.5 [1.9–3.5] vs. 1.2 [0.8–1.2]; p = 0.0005). In PA, compared to VCV, VV reduced perivascular edema (2.5 [2.0–3.75] vs. 6.0 [4.5–6.0]; p < 0.0001), septum neutrophils (2.0 [1.0–4.0] vs. 5.0 [3.3–6.0]; p = 0.0008), necrotizing vasculitis (3.0 [2.0–5.5] vs. 6.0 [6.0–6.0]; p = 0.0003), and ultrastructural lung damage scores (16 [14–17] vs. 24 [14–27], p < 0.0001). Blood colony-forming-unit (CFU) counts were comparable (7 [0–28] vs. 6 [0–26], p = 0.77). Compared to NV, VCV, but not VV, increased expression amphiregulin, IL-6, and cytokine-induced neutrophil chemoattractant (CINC)-1 (2.1 [1.6–2.5] vs. 0.9 [0.7–1.2], p = 0.025; 12.3 [7.9–22.0] vs. 0.8 [0.6–1.9], p = 0.006; and 4.4 [2.9–5.6] vs. 0.9 [0.8–1.4], p = 0.003, respectively). Angiopoietin-2 expression was lower in VV compared to NV animals (0.5 [0.3–0.8] vs. 1.3 [1.0–1.5], p = 0.01). Conclusion In this rat model of pneumonia, VV improved pulmonary function and reduced lung damage as compared to VCV, without increasing bacterial translocation. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0476-7) contains supplementary material, which is available to authorized users.
Collapse
|
55
|
Zhao M, Lepak AJ, Andes DR. Animal models in the pharmacokinetic/pharmacodynamic evaluation of antimicrobial agents. Bioorg Med Chem 2016; 24:6390-6400. [PMID: 27887963 DOI: 10.1016/j.bmc.2016.11.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/28/2022]
Abstract
Animal infection models in the pharmacokinetic/pharmacodynamic (PK/PD) evaluation of antimicrobial therapy serve an important role in preclinical assessments of new antibiotics, dosing optimization for those that are clinically approved, and setting or confirming susceptibility breakpoints. The goal of animal model studies is to mimic the infectious diseases seen in humans to allow for robust PK/PD studies to find the optimal drug exposures that lead to therapeutic success. The PK/PD index and target drug exposures obtained in validated animal infection models are critical components in optimizing dosing regimen design in order to maximize efficacy while minimize the cost and duration of clinical trials. This review outlines the key components in animal infection models which have been used extensively in antibiotic discovery and development including PK/PD analyses.
Collapse
Affiliation(s)
- Miao Zhao
- Institute of Antibiotics Hua-shan Hospital, Fudan University & Key Laboratory of Clinical Pharmacology of Antibiotics, Ministry of Health, China; Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Alexander J Lepak
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - David R Andes
- Department of Medicine, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, USA; William S. Middleton Memorial VA Hospital, Madison, WI, USA.
| |
Collapse
|
56
|
Madenspacher JH, Fessler MB. A Non-invasive and Technically Non-intensive Method for Induction and Phenotyping of Experimental Bacterial Pneumonia in Mice. J Vis Exp 2016. [PMID: 27768086 DOI: 10.3791/54508] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Although community-acquired pneumonia remains a major public health problem, murine models of bacterial pneumonia have recently facilitated significant preclinical advances in our understanding of the underlying cellular and molecular pathogenesis. In vivo mouse models capture the integrated physiology and resilience of the host defense response in a manner not revealed by alternative, simplified ex vivo approaches. Several methods have been described in the literature for intrapulmonary inoculation of bacteria in mice, including aerosolization, intranasal delivery, peroral endotracheal cannulation under 'blind' and visualized conditions, and transcutaneous endotracheal cannulation. All methods have relative merits and limitations. Herein, we describe in detail a non-invasive, technically non-intensive, inexpensive, and rapid method for intratracheal delivery of bacteria that involves aspiration (i.e., inhalation) by the mouse of an infectious inoculum pipetted into the oropharynx while under general anesthesia. This method can be used for pulmonary delivery of a wide variety of non-caustic biological and chemical agents, and is relatively easy to learn, even for laboratories with minimal prior experience with pulmonary procedures. In addition to describing the aspiration pneumonia method, we also provide step-by-step procedures for assaying the subsequent in vivo pulmonary innate immune response of the mouse, in particular, methods for quantifying bacterial clearance and the cellular immune response of the infected airway. This integrated and simple approach to pneumonia assessment allows for rapid and robust evaluation of the effect of genetic and environmental manipulations upon pulmonary innate immunity.
Collapse
Affiliation(s)
- Jennifer H Madenspacher
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health
| | - Michael B Fessler
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health;
| |
Collapse
|
57
|
Burkholderia pseudomallei Capsule Exacerbates Respiratory Melioidosis but Does Not Afford Protection against Antimicrobial Signaling or Bacterial Killing in Human Olfactory Ensheathing Cells. Infect Immun 2016; 84:1941-1956. [PMID: 27091931 DOI: 10.1128/iai.01546-15] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 04/03/2016] [Indexed: 02/03/2023] Open
Abstract
Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an often severe infection that regularly involves respiratory disease following inhalation exposure. Intranasal (i.n.) inoculation of mice represents an experimental approach used to study the contributions of bacterial capsular polysaccharide I (CPS I) to virulence during acute disease. We used aerosol delivery of B. pseudomallei to establish respiratory infection in mice and studied CPS I in the context of innate immune responses. CPS I improved B. pseudomallei survival in vivo and triggered multiple cytokine responses, neutrophil infiltration, and acute inflammatory histopathology in the spleen, liver, nasal-associated lymphoid tissue, and olfactory mucosa (OM). To further explore the role of the OM response to B. pseudomallei infection, we infected human olfactory ensheathing cells (OECs) in vitro and measured bacterial invasion and the cytokine responses induced following infection. Human OECs killed >90% of the B. pseudomallei in a CPS I-independent manner and exhibited an antibacterial cytokine response comprising granulocyte colony-stimulating factor, tumor necrosis factor alpha, and several regulatory cytokines. In-depth genome-wide transcriptomic profiling of the OEC response by RNA-Seq revealed a network of signaling pathways activated in OECs following infection involving a novel group of 378 genes that encode biological pathways controlling cellular movement, inflammation, immunological disease, and molecular transport. This represents the first antimicrobial program to be described in human OECs and establishes the extensive transcriptional defense network accessible in these cells. Collectively, these findings show a role for CPS I in B. pseudomallei survival in vivo following inhalation infection and the antibacterial signaling network that exists in human OM and OECs.
Collapse
|
58
|
Abstract
Respiratory tract infections are an important cause of morbidity and mortality worldwide. Chief among these are infections involving the lower airways. The opportunistic bacterial pathogens responsible for most cases of pneumonia can cause a range of local and invasive infections. However, bacterial colonization (or carriage) in the upper airway is the prerequisite of all these infections. Successful colonizers must attach to the epithelial lining, grow on the nutrient-limited mucosal surface, evade the host immune response, and transmit to a susceptible host. Here, we review the molecular mechanisms underlying these conserved stages of carriage. We also examine how the demands of colonization influence progression to disease. A range of bacteria can colonize the upper airway; nevertheless, we focus on strategies shared by many respiratory tract opportunistic pathogens. Understanding colonization opens a window to the evolutionary pressures these pathogens face within their animal hosts and that have selected for attributes that contribute to virulence and pathogenesis.
Collapse
|
59
|
Williams K, Roman J. Studying human respiratory disease in animals--role of induced and naturally occurring models. J Pathol 2016; 238:220-32. [PMID: 26467890 DOI: 10.1002/path.4658] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 01/12/2023]
Abstract
Respiratory disorders like asthma, emphysema, and pulmonary fibrosis affect millions of Americans and many more worldwide. Despite advancements in medical research that have led to improved understanding of the pathophysiology of these conditions and sometimes to new therapeutic interventions, these disorders are for the most part chronic and progressive; current interventions are not curative and do not halt disease progression. A major obstacle to further advancements relates to the absence of animal models that exactly resemble the human condition, which delays the elucidation of relevant mechanisms of action, the unveiling of biomarkers of disease progression, and identification of new targets for intervention in patients. There are currently many induced animal models of human respiratory disease available for study, and even though they mimic features of human disease, discoveries in these models have not always translated into safe and effective treatments in humans. A major obstacle relates to the genetic, anatomical, and functional variations amongst species, which represents the major challenge to overcome when searching for appropriate models of respiratory disease. Nevertheless, rodents, in particular mice, have become the most common species used for experimentation, due to their relatively low cost, size, and adequate understanding of murine genetics, among other advantages. Less well known is the fact that domestic animals also suffer from respiratory illnesses similar to those found in humans. Asthma, bronchitis, pneumonia, and pulmonary fibrosis are among the many disorders occurring naturally in dogs, cats, and horses, among other species. These models might better resemble the human condition and are emphasized here, but further investigations are needed to determine their relevance.
Collapse
Affiliation(s)
- Kurt Williams
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Jesse Roman
- Departments of Medicine and Pharmacology & Toxicology, Division of Pulmonary, Critical Care & Sleep Medicine, University of Louisville Health Sciences Center and Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky, USA
| |
Collapse
|
60
|
Animal Models for the Pathogenesis, Treatment, and Prevention of Infection by Bacillus anthracis. Microbiol Spectr 2016; 3:TBS-0001-2012. [PMID: 26104551 DOI: 10.1128/microbiolspec.tbs-0001-2012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This article reviews the characteristics of the major animal models utilized for studies on Bacillus anthracis and highlights their contributions to understanding the pathogenesis and host responses to anthrax and its treatment and prevention. Advantages and drawbacks associated with each model, to include the major models (murine, guinea pig, rabbit, nonhuman primate, and rat), and other less frequently utilized models, are discussed. Although the three principal forms of anthrax are addressed, the main focus of this review is on models for inhalational anthrax. The selection of an animal model for study is often not straightforward and is dependent on the specific aims of the research or test. No single animal species provides complete equivalence to humans; however, each species, when used appropriately, can contribute to a more complete understanding of anthrax and its etiologic agent.
Collapse
|
61
|
Pilloux L, LeRoy D, Brunel C, Roger T, Greub G. Mouse Model of Respiratory Tract Infection Induced by Waddlia chondrophila. PLoS One 2016; 11:e0150909. [PMID: 26950066 PMCID: PMC4780729 DOI: 10.1371/journal.pone.0150909] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 02/22/2016] [Indexed: 11/29/2022] Open
Abstract
Waddlia chondrophila, an obligate intracellular bacterium belonging to the Chlamydiales order, is considered as an emerging pathogen. Some clinical studies highlighted a possible role of W. chondrophila in bronchiolitis, pneumonia and miscarriage. This pathogenic potential is further supported by the ability of W. chondrophila to infect and replicate within human pneumocytes, macrophages and endometrial cells. Considering that W. chondrophila might be a causative agent of respiratory tract infection, we developed a mouse model of respiratory tract infection to get insight into the pathogenesis of W. chondrophila. Following intranasal inoculation of 2 x 108W. chondrophila, mice lost up to 40% of their body weight, and succumbed rapidly from infection with a death rate reaching 50% at day 4 post-inoculation. Bacterial loads, estimated by qPCR, increased from day 0 to day 3 post-infection and decreased thereafter in surviving mice. Bacterial growth was confirmed by detecting dividing bacteria using electron microscopy, and living bacteria were isolated from lungs 14 days post-infection. Immunohistochemistry and histopathology of infected lungs revealed the presence of bacteria associated with pneumonia characterized by an important multifocal inflammation. The high inflammatory score in the lungs was associated with the presence of pro-inflammatory cytokines in both serum and lungs at day 3 post-infection. This animal model supports the role of W. chondrophila as an agent of respiratory tract infection, and will help understanding the pathogenesis of this strict intracellular bacterium.
Collapse
Affiliation(s)
- Ludovic Pilloux
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Didier LeRoy
- Infectious Diseases Service, Department of Medicine, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Christophe Brunel
- Institute of Pathology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria (CRIB), Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
62
|
Bergmann S, Steinert M. From Single Cells to Engineered and Explanted Tissues: New Perspectives in Bacterial Infection Biology. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2015; 319:1-44. [PMID: 26404465 DOI: 10.1016/bs.ircmb.2015.06.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cell culture techniques are essential for studying host-pathogen interactions. In addition to the broad range of single cell type-based two-dimensional cell culture models, an enormous amount of coculture systems, combining two or more different cell types, has been developed. These systems enable microscopic visualization and molecular analyses of bacterial adherence and internalization mechanisms and also provide a suitable setup for various biochemical, immunological, and pharmacological applications. The implementation of natural or synthetical scaffolds elevated the model complexity to the level of three-dimensional cell culture. Additionally, several transwell-based cell culture techniques are applied to study bacterial interaction with physiological tissue barriers. For keeping highly differentiated phenotype of eukaryotic cells in ex vivo culture conditions, different kinds of microgravity-simulating rotary-wall vessel systems are employed. Furthermore, the implementation of microfluidic pumps enables constant nutrient and gas exchange during cell cultivation and allows the investigation of long-term infection processes. The highest level of cell culture complexity is reached by engineered and explanted tissues which currently pave the way for a more comprehensive view on microbial pathogenicity mechanisms.
Collapse
Affiliation(s)
- Simone Bergmann
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| | - Michael Steinert
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Lower Saxony, Germany
| |
Collapse
|
63
|
Mucin Binding Reduces Colistin Antimicrobial Activity. Antimicrob Agents Chemother 2015; 59:5925-31. [PMID: 26169405 DOI: 10.1128/aac.00808-15] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2015] [Accepted: 07/04/2015] [Indexed: 11/20/2022] Open
Abstract
Colistin has found increasing use in treating drug-resistant bacterial lung infections, but potential interactions with pulmonary biomolecules have not been investigated. We postulated that colistin, like aminoglycoside antibiotics, may bind to secretory mucin in sputum or epithelial mucin that lines airways, reducing free drug levels. To test this hypothesis, we measured binding of colistin and other antibiotics to porcine mucin, a family of densely glycosylated proteins used as a surrogate for human sputum and airway mucin. Antibiotics were incubated in dialysis tubing with or without mucin, and concentrations of unbound antibiotics able to penetrate the dialysis tubing were measured over time using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The percentage of antibiotic measured in the dialysate after 4 h in the presence of mucin, relative to the amount without mucin, was 15% for colistin, 16% for polymyxin B, 19% for tobramycin, 52% for ciprofloxacin, and 78% for daptomycin. Antibiotics with the strongest mucin binding had an overall polybasic positive charge, whereas those with comparatively little binding were less basic. When comparing MICs measured with or without added mucin, colistin and polymyxin B showed >100-fold increases in MICs for multiple Gram-negative bacteria. Preclinical evaluation of mucin binding should become a standard procedure when considering the potential pulmonary use of new or existing antibiotics, particularly those with a polybasic overall charge. In the airways, mucin binding may reduce the antibacterial efficacy of inhaled or intravenously administered colistin, and the presence of sub-MIC effective antibiotic concentrations could result in the development of antibiotic resistance.
Collapse
|
64
|
Hraiech S, Papazian L, Rolain JM, Bregeon F. Animal models of polymicrobial pneumonia. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3279-92. [PMID: 26170617 PMCID: PMC4492661 DOI: 10.2147/dddt.s70993] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pneumonia is one of the leading causes of severe and occasionally life-threatening infections. The physiopathology of pneumonia has been extensively studied, providing information for the development of new treatments for this condition. In addition to in vitro research, animal models have been largely used in the field of pneumonia. Several models have been described and have provided a better understanding of pneumonia under different settings and with various pathogens. However, the concept of one pathogen leading to one infection has been challenged, and recent flu epidemics suggest that some pathogens exhibit highly virulent potential. Although "two hits" animal models have been used to study infectious diseases, few of these models have been described in pneumonia. Therefore the aims of this review were to provide an overview of the available literature in this field, to describe well-studied and uncommon pathogen associations, and to summarize the major insights obtained from this information.
Collapse
Affiliation(s)
- Sami Hraiech
- IHU Méditerranée infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France ; Réanimation - Détresses Respiratoires et infections Sévères, APHM, CHU Nord, Marseille, France
| | - Laurent Papazian
- IHU Méditerranée infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France ; Réanimation - Détresses Respiratoires et infections Sévères, APHM, CHU Nord, Marseille, France
| | - Jean-Marc Rolain
- IHU Méditerranée infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France
| | - Fabienne Bregeon
- IHU Méditerranée infection, URMITE CNRS IRD INSERM UMR 7278, Marseille, France ; Service d'explorations Fonctionnelles Respiratoires, APHM, CHU Nord, Marseille, France
| |
Collapse
|
65
|
Zuluaga AF, Salazar BE, Agudelo M, Rodriguez CA, Vesga O. A strain-independent method to induce progressive and lethal pneumococcal pneumonia in neutropenic mice. J Biomed Sci 2015; 22:24. [PMID: 25890037 PMCID: PMC4474571 DOI: 10.1186/s12929-015-0124-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 02/26/2015] [Indexed: 11/10/2022] Open
Abstract
Background Experimental models of pneumonia with penicillin non-susceptible Streptococcus pneumoniae (PNSSP) are hard to reproduce because the majority of strains with clinical relevance (like serotypes 6B, 9 V and 19 F) have low murine virulence. By optimization of culture and inoculum conditions of PNSSP (using porcine mucin), our aim was to develop a suitable, reliable and reproducible pneumonia mouse model for anti-infective pharmacology research. Results Seven PNSSP strains, including serotypes 6B, 9 V, 14 and 19 F were included. Strain INS-E611 displayed the highest murine virulence and was chosen to validate the lung model. Nose-instilled pneumococci grew between 2.1 and 2.5 log10 CFU/g of lung in 24 hours when an optimized culture of bacterial cells was used, but animals were all alive and recovered of infection after 36 h. In contrast, inoculum supplementation with mucin led to 100% mortality related to a successful lung infection confirmed by histopathology. These findings were reproduced with all seven PNSSP strains in neutropenic mice. Immunocompetent animals cleared all strains spontaneously. Conclusions This pneumonia model produces a progressive and uniformly fatal lung infection with diverse serotypes of PNSSP independently of their intrinsic murine virulence.
Collapse
Affiliation(s)
- Andres F Zuluaga
- GRIPE [Grupo Investigador de Problemas en Enfermedades infecciosas], Medellín, Colombia. .,Department of Pharmacology and Toxicology, Medellín, Colombia.
| | | | - Maria Agudelo
- GRIPE [Grupo Investigador de Problemas en Enfermedades infecciosas], Medellín, Colombia. .,Department of Pharmacology and Toxicology, Medellín, Colombia. .,Infectious Diseases Unit, Hospital Universitario San Vicente Fundación, Medellín, Colombia.
| | - Carlos A Rodriguez
- GRIPE [Grupo Investigador de Problemas en Enfermedades infecciosas], Medellín, Colombia. .,Department of Pharmacology and Toxicology, Medellín, Colombia.
| | - Omar Vesga
- GRIPE [Grupo Investigador de Problemas en Enfermedades infecciosas], Medellín, Colombia. .,Department of Pharmacology and Toxicology, Medellín, Colombia. .,Department of Internal Medicine, Universidad de Antioquia, Calle 70 No. 52-21, Medellín, Colombia. .,Infectious Diseases Unit, Hospital Universitario San Vicente Fundación, Medellín, Colombia.
| |
Collapse
|
66
|
López Hernández Y, Yero D, Pinos-Rodríguez JM, Gibert I. Animals devoid of pulmonary system as infection models in the study of lung bacterial pathogens. Front Microbiol 2015; 6:38. [PMID: 25699030 PMCID: PMC4316775 DOI: 10.3389/fmicb.2015.00038] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/12/2015] [Indexed: 01/15/2023] Open
Abstract
Biological disease models can be difficult and costly to develop and use on a routine basis. Particularly, in vivo lung infection models performed to study lung pathologies use to be laborious, demand a great time and commonly are associated with ethical issues. When infections in experimental animals are used, they need to be refined, defined, and validated for their intended purpose. Therefore, alternative and easy to handle models of experimental infections are still needed to test the virulence of bacterial lung pathogens. Because non-mammalian models have less ethical and cost constraints as a subjects for experimentation, in some cases would be appropriated to include these models as valuable tools to explore host-pathogen interactions. Numerous scientific data have been argued to the more extensive use of several kinds of alternative models, such as, the vertebrate zebrafish (Danio rerio), and non-vertebrate insects and nematodes (e.g., Caenorhabditis elegans) in the study of diverse infectious agents that affect humans. Here, we review the use of these vertebrate and non-vertebrate models in the study of bacterial agents, which are considered the principal causes of lung injury. Curiously none of these animals have a respiratory system as in air-breathing vertebrates, where respiration takes place in lungs. Despite this fact, with the present review we sought to provide elements in favor of the use of these alternative animal models of infection to reveal the molecular signatures of host-pathogen interactions.
Collapse
Affiliation(s)
- Yamilé López Hernández
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí San Luis de Potosí, Mexico
| | - Daniel Yero
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| | - Juan M Pinos-Rodríguez
- Centro de Biociencias, Universidad Autónoma de San Luis Potosí San Luis de Potosí, Mexico
| | - Isidre Gibert
- Institut de Biotecnologia i de Biomedicina, Universitat Autònoma de Barcelona Barcelona, Spain ; Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona Barcelona, Spain
| |
Collapse
|
67
|
Dames C, Akyüz L, Reppe K, Tabeling C, Dietert K, Kershaw O, Gruber AD, Meisel C, Meisel A, Witzenrath M, Engel O. Miniaturized bronchoscopy enables unilateral investigation, application, and sampling in mice. Am J Respir Cell Mol Biol 2015; 51:730-7. [PMID: 24960575 DOI: 10.1165/rcmb.2014-0052ma] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Lung diseases, including pneumonia and asthma, are among the most prevalent human disorders, and murine models have been established to investigate their pathobiology and develop novel treatment approaches. Whereas bronchoscopy is valuable for diagnostic and therapeutic procedures in patients, no equivalent for small rodents has been established. Here, we introduce a miniaturized video-bronchoscopy system offering new opportunities in experimental lung research. With an outer diameter of 0.75 mm, it is possible to advance the optics into the main bronchi of mice. An irrigation channel allows bronchoalveolar lavage and unilateral application of substances to one lung. Even a unilateral infection is possible, enabling researchers to use the contralateral lung as internal control.
Collapse
Affiliation(s)
- Claudia Dames
- 1 Institute of Medical Immunology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Hyatt LD, Wasserman GA, Rah YJ, Matsuura KY, Coleman FT, Hilliard KL, Pepper-Cunningham ZA, Ieong M, Stumpo DJ, Blackshear PJ, Quinton LJ, Mizgerd JP, Jones MR. Myeloid ZFP36L1 does not regulate inflammation or host defense in mouse models of acute bacterial infection. PLoS One 2014; 9:e109072. [PMID: 25299049 PMCID: PMC4192124 DOI: 10.1371/journal.pone.0109072] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/08/2014] [Indexed: 12/21/2022] Open
Abstract
Zinc finger protein 36, C3H type-like 1 (ZFP36L1) is one of several Zinc Finger Protein 36 (Zfp36) family members, which bind AU rich elements within 3' untranslated regions (UTRs) to negatively regulate the post-transcriptional expression of targeted mRNAs. The prototypical member of the family, Tristetraprolin (TTP or ZFP36), has been well-studied in the context of inflammation and plays an important role in repressing pro-inflammatory transcripts such as TNF-α. Much less is known about the other family members, and none have been studied in the context of infection. Using macrophage cell lines and primary alveolar macrophages we demonstrated that, like ZFP36, ZFP36L1 is prominently induced by infection. To test our hypothesis that macrophage production of ZFP36L1 is necessary for regulation of the inflammatory response of the lung during pneumonia, we generated mice with a myeloid-specific deficiency of ZFP36L1. Surprisingly, we found that myeloid deficiency of ZFP36L1 did not result in alteration of lung cytokine production after infection, altered clearance of bacteria, or increased inflammatory lung injury. Although alveolar macrophages are critical components of the innate defense against respiratory pathogens, we concluded that myeloid ZFP36L1 is not essential for appropriate responses to bacteria in the lungs. Based on studies conducted with myeloid-deficient ZFP36 mice, our data indicate that, of the Zfp36 family, ZFP36 is the predominant negative regulator of cytokine expression in macrophages. In conclusion, these results imply that myeloid ZFP36 may fully compensate for loss of ZFP36L1 or that Zfp36l1-dependent mRNA expression does not play an integral role in the host defense against bacterial pneumonia.
Collapse
Affiliation(s)
- Lynnae D. Hyatt
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Gregory A. Wasserman
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Yoon J. Rah
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kori Y. Matsuura
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Fadie T. Coleman
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Kristie L. Hilliard
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | | | - Michael Ieong
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Deborah J. Stumpo
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
| | - Perry J. Blackshear
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina, United States of America
- Departments of Medicine and Biochemistry, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Lee J. Quinton
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Joseph P. Mizgerd
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Matthew R. Jones
- Pulmonary Center, Boston University School of Medicine, Boston, Massachusetts, United States of America
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
69
|
Quinton LJ, Mizgerd JP. Dynamics of lung defense in pneumonia: resistance, resilience, and remodeling. Annu Rev Physiol 2014; 77:407-30. [PMID: 25148693 DOI: 10.1146/annurev-physiol-021014-071937] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pneumonia is initiated by microbes in the lung, but physiological processes integrating responses across diverse cell types and organ systems dictate the outcome of respiratory infection. Resistance, or actions of the host to eradicate living microbes, in the lungs involves a combination of innate and adaptive immune responses triggered by air-space infection. Resilience, or the ability of the host tissues to withstand the physiologically damaging effects of microbial and immune activities, is equally complex, precisely regulated, and determinative. Both immune resistance and tissue resilience are dynamic and change throughout the lifetime, but we are only beginning to understand such remodeling and how it contributes to the incidence of severe pneumonias, which diminishes as childhood progresses and then increases again among the elderly. Here, we review the concepts of resistance, resilience, and remodeling as they apply to pneumonia, highlighting recent advances and current significant knowledge gaps.
Collapse
|
70
|
Bennewitz MF, Watkins SC, Sundd P. Quantitative intravital two-photon excitation microscopy reveals absence of pulmonary vaso-occlusion in unchallenged Sickle Cell Disease mice. INTRAVITAL 2014; 3:e29748. [PMID: 25995970 PMCID: PMC4435611 DOI: 10.4161/intv.29748] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Sickle cell disease (SCD) is a genetic disorder that leads to red blood cell (RBC) sickling, hemolysis and the upregulation of adhesion molecules on sickle RBCs. Chronic hemolysis in SCD results in a hyper-inflammatory state characterized by activation of circulating leukocytes, platelets and endothelial cells even in the absence of a crisis. A crisis in SCD is often triggered by an inflammatory stimulus and can lead to the acute chest syndrome (ACS), which is a type of lung injury and a leading cause of mortality among SCD patients. Although it is believed that pulmonary vaso-occlusion could be the phenomenon contributing to the development of ACS, the role of vaso-occlusion in ACS remains elusive. Intravital imaging of the cremaster microcirculation in SCD mice has been instrumental in establishing the role of neutrophil-RBC-endothelium interactions in systemic vaso-occlusion; however, such studies, although warranted, have never been done in the pulmonary microcirculation of SCD mice. Here, we show that two-photon excitation fluorescence microscopy can be used to perform quantitative analysis of neutrophil and RBC trafficking in the pulmonary microcirculation of SCD mice. We provide the experimental approach that enables microscopic observations under physiological conditions and use it to show that RBC and neutrophil trafficking is comparable in SCD and control mice in the absence of an inflammatory stimulus. The intravital imaging scheme proposed in this study can be useful in elucidating the cellular and molecular mechanism of pulmonary vaso-occlusion in SCD mice following an inflammatory stimulus.
Collapse
Affiliation(s)
- Margaret F Bennewitz
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261 ; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| | - Simon C Watkins
- Center for Biologic Imaging, University of Pittsburgh, Pittsburgh, PA 15261
| | - Prithu Sundd
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA 15261 ; Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh, Pittsburgh, PA 15261
| |
Collapse
|
71
|
|
72
|
Gammon ST, Foje N, Brewer EM, Owers E, Downs CA, Budde MD, Leevy WM, Helms MN. Preclinical anatomical, molecular, and functional imaging of the lung with multiple modalities. Am J Physiol Lung Cell Mol Physiol 2014; 306:L897-914. [DOI: 10.1152/ajplung.00007.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In vivo imaging is an important tool for preclinical studies of lung function and disease. The widespread availability of multimodal animal imaging systems and the rapid rate of diagnostic contrast agent development have empowered researchers to noninvasively study lung function and pulmonary disorders. Investigators can identify, track, and quantify biological processes over time. In this review, we highlight the fundamental principles of bioluminescence, fluorescence, planar X-ray, X-ray computed tomography, magnetic resonance imaging, and nuclear imaging modalities (such as positron emission tomography and single photon emission computed tomography) that have been successfully employed for the study of lung function and pulmonary disorders in a preclinical setting. The major principles, benefits, and applications of each imaging modality and technology are reviewed. Limitations and the future prospective of multimodal imaging in pulmonary physiology are also discussed. In vivo imaging bridges molecular biological studies, drug design and discovery, and the imaging field with modern medical practice, and, as such, will continue to be a mainstay in biomedical research.
Collapse
Affiliation(s)
- Seth T. Gammon
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nathan Foje
- Department of Biological Sciences, Notre Dame Integrated Imaging Facility, Notre Dame, Indiana
| | - Elizabeth M. Brewer
- Department of Pediatrics Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, Georgia
| | - Elizabeth Owers
- Department of Biological Sciences, Notre Dame Integrated Imaging Facility, Notre Dame, Indiana
| | - Charles A. Downs
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia; and
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - W. Matthew Leevy
- Department of Biological Sciences, Notre Dame Integrated Imaging Facility, Notre Dame, Indiana
| | - My N. Helms
- Department of Pediatrics Center for Cystic Fibrosis and Airways Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
73
|
Jacqueline C, Broquet A, Roquilly A, Davieau M, Caillon J, Altare F, Potel G, Asehnoune K. Linezolid dampens neutrophil-mediated inflammation in methicillin-resistant Staphylococcus aureus-induced pneumonia and protects the lung of associated damages. J Infect Dis 2014; 210:814-23. [PMID: 24620024 DOI: 10.1093/infdis/jiu145] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Linezolid is considered as a therapeutic alternative to the use of glycopeptides for the treatment of pneumonia caused by methicillin-resistant Staphylococcus aureus (MRSA). Clinical studies reported a potent survival advantage conferred by the oxazolidinone and called into question the use of glycopeptides as first-line therapy. METHODS In a mouse model of MRSA-induced pneumonia, quantitative bacteriology, proinflammatory cytokine concentrations in lung, myeloperoxidase activity, Ly6G immunohistochemistry, and endothelial permeability were assessed to compare therapeutic efficacy and immunomodulative properties of linezolid and vancomycin administered subcutaneously every 12 hours. RESULTS Significant antibacterial activity was achieved after 48 hours of treatment for linezolid and vancomycin. Levels of interleukin 1β, a major proinflammatory cytokine, and macrophage inflammatory protein 2, a chemokine involved in the recruitment of neutrophils, were decreased by both antimicrobials. Only linezolid was able to dramatically reduce the production of tumor necrosis factor α. Analysis of myeloperoxidase activity and Ly6G immunostaining showed a dramatic decrease of neutrophil infiltration in infected lung tissues for linezolid-treated animals. A time-dependent increase of endothelial permeability was observed for the control and vancomycin regimens. Of interest, in the linezolid group, decreased endothelial permeability was detected 48 hours after infection. CONCLUSIONS Our results indicate that linezolid could be superior to vancomycin for the management of MRSA pneumonia by attenuating an excessive inflammatory reaction and protecting the lung from pathogen-associated damages.
Collapse
Affiliation(s)
- Cédric Jacqueline
- Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826
| | - Alexis Broquet
- Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826
| | - Antoine Roquilly
- Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826
| | - Marion Davieau
- Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826
| | - Jocelyne Caillon
- Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826
| | - Frédéric Altare
- Université de Nantes, INSERM U892, CNRS UMR 6299, Nantes, France
| | - Gilles Potel
- Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826
| | - Karim Asehnoune
- Université de Nantes, Faculté de Médecine, Thérapeutiques Cliniques et Expérimentales des Infections, EA 3826
| |
Collapse
|
74
|
Rolin O, Smallridge W, Henry M, Goodfield L, Place D, Harvill ET. Toll-like receptor 4 limits transmission of Bordetella bronchiseptica. PLoS One 2014; 9:e85229. [PMID: 24497924 PMCID: PMC3907416 DOI: 10.1371/journal.pone.0085229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/25/2013] [Indexed: 02/06/2023] Open
Abstract
Transmission of pathogens has been notoriously difficult to study under laboratory conditions leaving knowledge gaps regarding how bacterial factors and host immune components affect the spread of infections between hosts. We describe the development of a mouse model of transmission of a natural pathogen, Bordetella bronchiseptica, and its use to assess the impact of host immune functions. Although B. bronchiseptica transmits poorly between wild-type mice and mice lacking other immune components, it transmits efficiently between mice deficient in Toll-Like Receptor 4 (TLR4). TLR4-mutant mice were more susceptible to initial colonization, and poorly controlled pathogen growth and shedding. Heavy neutrophil infiltration distinguished TLR4-deficient responses, and neutrophil depletion did not affect respiratory CFU load, but decreased bacterial shedding. The effect of TLR4 response on transmission may explain the extensive variation in TLR4 agonist potency observed among closely related subspecies of Bordetella. This transmission model will enable mechanistic studies of how pathogens spread from one host to another, the defining feature of infectious disease.
Collapse
Affiliation(s)
- Olivier Rolin
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Will Smallridge
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michael Henry
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Laura Goodfield
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - David Place
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- Graduate Program in Immunology and Infectious Disease, The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Eric T. Harvill
- Department of Veterinary and Biomedical Sciences, The Pennsylvania State University, University Park, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
75
|
Parker JC. Acute lung injury and pulmonary vascular permeability: use of transgenic models. Compr Physiol 2013; 1:835-82. [PMID: 23737205 DOI: 10.1002/cphy.c100013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Acute lung injury is a general term that describes injurious conditions that can range from mild interstitial edema to massive inflammatory tissue destruction. This review will cover theoretical considerations and quantitative and semi-quantitative methods for assessing edema formation and increased vascular permeability during lung injury. Pulmonary edema can be quantitated directly using gravimetric methods, or indirectly by descriptive microscopy, quantitative morphometric microscopy, altered lung mechanics, high-resolution computed tomography, magnetic resonance imaging, positron emission tomography, or x-ray films. Lung vascular permeability to fluid can be evaluated by measuring the filtration coefficient (Kf) and permeability to solutes evaluated from their blood to lung clearances. Albumin clearances can then be used to calculate specific permeability-surface area products (PS) and reflection coefficients (σ). These methods as applied to a wide variety of transgenic mice subjected to acute lung injury by hyperoxic exposure, sepsis, ischemia-reperfusion, acid aspiration, oleic acid infusion, repeated lung lavage, and bleomycin are reviewed. These commonly used animal models simulate features of the acute respiratory distress syndrome, and the preparation of genetically modified mice and their use for defining specific pathways in these disease models are outlined. Although the initiating events differ widely, many of the subsequent inflammatory processes causing lung injury and increased vascular permeability are surprisingly similar for many etiologies.
Collapse
Affiliation(s)
- James C Parker
- Department of Physiology, University of South Alabama, Mobile, Alabama, USA.
| |
Collapse
|
76
|
Hodgson J, Dagleish M, Gibbard L, Bayne C, Finlayson J, Moon G, Nath M. Seven strains of mice as potential models of bovine pasteurellosis following intranasal challenge with a bovine pneumonic strain of Pasteurella multocida A:3; comparisons of disease and pathological outcomes. Res Vet Sci 2013; 94:634-40. [DOI: 10.1016/j.rvsc.2013.01.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Revised: 11/21/2012] [Accepted: 01/20/2013] [Indexed: 10/27/2022]
|
77
|
Sordi R, Menezes-de-Lima O, Della-Justina AM, Rezende E, Assreuy J. Pneumonia-induced sepsis in mice: temporal study of inflammatory and cardiovascular parameters. Int J Exp Pathol 2013; 94:144-55. [PMID: 23441627 DOI: 10.1111/iep.12016] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 12/15/2012] [Indexed: 01/09/2023] Open
Abstract
The aim of the present work is to provide a better comprehension of the pneumonia-induced sepsis model through temporal evaluation of several parameters, and thus identify the main factors that determine mortality in this model. Klebsiella pneumoniae was inoculated intratracheally in anesthetized Swiss male mice. Inflammatory and cardiovascular parameters were evaluated 6, 24 and 48 h after the insult. The results show that severity of infection and the mortality correlated with the amount of bacteria. Six, 24 and 48 h after inoculation, animals presented pathological changes in lungs, increase in cell number in the bronchoalveolar lavage, leukopenia, increase in TNF-α and IL-1β levels, hypotension and hyporesponsiveness to vasoconstrictors, the two latter characteristics of severe sepsis and septic shock. Significant numbers of bacteria in spleen and heart homogenates indicated infection spreading. Interestingly, NOS-2 expression appeared late after bacteria inoculation, whereas levels of NOS-1 and NOS-3 were unchanged. The high NOS-2 expression coincided with an exacerbated NO production in the infection focus and in plasma, as judging by nitrate + nitrite levels. This study shows that K. pneumoniae inoculation induces a systemic inflammatory response and cardiovascular alterations, which endures at least until 48 h. K. pneumoniae-induced lung infection is a clinically relevant animal model of sepsis and a better understanding of this model may help to increase the knowledge about sepsis pathophysiology.
Collapse
Affiliation(s)
- Regina Sordi
- Department of Pharmacology, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil
| | | | | | | | | |
Collapse
|
78
|
|
79
|
Therapeutic targeting of redox signaling in myofibroblast differentiation and age-related fibrotic disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:458276. [PMID: 23150749 PMCID: PMC3486436 DOI: 10.1155/2012/458276] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 09/18/2012] [Indexed: 12/22/2022]
Abstract
Myofibroblast activation plays a central role during normal wound healing. Whereas insufficient myofibroblast activation impairs wound healing, excessive myofibroblast activation promotes fibrosis in diverse tissues (including benign prostatic hyperplasia, BPH) leading to organ dysfunction and also promotes a stromal response that supports tumor progression. The incidence of impaired wound healing, tissue fibrosis, BPH, and certain cancers strongly increases with age. This paper summarizes findings from in vitro fibroblast-to-myofibroblast differentiation systems that serve as cellular models to study fibrogenesis of diverse tissues. Supported by substantial in vivo data, a large body of evidence indicates that myofibroblast differentiation induced by the profibrotic cytokine transforming growth factor beta is driven by a prooxidant shift in redox homeostasis due to elevated production of NADPH oxidase 4 (NOX4)-derived hydrogen peroxide and supported by concomitant decreases in nitric oxide/cGMP signaling and reactive oxygen species (ROS) scavenging enzymes. Fibroblast-to-myofibroblast differentiation can be inhibited and reversed by restoring redox homeostasis using antioxidants or NOX4 inactivation as well as enhancing nitric oxide/cGMP signaling via activation of soluble guanylyl cyclases or inhibition of phosphodiesterases. Current evidence indicates the therapeutic potential of targeting the prooxidant shift in redox homeostasis for the treatment of age-related diseases associated with myofibroblast dysregulation.
Collapse
|
80
|
Tamang DL, Pirzai W, Priebe GP, Traficante DC, Pier GB, Falck JR, Morisseau C, Hammock BD, McCormick BA, Gronert K, Hurley BP. Hepoxilin A(3) facilitates neutrophilic breach of lipoxygenase-expressing airway epithelial barriers. THE JOURNAL OF IMMUNOLOGY 2012; 189:4960-9. [PMID: 23045615 DOI: 10.4049/jimmunol.1201922] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A feature shared by many inflammatory lung diseases is excessive neutrophilic infiltration. Neutrophil homing to airspaces involve multiple factors produced by several distinct cell types. Hepoxilin A(3) is a neutrophil chemoattractant produced by pathogen-infected epithelial cells that is hypothesized to facilitate neutrophil breach of mucosal barriers. Using a Transwell model of lung epithelial barriers infected with Pseudomonas aeruginosa, we explored the role of hepoxilin A(3) in neutrophil transepithelial migration. Pharmacological inhibitors of the enzymatic pathways necessary to generate hepoxilin A(3), including phospholipase A(2) and 12-lipoxygenase, potently interfere with P. aeruginosa-induced neutrophil transepithelial migration. Both transformed and primary human lung epithelial cells infected with P. aeruginosa generate hepoxilin A(3) precursor arachidonic acid. All four known lipoxygenase enzymes capable of synthesizing hepoxilin A(3) are expressed in lung epithelial cell lines, primary small airway epithelial cells, and human bronchial epithelial cells. Lung epithelial cells produce increased hepoxilin A(3) and lipid-derived neutrophil chemotactic activity in response to P. aeruginosa infection. Lipid-derived chemotactic activity is soluble epoxide hydrolase sensitive, consistent with hepoxilin A(3) serving a chemotactic role. Stable inhibitory structural analogs of hepoxilin A(3) are capable of impeding P. aeruginosa-induced neutrophil transepithelial migration. Finally, intranasal infection of mice with P. aeruginosa promotes enhanced cellular infiltrate into the airspace, as well as increased concentration of the 12-lipoxygenase metabolites hepoxilin A(3) and 12-hydroxyeicosa-5Z,8Z,10E,14Z-tetraenoic acid. Data generated from multiple models in this study provide further evidence that hepoxilin A(3) is produced in response to lung pathogenic bacteria and functions to drive neutrophils across epithelial barriers.
Collapse
Affiliation(s)
- David L Tamang
- Mucosal Immunology Laboratory, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Jacqueline C, Roquilly A, Desessard C, Boutoille D, Broquet A, Le Mabecque V, Amador G, Potel G, Caillon J, Asehnoune K. Efficacy of ceftolozane in a murine model of Pseudomonas aeruginosa acute pneumonia: in vivo antimicrobial activity and impact on host inflammatory response. J Antimicrob Chemother 2012; 68:177-83. [DOI: 10.1093/jac/dks343] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
82
|
dos Santos G, Kutuzov MA, Ridge KM. The inflammasome in lung diseases. Am J Physiol Lung Cell Mol Physiol 2012; 303:L627-33. [PMID: 22904168 DOI: 10.1152/ajplung.00225.2012] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Inflammation, the process aimed at restoring homeostasis after an insult, can be more damaging than the insult itself if uncontrolled, excessive, or prolonged. The inflammasome is an intracellular multimeric protein complex that regulates the maturation and release of proinflammatory cytokines of the IL-1 family in response to pathogens and endogenous danger signals. Growing evidence indicates that the inflammasome plays a key role in the pathogenesis of acute and chronic respiratory diseases. The inflammasome can be activated by the pathogens that account for the most prevalent infectious diseases of the respiratory tract, such as influenza A virus, Streptococcus pneumoniae, Pseudomonas aeruginosa, and Mycobacterium tuberculosis. The inflammasome also plays a role in the chronic inflammation of the airways of patients with asthma and chronic obstructive pulmonary disease, as well as in the initiation and progression of the inflammatory process in pulmonary fibrosis. The aim of this review is to summarize the most relevant points of inflammasome activation in lung diseases.
Collapse
Affiliation(s)
- Gimena dos Santos
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | | | | |
Collapse
|
83
|
Shui JW, Larange A, Kim G, Vela JL, Zahner S, Cheroutre H, Kronenberg M. HVEM signalling at mucosal barriers provides host defence against pathogenic bacteria. Nature 2012; 488:222-5. [PMID: 22801499 PMCID: PMC3477500 DOI: 10.1038/nature11242] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 05/18/2012] [Indexed: 12/23/2022]
Abstract
The herpes virus entry mediator (HVEM), a member of the tumour-necrosis factor receptor family, has diverse functions, augmenting or inhibiting the immune response. HVEM was recently reported as a colitis risk locus in patients, and in a mouse model of colitis we demonstrated an anti-inflammatory role for HVEM, but its mechanism of action in the mucosal immune system was unknown. Here we report an important role for epithelial HVEM in innate mucosal defence against pathogenic bacteria. HVEM enhances immune responses by NF-κB-inducing kinase-dependent Stat3 activation, which promotes the epithelial expression of genes important for immunity. During intestinal Citrobacter rodentium infection, a mouse model for enteropathogenic Escherichia coli infection, Hvem−/− mice showed decreased Stat3 activation, impaired responses in the colon, higher bacterial burdens and increased mortality. We identified the immunoglobulin superfamily molecule CD160 (refs 7 and 8), expressed predominantly by innate-like intraepithelial lymphocytes, as the ligand engaging epithelial HVEM for host protection. Likewise, in pulmonary Streptococcus pneumoniae infection, HVEM is also required for host defence. Our results pinpoint HVEM as an important orchestrator of mucosal immunity, integrating signals from innate lymphocytes to induce optimal epithelial Stat3 activation, which indicates that targeting HVEM with agonists could improve host defence.
Collapse
MESH Headings
- Animals
- Antigens, CD/immunology
- Antigens, CD/metabolism
- Bacterial Load
- Cell Line
- Citrobacter rodentium/immunology
- Citrobacter rodentium/pathogenicity
- Disease Models, Animal
- Enterobacteriaceae Infections/immunology
- Enterobacteriaceae Infections/microbiology
- Enteropathogenic Escherichia coli
- Epithelial Cells/immunology
- Epithelial Cells/metabolism
- Escherichia coli Infections
- GPI-Linked Proteins/immunology
- GPI-Linked Proteins/metabolism
- Immunity, Mucosal/immunology
- Intestines/immunology
- Intestines/microbiology
- Ligands
- Lung/immunology
- Lung/microbiology
- Lymphocytes/immunology
- Lymphocytes/metabolism
- Mice
- Mice, Inbred C57BL
- Mucous Membrane/immunology
- Mucous Membrane/metabolism
- Mucous Membrane/microbiology
- Pneumococcal Infections/immunology
- Pneumococcal Infections/microbiology
- Protein Serine-Threonine Kinases/metabolism
- Receptors, Immunologic/immunology
- Receptors, Immunologic/metabolism
- Receptors, Tumor Necrosis Factor, Member 14/deficiency
- Receptors, Tumor Necrosis Factor, Member 14/genetics
- Receptors, Tumor Necrosis Factor, Member 14/immunology
- Receptors, Tumor Necrosis Factor, Member 14/metabolism
- STAT3 Transcription Factor/metabolism
- Signal Transduction
- Streptococcus pneumoniae/immunology
- Survival Rate
- NF-kappaB-Inducing Kinase
Collapse
Affiliation(s)
- Jr-Wen Shui
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, California 92037, USA
| | | | | | | | | | | | | |
Collapse
|
84
|
Govindarajan B, Menon BB, Spurr-Michaud S, Rastogi K, Gilmore MS, Argüeso P, Gipson IK. A metalloproteinase secreted by Streptococcus pneumoniae removes membrane mucin MUC16 from the epithelial glycocalyx barrier. PLoS One 2012; 7:e32418. [PMID: 22412870 PMCID: PMC3296694 DOI: 10.1371/journal.pone.0032418] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/29/2012] [Indexed: 12/19/2022] Open
Abstract
The majority of bacterial infections occur across wet-surfaced mucosal epithelia, including those that cover the eye, respiratory tract, gastrointestinal tract and genitourinary tract. The apical surface of all these mucosal epithelia is covered by a heavily glycosylated glycocalyx, a major component of which are membrane-associated mucins (MAMs). MAMs form a barrier that serves as one of the first lines of defense against invading bacteria. While opportunistic bacteria rely on pre-existing defects or wounds to gain entry to epithelia, non opportunistic bacteria, especially the epidemic disease-causing ones, gain access to epithelial cells without evidence of predisposing injury. The molecular mechanisms employed by these non opportunistic pathogens to breach the MAM barrier remain unknown. To test the hypothesis that disease-causing non opportunistic bacteria gain access to the epithelium by removal of MAMs, corneal, conjunctival, and tracheobronchial epithelial cells, cultured to differentiate to express the MAMs, MUCs 1, 4, and 16, were exposed to a non encapsulated, non typeable strain of Streptococcus pneumoniae (SP168), which causes epidemic conjunctivitis. The ability of strain SP168 to induce MAM ectodomain release from epithelia was compared to that of other strains of S. pneumoniae, as well as the opportunistic pathogen Staphylococcus aureus. The experiments reported herein demonstrate that the epidemic disease-causing S. pneumoniae species secretes a metalloproteinase, ZmpC, which selectively induces ectodomain shedding of the MAM MUC16. Furthermore, ZmpC-induced removal of MUC16 from the epithelium leads to loss of the glycocalyx barrier function and enhanced internalization of the bacterium. These data suggest that removal of MAMs by bacterial enzymes may be an important virulence mechanism employed by disease-causing non opportunistic bacteria to gain access to epithelial cells to cause infection.
Collapse
Affiliation(s)
- Bharathi Govindarajan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Balaraj B. Menon
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Sandra Spurr-Michaud
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Komal Rastogi
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Michael S. Gilmore
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Pablo Argüeso
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ilene K. Gipson
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
85
|
A Time Course for Susceptibility to Staphylococcus aureus Respiratory Infection during Influenza in a Swine Model. INFLUENZA RESEARCH AND TREATMENT 2012; 2011:846910. [PMID: 23074662 PMCID: PMC3447286 DOI: 10.1155/2011/846910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 12/16/2011] [Accepted: 12/16/2011] [Indexed: 02/07/2023]
Abstract
Bacterial superinfections following influenza A virus (IAV) are predominant causes of morbidity in humans. The recent emergence of methicillin-resistant Staphylococcus aureus (MRSA) and highly virulent IAV strains has reduced treatment options. Development of an appropriate animal model to study secondary S. aureus infections may provide important information regarding disease pathogenesis. Pigs are natural hosts to both IAV and S. aureus and have respiratory physiology and immune response comparable to humans. To establish a time course of susceptibility to S. aureus after IAV infection, nursery pigs infected intranasally with IAV were challenged with MRSA at different time points. Lung pathology scores and MRSA CFU were evaluated in dual-infected animals after IAV infection. Flow cytometric analysis of bronchoalveolar lavage fluid indicated differences between treatments. These results demonstrate the appropriateness of an intranasal challenge model in nursery pigs for studying the pathogenesis of IAV and S. aureus coinfection and provide insights into the timeframe for susceptibility of IAV-infected pigs to secondary S. aureus infection.
Collapse
|
86
|
Extracellular superoxide dismutase in macrophages augments bacterial killing by promoting phagocytosis. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 178:2752-9. [PMID: 21641397 DOI: 10.1016/j.ajpath.2011.02.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 01/26/2011] [Accepted: 02/01/2011] [Indexed: 11/22/2022]
Abstract
Extracellular superoxide dismutase (EC-SOD) is abundant in the lung and limits inflammation and injury in response to many pulmonary insults. To test the hypothesis that EC-SOD has an important role in bacterial infections, wild-type and EC-SOD knockout (KO) mice were infected with Escherichia coli to induce pneumonia. Although mice in the EC-SOD KO group demonstrated greater pulmonary inflammation than did wild-type mice, there was less clearance of bacteria from their lungs after infection. Macrophages and neutrophils express EC-SOD; however, its function and subcellular localization in these inflammatory cells is unclear. In the present study, immunogold electron microscopy revealed EC-SOD in membrane-bound vesicles of phagocytes. These findings suggest that inflammatory cell EC-SOD may have a role in antibacterial defense. To test this hypothesis, phagocytes from wild-type and EC-SOD KO mice were evaluated. Although macrophages lacking EC-SOD produced more reactive oxygen species than did cells expressing EC-SOD after stimulation, they demonstrated significantly impaired phagocytosis and killing of bacteria. Overall, this suggests that EC-SOD facilitates clearance of bacteria and limits inflammation in response to infection by promoting bacterial phagocytosis.
Collapse
|
87
|
Matute-Bello G, Downey G, Moore BB, Groshong SD, Matthay MA, Slutsky AS, Kuebler WM. An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. Am J Respir Cell Mol Biol 2011; 44:725-38. [PMID: 21531958 PMCID: PMC7328339 DOI: 10.1165/rcmb.2009-0210st] [Citation(s) in RCA: 1326] [Impact Index Per Article: 102.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Acute lung injury (ALI) is well defined in humans, but there is no agreement as to the main features of acute lung injury in animal models. A Committee was organized to determine the main features that characterize ALI in animal models and to identify the most relevant methods to assess these features. We used a Delphi approach in which a series of questionnaires were distributed to a panel of experts in experimental lung injury. The Committee concluded that the main features of experimental ALI include histological evidence of tissue injury, alteration of the alveolar capillary barrier, presence of an inflammatory response, and evidence of physiological dysfunction; they recommended that, to determine if ALI has occurred, at least three of these four main features of ALI should be present. The Committee also identified key "very relevant" and "somewhat relevant" measurements for each of the main features of ALI and recommended the use of least one "very relevant" measurement and preferably one or two additional separate measurements to determine if a main feature of ALI is present. Finally, the Committee emphasized that not all of the measurements listed can or should be performed in every study, and that measurements not included in the list are by no means "irrelevant." Our list of features and measurements of ALI is intended as a guide for investigators, and ultimately investigators should choose the particular measurements that best suit the experimental questions being addressed as well as take into consideration any unique aspects of the experimental design.
Collapse
|
88
|
Sun S, Zhao G, Xiao W, Hu J, Guo Y, Yu H, Wu X, Tan Y, Zhou Y. Age-related sensitivity and pathological differences in infections by 2009 pandemic influenza A (H1N1) virus. Virol J 2011; 8:52. [PMID: 21299904 PMCID: PMC3041774 DOI: 10.1186/1743-422x-8-52] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 02/08/2011] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The highly pandemic 2009 influenza A H1N1 virus infection showed distinguished skewed age distribution with majority of infection and death in children and young adults. Although previous exposure to related antigen has been proposed as an explanation, the mechanism of age protection is still unknown. METHODS In this study, murine model of different ages were inoculated intranasally with H1N1 (A/Beijing/501/09) virus and the susceptibility and pathological response to 2009 H1N1 infection were investigated. RESULTS Our results showed that the younger mice had higher mortality rate when infected with the same dose of virus and the lethal dose increased with age. Immunohistochemical staining of H1N1 antigens in mice lung indicated infection was in the lower respiratory tract. Most bronchial and bronchiolar epithelial cells in 4-week mice were infected while only a minor percentage of those cells in 6-month and 1-year old mice did. The young mice developed much more severe lung lesions and had higher virus load in lung than the two older groups of mice while older mice formed more inducible bronchus-associated lymphoid tissue in their lungs and more severe damage in spleen. CONCLUSIONS These results suggest that young individuals are more sensitive to H1N1 infection and have less protective immune responses than older adults. The age factor should be considered when studying the pathogenesis and transmission of influenza virus and formulating strategies on vaccination and treatment.
Collapse
Affiliation(s)
- Shihui Sun
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Lawrenz MB. Model systems to study plague pathogenesis and develop new therapeutics. Front Microbiol 2010; 1:119. [PMID: 21687720 PMCID: PMC3109633 DOI: 10.3389/fmicb.2010.00119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/11/2010] [Indexed: 11/30/2022] Open
Abstract
The Gram negative bacterium Yersinia pestis can infect humans by multiple routes to cause plague. Three plague pandemics have occurred and Y. pestis has been linked to biowarfare in the past. The continued risk of plague as a bioweapon has prompted increased research to understand Y. pestis pathogenesis and develop new plague therapeutics. Several in vivo models have been developed for this research and are reviewed here.
Collapse
Affiliation(s)
- Matthew B Lawrenz
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Department of Microbiology and Immunology, University of Louisville School of Medicine Louisville, KY, USA
| |
Collapse
|
90
|
Kuiken T, van den Brand J, van Riel D, Pantin-Jackwood M, Swayne DE. Comparative pathology of select agent influenza a virus infections. Vet Pathol 2010; 47:893-914. [PMID: 20682805 DOI: 10.1177/0300985810378651] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Influenza A virus infections may spread rapidly in human populations and cause variable mortality. Two of these influenza viruses have been designated as select agents: 1918 H1N1 virus and highly pathogenic avian influenza (HPAI) virus. Knowledge of the pathology of these virus infections in humans, other naturally infected species, and experimental animals is important to understand the pathogenesis of influenza, to design appropriate models for evaluation of medical countermeasures, and to make correct diagnoses. The most important complication of influenza in humans is viral pneumonia, which often occurs with or is followed by bacterial pneumonia. Viremia and extrarespiratory disease are uncommon. HPAI viruses, including HPAI H5N1 virus, cause severe systemic disease in galliform species as well as in anseriform species and bird species of other orders. HPAI H5N1 virus infection also causes severe disease in humans and several species of carnivores. Experimental animals are used to model different aspects of influenza in humans, including uncomplicated influenza, pneumonia, and virus transmission. The most commonly used experimental animal species are laboratory mouse, domestic ferret, and cynomolgus macaque. Experimental influenza virus infections are performed in various other species, including domestic pig, guinea pig, and domestic cat. Each of these species has advantages and disadvantages that need to be assessed before choosing the most appropriate model to reach a particular goal. Such animal models may be applied for the development of more effective antiviral drugs and vaccines to protect humans from the threat of these virus infections.
Collapse
Affiliation(s)
- T Kuiken
- Erasmus MC, Department of Virology, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
91
|
Watanabe T, Bartrand TA, Weir MH, Omura T, Haas CN. Development of a dose-response model for SARS coronavirus. RISK ANALYSIS : AN OFFICIAL PUBLICATION OF THE SOCIETY FOR RISK ANALYSIS 2010; 30:1129-38. [PMID: 20497390 PMCID: PMC7169223 DOI: 10.1111/j.1539-6924.2010.01427.x] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In order to develop a dose-response model for SARS coronavirus (SARS-CoV), the pooled data sets for infection of transgenic mice susceptible to SARS-CoV and infection of mice with murine hepatitis virus strain 1, which may be a clinically relevant model of SARS, were fit to beta-Poisson and exponential models with the maximum likelihood method. The exponential model (k= 4.1 x l0(2)) could describe the dose-response relationship of the pooled data sets. The beta-Poisson model did not provide a statistically significant improvement in fit. With the exponential model, the infectivity of SARS-CoV was calculated and compared with those of other coronaviruses. The does of SARS-CoV corresponding to 10% and 50% responses (illness) were estimated at 43 and 280 PFU, respectively. Its estimated infectivity was comparable to that of HCoV-229E, known as an agent of human common cold, and also similar to those of some animal coronaviruses belonging to the same genetic group. Moreover, the exponential model was applied to the analysis of the epidemiological data of SARS outbreak that occurred at an apartment complex in Hong Kong in 2003. The estimated dose of SARS-CoV for apartment residents during the outbreak, which was back-calculated from the reported number of cases, ranged from 16 to 160 PFU/person, depending on the floor. The exponential model developed here is the sole dose-response model for SARS-CoV at the present and would enable us to understand the possibility for reemergence of SARS.
Collapse
Affiliation(s)
- Toru Watanabe
- Environmental Science Center, University of Tokyo, Tokyo 113-0033, Japan.
| | | | | | | | | |
Collapse
|
92
|
Lipscomb MF, Hutt J, Lovchik J, Wu T, Lyons CR. The pathogenesis of acute pulmonary viral and bacterial infections: investigations in animal models. ANNUAL REVIEW OF PATHOLOGY-MECHANISMS OF DISEASE 2010; 5:223-52. [PMID: 19824827 DOI: 10.1146/annurev-pathol-121808-102153] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acute viral and bacterial infections in the lower respiratory tract are major causes of morbidity and mortality worldwide. The proper study of pulmonary infections requires interdisciplinary collaboration among physicians and biomedical scientists to develop rational hypotheses based on clinical studies and to test these hypotheses in relevant animal models. Animal models for common lung infections are essential to understand pathogenic mechanisms and to clarify general mechanisms for host protection in pulmonary infections, as well as to develop vaccines and therapeutics. Animal models for uncommon pulmonary infections, such as those that can be caused by category A biothreat agents, are also very important because the infrequency of these infections in humans limits in-depth clinical studies. This review summarizes our understanding of innate and adaptive immune mechanisms in the lower respiratory tract and discusses how animal models for selected pulmonary pathogens can contribute to our understanding of the pathogenesis of lung infections and to the search for new vaccines and therapies.
Collapse
Affiliation(s)
- Mary F Lipscomb
- Departments of Pathology and University of New Mexico School of Medicine, Albuquerque, New Mexico 87131.
| | | | | | | | | |
Collapse
|
93
|
|
94
|
Nemec A, Pavlica Z, Svete AN, Eržen D, Crossley DA, Petelin M. LACK OF SOLUBLE TUMOR NECROSIS FACTOR ALPHA RECEPTOR 1 AND 2 AND INTERLEUKIN-1β COMPARTMENTALIZATION IN LUNGS OF MICE AFTER A SINGLE INTRATRACHEAL INOCULATION WITH LIVEPORPHYROMONAS GINGIVALIS. Exp Lung Res 2009; 35:605-20. [DOI: 10.1080/01902140902783381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
95
|
Boutoille D, Marechal X, Pichenot M, Chemani C, Guery B, Faure K. FITC-ALBUMIN AS A MARKER FOR ASSESSMENT OF ENDOTHELIAL PERMEABILITY IN MICE: COMPARISON WITH125I-ALBUMIN. Exp Lung Res 2009; 35:263-71. [DOI: 10.1080/01902140802632290] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
96
|
Fedson DS. Confronting the next influenza pandemic with anti-inflammatory and immunomodulatory agents: why they are needed and how they might work. Influenza Other Respir Viruses 2009; 3:129-42. [PMID: 19627370 PMCID: PMC4634679 DOI: 10.1111/j.1750-2659.2009.00090.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Despite the best efforts of influenza scientists, companies and health officials to prepare for the next pandemic, most of the world's people will not have access to affordable supplies of vaccines and antiviral agents. They will have to rely on 19th century public health 'technologies' to see them through. In the 21st century, science ought to be able to provide something better. Influenza scientists study the molecular characteristics of influenza viruses and their signaling effects in cell culture and animal models of infection. While these studies have been enormously informative, they have been unable to explain the system-wide effects of influenza on the host, the increased mortality of younger adults in the 1918 influenza pandemic and the much lower mortality rates in children who were more commonly infected with the 1918 virus. Experiments by non-influenza scientists have defined common cell signaling pathways for acute lung injury caused by different agents, including inactivated H5N1 influenza virus. These pathways include several molecular targets that are up-regulated in acute lung injury and down-regulated by anti-inflammatory and immunomodulatory agents, including statins, fibrates, and glitazones. These agents also help reverse the mitochondrial dysfunction that accompanies multi-organ failure, something often seen in fatal Influenza. Observational studies suggest that statins are beneficial in treating patients with pneumonia (there are no such studies for fibrates and glitazones). Other studies suggest that these agents might be able to 'roll back' the self-damaging host response of young adults to the less damaging response of children and thus save lives. Research is urgently needed to determine whether these and other agents that modify the host response might be useful in managing H5N1 influenza and the next pandemic.
Collapse
|
97
|
Abstract
Developing countries face unique difficulties preparing for an influenza pandemic. Our current top-down approach will not provide these countries with adequate supplies of vaccines and antiviral agents. Consequently, they will have to use a bottom-up approach based on inexpensive generic agents that either modify the host response to influenza virus or act as antiviral agents. Several of these agents have shown promise, and many are currently produced in developing countries. Investigators must primarily identify agents for managing infection in populations and not simply seek explanations for how they work. They must determine in which countries these agents are produced and define patterns of distribution and costs. Because prepandemic research cannot establish whether these agents will be effective in a pandemic, randomized controlled trials must begin immediately after a new pandemic virus has emerged. Without this research, industrialized and developing countries could face an unprecedented health crisis.
Collapse
|
98
|
Patel NC, Halvorson SJ, Sroller V, Arrington AS, Wong C, Smith EO, Vilchez RA, Butel JS. Viral regulatory region effects on vertical transmission of polyomavirus SV40 in hamsters. Virology 2009; 386:94-101. [PMID: 19181358 DOI: 10.1016/j.virol.2008.12.040] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 11/18/2008] [Accepted: 12/26/2008] [Indexed: 02/06/2023]
Abstract
Viral strain differences influence the oncogenic potential of polyomavirus simian virus 40 (SV40). We hypothesized that viral strain differences might also affect vertical transmission of SV40 in susceptible hosts. Pregnant Syrian golden hamsters were inoculated intraperitoneally with 10(7) plaque-forming units of SV40 and offspring were sacrificed post-delivery (1-21 days, 6 months). Organ extracts were analyzed for SV40 DNA by polymerase chain reaction assay. Transmission of SV40 from mother to offspring was detected in over half of litters. Most placentas were virus-positive. Mothers inoculated with SV40 strains containing complex regulatory regions transmitted virus more frequently than those infected with simple enhancer viruses (p<0.001). Virus was detected more often in progeny brain than in spleen (p<0.05). Several progeny were virus-positive at 6 months of age, suggesting viral persistence. Maternal animals retained virus in several tissues through day 21 and developed T-antigen antibodies. These results indicate that SV40 replicates in hamsters, vertical transmission of SV40 can occur, and the viral regulatory region influences transmission.
Collapse
Affiliation(s)
- Niraj C Patel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, MS: BCM385, Houston, TX 77030-3411, USA.
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Mikerov AN, Haque R, Gan X, Guo X, Phelps DS, Floros J. Ablation of SP-A has a negative impact on the susceptibility of mice to Klebsiella pneumoniae infection after ozone exposure: sex differences. Respir Res 2008; 9:77. [PMID: 19055785 PMCID: PMC2655296 DOI: 10.1186/1465-9921-9-77] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Accepted: 12/04/2008] [Indexed: 11/12/2022] Open
Abstract
Background Surfactant protein A (SP-A) enhances phagocytosis of bacteria, including Klebsiella pneumoniae, by alveolar macrophages. Ozone, a major air pollutant, can cause oxidation of surfactant and may influence lung immune function. Immune function may also be affected by sex-specific mechanisms. We hypothesized that ablation of SP-A has a negative impact on the susceptibility of mice to Klebsiella pneumoniae infection after ozone exposure, and that sex differences in the effect of ozone do exist. Methods Male and female SP-A (-/-) mice on the C57BL/6J background were exposed to ozone or to filtered air (FA) used as a control and then infected intratracheally with K. pneumoniae bacteria. Survival rate was monitored during a 14-day period. In addition, protein oxidation levels and in vivo phagocytosis were checked 1 h after inoculation of PBS used as a sham control and after inoculation of K. pneumoniae bacteria in PBS, respectively. Results We found: 1) ozone exposure followed by K. pneumoniae infection decreases survival and alveolar macrophage phagocytic function of SP-A (-/-) mice compared to filtered air exposure (p < 0.05), and females are more affected than males; 2) SP-A (-/-) mice (exposed either to ozone or FA) are more susceptible to infection with K. pneumoniae than wild type (WT) mice regarding their survival rate and macrophage phagocytic function; the phagocytic function of FA SP-A(-/-) is similar to that of ozone exposed WT. 3) ozone exposure appears to increase infiltration of PMNs, total protein, and SP-A oxidation in WT mice; infiltration of PMNs and total protein oxidation appears to be more pronounced in female mice in response to ozone; 4) ozone exposure increases SP-A oxidation in WT females significantly more than in males. Conclusion Absence (i.e. ablation of SP-A in SP-A (-/-) mice) or reduction of functional activity of SP-A (i.e. oxidation of SP-A in WT mice) increases the susceptibility of mice to experimental pneumonia after ozone exposure, and in both cases females are more affected by ozone exposure than males.
Collapse
Affiliation(s)
- Anatoly N Mikerov
- The Penn State Center for Host defense, Inflammation, and Lung Disease Research, Department of Pediatrics, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| | | | | | | | | | | |
Collapse
|
100
|
Neutrophil recruitment to the lungs during bacterial pneumonia. Infect Immun 2008; 77:568-75. [PMID: 19015252 DOI: 10.1128/iai.00832-08] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|