51
|
Jiang H, Zhang J, Zhang Z, Ren S, Zhang C. Effect of transplanted adipose‑derived stem cells in mice exhibiting idiopathic pulmonary fibrosis. Mol Med Rep 2015; 12:5933-8. [PMID: 26252797 DOI: 10.3892/mmr.2015.4178] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 05/15/2015] [Indexed: 11/06/2022] Open
Abstract
Stem cell‑based cell therapy has provided a promising method for the treatment of pulmonary diseases, including idiopathic pulmonary fibrosis (IPF). Furthermore, adipose‑derived stem cells (ADSCs) have been reported to be effective in lung repair and regeneration. In the current study, IPF was induced in mice by intratracheal instillation of bleomycin (BLM), and ADSCs were delivered systemically into the mice via the tail vein to evaluate the effects of ADSC transplantation. The ADSC engraftment rate and morphometric changes in lung tissue samples in vivo were investigated by histochemistry and immunohistochemistry, as well as by western blotting. The results indicated that ADSCs may relieve IPF and provide a significant contribution to lung repair when administered at an early stage.
Collapse
Affiliation(s)
- Hongbin Jiang
- Department of Anatomy, Second Military Medical University, Shanghai 200433, P.R. China
| | - Jun Zhang
- Department of Laboratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Zhemin Zhang
- Department of Respiratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Shengxiang Ren
- Department of Oncology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai 200433, P.R. China
| | - Chuansen Zhang
- Department of Anatomy, Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
52
|
Möbius MA, Thébaud B. Stem Cells and Their Mediators - Next Generation Therapy for Bronchopulmonary Dysplasia. Front Med (Lausanne) 2015; 2:50. [PMID: 26284246 PMCID: PMC4520239 DOI: 10.3389/fmed.2015.00050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/15/2015] [Indexed: 01/13/2023] Open
Abstract
Bronchopulmonary dysplasia (BPD) remains a major complication of premature birth. Despite great achievements in perinatal medicine over the past decades, there is no treatment for BPD. Recent insights into the biology of stem/progenitor cells have ignited the hope of regenerating damaged organs. Animal experiments revealed promising lung protection/regeneration with stem/progenitor cells in experimental models of BPD and led to first clinical studies in infants. However, these therapies are still experimental and knowledge on the exact mechanisms of action of these cells is limited. Furthermore, heterogeneity of the therapeutic cell populations and missing potency assays currently limit our ability to predict a cell product’s efficacy. Here, we review the therapeutic potential of mesenchymal stromal, endothelial progenitor, and amniotic epithelial cells for BPD. Current knowledge on the mechanisms behind the beneficial effects of stem cells is briefly summarized. Finally, we discuss the obstacles constraining their transition from bench-to-bedside and present potential approaches to overcome them.
Collapse
Affiliation(s)
- Marius A Möbius
- Department of Neonatology and Pediatric Critical Care Medicine, Medical Faculty, University Hospital Carl Gustav Carus, Technische Universität Dresden , Dresden , Germany ; DFG Research Center and Cluster of Excellence for Regenerative Therapies (CRTD), Technische Universität Dresden , Dresden , Germany ; Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa , Ottawa, ON , Canada
| | - Bernard Thébaud
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa , Ottawa, ON , Canada ; Division of Neonatology, Department of Pediatrics, Children's Hospital of Eastern Ontario, University of Ottawa , Ottawa, ON , Canada
| |
Collapse
|
53
|
Abstract
Bronchopulmonary dysplasia (BPD), the chronic lung disease associated with preterm birth, results from the disruption of normal pulmonary vascular and alveolar growth. Though BPD was once described as primarily due to postnatal injury from mechanical ventilation and oxygen therapy after preterm birth, it is increasingly appreciated that BPD results from antenatal and perinatal factors that interrupt lung development in infants born at the extremes of prematurity. The lung in BPD consists of a simplified parenchymal architecture that limits gas exchange and leads to increased cardiopulmonary morbidity and mortality. This review outlines recent advances in the understanding of pulmonary vascular development and describes how the disruption of these mechanisms results in BPD. We point to future therapies that may augment postnatal vascular growth to prevent and treat this severe chronic lung disease.
Collapse
Affiliation(s)
- Christopher D Baker
- Pediatric Heart Lung Center, Department of Pediatrics, University of Colorado School of Medicine, Aurora, Colo., USA
| | | |
Collapse
|
54
|
Mesenchymal stromal cells for sphincter regeneration. Adv Drug Deliv Rev 2015; 82-83:123-36. [PMID: 25451135 DOI: 10.1016/j.addr.2014.10.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 09/29/2014] [Accepted: 10/15/2014] [Indexed: 02/06/2023]
Abstract
Stress urinary incontinence (SUI), defined as the involuntary loss of considerable amounts of urine during increased abdominal pressure (exertion, effort, sneezing, coughing, etc.), is a severe problem to the individuals affected and a significant medical, social and economic challenge. SUI is associated with pelvic floor debility, absence of detrusor contraction, or a loss of control over the sphincter muscle apparatus. The pathology includes an increasing loss of muscle cells, replacement of muscular tissue with fibrous tissue, and general aging associated processes of the sphincter complex. When current therapies fail to cure or improve SUI, application of regeneration-competent cells may be an alternative therapeutic option. Here we discuss different aspects of the biology of mesenchymal stromal cells, which are relevant to their clinical applications and for regenerating the sphincter complex. However, there are reports in favor of and against cell-based therapies. We therefore summarize the potential and the risks of cell-based therapies for the treatment of SUI.
Collapse
|
55
|
Abstract
Ageing is the main risk factor for major non-communicable chronic lung diseases, including chronic obstructive pulmonary disease, most forms of lung cancer and idiopathic pulmonary fibrosis. While the prevalence of these diseases continually increases with age, their respective incidence peaks at different times during the lifespan, suggesting specific effects of ageing on the onset and/or pathogenesis of chronic obstructive pulmonary disease, lung cancer and idiopathic pulmonary fibrosis. Recently, the nine hallmarks of ageing have been defined as cell-autonomous and non-autonomous pathways involved in ageing. Here, we review the available evidence for the involvement of each of these hallmarks in the pathogenesis of chronic obstructive pulmonary disease, lung cancer, or idiopathic pulmonary fibrosis. Importantly, we propose an additional hallmark, “dysregulation of the extracellular matrix”, which we argue acts as a crucial modifier of cell-autonomous changes and functions, and as a key feature of the above-mentioned lung diseases.
Collapse
|
56
|
Gao Y, Duran S, Lydon JP, DeMayo FJ, Burghardt RC, Bayless KJ, Bartholin L, Li Q. Constitutive activation of transforming growth factor Beta receptor 1 in the mouse uterus impairs uterine morphology and function. Biol Reprod 2014; 92:34. [PMID: 25505200 DOI: 10.1095/biolreprod.114.125146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Despite increasing evidence pointing to the essential involvement of the transforming growth factor beta (TGFB) superfamily in reproduction, a definitive role of TGFB signaling in the uterus remains to be unveiled. In this study, we generated a gain-of-function mouse model harboring a constitutively active (CA) TGFB receptor 1 (TGFBR1), the expression of which was conditionally induced by the progesterone receptor (Pgr)-Cre recombinase. Overactivation of TGFB signaling was verified by enhanced phosphorylation of SMAD2 and increased expression of TGFB target genes in the uterus. TGFBR1 Pgr-Cre CA mice were sterile. Histological, cellular, and molecular analyses demonstrated that constitutive activation of TGFBR1 in the mouse uterus promoted formation of hypermuscled uteri. Accompanying this phenotype was the upregulation of a battery of smooth muscle genes in the uterus. Furthermore, TGFB ligands activated SMAD2/3 and stimulated the expression of a smooth muscle maker gene, alpha smooth muscle actin (ACTA2), in human uterine smooth muscle cells. Immunofluorescence microscopy identified a marked reduction of uterine glands in TGFBR1 Pgr-Cre CA mice within the endometrial compartment that contained myofibroblast-like cells. Thus, constitutive activation of TGFBR1 in the mouse uterus caused defects in uterine morphology and function, as evidenced by abnormal myometrial structure, dramatically reduced uterine glands, and impaired uterine decidualization. These results underscore the importance of a precisely controlled TGFB signaling system in establishing a uterine microenvironment conducive to normal development and function.
Collapse
Affiliation(s)
- Yang Gao
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Samantha Duran
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - John P Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Francesco J DeMayo
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Robert C Burghardt
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| | - Kayla J Bayless
- Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, Texas
| | - Laurent Bartholin
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR5286, Université Lyon 1, Centre Léon Bérard, Lyon, France
| | - Qinglei Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas
| |
Collapse
|
57
|
Collins JJP, Thébaud B. Lung mesenchymal stromal cells in development and disease: to serve and protect? Antioxid Redox Signal 2014; 21:1849-62. [PMID: 24350665 DOI: 10.1089/ars.2013.5781] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
SIGNIFICANCE Bronchopulmonary dysplasia (BPD) is a disease of the developing lung that afflicts extreme preterm infants in the neonatal intensive care unit. Follow-up studies into adulthood show that BPD is not merely a problem of the neonatal period, as it also may predispose to early-onset emphysema and poor lung function in later life. RECENT ADVANCES The increasing promise of bone marrow- or umbilical cord-derived mesenchymal stromal cells (MSCs) to repair neonatal and adult lung diseases may for the first time offer the chance to make substantial strides in improving the outcome of extreme premature infants at risk of developing BPD. As more knowledge has been obtained on MSCs over the past decades, it has become clear that each organ has its own reservoir of endogenous MSCs, including the lung. CRITICAL ISSUES We have only barely scratched the surface on what resident lung MSCs exactly are and what their role and function in lung development may be. Moreover, what happens to these putative repair cells in BPD when alveolar development goes awry and why do their counterparts from the bone marrow and umbilical cord succeed in restoring normal alveolar development when they themselves do not? FUTURE DIRECTIONS Much work remains to be carried out to validate lung MSCs, but with the high potential of MSC-based treatment for BPD and other lung diseases, a thorough understanding of the endogenous lung MSC will be pivotal to get to the bottom of these diseases.
Collapse
Affiliation(s)
- Jennifer J P Collins
- 1 Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa , Ottawa, Canada
| | | |
Collapse
|
58
|
Sen N, Weingarten M, Peter Y. Very late antigen-5 facilitates stromal progenitor cell differentiation into myofibroblast. Stem Cells Transl Med 2014; 3:1342-53. [PMID: 25273539 DOI: 10.5966/sctm.2014-0014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Fibrotic disease is associated with abrogated stromal cell proliferation and activity. The precise identity of the cells that drive fibrosis remains obscure, in part because of a lack of information on their lineage development. To investigate the role of an early stromal progenitor cell (SPC) on the fibrotic process, we selected for, and monitored the stages of, fibroblast development from a previously reported free-floating anchorage-independent cell (AIC) progenitor population. Our findings demonstrate that organotypic pulmonary, cardiac, and renal fibroblast commitment follows a two-step process of attachment and remodeling in culture. Cell differentiation was confirmed by the inability of SPCs to revert to the free-floating state and functional mesenchymal stem/stromal cell (MSC) differentiation into osteoblast, adipocyte, chondrocyte, and fibroblastic lineages. The myofibroblastic phenotype was reflected by actin stress-fiber formation, α-smooth muscle production, and a greater than threefold increase in proliferative activity compared with that of the progenitors. SPC-derived pulmonary myofibroblasts demonstrated a more than 300-fold increase in fibronectin-1 (Fn1), collagen, type 1, α1, integrin α-5 (Itga5), and integrin β-1 (Itgb1) transcript levels. Very late antigen-5 (ITGA5/ITGB1) protein cluster formations were also prevalent on the differentiated cells. Normalized SPC-derived myofibroblast expression patterns reflected those of primary cultured lung myofibroblasts. Intratracheal implantation of pulmonary AICs into recipient mouse lungs resulted in donor cell FN1 production and evidence of epithelial derivation. SPC derivation into stromal tissue in vitro and in vivo and the observation that MSC and fibroblast lineages share a common ancestor could potentially lead to personalized antifibrotic therapies.
Collapse
Affiliation(s)
- Namita Sen
- Department of Biology, Yeshiva University, New York, New York, USA; Department of Pulmonary Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, USA
| | - Mark Weingarten
- Department of Biology, Yeshiva University, New York, New York, USA; Department of Pulmonary Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, USA
| | - Yakov Peter
- Department of Biology, Yeshiva University, New York, New York, USA; Department of Pulmonary Medicine, Albert Einstein College of Medicine, Yeshiva University, Bronx, New York, USA
| |
Collapse
|
59
|
Abman SH, Baker C, Gien J, Mourani P, Galambos C. The Robyn Barst Memorial Lecture: Differences between the fetal, newborn, and adult pulmonary circulations: relevance for age-specific therapies (2013 Grover Conference series). Pulm Circ 2014; 4:424-40. [PMID: 25621156 PMCID: PMC4278602 DOI: 10.1086/677371] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 04/30/2014] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) contributes to poor outcomes in diverse diseases in newborns, infants, and children. Many aspects of pediatric PAH parallel the pathophysiology and disease courses observed in adult patients; however, critical maturational differences exist that contribute to distinct outcomes and therapeutic responses in children. In comparison with adult PAH, disruption of lung vascular growth and development, or angiogenesis, plays an especially prominent role in the pathobiology of pediatric PAH. In children, abnormalities of lung vascular development have consequences well beyond the adverse hemodynamic effects of PAH alone. The developing endothelium also plays critical roles in development of the distal airspace, establishing lung surface area for gas exchange and maintenance of lung structure throughout postnatal life through angiocrine signaling. Impaired functional and structural adaptations of the pulmonary circulation during the transition from fetal to postnatal life contribute significantly to poor outcomes in such disorders as persistent pulmonary hypertension of the newborn, congenital diaphragmatic hernia, bronchopulmonary dysplasia, Down syndrome, and forms of congenital heart disease. In addition, several studies support the hypothesis that early perinatal events that alter lung vascular growth or function may set the stage for increased susceptibility to PAH in adult patients ("fetal programming"). Thus, insights into basic mechanisms underlying unique features of the developing pulmonary circulation, especially as related to preservation of endothelial survival and function, may provide unique therapeutic windows and distinct strategies to improve short- and long-term outcomes of children with PAH.
Collapse
Affiliation(s)
- Steven H. Abman
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Christopher Baker
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Jason Gien
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Peter Mourani
- Department of Pediatrics, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| | - Csaba Galambos
- Department of Pathology, Pediatric Heart Lung Center, University of Colorado School of Medicine and Childrens Hospital Colorado, Aurora, Colorado, USA
| |
Collapse
|
60
|
Siani A, Tirelli N. Myofibroblast differentiation: main features, biomedical relevance, and the role of reactive oxygen species. Antioxid Redox Signal 2014; 21:768-85. [PMID: 24279926 DOI: 10.1089/ars.2013.5724] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
SIGNIFICANCE Myofibroblasts are prototypical fibrotic cells, which are involved in a number of more or less pathological conditions, from foreign body reactions to scarring, from liver, kidney, or lung fibrosis to neoplastic phenomena. The differentiation of precursor cells (not only of fibroblastic nature) is characterized by a complex interplay between soluble factors (growth factors such as transforming growth factor β1, reactive oxygen species [ROS]) and material properties (matrix stiffness). RECENT ADVANCES The last 15 years have seen very significant advances in the identification of appropriate differentiation markers, in the understanding of the differentiation mechanism, and above all, the involvement of ROS as causative and persistence factors. CRITICAL ISSUES The specific mechanisms of action of ROS remain largely unknown, although evidence suggests that both intracellular and extracellular phenomena play a role. FUTURE DIRECTIONS Approaches based on antioxidant (ROS-scavenging) principles and on the potentiation of nitric oxide signaling hold much promise in view of a pharmacological therapy of fibrotic phenomena. However, how to make the active principles available at the target sites is yet a largely neglected issue.
Collapse
Affiliation(s)
- Alessandro Siani
- 1 School of Pharmacy and Pharmaceutical Sciences, University of Manchester , Manchester, United Kingdom
| | | |
Collapse
|
61
|
Popova AP, Bentley JK, Cui TX, Richardson MN, Linn MJ, Lei J, Chen Q, Goldsmith AM, Pryhuber GS, Hershenson MB. Reduced platelet-derived growth factor receptor expression is a primary feature of human bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 2014; 307:L231-9. [PMID: 24907056 DOI: 10.1152/ajplung.00342.2013] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Animal studies have shown that platelet-derived growth factor (PDGF) signaling is required for normal alveolarization. Changes in PDGF receptor (PDGFR) expression in infants with bronchopulmonary dysplasia (BPD), a disease of hypoalveolarization, have not been examined. We hypothesized that PDGFR expression is reduced in neonatal lung mesenchymal stromal cells (MSCs) from infants who develop BPD. MSCs from tracheal aspirates of premature infants requiring mechanical ventilation in the first week of life were studied. MSC migration was assessed in a Boyden chamber. Human lung tissue was obtained from the University of Rochester Neonatal Lung Biorepository. Neonatal mice were exposed to air or 75% oxygen for 14 days. PDGFR expression was quantified by qPCR, immunoblotting, and stereology. MSCs were isolated from 25 neonates (mean gestational age 27.7 wk); 13 developed BPD and 12 did not. MSCs from infants who develop BPD showed lower PDGFR-α and PDGFR-β mRNA and protein expression and decreased migration to PDGF isoforms. Lungs from infants dying with BPD show thickened alveolar walls and paucity of PDGFR-α-positive cells in the dysmorphic alveolar septa. Similarly, lungs from hyperoxia-exposed neonatal mice showed lower expression of PDGFR-α and PDGFR-β, with significant reductions in the volume of PDGFR-α-positive alveolar tips. In conclusion, MSCs from infants who develop BPD hold stable alterations in PDGFR gene expression that favor hypoalveolarization. These data demonstrate that defective PDGFR signaling is a primary feature of human BPD.
Collapse
Affiliation(s)
- Antonia P Popova
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - J Kelley Bentley
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Tracy X Cui
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Michelle N Richardson
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Marisa J Linn
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Jing Lei
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Qiang Chen
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Adam M Goldsmith
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Gloria S Pryhuber
- Department of Pediatrics, University of Rochester, Rochester, New York
| | - Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan; Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan; and
| |
Collapse
|
62
|
Di Bernardo J, Maiden MM, Hershenson MB, Kunisaki SM. Amniotic fluid derived mesenchymal stromal cells augment fetal lung growth in a nitrofen explant model. J Pediatr Surg 2014; 49:859-64; discussion 864-5. [PMID: 24888823 DOI: 10.1016/j.jpedsurg.2014.01.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2014] [Accepted: 01/27/2014] [Indexed: 01/18/2023]
Abstract
PURPOSE Recent experimental work suggests the therapeutic role of mesenchymal stromal cells (MSCs) during lung morphogenesis. The purpose of this study was to investigate the potential paracrine effects of amniotic fluid-derived MSCs (AF-MSCs) on fetal lung growth in a nitrofen explant model. METHODS Pregnant Sprague-Dawley dams were gavage fed nitrofen on gestational day 9.5 (E9.5). E14.5 lung explants were subsequently harvested and cultured ex vivo for three days on filter membranes in conditioned media from rat AF-MSCs isolated from control (AF-Ctr) or nitrofen-exposed (AF-Nitro) dams. The lungs were analyzed morphometrically and by quantitative gene expression. RESULTS Although there were no significant differences in total lung surface area among hypoplastic lungs, there were significant increases in terminal budding among E14.5+3 nitrofen explants exposed to AF-Ctr compared to explants exposed to medium alone (58.8±8.4 vs. 39.0±10.0 terminal buds, respectively; p<0.05). In contrast, lungs cultured in AF-Nitro medium failed to augment terminal budding. Nitrofen explants exposed to AF-Ctr showed significant upregulation of surfactant protein C to levels observed in normal fetal lungs. CONCLUSIONS AF-MSCs can augment branching morphogenesis and lung epithelial maturation in a fetal explant model of pulmonary hypoplasia. Cell therapy using donor-derived AF-MSCs may represent a novel strategy for the treatment of fetal congenital diaphragmatic hernia.
Collapse
Affiliation(s)
- Julie Di Bernardo
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Michael M Maiden
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA
| | - Marc B Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Health System, Ann Arbor, MI, USA
| | - Shaun M Kunisaki
- Department of Surgery, University of Michigan Health System, Ann Arbor, MI, USA.
| |
Collapse
|
63
|
Kern G, Mair SM, Noppert SJ, Jennings P, Schramek H, Rudnicki M, Mueller GA, Mayer G, Koppelstaetter C. Tacrolimus increases Nox4 expression in human renal fibroblasts and induces fibrosis-related genes by aberrant TGF-beta receptor signalling. PLoS One 2014; 9:e96377. [PMID: 24816588 PMCID: PMC4015940 DOI: 10.1371/journal.pone.0096377] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 04/07/2014] [Indexed: 12/18/2022] Open
Abstract
Chronic nephrotoxicity of immunosuppressives is one of the main limiting factors in the long-term outcome of kidney transplants, leading to tissue fibrosis and ultimate organ failure. The cytokine TGF-β is considered a key factor in this process. In the human renal fibroblast cell line TK-173, the macrolide calcineurin inhibitor tacrolimus (FK-506) induced TGF-β-like effects, manifested by increased expression of NAD(P)H-oxidase 4 (Nox4), transgelin, tropomyosin 1, and procollagen α1(V) mRNA after three days. The macrolide mTOR inhibitor rapamycin had similar effects, while cyclosporine A did not induce fibrose-related genes. Concentration dependence curves were sigmoid, where mRNA expression was induced already at low nanomolar levels of tacrolimus, and reached saturation at 100-300 nM. The effects were independent of extracellular TGF-β as confirmed by the use of neutralizing antibodies, and thus most likely caused by aberrant TGF-β receptor signaling, where binding of tacrolimus to the regulatory FKBP12 protein results in a "leaky" TGF-β receptor. The myofibroblast marker α-smooth muscle actin was neither induced by tacrolimus nor by TGF-β1, indicating an incomplete activation of TK-173 fibroblasts under culture conditions. Tacrolimus- and TGF-β1-induced Nox4 protein upregulation was confirmed by Western blotting, and was accompanied by a rise in intracellular H2O2 concentration. Si-RNA mediated knock-down of Nox4 expression prevented up-regulation of procollagen α1(V) mRNA in tacrolimus-treated cells, but induced procollagen α1(V) expression in control cells. Nox4 knock-down had no significant effect on the other genes tested. TGF-β is a key molecule in fibrosis, and the constant activation of aberrant receptor signaling by tacrolimus might contribute to the long-term development of interstitial kidney fibrosis in immunosuppressed patients. Nox4 levels possibly play a regulatory role in these processes.
Collapse
Affiliation(s)
- Georg Kern
- Nephrology and Hypertension, Innsbruck Medical University, Innsbruck, Austria
| | - Sabine M. Mair
- Clinical Immunology and Infectious Diseases, Innsbruck Medical University, Innsbruck, Austria
| | - Susie-Jane Noppert
- Nephrology and Hypertension, Innsbruck Medical University, Innsbruck, Austria
| | - Paul Jennings
- Physiology, Innsbruck Medical University, Innsbruck, Austria
| | - Herbert Schramek
- Nephrology and Hypertension, Innsbruck Medical University, Innsbruck, Austria
| | - Michael Rudnicki
- Nephrology and Hypertension, Innsbruck Medical University, Innsbruck, Austria
| | - Gerhard A. Mueller
- Rheumatology and Nephrology, University of Goettingen, Goettingen, Germany
| | - Gert Mayer
- Nephrology and Hypertension, Innsbruck Medical University, Innsbruck, Austria
| | | |
Collapse
|
64
|
Hirota N, McCuaig S, O'Sullivan MJ, Martin JG. Serotonin augments smooth muscle differentiation of bone marrow stromal cells. Stem Cell Res 2014; 12:599-609. [DOI: 10.1016/j.scr.2014.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Revised: 02/05/2014] [Accepted: 02/05/2014] [Indexed: 11/26/2022] Open
|
65
|
The differentiation of human adipose-derived stem cells towards a urothelium-like phenotype in vitro and the dynamic temporal changes of related cytokines by both paracrine and autocrine signal regulation. PLoS One 2014; 9:e95583. [PMID: 24752317 PMCID: PMC3994076 DOI: 10.1371/journal.pone.0095583] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/28/2014] [Indexed: 02/07/2023] Open
Abstract
Purpose To investigate the differentiation ability of human adipose-derived stem cells (ASCs) towards urothelium-like cells in vitro and the dynamic changes of related cytokines and cytokine receptors in the culture medium. Materials and Methods The ASCs were induced using both conditioned media (CM) and the transwell co-culture system with an immortalized urothelium cell line (SV-HUC-1,HUC) for 21 days. Protein and mRNA expression of the mature urothelium specific markers uroplakin-IA (UP-1A) and uroplakin-II (UP-II) were detected by immunofluorescence and quantitative real-time PCR, respectively. Array detection was used to screen 41 cytokines and receptors in the upper medium of urothelium, non-induced ASCs and urothelium-induced ASCs at three time points, early (12 hours), intermediate (7 days) and late (21 days). Results After induction for 7 days, the ASCs grown in both CM and transwell co-culture system expressed uroplakin-IA (13.54±2.00%; 17.28±1.84%) and uroplakin-II (19.49±1.73%; 13.98±1.47%). After induction for 21 days, ASCs grown in co-culture had significantly increased expression of uroplakin-IA (48.03±1.25%; 49.57±2.85%) and uroplakin-II (45.38±2.50%; 46.58±1.95%). In the upper medium of urothelium, 28 cytokines and 8 cytokine receptors had significantly higher expression than the counterpart of non-induced ASCs. After 7 days induction, the expression of 22 cytokines and 8 cytokine receptors was significantly elevated in the upper medium of induced ASCs compared to non-induced ASCs. At the early and intermediate time points, ASCs secreted high levels of relative cytokines and soluble receptors, but their expressions decreased significantly at the late time point. Conclusion The adipose-derived stem cells have the potential to be differentiated into urothelium-like cells in vitro by both CM and transwell co-culture system with mature urothelium. Numerous cytokines and receptors were involved in the differentiation process with dynamic temporal changes by both paracrine and autocrine signal regulation. Further studies should be carried out to determine the detailed mechanism of cytokines and receptors and to enhance the urothelium differentiation efficiency of ASCs.
Collapse
|
66
|
Collins JJP, Thébaud B. Progenitor cells of the distal lung and their potential role in neonatal lung disease. ACTA ACUST UNITED AC 2014; 100:217-26. [PMID: 24619857 DOI: 10.1002/bdra.23227] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 01/14/2014] [Accepted: 01/18/2014] [Indexed: 12/21/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is the most common adverse outcome in extreme preterm neonates (born before 28 weeks gestation). BPD is characterized by interrupted lung growth and may predispose to early-onset emphysema and poor lung function in later life. At present, there is no treatment for BPD. Recent advances in stem/progenitor cell biology have enabled the exploration of endogenous lung progenitor populations in health and disease. In parallel, exogenous stem/progenitor cell administration has shown promise in protecting the lung from injury in the experimental setting. This review will provide an outline of the progenitor populations that have currently been identified in all tissue compartments of the distal lung and how they may be affected in BPD. A thorough understanding of the lung's endogenous progenitor populations during normal development, injury and repair may one day allow us to harness their regenerative capacity.
Collapse
Affiliation(s)
- Jennifer J P Collins
- Regenerative Medicine Program, Sprott Centre for Stem Cell Research, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, Ontario, Canada
| | | |
Collapse
|
67
|
Conditioned medium derived from mesenchymal stem cells culture as a intravesical therapy for cystitis interstitials. Med Hypotheses 2014; 82:670-3. [PMID: 24679668 DOI: 10.1016/j.mehy.2014.02.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Accepted: 02/24/2014] [Indexed: 12/21/2022]
Abstract
The treatment of Interstinal Cystitisis (IC) is still challenge for urologist. Available therapies do not result in long-term control of symptoms and do not provide pain relive to patients. Unique abilities of mesenchymal stem cells (MSC) could be used to develop new treatment approaches for Interstitial Cystitis. Conditioned Medium (CM) derived from MSC culture is rich in plenty of growth factors, cytokines and trophic agents which were widely reported to enhance regeneration of urinary bladder in different conditions. This ready mixture of growth factors could be used to develop intravesical therapy for patients with IC. MSC-CM has anti-apoptotic, anti-inflammatory, supportive, angiogenic, immunosuppressive and immunomodulative properties and seems to be ideal substance to prevent IC recurrence and to create favorable environment for regeneration of damaged bladder wall.
Collapse
|
68
|
Hynes K, Menicanin D, Gronthos S, Bartold MP. Differentiation of iPSC to Mesenchymal Stem-Like Cells and Their Characterization. Methods Mol Biol 2014; 1357:353-74. [PMID: 25468410 DOI: 10.1007/7651_2014_142] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSC) are a unique population of adult stem cells that have the capacity to differentiate into numerous cell types as well as the ability to modulate the immune system. As such, MSC represent a promising stem cell population for use in the clinical treatment of a range of disorders involving tissue regeneration as well as the immune system. The lack of accessibility to MSC is currently limiting the use of MSC in mainstream clinical treatment strategies. It is therefore imperative for the future success of stem cell-based treatment approaches that are more reliable, and accessible sources of MSC are identified. The present chapter describes a method for generating MSC-like cells from induced pluripotent stem cells (iPSC), with equivalent growth and functional properties to parental MSC populations.
Collapse
Affiliation(s)
- Kim Hynes
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide, Adelaide, SA, Australia. .,Mesenchymal Stem Cell Laboratory, School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia. .,Mesenchymal Stem Cell Laboratory, Cancer Theme, Level 5 South, SAHMRI, North Terrace, Adelaide, SA, Australia.
| | - Danijela Menicanin
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide, Adelaide, SA, Australia.,Mesenchymal Stem Cell Laboratory, Cancer Theme, Level 5 South, SAHMRI, North Terrace, Adelaide, SA, Australia.,Mesenchymal Stem Cell Laboratory, School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, Cancer Theme, Level 5 South, SAHMRI, North Terrace, Adelaide, SA, Australia.,Mesenchymal Stem Cell Laboratory, School of Medical Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Mark P Bartold
- Colgate Australian Clinical Dental Research Centre, School of Dentistry, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
69
|
Vyas-Read S, Wang W, Kato S, Colvocoresses-Dodds J, Fifadara NH, Gauthier TW, Helms MN, Carlton DP, Brown LAS. Hyperoxia induces alveolar epithelial-to-mesenchymal cell transition. Am J Physiol Lung Cell Mol Physiol 2013; 306:L326-40. [PMID: 24375795 DOI: 10.1152/ajplung.00074.2013] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Myofibroblast accumulation is a pathological feature of lung diseases requiring oxygen therapy. One possible source for myofibroblasts is through the epithelial-to-mesenchymal transition (EMT) of alveolar epithelial cells (AEC). To study the effects of oxygen on alveolar EMT, we used RLE-6TN and ex vivo lung slices and found that hyperoxia (85% O2, H85) decreased epithelial proteins, presurfactant protein B (pre-SpB), pro-SpC, and lamellar protein by 50% and increased myofibroblast proteins, α-smooth muscle actin (α-SMA), and vimentin by over 200% (P < 0.05). In AEC freshly isolated from H85-treated rats, mRNA for pre-SpB and pro-SpC was diminished by ∼50% and α-SMA was increased by 100% (P < 0.05). Additionally, H85 increased H2O2 content, and H2O2 (25-50 μM) activated endogenous transforming growth factor-β1 (TGF-β1), as evident by H2DCFDA immunofluorescence and ELISA (P < 0.05). Both hyperoxia and H2O2 increased SMAD3 phosphorylation (260% of control, P < 0.05). Treating cultured cells with TGF-β1 inhibitors did not prevent H85-induced H2O2 production but did prevent H85-mediated α-SMA increases and E-cadherin downregulation. Finally, to determine the role of TGF-β1 in hyperoxia-induced EMT in vivo, we evaluated AEC from H85-treated rats and found that vimentin increased ∼10-fold (P < 0.05) and that this effect was prevented by intraperitoneal TGF-β1 inhibitor SB-431542. Additionally, SB-431542 treatment attenuated changes in alveolar histology caused by hyperoxia. Our studies indicate that hyperoxia promotes alveolar EMT through a mechanism that is dependent on activation of TGF-β1 signaling.
Collapse
|
70
|
Yao L, Liu CJ, Luo Q, Gong M, Chen J, Wang LJ, Huang Y, Jiang X, Xu F, Li TY, Shu C. Protection against hyperoxia-induced lung fibrosis by KGF-induced MSCs mobilization in neonatal rats. Pediatr Transplant 2013; 17:676-82. [PMID: 23919829 DOI: 10.1111/petr.12133] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/07/2013] [Indexed: 01/14/2023]
Abstract
MSCs have been shown to improve functional and pathological outcome in lung fibrosis. However, low in vivo cell engraftment of the transplanted cells limits their overall effectiveness. KGF (also known as FGF-7) is a critical mediator of pulmonary epithelial repair through stimulation of epithelial cell proliferation. However, the role of KGF in MSCs and its therapeutic effects have not been identified. In this study, we investigated the effect of KGF on MSCs and its preventive role in hyperoxia-induced fibrosis in neonatal rats. Neonatal rats exposed to normoxia or hyperoxia were randomly assigned to receive intraperitoneal injections of normal saline (PL), MSCs, or KGF pretreated MSCs on the fourth day of exposure. Our results showed that as compared to PL, while MSCs attenuated lung fibrosis, KGF pretreated MSCs exhibited enhanced preventive effect against lung fibrosis. This effect was partly attributed to enhanced mobilization of MSCs to the fibrotic lungs. In addition, the SHH signaling pathway, which is associated with the differentiation of stem cells was activated by KGF. Our data suggest that MSCs, especially KGF preconditioned MSCs, can attenuate lung fibrosis and KGF may regulate the MSCs behavior by activating SHH pathway.
Collapse
Affiliation(s)
- Lan Yao
- Department of Intensive Care Unit, Children's Hospital of Chongqing Medical University, Chongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Center for Child Development and Disorders, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Abstract
PURPOSE OF REVIEW Pulmonary hypertension contributes significantly to morbidity and mortality of chronic lung disease of infancy, or bronchopulmonary dysplasia (BPD). Advances in pulmonary vascular biology over the past few decades have led to new insights into the pathogenesis of BPD; however, many unique issues persist regarding our understanding of pulmonary vascular development and disease in preterm infants at risk for chronic lung disease. RECENT FINDINGS Recent studies have highlighted the important contribution of the developing pulmonary circulation to lung growth in the setting of preterm birth. These studies suggest that there is a spectrum of pulmonary vascular disease (PVD) in BPD rather than a simple question of whether or not pulmonary hypertension is present. Epidemiological studies underscore gaps in our understanding of PVD in the context of BPD, including universally accepted definitions, approaches to diagnosis and treatment, and patient outcomes. Unfortunately, therapeutic strategies for pulmonary hypertension in BPD are based on small observational studies with poorly defined endpoints and rely on results from older children and adult studies. Yet, unique characteristics of this population create other potential risks for the adoption of these strategies. SUMMARY Despite many recent advances, PVD remains an important contributor to poor outcomes in preterm infants with BPD. Substantial challenges persist, especially with regard to understanding mechanisms and the clinical approach to PVD. Future studies are needed to develop evidence-based definitions and clinical endpoints through which the pathophysiology can be investigated and potential therapeutic interventions evaluated.
Collapse
|
72
|
Bashur CA, Rao RR, Ramamurthi A. Perspectives on stem cell-based elastic matrix regenerative therapies for abdominal aortic aneurysms. Stem Cells Transl Med 2013; 2:401-8. [PMID: 23677642 DOI: 10.5966/sctm.2012-0185] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Abdominal aortic aneurysms (AAAs) are potentially fatal conditions that are characterized by decreased flexibility of the aortic wall due to proteolytic loss of the structural matrix. This leads to their gradual weakening and ultimate rupture. Drug-based inhibition of proteolytic enzymes may provide a nonsurgical treatment alternative for growing AAAs, although it might at best be sufficient to slow their growth. Regenerative repair of disrupted elastic matrix is required if regression of AAAs to a healthy state is to be achieved. Terminally differentiated adult and diseased vascular cells are poorly capable of affecting such regenerative repair. In this context, stem cells and their smooth muscle cell-like derivatives may represent alternate cell sources for regenerative AAA cell therapies. This article examines the pros and cons of using different autologous stem cell sources for AAA therapy, the requirements they must fulfill to provide therapeutic benefit, and the current progress toward characterizing the cells' ability to synthesize elastin, assemble elastic matrix structures, and influence the regenerative potential of diseased vascular cell types. The article also provides a detailed perspective on the limitations, uncertainties, and challenges that will need to be overcome or circumvented to translate current strategies for stem cell use into clinically viable AAA therapies. These therapies will provide a much needed nonsurgical treatment option for the rapidly growing, high-risk, and vulnerable elderly demographic.
Collapse
MESH Headings
- Aged
- Animals
- Aorta, Abdominal/drug effects
- Aorta, Abdominal/metabolism
- Aorta, Abdominal/pathology
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/rehabilitation
- Aortic Aneurysm, Abdominal/therapy
- Becaplermin
- Elasticity/drug effects
- Elasticity/physiology
- Elastin/biosynthesis
- Extracellular Matrix/drug effects
- Extracellular Matrix/metabolism
- Humans
- Myocytes, Smooth Muscle/cytology
- Myocytes, Smooth Muscle/metabolism
- Proto-Oncogene Proteins c-sis/pharmacology
- Regeneration/drug effects
- Regeneration/physiology
- Stem Cell Transplantation/methods
- Stem Cell Transplantation/trends
- Stem Cells/cytology
- Stem Cells/metabolism
- Transforming Growth Factor beta/pharmacology
- Transplantation, Autologous
Collapse
Affiliation(s)
- Chris A Bashur
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, OH, USA
| | | | | |
Collapse
|
73
|
Kakudo N, Kushida S, Suzuki K, Ogura T, Notodihardjo PV, Hara T, Kusumoto K. Effects of transforming growth factor-beta1 on cell motility, collagen gel contraction, myofibroblastic differentiation, and extracellular matrix expression of human adipose-derived stem cell. Hum Cell 2012; 25:87-95. [PMID: 23242923 DOI: 10.1007/s13577-012-0049-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Accepted: 10/10/2012] [Indexed: 10/27/2022]
Abstract
Human adipose-derived stem cells (ASCs) are adult pluripotent stem cells, and their usefulness in plastic surgery has garnered attention in recent years. Although, there have been expectations that ASCs might function in wound repair and regeneration, no studies to date have examined the role of ASCs in the mechanism that promotes wound-healing. Transforming growth factor-beta1 (TGF-β1) is a strong candidate cytokine for the triggering of mesenchymal stem cell migration, construction of extracellular matrices, and differentiation of ASCs into myofibroblasts. Cell proliferation, motility, and differentiation, as well as extracellular matrix production, play an important role in wound-healing. We have evaluated the capacity of ASCs to proliferate and their potential to differentiate into phenotypic myofibroblasts, as well as their cell motility and collagen gel contraction ability, when cultured with TGF-β1. Cell motility was analyzed using a wound-healing assay. ASCs that differentiated into myofibroblasts expressed the gene for alpha-smooth muscle actin, and its protein expression was detected immunohistochemically. The extracellular matrix expression in ASCs was evaluated using real-time RT-PCR. Based on the results, we conclude that human ASCs have the potential for cell motility, extracellular matrix gene expression, gel contraction, and differentiation into myofibroblasts and, therefore, may play an important role in the wound-healing process.
Collapse
Affiliation(s)
- Natsuko Kakudo
- Department of Plastic and Reconstructive Surgery, Kansai Medical University, 10-15 Fumizono, Moriguchi, Osaka,570-8506, Japan.
| | | | | | | | | | | | | |
Collapse
|
74
|
Alphonse RS, Rajabali S, Thébaud B. Lung injury in preterm neonates: the role and therapeutic potential of stem cells. Antioxid Redox Signal 2012; 17:1013-40. [PMID: 22400813 DOI: 10.1089/ars.2011.4267] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Continuous improvements in perinatal care have allowed the survival of ever more premature infants, making the task of protecting the extremely immature lung from injury increasingly challenging. Premature infants at risk of developing chronic lung disease or bronchopulmonary dysplasia (BPD) are now born at the late canalicular stage of lung development, just when the airways become juxtaposed to the lung vasculature and when gas-exchange becomes possible. Readily available strategies, including improved antenatal management (education, regionalization, steroids, and antibiotics), together with exogenous surfactant and exclusive/early noninvasive ventilatory support, will likely decrease the incidence/severity of BPD over the next few years. Nonetheless, because of the extreme immaturity of the developing lung, the extent to which disruption of lung growth after prematurity and neonatal management lead to an earlier or more aggravated decline in respiratory function in later life is a matter of concern. Consequently, much more needs to be learned about the mechanisms of lung development, injury, and repair. Recent insight into stem cell biology has sparked interest for stem cells to repair damaged organs. This review summarizes the exciting potential of stem cell-based therapies for lung diseases in general and BPD in particular.
Collapse
|
75
|
Perng DW, Yang DM, Hsiao YH, Lo T, Lee OKS, Wu MT, Wu YC, Lee YC. miRNA-146a expression positively regulates tumor necrosis factor-α-induced interleukin-8 production in mesenchymal stem cells and differentiated lung epithelial-like cells. Tissue Eng Part A 2012; 18:2259-67. [PMID: 22876745 DOI: 10.1089/ten.tea.2011.0634] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BM-MSC) can be differentiated into lung epithelial-like cells (MSC-EC) in vitro. The response of BM-MSC and MSC-EC to stimuli may vary because of their character and differentiation. We aimed to investigate the factors that may influence in vitro differentiation of BM-MSC to MSC-EC. We determined the response of BM-MSC, MSC-EC, bronchial epithelial cells, and alveolar epithelial cells to tumor necrosis factor (TNF)-α stimulation. We also investigated the changes in micro(mi)RNA-146a, miRNA-155, and TNF receptor 1 (TNFR1) expression after stimulation. Our results demonstrate that the addition of transforming growth factor-β(1) and extracellular matrix collagen are required to facilitate such differentiation. After 3 weeks of culture, the morphological appearance and expression of airway epithelial markers, cytokeratin and Clara cell secretory protein, in MSC-EC were characteristics of lung epithelial cells. In response to TNF-α stimulation, the maximal interleukin (IL)-8 production by BM-MSC at the 24-h time point was 4.8 times greater compared with MSC-EC. TNF-α induced a significant increase in the expression of miRNA-146a in BM-MSC as compared with MSC-EC. miRNA-155 expression remained unchanged after stimulation. TNFR1 mRNA also significantly increased in BM-MSC after TNF-α stimulation. This was not observed in MSC-EC. Transfection with miRNA-146a mimics resulted in a significant increase of miRNA-146a expression and IL-8 production in both types of cells. In contrast, miRNA-146a inhibitors reduced miRNA-146a expression and IL-8 production. Overexpression of miRNA-146a, which positively regulates TNF-α-induced IL-8 release, may enhance the inflammatory response in both BM-MSC and MSC-EC. The expression of miRNA-146a and the response to stimuli may be modulated through mature differentiation of BM-MSC.
Collapse
Affiliation(s)
- Diahn-warng Perng
- Department of Chest Medicine, Taipei Veterans General Hospital, Taipei, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Carpe N, Mandeville I, Kho AT, Qiu W, Martin JG, Tantisira KG, Raby BA, Weiss ST, Kaplan F. Maternal allergen exposure reprograms the developmental lung transcriptome in atopic and normoresponsive rat pups. Am J Physiol Lung Cell Mol Physiol 2012; 303:L899-911. [PMID: 22983352 DOI: 10.1152/ajplung.00179.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The "fetal origins hypothesis" argued that physiological changes consequent to in utero exposures ultimately contribute to disease susceptibility in later life. The dramatic increase in asthma prevalence is attributed to early exposures acting on preexisting asthma-susceptible genotypes. We showed previously that distinct transcriptome signatures distinguish the developmental respiratory phenotype of atopic (Brown Norway, BN) and normoresponsive (Lewis) rats. We aimed to determine whether maternal allergen exposure would influence asthma pathogenesis by reprogramming primary patterns of developmental lung gene expression. Postnatal offspring of dams sensitized to ovalbumin before mating and challenged during pregnancy were assessed for lung function, inflammatory biomarkers, and respiratory gene expression. Although maternal ovalbumin exposure resulted in characteristic features of an allergic response (bronchoalveolar lavage neutrophils, IgE, methacholine-induced lung resistance) in offspring of both strains, substantial strain-specific differences were observed in respiratory gene expression. Of 799 probes representing the top 5% of transcriptomic variation, only 112 (14%) were affected in both strains. Strain-specific gene signatures also exhibited marked differences in enrichment for gene ontologies, with immune regulation and cell proliferation being prominent in the BN strain, cell cycle and microtubule assembly gene sets in the Lewis strain. Multiple ovalbumin-specific probes in both strains were also differentially expressed in lymphoblastoid cell lines from human asthmatic vs. nonasthmatic sibling pairs. Our data point to the existence of distinct, genetically programmed responses to maternal exposures in developing lung. These different response patterns, if recapitulated in human fetal development, can contribute to long-term pulmonary health including interindividual susceptibility to asthma.
Collapse
Affiliation(s)
- Nicole Carpe
- Departments of Human Genetics, Montreal Children’s Hospital Research Institute, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
O'Reilly M, Thébaud B. Cell-based strategies to reconstitute lung function in infants with severe bronchopulmonary dysplasia. Clin Perinatol 2012; 39:703-25. [PMID: 22954277 PMCID: PMC7112346 DOI: 10.1016/j.clp.2012.06.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Recent advances in our understanding of stem/progenitor cells and their potential to repair damaged organs offer the possibility of cell-based treatments for neonatal lung injury. This review summarizes basic concepts of stem/progenitor cell biology and discusses the recent advances and challenges of cell-based therapies for lung diseases, with a particular focus on bronchopulmonary dysplasia (BPD), a form of chronic lung disease that primarily affects very preterm infants. Despite advances in perinatal care, BPD still remains the most common complication of extreme prematurity, and there is no specific treatment.
Collapse
Affiliation(s)
- Megan O'Reilly
- Department of Pediatrics, Women and Children Health Research Institute, University of Alberta, 87 Avenue, T6G 1C9, Edmonton, Alberta, Canada
| | - Bernard Thébaud
- Department of Pediatrics, Women and Children Health Research Institute, University of Alberta, 87 Avenue, T6G 1C9, Edmonton, Alberta, Canada,Department of Pediatrics, Cardiovascular Research Center, University of Alberta, 87 Avenue, T6G 2S2, Edmonton, Alberta, Canada,Department of Physiology, University of Alberta, 87 Avenue, T6G 2H7, Edmonton, Alberta, Canada,Corresponding author. University of Alberta, 3020 Katz Centre, Edmonton, Alberta T6G 2S2, Canada
| |
Collapse
|
78
|
Hansmann G, Fernandez-Gonzalez A, Aslam M, Vitali SH, Martin T, Mitsialis SA, Kourembanas S. Mesenchymal stem cell-mediated reversal of bronchopulmonary dysplasia and associated pulmonary hypertension. Pulm Circ 2012; 2:170-81. [PMID: 22837858 PMCID: PMC3401871 DOI: 10.4103/2045-8932.97603] [Citation(s) in RCA: 151] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Clinical trials have failed to demonstrate an effective preventative or therapeutic strategy for bronchopulmonary dysplasia (BPD), a multifactorial chronic lung disease in preterm infants frequently complicated by pulmonary hypertension (PH). Mesenchymal stem cells (MSCs) and their secreted components have been shown to prevent BPD and pulmonary fibrosis in rodent models. We hypothesized that treatment with conditioned media (CM) from cultured mouse bone marrow-derived MSCs could reverse hyperoxia-induced BPD and PH. Newborn mice were exposed to hyperoxia (FiO2=0.75) for two weeks, were then treated with one intravenous dose of CM from either MSCs or primary mouse lung fibroblasts (MLFs), and placed in room air for two to four weeks. Histological analysis of lungs harvested at four weeks of age was performed to determine the degree of alveolar injury, blood vessel number, and vascular remodeling. At age six weeks, pulmonary artery pressure (PA acceleration time) and right ventricular hypertrophy (RVH; RV wall thickness) were assessed by echocardiography, and pulmonary function tests were conducted. When compared to MLF-CM, a single dose of MSC-CM-treatment (1) reversed the hyperoxia-induced parenchymal fibrosis and peripheral PA devascularization (pruning), (2) partially reversed alveolar injury, (3) normalized lung function (airway resistance, dynamic lung compliance), (4) fully reversed the moderate PH and RVH, and (5) attenuated peripheral PA muscularization associated with hyperoxia-induced BPD. Reversal of key features of hyperoxia-induced BPD and its long-term adverse effects on lung function can be achieved by a single intravenous dose of MSC-CM, thereby pointing toward a new therapeutic intervention for chronic lung diseases.
Collapse
Affiliation(s)
- Georg Hansmann
- Department of Pediatrics, Division of Newborn Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | |
Collapse
|
79
|
Abstract
Urinary diversion after radical cystectomy in patients with bladder cancer normally takes the form of an ileal conduit or neobladder. However, such diversions are associated with a number of complications including increased risk of infection. A plausible alternative is the construction of a neobladder (or bladder tissue) in vitro using autologous cells harvested from the patient. Biomaterials can be used as a scaffold for naturally occurring regenerative stem cells to latch onto to regrow the bladder smooth muscle and epithelium. Such engineered tissues show great promise in urologic tissue regeneration, but are faced with a number of challenges. For example, the differentiation mesenchymal stem cells from various sources can be difficult and the smooth muscle cells formed do not precisely mimic the natural cells.
Collapse
|
80
|
Abstract
Early posttraumatic elbow contractures may be treated with a combination of manipulation with the patient under anesthesia followed by bracing.Extrinsic contractures of the elbow may be treated with open or arthroscopic release, whereas intrinsic and combined contractures may require tissue release as well as partial or total arthroplasty.
Collapse
|
81
|
Popova AP, Bentley JK, Anyanwu AC, Richardson MN, Linn MJ, Lei J, Wong EJ, Goldsmith AM, Pryhuber GS, Hershenson MB. Glycogen synthase kinase-3β/β-catenin signaling regulates neonatal lung mesenchymal stromal cell myofibroblastic differentiation. Am J Physiol Lung Cell Mol Physiol 2012; 303:L439-48. [PMID: 22773696 DOI: 10.1152/ajplung.00408.2011] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In bronchopulmonary dysplasia (BPD), alveolar septa are thickened with collagen and α-smooth muscle actin-, transforming growth factor (TGF)-β-positive myofibroblasts. We examined the biochemical mechanisms underlying myofibroblastic differentiation, focusing on the role of glycogen synthase kinase-3β (GSK-3β)/β-catenin signaling pathway. In the cytoplasm, β-catenin is phosphorylated on the NH(2) terminus by constitutively active GSK-3β, favoring its degradation. Upon TGF-β stimulation, GSK-3β is phosphorylated and inactivated, allowing β-catenin to translocate to the nucleus, where it activates transcription of genes involved in myofibroblastic differentiation. We examined the role of β-catenin in TGF-β1-induced myofibroblastic differentiation of neonatal lung mesenchymal stromal cells (MSCs) isolated from tracheal aspirates of premature infants with respiratory distress. TGF-β1 increased β-catenin expression and nuclear translocation. Transduction of cells with GSK-3β S9A, a nonphosphorylatable, constitutively active mutant that favors β-catenin degradation, blocked TGF-β1-induced myofibroblastic differentiation. Furthermore, transduction of MSCs with ΔN-catenin, a truncation mutant that cannot be phosphorylated on the NH(2) terminus by GSK-3β and is not degraded, was sufficient for myofibroblastic differentiation. In vivo, hyperoxic exposure of neonatal mice increases expression of β-catenin in α-smooth muscle actin-positive myofibroblasts. Similar changes were found in lungs of infants with BPD. Finally, low-passage unstimulated MSCs from infants developing BPD showed higher phospho-GSK-3β, β-catenin, and α-actin content compared with MSCs from infants not developing this disease, and phospho-GSK-3β and β-catenin each correlated with α-actin content. We conclude that phospho-GSK-3β/β-catenin signaling regulates α-smooth muscle actin expression, a marker of myofibroblast differentiation, in vitro and in vivo. This pathway appears to be activated in lung mesenchymal cells from patients with BPD.
Collapse
Affiliation(s)
- Antonia P Popova
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
82
|
Meng MY, Pang W, Jiang LH, Liu YH, Wei CY, Xie YH, Yu HD, Hou ZL. Stemness gene expression profile analysis in human umbilical cord mesenchymal stem cells. Exp Biol Med (Maywood) 2012; 237:709-19. [PMID: 22728706 DOI: 10.1258/ebm.2012.011429] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Umbilical cord mesenchymal stem cells (UC-MSCs) have several advantages for clinical therapy: the material is easily obtainable, the donation procedure is painless and there is low risk of viral contamination. UC-MSCs play important roles in tissue regeneration, tissue damage repair, autoimmune disease and graft-versus-host disease. In this study, we investigated the normal mRNA expression profile of UC-MSCs, and analyzed the candidate proteins responsible for the signaling pathway that may affect the differentiation characteristics of UC-MSCs. UC-MSCs were isolated by mincing UC samples into fragments and placing them in growth medium in a six-well plate. The immunophenotype characteristics and multilineage differentiation potential of the UC-MSCs were measured by flow cytometry and immunohistochemical assays. In addition, the pathway-focused gene expression profile of UC-MSCs was compared with those of normal or tumorous cells by realtime quantitative polymerase chain reaction. We successfully isolated and cultured UC-MSCs and analyzed the appropriate surface markers and their capacity for osteogenic, adipogenic and neural differentiation. In total, 168 genes focusing on signal pathways were examined. We found that the expression levels of some genes were much higher or lower than those of control cells, either normal or tumorous. UC-MSCs exhibit a unique mRNA expression profile of pathway-focused genes, especially some stemness genes, which warrants further investigation.
Collapse
Affiliation(s)
- Ming-Yao Meng
- Research Laboratory Center, Yan'an Hospital of Kunming Medical University, Kunming, Yunnan 650051, China
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Fierro FA, Kalomoiris S, Sondergaard CS, Nolta JA. Effects on proliferation and differentiation of multipotent bone marrow stromal cells engineered to express growth factors for combined cell and gene therapy. Stem Cells 2012; 29:1727-37. [PMID: 21898687 DOI: 10.1002/stem.720] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A key mechanism for mesenchymal stem cells/bone marrow stromal cells (MSCs) to promote tissue repair is by secretion of soluble growth factors (GFs). Therefore, clinical application could be optimized by a combination of cell and gene therapies, where MSCs are genetically modified to express higher levels of a specific factor. However, it remains unknown how this overexpression may alter the fate of the MSCs. Here, we show effects of overexpressing the growth factors, such as basic fibroblast growth factor (bFGF), platelet derived growth factor B (PDGF-BB), transforming growth factor β(1) (TGF-β(1) ), and vascular endothelial growth factor (VEGF), in human bone marrow-derived MSCs. Ectopic expression of bFGF or PDGF-B lead to highly proliferating MSCs and lead to a robust increase in osteogenesis. In contrast, adipogenesis was strongly inhibited in MSCs overexpressing PDGF-B and only mildly affected in MSCs overexpressing bFGF. Overexpression of TGF-β(1) blocked both osteogenic and adipogenic differentiation while inducing the formation of stress fibers and increasing the expression of the smooth muscle marker calponin-1 and the chondrogenic marker collagen type II. In contrast, MSCs overexpressing VEGF did not vary from control MSCs in any parameters, likely due to the lack of VEGF receptor expression on MSCs. MSCs engineered to overexpress VEGF strongly induced the migration of endothelial cells and enhanced blood flow restoration in a xenograft model of hind limb ischemia. These data support the rationale for genetically modifying MSCs to enhance their therapeutically relevant trophic signals, when safety and efficacy can be demonstrated, and when it can be shown that there are no unwanted effects on their proliferation and differentiation.
Collapse
Affiliation(s)
- Fernando A Fierro
- Institute for Regenerative Cures, University of California, Davis, California 95817, USA.
| | | | | | | |
Collapse
|
84
|
Bozyk PD, Bentley JK, Popova AP, Anyanwu AC, Linn MD, Goldsmith AM, Pryhuber GS, Moore BB, Hershenson MB. Neonatal periostin knockout mice are protected from hyperoxia-induced alveolar simplication. PLoS One 2012; 7:e31336. [PMID: 22363622 PMCID: PMC3281961 DOI: 10.1371/journal.pone.0031336] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Accepted: 01/06/2012] [Indexed: 01/16/2023] Open
Abstract
In bronchopulmonary dysplasia (BPD), alveolar septae are thickened with collagen and α-smooth muscle actin, transforming growth factor (TGF)-β-positive myofibroblasts. Periostin, a secreted extracellular matrix protein, is involved in TGF-β-mediated fibrosis and myofibroblast differentiation. We hypothesized that periostin expression is required for hypoalveolarization and interstitial fibrosis in hyperoxia-exposed neonatal mice, an animal model for this disease. We also examined periostin expression in neonatal lung mesenchymal stromal cells and lung tissue of hyperoxia-exposed neonatal mice and human infants with BPD. Two-to-three day-old wild-type and periostin null mice were exposed to air or 75% oxygen for 14 days. Mesenchymal stromal cells were isolated from tracheal aspirates of premature infants. Hyperoxic exposure of neonatal mice increased alveolar wall periostin expression, particularly in areas of interstitial thickening. Periostin co-localized with α-smooth muscle actin, suggesting synthesis by myofibroblasts. A similar pattern was found in lung sections of infants dying of BPD. Unlike wild-type mice, hyperoxia-exposed periostin null mice did not show larger air spaces or α-smooth muscle-positive myofibroblasts. Compared to hyperoxia-exposed wild-type mice, hyperoxia-exposed periostin null mice also showed reduced lung mRNA expression of α-smooth muscle actin, elastin, CXCL1, CXCL2 and CCL4. TGF-β treatment increased mesenchymal stromal cell periostin expression, and periostin treatment increased TGF-β-mediated DNA synthesis and myofibroblast differentiation. We conclude that periostin expression is increased in the lungs of hyperoxia-exposed neonatal mice and infants with BPD, and is required for hyperoxia-induced hypoalveolarization and interstitial fibrosis.
Collapse
Affiliation(s)
- Paul D. Bozyk
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - J. Kelley Bentley
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Antonia P. Popova
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Anuli C. Anyanwu
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Marisa D. Linn
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Adam M. Goldsmith
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gloria S. Pryhuber
- Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, New York, United States of America
| | - Bethany B. Moore
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Marc B. Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|
85
|
Bozyk PD, Popova AP, Bentley JK, Goldsmith AM, Linn MJ, Weiss DJ, Hershenson MB. Mesenchymal stromal cells from neonatal tracheal aspirates demonstrate a pattern of lung-specific gene expression. Stem Cells Dev 2011; 20:1995-2007. [PMID: 21341990 PMCID: PMC3202893 DOI: 10.1089/scd.2010.0494] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 02/22/2011] [Indexed: 01/10/2023] Open
Abstract
We have previously isolated mesenchymal stromal cells (MSCs) from the tracheal aspirates of premature neonates with respiratory distress. Although isolation of MSCs correlates with the development of bronchopulmonary dysplasia, the physiologic role of these cells remains unclear. To address this, we further characterized the cells, focusing on the issues of gene expression, origin, and cytokine expression. Microarray comparison of early passage neonatal lung MSC gene expression to cord blood MSCs and human fetal and neonatal lung fibroblast lines demonstrated that the neonatal lung MSCs differentially expressed 971 gene probes compared with cord blood MSCs, including the transcription factors Tbx2, Tbx3, Wnt5a, FoxF1, and Gli2, each of which has been associated with lung development. Compared with lung fibroblasts, 710 gene probe transcripts were differentially expressed by the lung MSCs, including IL-6 and IL-8/CXCL8. Differential chemokine expression was confirmed by protein analysis. Further, neonatal lung MSCs exhibited a pattern of Hox gene expression distinct from cord blood MSCs but similar to human fetal lung fibroblasts, consistent with a lung origin. On the other hand, limiting dilution analysis showed that fetal lung fibroblasts form colonies at a significantly lower rate than MSCs, and fibroblasts failed to undergo differentiation along adipogenic, osteogenic, and chondrogenic lineages. In conclusion, MSCs isolated from neonatal tracheal aspirates demonstrate a pattern of lung-specific gene expression, are distinct from lung fibroblasts, and secrete pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Paul D. Bozyk
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Antonia P. Popova
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - John Kelley Bentley
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Adam M. Goldsmith
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Marisa J. Linn
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
| | - Daniel J. Weiss
- Department of Medicine, University of Vermont College of Medicine, Burlington, Vermont
| | - Marc B. Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
86
|
Otto WR, Wright NA. Mesenchymal stem cells: from experiment to clinic. FIBROGENESIS & TISSUE REPAIR 2011; 4:20. [PMID: 21902837 PMCID: PMC3182886 DOI: 10.1186/1755-1536-4-20] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/08/2011] [Indexed: 02/07/2023]
Abstract
There is currently much interest in adult mesenchymal stem cells (MSCs) and their ability to differentiate into other cell types, and to partake in the anatomy and physiology of remote organs. It is now clear these cells may be purified from several organs in the body besides bone marrow. MSCs take part in wound healing by contributing to myofibroblast and possibly fibroblast populations, and may be involved in epithelial tissue regeneration in certain organs, although this remains more controversial. In this review, we examine the ability of MSCs to modulate liver, kidney, heart and intestinal repair, and we update their opposing qualities of being less immunogenic and therefore tolerated in a transplant situation, yet being able to contribute to xenograft models of human tumour formation in other contexts. However, such observations have not been replicated in the clinic. Recent studies showing the clinical safety of MSC in several pathologies are discussed. The possible opposing powers of MSC need careful understanding and control if their clinical potential is to be realised with long-term safety for patients.
Collapse
Affiliation(s)
- William R Otto
- Histopathology Laboratory, Cancer Research UK, London Research Institute, 44, Lincoln's Inn Fields, London WC2A 3LY, UK.
| | | |
Collapse
|
87
|
Abstract
During wound healing, contractile fibroblasts called myofibroblasts regulate the formation and contraction of granulation tissue; however, pathological and persistent myofibroblast activation, which occurs in hypertrophic scars or tissue fibrosis, results in a loss of function. Many reviews outline the cellular and molecular features of myofibroblasts and their roles in a variety of diseases. This review focuses on the origins of myofibroblasts and the factors that control their differentiation and prolonged survival in fibrotic tissues. Pulmonary fibrosis is used to illustrate many key points, but examples from other tissues and models are also included. Myofibroblasts originate mostly from tissue-resident fibroblasts, and also from epithelial and endothelial cells or other mesenchymal precursors. Their differentiation is influenced by cytokines, growth factors, extracellular matrix composition and stiffness, and cell surface molecules such as proteoglycans and THY1, among other factors. Many of these effects are modulated by cell contraction. Myofibroblasts resist programmed cell death, which promotes their accumulation in fibrotic tissues. The cause of resistance to apoptosis in myofibroblasts is under ongoing investigation, but many of the same stimuli that regulate their differentiation are involved. The contributions of oxidative stress, the WNT-β-catenin pathway and PPARγ to myofibroblast differentiation and survival are increasingly appreciated.
Collapse
|
88
|
Mechanisms of cellular therapy in respiratory diseases. Intensive Care Med 2011; 37:1421-31. [PMID: 21656291 DOI: 10.1007/s00134-011-2268-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 05/05/2011] [Indexed: 01/08/2023]
Abstract
PURPOSE Stem cells present a variety of clinical implications in the lungs. According to their origin, these cells can be divided into embryonic and adult stem cells; however, due to the important ethical and safety limitations that are involved in the embryonic stem cell use, most studies have chosen to focus on adult stem cell therapy. This article aims to present and clarify the recent advances in the field of stem cell biology, as well as to highlight the effects of mesenchymal stem cell (MSC) therapy in the context of acute lung injury/acute respiratory distress syndrome and chronic disorders such as lung fibrosis and chronic obstructive pulmonary disease. METHODS For this purpose, we performed a critical review of adult stem cell therapies, covering the main clinical and experimental studies published in Pubmed databases in the past 11 years. Different characteristics were extracted from these articles, such as: the experimental model, strain, cellular type and administration route used as well as the positive or negative effects obtained. RESULTS There is evidence for beneficial effects of MSC on lung development, repair, and remodeling. The engraftment in the injured lung does not occur easily, but several studies report that paracrine factors can be effective in reducing inflammation and promoting tissue repair. MSC releases several growth factors and anti-inflammatory cytokines that regulate endothelial and epithelial permeability and reduce the severity of inflammation. CONCLUSION A better understanding of the mechanisms that control cell division and differentiation, as well as of their paracrine effects, is required to enable the optimal use of bone marrow-derived stem cell therapy to treat human respiratory diseases.
Collapse
|
89
|
Mabbott NA, Kenneth Baillie J, Kobayashi A, Donaldson DS, Ohmori H, Yoon SO, Freedman AS, Freeman TC, Summers KM. Expression of mesenchyme-specific gene signatures by follicular dendritic cells: insights from the meta-analysis of microarray data from multiple mouse cell populations. Immunology 2011; 133:482-98. [PMID: 21635249 DOI: 10.1111/j.1365-2567.2011.03461.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Follicular dendritic cells (FDC) are an important subset of stromal cells within the germinal centres of lymphoid tissues. They are specialized to trap and retain antigen-containing immune complexes on their surfaces to promote B-cell maturation and immunoglobulin isotype class-switching. However, little is known of the cell types from which FDC originate. To address fundamental questions associated with the relationships between FDC and other cell populations, we took advantage of the growing body of publicly available data for transcriptome analysis. We obtained a large number of gene expression data files from a range of different primary mouse cells and cell lines and subjected these data to network-based cluster analysis using BiolayoutExpress(3D) . Genes with related function clustered together in distinct regions of the graph and enabled the identification of transcriptional networks that underpin the functional activity of distinct cell populations. Several gene clusters were identified that were selectively expressed by cells of mesenchymal lineage and contained classic mesenchymal cell markers and extracellular matrix genes including various collagens, Acta2, Bgn, Fbn1 and Twist1. Our analysis showed that FDC also express highly many of these mesenchyme-associated genes. Promoter analysis of the genes comprising the mesenchymal clusters identified several regulatory motifs that are binding sites for candidate transcription factors previously known to be candidate regulators of mesenchyme-specific genes. Together, these data suggest FDC are a specialized mesenchymal cell population within the germinal centres of lymphoid tissues.
Collapse
Affiliation(s)
- Neil A Mabbott
- The Roslin Institute and Royal (Dick) School of Veterinary Sciences, University of Edinburgh, Easter Bush, Midlothian, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Filbrun AG, Popova AP, Linn MJ, McIntosh NA, Hershenson MB. Longitudinal measures of lung function in infants with bronchopulmonary dysplasia. Pediatr Pulmonol 2011; 46:369-75. [PMID: 21438170 PMCID: PMC3801101 DOI: 10.1002/ppul.21378] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 09/08/2010] [Accepted: 09/08/2010] [Indexed: 11/09/2022]
Abstract
We previously demonstrated that infants with a history of bronchopulmonary dysplasia (BPD) exhibit airflow obstruction and air trapping. The purpose of this study was to assess longitudinal changes in pulmonary function in infants with a history of BPD over the first 3 years of life, and the relationship to somatic growth. Spirometry was measured using the raised volume rapid thoracoabdominal compression technique, and lung volumes measured by plethysmography. Eighteen infants (mean gestational age ± SD 27.3 ± 2.2 weeks, birthweight 971 ± 259 g) underwent two lung function studies. Average age at first test was 58.8 weeks. Spirometry demonstrated significant reductions in forced expiratory volume in 0.5 sec (FEV(0.5), 76.0 ± 15.9% predicted, Z-score -2.13 ± 1.69), forced expiratory flow at 75% of expired forced vital capacity (FEF(75), 54.8 ± 31.1%, -3.58 ± 2.73), and FEF(25-75) (67.8 ± 33.3%, -1.79 ± 1.76). Group mean total lung capacity (TLC) was in the low normal range (82.9 ± 13.5% predicted) and residual volume (RV)/TLC was mildly elevated (122.4 ± 38.2% predicted). Repeat testing was performed an average of 32.7 weeks after initial testing. At re-evaluation, group mean lung volumes and flows tracked at or near their previous values; thus, in general, there was a lack of catch-up growth. However, compared to infants with below average or average somatic growth (as represented by g/day), infants with above average growth showed significantly greater improvements in percent predicted FVC, FEV(0.5), TLC, and RV/TLC (all P < 0.05, ANOVA). We conclude that longitudinal measures of pulmonary function in infants and young children with BPD demonstrate significant airflow obstruction and modest restriction, which tends to persist with time. On the other hand, infants with above average somatic growth showed greater lung growth than their peers. Additional studies examining the effects of various nutritional regimens on lung function are warranted.
Collapse
Affiliation(s)
- Amy G Filbrun
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109-0212, USA.
| | | | | | | | | |
Collapse
|
91
|
Knight DA, Rossi FM, Hackett TL. Mesenchymal stem cells for repair of the airway epithelium in asthma. Expert Rev Respir Med 2011; 4:747-58. [PMID: 21128750 DOI: 10.1586/ers.10.72] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The airway epithelium is constantly faced with inflammatory and potentially injurious stimuli. Following damage, rapid repair mechanisms involving proliferation and differentiation of resident progenitor and stem cell pools are necessary in order to maintain a protective barrier. In asthma, evidence pointing to a compromised ability of the epithelium to properly repair and regenerate is rapidly accumulating. The consequences of this are presently unknown but are likely to have a significant impact on lung function. Mesenchymal stem cells have the potential to serve as a universal source for replacement of specific cells in several diseases and thus offer hope as a potential therapeutic intervention for the treatment of the chronic remodeling changes that occur in the asthmatic epithelium. However, controversy exists regarding whether these cells can actually home to and engraft within the airways and contribute to tissue function or whether this mechanism is necessary, since they can have potent paracrine immunomodulatory effects. This article focuses on the current knowledge about specific stem cell populations that may contribute to airway epithelial regeneration and discusses the use of mesenchymal stem cells as a potential therapeutic intervention.
Collapse
Affiliation(s)
- Darryl A Knight
- Providence Heart and Lung Institute at St Paul's Hospital, University of British Columbia, 1081 Burrard Street, Vancouver, BC V6Z 1Y6, Canada.
| | | | | |
Collapse
|
92
|
Giovanini AF, Gonzaga CC, Zielak JC, Deliberador TM, Kuczera J, Göringher I, de Oliveira Filho MA, Baratto-Filho F, Urban CA. Platelet-rich plasma (PRP) impairs the craniofacial bone repair associated with its elevated TGF-β levels and modulates the co-expression between collagen III and α-smooth muscle actin. J Orthop Res 2011; 29:457-63. [PMID: 20922797 DOI: 10.1002/jor.21263] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Accepted: 08/17/2010] [Indexed: 02/04/2023]
Abstract
Transforming growth factor-β (TGF-β) is considered the main inducer of both the α-smooth muscle actin (α-SMA) phenotype and collagen synthesis and deposition and plays a significant role in the tissue repair and the development of fibrosis. Since the PRP constitutes an important source of TGF-β and its efficacy on the craniofacial bone repair remains controversy, the aim of this study was to evaluate the effect of PRP in the presence of levels of TGF-β on PRP samples, as well as in the presence of collagen III and α-SMA+ cells, while comparing these results by means of a histomorphometric analysis of the bone matrix and fibrous deposition on the bone repair. Four bone defects of 16 mm(2) were created on the calvarium of 21 rabbits. The surgical defects were treated with either particulate autograft, particulate autograft mixed with PRP and PRP alone. Animals were euthanized at 15, 30, and 45 days postoperative. Histomorphometric and immunohistochemical analyses were performed to assess repair time, as well as the expression of collagen III, and α-SMA. The histomorphometric results demonstrated intensive deposition of fibrous tissue while hinder bone deposition occurred in PRP groups. These results coincided with higher values of the TGF-β on the PRP sample, also larger occurrence of diffuse collagen III deposition and higher presence of α-SMA+ cells spread among the fibrous tissue. Thus, the higher levels of TGF-β associated with the both expression of collagen III and α-SMA on defect treated with PRP suggest that its biomaterial induce an effect that can be considered similarly to a fibroproliferative disorder.
Collapse
Affiliation(s)
- Allan Fernando Giovanini
- Positivo University, Rua Pedro Viriato Parigot de Souza #5300, Curitiba, Paraná 81280-330, Brazil.
| | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Abstract
Bronchopulmonary dysplasia (BPD) is the chronic lung disease of prematurity mainly affecting preterm infants that are born at 24-28 weeks of gestation. Surfactant therapy, antenatal steroids and incremental improvements in perinatal care have modified the pattern of injury and allowed survival of ever more immature infants, but there is still no specific treatment for BPD. As a consequence, this disorder remains the most common complication of extreme prematurity. Arrested alveolar growth and disrupted vasculogenesis, the histological hallmarks of BPD, may persist beyond childhood and lead to chronic lung diseases in adults. Recent advances in our understanding of stem cells and their potential to repair damaged organs offer the possibility for cell-based treatment for intractable diseases. This review summarizes basic concepts of stem cell biology and discusses the recent advances and challenges of stem cell-based therapies for lung diseases, with a particular focus on BPD.
Collapse
Affiliation(s)
- Rajesh S Alphonse
- Department of Pediatrics and Women and Children Health Research Institute, Cardiovascular Research Center, University of Alberta, Edmonton, Alta., Canada
| | | |
Collapse
|
94
|
Popova AP, Bozyk PD, Bentley JK, Linn MJ, Goldsmith AM, Schumacher RE, Weiner GM, Filbrun AG, Hershenson MB. Isolation of tracheal aspirate mesenchymal stromal cells predicts bronchopulmonary dysplasia. Pediatrics 2010; 126:e1127-33. [PMID: 20937656 PMCID: PMC3887445 DOI: 10.1542/peds.2009-3445] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND We have isolated mesenchymal stem cells (MSCs) from tracheal aspirates of premature infants with respiratory distress. Under the influence of transforming growth factor β, MSCs differentiate into α-smooth-muscle actin-expressing myofibroblasts. Myofibroblasts are increased in the lungs of patients with bronchopulmonary dysplasia (BPD), a chronic lung disease of prematurely born infants. OBJECTIVE We tested whether isolation of MSCs from tracheal aspirates of premature infants with respiratory distress during the first week of life correlates with BPD. METHODS Eighty-four infants born at a gestational age of <33 weeks and requiring mechanical ventilation were studied. Aspirates were collected during suctioning and centrifuged. Cell pellets were resuspended in culture medium and plated. Adherent cells were grown to confluence. RESULTS MSCs were isolated from the tracheal aspirates of 56 infants; 28 aspirate samples showed no MSCs. There was no statistical difference in gestational age or birth weight between the MSC and no-MSC groups. In the MSC group, 12 infants died and 25 developed BPD, as defined by a requirement for supplemental oxygen at 36 weeks' postmenstrual age. In the no-MSC group, 6 infants died and 1 developed BPD. Accounting for potential influences of gender, birth weight, gestational age, number of tracheal aspirate samples taken, and the duration of endotracheal intubation (up to 7 days), isolation of MSCs increased the adjusted odds ratio of BPD more than 21-fold (95% confidence interval: 1.82-265.85). CONCLUSIONS Isolation of tracheal aspirate MSCs predicts the development of BPD, which suggests that MSCs play an important role in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Antonia P. Popova
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Paul D. Bozyk
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109
| | - J. Kelley Bentley
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Marisa J. Linn
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Adam M. Goldsmith
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Robert E. Schumacher
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
| | | | - Amy G. Filbrun
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Marc B. Hershenson
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, MI 48109
,Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109
,Address correspondence to: University of Michigan Medical School, MSRBII, 1150 W. Medical Center Dr., RM. 3570B, Ann Arbor, MI 48109-5688.
| |
Collapse
|
95
|
Ovalbumin sensitization and challenge increases the number of lung cells possessing a mesenchymal stromal cell phenotype. Respir Res 2010; 11:127. [PMID: 20858250 PMCID: PMC2949728 DOI: 10.1186/1465-9921-11-127] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2010] [Accepted: 09/21/2010] [Indexed: 01/19/2023] Open
Abstract
Background Recent studies have indicated the presence of multipotent mesenchymal stromal cells (MSCs) in human lung diseases. Excess airway smooth muscle, myofibroblasts and activated fibroblasts have each been noted in asthma, suggesting that mesenchymal progenitor cells play a role in asthma pathogenesis. We therefore sought to determine whether MSCs are present in the lungs of ovalbumin (OVA)-sensitized and challenged mice, a model of allergic airways disease. Methods Balb/c mice were sensitized and challenged with PBS or OVA over a 25 day period. Flow cytometry as well as colony forming and differentiation potential were used to analyze the emergence of MSCs along with gene expression studies using immunochemical analyses, quantitative polymerase chain reaction (qPCR), and gene expression beadchips. Results A CD45-negative subset of cells expressed Stro-1, Sca-1, CD73 and CD105. Selection for these markers and negative selection against CD45 yielded a population of cells capable of adipogenic, osteogenic and chondrogenic differentiation. Lungs from OVA-treated mice demonstrated a greater average colony forming unit-fibroblast (CFU-F) than control mice. Sorted cells differed from unsorted lung adherent cells, exhibiting a pattern of gene expression nearly identical to bone marrow-derived sorted cells. Finally, cells isolated from the bronchoalveolar lavage of a human asthma patient showed identical patterns of cell surface markers and differentiation potential. Conclusions In summary, allergen sensitization and challenge is accompanied by an increase of MSCs resident in the lungs that may regulate inflammatory and fibrotic responses.
Collapse
|
96
|
Synthesis of embryonic tendon-like tissue by human marrow stromal/mesenchymal stem cells requires a three-dimensional environment and transforming growth factor β3. Matrix Biol 2010; 29:668-77. [PMID: 20736064 PMCID: PMC3611595 DOI: 10.1016/j.matbio.2010.08.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2008] [Revised: 08/06/2010] [Accepted: 08/06/2010] [Indexed: 01/05/2023]
Abstract
Tendon-like tissue generated from stem cells in vitro has the potential to replace tendons and ligaments lost through injury and disease. However, thus far, no information has been available on the mechanism of tendon formation in vitro and how to accelerate the process. We show here that human mesenchymal stem cells (MSCs) and bone marrow-derived mononuclear cells (BM-MNCs) can generate tendon-like tissue in 7days mediated by transforming growth factor (TGF) β3. MSCs cultured in fixed-length fibrin gels spontaneously synthesized narrow-diameter collagen fibrils and exhibited fibripositors (actin-rich, collagen fibril-containing plasma membrane protrusions) identical to those that occur in embryonic tendon. In contrast, BM-MNCs did not synthesize tendon-like tissue under these conditions. We performed real-time PCR analysis of MSCs and BM-MNCs. MSCs upregulated genes encoding type I collagen, TGFβ3, and Smad2 at the time of maximum contraction of the tendon-like tissue (7days). Western blot analysis showed phosphorylation of Smad2 at maximum contraction. The TGFβ inhibitor SB-431542, blocked the phosphorylation of Smad2 and stopped the formation of tendon-like tissue. Quantitative PCR showed that BM-MNCs expressed very low levels of TGFβ3 compared to MSCs. Therefore we added exogenous TGFβ3 protein to BM-MNCs in fibrin gels, which resulted in phosphorylation of Smad2, synthesis of collagen fibrils, the appearance of fibripositors at the plasma membrane, and the formation of tendon-like tissue. In conclusion, MSCs that self-generate TGFβ signaling or the addition of TGFβ3 protein to BM-MNCs in fixed-length fibrin gels spontaneously make embryonic tendon-like tissue in vitro within 7days.
Collapse
|
97
|
Pierro M, Thébaud B. Mesenchymal stem cells in chronic lung disease: culprit or savior? Am J Physiol Lung Cell Mol Physiol 2010; 298:L732-4. [PMID: 20363850 DOI: 10.1152/ajplung.00099.2010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|