51
|
Muroya Y, Ito O, Rong R, Takashima K, Ito D, Cao P, Nakamura Y, Joh K, Kohzuki M. Disorder of fatty acid metabolism in the kidney of PAN-induced nephrotic rats. Am J Physiol Renal Physiol 2012; 303:F1070-9. [PMID: 22874759 DOI: 10.1152/ajprenal.00365.2011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Proteinuria is considered to play an essential role in the progression of tubulointerstitial damage, which causes end-stage renal disease. Fatty acid-binding albumins are filtered through glomeruli and reabsorbed into proximal tubular epithelial cells (PTECs). However, the role of fatty acid metabolism associated with albuminuria in the development of tubulointerstitial damage remains unclear. Thus, the present study was designed to determine the changes of fatty acid metabolism in the nephrotic kidney. To induce nephrotic syndrome, Sprague-Dawley rats (SDRs) and Nagase analbuminemic rats (NARs) with inherited hypoalbuminemia were treated with a single injection of puromycin aminonucleoside (PAN). In SDRs, PAN treatment induced massive proteinuria and albuminuria and caused tubular damage, apoptosis, and lipid accumulation in PTECs. Among the enzymes of fatty acid metabolism, expressions of medium-chain acyl-CoA dehydrogenase (MCAD) and cytochrome P-450 (CYP)4A significantly decreased in PTECs of PAN-treated SDRs. Expressions of peroxisome proliferator-activated receptor (PPAR)-γ coactivator (PGC)-1α and estrogen-related receptor (ERR)α also significantly decreased, without changes in the expression of PPAR-α. In NARs, PAN treatment induced proteinuria but not albuminuria and did not cause tubular damage, apoptosis, or lipid accumulation. Expressions of MCAD, PGC-1α, or ERRα did not change in the kidney cortex of PAN-treated NARs, but the expression of CYP4A significantly decreased. These results indicate that massive albuminuria causes tubular damage and lipid accumulation with the reduction of MCAD, CYP4A, PGC-1α, and ERRα in PTECs.
Collapse
Affiliation(s)
- Yoshikazu Muroya
- Dept. of Internal Medicine and Rehabilitation Science, Tohoku Univ. Graduate School of Medicine, 1-1 Seiryo-chyo, Aoba-ku, Sendai 980-8574, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Khurana S, Bruggeman LA, Kao HY. Nuclear hormone receptors in podocytes. Cell Biosci 2012; 2:33. [PMID: 22995171 PMCID: PMC3543367 DOI: 10.1186/2045-3701-2-33] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Accepted: 08/10/2012] [Indexed: 11/14/2022] Open
Abstract
Nuclear receptors are a family of ligand-activated, DNA sequence-specific transcription factors that regulate various aspects of animal development, cell proliferation, differentiation, and homeostasis. The physiological roles of nuclear receptors and their ligands have been intensively studied in cancer and metabolic syndrome. However, their role in kidney diseases is still evolving, despite their ligands being used clinically to treat renal diseases for decades. This review will discuss the progress of our understanding of the role of nuclear receptors and their ligands in kidney physiology with emphasis on their roles in treating glomerular disorders and podocyte injury repair responses.
Collapse
Affiliation(s)
- Simran Khurana
- Department of Biochemistry, School of Medicine, Case Western Reserve University (CWRU) and the Comprehensive Cancer Center of CWRU, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA.
| | | | | |
Collapse
|
53
|
Kouroumichakis I, Papanas N, Zarogoulidis P, Liakopoulos V, Maltezos E, Mikhailidis DP. Fibrates: therapeutic potential for diabetic nephropathy? Eur J Intern Med 2012; 23:309-16. [PMID: 22560376 DOI: 10.1016/j.ejim.2011.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2011] [Revised: 12/04/2011] [Accepted: 12/18/2011] [Indexed: 12/30/2022]
Abstract
Despite intensive glucose-lowering treatment and advanced therapies for cardiovascular risk factors, such as hypertension and dyslipidaemia, diabetes mellitus with its macro- and microvascular complications remains a major health problem. Especially diabetic nephropathy is a leading cause of morbidity and mortality, and its prevalence is increasing. Peroxisome proliferator-activated receptor-α (PPAR-α), a member of a large nuclear receptor superfamily, is expressed in several tissues including the kidney. Recently, experimental data have suggested that PPAR-α activation plays a pivotal role in the regulation of fatty acid oxidation, lipid metabolism, inflammatory and vascular responses, and might regulate various metabolic and intracellular signalling pathways that lead to diabetic microvascular complications. This review examines the role of PPAR-α activation in diabetic nephropathy and summarises data from experimental and clinical studies on the emerging therapeutic potential of fibrates in diabetic nephropathy.
Collapse
Affiliation(s)
- I Kouroumichakis
- Outpatient Clinic of Obesity, Diabetes and Metabolism, Second Department of Internal Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | | | | | | |
Collapse
|
54
|
Kumar P, Taha A, Kale RK, McLean P, Baquer NZ. Beneficial effects of Trigonella foenum graecum and sodium orthovanadate on metabolic parameters in experimental diabetes. Cell Biochem Funct 2012; 30:464-73. [PMID: 22508583 DOI: 10.1002/cbf.2819] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2011] [Revised: 02/02/2012] [Accepted: 02/06/2012] [Indexed: 11/10/2022]
Abstract
Oxidative stress in diabetic tissues is accompanied by high-level of free radicals with simultaneously declined antioxidant enzymes status leading to cell membrane damage. The present study was carried out to observe the effect of sodium orthovanadate (SOV) and Trigonella foenum graecum seed powder (TSP) administration on blood glucose and insulin levels, antioxidant enzymes, lipid peroxidation, pyruvate kinase, lactate dehydrogenase and protein kinase C in heart, muscle and brain of the alloxan-induced diabetic rats to see whether the treatment with SOV and TSP was capable of reversing the diabetic effects. Diabetes was induced by administration of alloxan monohydrate (15 mg/100 g body weight), and rats were treated with 2 IU insulin, 0.6 mg/ml SOV, 5% TSP in the diet and a combination of 0.2 mg/ml SOV and 5% TSP separately for 21 days. Blood glucose levels increased markedly in diabetic rats, animals treated with a combined dose of SOV and TSP had glucose levels almost comparable with controls, similar results were obtained in the activities of pyruvate kinase, lactate dehydrogenase, antioxidant enzymes and protein kinase C in diabetic animals. Our results showed that lower doses of SOV (0.2 mg/ml) could be used in combination with TSP to effectively reverse diabetic alterations in experimental diabetes.
Collapse
Affiliation(s)
- Pardeep Kumar
- School of Life Sciences, Jawaharlal Nehru University, New Delhi-110067, India
| | | | | | | | | |
Collapse
|
55
|
Sun J, Shannon M, Ando Y, Schnackenberg LK, Khan NA, Portilla D, Beger RD. Serum metabolomic profiles from patients with acute kidney injury: a pilot study. J Chromatogr B Analyt Technol Biomed Life Sci 2012; 893-894:107-13. [PMID: 22429878 PMCID: PMC3325145 DOI: 10.1016/j.jchromb.2012.02.042] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 01/06/2012] [Accepted: 02/19/2012] [Indexed: 12/31/2022]
Abstract
Low sensitivity of current clinical markers (serum creatinine and blood urea nitrogen (BUN)) in early stages of the development of acute kidney injury (AKI) limits their utility. Rapid LC/MS-based metabolic profiling of serum demonstrated in a pilot study that metabolomics could provide novel indicators of AKI. Metabolic profiles of serum samples from seventeen hospitalized patients with newly diagnosed AKI were compared with the profiles of serum from age-matched subjects with normal kidney function. Increases in acylcarnitines and amino acids (methionine, homocysteine, pyroglutamate, asymmetric dimethylarginine (ADMA), and phenylalanine) and a reduction in serum levels of arginine and several lysophosphatidyl cholines were observed in patients with AKI compared to healthy subjects. Increases in homocysteine, ADMA and pyroglutamate have been recognized as biomarkers of cardiovascular and renal disease, and acylcarnitines represent biomarkers of defective fatty acid oxidation. The results of this pilot study demonstrate the utility of metabolomics in the discovery of novel serum biomarkers that can facilitate the diagnosis and determine prognosis of AKI in hospitalized patients.
Collapse
Affiliation(s)
- Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, US FDA, Jefferson, AR, USA
| | - Melissa Shannon
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Yosuke Ando
- Division of Systems Biology, National Center for Toxicological Research, US FDA, Jefferson, AR, USA
- Medicinal Safety Research Labs, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | - Laura K. Schnackenberg
- Division of Systems Biology, National Center for Toxicological Research, US FDA, Jefferson, AR, USA
| | - Nasim A. Khan
- Division of Rheumatology, Department of Internal Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Didier Portilla
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, USA
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, US FDA, Jefferson, AR, USA
| |
Collapse
|
56
|
New insights into the role of peroxisome proliferator-activated receptors in regulating the inflammatory response after tissue injury. PPAR Res 2012; 2012:728461. [PMID: 22481914 PMCID: PMC3317007 DOI: 10.1155/2012/728461] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2011] [Accepted: 11/04/2011] [Indexed: 01/01/2023] Open
Abstract
Major trauma results in a strong inflammatory response in injured tissue. This posttraumatic hyperinflammation has been implied in the adverse events leading to a breakdown of host defense mechanisms and ultimately to delayed organ failure. Ligands to peroxisome proliferator-activated receptors (PPARs) have recently been identified as potent modulators of inflammation in various acute and chronic inflammatory conditions. The main mechanism of action mediated by ligand binding to PPARs is the inhibition of the nuclear transcription factor NF-κB, leading to downregulation of downstream gene transcription, such as for genes encoding proinflammatory cytokines. Pharmacological PPAR agonists exert strong anti-inflammatory properties in various animal models of tissue injury, including central nervous system trauma, ischemia/reperfusion injury, sepsis, and shock. In addition, PPAR agonists have been shown to induce wound healing process after tissue trauma. The present review was designed to provide an up-to-date overview on the current understanding of the role of PPARs in the pathophysiology of the inflammatory response after major trauma. Therapeutic options for using recombinant PPAR agonists as pharmacological agents in the management of posttraumatic inflammation will be discussed.
Collapse
|
57
|
Are PPAR alpha agonists a rational therapeutic strategy for preventing abnormalities of the diabetic kidney? Pharmacol Res 2012; 65:430-6. [PMID: 22285932 DOI: 10.1016/j.phrs.2012.01.004] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 01/12/2012] [Accepted: 01/12/2012] [Indexed: 12/14/2022]
Abstract
The uncontrolled diabetes mellitus may result in the induction of diabetic nephropathy, one of the detrimental microvascular complications of diabetes mellitus. Diabetic nephropathy is associated with glomerular hypertrophy, glomerulosclerosis, tubulointerstitial fibrosis, mesangial cell expansion, followed by albuminuria and reduction in glomerular filtration rate. Indeed, no promising therapeutic options are available in the present clinical scenario to manage efficiently the diabetic nephropathy. Nevertheless, angiotensin converting enzyme inhibitors and angiotensin-II-AT(1) receptor blockers are currently employed to improve structural and functional status of the diabetic kidney. These interventions, however, are not optimal in improving overall outcomes of diabetic nephropathy. Hence, there is a continuing need of developing promising therapeutic interventions to manage this insidious condition adequately. Recent bench and clinical studies strongly suggest the potentials of peroxisome proliferator-activated receptor alpha (PPARα) agonists in the management of diabetic nephropathy by keeping the view that renal lipid accumulation-induced lipotoxicity is one of risk factors for nephropathy during chronic diabetes mellitus. As inflammation, oxidative stress and dyslipidemia are common consequences of renal dysfunction, PPARα agonists could serve as promising therapeutic agents for controlling the progression of diabetic nephropathy. In fact, fenofibrate, a hypolipidemic agent acts as a PPARα agonist, reduced renal lipotoxicity, inflammation, fibrosis and oxidative stress, and subsequently prevented the symptoms of diabetic nephropathy. However, fenofibrate has been shown to cause renal dysfunction in established renal disorders. The present review addressed the rationale of employing PPARα agonists in the management of diabetic nephropathy.
Collapse
|
58
|
Effects of glutamine supplementation on oxidative stress-related gene expression and antioxidant properties in rats with streptozotocin-induced type 2 diabetes. Br J Nutr 2011; 107:1112-8. [PMID: 22129885 DOI: 10.1017/s0007114511004168] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
There are close links among hyperglycaemia, oxidative stress and diabetic complications. Glutamine (GLN) is an amino acid with immunomodulatory properties. The present study investigated the effect of dietary GLN on oxidative stress-relative gene expressions and tissue oxidative damage in diabetes. There were one normal control (NC) and two diabetic groups in the present study. Diabetes was induced by an intraperitoneal injection of nicotinamide followed by streptozotocin (STZ). Rats in the NC group were fed a regular chow diet. In the two diabetic groups, one group (diabetes mellitus, DM) was fed a common semi-purified diet while the other group received a diet in which part of the casein was replaced by GLN (DM-GLN). GLN provided 25% of total amino acid N. The experimental groups were fed the respective diets for 8 weeks, and then the rats were killed for further analysis. The results showed that blood thioredoxin-interacting protein (Txnip) mRNA expression in the diabetic groups was higher than that in the NC group. Compared with the DM group, the DM-GLN group had lower glutamine fructose-6-phosphate transaminase 1, a receptor of advanced glycation end products, and Txnip gene expressions in blood mononuclear cells. The total antioxidant capacity was lower and antioxidant enzyme activities were altered by the diabetic condition. GLN supplementation increased antioxidant capacity and normalised antioxidant enzyme activities. Also, the renal nitrotyrosine level and Txnip mRNA expression were lower when GLN was administered. These results suggest that dietary GLN supplementation decreases oxidative stress-related gene expression, increases the antioxidant potential and may consequently attenuate renal oxidative damage in rats with STZ-induced diabetes.
Collapse
|
59
|
Chung HW, Lim JH, Kim MY, Shin SJ, Chung S, Choi BS, Kim HW, Kim YS, Park CW, Chang YS. High-fat diet-induced renal cell apoptosis and oxidative stress in spontaneously hypertensive rat are ameliorated by fenofibrate through the PPARα–FoxO3a–PGC-1α pathway. Nephrol Dial Transplant 2011; 27:2213-25. [DOI: 10.1093/ndt/gfr613] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
60
|
Kinsey GR, Okusa MD. Pathogenesis of acute kidney injury: foundation for clinical practice. Am J Kidney Dis 2011; 58:291-301. [PMID: 21530035 PMCID: PMC3144267 DOI: 10.1053/j.ajkd.2011.02.385] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Accepted: 02/01/2011] [Indexed: 01/09/2023]
Abstract
The pathogenesis of acute kidney injury (AKI) is complex, involving such factors as vasoconstriction, leukostasis, vascular congestion, cell death, and abnormal immune modulators and growth factors. Many targeted clinical therapies have failed, are inconclusive, or have yet to be tested. Given the complexity of the pathogenesis of AKI, it may be naive to expect that one therapeutic intervention would have success. Some examples of detrimental processes that can be blocked in preclinical models to improve kidney function and survival are apoptotic cell death in tubular epithelial cells, complement-mediated immune system activation, and impairment of cellular homeostasis and metabolism. Modalities with the potential to decrease morbidity and mortality in patients with AKI include vasodilators, growth factors, anti-inflammatory agents, and cell-based therapies. Pharmacologic agents that target these diverse pathways are being used clinically for other indications. Using combinatorial approaches in future clinical trials may improve our ability to prevent and treat AKI.
Collapse
Affiliation(s)
- Gilbert R Kinsey
- Division of Nephrology and Center for Immunity, Inflammation and Regenerative Medicine, University of Virginia, Charlottesville, 22908, USA
| | | |
Collapse
|
61
|
Levi M. Nuclear receptors in renal disease. Biochim Biophys Acta Mol Basis Dis 2011; 1812:1061-7. [PMID: 21511032 DOI: 10.1016/j.bbadis.2011.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/21/2011] [Accepted: 04/06/2011] [Indexed: 02/07/2023]
Abstract
Diabetes is the leading cause of end-stage renal disease in developed countries. In spite of excellent glucose and blood pressure control, including administration of angiotensin converting enzyme inhibitors and/or angiotensin II receptor blockers, diabetic nephropathy still develops and progresses. The development of additional protective therapeutic interventions is, therefore, a major priority. Nuclear hormone receptors regulate carbohydrate metabolism, lipid metabolism, the immune response, and inflammation. These receptors also modulate the development of fibrosis. As a result of their diverse biological effects, nuclear hormone receptors have become major pharmaceutical targets for the treatment of metabolic diseases. The increasing prevalence of diabetic nephropathy has led intense investigation into the role that nuclear hormone receptors may have in slowing or preventing the progression of renal disease. This role of nuclear hormone receptors would be associated with improvements in metabolism, the immune response, and inflammation. Several nuclear receptor activating ligands (agonists) have been shown to have a renal protective effect in the context of diabetic nephropathy. This review will discuss the evidence regarding the beneficial effects of the activation of several nuclear, especially the vitamin D receptor (VDR), farnesoid X receptor (FXR), and peroxisome-proliferator-associated receptors (PPARs) in preventing the progression of diabetic nephropathy and describe how the discovery and development of compounds that modulate the activity of nuclear hormone receptors may provide potential additional therapeutic approaches in the management of diabetic nephropathy. This article is part of a Special Issue entitled: Translating nuclear receptors from health to disease.
Collapse
Affiliation(s)
- Moshe Levi
- Department of Medicine, Division of Nephrology and Hypertension, University of Colorado Denver,CO 80045, USA.
| |
Collapse
|
62
|
|
63
|
Sekijima T, Tanabe A, Maruoka R, Fujishiro N, Yu S, Fujiwara S, Yuguchi H, Yamashita Y, Terai Y, Ohmichi M. Impact of platinum-based chemotherapy on the progression of atherosclerosis. Climacteric 2011; 14:31-40. [DOI: 10.3109/13697137.2010.522278] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
64
|
Regulation of Proteome Maintenance Gene Expression by Activators of Peroxisome Proliferator-Activated Receptor α. PPAR Res 2011; 2010:727194. [PMID: 21318169 PMCID: PMC3026993 DOI: 10.1155/2010/727194] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 10/13/2010] [Accepted: 11/01/2010] [Indexed: 11/18/2022] Open
Abstract
The nuclear receptor peroxisome proliferator-activated receptor α (PPARα) is activated by a large number of xenobiotic and hypolipidemic compounds called peroxisome proliferator chemicals (PPCs). One agonist of PPARα (WY-14,643) regulates responses in the mouse liver to chemical stress in part by altering expression of genes involved in proteome maintenance (PM) including protein chaperones in the heat shock protein (Hsp) family and proteasomal genes (Psm) involved in proteolysis. We hypothesized that other PPARα activators including diverse hypolipidemic and xenobiotic compounds also regulate PM genes in the rat and mouse liver. We examined the expression of PM genes in rat and mouse liver after exposure to 7 different PPCs (WY-14,643, clofibrate, fenofibrate, valproic acid, di-(2-ethylhexyl) phthalate, perfluorooctanoic acid, and perfluorooctane sulfonate) using Affymetrix microarrays. In rats and mice, 174 or 380 PM genes, respectively, were regulated by at least one PPC. The transcriptional changes were, for the most part, dependent on PPARα, as most changes were not observed in similarly treated PPARα-null mice and the changes were not consistently observed in rats treated with activators of the nuclear receptors CAR or PXR. In rats and mice, PM gene expression exhibited differences compared to typical direct targets of PPARα (e.g., Cyp4a family members). PM gene expression was usually delayed and in some cases, it was transient. Dose-response characterization of protein expression showed that Hsp86 and Hsp110 proteins were induced only at higher doses. These studies demonstrate that PPARα, activated by diverse PPC, regulates the expression of a large number of genes involved in protein folding and degradation and support an expanded role for PPARα in the regulation of genes that protect the proteome.
Collapse
|
65
|
Miglio G, Rosa AC, Rattazzi L, Grange C, Collino M, Camussi G, Fantozzi R. The subtypes of peroxisome proliferator-activated receptors expressed by human podocytes and their role in decreasing podocyte injury. Br J Pharmacol 2011; 162:111-25. [PMID: 20840470 PMCID: PMC3012410 DOI: 10.1111/j.1476-5381.2010.01032.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 07/15/2010] [Accepted: 08/01/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND AND PURPOSE Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors, and three subtypes (α, β and γ) have been identified. PPAR activation has been reported to decrease renal injury and markers of glomerular dysfunction in models of renal ischemia/reperfusion (I/R). However, both the I/R effects and the effects of PPAR agonists on podocytes, an integral cellular part of the glomerular filtration barrier, remain to be established. EXPERIMENTAL APPROACH By using oxygen/glucose deprivation-reoxygenation as an in vitro model that mimics in vivo I/R, the effects of PPAR agonists on podocyte death were compared. Human immortalized podocytes were treated with gemfibrozil, GW0742, pioglitazone or rosiglitazone, as a single or repeated challenge. Cell loss, necrotic and apoptotic cell death were measured. KEY RESULTS Only the repeated treatment with each PPAR agonist significantly prevented cell death, mainly by decreasing apoptosis. In comparison, in a model of serum deprivation-induced apoptosis, both treatments were effective, although the repeated treatment achieved the more pronounced effect. Finally, our results showed that preservation of Bcl-2, Bax and nephrin expression accompanied the anti-apoptotic effects exerted by PPAR agonists in human podocytes. CONCLUSION AND IMPLICATIONS These findings contribute to clarification of the pathophysiological role of renal PPARs and suggest that selective PPARα, PPARβ or PPARγ agonists may exert similar protective effects on podocytes by decreasing apoptotic cell death.
Collapse
Affiliation(s)
- Gianluca Miglio
- Department of Anatomy, Pharmacology and Forensic Medicine, University of Turin, Turin, Italy.
| | | | | | | | | | | | | |
Collapse
|
66
|
Effect of peroxisome proliferator-activated receptor-alpha siRNA on hypertension and renal injury in the rat following nitric oxide withdrawal and high salt diet. J Hypertens 2010; 27:2223-31. [PMID: 19834340 DOI: 10.1097/hjh.0b013e328330b6d9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor (PPAR)-alpha has been implicated in the regulation of normal and pathological cellular functions, but the effect of specific gene silencing on PPARalpha-mediated function is not fully defined. AIM This study evaluated the role of PPARalpha in hypertensive renal injury induced by nitric oxide withdrawal and high salt (4% NaCl) diet [high salt/N(omega)-nitro-L-arginine (L-NNA)]. METHODS Three PPARalpha siRNA clones, siRNA(790-811), siRNA(974-995) or siRNA(1410-1431), directed at the DNA or ligand binding domain of PPARalpha mRNA or scrambled siRNA was cloned into plasmid expression vector and was injected (10 microg intravenously) in hypertensive rats. Twenty-four-hour readings of blood pressure and heart rate were taken in conscious rats using radiotelemetry. Kidney injury was evaluated by determining N-acetyl-beta-glucosaminidase excretion, expression of kidney injury molecule-1 and histopathology. PPARalpha mRNA and protein expression were also determined. RESULTS High salt/L-NNA increased PPARalpha mRNA expression three-fold, and this was abolished in rats treated with PPARalpha siRNA(790-811), siRNA(974-995) or siRNA(1410-1431). High salt/L-NNA also increased blood pressure but reduced heart rate without affecting pulse pressure. However, blood pressure was further increased in rats treated with PPARalpha siRNA(790-811) (37 +/- 3%, P < 0.05). High salt/L-NNA also increased N-acetyl-beta-glucosaminidase excretion and expression of kidney injury molecule-1. However, PPARalpha siRNA(790-811) did not affect N-acetyl-beta-glucosaminidase excretion but reduced kidney injury molecule-1 expression. Histopathology of kidney tissues in high salt/L-NNA-treated rats revealed global, fibrinoid and tubular interstitial necrosis that was blunted by PPARalpha siRNA(790-811). CONCLUSION These data suggest that increased PPARalpha expression is a protective mechanism in hypertensive renal injury induced by nitric oxide withdrawal/high salt diet and that siRNAs targeting the DNA-binding domain of PPARalpha gene elicited differential effects on hypertension and kidney injury.
Collapse
|
67
|
Role of PPARα and Its Agonist in Renal Diseases. PPAR Res 2010; 2010:345098. [PMID: 21076544 PMCID: PMC2976496 DOI: 10.1155/2010/345098] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 10/17/2010] [Indexed: 01/08/2023] Open
Abstract
Peroxisome proliferator-activated receptor (PPAR)-α, a member of a large nuclear receptor superfamily, plays a major role in the regulation of lipid metabolism. Recently, PPARα activation has been shown to confer additional benefits on endothelial function, kidney function, and anti-inflammation, suggesting that PPARα agonists may be good candidates for treating acute renal failure. In clinical application, PPAR-α activators, such as hypolipidemic drugs in fibric acid class, were proven to have therapeutic effects on metabolic syndrome and cardiovascular disease. This paper focuses on signaling pathways, ligand selectivity, and physio-pathological roles of PPARα in kidney diseases and the therapeutic utility of PPARα modulators in the treatment of diabetes and inflammation-induced nephropathy. Implication of new and more potent PPAR-α activators could provide important insights into the overall benefits of activating PPAR-α clinically for the treatment of dyslipidemia and the prevention of diabetic or inflammation-induced nephropathy in the future.
Collapse
|
68
|
Abstract
The glycemic index (GI) indicates how fast blood glucose is raised after consuming a carbohydrate-containing food. Human metabolic studies indicate that GI is related to patho-physiological responses after meals. Compared with a low-GI meal, a high-GI meal is characterized with hyperglycemia during the early postprandial stage (0-2h) and a compensatory hyperlipidemia associated with counter-regulatory hormone responses during late postprandial stage (4-6h). Over the past three decades, several human health disorders have been related to GI. The strongest relationship suggests that consuming low-GI foods prevents diabetic complications. Diabetic retinopathy (DR) is a complication of diabetes. In this aspect, GI appears to be useful as a practical guideline to help diabetic people choose foods. Abundant epidemiological evidence also indicates positive associations between GI and risk for type 2 diabetes, cardiovascular disease, and more recently, age-related macular degeneration (AMD) in people without diabetes. Although data from randomized controlled intervention trials are scanty, these observations are strongly supported by evolving molecular mechanisms which explain the pathogenesis of hyperglycemia. This wide range of evidence implies that dietary hyperglycemia is etiologically related to human aging and diseases, including DR and AMD. In this context, these diseases can be considered as metabolic retinal diseases. Molecular theories that explain hyperglycemic pathogenesis involve a mitochondria-associated pathway and four glycolysis-associated pathways, including advanced glycation end products formation, protein kinase C activation, polyol pathway, and hexosamine pathway. While the four glycolysis-associated pathways appear to be universal for both normoxic and hypoxic conditions, the mitochondria-associated mechanism appears to be most relevant to the hyperglycemic, normoxic pathogenesis. For diseases that affect tissues with highly active metabolism and that frequently face challenge from low oxygen tension, such as retina in which metabolism is determined by both glucose and oxygen homeostases, these theories appear to be insufficient. Several lines of evidence indicate that the retina is particularly vulnerable when hypoxia coincides with hyperglycemia. We propose a novel hyperglycemic, hypoxia-inducible factor (HIF) pathway, to complement the current theories regarding hyperglycemic pathogenesis. HIF is a transcription complex that responds to decrease oxygen in the cellular environment. In addition to playing a significant role in the regulation of glucose metabolism, under hyperglycemia HIF has been shown to increase the expression of HIF-inducible genes, such as vascular endothelial growth factor (VEGF) leading to angiogenesis. To this extent, we suggest that HIF can also be described as a hyperglycemia-inducible factor. In summary, while management of dietary GI appears to be an effective intervention for the prevention of metabolic diseases, specifically AMD and DR, more interventional data is needed to evaluate the efficacy of GI management. There is an urgent need to develop reliable biomarkers of exposure, surrogate endpoints, as well as susceptibility for GI. These insights would also be helpful in deciphering the detailed hyperglycemia-related biochemical mechanisms for the development of new therapeutic agents.
Collapse
|
69
|
Abstract
Diabetes is the leading cause of end-stage renal disease in developed countries. In spite of glucose and blood pressure control, for example by use of angiotensin II receptor blockers, diabetic nephropathy still develops and progresses in affected patients and the development of additional protective therapeutic interventions is, therefore, required. Nuclear hormone receptors are transcription factors that regulate carbohydrate metabolism, lipid metabolism, the immune response, and inflammation. These receptors also modulate the development of fibrosis. As a result of their diverse biological effects, nuclear hormone receptors have become major pharmaceutical targets for the treatment of a host of diseases. The increasing prevalence of diabetic nephropathy has led intense investigation into the role that nuclear hormone receptors may have in slowing or preventing the progression of renal disease. This role of nuclear hormone receptors would be associated with improvements in metabolism, the immune response, and inflammation. Eight nuclear receptors have shown a renoprotective effect in the context of diabetic nephropathy. This Review discusses the evidence regarding the beneficial effects of the activation of these receptors in preventing the progression of diabetic nephropathy and describes how the discovery and development of compounds that modulate the activity of nuclear hormone receptors may provide potential additional therapeutic approaches in the management of diabetic nephropathy.
Collapse
|
70
|
Vallanat B, Anderson SP, Brown-Borg HM, Ren H, Kersten S, Jonnalagadda S, Srinivasan R, Corton JC. Analysis of the heat shock response in mouse liver reveals transcriptional dependence on the nuclear receptor peroxisome proliferator-activated receptor alpha (PPARalpha). BMC Genomics 2010; 11:16. [PMID: 20059764 PMCID: PMC2823686 DOI: 10.1186/1471-2164-11-16] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Accepted: 01/07/2010] [Indexed: 11/22/2022] Open
Abstract
Background The nuclear receptor peroxisome proliferator-activated receptor alpha (PPARα) regulates responses to chemical or physical stress in part by altering expression of genes involved in proteome maintenance. Many of these genes are also transcriptionally regulated by heat shock (HS) through activation by HS factor-1 (HSF1). We hypothesized that there are interactions on a genetic level between PPARα and the HS response mediated by HSF1. Results Wild-type and PPARα-null mice were exposed to HS, the PPARα agonist WY-14,643 (WY), or both; gene and protein expression was examined in the livers of the mice 4 or 24 hrs after HS. Gene expression profiling identified a number of Hsp family members that were altered similarly in both mouse strains. However, most of the targets of HS did not overlap between strains. A subset of genes was shown by microarray and RT-PCR to be regulated by HS in a PPARα-dependent manner. HS also down-regulated a large set of mitochondrial genes specifically in PPARα-null mice that are known targets of PPARγ co-activator-1 (PGC-1) family members. Pretreatment of PPARα-null mice with WY increased expression of PGC-1β and target genes and prevented the down-regulation of the mitochondrial genes by HS. A comparison of HS genes regulated in our dataset with those identified in wild-type and HSF1-null mouse embryonic fibroblasts indicated that although many HS genes are regulated independently of both PPARα and HSF1, a number require both factors for HS responsiveness. Conclusions These findings demonstrate that the PPARα genotype has a dramatic effect on the transcriptional targets of HS and support an expanded role for PPARα in the regulation of proteome maintenance genes after exposure to diverse forms of environmental stress including HS.
Collapse
Affiliation(s)
- Beena Vallanat
- NHEERL Toxicogenomics Core, US EPA, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Surendar J, Anuradha S, Ashley B, Balasubramanyam M, Aravindhan V, Rema M, Mohan V. Cystatin C and Cystatin Glomerular Filtration Rate as Markers of Early Renal Disease in Asian Indian Subjects With Glucose Intolerance (CURES-32). Metab Syndr Relat Disord 2009; 7:419-25. [DOI: 10.1089/met.2008.0084] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- J. Surendar
- Madras Diabetes Research Foundation, Kallam Anji Reddy Centre, Siruseri, and Dr. Mohan’s Diabetes Specialities Centre, WHO Collaborating Centre for Noncommunicable Diseases Prevention and Control, Gopalapuram, Chennai, India
| | - S. Anuradha
- Madras Diabetes Research Foundation, Kallam Anji Reddy Centre, Siruseri, and Dr. Mohan’s Diabetes Specialities Centre, WHO Collaborating Centre for Noncommunicable Diseases Prevention and Control, Gopalapuram, Chennai, India
| | - Berty Ashley
- Madras Diabetes Research Foundation, Kallam Anji Reddy Centre, Siruseri, and Dr. Mohan’s Diabetes Specialities Centre, WHO Collaborating Centre for Noncommunicable Diseases Prevention and Control, Gopalapuram, Chennai, India
| | - M. Balasubramanyam
- Madras Diabetes Research Foundation, Kallam Anji Reddy Centre, Siruseri, and Dr. Mohan’s Diabetes Specialities Centre, WHO Collaborating Centre for Noncommunicable Diseases Prevention and Control, Gopalapuram, Chennai, India
| | - V. Aravindhan
- Madras Diabetes Research Foundation, Kallam Anji Reddy Centre, Siruseri, and Dr. Mohan’s Diabetes Specialities Centre, WHO Collaborating Centre for Noncommunicable Diseases Prevention and Control, Gopalapuram, Chennai, India
| | - M. Rema
- Madras Diabetes Research Foundation, Kallam Anji Reddy Centre, Siruseri, and Dr. Mohan’s Diabetes Specialities Centre, WHO Collaborating Centre for Noncommunicable Diseases Prevention and Control, Gopalapuram, Chennai, India
| | - V. Mohan
- Madras Diabetes Research Foundation, Kallam Anji Reddy Centre, Siruseri, and Dr. Mohan’s Diabetes Specialities Centre, WHO Collaborating Centre for Noncommunicable Diseases Prevention and Control, Gopalapuram, Chennai, India
| |
Collapse
|
72
|
Li S, Nagothu KK, Desai V, Lee T, Branham W, Moland C, Megyesi JK, Crew MD, Portilla D. Transgenic expression of proximal tubule peroxisome proliferator-activated receptor-alpha in mice confers protection during acute kidney injury. Kidney Int 2009; 76:1049-62. [PMID: 19710628 DOI: 10.1038/ki.2009.330] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Our previous studies suggest that peroxisome proliferator-activated receptor-alpha (PPARalpha) plays a critical role in regulating fatty acid beta-oxidation in kidney tissue and this directly correlated with preservation of kidney morphology and function during acute kidney injury. To further study this, we generated transgenic mice expressing PPARalpha in the proximal tubule under the control of the promoter of KAP2 (kidney androgen-regulated protein 2). Segment-specific upregulation of PPARalpha expression by testosterone treatment of female transgenic mice improved kidney function during cisplatin or ischemia-reperfusion-induced acute kidney injury. Ischemia-reperfusion injury or treatment with cisplatin in wild-type mice caused inhibition of fatty-acid oxidation, reduction of mitochondrial genes of oxidative phosphorylation, mitochondrial DNA, fatty-acid metabolism, and the tricarboxylic acid cycle. Similar injury in testosterone-treated transgenic mice resulted in amelioration of these effects. Similarly, there were increases in the levels of 4-hydroxy-2-hexenal-derived lipid peroxidation products in wild-type mice, which were also reduced in the transgenic mice. Similarly, necrosis of the S3 segment was reduced in the two injury models in transgenic mice compared to wild type. Our results suggest proximal tubule PPARalpha activity serves as a metabolic sensor. Its increased expression without the use of an exogenous PPARalpha ligand in the transgenic mice is sufficient to protect kidney function and morphology, and to prevent abnormalities in lipid metabolism associated with acute kidney injury.
Collapse
Affiliation(s)
- Shenyang Li
- Division of Nephrology, Departments of Internal Medicine and Immunology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Patel NSA, di Paola R, Mazzon E, Britti D, Thiemermann C, Cuzzocrea S. Peroxisome proliferator-activated receptor-alpha contributes to the resolution of inflammation after renal ischemia/reperfusion injury. J Pharmacol Exp Ther 2009; 328:635-43. [PMID: 18997058 DOI: 10.1124/jpet.108.146191] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
This study was designed to elucidate the role of peroxisome proliferator-activated receptor (PPAR)-alpha in the development of inflammation after ischemia/reperfusion injury of the kidney. We have evaluated the effects of ischemia/reperfusion on renal dysfunction, injury, and inflammation in wild-type mice or mice in which the gene for PPAR-alpha has been deleted [PPAR-alpha(-/-)] and then treated with the PPAR-alpha agonist fenofibrate. Mice were subjected to bilateral renal ischemia (30 min) and reperfusion (24 h) and received fenofibrate (3 mg/kg i.p.) before reperfusion. Plasma creatinine, urea, and aspartate aminotransferase were all used as indicators of renal dysfunction and injury. Kidneys were used for histological and immunohistochemical analysis and markers of inflammation. Fenofibrate significantly attenuated the degree of renal dysfunction, injury, and inflammation caused by ischemia/reperfusion injury. The degree of renal dysfunction, injury, and inflammation caused by ischemia/reperfusion was also significantly augmented in PPAR-alpha(-/-) mice compared with their wild-type littermates. It is interesting that fenofibrate did not protect PPAR-alpha(-/-) mice against ischemia/reperfusion injury. Therefore, we propose that ligands of PPAR-alpha may be useful in the treatment of renal ischemia/reperfusion injury and that endogenous PPAR-alpha limits the degree of renal dysfunction, injury, and inflammation associated with ischemia/reperfusion injury.
Collapse
Affiliation(s)
- Nimesh S A Patel
- Centre for Translational Medicine and Nephrology, William Harvey Research Institute, St. Bartholomew's and The Royal London School of Medicine and Dentistry, Queen Mary-University of London, Charterhouse Square, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
74
|
Regner KR, Zuk A, Van Why SK, Shames BD, Ryan RP, Falck JR, Manthati VL, McMullen ME, Ledbetter SR, Roman RJ. Protective effect of 20-HETE analogues in experimental renal ischemia reperfusion injury. Kidney Int 2008; 75:511-7. [PMID: 19052533 DOI: 10.1038/ki.2008.600] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
While it is known that the arachidonic acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) contributes to ischemic injury in the heart and brain, its role in kidney injury is unclear. Here we determined the effects on ischemia-reperfusion injury of the 20-HETE analogues, 20-hydroxyeicosa-5(Z), 14(Z)-dienoic acid (5,14-20-HEDE), and N-[20-hydroxyeicosa-5(Z),14(Z)-dienoyl]glycine (5,14-20-HEDGE), and of the inhibitor of 20-HETE synthesis N-hydroxy-N-(4-butyl-2 methylphenyl) formamidine (HET0016). Using Sprague-Dawley rats we found that while treatment with the inhibitor exacerbated renal injury, infusion of both 5,14-20-HEDE and 5,14-20-HEDGE significantly attenuated injury when compared to vehicle or inhibitor-treated rats. Medullary blood flow, measured by laser-Doppler flowmetry, decreased to half of the baseline one hour after reperfusion in the control rats, but 5,14-20-HEDGE completely prevented this. Treatment of control animals with 5,14-20-HEDGE increased urine output and sodium excretion without altering their mean arterial pressure or glomerular filtration rate. Our results suggest that 20-HETE analogues protect the kidney from ischemia-reperfusion injury by inhibiting renal tubular sodium transport and preventing the post-ischemic fall in medullary blood flow. Analogues of 20-HETE may be useful in the treatment of acute ischemic kidney injury.
Collapse
Affiliation(s)
- Kevin R Regner
- Department of Nephrology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Bartlett HE, Eperjesi F. Nutritional supplementation for type 2 diabetes: a systematic review. Ophthalmic Physiol Opt 2008; 28:503-23. [DOI: 10.1111/j.1475-1313.2008.00595.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
76
|
Liu H, Jia Z, Jia Z, Soodvilai S, Guan G, Wang MH, Dong Z, Symons JD, Yang T. Nitro-oleic acid protects the mouse kidney from ischemia and reperfusion injury. Am J Physiol Renal Physiol 2008; 295:F942-9. [PMID: 18753300 DOI: 10.1152/ajprenal.90236.2008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitroalkene derivatives of linoleic acid (nitrolinoleic acid; LNO2) and nitro-oleic acid (OA-NO2) are endogenous lipid products with potent anti-inflammatory properties. The present study was undertaken to evaluate the therapeutic potential of OA-NO2 in a mouse model of renal ischemia-reperfusion (I/R) injury. B6129SF2/J mice were subjected to bilateral renal ischemia for 30 min, followed by 24 h of reperfusion. Fifty minutes after ischemia, mice received intraperitoneal (ip) injections of OA-NO2 (500 microg/kg; I/R OA-NO2), vehicle for OA-NO2 (i.e., 0.8 ml/kg ethanol; I/R veh), or oleic acid (500 microg/kg; I/R OA) every 6 h during the 24-h recovery period. A sham-operated group was not subjected to ischemia and received 0.8 ml/kg ethanol ip every 6 h during the 24-h recovery period (sham veh). While plasma urea and creatinine were elevated (P<0.05) in I/R veh vs. sham veh mice, the severity was less (P<0.05) in I/R OA-NO2 animals. Indices of histological damage, polymorphonucleocyte infiltration, together with expression of intracellular adhesion molecule-1, interleukin-1beta, and tumor necrosis factor-alpha, p47(phox), and gp91(phox) were greater in I/R veh vs. sham veh mice, but were attenuated (P<0.05) in I/R OA-NO2 animals. Because indices of renal dysfunction were similar between I/R veh and I/R OA mice (P>0.05), but less (P<0.05) in I/R OA-NO2 animals compared with both groups, protection from bilateral renal ischemia is afforded by the nitrated but not free form of oleic acid. Together, delayed administration of nitrated fatty acid OA-NO2 attenuates renal I/R injury in the mouse likely via inhibition of the inflammatory response.
Collapse
Affiliation(s)
- Haiying Liu
- Department of Internal Medicine, University of Utah and Salt Lake Veteran Affairs Medical Center, 30 N 1900 E, Rm. 4R312, Salt Lake City, UT 84132, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Obih P, Oyekan AO. Regulation of blood pressure, natriuresis and renal thiazide/amiloride sensitivity in PPARalpha null mice. Blood Press 2008; 17:55-63. [PMID: 18568693 DOI: 10.1080/08037050701789278] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
This study evaluated the role of PPARalpha in renal function and whether PPARalpha knockout (KO) mice are hypertensive or salt-sensitive. We hypothesize that PPARalpha modulation of ion transport defines the capacity for sodium excretion (U(Na)V). PPARalpha KO and wild-type (WT) mice were placed on a normal salt (NS, 0.5% NaCl) or high salt (8% NaCl, HS) diet for 28 days and mean arterial blood pressure (MABP) and heart rate (HR) determined. In a group of anesthetized animals on NS diet, pressure natriuresis (P/N) was determined and in another group, acute sodium load (0.9% NaCl) was administered and U(Na)V compared in mice pretreated with amiloride (200 microg/kg) or hydrochlorothiazide (3 mg/kg), in vivo measurements of sodium hydrogen exchanger or Na-Cl-cotransporter activity, respectively. MABP and HR were similar in PPARalpha KO and WT mice placed on a NS diet (116+/-6 mmHg, 587+/-40 beats/min, KO; 116+/-4 mmHg, 551+/-20 beats/min, WT). HS diet increased MABP to a greater extent in KO mice (Delta = 29+/-3 vs 14+/-3 mmHg, p<0.05) as did proteinuria (8- vs 2.5-fold, p<0.05). P/N was blunted in untreated KO mice. In response to an acute NaCl-load, U(Na)V was faster in PPARalpha KO mice (4.31+/-1.11 vs 0.77+/-0.31 micromol, p<0.05). However, U(Na)V was unchanged in hydrochlorothiazide-treated KO mice but increased 6.9-fold in WT mice. Similarly, U(Na)V was less in amiloride-treated KO mice (3.4- vs 15.5-fold). These data suggest that PPARalpha participates in pressure natriuresis and affects Na transport via amiloride- and thiazide-sensitive mechanisms. Thus, despite defective fatty acid oxidation, PPARalpha null mice are not hypertensive but develop salt-sensitive hypertension.
Collapse
Affiliation(s)
- Patience Obih
- College of Pharmacy, Xavier University of Louisiana, New Orleans, Louisiana, USA
| | | |
Collapse
|
78
|
Renal L-type fatty acid-binding protein mediates the bezafibrate reduction of cisplatin-induced acute kidney injury. Kidney Int 2008; 73:1374-84. [PMID: 18368030 DOI: 10.1038/ki.2008.106] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Fibrates, the PPAR alpha ligand-like compounds increase the expression of proximal tubule liver fatty acid binding protein (L-FABP) and significantly decrease cisplatin-induced acute kidney injury. To study whether the bezafibrate-mediated upregulation of renal L-FABP was involved in this cytoprotective effect we treated transgenic mice of PPAR agonists inducible human L-FABP expression with cisplatin in the presence or absence of bezafibrate. Blood urea nitrogen was unchanged in the first day but increased 3 days after cisplatin. While urinary L-FABP increased over 100-fold 1 day after cisplatin treatment in the transgenic mice it was significantly reduced when these transgenic mice were pretreated with bezafibrate. Cisplatin-induced renal necrosis and apoptosis were significantly reduced in bezafibrate pretreated transgenic mice and this correlated with decreased accumulation of lipid and lipid peroxidation products. Immunohistochemical analysis of kidney tissue of bezafibrate-cisplatin-treated transgenic mice showed preservation of cytoplasmic L-FABP in the proximal tubule, but this was reduced in transgenic mice treated only with cisplatin. L-FABP mRNA and protein levels were significantly increased in bezafibrate-cisplatin-treated transgenic mice when compared to mice not fibrate treated. Our study shows that the bezafibrate-mediated upregulation of proximal tubule L-FABP plays a pivotal role in the reduction of cisplatin-induced acute kidney injury.
Collapse
|
79
|
|
80
|
Hernández C, Simó R. Strategies for blocking angiogenesis in diabetic retinopathy: from basic science to clinical practice. Expert Opin Investig Drugs 2007; 16:1209-26. [PMID: 17685870 DOI: 10.1517/13543784.16.8.1209] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Proliferative diabetic retinopathy (PDR) demands both more effective and less expensive biologically based treatments. Our understanding of the pathophysiology of the disease is increasing as new biochemical pathways are identified. Most reports emphasize proangiogenic stimuli, with the natural inhibitory elements receiving little attention. There are two therapeutic strategies for blocking retinal angiogenesis in PDR: systemic drug administration (protein kinase C inhibitors and somatostatin analogs) or local therapies (anti-vascular endothelial growth factor strategies, anti-inflammatory agents, gene therapy and stem cell therapy). This review mainly focuses on the role of local therapies, especially intravitreous delivery, in the management of PDR. The potential for adverse effect are also discussed. The availability of these new strategies or the combination of them will not only be beneficial in treating PDR but may also result in a shift towards treating earlier stages of diabetic retinopathy, thus easing the burden of this devastating disease.
Collapse
Affiliation(s)
- Cristina Hernández
- Hospital Universitari Vall d'Hebron, Diabetes and Metabolism Research Unit, Endocrinology Division, Pg. Vall d'Hebron, Barcelona, Spain
| | | |
Collapse
|
81
|
Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion injury: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2007; 376:1-43. [PMID: 18038125 DOI: 10.1007/s00210-007-0183-5] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 08/01/2007] [Indexed: 02/07/2023]
Abstract
Renal ischemia-reperfusion (I-R) contributes to the development of ischemic acute renal failure (ARF). Multi-factorial processes are involved in the development and progression of renal I-R injury with the generation of reactive oxygen species, nitric oxide and peroxynitrite, and the decline of antioxidant protection playing major roles, leading to dysfunction, injury, and death of the cells of the kidney. Renal inflammation, involving cytokine/adhesion molecule cascades with recruitment, activation, and diapedesis of circulating leukocytes is also implicated. Clinically, renal I-R occurs in a variety of medical and surgical settings and is responsible for the development of acute tubular necrosis (a characteristic feature of ischemic ARF), e.g., in renal transplantation where I-R of the kidney directly influences graft and patient survival. The cellular mechanisms involved in the development of renal I-R injury have been targeted by several pharmacological interventions. However, although showing promise in experimental models of renal I-R injury and ischemic ARF, they have not proved successful in the clinical setting (e.g., atrial natriuretic peptide, low-dose dopamine). This review highlights recent pharmacological developments, which have shown particular promise against experimental renal I-R injury and ischemic ARF, including novel antioxidants and antioxidant enzyme mimetics, nitric oxide and nitric oxide synthase inhibitors, erythropoietin, peroxisome-proliferator-activated receptor agonists, inhibitors of poly(ADP-ribose) polymerase, carbon monoxide-releasing molecules, statins, and adenosine. Novel approaches such as recent research involving combination therapies and the potential of non-pharmacological strategies are also considered.
Collapse
Affiliation(s)
- Prabal K Chatterjee
- Division of Pharmacology and Therapeutics, School of Pharmacy and Biomolecular Sciences, University of Brighton, Cockcroft Building, Lewes Road, Moulsecoomb, Brighton BN2 4GJ, UK.
| |
Collapse
|
82
|
Archer DC, Frkanec JT, Cromwell J, Clopton P, Cunard R. WY14,643, a PPARalpha ligand, attenuates expression of anti-glomerular basement membrane disease. Clin Exp Immunol 2007; 150:386-96. [PMID: 17888025 PMCID: PMC2219353 DOI: 10.1111/j.1365-2249.2007.03505.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Peroxisome proliferator-activated receptor alpha (PPARalpha) ligands are medications used to treat hyperlipidaemia and atherosclerosis. Increasing evidence suggests that these agents are immunosuppressive. In the following studies we demonstrate that WY14,643, a PPARalpha ligand, attenuates expression of anti-glomerular basement membrane disease (AGBMD). C57BL/6 mice were fed 0.05% WY14,643 or control food and immunized with the non-collagenous domain of the alpha3 chain of Type IV collagen [alpha3(IV) NC1] in complete Freund's adjuvant (CFA). WY14,643 reduced proteinuria and greatly improved glomerular and tubulo-interstitial lesions. However, the PPARalpha ligand did not alter the extent of IgG-binding to the GBM. Immunohistochemical studies revealed that the prominent tubulo-interstitial infiltrates in the control-fed mice consisted predominately of F4/80(+) macrophages and WY14,643-feeding decreased significantly the number of renal macrophages. The synthetic PPARalpha ligand also reduced significantly expression of the chemokine, monocyte chemoattractant protein (MCP)-1/CCL2. Sera from mice immunized with AGBMD were also evaluated for antigen-specific IgGs. There was a significant increase in the IgG1 : IgG2c ratio and a decline in the intrarenal and splenocyte interferon (IFN)-gamma mRNA expression in the WY14,643-fed mice, suggesting that the PPARalpha ligand could skew the immune response to a less inflammatory T helper 2-type of response. These studies suggest that PPARalpha ligands may be a novel treatment for inflammatory renal disease.
Collapse
Affiliation(s)
- D C Archer
- Research Service and Division of Nephrology-Hypertension, Veterans Affairs San Diego Healthcare System, Veterans Medical Research Foundation, San Diego, CA, USA
| | | | | | | | | |
Collapse
|
83
|
Tchaikovski V, Waltenberger J. Angiogenesis and Arteriogenesis in Diabetes Mellitus: Signal Transduction Defects as the Molecular Basis of Vascular Cell Dysfunction. THERAPEUTIC NEOVASCULARIZATION–QUO VADIS? 2007:33-73. [DOI: 10.1007/1-4020-5955-8_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
84
|
Negishi K, Noiri E, Sugaya T, Li S, Megyesi J, Nagothu K, Portilla D. A role of liver fatty acid-binding protein in cisplatin-induced acute renal failure. Kidney Int 2007; 72:348-58. [PMID: 17495861 DOI: 10.1038/sj.ki.5002304] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Previous studies from our laboratory showed that increased fatty acid oxidation by the kidney is cytoprotective during cisplatin (CP)-mediated nephrotoxicity. In this study, we determined the effects of CP and fibrates on peroxisome proliferation and the expression of liver fatty acid-binding protein (L-FABP) in normal mice, and in mice transgenically overexpressing human L-FABP (h-L-FABP). Labeling of peroxisomes demonstrated reduced peroxisomal staining in the proximal tubule of CP-treated mice compared with control mice. There was increased peroxisomal labeling in the proximal tubules of both control and CP-treated mice when either was treated with fibrate; a known peroxisome proliferator-activated receptor-alpha ligand. L-FABP protein expression, not detected in control or CP-treated mice, was significantly increased in the proximal tubules of fibrate-treated mice of either group. In the transgenic mice, CP increased the shedding of h-L-FABP in the urine, which was decreased by fibrate as was the acute renal failure. A cytosolic pattern of h-L-FABP expression was found in the proximal tubules of untreated transgenic mice with a nuclear presence in CP-treated mice. Fibrate pretreatment restored the cytosolic expression pattern in CP-treated mice. Our study shows that fibrate may improve CP-induced acute renal failure due to both peroxisome proliferation and increased L-FABP in the cytosol of the proximal tubule.
Collapse
Affiliation(s)
- K Negishi
- Department of Nephrology and Endocrinology, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
85
|
Di Paola R, Cuzzocrea S. Peroxisome proliferator-activated receptors ligands and ischemia-reperfusion injury. Naunyn Schmiedebergs Arch Pharmacol 2007; 375:157-75. [PMID: 17394034 DOI: 10.1007/s00210-007-0141-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Accepted: 01/28/2007] [Indexed: 12/19/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to a subfamily of transcription nuclear factors. Three isoforms of PPARs have been identified: alpha, beta/delta and gamma, encoded by different genes and distributed in various tissues. They play important roles in metabolic processes like regulation of glucose and lipid redistribution. They also have anti-atherogenic, anti-inflammatory as well as antihypertensive functions. There is good evidence that ligands of PPARs reduce tissue injury associated with ischemia and reperfusion. The potential utility of PPAR ligands in ischemia and reperfusion will be discussed in this review.
Collapse
Affiliation(s)
- Rosanna Di Paola
- Department of Clinical and Experimental Medicine and Pharmacology, School of Medicine, University of Messina, Torre Biologica-Policlinico Universitario, Via C. Valeria-Gazzi, 98100 Messina, Italy
| | | |
Collapse
|
86
|
Feldkamp T, Kribben A, Roeser NF, Ostrowski T, Weinberg JM. Alleviation of fatty acid and hypoxia-reoxygenation-induced proximal tubule deenergization by ADP/ATP carrier inhibition and glutamate. Am J Physiol Renal Physiol 2007; 292:F1606-16. [PMID: 17244890 DOI: 10.1152/ajprenal.00476.2006] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidney proximal tubules develop a severe but highly reversible energetic deficit due to nonesterified fatty acid (NEFA)-induced dissipation of mitochondrial membrane potential (DeltaPsi(m)) during reoxygenation after severe hypoxia. To assess the mechanism for this behavior, we have compared the efficacies of different NEFA for inducing mitochondrial deenergization in permeabilized tubules measured using safranin O uptake and studied the modification of NEFA-induced deenergization by inhibitors of the ADP/ATP carrier and glutamate using both normoxic tubules treated with exogenous NEFA and tubules deenergized during hypoxia-reoxygenation (H/R). Among the long-chain NEFA that accumulate during H/R of isolated tubules and ischemia-reperfusion of the kidney in vivo, oleate, linoleate, and arachidonate had strong effects to dissipate DeltaPsi(m) that were slightly greater than palmitate, while stearate was inactive at concentrations reached in the cells. This behavior correlates well with the protonophoric effects of each NEFA. Inhibition of the ADP/ATP carrier with either carboxyatractyloside or bongkrekic acid or addition of glutamate to compete for the aspartate/glutamate carrier improved DeltaPsi(m) in the presence of exogenous oleate and after H/R. Effects on the two carriers were additive and restored safranin O uptake to as much as 80% of normal under both conditions. The data strongly support NEFA cycling across the inner mitochondrial membrane using anion carriers as the main mechanism for NEFA-induced deenergization in this system and provide the first evidence for a contribution of this process to pathophysiological events that impact importantly on energetics of intact cells.
Collapse
Affiliation(s)
- Thorsten Feldkamp
- Division of Nephrology, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan, Ann Arbor, Michigan 48109-0676, USA
| | | | | | | | | |
Collapse
|
87
|
Lu H, Lei X, Klaassen C. Gender differences in renal nuclear receptors and aryl hydrocarbon receptor in 5/6 nephrectomized rats. Kidney Int 2006; 70:1920-8. [PMID: 16985511 DOI: 10.1038/sj.ki.5001880] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This study was aimed at delineating molecular pathways essential in gender-different pathogenesis of chronic kidney diseases (CKD). Renal transcripts of nuclear receptors and metabolic enzymes in male and female kidneys from 5/6 nephrectomized (Nx) rats 7 weeks post-Nx were examined using branched DNA signal amplification assay. Nx-males had marked kidney injury coupled with anemia and malnutrition. Nx-females had moderate renal injury, and were free of albuminuria, anemia, and malnutrition. Nx-males had systemic and renal inflammation, which were largely absent in Nx-females. Blood 17beta-estradiol, testosterone, and corticosterone did not change, whereas urinary testosterone decreased in both genders. Compared to males, female kidneys had higher androgen receptor (AR) and aryl hydrocarbon receptor (AhR) but lower estrogen receptor alpha (ERalpha). Compared to Nx-males, female remnant kidneys had less decreases in ERalpha and peroxisome proliferator-activated receptor alpha (PPARalpha), had no induction of AR and decrease of acyl-CoA oxidase, whereas had induction of cytochrome P450 4a1 (Cyp4a1) but decrease of AhR. Renal protein expression of a 52-kDa isoform of Wilm's tumor 1 (WT1), transcription factor critical in nephrogenesis, decreased dramatically in Nx-males but largely preserved in Nx-females. In conclusion, gender divergences in basal expression and alteration of ERalpha, AR, AhR, WT1, and PPARalpha/Cyp4a1 during CKD may explain gender differences in CKD progression and outcome of renal transplantation.
Collapse
Affiliation(s)
- H Lu
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160-7417, USA
| | | | | |
Collapse
|
88
|
Abstract
Excess fatty acids accompanied by triglyceride accumulation in parenchymal cells of multiple tissues including skeletal and cardiac myocytes, hepatocytes, and pancreatic beta cells results in chronic cellular dysfunction and injury. The process, now termed lipotoxicity, can account for many manifestations of the 'metabolic syndrome'. Most data suggest that the triglycerides serve primarily a storage function with toxicity deriving mainly from long-chain nonesterified fatty acids (NEFA) and their products such as ceramides and diacylglycerols. In the kidney, filtered NEFA carried on albumin can aggravate the chronic tubule damage and inflammatory phenotype that develop during proteinuric states and lipid loading of both glomerular and tubular cells is a common response to renal injury that contributes to progression of nephropathy. NEFA-induced mitochondrial dysfunction is the primary mechanism for energetic failure of proximal tubules during hypoxia/reoxygenation and persistent increases of tubule cell NEFA and triglycerides occur during acute renal failure in vivo in association with downregulation of mitochondrial and peroxisomal enzymes of beta oxidation. In acute renal failure models, peroxisome proliferator-activated receptor alpha ligand treatment can ameliorate the NEFA and triglyceride accumulation and limits tissue injury likely via both direct tubule actions and anti-inflammatory effects. Both acute and chronic kidney disease are associated with systemic manifestations of the metabolic syndrome.
Collapse
Affiliation(s)
- J M Weinberg
- Division of Nephrology, Department of Internal Medicine, Veterans Affairs Ann Arbor Healthcare System and University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
89
|
Boulanger H, Mansouri R, Gautier JF, Glotz D. Are peroxisome proliferator-activated receptors new therapeutic targets in diabetic and non-diabetic nephropathies? Nephrol Dial Transplant 2006; 21:2696-702. [PMID: 16880183 DOI: 10.1093/ndt/gfl448] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Henri Boulanger
- Department of Nephrology and Transplantation, Saint-Louis Hospital, 1 avenue Claude-Vellefaux, 75475 Paris Cedex 10, France.
| | | | | | | |
Collapse
|
90
|
Korrapati MC, Chilakapati J, Lock EA, Latendresse JR, Warbritton A, Mehendale HM. Preplaced cell division: a critical mechanism of autoprotection againstS-1,2-dichlorovinyl-l-cysteine-induced acute renal failure and death in mice. Am J Physiol Renal Physiol 2006; 291:F439-55. [PMID: 16495211 DOI: 10.1152/ajprenal.00384.2005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Previous studies have shown that renal injury initiated by a lethal dose of S-1,2-dichlorovinyl-l-cysteine (DCVC) progresses due to inhibition of cell division and hence renal repair, leading to acute renal failure (ARF) and death in mice. Renal injury initiated by low to moderate doses of DCVC is repaired by timely and adequate stimulation of renal cell division, tubular repair, restoration of renal structure and function leading to survival of mice. Recent studies have established that mice primed with a low dose of DCVC (15 mg/kg ip) 72 h before administration of a normally lethal dose (75 mg/kg ip) are protected from ARF and death (nephro-autoprotection). We showed that renal cell division and tissue repair stimulated by the low dose are sustained even after the lethal dose administration resulting in survival from ARF and death. If renal cell division induced by the low dose is indeed the critical mechanism of this autoprotection, then its ablation by the antimitotic agent colchicine (1.5 mg CLC/kg ip) should abolish autoprotection. The present interventional experiments were designed to test the hypothesis that DCVC autoprotection is due to stimulated cell division and tissue repair by the priming low dose. CLC intervention at 42 and 66 h after the priming dose resulted in marked progressive elevation of plasma blood urea nitrogen and creatinine resulting in ARF and death of mice. Light microscopic examination of hematoxylin and eosin-stained kidney sections revealed progression of renal necrosis concordant with progressively failing renal function. With CLC intervention, S-phase stimulation (as assessed by BrdU pulse labeling), G1-to-S phase clearance, and cell division were diminished essentially abolishing the promitogenic effect of the priming low dose of DCVC. Phospho-retinoblastoma protein (P-pRB), a crucial protein for S-phase stimulation, and other cellular signaling mechanisms regulating P-pRB were investigated. We report that decreased P-pRB via activation of protein phosphatase-1 by CLC is the critical mechanism of this inhibited S-phase stimulation and ablation of autoprotection with CLC intervention. These findings lend additional support to the notion that stimulated cell division and renal tissue repair by the priming dose of DCVC are the critical mechanisms that allow sustained compensatory tissue repair and survival of mice in nephro-autoprotection.
Collapse
Affiliation(s)
- Midhun C Korrapati
- Dept. of Toxicology, College of Pharmacy, The Univ. of Louisiana Monroe, 700 Univ. Ave., Sugar Hall no. 306, Monroe, LA 71209-0470, USA
| | | | | | | | | | | |
Collapse
|
91
|
Portilla D, Li S, Nagothu KK, Megyesi J, Kaissling B, Schnackenberg L, Safirstein RL, Beger RD. Metabolomic study of cisplatin-induced nephrotoxicity. Kidney Int 2006; 69:2194-204. [PMID: 16672910 DOI: 10.1038/sj.ki.5000433] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We have shown that cisplatin inhibits fatty acid oxidation, and that fibrate treatment ameliorates renal function by preventing the inhibition of fatty acid oxidation and proximal tubule cell death. Urine samples of mice treated with single injection of cisplatin (20 mg/kg body weight) were collected for 3 days and analyzed by 1H-nuclear magnetic resonance (NMR) spectroscopy. In a separate group, urine samples of mice treated with peroxisome proliferator-activated receptor-alpha (PPARalpha) ligand WY were also analyzed by NMR after 2 days of cisplatin exposure. Biochemical analysis of endogenous metabolites was performed in serum, urine, and kidney tissue. Electron microscopic studies were carried out to examine the effects of PPARalpha ligand and cisplatin. Principal component analysis demonstrated the presence of glucose, amino acids, and trichloacetic acid cycle metabolites in the urine after 48 h of cisplatin administration. These metabolic alterations precede changes in serum creatinine. Biochemical studies confirmed the presence of glucosuria, but also demonstrated the accumulation of nonesterified fatty acids, and triglycerides in serum, urine, and kidney tissue, in spite of increased levels of plasma insulin. These metabolic alterations were ameliorated by the use of PPARalpha ligand. Electron microscopic analysis confirmed the protective effect of the fibrate on preventing cisplatin-mediated necrosis of the S3 segment of the proximal tubule. Our study shows that cisplatin-induces a unique NMR metabolic profile in urine of mice that developed acute renal failure, and confirms the protective effect of a fibrate class of PPARalpha ligands. We propose that the injury-induced metabolic profile may be used as a biomarker of cisplatin-induced nephrotoxicity.
Collapse
Affiliation(s)
- D Portilla
- Department of Internal Medicine, Division of Nephrology, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, Arkansas 72205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
92
|
Michalik L, Wahli W. Involvement of PPAR nuclear receptors in tissue injury and wound repair. J Clin Invest 2006; 116:598-606. [PMID: 16511592 PMCID: PMC1386118 DOI: 10.1172/jci27958] [Citation(s) in RCA: 172] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tissue damage resulting from chemical, mechanical, and biological injury, or from interrupted blood flow and reperfusion, is often life threatening. The subsequent tissue response involves an intricate series of events including inflammation, oxidative stress, immune cell recruitment, and cell survival, proliferation, migration, and differentiation. In addition, fibrotic repair characterized by myofibroblast transdifferentiation and the deposition of ECM proteins is activated. Failure to initiate, maintain, or stop this repair program has dramatic consequences, such as cell death and associated tissue necrosis or carcinogenesis. In this sense, inflammation and oxidative stress, which are beneficial defense processes, can become harmful if they do not resolve in time. This repair program is largely based on rapid and specific changes in gene expression controlled by transcription factors that sense injury. PPARs are such factors and are activated by lipid mediators produced after wounding. Here we highlight advances in our understanding of PPAR action during tissue repair and discuss the potential for these nuclear receptors as therapeutic targets for tissue injury.
Collapse
Affiliation(s)
- Liliane Michalik
- Center for Integrative Genomics, National Research Centre Frontiers in Genetics, University of Lausanne, Lausanne, Switzerland.
| | | |
Collapse
|
93
|
Park CW, Kim HW, Ko SH, Chung HW, Lim SW, Yang CW, Chang YS, Sugawara A, Guan Y, Breyer MD. Accelerated diabetic nephropathy in mice lacking the peroxisome proliferator-activated receptor alpha. Diabetes 2006; 55:885-93. [PMID: 16567507 DOI: 10.2337/diabetes.55.04.06.db05-1329] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR)alpha, a member of the ligand-activated nuclear receptor superfamily, plays an important role in lipid metabolism and glucose homeostasis and is highly expressed in the kidney. The present studies were aimed at determining the role of PPARalpha in the pathogenesis of diabetic nephropathy using PPARalpha-knockout mice and cultured murine mesangial cells. Diabetes was induced using a low-dose streptozotocin protocol in 8-week-old male 129 SvJ PPARalpha-knockout and wild-type mice. Diabetic PPARalpha-knockout and wild-type mice developed elevated fasting blood glucose (P < 0.001) and HbA1c levels (P < 0.001). Renal functional and histopathological changes in diabetic and nondiabetic PPARalpha-knockout and wild-type mice were evaluated after 16 weeks of hyperglycemia. PPARalpha immunostaining of the cortical tubules of diabetic wild-type mice was elevated by hyperglycemia. In diabetic PPARalpha-knockout mice, renal disease with accompanying albuminuria, glomerular sclerosis, and mesangial area expansion was more severe than in diabetic wild-type mice (P < 0.05) and was accompanied by increased levels of serum free fatty acids and triglycerides (P < 0.01). Furthermore, they exhibited increased renal immunostaining for type IV collagen and osteopontin, which was associated with increased macrophage infiltration and glomerular apoptosis. There were no significant differences in these indexes of renal disease between nondiabetic PPARalpha-knockout and wild-type mice and diabetic PPARalpha wild-type mice. In vitro studies demonstrated that high glucose levels markedly increased the expression of type IV collagen, transforming growth factor-beta1, and the number of leukocytes adherent to cultured mesangial cells. Adherence of leukocytes was inhibited by the PPARalpha agonist fenofibrate. Taken together, PPARalpha deficiency appears to aggravate the severity of diabetic nephropathy through an increase in extracellular matrix formation, inflammation, and circulating free fatty acid and triglyceride concentrations. PPARalpha agonists may serve as useful therapeutic agents for type 1 diabetic nephropathy.
Collapse
Affiliation(s)
- Cheol Whee Park
- Division of Nephrology, Department of Internal Medicine, The Catholic University of Korea, 62, Yoido-Dong, Youngdeungpo-Ku, Seoul, Korea 150-713
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Ito O, Nakamura Y, Tan L, Ishizuka T, Sasaki Y, Minami N, Kanazawa M, Ito S, Sasano H, Kohzuki M. Expression of cytochrome P-450 4 enzymes in the kidney and liver: Regulation by PPAR and species-difference between rat and human. Mol Cell Biochem 2006; 284:141-8. [PMID: 16552476 DOI: 10.1007/s11010-005-9038-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2005] [Accepted: 10/03/2005] [Indexed: 10/24/2022]
Abstract
Members of the cytochrome P-450 4 (CYP4) family catalyze the omega-hydroxylation of fatty acids, and some of them have the PPAR response element in the promoter area of the genes. The localization of CYP4A and PPAR isoforms and the effect of PPAR agonists on CYP4A protein level and activity were determined in rat kidney and liver. Immunoblot analysis showed that CYP4A was expressed in the liver and proximal tubule, with lower expression in the preglomerular microvessel, glomerulus and thick ascending limb (TAL), but the expression was not detected in the collecting duct. PPARalpha was expressed in the liver, proximal tubule and TAL. PPARgamma was expressed in the collecting duct, with lower expression in the TAL, but no expression in the proximal tubule and liver. The PPARalpha agonist clofibrate induced CYP4A protein levels and activity in the renal cortex and liver. The PPARgamma agonist pioglitazone did not modulate them in these tissues. The localization of CYP4A and CYP4F were further determined in human kidney and liver by immunohistochemical technique. Immunostainings for CYP4A and CYP4F were observed in the hepatocytes of the liver lobule and the proximal tubules, with lower stainings in the TALs and collecting ducts, but no staining in the glomeruli or renal vasculatures. These results indicate that the inducibility of CYP4A by PPAR agonists in the rat tissues correlates with the expression of the respective PPAR isoforms, and that the localization of CYP4 in the kidney has a species-difference between rat and human.
Collapse
Affiliation(s)
- Osamu Ito
- Department of Internal Medicine and Rehabilitation Science, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
BACKGROUND In previous studies we have shown that cisplatin inhibits peroxisome proliferator-activated receptor-alpha (PPAR-alpha) activity and consequently fatty acid oxidation, and these events precede proximal tubule cell death. In addition the use of fibrate class of PPAR-alpha ligands ameliorate renal function by preventing both inhibition of fatty acid oxidation and proximal tubule cell death. METHODS LLC-PK1 cells were treated with cisplatin and apoptosis was established by the presence of nuclear fragmentation and by cell cycle analysis. Proximal tubular cells treated with cisplatin and bezafibrate were subjected to sub cellular fractionation and the presence of Bax, Bcl-2, cytochrome c, and active caspase-3 in the cytosolic and mitochondrial membrane fractions was determined by Western blot analysis. PPAR-alpha activity was measured by determining luciferase activity after transfection of LLC-PK1 cells with TK-Luc 3x PPAR response elements (PPRE), and the accumulation of nonesterified free fatty acids was measured in lysates obtained from cells treated with cisplatin and bezafibrate. RESULTS Incubation of LLC-PK1 cells with 25 micromol/L cisplatin for 18 hours induced 41.5% apoptosis measured by cell cycle analysis. Cisplatin-induced apoptosis was significantly suppressed by bezafibrate, a fibrate class of PPAR-alpha ligand. Bezafibrate treatment of LLC-PK1 cells prevented cisplatin-induced translocation of proapoptotic Bax from the cytosol to the mitochondrial fraction, and increased the expression of antiapoptotic molecule Bcl-2. Cisplatin-induced inhibition of PPAR-alpha activity was accompanied by increased accumulation of nonesterified free fatty acids. Pretreatment with bezafibrate prevented both the inhibition of PPAR-alpha activity and the accumulation of nonesterified free fatty acids induced by cisplatin. Finally, bezafibrate prevented cisplatin-induced release of cytochrome c from the mitochondria to the cytosol, and the cleavage of procaspase-3 to active caspase-3. CONCLUSION Bezafibrate treatment inhibits cisplatin-mediated tubular injury by preventing the activation of various cellular mechanisms that lead to proximal tubule cell death. These findings support our previous observations where the use of fibrates represents a novel strategy to ameliorate proximal tubule cell death in cisplatin-induced acute renal failure.
Collapse
Affiliation(s)
- Kiran K Nagothu
- Division of Nephrology, Department of Internal Medicine, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare System, Little Rock, AR 72205, USA
| | | | | | | |
Collapse
|
96
|
Panchapakesan U, Chen XM, Pollock CA. Drug Insight: thiazolidinediones and diabetic nephropathy—relevance to renoprotection. ACTA ACUST UNITED AC 2005; 1:33-43. [PMID: 16932362 DOI: 10.1038/ncpneph0029] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 09/09/2005] [Indexed: 11/08/2022]
Abstract
Up to a third of people with diabetes mellitus suffer end-stage renal failure due to diabetic nephropathy. Strategies to delay progression of diabetic nephropathy-including glycemic and blood pressure control, modification of the renin-angiotensin system and management of lipid levels with statins-have been effective, but development of new strategies is essential if the ever-increasing burden of this disease is to be minimized. Thiazolidinediones (TZDs) are a family of compounds used as oral hypoglycemic agents in patients with type 2 diabetes mellitus. The therapeutic effects of TZDs are largely a function of their activity as ligands of peroxisome proliferator-activated receptor gamma (PPARgamma), a transcription factor that has a central role in adipogenesis and insulin sensitization. In vitro animal and clinical studies have shown that TZDs ameliorate symptoms and pathogenic mechanisms of diabetic and nondiabetic nephropathy, including proteinuria, excessive deposition of glomerular matrix, cellular proliferation, inflammation and fibrosis. Many of these favorable effects occur under both normal and high-glucose conditions. The mechanisms responsible probably involve both PPARgamma-dependent and PPARgamma-independent pathways. So, TZDs and other agonists of PPARgamma offer promise for treatment of diabetic nephropathy; however, before their putative renoprotective effects can be translated into clinical practice, the complex mechanisms of PPARgamma activity and regulation will need to be investigated further.
Collapse
Affiliation(s)
- Usha Panchapakesan
- Kolling Institute of Medical Research, Royal North Shore Hospital, NSW 2065, Sydney, Australia
| | | | | |
Collapse
|
97
|
Feldkamp T, Kribben A, Roeser NF, Senter RA, Weinberg JM. Accumulation of nonesterified fatty acids causes the sustained energetic deficit in kidney proximal tubules after hypoxia-reoxygenation. Am J Physiol Renal Physiol 2005; 290:F465-77. [PMID: 16159894 DOI: 10.1152/ajprenal.00305.2005] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Kidney proximal tubules exhibit decreased ATP and reduced, but not absent, mitochondrial membrane potential (Deltapsi(m)) during reoxygenation after severe hypoxia. This energetic deficit, which plays a pivotal role in overall cellular recovery, cannot be explained by loss of mitochondrial membrane integrity, decreased electron transport, or compromised F1F0-ATPase and adenine nucleotide translocase activities. Addition of oleate to permeabilized tubules produced concentration-dependent decreases of Deltapsi(m) measured by safranin O uptake (threshold for oleate = 0.25 microM, 1.6 nmol/mg protein; maximal effect = 4 microM, 26 nmol/mg) that were reversed by delipidated BSA (dBSA). Cell nonesterified fatty acid (NEFA) levels increased from <1 to 17.4 nmol/mg protein during 60- min hypoxia and remained elevated at 7.6 nmol/mg after 60 min reoxygenation, at which time ATP had recovered to only 10% of control values. Safranin O uptake in reoxygenated tubules, which was decreased 85% after 60-min hypoxia, was normalized by dBSA, which improved ATP synthesis as well. dBSA also almost completely normalized Deltapsi(m) when the duration of hypoxia was increased to 120 min. In intact tubules, the protective substrate combination of alpha-ketoglutarate + malate (alpha-KG/MAL) increased ATP three- to fourfold, limited NEFA accumulation during hypoxia by 50%, and lowered NEFA during reoxygenation. Notably, dBSA also improved ATP recovery when added to intact tubules during reoxygenation and was additive to the effect of alpha-KG/MAL. We conclude that NEFA overload is the primary cause of energetic failure of reoxygenated proximal tubules and lowering NEFA substantially contributes to the benefit from supplementation with alpha-KG/MAL.
Collapse
Affiliation(s)
- Thorsten Feldkamp
- Nephrology Division, Department of Internal Medicine, Rm. 1560, MSRB II, University of Michigan Medical Center, Ann Arbor, MI 48109-0676, USA
| | | | | | | | | |
Collapse
|
98
|
Abstract
Cardiovascular disease is the most common cause of death in the diabetic population and is currently one of the leading causes of death in the United States and other industrialized countries. The health care expenses associated with cardiovascular disease are staggering, reaching more than 350 billion dollars in 2003. The risk factors for cardiovascular disease include high fat/cholesterol levels, alcoholism, smoking, genetics, environmental factors and hypertension, which are commonly used to gauge an individual's risk of cardiovascular disease and to track their progress during therapy. Most recently, these factors have become important in the early prevention of cardiovascular diseases. Oxidative stress, the imbalance between reactive oxygen species production and breakdown by endogenous antioxidants, has been implicated in the onset and progression of cardiovascular diseases such as congestive heart failure and diabetes-associated heart dysfunction (diabetic cardiomyopathy). Antioxidant therapy has shown promise in preventing the development of diabetic heart complications. This review focuses on recent advances in oxidative stress theory and antioxidant therapy in diabetic cardiomyopathy, with an emphasis on the stress signaling pathways hypothesized to be involved. Many of these stress signaling pathways lead to activation of reactive oxygen species, major players in the development and progression of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Loren E Wold
- Department of Pharmacology, Physiology and Therapeutics, University of North Dakota, Grand Forks, ND 58203, USA
| | | | | |
Collapse
|
99
|
Korrapati MC, Lock EA, Mehendale HM. Molecular mechanisms of enhanced renal cell division in protection againstS-1,2-dichlorovinyl-l-cysteine-induced acute renal failure and death. Am J Physiol Renal Physiol 2005; 289:F175-85. [PMID: 15741605 DOI: 10.1152/ajprenal.00418.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Sustained activation of ERK 1/2 by a low dose (15 mg/kg ip) of S-1,2-dichlorovinyl-l-cysteine (DCVC) 72 h before administration of a lethal dose of DCVC (75 mg/kg ip) enhances renal cell division and protects mice against acute renal failure (ARF) and death (autoprotection). The objective of this study was to determine correlation among extent of S-phase DNA synthesis, activation of transcription factors, expression of G1/S cyclins, cyclin-dependent kinases (CDKs), and CDK inhibitors downstream of ERK 1/2 following DCVC-induced ARF in autoprotection. Administration of the lethal dose alone caused a general downregulation or an unsustainable increase, in transcriptional and posttranscriptional events thereby preventing G1-S transition of renal cell cycle. Phosphorylation of IκBα was inhibited resulting in limited nuclear translocation of NF-κB. However, cyclin D1 expression was high probably due to transcriptional cooperation of AP-1. Cyclin D1/cyclin-dependent kinase 4 (cdk4)-cdk6 system-mediated phosphorylation of retinoblastoma protein was downregulated due to overexpression of p16 at 24 h after exposure to the lethal dose alone. Inhibition of S-phase stimulation was confirmed by proliferating cell nuclear antigen assay (PCNA). This inhibitory response was prevented if the lethal dose was administered 72 h after the low priming dose of DCVC due to promitogenic effect of the low dose. NF-κB-DNA binding is not limited if mice were pretreated with the priming dose. Cyclin D1/cdk4-cdk6 expression stimulated by the priming dose of DCVC was unaltered even after the lethal dose in the autoprotected group, explaining higher phosphorylated-pRB and S-phase stimulation found in this group. These results were corroborated with PCNA immunohistochemistry. These findings suggest that the priming dose relieves the block on compensatory tissue repair by upregulation of promitogenic mechanisms, normally blocked by the high dose when administered without the prior priming dose.
Collapse
Affiliation(s)
- Midhun C Korrapati
- Dept. of Toxicology, School of Pharmacy, College of Health Sciences, The University of Louisiana at Monroe, LA 71209-0470, USA
| | | | | |
Collapse
|
100
|
Letavernier E, Perez J, Joye E, Bellocq A, Fouqueray B, Haymann JP, Heudes D, Wahli W, Desvergne B, Baud L. Peroxisome Proliferator-Activated Receptor β/δ Exerts a Strong Protection from Ischemic Acute Renal Failure. J Am Soc Nephrol 2005; 16:2395-402. [PMID: 15944338 DOI: 10.1681/asn.2004090802] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Ischemic acute renal failure is characterized by damages to the proximal straight tubule in the outer medulla. Lesions include loss of polarity, shedding into the tubule lumen, and eventually necrotic or apoptotic death of epithelial cells. It was recently shown that peroxisome proliferator-activated receptor beta/delta (PPARbeta/delta) increases keratinocyte survival after an inflammatory reaction. Therefore, whether PPARbeta/delta could contribute also to the control of tubular epithelium death after renal ischemia/reperfusion was tested. It was found that PPARbeta/delta+/- and PPARbeta/delta-/- mutant mice exhibited much greater kidney dysfunction and injury than wild-type counterparts after a 30-min renal ischemia followed by a 36-h reperfusion. Conversely, wild-type mice that were given the specific PPARbeta/delta ligand L-165041 before renal ischemia were completely protected against renal dysfunction, as indicated by the lack of rise in serum creatinine and fractional excretion of Na+. This protective effect was accompanied by a significant reduction in medullary necrosis, apoptosis, and inflammation. On the basis of in vitro studies, PPARbeta/delta ligands seem to exert their role by activating the antiapoptotic Akt signaling pathway and, unexpectedly, by increasing the spreading of tubular epithelial cells, thus limiting potentially their shedding and anoikis. These results point to PPARbeta/delta as a remarkable new target for preconditioning strategies.
Collapse
|