51
|
Guo YB, He YX, Cui CY, Ouzhu L, Baima K, Duoji Z, Deji Q, Bian B, Peng Y, Bai CJ, Gongga L, Pan YY, Qu L, Kang M, Ciren Y, Baima Y, Guo W, Yang L, Zhang H, Zhang XM, Zheng WS, Xu SH, Chen H, Zhao SG, Cai Y, Liu SM, Wu TY, Qi XB, Su B. GCH1 plays a role in the high-altitude adaptation of Tibetans. Zool Res 2018; 38:155-162. [PMID: 28585439 PMCID: PMC5460084 DOI: 10.24272/j.issn.2095-8137.2017.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Tibetans are well adapted to high-altitude hypoxia. Previous genome-wide scans have reported many candidate genes for this adaptation, but only a few have been studied. Here we report on a hypoxia gene ( GCH1, GTP-cyclohydrolase I), involved in maintaining nitric oxide synthetase (NOS) function and normal blood pressure, that harbors many potentially adaptive variants in Tibetans. We resequenced an 80.8 kb fragment covering the entire gene region of GCH1 in 50 unrelated Tibetans. Combined with previously published data, we demonstrated many GCH1 variants showing deep divergence between highlander Tibetans and lowlander Han Chinese. Neutrality tests confirmed a signal of positive Darwinian selection on GCH1 in Tibetans. Moreover, association analysis indicated that the Tibetan version of GCH1 was significantly associated with multiple physiological traits in Tibetans, including blood nitric oxide concentration, blood oxygen saturation, and hemoglobin concentration. Taken together, we propose that GCH1 plays a role in the genetic adaptation of Tibetans to high altitude hypoxia.
Collapse
Affiliation(s)
- Yong-Bo Guo
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou Gansu 730070, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Yao-Xi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China; High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa Tibet 850000, China
| | - Chao-Ying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa Tibet 850000, China
| | - Luobu Ouzhu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa Tibet 850000, China
| | - Kangzhuo Baima
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa Tibet 850000, China
| | - Zhuoma Duoji
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa Tibet 850000, China
| | - Quzong Deji
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa Tibet 850000, China
| | - Ba Bian
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa Tibet 850000, China
| | - Yi Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Cai-Juan Bai
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa Tibet 850000, China
| | - Lanzi Gongga
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa Tibet 850000, China
| | - Yong-Yue Pan
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa Tibet 850000, China
| | | | - Min Kang
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa Tibet 850000, China
| | - Yangji Ciren
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa Tibet 850000, China
| | - Yangji Baima
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa Tibet 850000, China
| | - Wei Guo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa Tibet 850000, China
| | - la Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Xiao-Ming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Wang-Shan Zheng
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou Gansu 730070, China; State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China
| | - Shu-Hua Xu
- Chinese Academy of Sciences Key Laboratory of Computational Biology, Max Planck Independent Research Group on Population Genomics, CAS-MPG Partner Institute for Computational Biology(PICB), Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China; Collaborative Innovation Center of Genetics and Development, Shanghai 200438, China
| | - Hua Chen
- Center for Computational Genomics, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheng-Guo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou Gansu 730070, China
| | - Yuan Cai
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou Gansu 730070, China
| | - Shi-Ming Liu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining Qinghai 810012, China
| | - Tian-Yi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining Qinghai 810012, China
| | - Xue-Bin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming Yunnan 650223, China.
| |
Collapse
|
52
|
Plasma proteomic study of acute mountain sickness susceptible and resistant individuals. Sci Rep 2018; 8:1265. [PMID: 29352170 PMCID: PMC5775437 DOI: 10.1038/s41598-018-19818-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 12/20/2017] [Indexed: 12/20/2022] Open
Abstract
Although extensive studies have focused on the development of acute mountain sickness (AMS), the exact mechanisms of AMS are still obscure. In this study, we used isobaric tags for relative and absolute quantitation (iTRAQ) proteomic analysis to identify novel AMS−associated biomarkers in human plasma. After 9 hours of hypobaric hypoxia the abundance of proteins related to tricarboxylic acid (TCA) cycle, glycolysis, ribosome, and proteasome were significantly reduced in AMS resistant (AMS−) group, but not in AMS susceptible (AMS+) group. This suggested that AMS− individuals could reduce oxygen consumption via repressing TCA cycle and glycolysis, and reduce energy consumption through decreasing protein degradation and synthesis compared to AMS+ individuals after acute hypoxic exposure. The inflammatory response might be decreased resulting from the repressed TCA cycle. We propose that the ability for oxygen consumption reduction may play an important role in the development of AMS. Our present plasma proteomic study in plateau of the Han Chinese volunteers gives new data to address the development of AMS and potential AMS correlative biomarkers.
Collapse
|
53
|
Courtney KD, Infante JR, Lam ET, Figlin RA, Rini BI, Brugarolas J, Zojwalla NJ, Lowe AM, Wang K, Wallace EM, Josey JA, Choueiri TK. Phase I Dose-Escalation Trial of PT2385, a First-in-Class Hypoxia-Inducible Factor-2α Antagonist in Patients With Previously Treated Advanced Clear Cell Renal Cell Carcinoma. J Clin Oncol 2017; 36:867-874. [PMID: 29257710 DOI: 10.1200/jco.2017.74.2627] [Citation(s) in RCA: 272] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Purpose The von Hippel-Lindau tumor suppressor is inactivated in the majority of clear cell renal cell carcinomas (ccRCCs), leading to inappropriate stabilization of hypoxia-inducible factor-2α (HIF-2α). PT2385 is a first-in-class HIF-2α antagonist. Objectives of this first-in-human study were to characterize the safety, pharmacokinetics, pharmacodynamics, and efficacy, and to identify the recommended phase II dose (RP2D) of PT2385. Patients and Methods Eligible patients had locally advanced or metastatic ccRCC that had progressed during one or more prior regimens that included a vascular endothelial growth factor inhibitor. PT2385 was administered orally at twice-per-day doses of 100 to 1,800 mg, according to a 3 + 3 dose-escalation design, followed by an expansion phase at the RP2D. Results The dose-escalation and expansion phases enrolled 26 and 25 patients, respectively. Patients were heavily pretreated, with a median of four (range, one to seven) prior therapies. No dose-limiting toxicity was observed at any dose. On the basis of safety, pharmacokinetic, and pharmacodynamic profiling, the RP2D was defined as 800 mg twice per day. PT2385 was well tolerated, with anemia (grade 1 to 2, 35%; grade 3, 10%), peripheral edema (grade 1 to 2, 37%; grade 3, 2%), and fatigue (grade 1 to 2, 37%; no grade 3 or 4) being the most common treatment-emergent adverse events. No patients discontinued treatment because of adverse events. Complete response, partial response, and stable disease as best response were achieved by 2%, 12%, and 52% of patients, respectively. At data cutoff, eight patients remained in the study, with 13 patients in the study for ≥ 1 year. Conclusion PT2385 has a favorable safety profile and is active in patients with heavily pretreated ccRCC, validating direct HIF-2α antagonism for the treatment of patients with ccRCC.
Collapse
Affiliation(s)
- Kevin D Courtney
- Kevin D. Courtney and James Brugarolas, University of Texas Southwestern Medical Center; Naseem J. Zojwalla, Ann M. Lowe, Keshi Wang, Eli M. Wallace, and John A. Josey, Peloton Therapeutics, Dallas, TX; Jeffrey R. Infante, TN Oncology and Sarah Cannon Research Institute, Nashville, TN; Elaine T. Lam, University of Colorado Cancer Center, Aurora, CO; Robert A. Figlin, Cedars-Sinai Medical Center, Los Angeles, CA; Brian I. Rini, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; Toni K. Choueiri, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Jeffrey R Infante
- Kevin D. Courtney and James Brugarolas, University of Texas Southwestern Medical Center; Naseem J. Zojwalla, Ann M. Lowe, Keshi Wang, Eli M. Wallace, and John A. Josey, Peloton Therapeutics, Dallas, TX; Jeffrey R. Infante, TN Oncology and Sarah Cannon Research Institute, Nashville, TN; Elaine T. Lam, University of Colorado Cancer Center, Aurora, CO; Robert A. Figlin, Cedars-Sinai Medical Center, Los Angeles, CA; Brian I. Rini, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; Toni K. Choueiri, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Elaine T Lam
- Kevin D. Courtney and James Brugarolas, University of Texas Southwestern Medical Center; Naseem J. Zojwalla, Ann M. Lowe, Keshi Wang, Eli M. Wallace, and John A. Josey, Peloton Therapeutics, Dallas, TX; Jeffrey R. Infante, TN Oncology and Sarah Cannon Research Institute, Nashville, TN; Elaine T. Lam, University of Colorado Cancer Center, Aurora, CO; Robert A. Figlin, Cedars-Sinai Medical Center, Los Angeles, CA; Brian I. Rini, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; Toni K. Choueiri, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Robert A Figlin
- Kevin D. Courtney and James Brugarolas, University of Texas Southwestern Medical Center; Naseem J. Zojwalla, Ann M. Lowe, Keshi Wang, Eli M. Wallace, and John A. Josey, Peloton Therapeutics, Dallas, TX; Jeffrey R. Infante, TN Oncology and Sarah Cannon Research Institute, Nashville, TN; Elaine T. Lam, University of Colorado Cancer Center, Aurora, CO; Robert A. Figlin, Cedars-Sinai Medical Center, Los Angeles, CA; Brian I. Rini, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; Toni K. Choueiri, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Brian I Rini
- Kevin D. Courtney and James Brugarolas, University of Texas Southwestern Medical Center; Naseem J. Zojwalla, Ann M. Lowe, Keshi Wang, Eli M. Wallace, and John A. Josey, Peloton Therapeutics, Dallas, TX; Jeffrey R. Infante, TN Oncology and Sarah Cannon Research Institute, Nashville, TN; Elaine T. Lam, University of Colorado Cancer Center, Aurora, CO; Robert A. Figlin, Cedars-Sinai Medical Center, Los Angeles, CA; Brian I. Rini, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; Toni K. Choueiri, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - James Brugarolas
- Kevin D. Courtney and James Brugarolas, University of Texas Southwestern Medical Center; Naseem J. Zojwalla, Ann M. Lowe, Keshi Wang, Eli M. Wallace, and John A. Josey, Peloton Therapeutics, Dallas, TX; Jeffrey R. Infante, TN Oncology and Sarah Cannon Research Institute, Nashville, TN; Elaine T. Lam, University of Colorado Cancer Center, Aurora, CO; Robert A. Figlin, Cedars-Sinai Medical Center, Los Angeles, CA; Brian I. Rini, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; Toni K. Choueiri, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Naseem J Zojwalla
- Kevin D. Courtney and James Brugarolas, University of Texas Southwestern Medical Center; Naseem J. Zojwalla, Ann M. Lowe, Keshi Wang, Eli M. Wallace, and John A. Josey, Peloton Therapeutics, Dallas, TX; Jeffrey R. Infante, TN Oncology and Sarah Cannon Research Institute, Nashville, TN; Elaine T. Lam, University of Colorado Cancer Center, Aurora, CO; Robert A. Figlin, Cedars-Sinai Medical Center, Los Angeles, CA; Brian I. Rini, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; Toni K. Choueiri, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Ann M Lowe
- Kevin D. Courtney and James Brugarolas, University of Texas Southwestern Medical Center; Naseem J. Zojwalla, Ann M. Lowe, Keshi Wang, Eli M. Wallace, and John A. Josey, Peloton Therapeutics, Dallas, TX; Jeffrey R. Infante, TN Oncology and Sarah Cannon Research Institute, Nashville, TN; Elaine T. Lam, University of Colorado Cancer Center, Aurora, CO; Robert A. Figlin, Cedars-Sinai Medical Center, Los Angeles, CA; Brian I. Rini, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; Toni K. Choueiri, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Keshi Wang
- Kevin D. Courtney and James Brugarolas, University of Texas Southwestern Medical Center; Naseem J. Zojwalla, Ann M. Lowe, Keshi Wang, Eli M. Wallace, and John A. Josey, Peloton Therapeutics, Dallas, TX; Jeffrey R. Infante, TN Oncology and Sarah Cannon Research Institute, Nashville, TN; Elaine T. Lam, University of Colorado Cancer Center, Aurora, CO; Robert A. Figlin, Cedars-Sinai Medical Center, Los Angeles, CA; Brian I. Rini, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; Toni K. Choueiri, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Eli M Wallace
- Kevin D. Courtney and James Brugarolas, University of Texas Southwestern Medical Center; Naseem J. Zojwalla, Ann M. Lowe, Keshi Wang, Eli M. Wallace, and John A. Josey, Peloton Therapeutics, Dallas, TX; Jeffrey R. Infante, TN Oncology and Sarah Cannon Research Institute, Nashville, TN; Elaine T. Lam, University of Colorado Cancer Center, Aurora, CO; Robert A. Figlin, Cedars-Sinai Medical Center, Los Angeles, CA; Brian I. Rini, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; Toni K. Choueiri, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - John A Josey
- Kevin D. Courtney and James Brugarolas, University of Texas Southwestern Medical Center; Naseem J. Zojwalla, Ann M. Lowe, Keshi Wang, Eli M. Wallace, and John A. Josey, Peloton Therapeutics, Dallas, TX; Jeffrey R. Infante, TN Oncology and Sarah Cannon Research Institute, Nashville, TN; Elaine T. Lam, University of Colorado Cancer Center, Aurora, CO; Robert A. Figlin, Cedars-Sinai Medical Center, Los Angeles, CA; Brian I. Rini, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; Toni K. Choueiri, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| | - Toni K Choueiri
- Kevin D. Courtney and James Brugarolas, University of Texas Southwestern Medical Center; Naseem J. Zojwalla, Ann M. Lowe, Keshi Wang, Eli M. Wallace, and John A. Josey, Peloton Therapeutics, Dallas, TX; Jeffrey R. Infante, TN Oncology and Sarah Cannon Research Institute, Nashville, TN; Elaine T. Lam, University of Colorado Cancer Center, Aurora, CO; Robert A. Figlin, Cedars-Sinai Medical Center, Los Angeles, CA; Brian I. Rini, Cleveland Clinic Taussig Cancer Institute, Cleveland, OH; Toni K. Choueiri, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA
| |
Collapse
|
54
|
Bhatnagar A. Response by Bhatnagar to Letter Regarding Article, "Environmental Determinants of Cardiovascular Disease". Circ Res 2017; 121:e81-e82. [PMID: 28963194 DOI: 10.1161/circresaha.117.311811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
55
|
Xiao J, Li X, Liu J, Fan X, Lei H, Li C. Identification of reference genes in blood before and after entering the plateau for SYBR green RT-qPCR studies. PeerJ 2017; 5:e3726. [PMID: 28970964 PMCID: PMC5622608 DOI: 10.7717/peerj.3726] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/01/2017] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Tibetans have lived at high altitudes for thousands of years, and they have unique physiological traits that enable them to tolerate this hypoxic environment. However, the genetic basis of these traits is still unknown. As a sensitive and highly efficient technique, RT-qPCR is widely used in gene expression analyses to provide insight into the molecular mechanisms underlying environmental changes. However, the quantitative analysis of gene expression in blood is limited by a shortage of stable reference genes for the normalization of mRNA levels. Thus, systematic approaches were used to identify potential reference genes. RESULTS The expression levels of eight candidate human reference genes (GAPDH, ACTB, 18S RNA, β2-MG, PPIA, RPL13A, TBP and SDHA) were assessed in blood from hypoxic environments. The expression stability of these selected reference genes was evaluated using the geNorm, NormFinder and BestKeeper programs. Interestingly, RPL13A was identified as the ideal reference gene for normalizing target gene expression in human blood before and after exposure to high-altitude conditions. CONCLUSION These results indicate that different reference genes should be selected for the normalization of gene expression in blood from different environmental settings.
Collapse
Affiliation(s)
- Jun Xiao
- Department of Blood Transfusion, General Hospital of Air Force, PLA, Beijing, China
| | - Xiaowei Li
- Department of Blood Transfusion, General Hospital of Air Force, PLA, Beijing, China
| | - Juan Liu
- Department of Blood Transfusion, General Hospital of Air Force, PLA, Beijing, China
| | - Xiu Fan
- Department of Blood Transfusion, General Hospital of Air Force, PLA, Beijing, China
| | - Huifen Lei
- Department of Blood Transfusion, General Hospital of Air Force, PLA, Beijing, China
| | - Cuiying Li
- Department of Blood Transfusion, General Hospital of Air Force, PLA, Beijing, China
| |
Collapse
|
56
|
Moore LG. Measuring high-altitude adaptation. J Appl Physiol (1985) 2017; 123:1371-1385. [PMID: 28860167 DOI: 10.1152/japplphysiol.00321.2017] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/15/2017] [Accepted: 08/15/2017] [Indexed: 12/12/2022] Open
Abstract
High altitudes (>8,000 ft or 2,500 m) provide an experiment of nature for measuring adaptation and the physiological processes involved. Studies conducted over the past ~25 years in Andeans, Tibetans, and, less often, Ethiopians show varied but distinct O2 transport traits from those of acclimatized newcomers, providing indirect evidence for genetic adaptation to high altitude. Short-term (acclimatization, developmental) and long-term (genetic) responses to high altitude exhibit a temporal gradient such that, although all influence O2 content, the latter also improve O2 delivery and metabolism. Much has been learned concerning the underlying physiological processes, but additional studies are needed on the regulation of blood flow and O2 utilization. Direct evidence of genetic adaptation comes from single-nucleotide polymorphism (SNP)-based genome scans and whole genome sequencing studies that have identified gene regions acted upon by natural selection. Efforts have begun to understand the connections between the two with Andean studies on the genetic factors raising uterine blood flow, fetal growth, and susceptibility to Chronic Mountain Sickness and Tibetan studies on genes serving to lower hemoglobin and pulmonary arterial pressure. Critical for future studies will be the selection of phenotypes with demonstrable effects on reproductive success, the calculation of actual fitness costs, and greater inclusion of women among the subjects being studied. The well-characterized nature of the O2 transport system, the presence of multiple long-resident populations, and relevance for understanding hypoxic disorders in all persons underscore the importance of understanding how evolutionary adaptation to high altitude has occurred.NEW & NOTEWORTHY Variation in O2 transport characteristics among Andean, Tibetan, and, when available, Ethiopian high-altitude residents supports the existence of genetic adaptations that improve the distribution of blood flow to vital organs and the efficiency of O2 utilization. Genome scans and whole genome sequencing studies implicate a broad range of gene regions. Future studies are needed using phenotypes of clear relevance for reproductive success for determining the mechanisms by which naturally selected genes are acting.
Collapse
Affiliation(s)
- Lorna G Moore
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, University of Colorado Denver-Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
57
|
Yao HB, Tang S, Yao X, Yeh HY, Zhang W, Xie Z, Du Q, Ma L, Wei S, Gong X, Zhang Z, Li Q, Xu B, Zhang HQ, Chen G, Wang CC. The genetic admixture in Tibetan-Yi Corridor. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2017; 164:522-532. [DOI: 10.1002/ajpa.23291] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 07/14/2017] [Accepted: 07/23/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Hong-Bing Yao
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | | | | | - Hui-Yuan Yeh
- School of Humanities and School of Medicine; Nanyang Technological University; 639798 Singapore
| | - Wanhu Zhang
- People's Hospital of Gaotai; Gaotai Gansu Province 734300 China
| | - Zhiyan Xie
- People's Hospital of Gaotai; Gaotai Gansu Province 734300 China
| | - Qiajun Du
- Lanzhou University Second Hospital Clinical Laboratory; Lanzhou Gansu Province 730000 China
| | - Liying Ma
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | - Shuoyun Wei
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | - Xue Gong
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | - Zilong Zhang
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | - Quanfang Li
- Key Laboratory of Evidence Science of Gansu Province; Gansu Institute of Political Science and Law; Lanzhou 730070 China
| | - Bingying Xu
- School of Forensic Medicine; Kunming Medical University; Kunming 650500 China
| | - Hu-Qin Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education; School of Life Science and Technology, Xi'an Jiaotong University; Xi'an 710049 China
| | | | - Chuan-Chao Wang
- Department of Anthropology and Ethnology; Xiamen University; Xiamen 361005 China
- Department of Archaeogenetics and Eurasia3angle research group; Max Planck Institute for the Science of Human History; Jena D-07745 Germany
- Department of Genetics; Harvard Medical School; Boston Massachusetts 02115
| |
Collapse
|
58
|
Hu H, Petousi N, Glusman G, Yu Y, Bohlender R, Tashi T, Downie JM, Roach JC, Cole AM, Lorenzo FR, Rogers AR, Brunkow ME, Cavalleri G, Hood L, Alpatty SM, Prchal JT, Jorde LB, Robbins PA, Simonson TS, Huff CD. Evolutionary history of Tibetans inferred from whole-genome sequencing. PLoS Genet 2017; 13:e1006675. [PMID: 28448578 PMCID: PMC5407610 DOI: 10.1371/journal.pgen.1006675] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/08/2017] [Indexed: 12/20/2022] Open
Abstract
The indigenous people of the Tibetan Plateau have been the subject of much recent interest because of their unique genetic adaptations to high altitude. Recent studies have demonstrated that the Tibetan EPAS1 haplotype is involved in high altitude-adaptation and originated in an archaic Denisovan-related population. We sequenced the whole-genomes of 27 Tibetans and conducted analyses to infer a detailed history of demography and natural selection of this population. We detected evidence of population structure between the ancestral Han and Tibetan subpopulations as early as 44 to 58 thousand years ago, but with high rates of gene flow until approximately 9 thousand years ago. The CMS test ranked EPAS1 and EGLN1 as the top two positive selection candidates, and in addition identified PTGIS, VDR, and KCTD12 as new candidate genes. The advantageous Tibetan EPAS1 haplotype shared many variants with the Denisovan genome, with an ancient gene tree divergence between the Tibetan and Denisovan haplotypes of about 1 million years ago. With the exception of EPAS1, we observed no evidence of positive selection on Denisovan-like haplotypes.
Collapse
Affiliation(s)
- Hao Hu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Nayia Petousi
- Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Gustavo Glusman
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Yao Yu
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ryan Bohlender
- Department of Anthropology, University of Utah, Salt Lake City, Utah, United States of America
| | - Tsewang Tashi
- Department of Medicine, University of Utah School of Medicine and George E. Wahlin Veterans Administration Medical Center, Salt Lake City, Utah, United States of America
| | - Jonathan M. Downie
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Jared C. Roach
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Amy M. Cole
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Felipe R. Lorenzo
- Department of Medicine, University of Utah School of Medicine and George E. Wahlin Veterans Administration Medical Center, Salt Lake City, Utah, United States of America
| | - Alan R. Rogers
- Department of Anthropology, University of Utah, Salt Lake City, Utah, United States of America
| | - Mary E. Brunkow
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Gianpiero Cavalleri
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Leroy Hood
- Institute for Systems Biology, Seattle, Washington, United States of America
| | - Sama M. Alpatty
- Skaggs School of Pharmacy and Pharmaceutical Science, UC San Diego, La Jolla, California, United States of America
| | - Josef T. Prchal
- Department of Medicine, University of Utah School of Medicine and George E. Wahlin Veterans Administration Medical Center, Salt Lake City, Utah, United States of America
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Lynn B. Jorde
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
| | - Peter A. Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Tatum S. Simonson
- Department of Medicine, Division of Physiology, University of California San Diego, La Jolla, California, United States of America
| | - Chad D. Huff
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
59
|
Cho JI, Basnyat B, Jeong C, Di Rienzo A, Childs G, Craig SR, Sun J, Beall CM. Ethnically Tibetan women in Nepal with low hemoglobin concentration have better reproductive outcomes. EVOLUTION MEDICINE AND PUBLIC HEALTH 2017; 2017:82-96. [PMID: 28567284 PMCID: PMC5442430 DOI: 10.1093/emph/eox008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/12/2017] [Indexed: 12/24/2022]
Abstract
Background and objectives: Tibetans have distinctively low hemoglobin concentrations at high altitudes compared with visitors and Andean highlanders. This study hypothesized that natural selection favors an unelevated hemoglobin concentration among Tibetans. It considered nonheritable sociocultural factors affecting reproductive success and tested the hypotheses that a higher percent of oxygen saturation of hemoglobin (indicating less stress) or lower hemoglobin concentration (indicating dampened response) associated with higher lifetime reproductive success. Methodology: We sampled 1006 post-reproductive ethnically Tibetan women residing at 3000–4100 m in Nepal. We collected reproductive histories by interviews in native dialects and noninvasive physiological measurements. Regression analyses selected influential covariates of measures of reproductive success: the numbers of pregnancies, live births and children surviving to age 15. Results: Taking factors such as marriage status, age of first birth and access to health care into account, we found a higher percent of oxygen saturation associated weakly and an unelevated hemoglobin concentration associated strongly with better reproductive success. Women who lost all their pregnancies or all their live births had hemoglobin concentrations significantly higher than the sample mean. Elevated hemoglobin concentration associated with a lower probability a pregnancy progressed to a live birth. Conclusions and implications: These findings are consistent with the hypothesis that unelevated hemoglobin concentration is an adaptation shaped by natural selection resulting in the relatively low hemoglobin concentration of Tibetans compared with visitors and Andean highlanders.
Collapse
Affiliation(s)
- Jang Ik Cho
- Department of Epidemiology and Biostatistics, Case Western Reserve University, School of Medicine, Cleveland, OH 44109, USA
| | - Buddha Basnyat
- Patan Hospital, Oxford University Clinical Research Unit-Nepal, Kathmandu, Nepal and Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Choongwon Jeong
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, IL 60637, USA
| | - Geoff Childs
- Department of Anthropology, Washington University, St. Louis, MO 63130, USA
| | - Sienna R Craig
- Department of Anthropology, Dartmouth College, Hanover, NH 03755, USA
| | - Jiayang Sun
- Department of Epidemiology and Biostatistics, Case Western Reserve University, School of Medicine, Cleveland, OH 44109, USA
| | - Cynthia M Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
60
|
Pan S, Zhang T, Rong Z, Hu L, Gu Z, Wu Q, Dong S, Liu Q, Lin Z, Deutschova L, Li X, Dixon A, Bruford MW, Zhan X. Population transcriptomes reveal synergistic responses of DNA polymorphism and RNA expression to extreme environments on the Qinghai-Tibetan Plateau in a predatory bird. Mol Ecol 2017; 26:2993-3010. [PMID: 28277617 DOI: 10.1111/mec.14090] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 02/10/2017] [Accepted: 02/28/2017] [Indexed: 01/04/2023]
Abstract
Low oxygen and temperature pose key physiological challenges for endotherms living on the Qinghai-Tibetan Plateau (QTP). Molecular adaptations to high-altitude living have been detected in the genomes of Tibetans, their domesticated animals and a few wild species, but the contribution of transcriptional variation to altitudinal adaptation remains to be determined. Here we studied a top QTP predator, the saker falcon, and analysed how the transcriptome has become modified to cope with the stresses of hypoxia and hypothermia. Using a hierarchical design to study saker populations inhabiting grassland, steppe/desert and highland across Eurasia, we found that the QTP population is already distinct despite having colonized the Plateau <2000 years ago. Selection signals are limited at the cDNA level, but of only seventeen genes identified, three function in hypoxia and four in immune response. Our results show a significant role for RNA transcription: 50% of upregulated transcription factors were related to hypoxia responses, differentiated modules were significantly enriched for oxygen transport, and importantly, divergent EPAS1 functional variants with a refined co-expression network were identified. Conservative gene expression and relaxed immune gene variation may further reflect adaptation to hypothermia. Our results exemplify synergistic responses between DNA polymorphism and RNA expression diversity in coping with common stresses, underpinning the successful rapid colonization of a top predator onto the QTP. Importantly, molecular mechanisms underpinning highland adaptation involve relatively few genes, but are nonetheless more complex than previously thought and involve fine-tuned transcriptional responses and genomic adaptation.
Collapse
Affiliation(s)
- Shengkai Pan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing, 100101, China.,Institute of Zoology Joint Laboratory for Biocomplexity Research, Cardiff University, Beichen West Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, China
| | | | - Li Hu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China.,BGI-Shenzhen, Shenzhen, 518083, China
| | - Zhongru Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing, 100101, China.,University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Qi Wu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing, 100101, China
| | - Shanshan Dong
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Qiong Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing, 100101, China.,State Key Laboratory of Earth Surface Processes and Resource Ecology & MOE Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, 100875, China
| | - Zhenzhen Lin
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing, 100101, China
| | - Lucia Deutschova
- Raptor Protection of Slovakia, Kuklovská 5, SK-841 04, Bratislava 4, Slovakia
| | - Xinhai Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing, 100101, China
| | - Andrew Dixon
- Institute of Zoology Joint Laboratory for Biocomplexity Research, Cardiff University, Beichen West Road, Beijing, 100101, China.,International Wildlife Consultants Ltd., PO Box 19, Carmarthen, SA33 5YL, UK.,Environment Agency-Abu Dhabi, PO Box 45553, Al Mamoura Building (A), Muroor Road, Abu Dhabi, United Arab Emirates
| | - Michael W Bruford
- Institute of Zoology Joint Laboratory for Biocomplexity Research, Cardiff University, Beichen West Road, Beijing, 100101, China.,Organisms and Environment Division, Cardiff School of Bioscience, Cardiff University, Cardiff, CF10 3AX, UK
| | - Xiangjiang Zhan
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, Beijing, 100101, China.,Institute of Zoology Joint Laboratory for Biocomplexity Research, Cardiff University, Beichen West Road, Beijing, 100101, China
| |
Collapse
|
61
|
Abstract
PURPOSE OF REVIEW Kidney development depends on outgrowth of the ureteric bud into the metanephric mesenchyme. The number of ureteric bud branching events determines the final number of nephrons, which correlates inversely with the risk for development of chronic kidney disease and arterial hypertension during lifetime. The purpose of this review is to highlight the influence of oxygen on nephrogenesis and to describe cellular mechanisms by which hypoxia can impair nephron formation. RECENT FINDINGS Although kidney development normally takes place under hypoxic conditions, nephrogenesis is impaired when oxygen availability falls below the usual range. Hypoxia-inducible factors (HIF) play an important role in linking low oxygen concentrations to the biology of nephron formation, but their effect appears to be cell type dependent. In ureteric bud cells, HIF stimulates tubulogenesis, whereas HIF stabilization in cells of the metanephric mesenchyme results in secretion of growth factors, including vascular endothelial growth factor A, which in aggregate inhibit ureteric bud branching. The balance between pro and antibranching effects may be altered in various ways, but the inhibitory effect usually seems to predominate under reduced oxygen concentrations, explaining how intrauterine hypoxia can lead to low nephron numbers. SUMMARY Oxygen availability has a complex influence on nephrogenesis. Oxygen concentrations outside an optimal low range may affect nephron endowment. Associations between placental insufficiency and increased risk for chronic kidney disease and arterial hypertension during later life may to a large extent be due to direct effects of reduced oxygen supply to the metanephric mesenchyme and mediated through the HIF pathway.
Collapse
|
62
|
Cole AM, Cox S, Jeong C, Petousi N, Aryal DR, Droma Y, Hanaoka M, Ota M, Kobayashi N, Gasparini P, Montgomery H, Robbins P, Di Rienzo A, Cavalleri GL. Genetic structure in the Sherpa and neighboring Nepalese populations. BMC Genomics 2017; 18:102. [PMID: 28103797 PMCID: PMC5248489 DOI: 10.1186/s12864-016-3469-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 12/23/2016] [Indexed: 12/31/2022] Open
Abstract
Background We set out to describe the fine-scale population structure across the Eastern region of Nepal. To date there is relatively little known about the genetic structure of the Sherpa residing in Nepal and their genetic relationship with the Nepalese. We assembled dense genotype data from a total of 1245 individuals representing Nepal and a variety of different populations resident across the greater Himalayan region including Tibet, China, India, Pakistan, Kazakhstan, Uzbekistan, Tajikistan and Kirghizstan. We performed analysis of principal components, admixture and homozygosity. Results We identified clear substructure across populations resident in the Himalayan arc, with genetic structure broadly mirroring geographical features of the region. Ethnic subgroups within Nepal show distinct genetic structure, on both admixture and principal component analysis. We detected differential proportions of ancestry from northern Himalayan populations across Nepalese subgroups, with the Nepalese Rai, Magar and Tamang carrying the greatest proportions of Tibetan ancestry. Conclusions We show that populations dwelling on the Himalayan plateau have had a clear impact on the Northern Indian gene pool. We illustrate how the Sherpa are a remarkably isolated population, with little gene flow from surrounding Nepalese populations. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3469-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amy M Cole
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Sean Cox
- Centre for Human Health and Performance, and Institute for Sport, Exercise and Health, University College London, London, UK
| | - Choongwon Jeong
- Department of Human Genetics, University of Chicago, Chicago, USA
| | - Nayia Petousi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Dhana R Aryal
- Paropakar Maternity and Women's Hospital, Thapathali, Kathmandu, Nepal
| | - Yunden Droma
- First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masayuki Hanaoka
- First Department of Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Masao Ota
- Department of Legal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Nobumitsu Kobayashi
- Department of Legal Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Paolo Gasparini
- University of Triests, Trieste, Italy.,Division of Experimental Genetics, Sidra, Doha, Qatar
| | - Hugh Montgomery
- Centre for Human Health and Performance, and Institute for Sport, Exercise and Health, University College London, London, UK
| | - Peter Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Anna Di Rienzo
- Department of Human Genetics, University of Chicago, Chicago, USA
| | - Gianpiero L Cavalleri
- Department of Molecular and Cellular Therapeutics, The Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
63
|
Dai Z, Zhao YY. Discovery of a murine model of clinical PAH: Mission impossible? Trends Cardiovasc Med 2016; 27:229-236. [PMID: 28089339 DOI: 10.1016/j.tcm.2016.12.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Revised: 12/11/2016] [Accepted: 12/13/2016] [Indexed: 01/08/2023]
Abstract
Pulmonary arterial hypertension (PAH) is a lung vascular disease characterized with a progressive increase of pulmonary vascular resistance and obliterative pulmonary vascular remodeling resulting in right heart failure and premature death. In this brief review, we document the recent advances in identifying genetically modified murine models of PH, with a focus on the recent discovery of the mouse model of Tie2 Cre-mediated deletion of prolyl hydroxylase 2, which exhibits progressive obliterative vascular remodeling, severe PAH, and right heart failure, thus recapitulating many of the features of clinical PAH. We will also discuss the translational potential of recent findings arising from experimental studies of murine PH models.
Collapse
Affiliation(s)
- Zhiyu Dai
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA; Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | - You-Yang Zhao
- Department of Pharmacology, University of Illinois College of Medicine, Chicago, IL 60612, USA; Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA.
| |
Collapse
|
64
|
Soria R, Egger M, Scherrer U, Bender N, Rimoldi SF. Pulmonary artery pressure and arterial oxygen saturation in people living at high or low altitude: systematic review and meta-analysis. J Appl Physiol (1985) 2016; 121:1151-1159. [PMID: 27660297 DOI: 10.1152/japplphysiol.00394.2016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Revised: 09/02/2016] [Accepted: 09/21/2016] [Indexed: 02/08/2023] Open
Abstract
More than 140 million people are living at high altitude worldwide. An increase of pulmonary artery pressure (PAP) is a hallmark of high-altitude exposure and, if pronounced, may be associated with important morbidity and mortality. Surprisingly, there is little information on the usual PAP in high-altitude populations. We, therefore, conducted a systematic review (MEDLINE and EMBASE) and meta-analysis of studies published (in English or Spanish) between 2000 and 2015 on echocardiographic estimations of PAP and measurements of arterial oxygen saturation in apparently healthy participants from general populations of high-altitude dwellers (>2,500 m). For comparison, we similarly analyzed data published on these variables during the same period for populations living at low altitude. Twelve high-altitude studies comprising 834 participants and 18 low-altitude studies (710 participants) fulfilled the inclusion criteria. All but one high-altitude studies were performed between 3,600 and 4,350 m. The combined mean systolic PAP (right ventricular-to-right atrial pressure gradient) at high altitude [25.3 mmHg, 95% confidence interval (CI) 24.0, 26.7], as expected was significantly (P < 0.001) higher than at low altitude (18.4 mmHg, 95% CI 17.1,19.7), and arterial oxygen saturation was significantly lower (90.4%, 95% CI 89.3, 91.5) than at low altitude (98.1%; 95% CI 97.7, 98.4). These findings indicate that at an altitude where the very large majority of high-altitude populations are living, pulmonary hypertension appears to be rare. The reference values and distributions for PAP and arterial oxygen saturation in apparently healthy high-altitude dwellers provided by this meta-analysis will be useful to future studies on the adjustments to high altitude in humans.
Collapse
Affiliation(s)
- Rodrigo Soria
- Department of Cardiology and Clinical Research, Inselspital, University of Bern, Switzerland
| | - Matthias Egger
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Switzerland.,Division of Epidemiology and Biostatistics, School of Public Health and Family Medicine, University of Cape Town, Cape Town, South Africa
| | - Urs Scherrer
- Department of Cardiology and Clinical Research, Inselspital, University of Bern, Switzerland.,Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Arica, Chile; and
| | - Nicole Bender
- Institute of Social and Preventive Medicine (ISPM), University of Bern, Switzerland.,Institute of Evolutionary Medicine, University of Zurich, Switzerland
| | - Stefano F Rimoldi
- Department of Cardiology and Clinical Research, Inselspital, University of Bern, Switzerland;
| |
Collapse
|
65
|
Affiliation(s)
- J Michael B Hughes
- National Heart and Lung Institute, Imperial College School of Medicine, Hammersmith Hospital, London, UK
| |
Collapse
|
66
|
Liu J, Liu Y, Ren LH, Li L, Wang Z, Liu SS, Li SZ, Cao TS. Effects of race and sex on cerebral hemodynamics, oxygen delivery and blood flow distribution in response to high altitude. Sci Rep 2016; 6:30500. [PMID: 27503416 PMCID: PMC4977556 DOI: 10.1038/srep30500] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/06/2016] [Indexed: 11/25/2022] Open
Abstract
To assess racial, sexual, and regional differences in cerebral hemodynamic response to high altitude (HA, 3658 m). We performed cross-sectional comparisons on total cerebral blood flow (TCBF = sum of bilateral internal carotid and vertebral arterial blood flows = QICA + QVA), total cerebrovascular resistance (TCVR), total cerebral oxygen delivery (TCOD) and QVA/TCBF (%), among six groups of young healthy subjects: Tibetans (2-year staying) and Han (Han Chinese) at sea level, Han (2-day, 1-year and 5-year) and Tibetans at HA. Bilateral ICA and VA diameters and flow velocities were derived from duplex ultrasonography; and simultaneous measurements of arterial pressure, oxygen saturation, and hemoglobin concentration were conducted. Neither acute (2-day) nor chronic (>1 year) responses showed sex differences in Han, except that women showed lower TCOD compared with men. Tibetans and Han exhibited different chronic responses (percentage alteration relative to the sea-level counterpart value) in TCBF (−17% vs. 0%), TCVR (22% vs. 12%), TCOD (0% vs. 10%) and QVA/TCBF (0% vs. 2.4%, absolute increase), with lower resting TCOD found in SL- and HA-Tibetans. Our findings indicate racial but not sex differences in cerebral hemodynamic adaptations to HA, with Tibetans (but not Han) demonstrating an altitude-related change of CBF distribution.
Collapse
Affiliation(s)
- Jie Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yang Liu
- Department of Cardiovascular Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Li-Hua Ren
- General Hospital of Tibet Military Area Command, Lhasa, Tibet Autonomous Region, China
| | - Li Li
- Department of Ultrasonic Medicine, Affiliated Hospital of Tibet University for Nationalities, Xianyang, Shaanxi, China
| | - Zhen Wang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shan-Shan Liu
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Su-Zhi Li
- General Hospital of Tibet Military Area Command, Lhasa, Tibet Autonomous Region, China
| | - Tie-Sheng Cao
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|
67
|
Bigham AW. Genetics of human origin and evolution: high-altitude adaptations. Curr Opin Genet Dev 2016; 41:8-13. [PMID: 27501156 DOI: 10.1016/j.gde.2016.06.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/29/2016] [Accepted: 06/29/2016] [Indexed: 12/20/2022]
Abstract
High altitude, defined as elevations lying above 2500m sea level, challenges human survival and reproduction. This environment provides a natural experimental design wherein specific populations, Andeans, Ethiopians, and Tibetans, have lived in a chronic hypoxia state for millennia. These human groups have overcome the low ambient oxygen tension of high elevation via unique physiologic and genetic adaptations. Genomic studies have identified several genes that underlie high-altitude adaptive phenotypes, many of which are central components of the Hypoxia Inducible Factor (HIF) pathway. Further study of mechanisms governing the adaptive changes responsible for high-altitude adaptation will contribute to our understanding of the molecular basis of evolutionary change and assist in the functional annotation of the human genome.
Collapse
Affiliation(s)
- Abigail W Bigham
- Department of Anthropology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
68
|
Reinhardt M, Dey S, Noguchi CT, Zhang Y, Krakoff J, Thearle MS. Non-hematopoietic effects of endogenous erythropoietin on lean mass and body weight regulation. Obesity (Silver Spring) 2016; 24:1530-6. [PMID: 27222253 PMCID: PMC4925195 DOI: 10.1002/oby.21537] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 03/30/2016] [Accepted: 04/01/2016] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To investigate the concurrent relationships between human plasma erythropoietin concentrations and energy expenditure (EE), body composition, plasma leptin concentrations, and associations with weight change. METHODS Plasma to measure erythropoietin and leptin; data for body composition; 24-h EE measured in a whole-room calorimeter; and 75 g oral glucose tolerance testing were available from 109 full-heritage Pima Indians (55% male) from a larger study designed to understand the causes of obesity. Seventy-nine subjects had data for weight at a later visit (mean follow-up = 4.3 ± 1.9 years) to calculate percent weight change per year. RESULTS Erythropoietin, adjusted for covariates, correlated with 24-h EE (r = 0.26, P = 0.007), sleeping EE (r = 0.29, P = 0.003), fat-free mass (r = 0.19, P = 0.05), and fat mass (r = 0.27, P = 0.005), but not insulin or glucose measures. The association of erythropoietin with 24-h EE was fully mediated by fat-free mass. Erythropoietin associated with leptin in women (ρ = 0.36, P = 0.01), but not in men (P = 0.9), independently from fat mass. The association of erythropoietin with percent weight change per year was in opposing directions (interaction: P = 0.002) in males (r = -0.35, P = 0.02) versus females (r = 0.37, P = 0.02). CONCLUSIONS Non-hematopoietic endogenous erythropoietin action may be involved in body weight regulation in opposing directions in men and women, i.e., weight loss in men and weight gain in women.
Collapse
Affiliation(s)
- Martin Reinhardt
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ
- Department of Diagnostic and Interventional Radiology, University of Leipzig, Germany
| | - Soumyadeep Dey
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Constance Tom Noguchi
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Yuanyuan Zhang
- Molecular Medicine Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Jonathan Krakoff
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ
| | - Marie S. Thearle
- Obesity and Diabetes Clinical Research Section, Phoenix Epidemiology and Clinical Research Branch National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services, Phoenix, AZ
| |
Collapse
|
69
|
Long-term genetic stability and a high-altitude East Asian origin for the peoples of the high valleys of the Himalayan arc. Proc Natl Acad Sci U S A 2016; 113:7485-90. [PMID: 27325755 DOI: 10.1073/pnas.1520844113] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The high-altitude transverse valleys [>3,000 m above sea level (masl)] of the Himalayan arc from Arunachal Pradesh to Ladahk were among the last habitable places permanently colonized by prehistoric humans due to the challenges of resource scarcity, cold stress, and hypoxia. The modern populations of these valleys, who share cultural and linguistic affinities with peoples found today on the Tibetan plateau, are commonly assumed to be the descendants of the earliest inhabitants of the Himalayan arc. However, this assumption has been challenged by archaeological and osteological evidence suggesting that these valleys may have been originally populated from areas other than the Tibetan plateau, including those at low elevation. To investigate the peopling and early population history of this dynamic high-altitude contact zone, we sequenced the genomes (0.04×-7.25×, mean 2.16×) and mitochondrial genomes (20.8×-1,311.0×, mean 482.1×) of eight individuals dating to three periods with distinct material culture in the Annapurna Conservation Area (ACA) of Nepal, spanning 3,150-1,250 y before present (yBP). We demonstrate that the region is characterized by long-term stability of the population genetic make-up despite marked changes in material culture. The ancient genomes, uniparental haplotypes, and high-altitude adaptive alleles suggest a high-altitude East Asian origin for prehistoric Himalayan populations.
Collapse
|
70
|
Pamenter ME, Powell FL. Time Domains of the Hypoxic Ventilatory Response and Their Molecular Basis. Compr Physiol 2016; 6:1345-85. [PMID: 27347896 DOI: 10.1002/cphy.c150026] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ventilatory responses to hypoxia vary widely depending on the pattern and length of hypoxic exposure. Acute, prolonged, or intermittent hypoxic episodes can increase or decrease breathing for seconds to years, both during the hypoxic stimulus, and also after its removal. These myriad effects are the result of a complicated web of molecular interactions that underlie plasticity in the respiratory control reflex circuits and ultimately control the physiology of breathing in hypoxia. Since the time domains of the physiological hypoxic ventilatory response (HVR) were identified, considerable research effort has gone toward elucidating the underlying molecular mechanisms that mediate these varied responses. This research has begun to describe complicated and plastic interactions in the relay circuits between the peripheral chemoreceptors and the ventilatory control circuits within the central nervous system. Intriguingly, many of these molecular pathways seem to share key components between the different time domains, suggesting that varied physiological HVRs are the result of specific modifications to overlapping pathways. This review highlights what has been discovered regarding the cell and molecular level control of the time domains of the HVR, and highlights key areas where further research is required. Understanding the molecular control of ventilation in hypoxia has important implications for basic physiology and is emerging as an important component of several clinical fields. © 2016 American Physiological Society. Compr Physiol 6:1345-1385, 2016.
Collapse
Affiliation(s)
| | - Frank L Powell
- Physiology Division, Department of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
71
|
Frise MC, Cheng HY, Nickol AH, Curtis MK, Pollard KA, Roberts DJ, Ratcliffe PJ, Dorrington KL, Robbins PA. Clinical iron deficiency disturbs normal human responses to hypoxia. J Clin Invest 2016; 126:2139-50. [PMID: 27140401 PMCID: PMC4887172 DOI: 10.1172/jci85715] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/10/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Iron bioavailability has been identified as a factor that influences cellular hypoxia sensing, putatively via an action on the hypoxia-inducible factor (HIF) pathway. We therefore hypothesized that clinical iron deficiency would disturb integrated human responses to hypoxia. METHODS We performed a prospective, controlled, observational study of the effects of iron status on hypoxic pulmonary hypertension. Individuals with absolute iron deficiency (ID) and an iron-replete (IR) control group were exposed to two 6-hour periods of isocapnic hypoxia. The second hypoxic exposure was preceded by i.v. infusion of iron. Pulmonary artery systolic pressure (PASP) was serially assessed with Doppler echocardiography. RESULTS Thirteen ID individuals completed the study and were age- and sex-matched with controls. PASP did not differ by group or study day before each hypoxic exposure. During the first 6-hour hypoxic exposure, the rise in PASP was 6.2 mmHg greater in the ID group (absolute rises 16.1 and 10.7 mmHg, respectively; 95% CI for difference, 2.7-9.7 mmHg, P = 0.001). Intravenous iron attenuated the PASP rise in both groups; however, the effect was greater in ID participants than in controls (absolute reductions 11.1 and 6.8 mmHg, respectively; 95% CI for difference in change, -8.3 to -0.3 mmHg, P = 0.035). Serum erythropoietin responses to hypoxia also differed between groups. CONCLUSION Clinical iron deficiency disturbs normal responses to hypoxia, as evidenced by exaggerated hypoxic pulmonary hypertension that is reversed by subsequent iron administration. Disturbed hypoxia sensing and signaling provides a mechanism through which iron deficiency may be detrimental to human health. TRIAL REGISTRATION ClinicalTrials.gov (NCT01847352). FUNDING M.C. Frise is the recipient of a British Heart Foundation Clinical Research Training Fellowship (FS/14/48/30828). K.L. Dorrington is supported by the Dunhill Medical Trust (R178/1110). D.J. Roberts was supported by R&D funding from National Health Service (NHS) Blood and Transplant and a National Institute for Health Research (NIHR) Programme grant (RP-PG-0310-1004). This research was funded by the NIHR Oxford Biomedical Research Centre Programme.
Collapse
Affiliation(s)
- Matthew C. Frise
- University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, United Kingdom
| | - Hung-Yuan Cheng
- University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, United Kingdom
| | - Annabel H. Nickol
- Oxford University Hospitals NHS Foundation Trust, Oxford Centre for Respiratory Medicine, Churchill Hospital, Oxford, United Kingdom
| | - M. Kate Curtis
- University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, United Kingdom
| | - Karen A. Pollard
- University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, United Kingdom
| | - David J. Roberts
- University of Oxford, Nuffield Department of Clinical Laboratory Sciences, and National Health Service Blood and Transplant Oxford Centre, John Radcliffe Hospital, Oxford, United Kingdom
| | - Peter J. Ratcliffe
- University of Oxford, Nuffield Department of Medicine, Henry Wellcome Building for Molecular Physiology, Old Road Campus, Headington, Oxford, United Kingdom
| | - Keith L. Dorrington
- University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, United Kingdom
| | - Peter A. Robbins
- University of Oxford, Department of Physiology, Anatomy and Genetics, Oxford, United Kingdom
| |
Collapse
|
72
|
Abstract
Simonson, Tatum S. Altitude adaptation: A glimpse through various lenses. High Alt Med Biol 16:125-137, 2015.--Recent availability of genome-wide data from highland populations has enabled the identification of adaptive genomic signals. Some of the genomic signals reported thus far among Tibetan, Andean, and Ethiopian are the same, while others appear unique to each population. These genomic findings parallel observations conveyed by decades of physiological research: different continental populations, resident at high altitude for hundreds of generations, exhibit a distinct composite of traits at altitude. The most commonly reported signatures of selection emanate from genomic segments containing hypoxia-inducible factor (HIF) pathway genes. Corroborative evidence for adaptive significance stems from associations between putatively adaptive gene copies and sea-level ranges of hemoglobin concentration in Tibetan and Amhara Ethiopians, birth weights and metabolic factors in Andeans and Tibetans, maternal uterine artery diameter in Andeans, and protection from chronic mountain sickness in Andean males at altitude. While limited reports provide mechanistic insights thus far, efforts to identify and link precise genetic variants to molecular, physiological, and developmental functions are underway, and progress on the genomics front continues to provide unprecedented movement towards these goals. This combination of multiple perspectives is necessary to maximize our understanding of orchestrated biological and evolutionary processes in native highland populations, which will advance our understanding of both adaptive and non-adaptive responses to hypoxia.
Collapse
Affiliation(s)
- Tatum S Simonson
- Department of Medicine, Division of Physiology, University of California , San Diego, La Jolla, California
| |
Collapse
|
73
|
Kurlak LO, Mistry HD, Cindrova-Davies T, Burton GJ, Broughton Pipkin F. Human placental renin-angiotensin system in normotensive and pre-eclamptic pregnancies at high altitude and after acute hypoxia-reoxygenation insult. J Physiol 2016; 594:1327-40. [PMID: 26574162 DOI: 10.1113/jp271045] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/24/2015] [Indexed: 12/11/2022] Open
Abstract
A functioning placental renin-angiotensin system (RAS) appears necessary for uncomplicated pregnancy and is present during placentation, which occurs under low oxygen tensions. Placental RAS is increased in pre-eclampsia (PE), characterised by placental dysfunction and elevated oxidative stress. We investigated the effect of high altitude hypoxia on the RAS and hypoxia-inducible factors (HIFs) by measuring mRNA and protein expression in term placentae from normotensive (NT) and PE women who delivered at sea level or above 3100 m, using an explant model of hypoxia-reoxygenation to assess the impact of acute oxidative stress on the RAS and HIFs. Protein levels of prorenin (P = 0.049), prorenin receptor (PRR; P = 0.0004), and angiotensin type 1 receptor (AT1R, P = 0.006) and type 2 receptor (AT2R, P = 0.002) were all significantly higher in placentae from NT women at altitude, despite mRNA expression being unaffected. However, mRNA expression of all RAS components was significantly lower in PE at altitude than at sea level, yet PRR, angiotensinogen (AGT) and AT1R proteins were all increased. The increase in transcript and protein expression of all the HIFs and NADPH oxidase 4 seen in PE compared to NT at sea level was blunted at high altitude. Experimentally induced oxidative stress stimulated AGT mRNA (P = 0.04) and protein (P = 0.025). AT1R (r = 0.77, P < 0.001) and AT2R (r = 0.81, P < 0.001) mRNA both significantly correlated with HIF-1β, whilst AT2R also correlated with HIF-1α (r = 0.512, P < 0.013). Our observations suggest that the placental RAS is responsive to changes in tissue oxygenation: this could be important in the interplay between reactive oxygen species as cell-signalling molecules for angiogenesis and hence placental development and function.
Collapse
Affiliation(s)
- Lesia O Kurlak
- Division of Obstetrics and Gynaecology, School of Medicine, University of Nottingham, City Hospital, Nottingham, UK
| | - Hiten D Mistry
- Division of Obstetrics and Gynaecology, School of Medicine, University of Nottingham, City Hospital, Nottingham, UK.,Division of Hypertension, Department of Nephrology, Hypertension and Clinical Pharmacology and Clinical Research, University of Bern, CH-3010, Berne, Switzerland
| | - Tereza Cindrova-Davies
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Graham J Burton
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Fiona Broughton Pipkin
- Division of Obstetrics and Gynaecology, School of Medicine, University of Nottingham, City Hospital, Nottingham, UK
| |
Collapse
|
74
|
Yang D, Peng Y, Ouzhuluobu, Bianbazhuoma, Cui C, Bianba, Wang L, Xiang K, He Y, Zhang H, Zhang X, Liu J, Shi H, Pan Y, Duojizhuoma, Dejiquzong, Cirenyangji, Baimakangzhuo, Gonggalanzi, Liu S, Gengdeng, Wu T, Chen H, Qi X, Su B. HMOX2 Functions as a Modifier Gene for High-Altitude Adaptation in Tibetans. Hum Mutat 2015; 37:216-23. [PMID: 26781569 DOI: 10.1002/humu.22935] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022]
Abstract
Tibetans are well adapted to high-altitude environments. Among the adaptive traits in Tibetans, the relatively low hemoglobin level is considered a blunted erythropoietic response to hypoxic challenge. Previously, EPAS1 and EGLN1, the major upstream regulators in the hypoxic pathway, were reportedly involved in the hemoglobin regulation in Tibetans. In this study, we report a downstream gene (HMOX2) involved in heme catabolism, which harbors potentially adaptive variants in Tibetans. We first resequenced the entire genomic region (45.6 kb) of HMOX2 in Tibetans, which confirmed the previously suspected signal of positive selection on HMOX2 in Tibetans. Subsequent association analyses of hemoglobin levels in two independent Tibetan populations (a total of 1,250 individuals) showed a male-specific association between the HMOX2 variants and hemoglobin levels. Tibetan males with the derived C allele at rs4786504:T>C displayed lower hemoglobin level as compared with the T allele carriers. Furthermore, our in vitro experiments indicated that the C allele of rs4786504 could increase the expression of HMOX2, presumably leading to a more efficient breakdown of heme that may help maintain a relatively low hemoglobin level at high altitude. Collectively, we propose that HMOX2 contributes to high-altitude adaptation in Tibetans by functioning as a modifier in the regulation of hemoglobin metabolism.
Collapse
Affiliation(s)
- Deying Yang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi Peng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ouzhuluobu
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Bianbazhuoma
- The Municipal People's Hospital of Lhasa, Lhasa, 850000, Tibet, China
| | - Chaoying Cui
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Bianba
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Liangbang Wang
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810012, China
| | - Kun Xiang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Yaoxi He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiaoming Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Jiewei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Shi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.,Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yongyue Pan
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Duojizhuoma
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Dejiquzong
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Cirenyangji
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Baimakangzhuo
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Gonggalanzi
- High Altitude Medical Research Center, School of Medicine, Tibetan University, Lhasa, 850000, China
| | - Shimin Liu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810012, China
| | - Gengdeng
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810012, China
| | - Tianyi Wu
- National Key Laboratory of High Altitude Medicine, High Altitude Medical Research Institute, Xining, 810012, China
| | - Hua Chen
- Center for Computational Genomics, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xuebin Qi
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Bing Su
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| |
Collapse
|
75
|
Quinn EA, Diki Bista K, Childs G. Milk at altitude: Human milk macronutrient composition in a high-altitude adapted population of tibetans. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2015; 159:233-43. [DOI: 10.1002/ajpa.22871] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 09/04/2015] [Accepted: 09/06/2015] [Indexed: 12/20/2022]
Affiliation(s)
- Elizabeth A. Quinn
- Department of Anthropology; Washington University in St. Louis; St. Louis Missouri 63130
| | | | - Geoff Childs
- Department of Anthropology; Washington University in St. Louis; St. Louis Missouri 63130
| |
Collapse
|
76
|
Abstract
Hypoxia inducible factors (HIFs) are α/β heterodimeric transcription factors that direct multiple cellular and systemic responses in response to changes in oxygen availability. The oxygen sensitive signal is generated by a series of iron and 2-oxoglutarate-dependent dioxygenases that catalyze post-translational hydroxylation of specific prolyl and asparaginyl residues in HIFα subunits and thereby promote their destruction and inactivation in the presence of oxygen. In hypoxia, these processes are suppressed allowing HIF to activate a massive transcriptional cascade. Elucidation of these pathways has opened several new fields of cardiovascular research. Here, we review the role of HIF hydroxylase pathways in cardiac development and in cardiovascular control. We also consider the current status, opportunities, and challenges of therapeutic modulation of HIF hydroxylases in the therapy of cardiovascular disease.
Collapse
Affiliation(s)
- Tammie Bishop
- From the Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Peter J Ratcliffe
- From the Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
77
|
Huerta-Sánchez E, Casey FP. Archaic inheritance: supporting high-altitude life in Tibet. J Appl Physiol (1985) 2015; 119:1129-34. [PMID: 26294746 DOI: 10.1152/japplphysiol.00322.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/14/2015] [Indexed: 01/15/2023] Open
Abstract
The Tibetan Plateau, often called the roof of the world, sits at an average altitude exceeding 4,500 m. Because of its extreme altitude, the Plateau is one of the harshest human-inhabited environments in the world. This, however, did not impede human colonization, and the Tibetan people have made the Tibetan Plateau their home for many generations. Many studies have quantified their markedly different physiological response to altitude and proposed that Tibetans were genetically adapted. Recently, advances in sequencing technologies led to the discovery of a set of candidate genes which harbor mutations that are likely beneficial at high altitudes in Tibetans. Since then, other studies have further characterized this impressive adaptation. Here, in this minireview, we discuss the progress made since the discovery of the genes involved in Tibetans' adaptation to high altitude with a particular emphasis on describing the series of studies that led us to conclude that archaic human DNA likely contributed to this impressive adaptation.
Collapse
|
78
|
Storz JF, Bridgham JT, Kelly SA, Garland T. Genetic approaches in comparative and evolutionary physiology. Am J Physiol Regul Integr Comp Physiol 2015; 309:R197-214. [PMID: 26041111 PMCID: PMC4525326 DOI: 10.1152/ajpregu.00100.2015] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/23/2015] [Indexed: 01/04/2023]
Abstract
Whole animal physiological performance is highly polygenic and highly plastic, and the same is generally true for the many subordinate traits that underlie performance capacities. Quantitative genetics, therefore, provides an appropriate framework for the analysis of physiological phenotypes and can be used to infer the microevolutionary processes that have shaped patterns of trait variation within and among species. In cases where specific genes are known to contribute to variation in physiological traits, analyses of intraspecific polymorphism and interspecific divergence can reveal molecular mechanisms of functional evolution and can provide insights into the possible adaptive significance of observed sequence changes. In this review, we explain how the tools and theory of quantitative genetics, population genetics, and molecular evolution can inform our understanding of mechanism and process in physiological evolution. For example, lab-based studies of polygenic inheritance can be integrated with field-based studies of trait variation and survivorship to measure selection in the wild, thereby providing direct insights into the adaptive significance of physiological variation. Analyses of quantitative genetic variation in selection experiments can be used to probe interrelationships among traits and the genetic basis of physiological trade-offs and constraints. We review approaches for characterizing the genetic architecture of physiological traits, including linkage mapping and association mapping, and systems approaches for dissecting intermediary steps in the chain of causation between genotype and phenotype. We also discuss the promise and limitations of population genomic approaches for inferring adaptation at specific loci. We end by highlighting the role of organismal physiology in the functional synthesis of evolutionary biology.
Collapse
Affiliation(s)
- Jay F Storz
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska;
| | - Jamie T Bridgham
- Institute of Ecology and Evolution, University of Oregon, Eugene, Oregon
| | - Scott A Kelly
- Department of Zoology, Ohio Wesleyan University, Delaware, Ohio; and
| | - Theodore Garland
- Department of Biology, University of California, Riverside, Riverside, California
| |
Collapse
|
79
|
Schley G, Scholz H, Kraus A, Hackenbeck T, Klanke B, Willam C, Wiesener MS, Heinze E, Burzlaff N, Eckardt KU, Buchholz B. Hypoxia inhibits nephrogenesis through paracrine Vegfa despite the ability to enhance tubulogenesis. Kidney Int 2015. [PMID: 26200943 DOI: 10.1038/ki.2015.214] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Reduced nephron number predisposes to hypertension and kidney disease. Interaction of the branching ureteric bud and surrounding mesenchymal cells determines nephron number. Since oxygen supply may be critical for intrauterine development, we tested whether hypoxia and hypoxia-inducible factor-1α (HIF-1α) influence nephrogenesis. We found that HIF-1α is required for branching of MDCK cells. In addition, culture of metanephric mouse kidneys with ureteric bud cell-specific stabilization or knockout of HIF-1α revealed a positive impact of HIF-1α on nephrogenesis. In contrast, widespread stabilization of HIF-1α in metanephric kidneys through hypoxia or HIF stabilizers impaired nephrogenesis, and pharmacological HIF inhibition enhanced nephrogenesis. Several lines of evidence suggest an inhibitory effect through the hypoxia response of mesenchymal cells. HIF-1α was expressed in mesenchymal cells during nephrogenesis. Expression of the anti-branching factors Bmp4 and Vegfa, secreted by mesenchymal cells, was increased upon HIF stabilization. The conditioned medium from hypoxic metanephric kidneys inhibited MDCK branching, which was partially rescued by Vegfa antibodies. Thus, the effect of HIF-1α on nephrogenesis appears context dependent. While HIF-1α in the ureteric bud is of importance for proper branching morphogenesis, the net effect of hypoxia-induced HIF activation in the embryonic kidney appears to be mesenchymal cell-dependent inhibition of ureter branching.
Collapse
Affiliation(s)
- Gunnar Schley
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Holger Scholz
- Department of Physiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Andre Kraus
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Thomas Hackenbeck
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bernd Klanke
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Carsten Willam
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael S Wiesener
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Eva Heinze
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Nicolai Burzlaff
- Department of Chemistry and Pharmacy, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Bjoern Buchholz
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Erlangen, Germany
| |
Collapse
|
80
|
Lou H, Lu Y, Lu D, Fu R, Wang X, Feng Q, Wu S, Yang Y, Li S, Kang L, Guan Y, Hoh BP, Chung YJ, Jin L, Su B, Xu S. A 3.4-kb Copy-Number Deletion near EPAS1 Is Significantly Enriched in High-Altitude Tibetans but Absent from the Denisovan Sequence. Am J Hum Genet 2015; 97:54-66. [PMID: 26073780 DOI: 10.1016/j.ajhg.2015.05.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 05/07/2015] [Indexed: 10/23/2022] Open
Abstract
Tibetan high-altitude adaptation (HAA) has been studied extensively, and many candidate genes have been reported. Subsequent efforts targeting HAA functional variants, however, have not been that successful (e.g., no functional variant has been suggested for the top candidate HAA gene, EPAS1). With WinXPCNVer, a method developed in this study, we detected in microarray data a Tibetan-enriched deletion (TED) carried by 90% of Tibetans; 50% were homozygous for the deletion, whereas only 3% carried the TED and 0% carried the homozygous deletion in 2,792 worldwide samples (p < 10(-15)). We employed long PCR and Sanger sequencing technologies to determine the exact copy number and breakpoints of the TED in 70 additional Tibetan and 182 diverse samples. The TED had identical boundaries (chr2: 46,694,276-46,697,683; hg19) and was 80 kb downstream of EPAS1. Notably, the TED was in strong linkage disequilibrium (LD; r(2) = 0.8) with EPAS1 variants associated with reduced blood concentrations of hemoglobin. It was also in complete LD with the 5-SNP motif, which was suspected to be introgressed from Denisovans, but the deletion itself was absent from the Denisovan sequence. Correspondingly, we detected that footprints of positive selection for the TED occurred 12,803 (95% confidence interval = 12,075-14,725) years ago. We further whole-genome deep sequenced (>60×) seven Tibetans and verified the TED but failed to identify any other copy-number variations with comparable patterns, giving this TED top priority for further study. We speculate that the specific patterns of the TED resulted from its own functionality in HAA of Tibetans or LD with a functional variant of EPAS1.
Collapse
|
81
|
Frise MC, Robbins PA. Iron, oxygen, and the pulmonary circulation. J Appl Physiol (1985) 2015; 119:1421-31. [PMID: 26066825 PMCID: PMC4683351 DOI: 10.1152/japplphysiol.00179.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/05/2015] [Indexed: 12/24/2022] Open
Abstract
The human pulmonary vasculature vasoconstricts in response to a reduction in alveolar oxygen tension, a phenomenon termed hypoxic pulmonary vasoconstriction (HPV). This review describes the time course of this behavior, which occurs in distinct phases, and then explores the importance for HPV of the hypoxia-inducible factor (HIF) pathway. Next, the HIF-hydroxylase enzymes that act as molecular oxygen sensors within the HIF pathway are discussed. These enzymes are particularly sensitive to intracellular iron availability, which confers iron-sensing properties on the HIF pathway. Human studies of iron chelation and supplementation are then reviewed. These demonstrate that the iron sensitivity of the HIF pathway evident from in vitro experiments is relevant to human pulmonary vascular physiology. Next, the importance of iron status in high-altitude illness and chronic cardiopulmonary disease is explored, and the therapeutic potential of intravenous iron discussed. The review concludes by highlighting some further complexities that arise from interactions between the HIF pathway and other intracellular iron-sensing mechanisms.
Collapse
Affiliation(s)
- Matthew C Frise
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
82
|
Lu H, Wang R, Xiong J, Xie H, Kayser B, Jia Z. In search for better pharmacological prophylaxis for acute mountain sickness: looking in other directions. Acta Physiol (Oxf) 2015; 214:51-62. [PMID: 25778288 DOI: 10.1111/apha.12490] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 02/23/2015] [Accepted: 03/11/2015] [Indexed: 12/15/2022]
Abstract
Despite decades of research, the exact pathogenic mechanisms underlying acute mountain sickness (AMS) are still poorly understood. This fact frustrates the search for novel pharmacological prophylaxis for AMS. The prevailing view is that AMS results from an insufficient physiological response to hypoxia and that prophylaxis should aim at stimulating the response. Starting off from the opposite hypothesis that AMS may be caused by an initial excessive response to hypoxia, we suggest that directly or indirectly blunting-specific parts of the response might provide promising research alternatives. This reasoning is based on the observations that (i) humans, once acclimatized, can climb Mt Everest experiencing arterial partial oxygen pressures (PaO2) as low as 25 mmHg without AMS symptoms; (ii) paradoxically, AMS usually develops at much higher PaO2 levels; and (iii) several biomarkers, suggesting initial activation of specific pathways at such PaO2, are correlated with AMS. Apart from looking for substances that stimulate certain hypoxia triggered effects, such as the ventilatory response to hypoxia, we suggest to also investigate pharmacological means aiming at blunting certain other specific hypoxia-activated pathways, or stimulating their agonists, in the quest for better pharmacological prophylaxis for AMS.
Collapse
Affiliation(s)
- H. Lu
- Key Laboratory of the Plateau of Environmental Damage Control; Lanzhou General Hospital of Lanzhou Military Command; Lanzhou China
| | - R. Wang
- Key Laboratory of the Plateau of Environmental Damage Control; Lanzhou General Hospital of Lanzhou Military Command; Lanzhou China
| | - J. Xiong
- Key Laboratory of the Plateau of Environmental Damage Control; Lanzhou General Hospital of Lanzhou Military Command; Lanzhou China
| | - H. Xie
- Key Laboratory of the Plateau of Environmental Damage Control; Lanzhou General Hospital of Lanzhou Military Command; Lanzhou China
| | - B. Kayser
- Institute of Sports Sciences and Department of Physiology; University of Lausanne; Lausanne Switzerland
| | - Z.P. Jia
- Key Laboratory of the Plateau of Environmental Damage Control; Lanzhou General Hospital of Lanzhou Military Command; Lanzhou China
| |
Collapse
|
83
|
Wilkins MR, Ghofrani HA, Weissmann N, Aldashev A, Zhao L. Pathophysiology and Treatment of High-Altitude Pulmonary Vascular Disease. Circulation 2015; 131:582-90. [DOI: 10.1161/circulationaha.114.006977] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Martin R. Wilkins
- From Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (M.R.W., H.-A.G., L.Z.); Excellence Cluster Cardio-Pulmonary System, Universities of Giessen, Germany (M.R.W., H.-A.G., N.W., L.Z.); University of Giessen Marburg Lung Center, Justus-Liebig-University, Germany (M.R.W., H.-A.G., N.W., L.Z.); Kerckhoff Clinic, Bad Nauheim, Germany (H.-A.G.); Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan (A.A.)
| | - Hossein-Ardeschir Ghofrani
- From Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (M.R.W., H.-A.G., L.Z.); Excellence Cluster Cardio-Pulmonary System, Universities of Giessen, Germany (M.R.W., H.-A.G., N.W., L.Z.); University of Giessen Marburg Lung Center, Justus-Liebig-University, Germany (M.R.W., H.-A.G., N.W., L.Z.); Kerckhoff Clinic, Bad Nauheim, Germany (H.-A.G.); Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan (A.A.)
| | - Norbert Weissmann
- From Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (M.R.W., H.-A.G., L.Z.); Excellence Cluster Cardio-Pulmonary System, Universities of Giessen, Germany (M.R.W., H.-A.G., N.W., L.Z.); University of Giessen Marburg Lung Center, Justus-Liebig-University, Germany (M.R.W., H.-A.G., N.W., L.Z.); Kerckhoff Clinic, Bad Nauheim, Germany (H.-A.G.); Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan (A.A.)
| | - Almaz Aldashev
- From Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (M.R.W., H.-A.G., L.Z.); Excellence Cluster Cardio-Pulmonary System, Universities of Giessen, Germany (M.R.W., H.-A.G., N.W., L.Z.); University of Giessen Marburg Lung Center, Justus-Liebig-University, Germany (M.R.W., H.-A.G., N.W., L.Z.); Kerckhoff Clinic, Bad Nauheim, Germany (H.-A.G.); Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan (A.A.)
| | - Lan Zhao
- From Experimental Medicine, Imperial College London, Hammersmith Hospital, United Kingdom (M.R.W., H.-A.G., L.Z.); Excellence Cluster Cardio-Pulmonary System, Universities of Giessen, Germany (M.R.W., H.-A.G., N.W., L.Z.); University of Giessen Marburg Lung Center, Justus-Liebig-University, Germany (M.R.W., H.-A.G., N.W., L.Z.); Kerckhoff Clinic, Bad Nauheim, Germany (H.-A.G.); Institute of Molecular Biology and Medicine, Bishkek, Kyrgyzstan (A.A.)
| |
Collapse
|
84
|
Abstract
Humans have adapted to the chronic hypoxia of high altitude in several locations, and recent genome-wide studies have indicated a genetic basis. In some populations, genetic signatures have been identified in the hypoxia-inducible factor (HIF) pathway, which orchestrates the transcriptional response to hypoxia. In Tibetans, they have been found in the HIF2A (EPAS1) gene, which encodes for HIF-2α, and the prolyl hydroxylase domain protein 2 (PHD2, also known as EGLN1) gene, which encodes for one of its key regulators, PHD2. High-altitude adaptation may be due to multiple genes that act in concert with one another. Unraveling their mechanism of action can offer new therapeutic approaches toward treating common human diseases characterized by chronic hypoxia.
Collapse
Affiliation(s)
- Abigail W Bigham
- Department of Anthropology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Frank S Lee
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
85
|
Gilbert-Kawai ET, Milledge JS, Grocott MP, Martin DS. King of the Mountains: Tibetan and Sherpa Physiological Adaptations for Life at High Altitude. Physiology (Bethesda) 2014; 29:388-402. [DOI: 10.1152/physiol.00018.2014] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Anecdotal evidence surrounding Tibetans' and Sherpas' exceptional tolerance to hypobaric hypoxia has been recorded since the beginning of high-altitude exploration. These populations have successfully lived and reproduced at high altitude for hundreds of generations with hypoxia as a constant evolutionary pressure. Consequently, they are likely to have undergone natural selection toward a genotype (and phenotype) tending to offer beneficial adaptation to sustained hypoxia. With the advent of translational human hypoxic research, in which genotype/phenotype studies of healthy individuals at high altitude may be of benefit to hypoxemic critically ill patients in a hospital setting, high-altitude natives may provide a valuable and intriguing model. The aim of this review is to provide a comprehensive summary of the scientific literature encompassing Tibetan and Sherpa physiological adaptations to a high-altitude residence. The review demonstrates the extent to which evolutionary pressure has refined the physiology of this high-altitude population. Furthermore, although many physiological differences between highlanders and lowlanders have been found, it also suggests many more potential avenues of investigation.
Collapse
Affiliation(s)
- Edward T. Gilbert-Kawai
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, United Kingdom
- University College London Division of Surgery and Interventional Science, Royal Free Hospital, London, United Kingdom
- University College Hospital London NIHR Biomedical Research Centre, London, United Kingdom
| | - James S. Milledge
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, United Kingdom
| | - Michael P.W. Grocott
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, United Kingdom
- University College Hospital London NIHR Biomedical Research Centre, London, United Kingdom
- Integrative Physiology and Critical Illness Group, Clinical and Experimental Sciences, University of Southampton, Southampton, United Kingdom
- Anaesthesia and Critical Care Research Unit, University Hospital Southampton NHS Foundation Trust, Southampton, United Kingdom; and
- Southampton NIHR Respiratory Biomedical Research Unit, Southampton, United Kingdom
| | - Daniel S. Martin
- University College London Centre for Altitude Space and Extreme Environment Medicine, UCLH NIHR Biomedical Research Centre, Institute of Sport and Exercise Health, London, United Kingdom
- University College London Division of Surgery and Interventional Science, Royal Free Hospital, London, United Kingdom
- University College Hospital London NIHR Biomedical Research Centre, London, United Kingdom
| |
Collapse
|
86
|
Abstract
Populations residing for millennia on the high-altitude plateaus of the world started natural experiments that we can evaluate to address questions about the processes of evolution and adaptation. A 2001 assessment in this journal summarized abundant evidence that Tibetan and Andean high-altitude natives had different phenotypes, and the article made a case for the hypothesis that different genetic bases underlie traits in the two populations. Since then, knowledge of the prehistory of high-altitude populations has grown, information about East African highlanders has become available, genomic science has grown exponentially, and the genetic and molecular bases of oxygen homeostasis have been clarified. Those scientific advances have transformed the study of high-altitude populations. The present review aims to summarize recent advances in understanding with an emphasis on the genetic bases of adaptive phenotypes, particularly hemoglobin concentration among Tibetan highlanders. EGLN1 and EPAS1 encode two crucial proteins contributing to oxygen homeostasis, the oxygen sensor PHD2 and the transcription factor subunit HIF-2α, respectively; they show signals of natural selection such as marked allele frequency differentiation between Tibetans and lowland populations. EPAS1 genotypes associated in several studies with the dampened hemoglobin phenotype that is characteristic of Tibetans at high altitude but did not associate with the dampened response among Amhara from Ethiopia or the vigorous elevation of hemoglobin concentration among Andean highlanders. Future work will likely develop understanding of the integrative biology leading from genotype to phenotype to population in all highland areas.
Collapse
Affiliation(s)
- Cynthia M. Beall
- Department of Anthropology, Case Western Reserve University, Cleveland, Ohio 44106–7125
| |
Collapse
|
87
|
Frise MC, Robbins PA. The pulmonary vasculature--lessons from Tibetans and from rare diseases of oxygen sensing. Exp Physiol 2014; 100:1233-41. [PMID: 26575340 DOI: 10.1113/expphysiol.2014.080507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 09/05/2014] [Indexed: 12/11/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review is principally concerned with results from studies of the pulmonary vasculature in humans, particularly in relation to hypoxia and rare diseases that affect oxygen sensing. What advances does it highlight? This review highlights the degree to which the hypoxia-inducible factor (HIF) transcription system influences human pulmonary vascular responses to hypoxia. Upregulation of the HIF pathway augments hypoxic pulmonary vasoconstriction, while alterations to the pathway found in Tibetans are associated with suppression of the progressive increase in pulmonary artery pressure with sustained hypoxia. It also highlights the potential importance of iron, which modulates the HIF pathway, in modifying the pulmonary vascular response to hypoxia. The human pulmonary circulation loses its natural distensibility during sustained hypoxia, leading to pulmonary arterial hypertension and a much higher workload for the right ventricle. The hypoxia-inducible factor (HIF) pathway is implicated in this pulmonary vascular response to continued hypoxia by animal studies, and additionally, by rare human diseases where the pathway is upregulated. However, there are no known human genetic diseases downregulating HIF. Tibetans, though, demonstrate blunted pulmonary vascular responses to sustained hypoxia. This seems to be accounted for by an altered HIF pathway as a consequence of natural selection over a period of many thousands of years lived at high altitude. In addition to genetic differences, iron is another important modulator of HIF pathway function. Experimental work in humans demonstrates that manipulation of iron stores can influence the behaviour of the pulmonary circulation during hypoxia, in ways analogous to that seen in Tibetans and patients with rare diseases that affect oxygen sensing. The importance of physiological differences in iron bioavailability in modulating hypoxic pulmonary vasoconstriction in health and disease is yet to be established.
Collapse
Affiliation(s)
- Matthew C Frise
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - Peter A Robbins
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
88
|
Sightings edited by Erik R. Swenson and Peter Bärtsch. High Alt Med Biol 2014. [DOI: 10.1089/ham.2014.1523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
89
|
Petousi N, Robbins PA. Human adaptation to the hypoxia of high altitude: the Tibetan paradigm from the pregenomic to the postgenomic era. J Appl Physiol (1985) 2013; 116:875-84. [PMID: 24201705 PMCID: PMC3972749 DOI: 10.1152/japplphysiol.00605.2013] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The Tibetan Plateau is one of the highest regions on Earth. Tibetan highlanders are adapted to life and reproduction in a hypoxic environment and possess a suite of distinctive physiological traits. Recent studies have identified genomic loci that have undergone natural selection in Tibetans. Two of these loci, EGLN1 and EPAS1, encode major components of the hypoxia-inducible factor transcriptional system, which has a central role in oxygen sensing and coordinating an organism's response to hypoxia, as evidenced by studies in humans and mice. An association between genetic variants within these genes and hemoglobin concentration in Tibetans at high altitude was demonstrated in some of the studies (8, 80, 96). Nevertheless, the functional variants within these genes and the underlying mechanisms of action are still not known. Furthermore, there are a number of other possible phenotypic traits, besides hemoglobin concentration, upon which natural selection may have acted. Integration of studies at the genomic level with functional molecular studies and studies in systems physiology has the potential to provide further understanding of human evolution in response to high-altitude hypoxia. The Tibetan paradigm provides further insight on the role of the hypoxia-inducible factor system in humans in relation to oxygen homeostasis.
Collapse
Affiliation(s)
- Nayia Petousi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|