51
|
Choi JY, Jang HJ, Ornelas S, Fleming WT, Fürth D, Au J, Bandi A, Engel EA, Witten IB. A Comparison of Dopaminergic and Cholinergic Populations Reveals Unique Contributions of VTA Dopamine Neurons to Short-Term Memory. Cell Rep 2020; 33:108492. [PMID: 33326775 PMCID: PMC8038523 DOI: 10.1016/j.celrep.2020.108492] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 09/18/2020] [Accepted: 11/17/2020] [Indexed: 10/22/2022] Open
Abstract
We systematically compare the contributions of two dopaminergic and two cholinergic ascending populations to a spatial short-term memory task in rats. In ventral tegmental area dopamine (VTA-DA) and nucleus basalis cholinergic (NB-ChAT) populations, trial-by-trial fluctuations in activity during the delay period relate to performance with an inverted-U, despite the fact that both populations have low activity during that time. Transient manipulations reveal that only VTA-DA neurons, and not the other three populations we examine, contribute causally and selectively to short-term memory. This contribution is most significant during the delay period, when both increases and decreases in VTA-DA activity impair short-term memory. Our results reveal a surprising dissociation between when VTA-DA neurons are most active and when they have the biggest causal contribution to short-term memory, and they also provide support for classic ideas about an inverted-U relationship between neuromodulation and cognition.
Collapse
Affiliation(s)
- Jung Yoon Choi
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA
| | - Hee Jae Jang
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Sharon Ornelas
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Weston T Fleming
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Daniel Fürth
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jennifer Au
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Akhil Bandi
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Esteban A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Ilana B Witten
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA; Department of Psychology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
52
|
Zacharopoulos G, Kadosh Cohen R. Predicting Working Memory Capacity Based on Glutamatergic Concentration and its Modulation of Functional Connectivity. Neuroscience 2020; 457:12-19. [PMID: 33212221 DOI: 10.1016/j.neuroscience.2020.10.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 10/23/2022]
Abstract
Working memory (WM) capacity, the amount of information one can hold online in mind, has a central role in cognition. Previous electrophysiological and imaging studies revealed the pivotal role of persistent activity within parietal and frontal regions as the neural foundations underpinning WM capacity. The best candidate molecules determining persistent activity are the brain's major excitatory and inhibitory neurotransmitters, glutamate and gamma-aminobutyric acid (GABA), respectively. However, our knowledge of these neurophysiological determinants in forming WM capacity is still poor. Using magnetic resonance spectroscopy (MRS), we examined the contribution of glutamate and GABA within the left intraparietal sulcus (IPS) and the left inferior/middle frontal gyrus (FG) in tracking WM capacity. A positive association was found between glutamate within the left IPS and WM capacity. By utilising resting-state functional MRI, we identified a negative association between parieto-cingulate connectivity and WM capacity. Individual variation in parieto-cingulate connectivity was explained by glutamatergic concentration in the IPS. Moreover, we found that parieto-cingulate connectivity mediated the relationship between interparietal sulcus glutamate and WM capacity. This set of findings reveals a novel mechanistic insight by which glutamatergic concentration within the IPS shapes WM capacity via parieto-cingulate connectivity.
Collapse
Affiliation(s)
- George Zacharopoulos
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, UK.
| | - Roi Kadosh Cohen
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, UK
| |
Collapse
|
53
|
Khanna SB, Scott JA, Smith MA. Dynamic shifts of visual and saccadic signals in prefrontal cortical regions 8Ar and FEF. J Neurophysiol 2020; 124:1774-1791. [PMID: 33026949 DOI: 10.1152/jn.00669.2019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Active vision is a fundamental process by which primates gather information about the external world. Multiple brain regions have been studied in the context of simple active vision tasks in which a visual target's appearance is temporally separated from saccade execution. Most neurons have tight spatial registration between visual and saccadic signals, and in areas such as prefrontal cortex (PFC), some neurons show persistent delay activity that links visual and motor epochs and has been proposed as a basis for spatial working memory. Many PFC neurons also show rich dynamics, which have been attributed to alternative working memory codes and the representation of other task variables. Our study investigated the transition between processing a visual stimulus and generating an eye movement in populations of PFC neurons in macaque monkeys performing a memory guided saccade task. We found that neurons in two subregions of PFC, the frontal eye fields (FEF) and area 8Ar, differed in their dynamics and spatial response profiles. These dynamics could be attributed largely to shifts in the spatial profile of visual and motor responses in individual neurons. This led to visual and motor codes for particular spatial locations that were instantiated by different mixtures of neurons, which could be important in PFC's flexible role in multiple sensory, cognitive, and motor tasks.NEW & NOTEWORTHY A central question in neuroscience is how the brain transitions from sensory representations to motor outputs. The prefrontal cortex contains neurons that have long been implicated as important in this transition and in working memory. We found evidence for rich and diverse tuning in these neurons, which was often spatially misaligned between visual and saccadic responses. This feature may play an important role in flexible working memory capabilities.
Collapse
Affiliation(s)
- Sanjeev B Khanna
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Jonathan A Scott
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Matthew A Smith
- Department of Ophthalmology, University of Pittsburgh, Pittsburgh, Pennsylvania.,Center for the Neural Basis of Cognition, Pittsburgh, Pennsylvania.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania.,Carnegie Mellon Neuroscience Institute, Pittsburgh, Pennsylvania
| |
Collapse
|
54
|
Cooke JE, Lee JJ, Bartlett EL, Wang X, Bendor D. Post-stimulatory activity in primate auditory cortex evoked by sensory stimulation during passive listening. Sci Rep 2020; 10:13885. [PMID: 32807854 PMCID: PMC7431571 DOI: 10.1038/s41598-020-70397-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/17/2020] [Indexed: 01/04/2023] Open
Abstract
Under certain circumstances, cortical neurons are capable of elevating their firing for long durations in the absence of a stimulus. Such activity has typically been observed and interpreted in the context of performance of a behavioural task. Here we investigated whether post-stimulatory activity is observed in auditory cortex and the medial geniculate body of the thalamus in the absence of any explicit behavioural task. We recorded spiking activity from single units in the auditory cortex (fields A1, R and RT) and auditory thalamus of awake, passively-listening marmosets. We observed post-stimulatory activity that lasted for hundreds of milliseconds following the termination of the acoustic stimulus. Post-stimulatory activity was observed following both adapting, sustained and suppressed response profiles during the stimulus. These response types were observed across all cortical fields tested, but were largely absent from the auditory thalamus. As well as being of shorter duration, thalamic post-stimulatory activity emerged following a longer latency than in cortex, indicating that post-stimulatory activity may be generated within auditory cortex during passive listening. Given that these responses were observed in the absence of an explicit behavioural task, post-stimulatory activity in sensory cortex may play a functional role in processes such as echoic memory and temporal integration that occur during passive listening.
Collapse
Affiliation(s)
- James E Cooke
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK.
| | - Julie J Lee
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
- Institute of Ophthalmology, University College London (UCL), London, WC1H 0AP, UK
| | - Edward L Bartlett
- Departments of Biological Sciences and Biomedical Engineering, Purdue University, West Lafayette, 47907, USA
| | - Xiaoqin Wang
- Departments of Biomedical Engineering, Johns Hopkins University, Baltimore, 21205, USA
| | - Daniel Bendor
- Institute of Behavioural Neuroscience (IBN), University College London (UCL), London, WC1H 0AP, UK
| |
Collapse
|
55
|
Barbosa J, Stein H, Martinez RL, Galan-Gadea A, Li S, Dalmau J, Adam KCS, Valls-Solé J, Constantinidis C, Compte A. Interplay between persistent activity and activity-silent dynamics in the prefrontal cortex underlies serial biases in working memory. Nat Neurosci 2020; 23:1016-1024. [PMID: 32572236 PMCID: PMC7392810 DOI: 10.1038/s41593-020-0644-4] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 04/21/2020] [Indexed: 11/16/2022]
Abstract
Persistent neuronal spiking has long been considered the mechanism underlying working memory, but recent proposals argue for alternative 'activity-silent' substrates. Using monkey and human electrophysiology data, we show here that attractor dynamics that control neural spiking during mnemonic periods interact with activity-silent mechanisms in the prefrontal cortex (PFC). This interaction allows memory reactivations, which enhance serial biases in spatial working memory. Stimulus information was not decodable between trials, but remained present in activity-silent traces inferred from spiking synchrony in the PFC. Just before the new stimulus, this latent trace was reignited into activity that recapitulated the previous stimulus representation. Importantly, the reactivation strength correlated with the strength of serial biases in both monkeys and humans, as predicted by a computational model that integrates activity-based and activity-silent mechanisms. Finally, single-pulse transcranial magnetic stimulation applied to the human PFC between successive trials enhanced serial biases, thus demonstrating the causal role of prefrontal reactivations in determining working-memory behavior.
Collapse
Affiliation(s)
- Joao Barbosa
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Heike Stein
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Rebecca L Martinez
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Adrià Galan-Gadea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Sihai Li
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Josep Dalmau
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Service of Neurology, Hospital Clínic, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
- ICREA, Barcelona, Spain
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Kirsten C S Adam
- Department of Psychology and Institute for Neural Computation, University of California San Diego, La Jolla, CA, USA
| | - Josep Valls-Solé
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Christos Constantinidis
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Albert Compte
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain.
| |
Collapse
|
56
|
Zhu J, Cheng Q, Chen Y, Fan H, Han Z, Hou R, Chen Z, Li CT. Transient Delay-Period Activity of Agranular Insular Cortex Controls Working Memory Maintenance in Learning Novel Tasks. Neuron 2020; 105:934-946.e5. [PMID: 32135091 DOI: 10.1016/j.neuron.2019.12.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 08/14/2019] [Accepted: 12/06/2019] [Indexed: 12/15/2022]
Abstract
Whether transient or sustained neuronal activity during the delay period underlies working memory (WM) has been debated. Here, we report that transient, but not sustained, delay-period activity in mouse anterior agranular insular cortex (aAIC) plays a dominant role in maintaining WM information during learning of novel olfactory tasks. By optogenetic screening over 12 brain regions, we found that suppressing aAIC activity markedly impaired olfactory WM maintenance during learning. Single-unit recording showed that odor-selective aAIC neurons with predominantly transient firing patterns encoded WM information. Both WM task performance and transient-neuron proportion were enhanced and reduced by activating and suppressing the delay-period activity of the projection from medial prefrontal cortex (mPFC) to aAIC. The ability of mice to resist delay-period distractors also correlated with an increased percentage of transient neurons. Therefore, transient, but not sustained, aAIC neuronal activity during the delay period is largely responsible for maintaining information while learning novel WM tasks.
Collapse
Affiliation(s)
- Jia Zhu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qi Cheng
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulei Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China
| | - Hongmei Fan
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China
| | - Zhe Han
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ruiqing Hou
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China
| | - Zhaoqin Chen
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China
| | - Chengyu T Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Center for Brain Science and Brain-Inspired Technology, Shanghai 200031, China; School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
57
|
Kang C, Li Y, Novak D, Zhang Y, Zhou Q, Hu Y. Brain Networks of Maintenance, Inhibition and Disinhibition During Working Memory. IEEE Trans Neural Syst Rehabil Eng 2020; 28:1518-1527. [DOI: 10.1109/tnsre.2020.2997827] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
58
|
Li S, Zhou X, Constantinidis C, Qi XL. Plasticity of Persistent Activity and Its Constraints. Front Neural Circuits 2020; 14:15. [PMID: 32528254 PMCID: PMC7247814 DOI: 10.3389/fncir.2020.00015] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 03/26/2020] [Indexed: 11/13/2022] Open
Abstract
Stimulus information is maintained in working memory by action potentials that persist after the stimulus is no longer physically present. The prefrontal cortex is a critical brain area that maintains such persistent activity due to an intrinsic network with unique synaptic connectivity, NMDA receptors, and interneuron types. Persistent activity can be highly plastic depending on task demands but it also appears in naïve subjects, not trained or required to perform a task at all. Here, we review what aspects of persistent activity remain constant and what factors can modify it, focusing primarily on neurophysiological results from non-human primate studies. Changes in persistent activity are constrained by anatomical location, with more ventral and more anterior prefrontal areas exhibiting the greatest capacity for plasticity, as opposed to posterior and dorsal areas, which change relatively little with training. Learning to perform a cognitive task for the first time, further practicing the task, and switching between learned tasks can modify persistent activity. The ability of the prefrontal cortex to generate persistent activity also depends on age, with changes noted between adolescence, adulthood, and old age. Mean firing rates, variability and correlation of persistent discharges, but also time-varying firing rate dynamics are altered by these factors. Plastic changes in the strength of intrinsic network connections can be revealed by the analysis of synchronous spiking between neurons. These results are essential for understanding how the prefrontal cortex mediates working memory and intelligent behavior.
Collapse
Affiliation(s)
- Sihai Li
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xin Zhou
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States.,Department of Computer Science, Stanford University, Stanford, CA, United States
| | - Christos Constantinidis
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| | - Xue-Lian Qi
- Department of Neurobiology and Anatomy, Wake Forest School of Medicine, Winston Salem, NC, United States
| |
Collapse
|
59
|
Abstract
Working memory is characterized by neural activity that persists during the retention interval of delay tasks. Despite the ubiquity of this delay activity across tasks, species and experimental techniques, our understanding of this phenomenon remains incomplete. Although initially there was a narrow focus on sustained activation in a small number of brain regions, methodological and analytical advances have allowed researchers to uncover previously unobserved forms of delay activity various parts of the brain. In light of these new findings, this Review reconsiders what delay activity is, where in the brain it is found, what roles it serves and how it may be generated.
Collapse
Affiliation(s)
- Kartik K Sreenivasan
- Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Mark D'Esposito
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, CA, USA.
| |
Collapse
|
60
|
Espinosa N, Alonso A, Morales C, Espinosa P, Chávez AE, Fuentealba P. Basal Forebrain Gating by Somatostatin Neurons Drives Prefrontal Cortical Activity. Cereb Cortex 2020; 29:42-53. [PMID: 29161383 DOI: 10.1093/cercor/bhx302] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The basal forebrain provides modulatory input to the cortex regulating brain states and cognitive processing. Somatostatin-expressing neurons constitute a heterogeneous GABAergic population known to functionally inhibit basal forebrain cortically projecting cells thus favoring sleep and cortical synchronization. However, it remains unclear if somatostatin cells can regulate population activity patterns in the basal forebrain and modulate cortical dynamics. Here, we demonstrate that somatostatin neurons regulate the corticopetal synaptic output of the basal forebrain impinging on cortical activity and behavior. Optogenetic inactivation of somatostatin neurons in vivo rapidly modified neural activity in the basal forebrain, with the consequent enhancement and desynchronization of activity in the prefrontal cortex, reflected in both neuronal spiking and network oscillations. Cortical activation was partially dependent on cholinergic transmission, suppressing slow waves and potentiating gamma oscillations. In addition, recruitment dynamics was cell type-specific, with interneurons showing similar temporal profiles, but stronger responses than pyramidal cells. Finally, optogenetic stimulation of quiescent animals during resting periods prompted locomotor activity, suggesting generalized cortical activation and increased arousal. Altogether, we provide physiological and behavioral evidence indicating that somatostatin neurons are pivotal in gating the synaptic output of the basal forebrain, thus indirectly controlling cortical operations via both cholinergic and non-cholinergic mechanisms.
Collapse
Affiliation(s)
- Nelson Espinosa
- Departamento de Psiquiatria, Centro Interdisciplinario de Neurociencia UC,Pontificia Universidad Catolica de Chile, Marcoleta 391, Santiago, Chile
| | - Alejandra Alonso
- Departamento de Psiquiatria, Centro Interdisciplinario de Neurociencia UC,Pontificia Universidad Catolica de Chile, Marcoleta 391, Santiago, Chile
| | - Cristian Morales
- Departamento de Psiquiatria, Centro Interdisciplinario de Neurociencia UC,Pontificia Universidad Catolica de Chile, Marcoleta 391, Santiago, Chile
| | - Pedro Espinosa
- Centro Interdisciplinario de Neurociencia de Valparaíso and Núcleo Milenio Biología de Enfermedades Neuropsiquiátricas, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Andrés E Chávez
- Centro Interdisciplinario de Neurociencia de Valparaíso and Núcleo Milenio Biología de Enfermedades Neuropsiquiátricas, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
| | - Pablo Fuentealba
- Departamento de Psiquiatria, Centro Interdisciplinario de Neurociencia UC,Pontificia Universidad Catolica de Chile, Marcoleta 391, Santiago, Chile.,Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Catolica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile
| |
Collapse
|
61
|
Crows control working memory before and after stimulus encoding. Sci Rep 2020; 10:3253. [PMID: 32094457 PMCID: PMC7039964 DOI: 10.1038/s41598-020-59975-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/23/2020] [Indexed: 11/09/2022] Open
Abstract
The capacity of working memory is limited and this limit is comparable in crows and primates. To maximize this resource, humans use attention to select only relevant information for maintenance. Interestingly, attention-cues are effective not only before but also after the presentation of to-be-remembered stimuli, highlighting control mechanisms beyond sensory selection. Here we explore if crows are also capable of these forms of control over working memory. Two crows (Corvus corone) were trained to memorize two, four or six visual stimuli. Comparable to our previous results, the crows showed a decrease in performance with increasing working memory load. Using attention cues, we indicated the critical stimulus on a given trial. These cues were either presented before (pre-cue) or after sample-presentation (retro-cue). On other trials no cue was given as to which stimulus was critical. We found that both pre- and retro-cues enhance the performance of the birds. These results show that crows, like humans, can utilize attention to select relevant stimuli for maintenance in working memory. Importantly, crows can also utilize cues to make the most of their working memory capacity even after the stimuli are already held in working memory. This strongly implies that crows can engage in efficient control over working memory.
Collapse
|
62
|
Ozdemir AT, Lagler M, Lagoun S, Malagon-Vina H, Lasztóczi B, Klausberger T. Unexpected Rule-Changes in a Working Memory Task Shape the Firing of Histologically Identified Delay-Tuned Neurons in the Prefrontal Cortex. Cell Rep 2020; 30:1613-1626.e4. [DOI: 10.1016/j.celrep.2019.12.102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/28/2019] [Accepted: 12/30/2019] [Indexed: 12/19/2022] Open
|
63
|
Taylor-Giorlando M, Scheinost D, Ment L, Rothman D, Horvath TL. Prefrontal Cortical and Behavioral Adaptations to Surgical Delivery Mediated by Metabolic Principles. Cereb Cortex 2019; 29:5061-5071. [PMID: 30877804 PMCID: PMC6918927 DOI: 10.1093/cercor/bhz046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/06/2019] [Accepted: 02/19/2019] [Indexed: 01/21/2023] Open
Abstract
We previously observed an association between mode of delivery and brain mitochondrial mechanisms in pups. We also showed that mitochondrial processes impact adult behavior. However, no experimental data is available to causally connect mode of delivery with cellular processes of neurons in the cerebral cortex and adult behavior. Here we show that surgical delivery of pups alters mitochondrial dynamics and spine synapses of layer 3 pyramidal neurons of the prefrontal cortex compared to the values of mice delivered vaginally. These alterations in ultrastructure seen in adult mice delivered surgically were associated with the development of behavioral phenotypes resembling those characteristic of animal models of psychiatric illness. This included impaired performance in prepulse inhibition as well as hyperlocomotion in the open field and elevated plus maze tests. Knocking out a mitochondria-related gene, UCP-2, blocked cellular and behavioral adaptations induced by surgical delivery. These results highlight a crucial role for brain mitochondrial adaptations in the process of birth to affect neuronal circuitry in support of normal and altered adult behaviors. Further, these findings were supported with neuroimaging data from human neonates delivered vaginally and surgically, suggesting that the murine findings have human clinical relevance.
Collapse
Affiliation(s)
- Melissa Taylor-Giorlando
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
| | - Laura Ment
- Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Dough Rothman
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Tamas L Horvath
- Program in Integrative Cell Signaling and Neurobiology of Metabolism, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
- Department of Ob/Gyn and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
- Department of Anatomy and Histology, University of Veterinary Medicine, Budapest, Hungary
| |
Collapse
|
64
|
Abdelkarim D, Zhao Y, Turner MP, Sivakolundu DK, Lu H, Rypma B. A neural-vascular complex of age-related changes in the human brain: Anatomy, physiology, and implications for neurocognitive aging. Neurosci Biobehav Rev 2019; 107:927-944. [DOI: 10.1016/j.neubiorev.2019.09.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 08/02/2019] [Accepted: 09/02/2019] [Indexed: 01/09/2023]
|
65
|
Sloin H, Stark E. Response and sample bridging in a primate short-term memory task. Neurobiol Learn Mem 2019; 166:107106. [PMID: 31705981 DOI: 10.1016/j.nlm.2019.107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 11/26/2022]
Abstract
Freely-moving rodents can solve short-term memory (STM) tasks using "response bridging" strategies, relying on motor patterns instead of mnemonic functions. This limits the interpretational power of results yielded by some STM tasks in rodents. To determine whether head-fixed monkeys can employ parallel non-mnemonic strategies, we measured eye position and velocity of two head-fixed monkeys performing a delayed response reaching and grasping task. We found that eye position during the delay period was correlated with reach direction. Moreover, reach direction as well as grasp object could be predicted from eye kinematics during the delay. Both eye velocity and eye position contributed to the prediction of reach direction. These results show that motor signals carry sufficient information to allow monkeys to solve STM tasks without using any mnemonic functions. Thus, the potential of animals to solve STM tasks using motor patterns is more diverse than previously recognized.
Collapse
Affiliation(s)
- Hadas Sloin
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Eran Stark
- Sagol School of Neuroscience and Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
66
|
Zhao D, Zhou YD, Bodner M, Ku Y. The Causal Role of the Prefrontal Cortex and Somatosensory Cortex in Tactile Working Memory. Cereb Cortex 2019; 28:3468-3477. [PMID: 28968894 DOI: 10.1093/cercor/bhx213] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Indexed: 12/31/2022] Open
Abstract
In the present study, we searched for causal evidence linking activity in the bilateral primary somatosensory cortex (SI), posterior parietal cortex (PPC), and prefrontal cortex (PFC) with behavioral performance in vibrotactile working memory. Participants performed a vibrotactile delayed matching-to-sample task, while single-pulse transcranial magnetic stimulation (sp-TMS) was applied over these cortical areas at 100, 200, 300, 600, 1600, and 1900 ms after the onset of vibrotactile stimulation (200 ms duration). In our experiments, sp-TMS over the contralateral SI at the early delay (100 and 200 ms) deteriorated the accuracy of task performance, and over the ipsilateral SI at the late delay (1600 and 1900 ms) also induced such deteriorating effects. Furthermore, deteriorating effects caused by sp-TMS over the contralateral DLPFC at the same maintenance stage (1600 ms) were correlated with the effects caused by sp-TMS over the ipsilateral SI, indicating that information retained in the ipsilateral SI during the late delay may be associated with the DLPFC. Taken together, these results suggest that both the contralateral and ipsilateral SIs are involved in tactile WM, and the contralateral DLPFC bridges the contralateral SI and ipsilateral SI for goal-directed action.
Collapse
Affiliation(s)
- Di Zhao
- The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
| | - Yong-Di Zhou
- NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai and Collaborative Innovation Center for Brain Science, Shanghai, China.,Krieger Mind/Brain Institute, Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | | | - Yixuan Ku
- The Key Lab of Brain Functional Genomics, MOE & STCSM, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China.,NYU-ECNU Institute of Brain and Cognitive Science, NYU Shanghai and Collaborative Innovation Center for Brain Science, Shanghai, China
| |
Collapse
|
67
|
Dynamically changing neuronal activity supporting working memory for predictable and unpredictable durations. Sci Rep 2019; 9:15512. [PMID: 31664169 PMCID: PMC6820562 DOI: 10.1038/s41598-019-52017-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 10/11/2019] [Indexed: 02/04/2023] Open
Abstract
Diverse neural processes have been proposed as the neural basis of working memory. To investigate whether the medial prefrontal cortex (mPFC) relies on different neural processes to mediate working memory depending on the predictability of delay duration, we examined mPFC neural activity in mice performing a delayed response task with fixed (4 s) or random (between 1-7 s) delay durations. mPFC neural activity was strongly influenced by the predictability of delay duration. Nevertheless, mPFC neurons seldom showed persistent activity spanning the entire delay period and instead showed dynamically-changing delay-period activity under both the fixed-delay and random-delay conditions. mPFC neurons conveyed higher working memory information under the random-delay than fixed-delay conditions, possibly due to a higher demand for stable working memory maintenance. Our results suggest that the rodent mPFC may rely on dynamically-changing neuronal activity to maintain working memory regardless of the predictability of delay duration.
Collapse
|
68
|
Wallis JD. Reward. HANDBOOK OF CLINICAL NEUROLOGY 2019; 163:281-294. [PMID: 31590735 DOI: 10.1016/b978-0-12-804281-6.00015-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
Neurons throughout frontal cortex show robust responses to rewards, but a challenge is determining the specific function served by these different reward signals. Most neuropsychiatric disorders involve dysfunction of circuits between frontal cortex and subcortical structures, such as the striatum. There are multiple frontostriatal loops, and different neuropsychiatric disorders involve different loops to greater or lesser extents. Understanding the role of reward in each of these different circuits is a necessary step in developing novel treatments for these disorders. This chapter summarizes the recent literature that has identified the role of reward in different subregions of the frontal cortex. Orbitofrontal cortex integrates information about multiple aspects of expected rewards in order to derive their value, which can then be used to decide between alternative potential rewards. Neurons in anterior cingulate cortex encode the difference between the expected reward and the actual outcome. This information is useful for learning, since it can ensure that behavior changes when the outcome was not anticipated. Reward also affects signals in lateral prefrontal cortex related to attention and response selection, ensuring that behaviors are optimally prioritized. Finally, the chapter discusses how reward signals contribute to social processing and autonomic control.
Collapse
Affiliation(s)
- Joni D Wallis
- Department of Psychology, University of California at Berkeley, Berkeley, CA, United States; Helen Wills Neuroscience Institute, University of California at Berkeley, Berkeley, CA, United States.
| |
Collapse
|
69
|
On the Short-Lived Nature of Working Memory: Drift and Decay in a Population-coding model. J Neurosci 2019; 38:10241-10243. [PMID: 30487297 DOI: 10.1523/jneurosci.1877-18.2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 11/21/2022] Open
|
70
|
Neuronal Correlates of Spatial Working Memory in the Endbrain of Crows. Curr Biol 2019; 29:2616-2624.e4. [DOI: 10.1016/j.cub.2019.06.060] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 06/03/2019] [Accepted: 06/21/2019] [Indexed: 01/20/2023]
|
71
|
Chari S, Minzenberg MJ, Solomon M, Ragland JD, Nguyen Q, Carter CS, Yoon JH. Impaired prefrontal functional connectivity associated with working memory task performance and disorganization despite intact activations in schizophrenia. Psychiatry Res Neuroimaging 2019; 287:10-18. [PMID: 30933745 PMCID: PMC6482053 DOI: 10.1016/j.pscychresns.2019.01.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 11/21/2022]
Abstract
Working memory (WM) deficits are key features of schizophrenia and are associated with significant functional impairment. The precise mechanisms of WM and their relationship between WM deficits with other clinical symptoms of schizophrenia remain unclear. Contemporary models propose that WM requires synchronous activity across brain regions within a distributed network, including lateral prefrontal cortex (PFC) and task-relevant posterior sensory cortical regions. This suggests that WM deficits in patients may be due to PFC functional connectivity (FC) impairments rather than activation impairments per se. We tested this hypothesis by measuring the magnitude of FC between lateral PFC and visual cortex and univariate activations within these regions during visual WM. We found decreased FC in patients compared to healthy subjects in the context of similar levels of univariate activity. Furthermore, this decreased FC was associated with task performance and clinical symptomatology in patients. The magnitude of FC, particularly during the delay period, was positively correlated with WM task accuracy, while FC during cue was inversely correlated with severity of disorganization. Taken together, these results suggest that impairment in lateral PFC FC is a key aspect of information processing impairment in patients with schizophrenia, and may be a sensitive index of altered neurophysiology.
Collapse
Affiliation(s)
- Sripriya Chari
- Palo Alto VA Healthcare System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA.
| | - Michael J Minzenberg
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, 760 Westwood Plaza, Los Angeles, CA 90024, USA
| | - Marjorie Solomon
- University of California, Davis, 4701 X St, Sacramento, CA 95817, USA
| | - J Daniel Ragland
- University of California, Davis, 4701 X St, Sacramento, CA 95817, USA
| | - Quynh Nguyen
- Stanford University, 401 Quarry Road, Palo Alto, CA 94301, USA
| | - Cameron S Carter
- University of California, Davis, 4701 X St, Sacramento, CA 95817, USA
| | - Jong H Yoon
- Palo Alto VA Healthcare System, 3801 Miranda Avenue, Palo Alto, CA 94304, USA; Stanford University, 401 Quarry Road, Palo Alto, CA 94301, USA.
| |
Collapse
|
72
|
Munger EL, Edler MK, Hopkins WD, Ely JJ, Erwin JM, Perl DP, Mufson EJ, Hof PR, Sherwood CC, Raghanti MA. Astrocytic changes with aging and Alzheimer's disease-type pathology in chimpanzees. J Comp Neurol 2019; 527:1179-1195. [PMID: 30578640 PMCID: PMC6401278 DOI: 10.1002/cne.24610] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 11/20/2018] [Accepted: 12/01/2018] [Indexed: 01/01/2023]
Abstract
Astrocytes are the main homeostatic cell of the central nervous system. In addition, astrocytes mediate an inflammatory response when reactive to injury or disease known as astrogliosis. Astrogliosis is marked by an increased expression of glial fibrillary acidic protein (GFAP) and cellular hypertrophy. Some degree of astrogliosis is associated with normal aging and degenerative conditions such as Alzheimer's disease (AD) and other dementing illnesses in humans. The recent observation of pathological markers of AD (amyloid plaques and neurofibrillary tangles) in aged chimpanzee brains provided an opportunity to examine the relationships among aging, AD-type pathology, and astrocyte activation in our closest living relatives. Stereologic methods were used to quantify GFAP-immunoreactive astrocyte density and soma volume in layers I, III, and V of the prefrontal and middle temporal cortex, as well as in hippocampal fields CA1 and CA3. We found that the patterns of astrocyte activation in the aged chimpanzee brain are distinct from humans. GFAP expression does not increase with age in chimpanzees, possibly indicative of lower oxidative stress loads. Similar to humans, chimpanzee layer I astrocytes in the prefrontal cortex are susceptible to AD-like changes. Both prefrontal cortex layer I and hippocampal astrocytes exhibit a high degree of astrogliosis that is positively correlated with accumulation of amyloid beta and tau proteins. However, unlike humans, chimpanzees do not display astrogliosis in other cortical layers. These results demonstrate a unique pattern of cortical aging in chimpanzees and suggest that inflammatory processes may differ between humans and chimpanzees in response to pathology.
Collapse
Affiliation(s)
- Emily L. Munger
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio
| | - Melissa K. Edler
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio,Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio
| | - William D. Hopkins
- Division of Developmental and Cognitive Neuroscience, Yerkes National Primate Research Center, Atlanta, Georgia
| | | | - Joseph M. Erwin
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia
| | - Daniel P. Perl
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Elliott J. Mufson
- Departments of Neurobiology and Neurology, Barrow Neurological Institute, Phoenix, Arizona
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York,New York Consortium in Evolutionary Primatology, New York, New York
| | - Chet C. Sherwood
- Department of Anthropology and Center for the Advanced Study of Human Paleobiology, The George Washington University, Washington, District of Columbia
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, Ohio
| |
Collapse
|
73
|
Ramirez-Cardenas A, Nieder A. Working memory representation of empty sets in the primate parietal and prefrontal cortices. Cortex 2019; 114:102-114. [PMID: 30975433 DOI: 10.1016/j.cortex.2019.02.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 09/17/2018] [Accepted: 02/26/2019] [Indexed: 10/27/2022]
Abstract
For the brain, representing empty sets as a precursor to zero is a challenge because it requires the active coding of a quantitative category that, by definition, contains no items. Recent neurophysiological recordings show that empty sets are distinctively encoded by neurons in the primate ventral intraparietal area (VIP) and the prefrontal cortex (PFC). However, how empty sets are represented in working memory is unknown. We simultaneously recorded from VIP and PFC while rhesus monkeys performed a delayed numerosity matching task that required the maintenance of numerosities in memory for a brief period. Countable numerosities (1-4) and empty sets ('numerosity 0') were included as stimuli. Single neurons in PFC, and to a lesser extent neurons in VIP, actively encoded empty sets during the delay period. In both cortical areas, empty sets were progressively differentiated from countable numerosities with time during the ongoing trial. Moreover, the tuning of neuron populations in VIP and PFC shifted dynamically towards empty sets so that they became increasingly overrepresented in working memory. Compared to VIP, the prefrontal representation of empty sets was more stable in time and more independent of low level visual features. Moreover, PFC activity correlated better with behavioral performance in empty set trials. These findings suggest that the representation of null quantity in working memory relies more on prefrontal and less on parietal processing. Overall, our results show that empty sets are dynamically and distinctly represented in working memory.
Collapse
Affiliation(s)
| | - Andreas Nieder
- Animal Physiology, Institute of Neurobiology, University Tübingen, Germany.
| |
Collapse
|
74
|
Inagaki HK, Fontolan L, Romani S, Svoboda K. Discrete attractor dynamics underlies persistent activity in the frontal cortex. Nature 2019; 566:212-217. [PMID: 30728503 DOI: 10.1038/s41586-019-0919-7] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/07/2019] [Indexed: 12/24/2022]
Abstract
Short-term memories link events separated in time, such as past sensation and future actions. Short-term memories are correlated with slow neural dynamics, including selective persistent activity, which can be maintained over seconds. In a delayed response task that requires short-term memory, neurons in the mouse anterior lateral motor cortex (ALM) show persistent activity that instructs future actions. To determine the principles that underlie this persistent activity, here we combined intracellular and extracellular electrophysiology with optogenetic perturbations and network modelling. We show that during the delay epoch, the activity of ALM neurons moved towards discrete end points that correspond to specific movement directions. These end points were robust to transient shifts in ALM activity caused by optogenetic perturbations. Perturbations occasionally switched the population dynamics to the other end point, followed by incorrect actions. Our results show that discrete attractor dynamics underlie short-term memory related to motor planning.
Collapse
|
75
|
O'Reilly RC, Russin J, Herd SA. Computational models of motivated frontal function. HANDBOOK OF CLINICAL NEUROLOGY 2019; 163:317-332. [PMID: 31590738 DOI: 10.1016/b978-0-12-804281-6.00017-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Computational models of frontal function have made important contributions to understanding how the frontal lobes support a wide range of important functions, in their interactions with other brain areas including, critically, the basal ganglia (BG). We focus here on the specific case of how different frontal areas support goal-directed, motivated decision-making, by representing three essential types of information: possible plans of action (in more dorsal and lateral frontal areas), affectively significant outcomes of those action plans (in ventral, medial frontal areas including the orbital frontal cortex), and the overall utility of a given plan compared to other possible courses of action (in anterior cingulate cortex). Computational models of goal-directed action selection at multiple different levels of analysis provide insight into the nature of learning and processing in these areas and the relative contributions of the frontal cortex versus the BG. The most common neurologic disorders implicate these areas, and understanding their precise function and modes of dysfunction can contribute to the new field of computational psychiatry, within the broader field of computational neuroscience.
Collapse
Affiliation(s)
- Randall C O'Reilly
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States.
| | - Jacob Russin
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Seth A Herd
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
76
|
Wong C, Lomber SG. Stable Delay Period Representations in the Posterior Parietal Cortex Facilitate Working-Memory-Guided Obstacle Negotiation. Curr Biol 2018; 29:70-80.e3. [PMID: 30581021 DOI: 10.1016/j.cub.2018.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/15/2018] [Accepted: 11/06/2018] [Indexed: 11/17/2022]
Abstract
In complex environments, information about surrounding obstacles is stored in working memory (WM) and used to coordinate appropriate movements for avoidance. In quadrupeds, this WM system is particularly important for guiding hindleg stepping, as an animal can no longer see the obstacle underneath the body following foreleg clearance. Such obstacle WM involves the posterior parietal cortex (PPC), as deactivation of area 5 incurs WM deficits, precluding successful avoidance. However, the neural underpinnings of this involvement remain undefined. To reveal the neural substrates of this behavior, microelectrode arrays were implanted to record neuronal activity in area 5 during an obstacle WM task in cats. Early in the WM delay, neurons were modulated generally by obstacle presence or more specifically in relation to foreleg step height. Thus, information about the obstacle or about foreleg clearance can be retained in WM. In a separate set of neurons, this information was recalled later in the delay in order to plan subsequent hindleg stepping. Such early and late delay period signals were temporally bridged by neurons exhibiting obstacle-modulated activity sustained throughout the delay. These neurons represented a specialized subset of all recorded neurons, which maintained stable information coding across the WM delay. Ultimately, these various patterns of task-related modulation enable stable representations of obstacle-related information within the PPC to support successful WM-guided obstacle negotiation in the cat.
Collapse
Affiliation(s)
- Carmen Wong
- Graduate Program in Neuroscience, The University of Western Ontario, London, ON N6A 5K8, Canada
| | - Stephen G Lomber
- Department of Physiology and Pharmacology, The University of Western Ontario, London, ON N6A 5K8, Canada; Department of Psychology, The University of Western Ontario, London, ON N6A 5K8, Canada; Brain and Mind Institute, The University of Western Ontario, London, ON N6A 5K8, Canada.
| |
Collapse
|
77
|
Selective Loss of Thin Spines in Area 7a of the Primate Intraparietal Sulcus Predicts Age-Related Working Memory Impairment. J Neurosci 2018; 38:10467-10478. [PMID: 30355632 DOI: 10.1523/jneurosci.1234-18.2018] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/16/2018] [Accepted: 10/17/2018] [Indexed: 11/21/2022] Open
Abstract
Brodmann area 7a of the parietal cortex is active during working memory tasks in humans and nonhuman primates, but the composition and density of dendritic spines in area 7a and their relevance both to working memory and cognitive aging remain unexplored. Aged monkeys have impaired working memory, and we have previously shown that this age-induced cognitive impairment is partially mediated by a loss of thin spines in prefrontal cortex area 46, a critical area for working memory. Because area 46 is reciprocally connected with area 7a of the parietal cortex and 7a mediates visual attention integration, we hypothesized that thin spine density in area 7a would correlate with working memory performance as well. To investigate the synaptic profile of area 7a and its relevance to working memory and cognitive aging, we investigated differences in spine type and density in layer III pyramidal cells of area 7a in young and aged, male and female rhesus macaques (Macaca mulatta) that were cognitively assessed using the delayed response test of working memory. Area 7a shows age-related loss of thin spines, and thin spine density positively correlates with delayed response performance in aged monkeys. In contrast, these cells show no age-related changes in dendritic length or branching. These changes mirror age-related changes in area 46 but are distinct from other neocortical regions, such as V1. These findings support our hypothesis that cognitive aging is driven primarily by synaptic changes, and more specifically by changes in thin spines, in key association areas.SIGNIFICANCE STATEMENT This study advances our understanding of cognitive aging by demonstrating the relevance of area 7a thin spines to working memory performance. This study is the first to look at cognitive aging in the intraparietal sulcus, and also the first to report spine or dendritic measures for area 7a in either young adult or aged nonhuman primates. These results contribute to the hypothesis that thin spines support working memory performance and confirm our prior observation that cognitive aging is driven by synaptic changes rather than changes in dendritic morphology or neuron death. Importantly, these data show that age-related working memory changes are not limited to disruptions of the prefrontal cortex but also include an association region heavily interconnected with prefrontal cortex.
Collapse
|
78
|
Datta D, Arnsten AF. Unique Molecular Regulation of Higher-Order Prefrontal Cortical Circuits: Insights into the Neurobiology of Schizophrenia. ACS Chem Neurosci 2018; 9:2127-2145. [PMID: 29470055 DOI: 10.1021/acschemneuro.7b00505] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia is associated with core deficits in cognitive abilities and impaired functioning of the newly evolved prefrontal association cortex (PFC). In particular, neuropathological studies of schizophrenia have found selective atrophy of the pyramidal cell microcircuits in deep layer III of the dorsolateral PFC (dlPFC) and compensatory weakening of related GABAergic interneurons. Studies in monkeys have shown that recurrent excitation in these layer III microcircuits generates the precisely patterned, persistent firing needed for working memory and abstract thought. Importantly, excitatory synapses on layer III spines are uniquely regulated at the molecular level in ways that may render them particularly vulnerable to genetic and/or environmental insults. Glutamate actions are remarkably dependent on cholinergic stimulation, and there are inherent mechanisms to rapidly weaken connectivity, e.g. during stress. In particular, feedforward cyclic adenosine monophosphate (cAMP)-calcium signaling rapidly weakens network connectivity and neuronal firing by opening nearby potassium channels. Many mechanisms that regulate this process are altered in schizophrenia and/or associated with genetic insults. Current data suggest that there are "dual hits" to layer III dlPFC circuits: initial insults to connectivity during the perinatal period due to genetic errors and/or inflammatory insults that predispose the cortex to atrophy, followed by a second wave of cortical loss during adolescence, e.g. driven by stress, at the descent into illness. The unique molecular regulation of layer III circuits may provide a nexus where inflammation disinhibits the neuronal response to stress. Understanding these mechanisms may help to illuminate dlPFC susceptibility in schizophrenia and provide insights for novel therapeutic targets.
Collapse
Affiliation(s)
- Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| | - Amy F.T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut 06510, United States
| |
Collapse
|
79
|
Abstract
For over 45 years, neuroscientists have conducted experiments aimed at understanding the neural basis of working memory. Early results examining individual neurons highlighted that information is stored in working memory in persistent sustained activity where neurons maintained elevated firing rates over extended periods of time. However, more recent work has emphasized that information is often stored in working memory in dynamic population codes, where different neurons contain information at different periods in time. In this paper, I review findings that show that both sustained activity as well as dynamic codes are present in the prefrontal cortex and other regions during memory delay periods. I also review work showing that dynamic codes are capable of supporting working memory and that such dynamic codes could easily be "readout" by downstream regions. Finally, I discuss why dynamic codes could be useful for enabling animals to solve tasks that involve working memory. Although additional work is still needed to know definitively whether dynamic coding is critical for working memory, the findings reviewed here give insight into how different codes could contribute to working memory, which should be useful for guiding future research.
Collapse
Affiliation(s)
- Ethan M Meyers
- Center for Brains, Minds and Machines, Massachusetts Institute of Technology, Cambridge, Massachusetts, and School of Cognitive Science, Hampshire College , Amherst, Massachusetts
| |
Collapse
|
80
|
Encoding of Serial Order in Working Memory: Neuronal Activity in Motor, Premotor, and Prefrontal Cortex during a Memory Scanning Task. J Neurosci 2018; 38:4912-4933. [PMID: 29712786 DOI: 10.1523/jneurosci.3294-17.2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/29/2018] [Accepted: 04/23/2018] [Indexed: 11/21/2022] Open
Abstract
We have adapted Sternberg's context-recall task to investigate the neural mechanisms of encoding serial order information in working memory, in 2 male rhesus monkeys. We recorded from primary motor, premotor, and dorsolateral prefrontal cortex while the monkeys performed the task. In each cortical area, most neurons displayed marked modulation of activity during the list presentation period of the task, whereas the serial order of the stimuli needed to be encoded in working memory. The activity of many neurons changed in a consistent manner over the course of the list presentation period, without regard to the location of the stimuli presented. Remarkably, these neurons encoded serial position information in a relative (rather than absolute) manner across different list lengths. In addition, many neurons showed activity related to both location and serial position, in the form of an interaction effect. Surprisingly, the activity of these neurons was often modulated by the location of stimuli presented before the epoch in which the activity changes occurred. In motor and premotor areas, a large proportion of neurons with list presentation activity also showed direction-related activity during the response phase, whereas in prefrontal cortex most cells showed only list presentation effects. These results show that many neurons had a heterogeneous functionality by representing distinct task variables at different periods of the task. Finally, potential confounds could not account for the effects observed. For these reasons, we conclude that these neurons were indeed participating in sequence encoding in working memory.SIGNIFICANCE STATEMENT Traditionally, primary motor, premotor, and prefrontal areas have been considered to be mainly engaged in motor output, visuomotor transformation, and higher cognitive functions, respectively. Here we show that neurons in all three cortical regions participate in the encoding of a sequence of spatial stimuli in working memory. Furthermore, a central question in cognitive neuroscience has been the manner in which the position of an item within a sequence is encoded in the brain. Our findings provide direct neurophysiological support for a specific hypothesis from cognitive psychology: that of relative coding of serial order.
Collapse
|
81
|
Inagaki HK, Inagaki M, Romani S, Svoboda K. Low-Dimensional and Monotonic Preparatory Activity in Mouse Anterior Lateral Motor Cortex. J Neurosci 2018; 38:4163-4185. [PMID: 29593054 PMCID: PMC6596025 DOI: 10.1523/jneurosci.3152-17.2018] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/21/2018] [Accepted: 03/14/2018] [Indexed: 11/21/2022] Open
Abstract
Neurons in multiple brain regions fire trains of action potentials anticipating specific movements, but this "preparatory activity" has not been systematically compared across behavioral tasks. We compared preparatory activity in auditory and tactile delayed-response tasks in male mice. Skilled, directional licking was the motor output. The anterior lateral motor cortex (ALM) is necessary for motor planning in both tasks. Multiple features of ALM preparatory activity during the delay epoch were similar across tasks. First, most neurons showed direction-selective activity and spatially intermingled neurons were selective for either movement direction. Second, many cells showed mixed coding of sensory stimulus and licking direction, with a bias toward licking direction. Third, delay activity was monotonic and low-dimensional. Fourth, pairs of neurons with similar direction selectivity showed high spike-count correlations. Our study forms the foundation to analyze the neural circuit mechanisms underlying preparatory activity in a genetically tractable model organism.SIGNIFICANCE STATEMENT Short-term memories link events separated in time. Neurons in the frontal cortex fire trains of action potentials anticipating specific movements, often seconds before the movement. This "preparatory activity" has been observed in multiple brain regions, but has rarely been compared systematically across behavioral tasks in the same brain region. To identify common features of preparatory activity, we developed and compared preparatory activity in auditory and tactile delayed-response tasks in mice. The same cortical area is necessary for both tasks. Multiple features of preparatory activity, measured with high-density silicon probes, were similar across tasks. We find that preparatory activity is low-dimensional and monotonic. Our study forms a foundation for analyzing the circuit mechanisms underlying preparatory activity in a genetically tractable model organism.
Collapse
Affiliation(s)
- Hidehiko K Inagaki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| | - Miho Inagaki
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| | - Sandro Romani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| | - Karel Svoboda
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia 20147
| |
Collapse
|
82
|
Abstract
Working memory is capacity-limited. In everyday life we rarely notice this limitation, in part because we develop behavioral strategies that help mitigate the capacity limitation. How behavioral strategies are mediated at the neural level is unclear, but a likely locus is lateral prefrontal cortex (LPFC). Neurons in LPFC play a prominent role in working memory and have been shown to encode behavioral strategies. To examine the role of LPFC in overcoming working-memory limitations, we recorded the activity of LPFC neurons in animals trained to perform a serial self-ordered search task. This task measured the ability to prospectively plan the selection of unchosen spatial search targets while retrospectively tracking which targets were previously visited. We found that individual LPFC neurons encoded the spatial location of the current search target but also encoded the spatial location of targets up to several steps away in the search sequence. Neurons were more likely to encode prospective than retrospective targets. When subjects used a behavioral strategy of stereotyped target selection, mitigating the working-memory requirements of the task, not only did the number of selection errors decrease but there was a significant reduction in the strength of spatial encoding in LFPC. These results show that LPFC neurons have spatiotemporal mnemonic fields, in that their firing rates are modulated both by the spatial location of future selection behaviors and the temporal organization of that behavior. Furthermore, the strength of this tuning can be dynamically modulated by the demands of the task.
Collapse
|
83
|
Kupferschmidt DA, Gordon JA. The dynamics of disordered dialogue: Prefrontal, hippocampal and thalamic miscommunication underlying working memory deficits in schizophrenia. Brain Neurosci Adv 2018; 2. [PMID: 31058245 PMCID: PMC6497416 DOI: 10.1177/2398212818771821] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The prefrontal cortex is central to the orchestrated brain network communication that gives rise to working memory and other cognitive functions. Accordingly, working memory deficits in schizophrenia are increasingly thought to derive from prefrontal cortex dysfunction coupled with broader network disconnectivity. How the prefrontal cortex dynamically communicates with its distal network partners to support working memory and how this communication is disrupted in individuals with schizophrenia remain unclear. Here we review recent evidence that prefrontal cortex communication with the hippocampus and thalamus is essential for normal spatial working memory, and that miscommunication between these structures underlies spatial working memory deficits in schizophrenia. We focus on studies using normal rodents and rodent models designed to probe schizophrenia-related pathology to assess the dynamics of neural interaction between these brain regions. We also highlight recent preclinical work parsing roles for long-range prefrontal cortex connections with the hippocampus and thalamus in normal and disordered spatial working memory. Finally, we discuss how emerging rodent endophenotypes of hippocampal- and thalamo-prefrontal cortex dynamics in spatial working memory could translate into richer understanding of the neural bases of cognitive function and dysfunction in humans.
Collapse
Affiliation(s)
- David A Kupferschmidt
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA
| | - Joshua A Gordon
- Integrative Neuroscience Section, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA.,National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
84
|
Persuh M, LaRock E, Berger J. Working Memory and Consciousness: The Current State of Play. Front Hum Neurosci 2018; 12:78. [PMID: 29551967 PMCID: PMC5840147 DOI: 10.3389/fnhum.2018.00078] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Accepted: 02/12/2018] [Indexed: 12/24/2022] Open
Abstract
Working memory (WM), an important posit in cognitive science, allows one to temporarily store and manipulate information in the service of ongoing tasks. WM has been traditionally classified as an explicit memory system-that is, as operating on and maintaining only consciously perceived information. Recently, however, several studies have questioned this assumption, purporting to provide evidence for unconscious WM. In this article, we focus on visual working memory (VWM) and critically examine these studies as well as studies of unconscious perception that seem to provide indirect evidence for unconscious WM. Our analysis indicates that current evidence does not support an unconscious WM store, though we offer independent reasons to think that WM may operate on unconsciously perceived information.
Collapse
Affiliation(s)
- Marjan Persuh
- Department of Social Sciences, Human Services and Criminal Justice, Borough of Manhattan Community College, City University of New York, New York, NY, United States
| | - Eric LaRock
- Department of Philosophy, 751 Mathematics and Science Center, Oakland University, Rochester, MI, United States
| | - Jacob Berger
- Department of English and Philosophy, Idaho State University, Pocatello, ID, United States
| |
Collapse
|
85
|
Rossi-Pool R, Vergara J, Romo R. The Memory Map of Visual Space. Trends Neurosci 2018; 41:117-120. [DOI: 10.1016/j.tins.2017.12.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 12/11/2017] [Indexed: 10/17/2022]
|
86
|
Reboreda A, Theissen FM, Valero-Aracama MJ, Arboit A, Corbu MA, Yoshida M. Do TRPC channels support working memory? Comparing modulations of TRPC channels and working memory through G-protein coupled receptors and neuromodulators. Behav Brain Res 2018; 354:64-83. [PMID: 29501506 DOI: 10.1016/j.bbr.2018.02.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 02/27/2018] [Accepted: 02/27/2018] [Indexed: 12/11/2022]
Abstract
Working memory is a crucial ability we use in daily life. However, the cellular mechanisms supporting working memory still remain largely unclear. A key component of working memory is persistent neural firing which is believed to serve short-term (hundreds of milliseconds up to tens of seconds) maintenance of necessary information. In this review, we will focus on the role of transient receptor potential canonical (TRPC) channels as a mechanism underlying persistent firing. Many years of in vitro work have been suggesting a crucial role of TRPC channels in working memory and temporal association tasks. If TRPC channels are indeed a central mechanism for working memory, manipulations which impair or facilitate working memory should have a similar effect on TRPC channel modulation. However, modulations of working memory and TRPC channels were never systematically compared, and it remains unanswered whether TRPC channels indeed contribute to working memory in vivo or not. In this article, we review the effects of G-protein coupled receptors (GPCR) and neuromodulators, including acetylcholine, noradrenalin, serotonin and dopamine, on working memory and TRPC channels. Based on comparisons, we argue that GPCR and downstream signaling pathways that activate TRPC, generally support working memory, while those that suppress TRPC channels impair it. However, depending on the channel types, areas, and systems tested, this is not the case in all studies. Further work to clarify involvement of specific TRPC channels in working memory tasks and how they are affected by neuromodulators is still necessary in the future.
Collapse
Affiliation(s)
- Antonio Reboreda
- Leibniz Institute for Neurobiology (LIN) Magdeburg, Brenneckestraße 6, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany.
| | - Frederik M Theissen
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany
| | - Maria J Valero-Aracama
- Institute of Physiology and Pathophysiology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Universitätsstraße 17, 91054 Erlangen, Germany
| | - Alberto Arboit
- German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany
| | - Mihaela A Corbu
- Ruhr University Bochum (RUB), Universitätsstraße 150, 44801, Bochum, Germany
| | - Motoharu Yoshida
- Leibniz Institute for Neurobiology (LIN) Magdeburg, Brenneckestraße 6, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE) Magdeburg, Leipziger Str. 44/Haus 64, 39120, Magdeburg, Germany; Center for Behavioral Brain Sciences, 39106, Magdeburg, Germany.
| |
Collapse
|
87
|
Olsen MR. A case for methodological overhaul and increased study of executive function in the domestic dog (Canis lupus familiaris). Anim Cogn 2018; 21:175-195. [PMID: 29380086 DOI: 10.1007/s10071-018-1162-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 01/14/2018] [Accepted: 01/19/2018] [Indexed: 12/13/2022]
Abstract
Executive function (EF) allows for self-regulation of behavior including maintaining focus in the face of distraction, inhibiting behavior that is suboptimal or inappropriate in a given context, and updating the contents of working memory. While EF has been studied extensively in humans, it has only recently become a topic of research in the domestic dog. In this paper, I argue for increased study of dog EF by explaining how it might influence the owner-dog bond, human safety, and dog welfare, as well as reviewing the current literature dedicated to EF in dogs. In "EF and its Application to "Man's Best Friend" section, I briefly describe EF and how it is relevant to dog behavior. In "Previous investigations into EF in dogs" section, I provide a review of the literature pertaining to EF in dogs, specifically tasks used to assess abilities like inhibitory control, cognitive flexibility, and working memory capacity. In "Insights and limitations of previous studies" section, I consider limitations of existing studies that must be addressed in future research. Finally, in "Future directions" section, I propose future directions for meaningful research on EF in dogs.
Collapse
|
88
|
Watanabe K, Funahashi S. Toward an understanding of the neural mechanisms underlying dual-task performance: Contribution of comparative approaches using animal models. Neurosci Biobehav Rev 2018; 84:12-28. [DOI: 10.1016/j.neubiorev.2017.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 10/19/2022]
|
89
|
Abstract
Huntington's disease (HD) presents clinically with a triad of motor, cognitive, and psychiatric symptoms. Cognitive symptoms often occur early within the disease progression, prior to the onset of motor symptoms, and they are significantly burdensome to people who are affected by HD. In order to determine the suitability of mouse models of HD in recapitulating the human condition, these models must be behaviorally tested and characterized. Operant behavioral testing offers an automated and objective method of behaviorally profiling motor, cognitive, and psychiatric dysfunction in HD mice. Furthermore, operant testing can also be employed to determine any behavioral changes observed after any associated interventions or experimental therapeutics. We here present an overview of the most commonly used operant behavioral tests to dissociate motor, cognitive, and psychiatric aspects of mouse models of HD.
Collapse
|
90
|
|
91
|
Svoboda K, Li N. Neural mechanisms of movement planning: motor cortex and beyond. Curr Opin Neurobiol 2017; 49:33-41. [PMID: 29172091 DOI: 10.1016/j.conb.2017.10.023] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/22/2017] [Accepted: 10/29/2017] [Indexed: 11/29/2022]
Abstract
Neurons in motor cortex and connected brain regions fire in anticipation of specific movements, long before movement occurs. This neural activity reflects internal processes by which the brain plans and executes volitional movements. The study of motor planning offers an opportunity to understand how the structure and dynamics of neural circuits support persistent internal states and how these states influence behavior. Recent advances in large-scale neural recordings are beginning to decipher the relationship of the dynamics of populations of neurons during motor planning and movements. New behavioral tasks in rodents, together with quantified perturbations, link dynamics in specific nodes of neural circuits to behavior. These studies reveal a neural network distributed across multiple brain regions that collectively supports motor planning. We review recent advances and highlight areas where further work is needed to achieve a deeper understanding of the mechanisms underlying motor planning and related cognitive processes.
Collapse
Affiliation(s)
- Karel Svoboda
- Janelia Research Campus, HHMI, 19700 Helix Drive, Ashburn, VA 20147, United States.
| | - Nuo Li
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States.
| |
Collapse
|
92
|
Liu Q, Ulloa A, Horwitz B. Using a Large-scale Neural Model of Cortical Object Processing to Investigate the Neural Substrate for Managing Multiple Items in Short-term Memory. J Cogn Neurosci 2017; 29:1860-1876. [PMID: 28686137 PMCID: PMC6402487 DOI: 10.1162/jocn_a_01163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Many cognitive and computational models have been proposed to help understand working memory. In this article, we present a simulation study of cortical processing of visual objects during several working memory tasks using an extended version of a previously constructed large-scale neural model [Tagamets, M. A., & Horwitz, B. Integrating electrophysiological and anatomical experimental data to create a large-scale model that simulates a delayed match-to-sample human brain imaging study. Cerebral Cortex, 8, 310-320, 1998]. The original model consisted of arrays of Wilson-Cowan type of neuronal populations representing primary and secondary visual cortices, inferotemporal (IT) cortex, and pFC. We added a module representing entorhinal cortex, which functions as a gating module. We successfully implemented multiple working memory tasks using the same model and produced neuronal patterns in visual cortex, IT cortex, and pFC that match experimental findings. These working memory tasks can include distractor stimuli or can require that multiple items be retained in mind during a delay period (Sternberg's task). Besides electrophysiology data and behavioral data, we also generated fMRI BOLD time series from our simulation. Our results support the involvement of IT cortex in working memory maintenance and suggest the cortical architecture underlying the neural mechanisms mediating particular working memory tasks. Furthermore, we noticed that, during simulations of memorizing a list of objects, the first and last items in the sequence were recalled best, which may implicate the neural mechanism behind this important psychological effect (i.e., the primacy and recency effect).
Collapse
Affiliation(s)
- Qin Liu
- Brain Imaging & Modeling Section, National Institute on Deafness and Other Communications Disorders, National Institutes of Health, Bethesda, MD USA
- Physics Department, University of Maryland, College Park, MD USA
| | - Antonio Ulloa
- Brain Imaging & Modeling Section, National Institute on Deafness and Other Communications Disorders, National Institutes of Health, Bethesda, MD USA
- Neural Bytes LLC, Washington, DC USA
| | - Barry Horwitz
- Brain Imaging & Modeling Section, National Institute on Deafness and Other Communications Disorders, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
93
|
Rozzi S, Fogassi L. Neural Coding for Action Execution and Action Observation in the Prefrontal Cortex and Its Role in the Organization of Socially Driven Behavior. Front Neurosci 2017; 11:492. [PMID: 28936159 PMCID: PMC5594103 DOI: 10.3389/fnins.2017.00492] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 08/22/2017] [Indexed: 11/13/2022] Open
Abstract
The lateral prefrontal cortex (LPF) plays a fundamental role in planning, organizing, and optimizing behavioral performance. Neuroanatomical and neurophysiological studies have suggested that in this cortical sector, information processing becomes more abstract when moving from caudal to rostral and that such processing involves parietal and premotor areas. We review studies that have shown that the LPF, in addition to its involvement in implementing rules and setting behavioral goals, activates during the execution of forelimb movements even in the absence of a learned relationship between an instruction and its associated motor output. Thus, we propose that the prefrontal cortex is involved in exploiting contextual information for planning and guiding behavioral responses, also in natural situations. Among contextual cues, those provided by others' actions are particularly relevant for social interactions. Functional studies of macaques have demonstrated that the LPF is activated by the observation of biological stimuli, in particular those related to goal-directed actions. We review these studies and discuss the idea that the prefrontal cortex codes high-order representations of observed actions rather than simple visual descriptions of them. Based on evidence that the same sector of the LPF contains both neurons coding own action goals and neurons coding others' goals, we propose that this sector is involved in the selection of own actions appropriate for reacting in a particular social context and for the creation of new action sequences in imitative learning.
Collapse
Affiliation(s)
- Stefano Rozzi
- Department of Medicine and Surgery, Unit of Neuroscience, University of ParmaParma, Italy
| | - Leonardo Fogassi
- Department of Medicine and Surgery, Unit of Neuroscience, University of ParmaParma, Italy
| |
Collapse
|
94
|
Kitamura T. Driving and regulating temporal association learning coordinated by entorhinal-hippocampal network. Neurosci Res 2017; 121:1-6. [DOI: 10.1016/j.neures.2017.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 03/16/2017] [Accepted: 04/12/2017] [Indexed: 10/19/2022]
|
95
|
Stable and Dynamic Coding for Working Memory in Primate Prefrontal Cortex. J Neurosci 2017; 37:6503-6516. [PMID: 28559375 PMCID: PMC5511881 DOI: 10.1523/jneurosci.3364-16.2017] [Citation(s) in RCA: 136] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/09/2017] [Accepted: 04/13/2017] [Indexed: 12/22/2022] Open
Abstract
Working memory (WM) provides the stability necessary for high-level cognition. Influential theories typically assume that WM depends on the persistence of stable neural representations, yet increasing evidence suggests that neural states are highly dynamic. Here we apply multivariate pattern analysis to explore the population dynamics in primate lateral prefrontal cortex (PFC) during three variants of the classic memory-guided saccade task (recorded in four animals). We observed the hallmark of dynamic population coding across key phases of a working memory task: sensory processing, memory encoding, and response execution. Throughout both these dynamic epochs and the memory delay period, however, the neural representational geometry remained stable. We identified two characteristics that jointly explain these dynamics: (1) time-varying changes in the subpopulation of neurons coding for task variables (i.e., dynamic subpopulations); and (2) time-varying selectivity within neurons (i.e., dynamic selectivity). These results indicate that even in a very simple memory-guided saccade task, PFC neurons display complex dynamics to support stable representations for WM. SIGNIFICANCE STATEMENT Flexible, intelligent behavior requires the maintenance and manipulation of incoming information over various time spans. For short time spans, this faculty is labeled “working memory” (WM). Dominant models propose that WM is maintained by stable, persistent patterns of neural activity in prefrontal cortex (PFC). However, recent evidence suggests that neural activity in PFC is dynamic, even while the contents of WM remain stably represented. Here, we explored the neural dynamics in PFC during a memory-guided saccade task. We found evidence for dynamic population coding in various task epochs, despite striking stability in the neural representational geometry of WM. Furthermore, we identified two distinct cellular mechanisms that contribute to dynamic population coding.
Collapse
|
96
|
Nomura T, Izawa EI. Avian brains: Insights from development, behaviors and evolution. Dev Growth Differ 2017; 59:244-257. [DOI: 10.1111/dgd.12362] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 12/29/2022]
Affiliation(s)
- Tadashi Nomura
- Developmental Neurobiology; Kyoto Prefectural University of Medicine; INAMORI Memorial Building 1-5 Shimogamo-Hangi cho Sakyoku Kyoto 606-0823 Japan
| | - Ei-Ichi Izawa
- Department of Psychology; Keio University; 2-15-45 Mita Minatoku Tokyo 108-8345 Japan
| |
Collapse
|
97
|
Leavitt ML, Mendoza-Halliday D, Martinez-Trujillo JC. Sustained Activity Encoding Working Memories: Not Fully Distributed. Trends Neurosci 2017; 40:328-346. [PMID: 28515011 DOI: 10.1016/j.tins.2017.04.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/14/2017] [Accepted: 04/18/2017] [Indexed: 10/19/2022]
Abstract
Working memory (WM) is the ability to remember and manipulate information for short time intervals. Recent studies have proposed that sustained firing encoding the contents of WM is ubiquitous across cortical neurons. We review here the collective evidence supporting this claim. A variety of studies report that neurons in prefrontal, parietal, and inferotemporal association cortices show robust sustained activity encoding the location and features of memoranda during WM tasks. However, reports of WM-related sustained activity in early sensory areas are rare, and typically lack stimulus specificity. We propose that robust sustained activity that can support WM coding arises as a property of association cortices downstream from the early stages of sensory processing.
Collapse
Affiliation(s)
- Matthew L Leavitt
- Department of Physiology, McGill University, Montreal, QC H3G 1Y6, Canada.
| | - Diego Mendoza-Halliday
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julio C Martinez-Trujillo
- Robarts Research Institute, Brain and Mind Institute, Department of Psychiatry, and Department of Physiology and Pharmacology, University of Western Ontario, London, ON N6A 5B7, Canada.
| |
Collapse
|
98
|
Muhle-Karbe PS, Duncan J, De Baene W, Mitchell DJ, Brass M. Neural Coding for Instruction-Based Task Sets in Human Frontoparietal and Visual Cortex. Cereb Cortex 2017; 27:1891-1905. [PMID: 26908634 DOI: 10.1093/cercor/bhw032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Task preparation has traditionally been thought to rely upon persistent representations of instructions that permit their execution after delays. Accumulating evidence suggests, however, that accurate retention of task knowledge can be insufficient for successful performance. Here, we hypothesized that instructed facts would be organized into a task set; a temporary coding scheme that proactively tunes sensorimotor pathways according to instructions to enable highly efficient "reflex-like" performance. We devised a paradigm requiring either implementation or memorization of novel stimulus-response mapping instructions, and used multivoxel pattern analysis of neuroimaging data to compare neural coding of instructions during the pretarget phase. Although participants could retain instructions under both demands, we observed striking differences in their representation. To-be-memorized instructions could only be decoded from mid-occipital and posterior parietal cortices, consistent with previous work on visual short-term memory storage. In contrast, to-be-implemented instructions could also be decoded from frontoparietal "multiple-demand" regions, and dedicated visual areas, implicated in processing instructed stimuli. Neural specificity in the latter moreover correlated with performance speed only when instructions were prepared, likely reflecting the preconfiguration of instructed decision circuits. Together, these data illuminate how the brain proactively optimizes performance, and help dissociate neural mechanisms supporting task control and short-term memory storage.
Collapse
Affiliation(s)
- Paul S Muhle-Karbe
- Department of Experimental Psychology, Ghent University, Gent, Belgium.,Center for Cognitive Neuroscience, Duke University, Durham, USA
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, Cambridge University, Cambridge, UK
| | - Wouter De Baene
- Department of Experimental Psychology, Ghent University, Gent, Belgium.,Department of Cognitive Neuropsychology, Tilburg University, Tilburg, The Netherlands
| | - Daniel J Mitchell
- MRC Cognition and Brain Sciences Unit, Cambridge University, Cambridge, UK
| | - Marcel Brass
- Department of Experimental Psychology, Ghent University, Gent, Belgium
| |
Collapse
|
99
|
Working Memory in the Prefrontal Cortex. Brain Sci 2017; 7:brainsci7050049. [PMID: 28448453 PMCID: PMC5447931 DOI: 10.3390/brainsci7050049] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/22/2017] [Accepted: 04/25/2017] [Indexed: 11/17/2022] Open
Abstract
The prefrontal cortex participates in a variety of higher cognitive functions. The concept of working memory is now widely used to understand prefrontal functions. Neurophysiological studies have revealed that stimulus-selective delay-period activity is a neural correlate of the mechanism for temporarily maintaining information in working memory processes. The central executive, which is the master component of Baddeley's working memory model and is thought to be a function of the prefrontal cortex, controls the performance of other components by allocating a limited capacity of memory resource to each component based on its demand. Recent neurophysiological studies have attempted to reveal how prefrontal neurons achieve the functions of the central executive. For example, the neural mechanisms of memory control have been examined using the interference effect in a dual-task paradigm. It has been shown that this interference effect is caused by the competitive and overloaded recruitment of overlapping neural populations in the prefrontal cortex by two concurrent tasks and that the information-processing capacity of a single neuron is limited to a fixed level, can be flexibly allocated or reallocated between two concurrent tasks based on their needs, and enhances behavioral performance when its allocation to one task is increased. Further, a metamemory task requiring spatial information has been used to understand the neural mechanism for monitoring its own operations, and it has been shown that monitoring the quality of spatial information represented by prefrontal activity is an important factor in the subject's choice and that the strength of spatially selective delay-period activity reflects confidence in decision-making. Although further studies are needed to elucidate how the prefrontal cortex controls memory resource and supervises other systems, some important mechanisms related to the central executive have been identified.
Collapse
|
100
|
Nieder A. Magnitude Codes for Cross-Modal Working Memory in the Primate Frontal Association Cortex. Front Neurosci 2017; 11:202. [PMID: 28439225 PMCID: PMC5383665 DOI: 10.3389/fnins.2017.00202] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 03/24/2017] [Indexed: 11/13/2022] Open
Abstract
Quantitative features of stimuli may be ordered along a magnitude continuum, or line. Magnitude refers to parameters of different types of stimulus properties. For instance, the frequency of a sound relates to sensory and continuous stimulus properties, whereas the number of items in a set is an abstract and discrete property. In addition, within a stimulus property, magnitudes need to be processed not only in one modality, but across multiple modalities. In the sensory domain, for example, magnitude applies to both to the frequency of auditory sounds and tactile vibrations. Similarly, both the number of visual items and acoustic events constitute numerical quantity, or numerosity. To support goal-directed behavior and executive functions across time, magnitudes need to be held in working memory, the ability to briefly retain and manipulate information in mind. How different types of magnitudes across multiple modalities are represented in working memory by single neurons has only recently been explored in primates. These studies show that neurons in the frontal lobe can encode the same magnitude type across sensory modalities. However, while multimodal sensory magnitude in relative comparison tasks is represented by monotonically increasing or decreasing response functions ("summation code"), multimodal numerical quantity in absolute matching tasks is encoded by neurons tuned to preferred numerosities ("labeled-line code"). These findings indicate that most likely there is not a single type of cross-modal working-memory code for magnitudes, but rather a flexible code that depends on the stimulus dimension as well as on the task requirements.
Collapse
Affiliation(s)
- Andreas Nieder
- Animal Physiology Unit, Institute of Neurobiology, University of TübingenTübingen, Germany
| |
Collapse
|