51
|
Distinctive Modulation of Dopamine Release in the Nucleus Accumbens Shell Mediated by Dopamine and Acetylcholine Receptors. J Neurosci 2017; 37:11166-11180. [PMID: 29030431 DOI: 10.1523/jneurosci.0596-17.2017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 01/12/2023] Open
Abstract
Nucleus accumbens (NAc) shell shows unique dopamine (DA) signals in vivo and plays a unique role in DA-dependent behaviors such as reward-motivated learning and the response to drugs of abuse. A disynaptic mechanism for DA release was reported and shown to require synchronized firing of cholinergic interneurons (CINs) and activation of nicotinic acetylcholine (ACh) receptors (nAChRs) in DA neuron (DAN) axons. The properties of this disynaptic mechanism of DA transmission are not well understood in the NAc shell. In this study, in vitro fast-scan cyclic voltammetry was used to examine the modulation of DA transmission evoked by CINs firing in the shell of mice and compared with other striatal regions. We found that DA signals in the shell displayed significant degree of summation in response to train stimulation of CINs, contrary to core and dorsal striatum. The summation was amplified by a D2-like receptor antagonist and experiments with mice with targeted deletion of D2 receptors to DANs or CINs revealed that D2 receptors in CINs mediate a fast inhibition observed within 100 ms of the first pulse, whereas D2 autoreceptors in DAN terminals are engaged in a slower inhibition that peaks at ∼500 ms. ACh also contributes to the use-dependent inhibition of DA release through muscarinic receptors only in the shell, where higher activity of acetylcholinesterase minimizes nAChR desensitization and promotes summation. These findings show that DA signals are modulated differentially by endogenous DA and ACh in the shell, which may underlie the unique features of shell DA signals in vivoSIGNIFICANCE STATEMENT The present study reports that dopamine (DA) release evoked by activation of cholinergic interneurons displays a high degree of summation in the shell and shows unique modulation by endogenous DA and acetylcholine. Desensitization of nicotinic receptors, which is a prevailing mechanism for use-dependent inhibition in the nucleus accumbens core and dorsal striatum, is also minimal in the shell in part due to elevated acetylcholinesterase activity. This distinctive modulation of DA transmission in the shell may have functional implications in the acquisition of reward-motivated behaviors and reward seeking.
Collapse
|
52
|
Brumberg J, Küsters S, Al-Momani E, Marotta G, Cosgrove KP, van Dyck CH, Herrmann K, Homola GA, Pezzoli G, Buck AK, Volkmann J, Samnick S, Isaias IU. Cholinergic activity and levodopa-induced dyskinesia: a multitracer molecular imaging study. Ann Clin Transl Neurol 2017; 4:632-639. [PMID: 28904985 PMCID: PMC5590520 DOI: 10.1002/acn3.438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 06/02/2017] [Accepted: 06/19/2017] [Indexed: 12/23/2022] Open
Abstract
Objective To investigate the association between levodopa‐induced dyskinesias and striatal cholinergic activity in patients with Parkinson's disease. Methods This study included 13 Parkinson's disease patients with peak‐of‐dose levodopa‐induced dyskinesias, 12 nondyskinetic patients, and 12 healthy controls. Participants underwent 5‐[123I]iodo‐3‐[2(S)‐2‐azetidinylmethoxy]pyridine single‐photon emission computed tomography, a marker of nicotinic acetylcholine receptors, [123I]N‐ω‐fluoropropyl‐2β‐carbomethoxy‐3β‐(4‐iodophenyl)nortropane single‐photon emission computed tomography, to measure dopamine reuptake transporter density and 2‐[18F]fluoro‐2‐deoxyglucose positron emission tomography to assess regional cerebral metabolic activity. Striatal binding potentials, uptake values at basal ganglia structures, and correlations with clinical variables were analyzed. Results Density of nicotinic acetylcholine receptors in the caudate nucleus of dyskinetic subjects was similar to that of healthy controls and significantly higher to that of nondyskinetic patients, in particular, contralaterally to the clinically most affected side. Interpretation Our findings support the hypothesis that the expression of dyskinesia may be related to cholinergic neuronal excitability in a dopaminergic‐depleted striatum. Cholinergic signaling would play a role in maintaining striatal dopaminergic responsiveness, possibly defining disease phenotype and progression.
Collapse
Affiliation(s)
- Joachim Brumberg
- Department of Nuclear Medicine University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany
| | - Sebastian Küsters
- Department of Neurology University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany
| | - Ehab Al-Momani
- Department of Nuclear Medicine University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany
| | - Giorgio Marotta
- Department of Nuclear Medicine Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico Milan Italy
| | - Kelly P Cosgrove
- Department of Psychiatry Yale University School of Medicine New Haven Connecticut
| | | | - Ken Herrmann
- Department of Nuclear Medicine University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany.,Department of Nuclear Medicine University Hospital Essen Essen Germany
| | - György A Homola
- Department of Neuroradiology University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany
| | | | - Andreas K Buck
- Department of Nuclear Medicine University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany
| | - Jens Volkmann
- Department of Neurology University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany
| | - Samuel Samnick
- Department of Nuclear Medicine University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany
| | - Ioannis U Isaias
- Department of Neurology University Hospital Würzburg and Julius-Maximilians-University Würzburg Germany
| |
Collapse
|
53
|
Circuit Analysis of a Drosophila Dopamine Type 2 Receptor That Supports Anesthesia-Resistant Memory. J Neurosci 2017; 36:7936-45. [PMID: 27466338 DOI: 10.1523/jneurosci.4475-15.2016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 06/07/2016] [Indexed: 01/11/2023] Open
Abstract
UNLABELLED Dopamine is central to reinforcement processing and exerts this function in species ranging from humans to fruit flies. It can do so via two different types of receptors (i.e., D1 or D2) that mediate either augmentation or abatement of cellular cAMP levels. Whereas D1 receptors are known to contribute to Drosophila aversive odor learning per se, we here show that D2 receptors are specific for support of a consolidated form of odor memory known as anesthesia-resistant memory. By means of genetic mosaicism, we localize this function to Kenyon cells, the mushroom body intrinsic neurons, as well as GABAergic APL neurons and local interneurons of the antennal lobes, suggesting that consolidated anesthesia-resistant memory requires widespread dopaminergic modulation within the olfactory circuit. Additionally, dopaminergic neurons themselves require D2R, suggesting a critical role in dopamine release via its recognized autoreceptor function. Considering the dual role of dopamine in balancing memory acquisition (proactive function of dopamine) and its "forgetting" (retroactive function of dopamine), our analysis suggests D2R as central player of either process. SIGNIFICANCE STATEMENT Dopamine provides different information; while it mediates reinforcement during the learning act (proactive function), it balances memory performance between two antithetic processes thereafter (retroactive function) (i.e., forgetting and augmentation). Such bidirectional design can also be found at level of dopamine receptors, where augmenting D1 and abating D2 receptors are engaged to balance cellular cAMP levels. Here, we report that consolidated anesthesia-resistant memory (ARM), but not other concomitant memory phases, are sensitive to bidirectional dopaminergic signals. By means of genetic mosaicism, we identified widespread dopaminergic modulation within the olfactory circuit that suggests nonredundant and reiterating functions of D2R in support of ARM. Our results oppose ARM to its concomitant memory phases that localize to mushroom bodies and propose a decentralized organization of consolidated ARM.
Collapse
|
54
|
Abstract
The loss of nigrostriatal dopamine (DA) is the primary cause of motor dysfunction in Parkinson's disease (PD), but the underlying striatal mechanisms remain unclear. In spite of abundant literature portraying structural, biochemical and plasticity changes of striatal projection neurons (SPNs), in the past there has been a data vacuum from the natural human disease and its close model in non-human primates. Recently, single-cell recordings in advanced parkinsonian primates have generated new insights into the altered function of SPNs. Currently, there are also human data that provide direct evidence of profoundly dysregulated SPN activity in PD. Here, we review primate recordings that are impacting our understanding of the striatal dysfunction after DA loss, particularly through the analysis of physiologic correlates of parkinsonian motor behaviors. In contrast to recordings in rodents, data obtained in primates and patients demonstrate similar major abnormalities of the spontaneous SPN firing in the alert parkinsonian state. Furthermore, these studies also show altered SPN responses to DA replacement in the advanced parkinsonian state. Clearly, there is yet much to learn about the striatal discharges in PD, but studies using primate models are contributing unique information to advance our understanding of pathophysiologic mechanisms.
Collapse
|
55
|
Scarduzio M, Zimmerman CN, Jaunarajs KL, Wang Q, Standaert DG, McMahon LL. Strength of cholinergic tone dictates the polarity of dopamine D2 receptor modulation of striatal cholinergic interneuron excitability in DYT1 dystonia. Exp Neurol 2017; 295:162-175. [PMID: 28587876 DOI: 10.1016/j.expneurol.2017.06.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/01/2017] [Accepted: 06/02/2017] [Indexed: 12/11/2022]
Abstract
Balance between cholinergic and dopaminergic signaling is central to striatal control of movement and cognition. In dystonia, a common disorder of movement, anticholinergic therapy is often beneficial. This observation suggests there is a pathological increase in cholinergic tone, yet direct confirmation is lacking. In DYT1, an early-onset genetic form of dystonia caused by a mutation in the protein torsinA (TorA), the suspected heightened cholinergic tone is commonly attributed to faulty dopamine D2 receptor (D2R) signaling where D2R agonists cause excitation of striatal cholinergic interneurons (ChIs), rather than the normal inhibition of firing observed in wild-type animals, an effect known as "paradoxical excitation". Here, we provide for the first time direct measurement of elevated striatal extracellular acetylcholine (ACh) in a knock-in mouse model of human DYT1 dystonia (TorA∆E/+ mice), confirming a striatal hypercholinergic state. We hypothesized that this elevated extracellular ACh might cause chronic over-activation of muscarinic acetylcholine receptors (mAChRs) and disrupt normal D2R function due to their shared coupling to Gi/o-proteins. We tested this concept in vitro first using a broad-spectrum mAChR antagonist, and then using a M2/M4 mAChR selective antagonist to specifically target mAChRs expressed by ChIs. Remarkably, we found that mAChR inhibition reverses the D2R-mediated paradoxical excitation of ChIs recorded in slices from TorA∆E/+ mice to a typical inhibitory response. Furthermore, we recapitulated the paradoxical D2R excitation of ChIs in striatal slices from wild-type mice within minutes by simply increasing cholinergic tone through pharmacological inhibition of acetylcholinesterase (AChE) or by prolonged agonist activation of mAChRs. Collectively, these results show that enhanced mAChR tone itself is sufficient to rapidly reverse the polarity of D2R regulation of ChI excitability, correcting the previous notion that the D2R mediated paradoxical ChI excitation causes the hypercholinergic state in dystonia. Further, using a combination of genetic and pharmacological approaches, we found evidence that this switch in D2R polarity results from a change in coupling from the preferred Gi/o pathway to non-canonical β-arrestin signaling. These results highlight the need to fully understand how the mutation in TorA leads to pathologically heightened extracellular ACh. Furthermore the discovery of this novel ACh-dopamine interaction and the participation of β-arrestin in regulation of cholinergic interneurons is likely important for other basal ganglia disorders characterized by perturbation of ACh-dopamine balance, including Parkinson and Huntington diseases, l-DOPA-induced dyskinesia and schizophrenia.
Collapse
Affiliation(s)
- Mariangela Scarduzio
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Chelsea N Zimmerman
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Karen L Jaunarajs
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Qin Wang
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David G Standaert
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lori L McMahon
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
56
|
Dobbs LK, Lemos JC, Alvarez VA. Restructuring of basal ganglia circuitry and associated behaviors triggered by low striatal D2 receptor expression: implications for substance use disorders. GENES BRAIN AND BEHAVIOR 2017; 16:56-70. [PMID: 27860248 PMCID: PMC5243158 DOI: 10.1111/gbb.12361] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 11/14/2016] [Accepted: 11/14/2016] [Indexed: 01/11/2023]
Abstract
Dopamine D2 receptors (D2Rs) consistently emerge as a critical substrate for the etiology of some major psychiatric disorders. Indeed, a central theory of substance use disorders (SUDs) postulates that a reduction in D2R levels in the striatum is a determining factor that confers vulnerability to abuse substances. A large number of clinical and preclinical studies strongly support this link between SUDs and D2Rs; however, identifying the mechanism by which low D2Rs facilitate SUDs has been hindered by the complexity of circuit connectivity, the heterogeneity of D2R expression and the multifaceted constellation of phenotypes observed in SUD patient. Animal models are well‐suited for understanding the mechanisms because they allow access to the circuitry and the genetic tools that enable a dissection of the D2R heterogeneity. This review discusses recent findings on the functional role of D2Rs and highlights the distinctive contributions of D2Rs expressed on specific neuronal subpopulations to the behavioral responses to stimulant drugs. A circuit‐wide restructuring of local and long‐range inhibitory connectivity within the basal ganglia is observed in response to manipulation of striatal D2R levels and is accompanied by multiple alterations in dopamine‐dependent behaviors. Collectively, these new findings provide compelling evidence for a critical role of striatal D2Rs in shaping basal ganglia connectivity; even among neurons that do not express D2Rs. These findings from animal models have deep clinical implications for SUD patients with low levels D2R availability where a similar restructuring of basal ganglia circuitry is expected to take place.
Collapse
Affiliation(s)
- L K Dobbs
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - J C Lemos
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - V A Alvarez
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
57
|
Peterson DJ, Gill WD, Dose JM, Hoover DB, Pauly JR, Cummins ED, Burgess KC, Brown RW. The effects of nicotine in the neonatal quinpirole rodent model of psychosis: Neural plasticity mechanisms and nicotinic receptor changes. Behav Brain Res 2017; 325:17-24. [PMID: 28235586 DOI: 10.1016/j.bbr.2017.02.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 02/16/2017] [Accepted: 02/18/2017] [Indexed: 01/06/2023]
Abstract
Neonatal quinpirole (NQ) treatment to rats increases dopamine D2 receptor sensitivity persistent throughout the animal's lifetime. In Experiment 1, we analyzed the role of α7 and α4β2 nicotinic receptors (nAChRs) in nicotine behavioral sensitization and on the brain-derived neurotrophic factor (BDNF) response to nicotine in NQ- and neonatally saline (NS)-treated rats. In Experiment 2, we analyzed changes in α7 and α4β2 nAChR density in the nucleus accumbens (NAcc) and dorsal striatum in NQ and NS animals sensitized to nicotine. Male and female Sprague-Dawley rats were neonatally treated with quinpirole (1mg/kg) or saline from postnatal days (P)1-21. Animals were given ip injections of either saline or nicotine (0.5mg/kg free base) every second day from P33 to P49 and tested on behavioral sensitization. Before each injection, animals were ip administered the α7 nAChR antagonist methyllycaconitine (MLA; 2 or 4mg/kg) or the α4β2 nAChR antagonist dihydro beta erythroidine (DhβE; 1 or 3mg/kg). Results revealed NQ enhanced nicotine sensitization that was blocked by DhβE. MLA blocked the enhanced nicotine sensitization in NQ animals, but did not block nicotine sensitization. NQ enhanced the NAcc BDNF response to nicotine which was blocked by both antagonists. In Experiment 2, NQ enhanced nicotine sensitization and enhanced α4β2, but not α7, nAChR upregulation in the NAcc. These results suggest a relationship between accumbal BDNF and α4β2 nAChRs and their role in the behavioral response to nicotine in the NQ model which has relevance to schizophrenia, a behavioral disorder with high rates of tobacco smoking.
Collapse
Affiliation(s)
- Daniel J Peterson
- Department of Psychology, East Tennessee State University, Johnson City, TN 37614, United States
| | - W Drew Gill
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - John M Dose
- Department of Psychology, St. Norbert College, De Pere, WI, 54115,United States
| | - Donald B Hoover
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - James R Pauly
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, Lexington, KY 40536, United States
| | - Elizabeth D Cummins
- Department of Psychology, East Tennessee State University, Johnson City, TN 37614, United States
| | - Katherine C Burgess
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States
| | - Russell W Brown
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614, United States.
| |
Collapse
|
58
|
Petryszyn S, Parent A, Parent M. The calretinin interneurons of the striatum: comparisons between rodents and primates under normal and pathological conditions. J Neural Transm (Vienna) 2017; 125:279-290. [PMID: 28168621 DOI: 10.1007/s00702-017-1687-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 01/22/2017] [Indexed: 12/16/2022]
Abstract
This paper reviews the major organizational features of calretinin interneurons in the dorsal striatum of rodents and primates, with some insights on the state of these neurons in Parkinson's disease and Huntington's chorea. The rat striatum harbors medium-sized calretinin-immunoreactive (CR+) interneurons, whereas the mouse striatum is pervaded by medium-sized CR+ interneurons together with numerous small and highly immunoreactive CR+ cells. The CR interneuronal network is even more elaborated in monkey and human striatum where, in addition to the small- and medium-sized CR+ interneurons, a set of large CR+ interneurons occurs. The majority of these giant CR+ interneurons, which are unique to the primate striatum, also display immunoreactivity for choline acetyltransferase (ChAT), a faithful marker of cholinergic neurons. The expression of CR and/or ChAT by the large striatal interneurons appears to be seriously compromised in Parkinson's disease and Huntington's chorea. The species differences noted above have to be considered to better understand the role of CR interneurons in striatal organization in both normal and pathological conditions.
Collapse
Affiliation(s)
- S Petryszyn
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l'Institut universitaire en santé mentale de Québec, Université Laval, 2601, Canardière, Room F-6500, Quebec, QC, G1J 2G3, Canada
| | - A Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l'Institut universitaire en santé mentale de Québec, Université Laval, 2601, Canardière, Room F-6500, Quebec, QC, G1J 2G3, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Centre de recherche de l'Institut universitaire en santé mentale de Québec, Université Laval, 2601, Canardière, Room F-6500, Quebec, QC, G1J 2G3, Canada.
| |
Collapse
|
59
|
Kale OE, Awodele O, Ogundare TF, Ekor M. Amlodipine, an L-type calcium channel blocker, protects against chlorpromazine-induced neurobehavioural deficits in mice. Fundam Clin Pharmacol 2017; 31:329-339. [PMID: 28103649 DOI: 10.1111/fcp.12267] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 01/04/2017] [Accepted: 01/16/2017] [Indexed: 12/12/2022]
Abstract
This study investigated the modulatory and chemopreventive benefit of amlodipine (AML), a dihydropyridine calcium channel antagonist, against neurobehavioural abnormalities (NAs) associated with chlorpromazine (CPZ) toxicity in mice. Adult mice were divided into five groups of six animals/group. Group 1 (control) was administered saline (10 mL/kg i.p.). Group 2 received CPZ (2 mg/kg i.p.). Groups 3 and 4 received bromocriptine (BMC, 2.5 mg/kg s.c.) and AML (1 mg/kg s.c.), respectively, while group 5 received their combination. Groups 3-5 later received CPZ 30 min after initial treatments. Animals were subjected to neurobehavioural tests and euthanized 18 h later. CPZ-induced NAs were characterized by significant increase (P < 0.001) in cataleptic behaviour and lowered (P < 0.05) spontaneous activity reaction time in mice. There were also significant (P < 0.001) increases in malondialdehyde levels and decreased locomotion plus learning and memory parameters (P < 0.05-0.001). AML pretreatment alone did not alleviate CPZ-induced motor deficits in the mice. While pretreatment with BMC alone attenuated CPZ-associated catalepsy, its combination with AML further protected mice against NAs. Furthermore, BMC pretreatment did not affect CPZ-induced increase in malondialdehyde level, but AML or BMC+AML significantly (P < 0.05) decreased malondialdehyde in the CPZ-treated rats. Reduced glutathione levels and activities of superoxide dismutase and catalase remained elevated in all treatment groups. In conclusion, data from this study suggest possible chemopreventive benefit of AML alone or in combination with BMC against CPZ-associated neurobehavioural deficits. The ameliorative effect of AML may be related to its antioxidant and/or calcium channel blocking property.
Collapse
Affiliation(s)
- Oluwafemi E Kale
- Department of Pharmacology, Benjamin Carson (Snr.) School of Medicine, Babcock University, Ilisan-Remo, Ogun State, 21244 Ikeja, Nigeria.,Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, P.M.B 12003 Idi-Araba, Lagos, Nigeria
| | - Olufunsho Awodele
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, P.M.B 12003 Idi-Araba, Lagos, Nigeria
| | - Temitope F Ogundare
- Department of Pharmacology, Therapeutics and Toxicology, College of Medicine, University of Lagos, P.M.B 12003 Idi-Araba, Lagos, Nigeria
| | - Martins Ekor
- Department of Pharmacology, School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
60
|
Petryszyn S, Di Paolo T, Parent A, Parent M. The number of striatal cholinergic interneurons expressing calretinin is increased in parkinsonian monkeys. Neurobiol Dis 2016; 95:46-53. [PMID: 27388937 DOI: 10.1016/j.nbd.2016.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 06/13/2016] [Accepted: 07/03/2016] [Indexed: 12/17/2022] Open
Abstract
The most abundant interneurons in the primate striatum are those expressing the calcium-binding protein calretinin (CR). The present immunohistochemical study provides detailed assessments of their morphological traits, number, and topographical distribution in normal monkeys (Macaca fascicularis) and in monkeys rendered parkinsonian (PD) by MPTP intoxication. In primates, the CR+ striatal interneurons comprise small (8-12μm), medium (12-20μm) and large-sized (20-45μm) neurons, each with distinctive morphologies. The small CR+ neurons were 2-3 times more abundant than the medium-sized CR+ neurons, which were 20-40 times more numerous than the large CR+ neurons. In normal and PD monkeys, the density of small and medium-sized CR+ neurons was twice as high in the caudate nucleus than in the putamen, whereas the inverse occurred for the large CR+ neurons. Double immunostaining experiments revealed that only the large-sized CR+ neurons expressed choline acetyltransferase (ChAT). The number of large CR+ neurons was found to increase markedly (4-12 times) along the entire anteroposterior extent of both the caudate nucleus and putamen of PD monkeys compared to controls. Comparison of the number of large CR-/ChAT+ and CR+/ChAT+ neurons together with experiments involving the use of bromo-deoxyuridine (BrdU) as a marker of newly generated cells showed that it is the expression of CR by the large ChAT+ striatal interneurons, and not their absolute number, that is increased in the dopamine-depleted striatum. These findings reveal the modulatory role of dopamine in the phenotypic expression of the large cholinergic striatal neurons, which are known to play a crucial role in PD pathophysiology.
Collapse
Affiliation(s)
- Sarah Petryszyn
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC, Canada
| | - Thérèse Di Paolo
- Centre de recherche du CHU de Québec, Faculty of Pharmacy, Université Laval, Quebec City, QC, Canada
| | - André Parent
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC, Canada
| | - Martin Parent
- Centre de recherche de l'Institut universitaire en santé mentale de Québec, Department of Psychiatry and Neuroscience, Faculty of medicine, Université Laval, Quebec City, QC, Canada.
| |
Collapse
|
61
|
Soares-Cunha C, Coimbra B, David-Pereira A, Borges S, Pinto L, Costa P, Sousa N, Rodrigues AJ. Activation of D2 dopamine receptor-expressing neurons in the nucleus accumbens increases motivation. Nat Commun 2016; 7:11829. [PMID: 27337658 PMCID: PMC4931006 DOI: 10.1038/ncomms11829] [Citation(s) in RCA: 157] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 05/04/2016] [Indexed: 01/11/2023] Open
Abstract
Striatal dopamine receptor D1-expressing neurons have been classically associated with positive reinforcement and reward, whereas D2 neurons are associated with negative reinforcement and aversion. Here we demonstrate that the pattern of activation of D1 and D2 neurons in the nucleus accumbens (NAc) predicts motivational drive, and that optogenetic activation of either neuronal population enhances motivation in mice. Using a different approach in rats, we further show that activating NAc D2 neurons increases cue-induced motivational drive in control animals and in a model that presents anhedonia and motivational deficits; conversely, optogenetic inhibition of D2 neurons decreases motivation. Our results suggest that the classic view of D1-D2 functional antagonism does not hold true for all dimensions of reward-related behaviours, and that D2 neurons may play a more prominent pro-motivation role than originally anticipated.
Collapse
Affiliation(s)
- Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Barbara Coimbra
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Ana David-Pereira
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Sonia Borges
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Luisa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Patricio Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| | - Ana J. Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga 4710-057, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães 4710-057, Portugal
| |
Collapse
|
62
|
Zhao Z, Zhang K, Liu X, Yan H, Ma X, Zhang S, Zheng J, Wang L, Wei X. Involvement of HCN Channel in Muscarinic Inhibitory Action on Tonic Firing of Dorsolateral Striatal Cholinergic Interneurons. Front Cell Neurosci 2016; 10:71. [PMID: 27047336 PMCID: PMC4801847 DOI: 10.3389/fncel.2016.00071] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 03/04/2016] [Indexed: 11/13/2022] Open
Abstract
The striatum is the most prominent nucleus in the basal ganglia and plays an important role in motor movement regulation. The cholinergic interneurons (ChIs) in striatum are involved in the motion regulation by releasing acetylcholine (ACh) and modulating the output of striatal projection neurons. Here, we report that muscarinic ACh receptor (M receptor) agonists, ACh and Oxotremorine (OXO-M), decreased the firing frequency of ChIs by blocking the hyperpolarization-activated cyclic nucleotide-gated (HCN) channels. Scopolamine (SCO), a nonselective antagonist of M receptors, abolished the inhibition. OXO-M exerted its function by activating the Gi/o cAMP signaling cascade. The single-cell reverse transcription polymerase chain reaction (scRT-PCR) revealed that all the five subtypes of M receptors and four subtypes of HCN channels were expressed on ChIs. Among them, M2 receptors and HCN2 channels were the most dominant ones and expressed in every single studied cholinergic interneuron (ChI).Our results suggest that ACh regulates not only the output of striatal projection neurons, but also the firing activity of ChIs themselves by activating presynaptic M receptors in the dorsal striatum. The activation of M2 receptors and blockage of HCN2 channels may play an important role in ACh inhibition on the excitability of ChIs. This finding adds a new G-protein coupled receptor mediated regulation on ChIs and provides a cellular mechanism for control of cholinergic activity and ACh release in the dorsal striatum.
Collapse
Affiliation(s)
- Zhe Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Kang Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Xiaoyan Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Haitao Yan
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Xiaoyun Ma
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Shuzhuo Zhang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Jianquan Zheng
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Liyun Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| | - Xiaoli Wei
- State Key Laboratory of Toxicology and Medical Countermeasures, Department of Biochemical Pharmacology, Beijing Institute of Pharmacology and Toxicology Beijing, China
| |
Collapse
|
63
|
Intramolecular allosteric communication in dopamine D2 receptor revealed by evolutionary amino acid covariation. Proc Natl Acad Sci U S A 2016; 113:3539-44. [PMID: 26979958 DOI: 10.1073/pnas.1516579113] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The structural basis of allosteric signaling in G protein-coupled receptors (GPCRs) is important in guiding design of therapeutics and understanding phenotypic consequences of genetic variation. The Evolutionary Trace (ET) algorithm previously proved effective in redesigning receptors to mimic the ligand specificities of functionally distinct homologs. We now expand ET to consider mutual information, with validation in GPCR structure and dopamine D2 receptor (D2R) function. The new algorithm, called ET-MIp, identifies evolutionarily relevant patterns of amino acid covariations. The improved predictions of structural proximity and D2R mutagenesis demonstrate that ET-MIp predicts functional interactions between residue pairs, particularly potency and efficacy of activation by dopamine. Remarkably, although most of the residue pairs chosen for mutagenesis are neither in the binding pocket nor in contact with each other, many exhibited functional interactions, implying at-a-distance coupling. The functional interaction between the coupled pairs correlated best with the evolutionary coupling potential derived from dopamine receptor sequences rather than with broader sets of GPCR sequences. These data suggest that the allosteric communication responsible for dopamine responses is resolved by ET-MIp and best discerned within a short evolutionary distance. Most double mutants restored dopamine response to wild-type levels, also suggesting that tight regulation of the response to dopamine drove the coevolution and intramolecular communications between coupled residues. Our approach provides a general tool to identify evolutionary covariation patterns in small sets of close sequence homologs and to translate them into functional linkages between residues.
Collapse
|
64
|
Thomsen M, Caine SB. Effects of dopamine D1-like and D2-like antagonists on cocaine discrimination in muscarinic receptor knockout mice. Eur J Pharmacol 2016; 776:71-80. [PMID: 26874213 DOI: 10.1016/j.ejphar.2016.02.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 02/08/2016] [Accepted: 02/10/2016] [Indexed: 01/30/2023]
Abstract
Muscarinic and dopamine brain systems interact intimately, and muscarinic receptor ligands, like dopamine ligands, can modulate the reinforcing and discriminative stimulus (S(D)) effects of cocaine. To enlighten the dopamine/muscarinic interactions as they pertain to the S(D) effects of cocaine, we evaluated whether muscarinic M1, M2 or M4 receptors are necessary for dopamine D1 and/or D2 antagonist mediated modulation of the S(D) effects of cocaine. Knockout mice lacking M1, M2, or M4 receptors, as well as control wild-type mice and outbred Swiss-Webster mice, were trained to discriminate 10mg/kg cocaine from saline in a food-reinforced drug discrimination procedure. Effects of pretreatments with the dopamine D1 antagonist SCH 23390 and the dopamine D2 antagonist eticlopride were evaluated. In intact mice, both SCH 23390 and eticlopride attenuated the cocaine discriminative stimulus effect, as expected. SCH 23390 similarly attenuated the cocaine discriminative stimulus effect in M1 knockout mice, but not in mice lacking M2 or M4 receptors. The effects of eticlopride were comparable in each knockout strain. These findings demonstrate differences in the way that D1 and D2 antagonists modulate the S(D) effects of cocaine, D1 modulation being at least partially dependent upon activity at the inhibitory M2/M4 muscarinic subtypes, while D2 modulation appeared independent of these systems.
Collapse
Affiliation(s)
- Morgane Thomsen
- Alcohol and Drug Abuse Research Center, McLean Hospital/Harvard Medical School, Belmont, MA, United States.
| | - Simon Barak Caine
- Alcohol and Drug Abuse Research Center, McLean Hospital/Harvard Medical School, Belmont, MA, United States.
| |
Collapse
|
65
|
Nicotine Modifies Corticostriatal Plasticity and Amphetamine Rewarding Behaviors in Mice(1,2,3). eNeuro 2016; 3:eN-NWR-0095-15. [PMID: 26866057 PMCID: PMC4745180 DOI: 10.1523/eneuro.0095-15.2015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 11/22/2015] [Accepted: 12/28/2015] [Indexed: 12/20/2022] Open
Abstract
Corticostriatal signaling participates in sensitized responses to drugs of abuse, where short-term increases in dopamine availability provoke persistent, yet reversible, changes in glutamate release. Prior studies in mice show that amphetamine withdrawal promotes a chronic presynaptic depression in glutamate release, whereas an amphetamine challenge reverses this depression by potentiating corticostriatal activity in direct pathway medium spiny neurons. This synaptic plasticity promotes corticostriatal activity and locomotor sensitization through upstream changes in the activity of tonically active cholinergic interneurons (ChIs). We used a model of operant drug-taking behaviors, in which mice self-administered amphetamine through an in-dwelling catheter. Mice acquired amphetamine self-administration under fixed and increasing schedules of reinforcement. Following a period of abstinence, we determined whether nicotinic acetylcholine receptors modified drug-seeking behavior and associated alterations in ChI firing and corticostriatal activity. Mice responding to conditioned reinforcement showed reduced ChI and corticostriatal activity ex vivo, which paradoxically increased following an amphetamine challenge. Nicotine, in a concentration that increases Ca2+ influx and desensitizes α4β2*-type nicotinic receptors, reduced amphetamine-seeking behaviors following abstinence and amphetamine-induced locomotor sensitization. Nicotine blocked the depression of ChI firing and corticostriatal activity and the potentiating response to an amphetamine challenge. Together, these results demonstrate that nicotine reduces reward-associated behaviors following repeated amphetamine and modifies the changes in ChIs firing and corticostriatal activity. By returning glutamatergic activity in amphetamine self-administering mice to a more stable and normalized state, nicotine limits the depression of striatal activity in withdrawal and the increase in activity following abstinence and a subsequent drug challenge.
Collapse
|
66
|
Villalba RM, Mathai A, Smith Y. Morphological changes of glutamatergic synapses in animal models of Parkinson's disease. Front Neuroanat 2015; 9:117. [PMID: 26441550 PMCID: PMC4585113 DOI: 10.3389/fnana.2015.00117] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/17/2015] [Indexed: 02/05/2023] Open
Abstract
The striatum and the subthalamic nucleus (STN) are the main entry doors for extrinsic inputs to reach the basal ganglia (BG) circuitry. The cerebral cortex, thalamus and brainstem are the key sources of glutamatergic inputs to these nuclei. There is anatomical, functional and neurochemical evidence that glutamatergic neurotransmission is altered in the striatum and STN of animal models of Parkinson’s disease (PD) and that these changes may contribute to aberrant network neuronal activity in the BG-thalamocortical circuitry. Postmortem studies of animal models and PD patients have revealed significant pathology of glutamatergic synapses, dendritic spines and microcircuits in the striatum of parkinsonians. More recent findings have also demonstrated a significant breakdown of the glutamatergic corticosubthalamic system in parkinsonian monkeys. In this review, we will discuss evidence for synaptic glutamatergic dysfunction and pathology of cortical and thalamic inputs to the striatum and STN in models of PD. The potential functional implication of these alterations on synaptic integration, processing and transmission of extrinsic information through the BG circuits will be considered. Finally, the significance of these pathological changes in the pathophysiology of motor and non-motor symptoms in PD will be examined.
Collapse
Affiliation(s)
- Rosa M Villalba
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; UDALL Center of Excellence for Parkinson's Disease, Emory University Atlanta, GA, USA
| | - Abraham Mathai
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; UDALL Center of Excellence for Parkinson's Disease, Emory University Atlanta, GA, USA
| | - Yoland Smith
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA ; UDALL Center of Excellence for Parkinson's Disease, Emory University Atlanta, GA, USA ; Department of Neurology, Emory University Atlanta, GA, USA
| |
Collapse
|
67
|
Heyes S, Pratt WS, Rees E, Dahimene S, Ferron L, Owen MJ, Dolphin AC. Genetic disruption of voltage-gated calcium channels in psychiatric and neurological disorders. Prog Neurobiol 2015; 134:36-54. [PMID: 26386135 PMCID: PMC4658333 DOI: 10.1016/j.pneurobio.2015.09.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 09/08/2015] [Accepted: 09/08/2015] [Indexed: 12/15/2022]
Abstract
Voltage-gated calcium channel classification—genes and proteins. Genetic analysis of neuropsychiatric syndromes. Calcium channel genes identified from GWA studies of psychiatric disorders. Rare mutations in calcium channel genes in psychiatric disorders. Pathophysiological sequelae of CACNA1C mutations and polymorphisms. Monogenic disorders resulting from harmful mutations in other voltage-gated calcium channel genes. Changes in calcium channel gene expression in disease. Involvement of voltage-gated calcium channels in early brain development.
This review summarises genetic studies in which calcium channel genes have been connected to the spectrum of neuropsychiatric syndromes, from bipolar disorder and schizophrenia to autism spectrum disorders and intellectual impairment. Among many other genes, striking numbers of the calcium channel gene superfamily have been implicated in the aetiology of these diseases by various DNA analysis techniques. We will discuss how these relate to the known monogenic disorders associated with point mutations in calcium channels. We will then examine the functional evidence for a causative link between these mutations or single nucleotide polymorphisms and the disease processes. A major challenge for the future will be to translate the expanding psychiatric genetic findings into altered physiological function, involvement in the wider pathology of the diseases, and what potential that provides for personalised and stratified treatment options for patients.
Collapse
Affiliation(s)
- Samuel Heyes
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Wendy S Pratt
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Elliott Rees
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Shehrazade Dahimene
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Laurent Ferron
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK
| | - Michael J Owen
- Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Neuroscience and Mental Health Research Institute, Institute of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff CF24 4HQ, UK
| | - Annette C Dolphin
- Department of Neuroscience, Physiology and Pharmacology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
68
|
Abstract
The variety of physiological functions controlled by dopamine in the brain and periphery is mediated by the D1, D2, D3, D4 and D5 dopamine GPCRs. Drugs acting on dopamine receptors are significant tools for the management of several neuropsychiatric disorders including schizophrenia, bipolar disorder, depression and Parkinson's disease. Recent investigations of dopamine receptor signalling have shown that dopamine receptors, apart from their canonical action on cAMP-mediated signalling, can regulate a myriad of cellular responses to fine-tune the expression of dopamine-associated behaviours and functions. Such signalling mechanisms may involve alternate G protein coupling or non-G protein mechanisms involving ion channels, receptor tyrosine kinases or proteins such as β-arrestins that are classically involved in GPCR desensitization. Another level of complexity is the growing appreciation of the physiological roles played by dopamine receptor heteromers. Applications of new in vivo techniques have significantly furthered the understanding of the physiological functions played by dopamine receptors. Here we provide an update of the current knowledge regarding the complex biology, signalling, physiology and pharmacology of dopamine receptors.
Collapse
|
69
|
Changes in the expression of genes encoding for mGlu4 and mGlu5 receptors and other regulators of the indirect pathway in acute mouse models of drug-induced parkinsonism. Neuropharmacology 2015; 95:50-8. [DOI: 10.1016/j.neuropharm.2015.02.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 11/23/2022]
|
70
|
Girasole AE, Nelson AB. Probing striatal microcircuitry to understand the functional role of cholinergic interneurons. Mov Disord 2015; 30:1306-18. [PMID: 26227561 DOI: 10.1002/mds.26340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/12/2015] [Accepted: 06/21/2015] [Indexed: 12/23/2022] Open
Affiliation(s)
- Allison E Girasole
- Department of Neurology, University of California, San Francisco, USA.,Neuroscience Graduate Program, University of California, San Francisco, USA
| | - Alexandra B Nelson
- Department of Neurology, University of California, San Francisco, USA.,Neuroscience Graduate Program, University of California, San Francisco, USA
| |
Collapse
|
71
|
Injection of a dopamine type 2 receptor antagonist into the dorsal striatum disrupts choices driven by previous outcomes, but not perceptual inference. J Neurosci 2015; 35:6298-306. [PMID: 25904783 DOI: 10.1523/jneurosci.4561-14.2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Decisions are often driven by a combination of immediate perception and previous experience. In this study, we investigated how these two sources of information are integrated and the neural systems that mediate this process. Specifically, we injected a dopamine type 1 antagonist (D1A; SCH23390) or a dopamine type 2 antagonist (D2A; eticlopride) into the dorsal striatum while macaques performed a task in which their choices were driven by perceptual inference and/or reinforcement of past choices. We found that the D2A affected choices based on previous outcomes. However, there were no effects of the D2A on choices driven by perceptual inference. We found that the D1A did not affect perceptual inference or reinforcement learning. Finally, a Bayesian model applied to the results suggested that the D2A may be increasing noise in the striatal representation of value, perhaps by disrupting the striatal population that normally represents value.
Collapse
|
72
|
Deffains M, Bergman H. Striatal cholinergic interneurons and cortico-striatal synaptic plasticity in health and disease. Mov Disord 2015; 30:1014-25. [PMID: 26095280 DOI: 10.1002/mds.26300] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/11/2022] Open
Abstract
Basal ganglia disorders such as Parkinson's disease, dystonia, and Huntington's disease are characterized by a dysregulation of the basal ganglia neuromodulators (dopamine, acetylcholine, and others), which impacts cortico-striatal transmission. Basal ganglia disorders are often associated with an imbalance between the midbrain dopaminergic and striatal cholinergic systems. In contrast to the extensive research and literature on the consequences of a malfunction of midbrain dopaminergic signaling on the plasticity of the cortico-striatal synapse, very little is known about the role of striatal cholinergic interneurons in normal and pathological control of cortico-striatal transmission. In this review, we address the functional role of striatal cholinergic interneurons, also known as tonically active neurons and attempt to understand how the alteration of their functional properties in basal ganglia disorders leads to abnormal cortico-striatal synaptic plasticity. Specifically, we suggest that striatal cholinergic interneurons provide a permissive signal, which enables long-term changes in the efficacy of the cortico-striatal synapse. We further discuss how modifications in the striatal cholinergic activity pattern alter or prohibit plastic changes of the cortico-striatal synapse. Long-term cortico-striatal synaptic plasticity is the cellular substrate of procedural learning and adaptive control behavior. Hence, abnormal changes in this plasticity may underlie the inability of patients with basal ganglia disorders to adjust their behavior to situational demands. Normalization of the cholinergic modulation of cortico-striatal synaptic plasticity may be considered as a critical feature in future treatments of basal ganglia disorders.
Collapse
Affiliation(s)
- Marc Deffains
- Department of Medical Neurobiology (Physiology), Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center (ELSC) for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Hagai Bergman
- Department of Medical Neurobiology (Physiology), Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University-Hadassah Medical School, Jerusalem, Israel.,The Edmond and Lily Safra Center (ELSC) for Brain Sciences, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
73
|
Gonzales KK, Smith Y. Cholinergic interneurons in the dorsal and ventral striatum: anatomical and functional considerations in normal and diseased conditions. Ann N Y Acad Sci 2015; 1349:1-45. [PMID: 25876458 DOI: 10.1111/nyas.12762] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Striatal cholinergic interneurons (ChIs) are central for the processing and reinforcement of reward-related behaviors that are negatively affected in states of altered dopamine transmission, such as in Parkinson's disease or drug addiction. Nevertheless, the development of therapeutic interventions directed at ChIs has been hampered by our limited knowledge of the diverse anatomical and functional characteristics of these neurons in the dorsal and ventral striatum, combined with the lack of pharmacological tools to modulate specific cholinergic receptor subtypes. This review highlights some of the key morphological, synaptic, and functional differences between ChIs of different striatal regions and across species. It also provides an overview of our current knowledge of the cellular localization and function of cholinergic receptor subtypes. The future use of high-resolution anatomical and functional tools to study the synaptic microcircuitry of brain networks, along with the development of specific cholinergic receptor drugs, should help further elucidate the role of striatal ChIs and permit efficient targeting of cholinergic systems in various brain disorders, including Parkinson's disease and addiction.
Collapse
Affiliation(s)
- Kalynda K Gonzales
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia.,Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, New York
| | - Yoland Smith
- Yerkes National Primate Research Center, Department of Neurology and Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia
| |
Collapse
|
74
|
Rhes regulates dopamine D2 receptor transmission in striatal cholinergic interneurons. Neurobiol Dis 2015; 78:146-61. [PMID: 25818655 DOI: 10.1016/j.nbd.2015.03.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 11/22/2022] Open
Abstract
Ras homolog enriched in striatum (Rhes) is highly expressed in striatal medium spiny neurons (MSNs) of rodents. In the present study, we characterized the expression of Rhes mRNA across species, as well as its functional role in other striatal neuron subtypes. Double in situ hybridization analysis showed that Rhes transcript is selectively localized in striatal cholinergic interneurons (ChIs), but not in GABAergic parvalbumin- or in neuropeptide Y-positive cell populations. Rhes is closely linked to dopamine-dependent signaling. Therefore, we recorded ChIs activity in basal condition and following dopamine receptor activation. Surprisingly, instead of an expected dopamine D2 receptor (D2R)-mediated inhibition, we observed an aberrant excitatory response in ChIs from Rhes knockout mice. Conversely, the effect of D1R agonist on ChIs was less robust in Rhes mutants than in controls. Although Rhes deletion in mutants occurs throughout the striatum, we demonstrate that the D2R response is altered specifically in ChIs, since it was recorded in pharmacological isolation, and prevented either by intrapipette BAPTA or by GDP-β-S. Moreover, we show that blockade of Cav2.2 calcium channels prevented the abnormal D2R response. Finally, we found that the abnormal D2R activation in ChIs was rescued by selective PI3K inhibition thus suggesting that Rhes functionally modulates PI3K/Akt signaling pathway in these neurons. Our findings reveal that, besides its expression in MSNs, Rhes is localized also in striatal ChIs and, most importantly, lack of this G-protein, significantly alters D2R modulation of striatal cholinergic excitability.
Collapse
|
75
|
Striatal cholinergic dysfunction as a unifying theme in the pathophysiology of dystonia. Prog Neurobiol 2015; 127-128:91-107. [PMID: 25697043 DOI: 10.1016/j.pneurobio.2015.02.002] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 02/05/2015] [Accepted: 02/07/2015] [Indexed: 01/06/2023]
Abstract
Dystonia is a movement disorder of both genetic and non-genetic causes, which typically results in twisted posturing due to abnormal muscle contraction. Evidence from dystonia patients and animal models of dystonia indicate a crucial role for the striatal cholinergic system in the pathophysiology of dystonia. In this review, we focus on striatal circuitry and the centrality of the acetylcholine system in the function of the basal ganglia in the control of voluntary movement and ultimately clinical manifestation of movement disorders. We consider the impact of cholinergic interneurons (ChIs) on dopamine-acetylcholine interactions and examine new evidence for impairment of ChIs in dysfunction of the motor systems producing dystonic movements, particularly in animal models. We have observed paradoxical excitation of ChIs in the presence of dopamine D2 receptor agonists and impairment of striatal synaptic plasticity in a mouse model of DYT1 dystonia, which are improved by administration of recently developed M1 receptor antagonists. These findings have been confirmed across multiple animal models of DYT1 dystonia and may represent a common endophenotype by which to investigate dystonia induced by other types of genetic and non-genetic causes and to investigate the potential effectiveness of pharmacotherapeutics and other strategies to improve dystonia.
Collapse
|
76
|
Verlinden H, Vleugels R, Verdonck R, Urlacher E, Vanden Broeck J, Mercer A. Pharmacological and signalling properties of a D2-like dopamine receptor (Dop3) in Tribolium castaneum. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2015; 56:9-20. [PMID: 25449128 DOI: 10.1016/j.ibmb.2014.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 06/04/2023]
Abstract
Dopamine is an important neurotransmitter in the central nervous system of vertebrates and invertebrates. Despite their evolutionary distance, striking parallels exist between deuterostomian and protostomian dopaminergic systems. In both, signalling is achieved via a complement of functionally distinct dopamine receptors. In this study, we investigated the sequence, pharmacology and tissue distribution of a D2-like dopamine receptor from the red flour beetle Tribolium castaneum (TricaDop3) and compared it with related G protein-coupled receptors in other invertebrate species. The TricaDop3 receptor-encoding cDNA shows considerable sequence similarity with members of the Dop3 receptor class. Real time qRT-PCR showed high expression in both the central brain and the optic lobes, consistent with the role of dopamine as neurotransmitter. Activation of TricaDop3 expressed in mammalian cells increased intracellular Ca(2+) signalling and decreased NKH-477 (a forskolin analogue)-stimulated cyclic AMP levels in a dose-dependent manner. We studied the pharmacological profile of the TricaDop3 receptor and demonstrated that the synthetic vertebrate dopamine receptor agonists, 2 - amino- 6,7 - dihydroxy - 1,2,3,4 - tetrahydronaphthalene hydrobromide (6,7-ADTN) and bromocriptine acted as agonists. Methysergide was the most potent of the antagonists tested and showed competitive inhibition in the presence of dopamine. This study offers important information on the Dop3 receptor from Tribolium castaneum that will facilitate functional analyses of dopamine receptors in insects and other invertebrates.
Collapse
Affiliation(s)
- Heleen Verlinden
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium; Department of Zoology, University of Otago, 340 Great King Street, Dunedin, New Zealand.
| | - Rut Vleugels
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Rik Verdonck
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Elodie Urlacher
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, New Zealand
| | - Jozef Vanden Broeck
- Department of Animal Physiology and Neurobiology, Zoological Institute, KU Leuven, Naamsestraat 59, 3000 Leuven, Belgium
| | - Alison Mercer
- Department of Zoology, University of Otago, 340 Great King Street, Dunedin, New Zealand
| |
Collapse
|
77
|
Silkis IG. The reasons for the preferable use of A2A receptor antagonists for improvement of locomotor activity and learning. NEUROCHEM J+ 2014. [DOI: 10.1134/s1819712414040072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
78
|
Lim SAO, Kang UJ, McGehee DS. Striatal cholinergic interneuron regulation and circuit effects. Front Synaptic Neurosci 2014; 6:22. [PMID: 25374536 PMCID: PMC4204445 DOI: 10.3389/fnsyn.2014.00022] [Citation(s) in RCA: 157] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Accepted: 09/05/2014] [Indexed: 01/11/2023] Open
Abstract
The striatum plays a central role in motor control and motor learning. Appropriate responses to environmental stimuli, including pursuit of reward or avoidance of aversive experience all require functional striatal circuits. These pathways integrate synaptic inputs from limbic and cortical regions including sensory, motor and motivational information to ultimately connect intention to action. Although many neurotransmitters participate in striatal circuitry, one critically important player is acetylcholine (ACh). Relative to other brain areas, the striatum contains exceptionally high levels of ACh, the enzymes that catalyze its synthesis and breakdown, as well as both nicotinic and muscarinic receptor types that mediate its postsynaptic effects. The principal source of striatal ACh is the cholinergic interneuron (ChI), which comprises only about 1-2% of all striatal cells yet sends dense arbors of projections throughout the striatum. This review summarizes recent advances in our understanding of the factors affecting the excitability of these neurons through acute effects and long term changes in their synaptic inputs. In addition, we discuss the physiological effects of ACh in the striatum, and how changes in ACh levels may contribute to disease states during striatal dysfunction.
Collapse
Affiliation(s)
| | - Un Jung Kang
- Department of Neurology, Columbia University New York, NY, USA
| | - Daniel S McGehee
- Committee on Neurobiology, University of Chicago Chicago, IL, USA ; Department of Anesthesia and Critical Care, University of Chicago Chicago, IL, USA
| |
Collapse
|
79
|
Phasic dopaminergic activity exerts fast control of cholinergic interneuron firing via sequential NMDA, D2, and D1 receptor activation. J Neurosci 2014; 34:11549-59. [PMID: 25164653 DOI: 10.1523/jneurosci.1175-14.2014] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phasic increases in dopamine (DA) are involved in the detection and selection of relevant sensory stimuli. The DAergic and cholinergic system dynamically interact to gate and potentiate sensory inputs to striatum. Striatal cholinergic interneurons (CINs) respond to relevant sensory stimuli with an initial burst, a firing pause, or a late burst, or a combination of these three components. CIN responses coincide with phasic firing of DAergic neurons in vivo. In particular, the late burst of CINs codes for the anticipated reward. To examine whether DAergic midbrain afferents can evoke the different CIN responses, we recorded from adult olfactory tubercle slices in the mouse ventral striatum. Olfactory inputs to striatal projection neurons were gated by the cholinergic tone. Phasic optogenetic activation of DAergic terminals evoked combinations of initial bursts, pauses, and late bursts in subsets of CINs by distinct receptor pathways. Glutamate release from midbrain afferents evoked an NMDAR-dependent initial burst followed by an afterhyperpolarization-induced pause. Phasic release of DA itself evoked acute changes in CIN firing. In particular, in CINs without an initial burst, phasic DA release evoked a pause through D2-type DA receptor activation. Independently, phasic DA activated a slow depolarizing conductance and the late burst through a D1-type DA receptor pathway. In summary, DAergic neurons elicit transient subsecond firing responses in CINs by sequential activation of NMDA, D2-type, and D1-type receptors. This fast control of striatal cholinergic tone by phasic DA provides a novel dynamic link of two transmitter systems central to the detection and selection of relevant stimuli.
Collapse
|
80
|
Abstract
The motor and learning functions of the striatum are critically dependent on synaptic transmission from midbrain dopamine neurons and striatal cholinergic interneurons (CINs). Both neural populations alter their discharge in vivo in response to salient sensory stimuli, albeit in opposite directions. Whereas midbrain dopamine neurons respond to salient stimuli with a brief burst of activity, CINs exhibit a distinct pause in firing that is often followed by a period of increased excitability. Although this "pause-rebound" sensory response requires dopaminergic signaling, the precise mechanisms underlying the modulation of CIN firing by dopaminergic afferents remain unclear. Here, we show that phasic activation of nigrostriatal afferents in a mouse striatal slice preparation is sufficient to evoke a pause-rebound response in CINs. Using a combination of optogenetic, electrophysiological, and pharmacological approaches, we demonstrate that synaptically released dopamine inhibits CINs through type 2 dopamine receptors, while another unidentified transmitter mediates the delayed excitation. These findings imply that, in addition to their direct effects on striatal projection neurons, midbrain dopamine neurons indirectly modulate striatal output by dynamically controlling cholinergic tone. In addition, our data suggest that phasic dopaminergic activity may directly participate in the characteristic pause-rebound sensory response that CINs exhibit in vivo in response to salient and conditioned stimuli.
Collapse
|
81
|
Petryszyn S, Beaulieu JM, Parent A, Parent M. Distribution and morphological characteristics of striatal interneurons expressing calretinin in mice: a comparison with human and nonhuman primates. J Chem Neuroanat 2014; 59-60:51-61. [PMID: 24960462 DOI: 10.1016/j.jchemneu.2014.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Striatal interneurons display a morphological and chemical heterogeneity that has been particularly well characterized in rats, monkeys and humans. By comparison much less is known of striatal interneurons in mice, although these animals are now widely used as transgenic models of various neurodegenerative diseases. The present immunohistochemical study aimed at characterizing striatal interneurons expressing calretinin (CR) in mice compared to those in squirrel monkeys and humans. The mouse striatum contains both small (9-12 μm) and medium-sized (15-20 μm) CR+ cells. The small cells are intensely stained with a single, slightly varicose and moderately arborized process. They occur throughout the striatum (77±9 cells/mm(3)), but prevail in the area of the subventricular zone and subcallosal streak, with statistically significant anteroposterior and dorsoventral decreasing gradients. The medium-sized cells are less intensely immunoreactive and possess 2-3 long, slightly varicose and poorly branched dendrites. They are rather uniformly scattered throughout the striatum and three times more numerous (224±31 cells/mm(3)) than the smaller CR+ cells. Double immunostaining experiments with choline acetyltransferase (ChAT) as a cholinergic marker in normal and Drd1a-tdTomato/Drd2-EGFP double transgenic mice reveal that none of the small or medium-sized CR+ cells express ChAT or D1 and D2 dopamine receptors. In contrast, the striatum in human and nonhuman primates harbors small and medium-sized CR+/ChAT- cells, as well as large CR+/ChAT+ interneurons that are absent in mice. Such a difference between rodents and primates must be taken into consideration if one hopes to better understand the striatal function in normal and pathological conditions.
Collapse
Affiliation(s)
- Sarah Petryszyn
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - André Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Martin Parent
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada.
| |
Collapse
|
82
|
Sciamanna G, Ponterio G, Tassone A, Maltese M, Madeo G, Martella G, Poli S, Schirinzi T, Bonsi P, Pisani A. Negative allosteric modulation of mGlu5 receptor rescues striatal D2 dopamine receptor dysfunction in rodent models of DYT1 dystonia. Neuropharmacology 2014; 85:440-50. [PMID: 24951854 DOI: 10.1016/j.neuropharm.2014.06.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/30/2014] [Accepted: 06/10/2014] [Indexed: 10/25/2022]
Abstract
Early onset torsion dystonia (DYT1) is an autosomal dominantly inherited disorder caused by deletion in TOR1A gene. Evidence suggests that TOR1A mutation produces dystonia through an aberrant neuronal signalling within the striatum, where D2 dopamine receptors (D2R) produce an abnormal excitatory response in cholinergic interneurons (ChIs) in different models of DYT1 dystonia. The excitability of ChIs may be modulated by group I metabotropic glutamate receptor subtypes (mGlu1 and 5). We performed electrophysiological and calcium imaging recordings from ChIs of both knock-in mice heterozygous for Δ-torsinA (Tor1a(+/Δgag) mice) and transgenic mice overexpressing human torsinA (hMT1). We demonstrate that the novel negative allosteric modulator (NAM) of metabotropic glutamate 5 (mGlu) receptor, dipraglurant (ADX48621) counteracts the abnormal membrane responses and calcium rise induced either by the D2R agonist quinpirole or by caged dopamine (NPEC-Dopamine) in both models. These inhibitory effects were mimicked by two other well-characterized mGlu5 receptor antagonists, SIB1757 and MPEP, but not by mGlu1 antagonism. D2R and mGlu5 post-receptor signalling may converge on PI3K/Akt pathway. Interestingly, we found that the abnormal D2R response was prevented by the selective PI3K inhibitor, LY294002, whereas PLC and PKC inhibitors were both ineffective. Currently, no satisfactory pharmacological treatment is available for DYT1 dystonia patients. Our data show that negative modulation of mGlu5 receptors may counteract abnormal D2R responses, normalizing cholinergic cell excitability, by modulating the PI3K/Akt post-receptor pathway, thereby representing a novel potential treatment of DYT1 dystonia.
Collapse
Affiliation(s)
- G Sciamanna
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - G Ponterio
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - A Tassone
- Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - M Maltese
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - G Madeo
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - G Martella
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - S Poli
- ADDEX Therapeutics, Geneva, Switzerland
| | - T Schirinzi
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy
| | - P Bonsi
- Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy
| | - A Pisani
- Department of Systems Medicine, University of Rome "Tor Vergata", Italy; Laboratory of Neurophysiology and Synaptic Plasticity, IRCCS Fondazione Santa Lucia, Rome, Italy.
| |
Collapse
|
83
|
Popova E. Role of dopamine in distal retina. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:333-58. [PMID: 24728309 DOI: 10.1007/s00359-014-0906-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/11/2023]
Abstract
Dopamine is the most abundant catecholamine in the vertebrate retina. Despite the description of retinal dopaminergic cells three decades ago, many aspects of their function in the retina remain unclear. There is no consensus among the authors about the stimulus conditions for dopamine release (darkness, steady or flickering light) as well as about its action upon the various types of retinal cells. Many contradictory results exist concerning the dopamine effect on the gross electrical activity of the retina [reflected in electroretinogram (ERG)] and the receptors involved in its action. This review summarized current knowledge about the types of the dopaminergic neurons and receptors in the retina as well as the effects of dopamine receptor agonists and antagonists on the light responses of photoreceptors, horizontal and bipolar cells in both nonmammalian and mammalian retina. Special focus of interest concerns their effects upon the diffuse ERG as a useful tool for assessment of the overall function of the distal retina. An attempt is made to reveal some differences between the dopamine actions upon the activity of the ON versus OFF channel in the distal retina. The author has included her own results demonstrating such differences.
Collapse
Affiliation(s)
- E Popova
- Department of Physiology, Medical Faculty, Medical University, 1431, Sofia, Bulgaria,
| |
Collapse
|
84
|
Liang J, Marty VN, Mulpuri Y, Olsen RW, Spigelman I. Selective modulation of GABAergic tonic current by dopamine in the nucleus accumbens of alcohol-dependent rats. J Neurophysiol 2014; 112:51-60. [PMID: 24717351 DOI: 10.1152/jn.00564.2013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The nucleus accumbens (NAcc) is a key structure of the mesolimbic dopaminergic reward system and plays an important role in mediating alcohol-seeking behaviors. Alterations in glutamatergic and GABAergic signaling were recently demonstrated in the NAcc of rats after chronic intermittent ethanol (CIE) treatment, a model of alcohol dependence. Here we studied dopamine (DA) modulation of GABAergic signaling and how this modulation might be altered by CIE treatment. We show that the tonic current (I(tonic)) mediated by extrasynaptic γ-aminobutyric acid type A receptors (GABA(A)Rs) of medium spiny neurons (MSNs) in the NAcc core is differentially modulated by DA at concentrations in the range of those measured in vivo (0.01-1 μM), without affecting the postsynaptic kinetics of miniature inhibitory postsynaptic currents (mIPSCs). Use of selective D1 receptor (D1R) and D2 receptor (D2R) ligands revealed that I(tonic) potentiation by DA (10 nM) is mediated by D1Rs while I(tonic) depression by DA (0.03-1 μM) is mediated by D2Rs in the same MSNs. Addition of guanosine 5'-O-(2-thiodiphosphate) (GDPβS) to the recording pipettes eliminated I(tonic) decrease by the selective D2R agonist quinpirole (5 nM), leaving intact the quinpirole effect on mIPSC frequency. Recordings from CIE and vehicle control (CIV) MSNs during application of D1R agonist (SKF 38393, 100 nM) or D2R agonist (quinpirole, 2 nM) revealed that SKF 38393 potentiated I(tonic) to the same extent, while quinpirole reduced I(tonic) to a similar extent, in both groups of rats. Our data suggest that the selective modulatory effects of DA on I(tonic) are unaltered by CIE treatment and withdrawal.
Collapse
Affiliation(s)
- Jing Liang
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California; and Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Vincent N Marty
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California; and
| | - Yatendra Mulpuri
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California; and
| | - Richard W Olsen
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, California
| | - Igor Spigelman
- Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, California; and
| |
Collapse
|
85
|
Adaptive gene regulation in the Striatum of RGS9-deficient mice. PLoS One 2014; 9:e92605. [PMID: 24663062 PMCID: PMC3963927 DOI: 10.1371/journal.pone.0092605] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Accepted: 02/24/2014] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND RGS9-deficient mice show drug-induced dyskinesia but normal locomotor activity under unchallenged conditions. RESULTS Genes related to Ca2+ signaling and their functions were regulated in RGS9-deficient mice. CONCLUSION Changes in Ca2+ signaling that compensate for RGS9 loss-of-function can explain the normal locomotor activity in RGS9-deficient mice under unchallenged conditions. SIGNIFICANCE Identified signaling components may represent novel targets in antidyskinetic therapy. The long splice variant of the regulator of G-protein signaling 9 (RGS9-2) is enriched in striatal medium spiny neurons and dampens dopamine D2 receptor signaling. Lack of RGS9-2 can promote while its overexpression prevents drug-induced dyskinesia. Other animal models of drug-induced dyskinesia rather pointed towards overactivity of dopamine receptor-mediated signaling. To evaluate changes in signaling pathways mRNA expression levels were determined and compared in wild-type and RGS9-deficient mice. Unexpectedly, expression levels of dopamine receptors were unchanged in RGS9-deficient mice, while several genes related to Ca2+ signaling and long-term depression were differentially expressed when compared to wild type animals. Detailed investigations at the protein level revealed hyperphosphorylation of DARPP32 at Thr34 and of ERK1/2 in striata of RGS9-deficient mice. Whole cell patch clamp recordings showed that spontaneous synaptic events are increased (frequency and size) in RGS9-deficient mice while long-term depression is reduced in acute brain slices. These changes are compatible with a Ca2+-induced potentiation of dopamine receptor signaling which may contribute to the drug-induced dyskinesia in RGS9-deficient mice.
Collapse
|
86
|
Al-Shorbagy MY, El Sayeh BM, Abdallah DM. Additional antiepileptic mechanisms of levetiracetam in lithium-pilocarpine treated rats. PLoS One 2013; 8:e76735. [PMID: 24098559 PMCID: PMC3789684 DOI: 10.1371/journal.pone.0076735] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2013] [Accepted: 08/28/2013] [Indexed: 01/22/2023] Open
Abstract
Several studies have addressed the antiepileptic mechanisms of levetiracetam (LEV); however, its effect on catecholamines and the inflammatory mediators that play a role in epilepsy remain elusive. In the current work, lithium (Li) pretreated animals were administered LEV (500 mg/kg i.p) 30 min before the induction of convulsions by pilocarpine (PIL). Li-PIL-induced seizures were accompanied by increased levels of hippocampal prostaglandin (PG) E2, myeloperoxidase (MPO), tumor necrosis factor-α, and interleukin-10. Moreover, it markedly elevated hippocampal lipid peroxides and nitric oxide levels, while it inhibited the glutathione content. Li-PIL also reduced hippocampal noradrenaline, as well as dopamine contents. Pretreatment with LEV protected against Li-PIL-induced seizures, where it suppressed the severity and delayed the onset of seizures in Li-PIL treated rats. Moreover, LEV reduced PGE2 and MPO, yet it did not affect the level of both cytokines in the hippocampus. LEV also normalized hippocampal noradrenaline, dopamine, glutathione, lipid peroxides, and nitric oxide contents. In conclusion, alongside its antioxidant property, LEV anticonvulsive effect involves catecholamines restoration, as well as inhibition of PGE2, MPO, and nitric oxide.
Collapse
Affiliation(s)
- Muhammad Y. Al-Shorbagy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Bahia M. El Sayeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dalaal M. Abdallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
87
|
FACS array profiling identifies Ecto-5' nucleotidase as a striatopallidal neuron-specific gene involved in striatal-dependent learning. J Neurosci 2013; 33:8794-809. [PMID: 23678122 DOI: 10.1523/jneurosci.2989-12.2013] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The striatopallidal (STP) and striatonigral (STN) neurons constitute the main neuronal populations of the striatum. Despite the increasing knowledge concerning their involvement in multiple tasks associated with the striatum, it is still challenging to understand the precise differential functions of these two neuronal populations and to identify and study new genes involved in these functions. Here, we describe a reliable approach, applied on adult mouse brain, to generate specific STP and STN neuron gene profiles. STP and STN neurons were identified in the same animal using the transgenic Adora2A-Cre × Z/EG mouse model combined with retrograde labeling, respectively. Gene profiling was generated from FACS-purified neurons leading to the identification of new STP and STN neuron-specific genes. Knock-down models based on Cre-dependent lentiviral vector were developed to investigate their function either in striatal or in STP neurons. Thereby, we demonstrate that ecto-5'-nucleotidase (NT5e) is specifically expressed in STP neurons and is at the origin of most of the extracellular adenosine produced in the striatum. Behavioral analysis of striatal and STP neuron knock-down mouse models as well as NT5e knock-out mice demonstrates the implication of this STP neuron enzyme in motor learning.
Collapse
|
88
|
Villalba RM, Smith Y. Differential striatal spine pathology in Parkinson's disease and cocaine addiction: a key role of dopamine? Neuroscience 2013; 251:2-20. [PMID: 23867772 DOI: 10.1016/j.neuroscience.2013.07.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/03/2013] [Indexed: 01/19/2023]
Abstract
In the striatum, the dendritic tree of the two main populations of projection neurons, called "medium spiny neurons (MSNs)", are covered with spines that receive glutamatergic inputs from the cerebral cortex and thalamus. In Parkinson's disease (PD), striatal MSNs undergo an important loss of dendritic spines, whereas aberrant overgrowth of striatal spines occurs following chronic cocaine exposure. This review examines the possibility that opposite dopamine dysregulation is one of the key factors that underlies these structural changes. In PD, nigrostriatal dopamine degeneration results in a significant loss of dendritic spines in the dorsal striatum, while rodents chronically exposed to cocaine and other psychostimulants, display an increase in the density of "thin and immature" spines in the nucleus accumbens (NAc). In rodent models of PD, there is evidence that D2 dopamine receptor-containing MSNs are preferentially affected, while D1-positive cells are the main targets of increased spine density in models of addiction. However, such specificity remains to be established in primates. Although the link between the extent of striatal spine changes and the behavioral deficits associated with these disorders remains controversial, there is unequivocal evidence that glutamatergic synaptic transmission is significantly altered in both diseased conditions. Recent studies have suggested that opposite calcium-mediated regulation of the transcription factor myocyte enhancer factor 2 (MEF2) function induces these structural defects. In conclusion, there is strong evidence that dopamine is a major, but not the sole, regulator of striatal spine pathology in PD and addiction to psychostimulants. Further studies of the role of glutamate and other genes associated with spine plasticity in mediating these effects are warranted.
Collapse
Affiliation(s)
- R M Villalba
- Yerkes National Primate Research Center, Emory University, 954, Gatewood Road NE, Atlanta, GA 30329, USA; UDALL Center of Excellence for Parkinson's Disease, Emory University, 954, Gatewood Road NE, Atlanta, GA 30329, USA.
| | | |
Collapse
|
89
|
Dopamine differentially modulates the excitability of striatal neurons of the direct and indirect pathways in lamprey. J Neurosci 2013; 33:8045-54. [PMID: 23637194 DOI: 10.1523/jneurosci.5881-12.2013] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The functions of the basal ganglia are critically dependent on dopamine. In mammals, dopamine differentially modulates the excitability of the direct and indirect striatal projection neurons, and these populations selectively express dopamine D1 and D2 receptors, respectively. Although the detailed organization of the basal ganglia is conserved throughout the vertebrate phylum, it was unknown whether the differential dopamine modulation of the direct and indirect pathways is present in non-mammalian species. We aim here to determine whether the receptor expression and opposing dopaminergic modulation of the direct and indirect pathways is present in one of the phylogenetically oldest vertebrates, the river lamprey. Using in situ hybridization and patch-clamp recordings, we show that D1 receptors are almost exclusively expressed in the striatal neurons projecting directly to the homolog of the substantia nigra pars reticulata. In addition, the majority of striatal neurons projecting to the homolog of the globus pallidus interna/globus pallidus externa express D1 or D2 receptors. As in mammals, application of dopamine receptor agonists differentially modulates the excitability of these neurons, increasing the excitability of the D1-expressing neurons and decreasing the excitability of D2-expressing neurons. Our results suggest that the segregated expression of the D1 and D2 receptors in the direct and indirect striatal projection neurons has been conserved across the vertebrate phylum. Because dopamine receptor agonists differentially modulate these pathways, increasing the excitability of the direct pathway and decreasing the excitability of the indirect pathway, this organization may be conserved as a mechanism that biases the networks toward action selection.
Collapse
|
90
|
Ustione A, Piston DW, Harris PE. Minireview: Dopaminergic regulation of insulin secretion from the pancreatic islet. Mol Endocrinol 2013; 27:1198-207. [PMID: 23744894 DOI: 10.1210/me.2013-1083] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Exogenous dopamine inhibits insulin secretion from pancreatic β-cells, but the lack of dopaminergic neurons in pancreatic islets has led to controversy regarding the importance of this effect. Recent data, however, suggest a plausible physiologic role for dopamine in the regulation of insulin secretion. We review the literature underlying our current understanding of dopaminergic signaling that can down-regulate glucose-stimulated insulin secretion from pancreatic islets. In this negative feedback loop, dopamine is synthesized in the β-cells from circulating L-dopa, serves as an autocrine signal that is cosecreted with insulin, and causes a tonic inhibition on glucose-stimulated insulin secretion. On the whole animal scale, L-dopa is produced by cells in the gastrointestinal tract, and its concentration in the blood plasma increases following a mixed meal. By reviewing the outcome of certain types of bariatric surgery that result in rapid amelioration of glucose tolerance, we hypothesize that dopamine serves as an "antiincretin" signal that counterbalances the stimulatory effect of glucagon-like peptide 1.
Collapse
Affiliation(s)
- Alessandro Ustione
- Department of Molecular Physiology and Biophysics, Vanderbilt University, 702 Light Hall, Nashville, Tennessee 37232-0615, USA
| | | | | |
Collapse
|
91
|
de Oliveira GV, Gomes PXL, de Araújo FYR, Vasconcelos SMM, Júnior HVN, de Sousa FCF, de Lucena DF, Hyphantis TN, Carvalho AF, Macêdo DS. Prevention of haloperidol-induced alterations in brain acetylcholinesterase activity by vitamins B co-administration in a rodent model of tardive dyskinesia. Metab Brain Dis 2013; 28:53-9. [PMID: 23095989 DOI: 10.1007/s11011-012-9345-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 10/15/2012] [Indexed: 10/27/2022]
Abstract
Tardive dyskinesia (TD) is an iatrogenic syndrome being a significant adverse outcome of typical and atypical antipsychotic therapy. Recently we demonstrated that vitamins B (B1, B6, B12 alone or in combination) were able to prevent haloperidol-induced orofacial dyskinesia (OD) possibly by their antioxidant activity in the striatum, using a well-established model of TD. Here, based on the fact that alterations in cholinergic neurotransmission are related to TD pathophysiology and that vitamins B seems to influence brain cholinergic neurotransmission, we decided to investigate the effects of vitamins B1, B6, B12 and their association, vitamin B cocktail in haloperidol-induced cholinergic alterations, evaluated by alterations in acetylcholinesterase (AChE) activity, in striatum, prefrontal cortex and hippocampus, as a way to determine the participation of cholinergic neurotransmission, in these vitamins antidyskinetic mechanism. Haloperidol 1 mg/kg i.p. daily administration during 21 days to Wistar rats caused OD while decreased AChE activity in all brain areas studied. Vitamins B administration (B1:B6:B12 at 60:60:0.6 mg/kg, s.c) alone and vitamin B cocktail co-administered with haloperidol prevented OD development and increased AChE activity in all brain areas studied, with the maximum activity increment observed in the hippocampus of the animals co-treated with vitamin B12 and vitamin B cocktail. The antidyskinetic drug, clozapine did not induce OD and increased AChE activity similarly to the groups coadministered with vitamin B and HAL. The present data suggest that vitamins B can prevent haloperidol-induced alterations in AChE activity what can be related to the mechanism underlying their antidyskinetic effect.
Collapse
Affiliation(s)
- Gersilene Valente de Oliveira
- Department of Physiology and Pharmacology, Federal University of Ceará, Rua Cel. Nunes de Melo 1127, Fortaleza, Ceará, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Schulz JM, Reynolds JNJ. Pause and rebound: sensory control of cholinergic signaling in the striatum. Trends Neurosci 2012; 36:41-50. [PMID: 23073210 DOI: 10.1016/j.tins.2012.09.006] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 08/07/2012] [Accepted: 09/19/2012] [Indexed: 11/29/2022]
Abstract
Cholinergic interneurons have emerged as one of the key players controlling network functions in the striatum. Extracellularly recorded cholinergic interneurons acquire characteristic responses to sensory stimuli during reward-related learning, including a pause and subsequent rebound in spiking. However, the precise underlying cellular mechanisms have remained elusive. Here, we review recent advances in our understanding of the regulation of cholinergic interneuron activity. We discuss evidence of mechanisms that have been proposed to underlie sensory responses, including antagonistic actions by dopamine, recurrent inhibition via local interneurons, and an intrinsically generated membrane hyperpolarization in response to excitatory inputs. The review highlights outstanding questions and concludes with a model of the sensory responses and their downstream effects through dynamic acetylcholine receptor activation.
Collapse
Affiliation(s)
- Jan M Schulz
- Department of Biomedicine, Physiological Institute, University of Basel, Pestalozzistr. 20, 4056 Basel, Switzerland.
| | | |
Collapse
|
93
|
Abstract
Among the many neuromodulators used by the mammalian brain to regulate circuit function and plasticity, dopamine (DA) stands out as one of the most behaviorally powerful. Perturbations of DA signaling are implicated in the pathogenesis or exploited in the treatment of many neuropsychiatric diseases, including Parkinson's disease (PD), addiction, schizophrenia, obsessive compulsive disorder, and Tourette's syndrome. Although the precise mechanisms employed by DA to exert its control over behavior are not fully understood, DA is known to regulate many electrical and biochemical aspects of neuronal function including excitability, synaptic transmission, integration and plasticity, protein trafficking, and gene transcription. In this Review, we discuss the actions of DA on ionic and synaptic signaling in neurons of the prefrontal cortex and striatum, brain areas in which dopaminergic dysfunction is thought to be central to disease.
Collapse
Affiliation(s)
- Nicolas X Tritsch
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
94
|
Maheux J, St-Hilaire M, Voyer D, Tirotta E, Borrelli E, Rouillard C, Rompré PP, Lévesque D. Dopamine D(2) Antagonist-Induced Striatal Nur77 Expression Requires Activation of mGlu5 Receptors by Cortical Afferents. Front Pharmacol 2012; 3:153. [PMID: 22912617 PMCID: PMC3418524 DOI: 10.3389/fphar.2012.00153] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 07/25/2012] [Indexed: 01/03/2023] Open
Abstract
Dopamine D2 receptor antagonists modulate gene transcription in the striatum. However, the molecular mechanism underlying this effect remains elusive. Here we used the expression of Nur77, a transcription factor of the orphan nuclear receptor family, as readout to explore the role of dopamine, glutamate, and adenosine receptors in the effect of a dopamine D2 antagonist in the striatum. First, we investigated D2 antagonist-induced Nur77 mRNA in D2L receptor knockout mice. Surprisingly, deletion of the D2L receptor isoform did not reduce eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Next, we tested if an ibotenic acid-induced cortical lesion could block the effect of eticlopride on Nur77 expression. Cortical lesions strongly reduced eticlopride-induced striatal upregulation of Nur77 mRNA. Then, we investigated if glutamatergic neurotransmission could modulate eticlopride-induced Nur77 expression. A combination of a metabotropic glutamate type 5 (mGlu5) and adenosine A2A receptor antagonists abolished eticlopride-induced upregulation of Nur77 mRNA levels in the striatum. Direct modulation of Nur77 expression by striatal glutamate and adenosine receptors was confirmed using corticostriatal organotypic cultures. Taken together, these results indicate that blockade of postsynaptic D2 receptors is not sufficient to trigger striatal transcriptional activity and that interaction with corticostriatal presynaptic D2 receptors and subsequent activation of postsynaptic glutamate and adenosine receptors in the striatum is required. Thus, these results uncover an unappreciated role of presynaptic D2 heteroreceptors and support a prominent role of glutamate in the effect of D2 antagonists.
Collapse
Affiliation(s)
- Jérôme Maheux
- Faculté de Pharmacie, Université de Montréal Montréal, QC, Canada
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Abstract
Tonically active neurons in the primate striatum, believed to be cholinergic interneurons (CINs), respond to sensory stimuli with a pronounced pause in firing. Although inhibitory and neuromodulatory mechanisms have been implicated, it is not known how sensory stimuli induce firing pauses in CINs in vivo. Here, we used intracellular recordings in anesthetized rats to investigate the effectiveness of a visual stimulus at modulating spike activity in CINs. Initially, no neuron was visually responsive. However, following pharmacological activation of tecto-thalamic pathways, the firing pattern of most CINs was significantly modulated by a light flashed into the contralateral eye. Typically, this induced an excitation followed by a pause in spike firing, via an underlying depolarization-hyperpolarization membrane sequence. Stimulation of thalamic afferents in vitro evoked similar responses that were independent of synaptic inhibition. Thus, visual stimulation likely induces an initial depolarization via a subcortical tecto-thalamo-striatal pathway, pausing CIN firing through an intrinsic afterhyperpolarization.
Collapse
|
96
|
Sciamanna G, Tassone A, Martella G, Mandolesi G, Puglisi F, Cuomo D, Madeo G, Ponterio G, Standaert DG, Bonsi P, Pisani A. Developmental profile of the aberrant dopamine D2 receptor response in striatal cholinergic interneurons in DYT1 dystonia. PLoS One 2011; 6:e24261. [PMID: 21912682 PMCID: PMC3166312 DOI: 10.1371/journal.pone.0024261] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2011] [Accepted: 08/03/2011] [Indexed: 01/11/2023] Open
Abstract
Background DYT1 dystonia, a severe form of genetically determined human dystonia, exhibits reduced penetrance among carriers and begins usually during adolescence. The reasons for such age dependence and variability remain unclear. Methods and Results We characterized the alterations in D2 dopamine receptor (D2R) signalling in striatal cholinergic interneurons at different ages in mice overexpressing human mutant torsinA (hMT). An abnormal excitatory response to the D2R agonist quinpirole was recorded at postnatal day 14, consisting of a membrane depolarization coupled to an increase in spiking frequency, and persisted unchanged at 3 and 9 months in hMT mice, compared to mice expressing wild-type human torsinA and non-transgenic mice. This response was blocked by the D2R antagonist sulpiride and depended upon G-proteins, as it was prevented by intrapipette GDP-β-S. Patch-clamp recordings from dissociated interneurons revealed a significant increase in the Cav2.2-mediated current fraction at all ages examined. Consistently, chelation of intracellular calcium abolished the paradoxical response to quinpirole. Finally, no gross morphological changes were observed during development. Conclusions These results suggest that an imbalanced striatal dopaminergic/cholinergic signaling occurs early in DYT1 dystonia and persists along development, representing a susceptibility factor for symptom generation.
Collapse
Affiliation(s)
- Giuseppe Sciamanna
- Department of Neuroscience, University “Tor Vergata”, Rome, Italy
- Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia I.R.C.C.S., Rome, Italy
| | - Annalisa Tassone
- Department of Neuroscience, University “Tor Vergata”, Rome, Italy
- Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia I.R.C.C.S., Rome, Italy
| | | | - Georgia Mandolesi
- Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia I.R.C.C.S., Rome, Italy
| | - Francesca Puglisi
- Department of Neuroscience, University “Tor Vergata”, Rome, Italy
- Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia I.R.C.C.S., Rome, Italy
| | - Dario Cuomo
- Department of Neuroscience, University “Tor Vergata”, Rome, Italy
| | - Grazia Madeo
- Department of Neuroscience, University “Tor Vergata”, Rome, Italy
| | - Giulia Ponterio
- Department of Neuroscience, University “Tor Vergata”, Rome, Italy
| | - David George Standaert
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Paola Bonsi
- Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia I.R.C.C.S., Rome, Italy
| | - Antonio Pisani
- Department of Neuroscience, University “Tor Vergata”, Rome, Italy
- Laboratory of Neurophysiology and Plasticity, Fondazione Santa Lucia I.R.C.C.S., Rome, Italy
- * E-mail:
| |
Collapse
|
97
|
Surmeier DJ, Carrillo-Reid L, Bargas J. Dopaminergic modulation of striatal neurons, circuits, and assemblies. Neuroscience 2011; 198:3-18. [PMID: 21906660 DOI: 10.1016/j.neuroscience.2011.08.051] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Revised: 08/18/2011] [Accepted: 08/23/2011] [Indexed: 12/19/2022]
Abstract
In recent years, there has been a great deal of progress toward understanding the role of the striatum and dopamine in action selection. The advent of new animal models and the development of optical techniques for imaging and stimulating select neuronal populations have provided the means by which identified synapses, cells, and circuits can be reliably studied. This review attempts to summarize some of the key advances in this broad area, focusing on dopaminergic modulation of intrinsic excitability and synaptic plasticity in canonical microcircuits in the striatum as well as recent work suggesting that there are neuronal assemblies within the striatum devoted to particular types of computation and possibly action selection.
Collapse
Affiliation(s)
- D J Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.
| | | | | |
Collapse
|
98
|
Dopamine receptors and Parkinson's disease. INTERNATIONAL JOURNAL OF MEDICINAL CHEMISTRY 2011; 2011:403039. [PMID: 25954517 PMCID: PMC4411877 DOI: 10.1155/2011/403039] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Revised: 03/04/2011] [Accepted: 04/12/2011] [Indexed: 01/03/2023]
Abstract
Parkinson's disease (PD) is a progressive extrapyramidal motor
disorder. Pathologically, this disease is characterized by the selective dopaminergic (DAergic) neuronal degeneration in the substantia nigra. Correcting the DA deficiency in PD with levodopa (L-dopa) significantly attenuates the motor symptoms; however, its effectiveness often declines, and L-dopa-related adverse effects emerge after long-term treatment. Nowadays, DA receptor agonists are useful medication even regarded as first choice to delay the starting of L-dopa therapy. In advanced stage of PD, they are also used as adjunct therapy together with L-dopa. DA receptor agonists act by stimulation of presynaptic and postsynaptic DA receptors. Despite the usefulness, they could be causative drugs for valvulopathy and nonmotor complication such as DA dysregulation syndrome (DDS). In this paper, physiological characteristics of DA receptor familyare discussed. We also discuss the validity, benefits, and specific adverse effects of pharmaceutical DA receptor agonist.
Collapse
|
99
|
Amemori KI, Gibb LG, Graybiel AM. Shifting responsibly: the importance of striatal modularity to reinforcement learning in uncertain environments. Front Hum Neurosci 2011; 5:47. [PMID: 21660099 PMCID: PMC3105240 DOI: 10.3389/fnhum.2011.00047] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Accepted: 05/06/2011] [Indexed: 11/28/2022] Open
Abstract
We propose here that the modular organization of the striatum reflects a context-sensitive modular learning architecture in which clustered striosome-matrisome domains participate in modular reinforcement learning (RL). Based on anatomical and physiological evidence, it has been suggested that the modular organization of the striatum could represent a learning architecture. There is not, however, a coherent view of how such a learning architecture could relate to the organization of striatal outputs into the direct and indirect pathways of the basal ganglia, nor a clear formulation of how such a modular architecture relates to the RL functions attributed to the striatum. Here, we hypothesize that striosome-matrisome modules not only learn to bias behavior toward specific actions, as in standard RL, but also learn to assess their own relevance to the environmental context and modulate their own learning and activity on this basis. We further hypothesize that the contextual relevance or "responsibility" of modules is determined by errors in predictions of environmental features and that such responsibility is assigned by striosomes and conveyed to matrisomes via local circuit interneurons. To examine these hypotheses and to identify the general requirements for realizing this architecture in the nervous system, we developed a simple modular RL model. We then constructed a network model of basal ganglia circuitry that includes these modules and the direct and indirect pathways. Based on simple assumptions, this model suggests that while the direct pathway may promote actions based on striatal action values, the indirect pathway may act as a gating network that facilitates or suppresses behavioral modules on the basis of striatal responsibility signals. Our modeling functionally unites the modular compartmental organization of the striatum with the direct-indirect pathway divisions of the basal ganglia, a step that we suggest will have important clinical implications.
Collapse
Affiliation(s)
- Ken-ichi Amemori
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Leif G. Gibb
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| | - Ann M. Graybiel
- McGovern Institute for Brain Research, Massachusetts Institute of TechnologyCambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of TechnologyCambridge, MA, USA
| |
Collapse
|
100
|
Beaulieu JM, Gainetdinov RR. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol Rev 2011; 63:182-217. [PMID: 21303898 DOI: 10.1124/pr.110.002642] [Citation(s) in RCA: 1895] [Impact Index Per Article: 135.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
G protein-coupled dopamine receptors (D1, D2, D3, D4, and D5) mediate all of the physiological functions of the catecholaminergic neurotransmitter dopamine, ranging from voluntary movement and reward to hormonal regulation and hypertension. Pharmacological agents targeting dopaminergic neurotransmission have been clinically used in the management of several neurological and psychiatric disorders, including Parkinson's disease, schizophrenia, bipolar disorder, Huntington's disease, attention deficit hyperactivity disorder (ADHD(1)), and Tourette's syndrome. Numerous advances have occurred in understanding the general structural, biochemical, and functional properties of dopamine receptors that have led to the development of multiple pharmacologically active compounds that directly target dopamine receptors, such as antiparkinson drugs and antipsychotics. Recent progress in understanding the complex biology of dopamine receptor-related signal transduction mechanisms has revealed that, in addition to their primary action on cAMP-mediated signaling, dopamine receptors can act through diverse signaling mechanisms that involve alternative G protein coupling or through G protein-independent mechanisms via interactions with ion channels or proteins that are characteristically implicated in receptor desensitization, such as β-arrestins. One of the future directions in managing dopamine-related pathologic conditions may involve a transition from the approaches that directly affect receptor function to a precise targeting of postreceptor intracellular signaling modalities either directly or through ligand-biased signaling pharmacology. In this comprehensive review, we discuss dopamine receptor classification, their basic structural and genetic organization, their distribution and functions in the brain and the periphery, and their regulation and signal transduction mechanisms. In addition, we discuss the abnormalities of dopamine receptor expression, function, and signaling that are documented in human disorders and the current pharmacology and emerging trends in the development of novel therapeutic agents that act at dopamine receptors and/or on related signaling events.
Collapse
Affiliation(s)
- Jean-Martin Beaulieu
- Department of Psychiatry and Neuroscience, Faculty of Medicine, Université Laval–Centre de Recherche de l'Université Laval Robert-Giffard, Québec-City, Québec, Canada
| | | |
Collapse
|