51
|
Hone AJ, Meyer EL, McIntyre M, McIntosh JM. Nicotinic acetylcholine receptors in dorsal root ganglion neurons include the α6β4* subtype. FASEB J 2011; 26:917-26. [PMID: 22024738 DOI: 10.1096/fj.11-195883] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The α6-containing nicotinic acetylcholine receptors (nAChRs) have recently been implicated in diseases of the central nervous system (CNS), including Parkinson's disease and substance abuse. In contrast, little is known about the role of α6* nAChRs in the peripheral nervous system (where the asterisk denotes the possible presence of additional subunits). Dorsal root ganglia (DRG) neurons are known to express nAChRs with a pharmacology consistent with an α7, α3β4*, and α4β2* composition. Here we present evidence that DRG neurons also express α6* nAChRs. We used RT-PCR to show the presence of α6 subunit transcripts and patch-clamp electrophysiology together with subtype-selective α-conotoxins to pharmacologically characterize the nAChRs in rat DRG neurons. α-Conotoxin BuIA (500 nM) blocked acetylcholine-gated currents (I(ACh)) by 90.3 ± 3.0%; the recovery from blockade was very slow, indicating a predominance of α(x)β4* nAChRs. Perfusion with either 300 nM BuIA[T5A;P6O] or 200 nM MII[E11A], α-conotoxins that target the α6β4* subtype, blocked I(ACh) by 49.3 ± 5 and 46.7 ± 8%, respectively. In these neurons, I(ACh) was relatively insensitive to 200 nM ArIB[V11L;V16D] (9.4±2.0% blockade) or 500 nM PnIA (23.0±4% blockade), α-conotoxins that target α7 and α3β2*/α6β2* nAChRs, respectively. We conclude that α6β4* nAChRs are among the subtypes expressed by DRG, and to our knowledge, this is the first demonstration of α6β4* in neurons outside the CNS.
Collapse
Affiliation(s)
- Arik J Hone
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, USA
| | | | | | | |
Collapse
|
52
|
Hone AJ, Meyer EL, McIntyre M, McIntosh JM. Nicotinic cholinergic receptors in dorsal root ganglion neurons include the α6β4* subtype. Biochem Pharmacol 2011. [DOI: 10.1016/j.bcp.2011.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
53
|
Pérez-Alvarez A, Hernández-Vivanco A, McIntosh JM, Albillos A. Native α6β4* nicotinic receptors control exocytosis in human chromaffin cells of the adrenal gland. FASEB J 2011; 26:346-54. [PMID: 21917987 DOI: 10.1096/fj.11-190223] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In the present study, we have electrophysiologically characterized native nicotinic acetylcholine receptors (nAChRs) in human chromaffin cells of the adrenal gland as well as their contribution to the exocytotic process. α-Conotoxin AuIB blocked by 14 ± 1% the acetylcholine (ACh)-induced nicotinic current. α-Conotoxin MII (α-Ctx MII) exhibited an almost full blockade of the nicotinic current at nanomolar concentrations (IC(50)=21.6 nM). The α6*-preferring α-Ctx MII mutant analogs, α-Ctx MII[H9A,L15A] and α-Ctx MII[S4A,E11A,L15A], blocked nAChR currents with an IC(50) of 217.8 and 33 nM, respectively. These data reveal that nAChRs in these cells include the α6* subtype. The washout of the blockade exerted by α-conotoxin BuIA (α-Ctx BuIA; 1 μM) on ACh-evoked currents was slight and slow, arguing in favor of the presence of a β4 subunit in the nAChR composition. Exocytosis was almost fully blocked by 1 μM α-Ctx MII, its mutant analogs, or α-Ctx BuIA. Finally, the fluorescent analog Alexa Fluor 546-BuIA showed distinct staining in these cells. Our results reveal that α6β4* nAChRs are expressed and contribute to exocytosis in human chromaffin cells of the adrenal gland, the main source of adrenaline under stressful situations.
Collapse
Affiliation(s)
- Alberto Pérez-Alvarez
- Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain.
| | | | | | | |
Collapse
|
54
|
Nakamura S, Bradley RM. Characteristics of sodium currents in rat geniculate ganglion neurons. J Neurophysiol 2011; 106:2982-91. [PMID: 21917997 DOI: 10.1152/jn.00369.2011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Geniculate ganglion (GG) cell bodies of chorda tympani (CT), greater superficial petrosal (GSP), and posterior auricular (PA) nerves transmit orofacial sensory information to the rostral nucleus of the solitary tract. We have used whole cell recording to investigate the characteristics of the Na(+) channels in isolated Fluorogold-labeled GG neurons that innervate different peripheral receptive fields. GG neurons expressed two classes of Na(+) channels, TTX sensitive (TTX-S) and TTX resistant (TTX-R). The majority of GG neurons expressed TTX-R currents of different amplitudes. TTX-R currents were relatively small in 60% of the neurons but were large in 12% of the sampled population. In a further 28% of the neurons, TTX completely abolished all Na(+) currents. Application of TTX completely inhibited action potential generation in all CT and PA neurons but had little effect on the generation of action potentials in 40% of GSP neurons. Most CT, GSP, and PA neurons stained positively with IB(4), and 27% of the GSP neurons were capsaicin sensitive. The majority of IB(4)-positive GSP neurons with large TTX-R Na(+) currents responded to capsaicin, whereas IB(4)-positive GSP neurons with small TTX-R Na(+) currents were capsaicin insensitive. These data demonstrate the heterogeneity of GG neurons and indicate the existence of a subset of GSP neurons sensitive to capsaicin, usually associated with nociceptors. Since there are no reports of nociceptors in the GSP receptive field, the role of these capsaicin-sensitive neurons is not clear.
Collapse
Affiliation(s)
- Shiro Nakamura
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | | |
Collapse
|
55
|
Yalcin I, Charlet A, Cordero-Erausquin M, Tessier LH, Picciotto MR, Schlichter R, Poisbeau P, Freund-Mercier MJ, Barrot M. Nociceptive thresholds are controlled through spinal β2-subunit-containing nicotinic acetylcholine receptors. Pain 2011; 152:2131-2137. [DOI: 10.1016/j.pain.2011.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 04/08/2011] [Accepted: 05/08/2011] [Indexed: 11/29/2022]
|
56
|
Honda M, Takenaka A, Inoue S, Chancellor MB, Yoshimura N. Sensory neurone-specific receptor-mediated regulation of micturition reflex in urethane-anaesthetized rats. BJU Int 2011; 109:628-33. [PMID: 21729234 DOI: 10.1111/j.1464-410x.2011.10400.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVE • To investigate the effect of sensory neurone-specific receptors (SNSRs) activation on the micturition reflex in rats. MATERIALS AND METHODS • Continuous cystometrograms (CMGs, 0.04 mL/min) were performed in female Sprague-Dawley rats under urethane anaesthesia. • After stable micturition cycles were established, a selective rat SNSR1 agonist, bovine adrenal medulla 8-22 (BAM8-22), was administered intravenously (i.v.) or intrathecally (i.t.) in normal rats or rats pretreated with capsaicin 4 days before the experiments. • Micturition variables were recorded and compared before and after drug administration. RESULTS • Administration (i.v.) of BAM8-22 (3-100 µg/kg) significantly increased intercontraction intervals in a dose-dependent fashion, but did not affect residual urine or baseline pressure at any doses tested. • Administration (i.t.) of BAM8-22 (0.01-0.3 µg) also increased intercontraction intervals in a dose-dependent fashion, but did not affect residual urine or baseline pressure at any doses tested. • These inhibitory effects of i.v. (30 µg/kg) or i.t. (0.3 µg) administration of BAM8-22 still occurred after capsaicin pretreatment. CONCLUSIONS • These results indicate that in urethane-anaesthetized rats activation of SNSRs can inhibit the micturition reflex via pathways independent of capsaicin-sensitive C-fibres. • Thus SNSRs could be a potential target for the treatment of bladder dysfunction, e.g. overactive bladder.
Collapse
Affiliation(s)
- Masashi Honda
- Department of Urology, Tottori University School of Medicine, Yonago, Japan
| | | | | | | | | |
Collapse
|
57
|
Kalappa BI, Feng L, Kem WR, Gusev AG, Uteshev VV. Mechanisms of facilitation of synaptic glutamate release by nicotinic agonists in the nucleus of the solitary tract. Am J Physiol Cell Physiol 2011; 301:C347-61. [PMID: 21613611 DOI: 10.1152/ajpcell.00473.2010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The nucleus of the solitary tract (NTS) is the principal integrating relay in the processing of visceral sensory information. Functional nicotinic acetylcholine receptors (nAChRs) have been found on presynaptic glutamatergic terminals in subsets of caudal NTS neurons. Activation of these receptors has been shown to enhance synaptic release of glutamate and thus may modulate autonomic sensory-motor integration and visceral reflexes. However, the mechanisms of nAChR-mediated facilitation of synaptic glutamate release in the caudal NTS remain elusive. This study uses rat horizontal brainstem slices, patch-clamp electrophysiology, and fluorescent Ca(2+) imaging to test the hypothesis that a direct Ca(2+) entrance into glutamatergic terminals through active presynaptic non-α7- or α7-nAChR-mediated ion channels is sufficient to trigger synaptic glutamate release in subsets of caudal NTS neurons. The results of this study demonstrate that, in the continuous presence of 0.3 μM tetrodotoxin, a selective blocker of voltage-activated Na(+) ion channels, facilitation of synaptic glutamate release by activation of presynaptic nAChRs (detected as an increase in the frequency of miniature excitatory postsynaptic currents) requires external Ca(2+) but does not require activation of presynaptic Ca(2+) stores and presynaptic high- and low-threshold voltage-activated Ca(2+) ion channels. Expanding the knowledge of mechanisms and pharmacology of nAChRs in the caudal NTS should benefit therapeutic approaches aimed at restoring impaired autonomic homeostasis.
Collapse
Affiliation(s)
- Bopanna I Kalappa
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL 62702, USA
| | | | | | | | | |
Collapse
|
58
|
Activation of M3 muscarinic receptors inhibits T-type Ca(2+) channel currents via pertussis toxin-sensitive novel protein kinase C pathway in small dorsal root ganglion neurons. Cell Signal 2011; 23:1057-67. [PMID: 21329754 DOI: 10.1016/j.cellsig.2011.02.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 01/28/2011] [Accepted: 02/07/2011] [Indexed: 11/23/2022]
Abstract
Cobrotoxin (CbT), a short-chain postsynaptic α-neurotoxin, has been reported to play a role in analgesia. However, to date, the detailed mechanisms still remain unknown. In the present study, we identify a novel functional role of CbT in modulating T-type Ca(2+) channel currents (T-currents) in small dorsal root ganglia (DRG) neurons as well as pain behaviors in mice. We found that CbT inhibited T-currents in a dose-dependent manner. CbT at 1μM reversibly inhibited T-currents by ~26.3%. This inhibitory effect was abolished by the non-selective muscarinic acetylcholine receptor (mAChR) antagonist atropine, or the selective M3 mAChR antagonist 4-DAMP, while naloxone, an opioid receptor antagonist had no effect. Intracellular infusion of GDP-β-S or pretreatment of the cells with pertussis toxin (PTX) completely blocked the inhibitory effects of CbT. Using depolarizing prepulse, we found the absence of direct binding between G-protein βγ subunits and T-type Ca(2+) channels in CbT-induced T-current inhibition. CbT responses were abolished by the phospholipase C inhibitor U73122 (but not the inactive analog U73343). The classical and novel protein kinase C (nPKC) antagonist chelerythrine chlorid or GF109203X abolished CbT responses, whereas the classical PKC antagonist Ro31-8820 or inhibition of PKA elicited no such effects. Intrathecal administration of CbT (5μg/kg) produced antinociceptive effects in mechanical, thermal, and inflammatory pain models. Moreover, CbT-induced antinociception could be abrogated by 4-DAMP. Taken together, these results suggest that CbT acting through M3 mAChR inhibits T-currents via a PTX-sensitive nPKC pathway in small DRG neurons, which could contribute to its analgesic effects in mice.
Collapse
|
59
|
Tang JS, Kiyatkin EA. Fluctuations in central and peripheral temperatures induced by intravenous nicotine: central and peripheral contributions. Brain Res 2011; 1383:141-53. [PMID: 21295014 DOI: 10.1016/j.brainres.2011.01.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/24/2011] [Accepted: 01/26/2011] [Indexed: 11/19/2022]
Abstract
Nicotine (NIC) is a highly addictive substance that interacts with different subtypes of nicotinic acetylcholine receptors widely distributed in the central and peripheral nervous systems. While the direct action of NIC on central neurons appears to be essential for its reinforcing properties, the role of peripheral actions of this drug remains a matter of controversy. In this study, we examined changes in locomotor activity and temperature fluctuations in the brain (nucleus accumbens and ventral tegmental area), temporal muscle, and skin induced by intravenous (iv) NIC at low human-relevant doses (10 and 30μg/kg) in freely moving rats. These effects were compared to those induced by social interaction, an arousing procedure that induces behavioral activation and temperature responses via pure neural mechanisms, and iv injections of a peripherally acting NIC analog, NIC pyrrolidine methiodide (NIC-PM) used at equimolar doses. We found that NIC at 30μg/kg induces a modest locomotor activation, rapid and strong decrease in skin temperature, and weak increases in brain and muscle temperature. While these effects were qualitatively similar to those induced by social interaction, they were much weaker and showed a tendency to increase with repeated drug administrations. In contrast, NIC-PM did not affect locomotion and induced much weaker than NIC increases in brain and muscle temperatures and decreases in skin temperature; these effects showed a tendency to be weaker with repeated drug administrations. Our data indicate that NIC's actions in the brain are essential to induce locomotor activation and brain and body hyperthermic responses. However, rapid peripheral action of NIC on sensory afferents could be an important factor in triggering its central effects, contributing to neural and physiological activation following repeated drug use.
Collapse
Affiliation(s)
- Jeremy S Tang
- Behavioral Neuroscience Branch, National Institute on Drug Abuse–Intramural Research Program, National Institutes of Health, DHHS,333 Cassell Drive, Baltimore, MD 21224, USA
| | | |
Collapse
|
60
|
Abstract
The lower urinary tract (LUT), which consists of the urinary bladder and its outlet, the urethra, is responsible for the storage and periodic elimination of bodily waste in the form of urine. The LUT is controlled by a complex set of peripheral autonomic and somatic nerves, which in turn are controlled through neural pathways in the spinal cord and brain. This influence of the central nervous system allows for the conscious control of the bladder, allowing the individual to choose an appropriate place to urinate. Defects in the CNS pathways that control the LUT can lead to incontinence, an embarrassing condition that affects over 200 million people worldwide. As a first step in understanding the neural control of the bladder, we will discuss the neuroanatomy of the LUT, focusing first on the peripheral neural pathways, including the sensory pathways that transmit information on bladder filling and the motoneurons that control LUT muscle contractility. We will also discuss the organization of the central pathways in the spinal cord and brainstem that are responsible for coordinating bladder activity, promoting continuous storage of urine except for a few short minutes per day when micturition takes place. To conclude, we will discuss current studies underway that aim to elucidate the higher areas of the brain that control the voluntary nature of micturition in higher organisms.
Collapse
Affiliation(s)
- Jonathan M Beckel
- Department of Anatomy and Cell Biology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | |
Collapse
|
61
|
Grove CL, Szabo TM, McIntosh JM, Do SC, Waldeck RF, Faber DS. Fast synaptic transmission in the goldfish CNS mediated by multiple nicotinic receptors. J Physiol 2010; 589:575-95. [PMID: 21115642 DOI: 10.1113/jphysiol.2010.197608] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Usually nicotinic receptors in the central nervous system only influence the strength of a signal between neurons. At a few critical connections, for instance some of those involved in the flight response, nicotinic receptors not only modulate the signal, they actually determine whether a signal is conveyed or not. We show at one of the few such connections accessible for study, up to three different nicotinic receptor subtypes mediate the signal. The subtypes appear to be clustered in separate locations. Depending on the number and combination of the subtypes present the signal can range from short to long duration and from low to high amplitude. This provides a critical connection with a built-in plasticity and may enable it to adapt to a changing environment.
Collapse
Affiliation(s)
- Charlotte L Grove
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | |
Collapse
|
62
|
Abdrakhmanova GR, AlSharari S, Kang M, Damaj MI, Akbarali HI. {alpha}7-nAChR-mediated suppression of hyperexcitability of colonic dorsal root ganglia neurons in experimental colitis. Am J Physiol Gastrointest Liver Physiol 2010; 299:G761-8. [PMID: 20595621 PMCID: PMC2950695 DOI: 10.1152/ajpgi.00175.2010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Controlled clinical trials of nicotine transdermal patch for treatment of ulcerative colitis have been shown to improve histological and global clinical scores of colitis. Here we report that nicotine (1 microM) suppresses in vitro hyperexcitability of colonic dorsal root ganglia (DRG) (L(1)-L(2)) neurons in the dextran sodium sulfate (DSS)-induced mouse model of acute colonic inflammation. Nicotine gradually reduced regenerative multiple-spike action potentials in colitis mice to a single action potential. Nicotine's effect on hyperexcitability of inflamed neurons was blocked in the presence of an alpha(7)-nicotinic acetylcholine receptor (nAChR) antagonist, methyllicaconitine, while choline, the alpha(7)-nAChR agonist, induced a similar effect to that of nicotine. Consistent with these findings, nicotine failed to suppress hyperexcitability in colonic DRG neurons from DSS-treated alpha(7) knockout mice. Furthermore, colonic DRG neurons from DSS-treated alpha(7) knockout mice were characterized by lower rheobase (10 +/- 5 vs. 77 +/- 13 pA, respectively) and current threshold (28 +/- 4 vs. 103 +/- 8 pA, respectively) levels than DSS-treated C57BL/J6 mice. An interesting observation of this study is that 8 of 12 colonic DRG (L(1)-L(2)) neurons from control alpha(7) knockout mice exhibited multiple-spike action potential firing while no wild-type neurons did. Overall, our findings suggest that nicotine at low 1 microM concentration suppresses in vitro hyperexcitability of inflamed colonic DRG neurons in a mouse model of acute colonic inflammation via activation of alpha(7)-nAChRs.
Collapse
Affiliation(s)
- Galya R. Abdrakhmanova
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Shakir AlSharari
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Minho Kang
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - M. Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| | - Hamid I. Akbarali
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
63
|
A transcriptional regulatory element critical for CHRNB4 promoter activity in vivo. Neuroscience 2010; 170:1056-64. [PMID: 20696214 DOI: 10.1016/j.neuroscience.2010.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 08/01/2010] [Accepted: 08/03/2010] [Indexed: 11/23/2022]
Abstract
Genome-wide association studies have underscored the importance of the clustered neuronal nicotinic acetylcholine receptor (nAChR) subunit genes with respect to nicotine dependence as well as lung cancer susceptibility. CHRNB4, which encodes the nAChR β4 subunit, plays a major role in the molecular mechanisms that govern nicotine withdrawal. Thus, elucidating how expression of the β4 gene is regulated is critical for understanding the pathophysiology of nicotine addiction. We previously identified a CA box regulatory element, (5'-CCACCCCT-3') critical for β4 promoter activity in vitro. We further demonstrated that a 2.3-kb fragment of the β4 promoter region containing the 5'-CCACCCCT-3' regulatory element in the β4 gene promoter (CA box) is capable of directing cell-type specific expression of a reporter gene to a myriad of brain regions that endogenously express the β4 gene. To test the hypothesis that the CA box is critical for β4 promoter activity in vivo, transgenic animals expressing a mutant form of the β4 promoter were generated. Reporter gene expression was not detected in any tissue or cell type at embryonic day 18.5 (ED 18.5). Similarly, we observed drastically reduced reporter gene expression at postnatal day 30 (PD30) when compared to wild type (WT) transgenic animals. Finally, we demonstrated that CA box mutation results in decreased interaction of the transcription factor Sp1 with the mutant β4 promoter. Taken together these results demonstrate that the CA box is critical for β4 promoter activity in vivo.
Collapse
|
64
|
Abdrakhmanova GR, Blough BE, Nesloney C, Navarro HA, Damaj MI, Carroll FI. In vitro and in vivo characterization of a novel negative allosteric modulator of neuronal nAChRs. Neuropharmacology 2010; 59:511-7. [PMID: 20633568 DOI: 10.1016/j.neuropharm.2010.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 06/30/2010] [Accepted: 07/05/2010] [Indexed: 11/16/2022]
Abstract
In this study, we compared the in vitro and in vivo neuronal nicotinic acetylcholine receptor (nAChR) properties of 1,2,3,3a,4,8b-hexahydro-2-benzyl-6-N,N-dimethylamino-1-methylindeno[1,2,-b]pyrrole (HDMP, 4) to that of negative allosteric modulator (NAM), PCP. Patch-clamp experiments showed that HDMP exhibited an inhibitory functional activity at α7 nAChRs with an IC(50) of 0.07 μM, and was 357- and 414-fold less potent at α4β2 and α3β4 nAChRs, with IC(50)s of 25.1 and 29.0 μM, respectively. Control patch-clamp experiments showed that PCP inhibited α7, α4β2 and α3β4 nAChRs with IC(50)s of to 1.3, 29.0 and 6.4 μM, respectively. Further, HDMP did not exhibit any appreciable binding affinity to either α7 or α4β2 nAChRs, suggesting its action via a non-competitive mechanism at these neuronal nAChR subtypes. The in vivo study showed that HDMP was a potent antagonist of nicotine-induced analgesia in the tail-flick (AD(50)=0.008 mg/kg), but not in the hot-plate test. All together, our in vitro and in vivo data suggest that HDMP is a novel NAM of neuronal nAChRs with potent inhibitory activity at α7 nAChR subtype at concentrations ≤ 1μM that are not effective for α4β2 and α3β4 nAChRs.
Collapse
Affiliation(s)
- Galya R Abdrakhmanova
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, 1112 E. Clay Str., P.O. Box 980524, Richmond, VA 23298, USA.
| | | | | | | | | | | |
Collapse
|
65
|
Hochman S, Shreckengost J, Kimura H, Quevedo J. Presynaptic inhibition of primary afferents by depolarization: observations supporting nontraditional mechanisms. Ann N Y Acad Sci 2010; 1198:140-52. [PMID: 20536928 DOI: 10.1111/j.1749-6632.2010.05436.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Primary afferent neurotransmission is the fundamental first step in the central processing of sensory stimuli and is controlled by pre- and postsynaptic inhibitory mechanisms. Presynaptic inhibition (PSI) is probably the more powerful form of inhibitory control in all primary afferent fibers. A major mechanism producing afferent PSI is via a channel-mediated depolarization of their intraspinal terminals, which can be recorded extracellularly as a dorsal root potential (DRP). Based on measures of DRP latency it has been inferred that this primary afferent depolarization (PAD) of low-threshold afferents is mediated by minimally trisynaptic pathways with pharmacologically identified GABAergic interneurons forming last-order axo-axonic synapses onto afferent terminals. There is still no "squeaky clean" evidence of this organization. This paper describes recent and historical work that supports the existence of PAD occurring by more direct pathways and with a complex pharmacology that questions the proprietary role of GABA and GABA(A) receptors in this process. Cholinergic transmission in particular may contribute significantly to PAD, including via direct release from primary afferents.
Collapse
Affiliation(s)
- Shawn Hochman
- Department of Physiology, Emory University, Atlanta, Georgia, USA.
| | | | | | | |
Collapse
|
66
|
Improgo MRD, Scofield MD, Tapper AR, Gardner PD. The nicotinic acetylcholine receptor CHRNA5/A3/B4 gene cluster: dual role in nicotine addiction and lung cancer. Prog Neurobiol 2010; 92:212-26. [PMID: 20685379 DOI: 10.1016/j.pneurobio.2010.05.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 05/15/2010] [Accepted: 05/27/2010] [Indexed: 01/19/2023]
Abstract
More than 1 billion people around the world smoke, with 10 million cigarettes sold every minute. Cigarettes contain thousands of harmful chemicals including the psychoactive compound, nicotine. Nicotine addiction is initiated by the binding of nicotine to nicotinic acetylcholine receptors, ligand-gated cation channels activated by the endogenous neurotransmitter, acetylcholine. These receptors serve as prototypes for all ligand-gated ion channels and have been extensively studied in an attempt to elucidate their role in nicotine addiction. Many of these studies have focused on heteromeric nicotinic acetylcholine receptors containing α4 and β2 subunits and homomeric nicotinic acetylcholine receptors containing the α7 subunit, two of the most abundant subtypes expressed in the brain. Recently however, a series of linkage analyses, candidate-gene analyses and genome-wide association studies have brought attention to three other members of the nicotinic acetylcholine receptor family: the α5, α3 and β4 subunits. The genes encoding these subunits lie in a genomic cluster that contains variants associated with increased risk for several diseases including nicotine dependence and lung cancer. The underlying mechanisms for these associations have not yet been elucidated but decades of research on the nicotinic receptor gene family as well as emerging data provide insight on how these receptors may function in pathological states. Here, we review this body of work, focusing on the clustered nicotinic acetylcholine receptor genes and evaluating their role in nicotine addiction and lung cancer.
Collapse
Affiliation(s)
- Ma Reina D Improgo
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, 303 Belmont Street, Worcester, MA 01604, United States
| | | | | | | |
Collapse
|
67
|
Soto CR, Ortiz FC, Vargas RV, Arroyo J, Alcayaga J. Responses induced by acetylcholine and ATP in the rabbit petrosal ganglion. Respir Physiol Neurobiol 2010; 172:114-21. [PMID: 20452470 DOI: 10.1016/j.resp.2010.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 04/12/2010] [Accepted: 05/02/2010] [Indexed: 11/28/2022]
Abstract
Acetylcholine and ATP appear to mediate excitatory transmission between receptor (glomus) cells and the petrosal ganglion (PG) neuron terminals in the carotid body. In most species these putative transmitters are excitatory, while inhibitory effects had been reported in the rabbit. We studied the effects of the application of acetylcholine and ATP to the PG on the carotid nerve activity in vitro. Acetylcholine and ATP applied to the PG increased the carotid nerve activity in a dose-dependent manner. Acetylcholine-induced responses were mimicked by nicotine, antagonized by hexamethonium, and enhanced by atropine. Bethanechol had no effect on basal activity, but reduced acetylcholine-induced responses. Suramin antagonized ATP-induced responses, and AMP had little effect on the carotid nerve activity. Our results suggest that rabbit PG neurons projecting through the carotid nerve are endowed with nicotinic acetylcholine and purinergic P2 receptors that increase the carotid nerve activity, while simultaneous activation of muscarinic cholinergic receptors reduce the maximal response evoked by nicotinic cholinergic receptor activation.
Collapse
Affiliation(s)
- Carolina R Soto
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
| | | | | | | | | |
Collapse
|
68
|
Bruschweiler-Li L, Fuentes Medel YF, Scofield MD, Trang EBT, Binke SA, Gardner PD. Temporally- and spatially-regulated transcriptional activity of the nicotinic acetylcholine receptor beta4 subunit gene promoter. Neuroscience 2010; 166:864-77. [PMID: 20096338 DOI: 10.1016/j.neuroscience.2010.01.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/13/2010] [Accepted: 01/13/2010] [Indexed: 11/27/2022]
Abstract
Signaling through nicotinic acetylcholine (nACh) receptors underlies a diverse array of behaviors. In order for appropriate signaling to occur via nACh receptors, it is necessary for the genes encoding the receptor subunits to be expressed in a highly regulated temporal and spatial manner. Here we report a transgenic mouse approach to characterize the transcriptional regulation of the gene encoding the nACh receptor beta4 subunit. nACh receptors containing this subunit play critical roles in both the central and peripheral nervous systems. We demonstrate that a 2.3-kilobase pair fragment of the beta4 5'-flanking region is capable of directing reporter gene expression in transgenic animals. Importantly, the transcriptional activity of the promoter region is cell-type-specific and developmentally regulated and overlaps to a great extent with endogenous beta4 mRNA expression. These data indicate that the 2.3-kilobase pair fragment contains transcriptional regulatory elements critical for appropriate beta4 subunit gene expression.
Collapse
Affiliation(s)
- L Bruschweiler-Li
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA 01604, USA
| | | | | | | | | | | |
Collapse
|
69
|
Rowbotham MC, Duan RW, Thomas J, Nothaft W, Backonja MM. A randomized, double-blind, placebo-controlled trial evaluating the efficacy and safety of ABT-594 in patients with diabetic peripheral neuropathic pain. Pain 2009; 146:245-252. [DOI: 10.1016/j.pain.2009.06.013] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2009] [Revised: 05/27/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
|
70
|
Darvas M, Morsch M, Racz I, Ahmadi S, Swandulla D, Zimmer A. Modulation of the Ca2+ conductance of nicotinic acetylcholine receptors by Lypd6. Eur Neuropsychopharmacol 2009; 19:670-81. [PMID: 19403274 PMCID: PMC2716416 DOI: 10.1016/j.euroneuro.2009.03.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 03/10/2009] [Accepted: 03/31/2009] [Indexed: 01/14/2023]
Abstract
The agonist binding sensitivity and desensitization kinetics of nicotinic acetylcholine receptors (nAChRs) can be modulated by snake venom neurotoxins and related endogenous small proteins of the uPAR-Ly6 family. Here we identify Lypd6, a distantly related member of the u-PAR/Ly-6 family expressed in neurons as a novel modulator of nAChRs. Lypd6 overexpressed in trigeminal ganglia neurons selectively enhanced the Ca2+-component of nicotine-evoked currents through nAChRs, as evidenced by comparative whole-cell patch clamp recordings and Ca2+-imaging in wildtype and transgenic mice overexpressing Lypd6. In contrast, a knockdown of Lypd6 expression using siRNAs selectively reduced nicotine-evoked Ca2+-currents. Pharmacological experiments revealed that the nAChRs involved in this process are heteromers. Transgenic mice displayed behaviors that were indicative of an enhanced cholinergic tone, such as a higher locomotor arousal, increased prepulse-inhibition and hypoalgesia. These mice overexpressing Lypd6 mice were also more sensitive to the analgesic effects of nicotine. Transgenic mice expressing siRNAs directed against Lypd6 were unable to procreate, thus indicating a vital role for this protein. Taken together, Lypd6 seems to constitute a novel modulator of nAChRs that affects receptor function by selectively increasing Ca2+-influx through this ion channels.
Collapse
Affiliation(s)
- Martin Darvas
- Institute of Molecular Psychiatry, University of Bonn, Bonn, Germany
| | | | | | | | | | | |
Collapse
|
71
|
Freysoldt A, Fleckenstein J, Lang PM, Irnich D, Grafe P, Carr RW. Low concentrations of amitriptyline inhibit nicotinic receptors in unmyelinated axons of human peripheral nerve. Br J Pharmacol 2009; 158:797-805. [PMID: 19694730 DOI: 10.1111/j.1476-5381.2009.00347.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Amitriptyline is often prescribed as a first-line treatment for neuropathic pain but its precise mode of analgesic action remains uncertain. Amitriptyline is known to inhibit voltage-dependent ion channels and also to act as an antagonist at ligand-gated ion channels, such as nicotinic acetylcholine receptors (nAChRs). In the present study, we tested the effect of amitriptyline on nicotinic responses of unmyelinated axons in isolated segments of human peripheral nerve. In particular, a comparison was made between the concentrations of amitriptyline necessary for inhibition of nAChRs and those required for inhibition of the compound C-fibre action potential. EXPERIMENTAL APPROACH Isolated axon fascicles were prepared from short segments of human sural nerve, and multiple measures of axonal excitability were recorded using computer-controlled threshold tracking software. KEY RESULTS Amitriptyline (EC(50) 2.6 microM) reduced the nicotine-induced increase in C-fibre excitability but only slightly altered the amplitude and latency to onset of the compound action potential. In contrast, tetrodotoxin produced a clear reduction in the amplitude and a prolongation of action potential onset latency but was without effect on the nicotine-induced increase in axonal excitability. CONCLUSIONS AND IMPLICATIONS These data demonstrate that low concentrations of amitriptyline suppress the response of human peripheral C-type axons to nicotine by directly inhibiting nAChRs. Blockade of tetrodotoxin-sensitive, voltage-dependent sodium channels does not contribute to this effect. An inhibitory action of amitriptyline on nAChRs in unmyelinated nociceptive axons may be an important component of amitriptyline's therapeutic effect in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- A Freysoldt
- Institute of Physiology, University of Munich, Munich, Germany
| | | | | | | | | | | |
Collapse
|
72
|
Hone AJ, Whiteaker P, Christensen S, Xiao Y, Meyer EL, McIntosh JM. A novel fluorescent alpha-conotoxin for the study of alpha7 nicotinic acetylcholine receptors. J Neurochem 2009; 111:80-9. [PMID: 19650873 DOI: 10.1111/j.1471-4159.2009.06299.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Homomeric alpha7 nicotinic acetylcholine receptors are a well-established, pharmacologically distinct subtype. The more recently identified alpha9 subunit can also form functional homopentamers as well as alpha9alpha10 heteropentamers. Current fluorescent probes for alpha7 nicotinic ACh receptors are derived from alpha-bungarotoxin (alpha-BgTx). However, alpha-BgTx also binds to alpha9* and alpha1* receptors which are coexpressed with alpha7 in multiple tissues. We used an analog of alpha-conotoxin ArIB to develop a highly selective fluorescent probe for alpha7 receptors. This fluorescent alpha-conotoxin, Cy3-ArIB[V11L;V16A], blocked ACh-evoked alpha7 currents in Xenopus laevis oocytes with an IC(50) value of 2.0 nM. Observed rates of blockade were minute-scale with recovery from blockade even slower. Unlike FITC-conjugated alpha-BgTx, Cy3-ArIB[V11L;V16A] did not block alpha9alpha10 or alpha1beta1deltaepsilon receptors. In competition binding assays, Cy3-ArIB[V11L;V16A] potently displaced [(125)I]-alpha-BgTx binding to mouse hippocampal membranes with a K(i) value of 21 nM. Application of Cy3-ArIB[V11L;V16A] resulted in specific punctate labeling of KXalpha7R1 cells but not KXalpha3beta2R4, KXalpha3beta4R2, or KXalpha4beta2R2 cells. This labeling could be abolished by pre-treatment with alpha-cobratoxin. Thus, Cy3-ArIB[V11L;V16A] is a novel and selective fluorescent probe for alpha7 receptors.
Collapse
Affiliation(s)
- Arik J Hone
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, Utah, USA
| | | | | | | | | | | |
Collapse
|
73
|
Marks MJ, Wageman CR, Grady SR, Gopalakrishnan M, Briggs CA. Selectivity of ABT-089 for alpha4beta2* and alpha6beta2* nicotinic acetylcholine receptors in brain. Biochem Pharmacol 2009; 78:795-802. [PMID: 19481067 DOI: 10.1016/j.bcp.2009.05.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 05/15/2009] [Accepted: 05/19/2009] [Indexed: 01/21/2023]
Abstract
Numerous pharmaceutical efforts have targeted neuronal nicotinic receptors (nAChRs) for amelioration of cognitive deficits. While alpha4beta2 and alpha7 are the more prominent nAChR in brain, other heteromeric nAChR can have important impact on agonist pharmacology. ABT-089 is a pioneer nAChR agonist found to enhance cognitive function with an exceptionally low incidence of adverse effects. To further investigate the mechanism of action of ABT-089, we evaluated its function in mouse brain preparations in which we have characterized the subunit composition of native nAChR. Among alpha4beta2*-nAChR, ABT-089 had partial agonist activity (7-23% of nicotine) and high selectivity for alpha4alpha5beta2 nAChR as evidenced by loss of activity in thalamus of alpha5(-/-) mice. ABT-089 stimulated [(3)H]-dopamine release (57%) exceeded the activity at alpha4beta2* nAChR, that could be explained by the activity at alpha6beta2* nAChR. The concentration-response relationship for ABT-089 stimulation of alpha6beta2* nAChR was biphasic. EC(50) and efficacy values for ABT-089, respectively, were 28 microM and 98% at the less sensitive alpha6beta2* nAChR and 0.11 microM and 36% at the more sensitive subtype (the most sensitive target for ABT-089 identified to date). ABT-089 had essentially no agonist or antagonist activity at concentrations <or=300 microM at alpha3beta4-nAChR measured by [(3)H]-acetylcholine release from interpeduncular nucleus. Thus, ABT-089 is a beta2* nAChR ligand with demonstrable agonist activity at alpha4beta2* and alpha6beta2* receptors. As one form of alpha6beta2* nAChR is sensitive to sub-muM concentrations, we propose that this receptor in particular may contribute to the enhanced cognitive performance following low doses of ABT-089.
Collapse
Affiliation(s)
- Michael J Marks
- Institute for Behavioral Genetics, University of Colorado, Boulder, CO 80309, United States.
| | | | | | | | | |
Collapse
|
74
|
Dehkordi O, Rose JE, Balan KV, Kc P, Millis RM, Jayam-Trouth A. Neuroanatomical relationships of substance P-immunoreactive intrapulmonary C-fibers and nicotinic cholinergic receptors. J Neurosci Res 2009; 87:1670-8. [DOI: 10.1002/jnr.21967] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
75
|
Shelukhina IV, Kryukova EV, Lips KS, Tsetlin VI, Kummer W. Presence of alpha7 nicotinic acetylcholine receptors on dorsal root ganglion neurons proved using knockout mice and selective alpha-neurotoxins in histochemistry. J Neurochem 2009; 109:1087-95. [PMID: 19519780 DOI: 10.1111/j.1471-4159.2009.06033.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In complex tissues where multiple subtypes of nicotinic acetylcholine receptors (nAChRs) are expressed, immunohistochemistry has been the most popular tool for investigation of nAChR subunit distribution. However, recent studies with nAChR subunit knockout mice demonstrated that a large panel of antibodies is unsuitable. Thus, we aimed to develop a histochemical method for selective labeling of alpha7 nAChR with neurotoxins, utilizing alpha7 nAChR-transfected cells, dorsal root ganglia (DRG) and spinal cord from wild-type and knockout mouse. The specificity of Alexa Fluor 488-conjugated alpha-bungarotoxin (Alexa-alphaBgt) was demonstrated in binding to alpha7-transfected cells inhibited by long-chain alpha-cobratoxin (CTX), but not short-chain alpha-neurotoxin II (NTII). In contrast, binding to Torpedo muscle-type nAChRs and to motor end plates in mouse tongue sections was prevented by both CTX and NTII. In tissue sections of DRG, expressing all neuronal nAChR subunits, only CTX precluded Alexa-alphaBgt labeling of neurons, with no staining for alpha7 nAChR knockout tissue. It proved that alpha7 nAChRs are the major alphaBgt-binding sites in mouse DRG. Corresponding results were obtained for terminals in the spinal cord. Thus, we present a protocol utilizing Alexa-alphaBgt and non-labeled CTX/NTII that allows specific histochemical detection of alpha7 nAChR with a spatial resolution at the level of single axon terminals.
Collapse
Affiliation(s)
- Irina V Shelukhina
- Laboratory of Neuropeptide Receptors, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia.
| | | | | | | | | |
Collapse
|
76
|
Abstract
Cigarette smoke is undoubtedly one of the most common inhaled irritants in the human respiratory tract, and invariably evokes coughing in both smokers and nonsmokers. Results obtained from the studies in human volunteers and from single-fiber recording of vagal bronchopulmonary afferents in animals clearly indicate that nicotine is primarily responsible for the airway irritation and coughing caused by inhalation of cigarette smoke. Furthermore, both nicotine and acetylcholine can evoke inward current, membrane depolarization, and action potentials in isolated pulmonary sensory neurons, and these responses are blocked by hexamethonium. Taken together, these findings suggest that the tussive effect of nicotine is probably mediated through an activation of nicotinic acetylcholine receptors (nAChRs) expressed on the sensory terminals of cough receptors located in the airway mucosa. Indeed, the expressions of alpha4-alpha7 and beta2-beta4 subunits of nAChR transcripts in pulmonary sensory neurons have lent further support to this conclusion. The specific subtypes of the neuronal nAChRs and their subunit compositions expressed on the cough sensors remain to be determined.
Collapse
Affiliation(s)
- L-Y Lee
- Department of Physiology, University of Kentucky, Lexington, KY 40536-0298, USA.
| | | |
Collapse
|
77
|
Chabwine JN, Talavera K, Verbert L, Eggermont J, Vanderwinden JM, De Smedt H, Van Den Bosch L, Robberecht W, Callewaert G. Differential contribution of the Na(+)-K(+)-2Cl(-) cotransporter NKCC1 to chloride handling in rat embryonic dorsal root ganglion neurons and motor neurons. FASEB J 2008; 23:1168-76. [PMID: 19103648 DOI: 10.1096/fj.08-116012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Plasma membrane chloride (Cl(-)) pathways play an important role in neuronal physiology. Here, we investigated the role of NKCC1 cotransporters (a secondary active Cl(-) uptake mechanism) in Cl(-) handling in cultured rat dorsal root ganglion neurons (DRGNs) and motor neurons (MNs) derived from fetal stage embryonic day 14. Gramicidin-perforated patch-clamp recordings revealed that DRGNs accumulate intracellular Cl(-) through a bumetanide- and Na(+)-sensitive mechanism, indicative of the functional expression of NKCC1. Western blotting confirmed the expression of NKCC1 in both DRGNs and MNs, but immunocytochemistry experiments showed a restricted expression in dendrites of MNs, which contrasts with a homogeneous expression in DRGNs. Both MNs and DRGNs could be readily loaded with or depleted of Cl(-) during GABA(A) receptor activation at depolarizing or hyperpolarizing membrane potentials. After loading, the rate of recovery to the resting Cl(-) concentration (i.e., [Cl(-)](i) decrease) was similar in both cell types and was unaffected by lowering the extracellular Na(+) concentration. In contrast, the recovery on depletion (i.e., [Cl(-)](i) increase) was significantly faster in DRGNs in control conditions but not in low extracellular Na(+). The experimental observations could be reproduced by a mathematical model for intracellular Cl(-) kinetics, in which DRGNs show higher NKCC1 activity and smaller Cl(-)-handling volume than MNs. On the basis of these results, we conclude that embryonic DRGNs show a higher somatic functional expression of NKCC1 than embryonic MNs. The high NKCC1 activity in DRGNs is important for maintaining high [Cl(-)](i), whereas lower NKCC1 activity in MNs allows large [Cl(-)](i) variations during neuronal activity.
Collapse
Affiliation(s)
- J N Chabwine
- Department of Molecular and Cell Biology, Katholieke Universiteit Leuven, Leuven, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Xiang Z, Xiong Y, Yan N, Li X, Mao Y, Ni X, He C, LaMotte RH, Burnstock G, Sun J. Functional up-regulation of P2X 3 receptors in the chronically compressed dorsal root ganglion. Pain 2008; 140:23-34. [PMID: 18715715 DOI: 10.1016/j.pain.2008.07.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 06/03/2008] [Accepted: 07/07/2008] [Indexed: 12/20/2022]
Abstract
P2X receptors on dorsal root ganglion (DRG) neurons have been strongly implicated in pathological nociception after peripheral nerve injuries or inflammation. However, nothing is known of a role for purinergic receptors in neuropathic pain produced by a chronic compression of DRG (CCD) - an injury that may accompany an intraforaminal stenosis, a laterally herniated disc or other disorders of the spine leading to radicular pain. In a rat model of DRG compression, hyperexcitable neurons retain functioning axonal connections with their peripheral targets. It is unknown whether such hyperexcitability might enhance chemically mediated nociceptive stimulation of the skin. In this study, CCD facilitated the nocifensive behavior and mechanical hyperalgesia-induced by the P2X 3 agonist, alpha,beta-methylene ATP (alpha,beta-meATP). An injection of alpha,beta-meATP into the hind paw of CCD rats resulted in a significantly greater decrease in the mean threshold to von Frey stimuli and a greater duration of paw lifts than in sham-operated control rats. CCD also increased the levels of P2X 3 receptor protein and the number of P2X 3 immunoreactive, small diameter DRG neurons in the compressed ganglion. P2X 3 receptors were co-labeled with the isolectin IB4, consistent with a role in nociception. In addition, a alpha,beta-meATP induced significantly larger fast-inactivating currents in CCD- than in sham-operated acutely dissociated DRG neurons. These currents were accompanied by the generation of action potentials - but only in the CCD neurons. U0126, a specific inhibitor of the MEK1/2, greatly down-regulated the enhanced current. Taken together, these observations suggest that enhanced purinergic responses after CCD are mediated by P2X 3 receptors.
Collapse
Affiliation(s)
- Zhenghua Xiang
- Department of Physiology, Second Military Medical University, 800 Xiangyin Road, Shanghai 200433, PR China Department of Neurobiology, Second Military Medical University, Shanghai 200433, PR China Department of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai 200433, PR China Key Laboratory of Molecular Neurobiology, Ministry of Education, Second Military Medical University, Shanghai 200433, PR China Department of Anesthesiology, Yale University School of Medicine, New Haven, CT 06510, USA Autonomic Neuroscience Centre, Royal Free and University College Medical School, Rowland Hill Street, London NW3 2PF, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Abdrakhmanova GR, Carroll FI, Damaj MI, Martin BR. 3'-Fluoro substitution in the pyridine ring of epibatidine improves selectivity and efficacy for alpha4beta2 versus alpha3beta4 nAChRs. Neuropharmacology 2008; 55:1287-92. [PMID: 18775444 DOI: 10.1016/j.neuropharm.2008.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Revised: 07/31/2008] [Accepted: 08/06/2008] [Indexed: 10/21/2022]
Abstract
The analog of epibatidine having a fluoro substituent at the 3' position of the pyridine ring has been recently developed and shown to possess binding affinity in the pM range to alpha4beta2 nAChRs and in the nM range to alpha7 nAChRs and to exhibit potent agonist activity in nicotine-induced analgesia tests. Here we used patch-clamp technique in a whole-cell configuration to compare functional activity of 3'-fluoroepibatidine to that of epibatidine by itself on recombinant alpha4beta2, alpha7 and alpha3beta4 neuronal nAChRs. The agonist effect of (+/-)-epibatidine was partial and yielded comparable EC50s of 0.012 microM (72% efficacy) and 0.027 microM (81% efficacy) at alpha4beta2 and alpha3beta4 nAChRs, respectively, but was full at alpha7 nAChRs with an EC50 of 4.8 muM. Testing of the analog at different concentrations revealed that it acts as a full agonist with an EC50 of 0.36 microM at alpha4beta2 nAChRs and induces partial agonist effect (66% efficacy) at alpha7 nAChRs with an EC50 of 9.8 microM and an IC50 corresponding to 225 microM. In contrast, the analog caused only 24% maximal activation at the range of concentrations from 0.1 to 100 microM and, in addition, induced an inhibition of alpha3beta4 nAChR function with an IC50 of 8.3 microM. Our functional data, which are in agreement with previous binding and behavioral findings, demonstrate that 3'-fluoro substitution in the pyridine ring of epibatidine results in an improved pharmacological profile as observed by an increased efficacy and selectivity for alpha4beta2 versus alpha3beta4 nAChRs.
Collapse
Affiliation(s)
- Galya R Abdrakhmanova
- Department of Pharmacology and Toxicology (G.R.A., M.I.D., B.R.M.), Virginia Commonwealth University, Richmond, VA 23298, United States.
| | | | | | | |
Collapse
|
80
|
Hancock ML, Canetta SE, Role LW, Talmage DA. Presynaptic type III neuregulin1-ErbB signaling targets {alpha}7 nicotinic acetylcholine receptors to axons. ACTA ACUST UNITED AC 2008; 181:511-21. [PMID: 18458158 PMCID: PMC2364689 DOI: 10.1083/jcb.200710037] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Type III Neuregulin1 (Nrg1) isoforms are membrane-tethered proteins capable of participating in bidirectional juxtacrine signaling. Neuronal nicotinic acetylcholine receptors (nAChRs), which can modulate the release of a rich array of neurotransmitters, are differentially targeted to presynaptic sites. We demonstrate that Type III Nrg1 back signaling regulates the surface expression of α7 nAChRs along axons of sensory neurons. Stimulation of Type III Nrg1 back signaling induces an increase in axonal surface α7 nAChRs, which results from a redistribution of preexisting intracellular pools of α7 rather than from increased protein synthesis. We also demonstrate that Type III Nrg1 back signaling activates a phosphatidylinositol 3-kinase signaling pathway and that activation of this pathway is required for the insertion of preexisting α7 nAChRs into the axonal plasma membrane. These findings, in conjunction with prior results establishing that Type III Nrg1 back signaling controls gene transcription, demonstrate that Type III Nrg1 back signaling can regulate both short-and long-term changes in neuronal function.
Collapse
Affiliation(s)
- Melissa L Hancock
- Integrated Program in Cellular, Molecular and Biophysical Studies, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
81
|
Ono K, Toyono T, Inenaga K. Nicotinic receptor subtypes in rat subfornical organ neurons and glial cells. Neuroscience 2008; 154:994-1001. [DOI: 10.1016/j.neuroscience.2008.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 04/03/2008] [Indexed: 10/22/2022]
|
82
|
Morphine and ABT-594 (a Nicotinic Acetylcholine Agonist) Exert Centrally Mediated Antinociception in the Rat Cyclophosphamide Cystitis Model of Visceral Pain. THE JOURNAL OF PAIN 2008; 9:146-56. [DOI: 10.1016/j.jpain.2007.09.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/19/2007] [Accepted: 09/27/2007] [Indexed: 12/29/2022]
|
83
|
Gu Q, Ni D, Lee LY. Expression of neuronal nicotinic acetylcholine receptors in rat vagal pulmonary sensory neurons. Respir Physiol Neurobiol 2007; 161:87-91. [PMID: 18206429 DOI: 10.1016/j.resp.2007.11.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/21/2007] [Accepted: 11/23/2007] [Indexed: 12/22/2022]
Abstract
It is known that cigarette smoke inhalation causes airway irritation and cough, and the effect is caused by both direct and indirect stimulatory effects of nicotine on bronchopulmonary sensory nerves. However, little is known about the expression of nicotinic acetylcholine receptors (nAChRs) in these afferents. In the present study, whole-cell patch-clamp recording and RT-PCR were carried out to examine the expression and function of nAChRs in isolated rat vagal pulmonary sensory neurons that were identified by retrograde labeling with a fluorescent tracer. Patch-clamp recordings demonstrated that application of acetylcholine concentration-dependently evoked an inward current in a subset of pulmonary sensory neurons, which was inhibited by hexamethonium. Application of nicotine or 1,1-dimethyl-4-phenylpiperazinium (DMPP) also activated these neurons, evoking an inward current in voltage-clamp configuration and causing depolarization and action potential in current-clamp recordings. RT-PCR analysis further demonstrated the expression of mRNA encoding for the nAChR subunits alpha4, alpha5, alpha6, alpha7, beta2, beta3 and beta4, but not alpha2 and alpha3 in these neurons.
Collapse
Affiliation(s)
- Qihai Gu
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY 40536-0298, USA
| | | | | |
Collapse
|
84
|
Tuffereau C, Schmidt K, Langevin C, Lafay F, Dechant G, Koltzenburg M. The rabies virus glycoprotein receptor p75NTR is not essential for rabies virus infection. J Virol 2007; 81:13622-30. [PMID: 17928338 PMCID: PMC2168826 DOI: 10.1128/jvi.02368-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2006] [Accepted: 10/01/2007] [Indexed: 12/25/2022] Open
Abstract
Rabies virus glycoprotein (RVG) is known to be the only factor that mediates rabies infection. The neurotrophin receptor (p75(NTR)), through its cysteine-rich domain 1, is a specific receptor for RVG and neutralizes virus infectivity, but its role in virus infection has remained obscure. We used adult mouse dorsal root ganglion (DRG) neurons as a model to study the role of p75(NTR) in RV infection of primary neurons. We show that RV infects around 20% of DRG neurons, of which more than 80% are p75(NTR) positive, have large diameters, and are capsaicin insensitive. Surprisingly, RV binding and infection are absent in about half of the p75(NTR)-expressing DRG neurons which have small diameters and are often capsaicin sensitive. This indicates that p75(NTR) is not sufficient to mediate RV interaction in sensory neurons. The rate and specificity of neural infection are unchanged in RV-infected p75(NTRExonIV-/-) mice that lack all extracellular receptor domains and in wild-type mice infected with two independent RV mutants that lack p75(NTR) binding. Accordingly, the mortality rate is unchanged in the absence of RV-p75(NTR) interaction. We conclude that although p75(NTR) is a receptor for soluble RVG in transfected cells of heterologous expression systems, an RVG-p75(NTR) interaction is not necessary for RV infection of primary neurons. This means that other receptors are required to mediate RV infection in vivo and in vitro.
Collapse
MESH Headings
- Animals
- Antigens, Viral/metabolism
- COS Cells
- Cells, Cultured
- Chlorocebus aethiops
- Female
- Ganglia, Spinal/cytology
- Ganglia, Spinal/virology
- Glycoproteins/metabolism
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neurons/cytology
- Neurons/virology
- Rabies/virology
- Rabies virus/pathogenicity
- Receptors, Nerve Growth Factor/deficiency
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Virus/metabolism
- Viral Envelope Proteins/metabolism
Collapse
Affiliation(s)
- Christine Tuffereau
- Laboratoire de Virologie Moléculaire et Structurale, UMR 2472 CNRS-INRA, CNRS, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
85
|
Elimination of rat spinal substance P receptor bearing neurons dissociates cardiovascular and nocifensive responses to nicotinic agonists. Neuropharmacology 2007; 54:269-79. [PMID: 18037142 DOI: 10.1016/j.neuropharm.2007.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 08/31/2007] [Accepted: 09/11/2007] [Indexed: 11/23/2022]
Abstract
Intrathecal (IT) delivery of nicotinic agonists evokes dose dependent nocifensive behavior and cardiovascular responses. Previous studies suggested that these effects may be attenuated by the loss of substance P positive (sP(+)) primary afferents. To further characterize these cell systems, we examined the effect of selectively destroying neurokinin 1 receptor bearing (NK1-r(+)) dorsal horn neurons on IT nicotinic agonist evoked responses. In the dorsal spinal cord, confocal immunohistochemical microscopy revealed that nAChR subunits (alpha3, alpha4, alpha5, beta2 and beta4), NeuN B (neuronal marker) and NK1-r were all co-expressed in the superficial dorsal horn; however alpha3, alpha5, beta2 and beta4 exhibited the highest degree of colocalization with NK1-r expressing neurons. After intrathecal substance P-saporin (sP-SAP), NK1-r(+) cell bodies and dendrites in the superficial dorsal horn were largely abolished. The greatest loss in co-expression of nAChR subunits with NK1-r was observed with alpha3, alpha5, beta2 and beta4 subunits. Following intrathecal sP-SAP, the nocifensive responses to all nicotinic agonists were reduced; however, in contrast, while cardiovascular responses evoked by IT nicotine were unaltered, IT cytisine and epibatidine exhibited enhanced tachycardia and pressor responses. These results indicate subunit-specific relationships between the NK1-r and nicotinic receptor systems. The loss of nocifensive activity after destruction of the NK1-r bearing cells in spite of the persistence of nicotinic subunits on other cells, emphasizes the importance of the superficial marginal neuron in mediating these nicotinic effects. Further, the exaggerated cardiovascular responses to cytisine following loss of NK1-r bearing cells suggest the presence of a nicotinic receptor-mediated stimulation of inhibitory circuits at the spinal level.
Collapse
|
86
|
Strang CE, Renna JM, Amthor FR, Keyser KT. Nicotinic acetylcholine receptor expression by directionally selective ganglion cells. Vis Neurosci 2007; 24:523-33. [PMID: 17686198 DOI: 10.1017/s0952523807070435] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2006] [Accepted: 04/25/2007] [Indexed: 11/06/2022]
Abstract
Acetylcholine (ACh) enhances the preferred direction responses of directionally selective ganglion cells (DS GCs; Ariel & Daw, 1982; Ariel & Adolph, 1985) through the activation of nicotinic acetylcholine receptors (nAChRs; Ariel & Daw, 1982; Massey et al., 1997; Kittila & Massey, 1997). DS GCs appear to express at least two types of nAChRs, those that are sensitive to the partially subtype-specific antagonist methyllycaconitine (MLA), and those that are MLA-insensitive (Reed et al., 2002). Our purpose was to confirm the expression of alpha7 nAChRs by DS GCs and to assess the contributions of other nAChR subtypes to DS GC responses. Using choline as a nAChR partially subtype-specific agonist, we found that the majority of DS GCs demonstrated responses to choline while under synaptic blockade. The blockade or reduction of choline-induced responses by bath application of nanomolar (nM) concentrations of MLA provided direct evidence that the choline responses were mediated by alpha7 nAChRs. Because choline is a partial agonist for alpha3beta4 nAChRs (Alkondon et al., 1997), the residual choline responses are consistent with mediation by alpha3beta4 nAChRs. Additionally, a subset of DS GCs responded to nicotine but not to choline, indicating the expression of a third nAChR subtype. The pharmacological results were supported by single cell reverse transcription polymerase chain reaction (RT-PCR) and immunohistochemistry experiments. The expression of alpha7 and specific non-alpha7 nAChR subtypes was correlated with the preferred direction. This indicates the possibility of differential responses to ACh depending on the direction of movement. This is the first description of differential expression of multiple nAChR subtypes by DS GCs.
Collapse
Affiliation(s)
- Christianne E Strang
- Department of Vision Sciences, University of Alabama at Birmingham, Birmingham, Alabama 35294, USA.
| | | | | | | |
Collapse
|
87
|
Medel YFF, Gardner PD. Transcriptional Repression by a Conserved Intronic Sequence in the Nicotinic Receptor α3 Subunit Gene. J Biol Chem 2007; 282:19062-70. [PMID: 17504758 DOI: 10.1074/jbc.m702354200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The genes encoding the nicotinic acetylcholine receptor alpha3, alpha5, and beta4 subunits are genomically clustered. These genes are co-expressed in a variety of cells in the peripheral and central nervous systems. Their gene products assemble in a number of stoichiometries to generate several nicotinic receptor subtypes that have distinct pharmacological and physiological properties. Signaling through these receptors is critical for a variety of fundamental biological processes. Despite their importance, the transcriptional mechanisms underlying their coordinated expression remain to be completely elucidated. By using a bioinformatics approach, we identified a highly conserved intronic sequence within the fifth intron of the alpha3 subunit gene. Reporter gene analysis demonstrated that this sequence, termed "alpha3 intron 5," inhibits the transcriptional activities of the alpha3 and beta4 subunit gene promoters. This repressive activity is position- and orientation-independent. Importantly, repression occurs in a cell type-specific manner, being present in cells that do not express the receptor genes or expresses them at very low levels. Electrophoretic mobility shift assays demonstrate that nuclear proteins specifically interact with alpha3 intron 5 at two distinct sites. We propose that this intronic repressor element is important for the restricted expression patterns of the nicotinic receptor alpha3 and beta4 subunit genes.
Collapse
Affiliation(s)
- Yuly F Fuentes Medel
- Brudnick Neuropsychiatric Research Institute, Department of Psychiatry, University of Massachusetts Medical School, Worcester, Massachusetts 01604, USA
| | | |
Collapse
|
88
|
Xu J, Yang W, Zhang G, Gu Q, Lee LY. Calcium transient evoked by nicotine in isolated rat vagal pulmonary sensory neurons. Am J Physiol Lung Cell Mol Physiol 2007; 292:L54-61. [PMID: 16920888 DOI: 10.1152/ajplung.00182.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
It has been shown that inhaled cigarette smoke activates vagal pulmonary C fibers and rapidly adapting receptors (RARs) in the airways and that nicotine contained in the smoke is primarily responsible. This study was carried out to determine whether nicotine alone can activate pulmonary sensory neurons isolated from rat vagal ganglia; the response of these neurons was determined by fura-2-based ratiometric Ca2+imaging. The results showed: 1) Nicotine (10−4M, 20 s) evoked a transient increase in intracellular Ca2+concentration ([Ca2+]i) in 175 of the 522 neurons tested (Δ[Ca2+]i= 142.2 ± 12.3 nM); the response was reproducible, with a small reduction in peak amplitude in the same neurons when the challenge was repeated 20 min later. 2) A majority (59.7%) of these nicotine-sensitive neurons were also activated by capsaicin (10−7M). 3) 1,1-Dimethyl-4-phenylpiperazinium iodide (DMPP; 10−4M, 20 s), a selective agonist of the neuronal nicotinic acetylcholine receptors (NnAChRs), evoked a pattern of response similar to that of nicotine. 4) The responses to nicotine and DMPP were either totally abrogated or markedly attenuated by hexamethonium (10−4M). 5) In anesthetized rats, right atrial bolus injection of nicotine (75–200 μg/kg) evoked an immediate (latency <1–2 s) and intense burst of discharge in 47.8% of the pulmonary C-fiber endings and 28.6% of the RARs tested. In conclusion, nicotine exerts a direct stimulatory effect on vagal pulmonary sensory nerves, and the effect is probably mediated through an activation of the NnAChRs expressed on the membrane of these neurons.
Collapse
Affiliation(s)
- Jennings Xu
- Department of Physiology, University of Kentucky Medical Center, Lexington, KY 40536-0298, USA
| | | | | | | | | |
Collapse
|
89
|
Chen HK, Su CK. Endogenous activation of nicotinic receptors underlies sympathetic tone generation in neonatal rat spinal cord in vitro. Neuropharmacology 2006; 51:1120-8. [PMID: 16904709 DOI: 10.1016/j.neuropharm.2006.06.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2006] [Revised: 06/16/2006] [Accepted: 06/28/2006] [Indexed: 10/24/2022]
Abstract
Without the brainstem, thoracic spinal cords of neonatal rats in vitro spontaneously generate tonic sympathetic nerve discharge (SND) in the splanchnic nerves. Activation of nicotinic receptors in cords is known to alter a repertoire of neurotransmitter releases to sympathetic preganglionic neurons (SPNs). Using in vitro nerve-cord preparations, we investigated whether endogenous nicotinic receptor activity is essential for SND genesis. Application of mecamylamine, an open-channel nicotinic receptor blocker, reduced SND in a progressive manner. Exogenous activation of nicotinic receptors by application of various nicotinic agonists generally excited SND at low agonistic concentrations. At higher concentrations, however, agonists induced biphasic responses characterized by an initial excitation followed by prolonged SND suppression. Whether ionotropic glutamate, GABA(A), or glycine receptors are downstream signals of nicotinic receptor activation was explored by pretreatment of cords with selective antagonists. The initial excitation of SND persisted in the presence of ionotropic glutamate receptor antagonists. In contrast, the SND suppression was partially reversed by glycine or GABA(A) receptor antagonists. Incubation of the cord in a low Ca(2+)/high Mg(2+) bath solution to block Ca(2+)-dependent synaptic transmission did not affect SND excitation induced by nicotinic agonists, confirming direct activation of postsynaptic nicotinic receptors on SPNs. In conclusion, the endogenous activity of nicotinic receptors is essential for SND genesis in the thoracic spinal cord. Nicotinic activation of glycinergic and GABAergic interneurons may provide a recurrent inhibition of SPNs for homeostatic regulation of sympathetic outflow.
Collapse
Affiliation(s)
- Hsin-Kai Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | | |
Collapse
|
90
|
Mao D, Yasuda RP, Fan H, Wolfe BB, Kellar KJ. Heterogeneity of Nicotinic Cholinergic Receptors in Rat Superior Cervical and Nodose Ganglia. Mol Pharmacol 2006; 70:1693-9. [PMID: 16882879 DOI: 10.1124/mol.106.027458] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nicotinic cholinergic receptors (nAChRs) are present in ganglia in the peripheral nervous system. In autonomic ganglia, they are responsible for fast synaptic transmission, whereas in the sensory ganglia and sensory neurons, they may be involved in modulation of neurotransmission. The present study measured nAChRs in several rat autonomic ganglia: the superior cervical ganglia (SCG), sensory nodose ganglia, stellate ganglia, and pelvic ganglia. The densities of the heteromeric nAChRs determined by receptor binding assay in those four ganglia are 481, 45, 9, and 11 fmol/mg protein, respectively. Immunoprecipitation studies with subunit-specific antibodies showed that a majority of the nAChRs in the SCG and nodose ganglia contain the alpha3 and beta4 subunits, but a significant percentage of the nAChRs in these ganglia also contain alpha5 and beta2 subunits. A small percentage of the nAChRs in nodose ganglia also contain alpha2 and alpha4 subunits. Sequential immunoprecipitation assays indicated that in the SCG, all alpha5 subunits are associated with alpha3 and beta4 subunits, forming the mixed heteromeric alpha3beta4alpha5 subtype. A receptor composed of alpha3, beta2, and beta4 subunits in the SCG was also detected. In rat SCG, we found the following distribution of nAChRs subtypes: 55 to 60% simple alpha3beta4 subtype, 25 to 30% alpha3beta4alpha5 subtype, and 10 to 15% alpha3beta4beta2 subtype. These findings indicate that the nAChRs in SCG and nodose ganglia are heterogeneous, which suggests that different receptor subtypes may play different roles in these ganglia or may be activated under different conditions.
Collapse
Affiliation(s)
- Danyan Mao
- Department of Pharmacology and Interdisciplinary Program in Neuroscience, Georgetown University School of Medicine, Washington, DC 20057, USA
| | | | | | | | | |
Collapse
|
91
|
Reyes EP, Fernández R, Larraín C, Zapata P. Carotid body chemosensory activity and ventilatory chemoreflexes in cats persist after combined cholinergic-purinergic block. Respir Physiol Neurobiol 2006; 156:23-32. [PMID: 16956797 DOI: 10.1016/j.resp.2006.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 06/23/2006] [Accepted: 07/24/2006] [Indexed: 11/24/2022]
Abstract
Acetylcholine (ACh) and ATP have been proposed as excitatory co-transmitters operating at synapses between glomus cells and sensory nerve endings of the carotid body (CB). To test such hypothesis, we performed experiments on cats under pentobarbitone anesthesia and breathing spontaneously. Cholinergic and purinergic agonists and antagonists were given into one common carotid artery. Chemoreflex ventilatory changes initiated from the ipsilateral CB or chemosensory activity from the ipsilateral carotid nerve were recorded. Agonists ACh, nicotine, epibatidine, ATP, betagamma-methylene-ATP and gammaS-ATP induced transient chemoreflex enhancements of ventilation or increased chemosensory activity. When given in combination, mecamylamine and suramin suppressed both nicotine- and ATP-induced ventilatory chemoreflexes or chemosensory responses. However, neither chemoreflex hyperventilation induced by brief hypoxic exposures or steady-state hypoxic levels, nor chemosensory excitation elicited by these maneuvers were eliminated. Asphyxia-induced chemosensory excitation was not reduced by combined blockade of ACh and ATP receptors. Furthermore, ventilatory or chemosensory depression evoked by 100% O2 tests was unmodified, thus evidencing that basal chemosensory drive in normoxia was not suppressed by combined cholinergic-purinergic blockade. Therefore, although ACh and ATP may participate in chemoexcitation of the CB, their involvement fails to explain the origin of chemosensory discharges from synaptic transmission between glomus cells and chemosensory nerve endings of the CB.
Collapse
Affiliation(s)
- E P Reyes
- Laboratorio de Neurobiología, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | |
Collapse
|
92
|
Livett BG, Sandall DW, Keays D, Down J, Gayler KR, Satkunanathan N, Khalil Z. Therapeutic applications of conotoxins that target the neuronal nicotinic acetylcholine receptor. Toxicon 2006; 48:810-29. [PMID: 16979678 DOI: 10.1016/j.toxicon.2006.07.023] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pain therapeutics discovered by molecular mining of the expressed genome of Australian predatory cone snails are providing lead compounds for the treatment of neurological diseases such as multiple sclerosis, shingles, diabetic neuropathy and other painful neurological conditions. The high specificity exhibited by these novel compounds for neuronal receptors and ion channels in the brain and nervous system indicates the high degree of selectivity that this class of neuropeptides can be expected to show when used therapeutically in humans. A lead compound, ACV1 (conotoxin Vc1.1 from Conus victoriae), has entered Phase II clinical trials and is being developed for the treatment for neuropathic pain. ACV1 will be targeted initially for the treatment of sciatica, shingles and diabetic neuropathy. The compound is a 16 amino acid peptide [Sandall et al., 2003. A novel alpha-conotoxin identified by gene sequencing is active in suppressing the vascular response to selective stimulation of sensory nerves in vivo. Biochemistry 42, 6904-6911], an antagonist of neuronal nicotinic acetylcholine receptors. It has potent analgesic activity following subcutaneous or intramuscular administration in several preclinical animal models of human neuropathic pain [Satkunanathan et al., 2005. Alpha conotoxin Vc1.1 alleviates neuropathic pain and accelerates functional recovery of injured neurons. Brain. Res. 1059, 149-158]. ACV1 may act as an analgesic by decreasing ectopic excitation in sensory nerves. In addition ACV1 appears to accelerate the recovery of injured nerves and tissues.
Collapse
Affiliation(s)
- Bruce G Livett
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Victoria 3010, Australia.
| | | | | | | | | | | | | |
Collapse
|
93
|
Reyes EP, Alcayaga J, Zapata P. Are there interactions between acetylcholine- and ATP-induced responses at the level of a visceral sensory ganglion? Brain Res 2006; 1107:97-103. [PMID: 16824493 DOI: 10.1016/j.brainres.2006.05.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2006] [Revised: 05/25/2006] [Accepted: 05/26/2006] [Indexed: 11/19/2022]
Abstract
We investigate possible interactions between acetylcholine (ACh)- and adenosine 5'-triphosphate (ATP)-induced responses of petrosal ganglion, where the perikarya of most sensory neurons of the glossopharyngeal nerve are located. Experiments were performed on petrosal ganglia excised from pentobarbitone-anesthetized cats, desheathed and perfused in vitro. Separate applications of ACh and ATP to the exposed surface of the ganglion induced bursts of antidromic potentials recorded from the carotid (sinus) nerve branch of the glossopharyngeal nerve, which frequencies were dependent on the dose of the applied agonists. The simultaneous application of previously determined ED50s of ACh and ATP provoked responses corresponding closely to the simple addition of the responses elicited by the separate application of each agent. Responses usually subsided within 1 min of stimuli application but were followed by periods of refractoriness to subsequent application of the same agent. After determining the timing for recovering from desensitization to the ED50s of ACh and ATP applied separately, ACh was applied while the preparation had been desensitized to ATP and then ATP was applied during desensitization to ACh, but responses obtained were similar to control responses induced by each agent separately. In summary, ACh- and ATP-induced responses of petrosal ganglion neurons are simply additive, followed by a few minute lasting desensitization, but cross-desensitization was not observed. Thus, ACh and ATP seem to operate through independent receptors, activating separate ionic channels, whose coincident currents do not interfere each other.
Collapse
Affiliation(s)
- Edison-Pablo Reyes
- Laboratorio de Fisiología Celular, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | | | |
Collapse
|
94
|
Long C, Chen MF, Sarwinski SJ, Chen PY, Si M, Hoffer BJ, Evans MS, Lee TJF. Monoamine uptake inhibitors block α7-nAChR-mediated cerebral nitrergic neurogenic vasodilation. Am J Physiol Heart Circ Physiol 2006; 291:H202-9. [PMID: 16772524 DOI: 10.1152/ajpheart.01192.2005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We have proposed that activation of cerebral perivascular sympathetic α7-nicotinic acetylcholine receptors (α7-nAChRs) by nicotinic agonists releases norepinephrine, which then acts on parasympathetic nitrergic nerves, resulting in release of nitric oxide and vasodilation. Using patch-clamp electrophysiology, immunohistochemistry, and in vitro tissue bath myography, we tested this axo-axonal interaction hypothesis further by examining whether blocking norepinephrine reuptake enhanced α7-nAChR-mediated cerebral nitrergic neurogenic vasodilation. The results indicated that choline- and nicotine-induced α7-nAChR-mediated nitrergic neurogenic relaxation in endothelium-denuded isolated porcine basilar artery rings was enhanced by desipramine and imipramine at lower concentrations (0.03–0.1 μM) but inhibited at higher concentrations (0.3–10 μM). In cultured superior cervical ganglion (SCG) neurons of the pig and rat, choline (0.1–30 mM)-evoked inward currents were reversibly blocked by 1–30 μM mecamylamine, 1–30 μM methyllycaconitine, 10–300 nM α-bungarotoxin, and 0.1–10 μM desipramine and imipramine, providing electrophysiological evidence for the presence of similar functional α7-nAChRs in cerebral perivascular sympathetic neurons of pigs and rats. In α7-nAChR-expressing Xenopus oocytes, choline-elicited inward currents were attenuated by α-bungarotoxin, imipramine, and desipramine. These monoamine uptake inhibitors appeared to directly block the α7-nAChR, resulting in diminished nicotinic agonist-induced cerebral nitrergic vasodilation. The enhanced nitrergic vasodilation by lower concentrations of monoamine uptake inhibitors is likely due to a greater effect on monoamine uptake than on α7-nAChR blockade. These results further support the hypothesis of axo-axonal interaction in nitrergic regulation of cerebral vascular tone.
Collapse
Affiliation(s)
- Cheng Long
- Department of Pharmacology, School of Medicine, Southern Illinois University, Springfield, Illinois, USA
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Ellison M, Haberlandt C, Gomez-Casati ME, Watkins M, Elgoyhen AB, McIntosh JM, Olivera BM. Alpha-RgIA: a novel conotoxin that specifically and potently blocks the alpha9alpha10 nAChR. Biochemistry 2006; 45:1511-7. [PMID: 16445293 DOI: 10.1021/bi0520129] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The alpha9 and alpha10 nicotinic acetylcholine receptor (nAChR) subunits assemble to form the alpha9alpha10 nAChR subtype. This receptor is believed to mediate cholinergic synaptic transmission between efferent olivocochlear fibers and the hair cells of the cochlea. In addition alpha9 and/or alpha10 expression has been described in dorsal root ganglion neurons, lymphocytes, skin keratinocytes, and the pars tuberalis of the pituitary. Specific antagonists that selectively block the alpha9alpha10 channel could be valuable tools for elucidating its role in these diverse tissues. This study describes a novel alpha-conotoxin from the Western Atlantic species Conus regius, alpha-conotoxin RgIA (alpha-RgIA), that is a subtype specific blocker of the alpha9alpha10 nAChR. alpha-RgIA belongs to the alpha4/3 subfamily of the alpha-conotoxin family; sequence and subtype specificity comparisons between alpha-RgIA and previously characterized alpha4/3 toxins indicate that the amino acids in the C-terminal half of alpha-RgIA are responsible for its preferential inhibition of the alpha9alpha10 nAChR subtype.
Collapse
Affiliation(s)
- Michael Ellison
- Department of Biology, University of Utah, Salt Lake City, Utah 84112-0840, USA.
| | | | | | | | | | | | | |
Collapse
|
96
|
Varas R, Valdés V, Iturriaga-Vásquez P, Cassels BK, Iturriaga R, Alcayaga J. Electrophysiological characterization of nicotinic acetylcholine receptors in cat petrosal ganglion neurons in culture: Effects of cytisine and its bromo derivatives. Brain Res 2006; 1072:72-8. [PMID: 16406013 DOI: 10.1016/j.brainres.2005.12.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2005] [Revised: 12/02/2005] [Accepted: 12/05/2005] [Indexed: 10/25/2022]
Abstract
Petrosal ganglion neurons are depolarized and fire action potentials in response to acetylcholine and nicotine. However, little is known about the subtype(s) of nicotinic acetylcholine receptors involved, although alpha4 and alpha7 subunits have been identified in petrosal ganglion neurons. Cytisine, an alkaloid unrelated to nicotine, and its bromo derivatives are agonists exhibiting different affinities, potencies and efficacies at nicotinic acetylcholine receptors containing alpha4 or alpha7 subunits. To characterize the receptors involved, we studied the effects of these agonists and the nicotinic acetylcholine receptor antagonists hexamethonium and alpha-bungarotoxin in isolated petrosal ganglion neurons. Petrosal ganglia were excised from anesthetized cats and cultured for up to 16 days. Using patch-clamp technique, we recorded whole-cell currents evoked by 5-10 s applications of acetylcholine, cytisine or its bromo derivatives. Agonists and antagonists were applied by gravity from a pipette near the neuron surface. Neurons responded to acetylcholine, cytisine, 3-bromocytisine and 5-bromocytisine with fast inward currents that desensitized during application of the stimuli and were reversibly blocked by 1 microM hexamethonium or 10 nM alpha-bungarotoxin. The order of potency of the agonists was 3-bromocytisine >> acetylcholine approximately = cytisine >> 5-bromocytisine, suggesting that homomeric alpha7 neuronal nicotinic receptors predominate in cat petrosal ganglion neurons in culture.
Collapse
Affiliation(s)
- Rodrigo Varas
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | |
Collapse
|
97
|
Kollarik M, Undem BJ. Sensory transduction in cough-associated nerves. Respir Physiol Neurobiol 2006; 152:243-54. [PMID: 16443402 DOI: 10.1016/j.resp.2005.12.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Revised: 12/14/2005] [Accepted: 12/15/2005] [Indexed: 01/07/2023]
Abstract
Before a tussive stimulus in the airways can evoke a cough reflex it must first cause action potential discharge in cough-associated vagal sensory nerves. This is initiated by the stimulus first interacting with the receptors and ion channels in the terminal membrane of the sensory fiber in a manner that leads to membrane depolarization. If the stimulus-induced membrane depolarization, referred to as a generator potential, is of sufficient magnitude, action potentials are elicited that are then conducted to the central nervous system. If the action potentials are of sufficient number and frequency, a cough is evoked. The most common tussive stimuli include mechanical perturbations, anosmotic solutions, acidic solutions, and various chemical agents. The mechanisms underlying the transduction of most of these tussive stimuli into a generator potential are only partially understood. In general terms, chemical stimuli interact directly with receptors that are classified as either ligand gated ion channels or metabotropic receptors (e.g. G-protein coupled receptors). Ligand gated receptors are those in which the receptor protein also serves as the ion channel. The metabotropic receptors indirectly modulate the ion channels activity via various signal transduction schemes. Mechanical stimuli are thought to interact with mechanically gated ion channels, and acid can interact with acid sensing ion channels in addition to the capsaicin receptor TRPV1. In this overview some of the specific receptors and ion channels involved in the tussive stimulus-induced generator potentials in vagal afferent nerve terminals are discussed.
Collapse
Affiliation(s)
- Marian Kollarik
- Johns Hopkins Asthma Center, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | |
Collapse
|
98
|
Chapter 2 History of Ion Channels in the Pain Sensory System. CURRENT TOPICS IN MEMBRANES 2006. [DOI: 10.1016/s1063-5823(06)57001-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
99
|
Chen T, Cai Q, Hong Y. Intrathecal sensory neuron-specific receptor agonists bovine adrenal medulla 8-22 and (Tyr6)-γ2-msh-6-12 inhibit formalin-evoked nociception and neuronal Fos-like immunoreactivity in the spinal cord of the rat. Neuroscience 2006; 141:965-975. [PMID: 16713112 DOI: 10.1016/j.neuroscience.2006.04.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2006] [Revised: 04/01/2006] [Accepted: 04/05/2006] [Indexed: 10/24/2022]
Abstract
The finding that sensory neuron-specific G-protein-coupled receptor mRNA is solely expressed in small primary sensory neurons suggests involvement of the receptor in nociceptive modulation. The present study was designed to assess effects of intrathecal administration of bovine adrenal medulla 8-22 and (Tyr6)-gamma2-MSH-6-12, selective sensory neuron-specific receptor agonists, on nocifensive behaviors and expression of spinal c-Fos-like immunoreactivity evoked by intraplantar injection of 2.5% formalin in rats. The agonists were administered 10 min before (pretreatment) and/or after (post-treatment) injection of formalin. Pretreatment with bovine adrenal medulla 8-22 dose-dependently (3, 10 and 30 nmol) decreased time lifting and licking the paw mainly in the second phase. Intrathecal bovine adrenal medulla 8-22 (30 nmol) remarkably suppressed nocifensive behaviors in the first and second phases and the expression of formalin-evoked c-Fos-like immunoreactivity in laminae I-II and V-VI of the spinal dorsal horn at L4-5. Moreover, naloxone (20 microg, intrathecal) failed to antagonize the inhibitory effects of bovine adrenal medulla 8-22. Post-treatment with bovine adrenal medulla 8-22 also exerted inhibition on the second phase behaviors in a dose-dependent manner with a similar efficacy observed in pretreatment groups. Furthermore, post-treatment with (Tyr6)-gamma2-MSH-6-12 (0.5, 1.5 and 5 nmol) also suppressed formalin-evoked nocifensive behaviors in the second phase and c-Fos-like immunoreactivity in the spinal dorsal horn similar with bovine adrenal medulla 8-22. Our results suggest that sensory neuron-specific receptor may play an important role in modulation of spinal nociceptive transmission. This is the first to demonstrate that activation of sensory neuron-specific receptor produces analgesia in the persistent pain model.
Collapse
Affiliation(s)
- T Chen
- Department of Anatomy and Physiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350000, People's Republic of China
| | - Q Cai
- Department of Anatomy and Physiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350000, People's Republic of China
| | - Y Hong
- Department of Anatomy and Physiology, College of Life Sciences, Fujian Normal University, Fuzhou, Fujian 350000, People's Republic of China.
| |
Collapse
|
100
|
Satkunanathan N, Livett B, Gayler K, Sandall D, Down J, Khalil Z. Alpha-conotoxin Vc1.1 alleviates neuropathic pain and accelerates functional recovery of injured neurones. Brain Res 2005; 1059:149-58. [PMID: 16182258 DOI: 10.1016/j.brainres.2005.08.009] [Citation(s) in RCA: 142] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 08/09/2005] [Accepted: 08/09/2005] [Indexed: 11/19/2022]
Abstract
This paper demonstrates the capacity of the neuronal nicotinic acetylcholine receptor (nAChR) antagonist alpha-conotoxin Vc1.1 to inhibit pain responses in vivo. Vc1.1 suppressed pain behaviors when tested in two models of peripheral neuropathy of the rat sciatic nerve, the chronic constriction injury (CCI) and partial nerve ligation (PNL) models. Mechanical hyperalgesia was assessed using an Ugo Basile Analgesymeter. Vc1.1 was administered by intramuscular bolus injection near the site of injury at doses of 0.036 microg, 0.36 microg and 3.6 microg in CCI rats and at a dose of 0.36 microg in PNL rats. Vc1.1 was also administered contralaterally in CCI rats at doses of 0.36 microg and 3.6 microg. Treatment started after the development of hyperalgesia and continued for 7 days. Vc1.1 significantly attenuated mechanical hyperalgesia in both CCI and PNL rats for up to a week following cessation of treatment. Vc1.1 also accelerated functional recovery of injured neurones. A blister was raised over the footpad innervated by the peripheral terminals of the injured nerve. The ability of these terminals to mount an inflammatory vascular response upon perfusion of the blister base with substance P provided a measure of functional recovery. This study shows that alpha-conotoxin Vc1.1, a neuronal nAChR antagonist, suppressed mechanical pain responses associated with peripheral neuropathy in rats in vivo and accelerated functional recovery of the injured neurones. A role for neuronal nAChRs in the analgesic activity of Vc1.1 is proposed.
Collapse
Affiliation(s)
- Narmatha Satkunanathan
- National Ageing Research Institute, University of Melbourne, Parkville Victoria, Australia
| | | | | | | | | | | |
Collapse
|