51
|
Abstract
How do brain systems evaluate the affective valence of a stimulus - that is, its quality of being good or bad? One possibility is that a neural subsystem, or 'module' (such as a subregion of the brain, a projection pathway, a neuronal population or an individual neuron), is permanently dedicated to mediate only one affective function, or at least only one specific valence - an idea that is termed here the 'affective modules' hypothesis. An alternative possibility is that a given neural module can exist in multiple neurobiological states that give it different affective functions - an idea termed here the 'affective modes' hypothesis. This suggests that the affective function or valence mediated by a neural module need not remain permanently stable but rather can change dynamically across different situations. An evaluation of evidence for the 'affective modules' versus 'affective modes' hypotheses may be useful for advancing understanding of the affective organization of limbic circuitry.
Collapse
|
52
|
Diehl MM, Bravo-Rivera C, Quirk GJ. The study of active avoidance: A platform for discussion. Neurosci Biobehav Rev 2019; 107:229-237. [PMID: 31509767 PMCID: PMC6936221 DOI: 10.1016/j.neubiorev.2019.09.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/19/2019] [Accepted: 09/06/2019] [Indexed: 11/27/2022]
Abstract
Traditional active avoidance tasks have advanced the field of aversive learning and memory for decades and are useful for studying simple avoidance responses in isolation; however, these tasks have limited clinical relevance because they do not model several key features of clinical avoidance. In contrast, platform-mediated avoidance (PMA) more closely resembles clinical avoidance because the response i) is associated with an unambiguous safe location, ii) is not associated with an artificial termination of the warning signal, and iii) is associated with a decision-based appetitive cost. Recent findings on the neuronal circuits of PMA have confirmed that amygdala-striatal circuits are essential for avoidance. In PMA, however, the prelimbic cortex facilitates the avoidance response early during the warning signal, perhaps through disinhibition of the striatum. Future studies on avoidance should account for additional factors such as sex differences and social interactions that will advance our understanding of maladaptive avoidance contributing to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Maria M Diehl
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936, Puerto Rico; Department of Psychological Sciences, Kansas State University, Manhattan, KS, 66506 United States
| | | | - Gregory J Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, PR, 00936, Puerto Rico.
| |
Collapse
|
53
|
Kays JS, Yamamoto BK. Evaluation of Microglia/Macrophage Cells from Rat Striatum and Prefrontal Cortex Reveals Differential Expression of Inflammatory-Related mRNA after Methamphetamine. Brain Sci 2019; 9:brainsci9120340. [PMID: 31775383 PMCID: PMC6955783 DOI: 10.3390/brainsci9120340] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 12/19/2022] Open
Abstract
RNA sequencing (RNAseq) can be a powerful tool in the identification of transcriptional changes after drug treatment. RNAseq was utilized to determine expression changes in Fluorescence-activated cell sorted (FACS) CD11b/c+ cells from the striatum (STR) and prefrontal cortex (PFC) of male Sprague-Dawley rats after a methamphetamine (METH) binge dosing regimen. Resident microglia and infiltrating macrophages were collected 2 h or 3 days after drug administration. Gene expression changes indicated there was an increase toward an overall pro-inflammatory state, or M1 polarization, along with what appears to be a subset of cells that differentiated toward the anti-inflammatory M2 polarization. In general, there were significantly more mRNA expression changes in the STR than the PFC and more at 2 h post-binge METH than at 3 days post-binge METH. Additionally, Ingenuity® Pathway Analysis along with details of RNA expression changes revealed cyclo-oxygenase 2 (COX2)-driven prostaglandin (PG) E2 synthesis, glutamine uptake, and the Nuclear factor erythroid2-related factor 2 (NRF2) canonical pathway in microglia were associated with the binge administration regimen of METH.
Collapse
|
54
|
Koo JW, Chaudhury D, Han MH, Nestler EJ. Role of Mesolimbic Brain-Derived Neurotrophic Factor in Depression. Biol Psychiatry 2019; 86:738-748. [PMID: 31327473 PMCID: PMC6814503 DOI: 10.1016/j.biopsych.2019.05.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/20/2019] [Accepted: 05/24/2019] [Indexed: 11/27/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is widely accepted as being critical for neural and synaptic plasticity throughout the nervous system. Recent work has shown that BDNF in the mesolimbic dopamine (DA) circuit, originating in ventral tegmental area DA neurons that project to the nucleus accumbens, is crucial in the development of depressive-like behaviors following exposure to chronic social defeat stress in mice. Whereas BDNF modulates DA signaling in encoding responses to acute defeat stress, BDNF signaling alone appears to be responsible for the behavioral effects after chronic social defeat stress. Very different patterns are seen with another widely used chronic stress paradigm in mice, chronic mild stress (also known as chronic variable or unpredictable stress), where DA signaling, but not BDNF signaling, is primarily responsible for the behavioral effects observed. This review discusses the molecular, cellular, and circuit basis of this dramatic discrepancy, which appears to involve the nature of the stress, its severity and duration, and its effects on distinct cell types within the ventral tegmental area-to-nucleus accumbens mesolimbic circuit.
Collapse
Affiliation(s)
- Ja Wook Koo
- Department of Neural Development and Disease, Korea Brain Research Institute (KBRI), 61, Cheomdan-ro, Dong-gu, Daegu, 41068, Republic of Korea
| | - Dipesh Chaudhury
- Division of Science, New York University Abu Dhabi (NYUAD), Saadiyat Island Campus, Abu Dhabi, PO Box 129188, United Arab Emirates
| | - Ming-Hu Han
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York.
| | - Eric J. Nestler
- Departments of Pharmacological Sciences and of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA,Address correspondence to: Ming-Hu Han, Ph.D. and Eric J. Nestler, MD., Ph.D., Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; and
| |
Collapse
|
55
|
Abstract
Humans and other animals often show a strong desire to know the uncertain rewards their future has in store, even when they cannot use this information to influence the outcome. However, it is unknown how the brain predicts opportunities to gain information and motivates this information-seeking behavior. Here we show that neurons in a network of interconnected subregions of primate anterior cingulate cortex and basal ganglia predict the moment of gaining information about uncertain rewards. Spontaneous increases in their information prediction signals are followed by gaze shifts toward objects associated with resolving uncertainty, and pharmacologically disrupting this network reduces the motivation to seek information. These findings demonstrate a cortico-basal ganglia mechanism responsible for motivating actions to resolve uncertainty by seeking knowledge about the future. Animals resolve uncertainty by seeking knowledge about the future. How the brain controls this is unclear. The authors show that a network including primate anterior cingulate cortex and basal ganglia encodes opportunities to gain information about uncertain rewards and mediates information seeking.
Collapse
|
56
|
McGregor MM, McKinsey GL, Girasole AE, Bair-Marshall CJ, Rubenstein JLR, Nelson AB. Functionally Distinct Connectivity of Developmentally Targeted Striosome Neurons. Cell Rep 2019; 29:1419-1428.e5. [PMID: 31693884 PMCID: PMC6866662 DOI: 10.1016/j.celrep.2019.09.076] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/05/2019] [Accepted: 09/26/2019] [Indexed: 11/30/2022] Open
Abstract
One long-standing model of striatal function divides the striatum into compartments called striosome and matrix. While some anatomical evidence suggests that these populations represent distinct striatal pathways with differing inputs and outputs, functional investigation has been limited by the methods for identifying and manipulating these populations. Here, we utilize hs599CreER mice as a new tool for targeting striosome projection neurons and testing their functional connectivity. Extending anatomical work, we demonstrate that striosome neurons receive greater synaptic input from prelimbic cortex, whereas matrix neurons receive greater input from primary motor cortex. We also identify functional differences in how striosome and matrix neurons process excitatory input, providing the first electrophysiological method for delineating striatal output neuron subtypes. Lastly, we provide the first functional demonstration that striosome neurons are the predominant striatal output to substantia nigra pars compacta dopamine neurons. These results identify striosome and matrix as functionally distinct striatal pathways.
Collapse
Affiliation(s)
- Matthew M McGregor
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
| | - Gabriel L McKinsey
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Department of Psychiatry, UCSF, San Francisco, CA, 94158, USA
| | - Allison E Girasole
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA
| | | | - John L R Rubenstein
- Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Department of Psychiatry, UCSF, San Francisco, CA, 94158, USA
| | - Alexandra B Nelson
- Neuroscience Graduate Program, UCSF, San Francisco, CA 94158, USA; Weill Institute for Neurosciences, UCSF, San Francisco, CA 94158, USA; Kavli Institute for Fundamental Neuroscience, UCSF, San Francisco, CA 94158, USA; Department of Neurology, UCSF, San Francisco, CA 94158, USA.
| |
Collapse
|
57
|
Piatkevich KD, Bensussen S, Tseng HA, Shroff SN, Lopez-Huerta VG, Park D, Jung EE, Shemesh OA, Straub C, Gritton HJ, Romano MF, Costa E, Sabatini BL, Fu Z, Boyden ES, Han X. Population imaging of neural activity in awake behaving mice. Nature 2019; 574:413-417. [PMID: 31597963 PMCID: PMC6858559 DOI: 10.1038/s41586-019-1641-1] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 08/28/2019] [Indexed: 12/21/2022]
Abstract
A longstanding goal in neuroscience has been to image membrane voltage across a population of individual neurons in an awake, behaving mammal. Here we describe a genetically encoded fluorescent voltage indicator, SomArchon, which exhibits millisecond response times and is compatible with optogenetic control, and which increases the sensitivity, signal-to-noise ratio, and number of neurons observable several-fold over previously published fully genetically encoded reagents1-8. Under conventional one-photon microscopy, SomArchon enables the routine population analysis of around 13 neurons at once, in multiple brain regions (cortex, hippocampus, and striatum) of head-fixed, awake, behaving mice. Using SomArchon, we detected both positive and negative responses of striatal neurons during movement, as previously reported by electrophysiology but not easily detected using modern calcium imaging techniques9-11, highlighting the power of voltage imaging to reveal bidirectional modulation. We also examined how spikes relate to the subthreshold theta oscillations of individual hippocampal neurons, with SomArchon showing that the spikes of individual neurons are more phase-locked to their own subthreshold theta oscillations than to local field potential theta oscillations. Thus, SomArchon reports both spikes and subthreshold voltage dynamics in awake, behaving mice.
Collapse
Affiliation(s)
- Kiryl D Piatkevich
- Media Lab, MIT, Cambridge, MA, USA
- MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Seth Bensussen
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Hua-An Tseng
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sanaya N Shroff
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Demian Park
- Media Lab, MIT, Cambridge, MA, USA
- MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Erica E Jung
- Media Lab, MIT, Cambridge, MA, USA
- Department of Mechanical and Industrial Engineering, University of Illinois, Chicago, IL, USA
| | - Or A Shemesh
- Media Lab, MIT, Cambridge, MA, USA
- MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA
| | - Christoph Straub
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Howard J Gritton
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Michael F Romano
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | | | - Bernardo L Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Zhanyan Fu
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Edward S Boyden
- Media Lab, MIT, Cambridge, MA, USA.
- MIT McGovern Institute for Brain Research, MIT, Cambridge, MA, USA.
- Department of Biological Engineering, MIT, Cambridge, MA, USA.
- MIT Center for Neurobiological Engineering, MIT, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Koch Institute, MIT, Cambridge, MA, USA.
| | - Xue Han
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| |
Collapse
|
58
|
Rodrigues S, Ferreira TL. Muscimol injection into the substantia nigra but not globus pallidus affects prepulse inhibition and startle reflex. Neuropharmacology 2019; 162:107796. [PMID: 31563465 DOI: 10.1016/j.neuropharm.2019.107796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 10/25/2022]
Abstract
Behavioral arrest is an essential feature of an animal's survival. Acoustic startle reflex (ASR) is an involuntary whole-body contraction of the skeletal musculature to an unexpected auditory stimulus. This strong reaction can be decreased by prepulse inhibition (PPI) phenomenon; which, for example, is important in reducing distraction during the processing of sensory input. Several brainstem regions are involved in the PPI and startle reflex, but a previous study from our laboratory showed that the main input structure of Basal Ganglia (BG) - the striatum - modulates PPI. The pallidum and nigra are connected with striatum and these brainstem structures. Here, we investigated the role of these striatum outputs in the brain regions on startle amplitude, PPI regulation, and exploratory behavior in Wistar rats. The temporary bilateral inhibition of the globus pallidus (GP) by muscimol lead to motor impairment, without disturbing startle amplitude or PPI. Similarly, inhibition of the entopeduncular nucleus (EPN) specifically disrupted the exploratory behavior. On the other hand, the substantia nigra reticulata (SNr) inhibition interfered in all measured behaviors: decreased the PPI percentage, increased ASR and impaired the locomotor activity. The nigra is a key BG output structure which projects to the thalamus and brainstem. These findings extend our previous study showing that the striatum neurons expressing D1 receptors involvement in PPI occurs via the direct pathway to SNr, but not to the pallidum which more likely occurs by its connection with the caudal pontine nucleus, superior colliculus and/or pedunculopontine nucleus pivotal structures for startle reflex modulation.
Collapse
Affiliation(s)
- Samanta Rodrigues
- Centro de Matemática, Computação e Cognição, Universidade Federal do ABC, Brazil
| | | |
Collapse
|
59
|
Lee SJ, Chen Y, Lodder B, Sabatini BL. Monitoring Behaviorally Induced Biochemical Changes Using Fluorescence Lifetime Photometry. Front Neurosci 2019; 13:766. [PMID: 31417343 PMCID: PMC6685078 DOI: 10.3389/fnins.2019.00766] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 07/09/2019] [Indexed: 02/06/2023] Open
Abstract
All cells respond to extracellular signals by altering their intracellular biochemical state. In neurons, such signaling regulates many aspects of cell and synapse biology and induces changes that are thought to be important for nervous system development, its adaptation in the face of a changing environment, and ongoing homeostatic maintenance. Although great advances have been made in developing novel fluorescent reporters of intracellular signaling as well as in methods of fluorescence detection for use in freely moving animals, these approaches have generally not been combined. Thus, we know relatively little about how the intracellular biochemical state of neurons, and other cell classes, is dynamically regulated during animals' behavior. Here we describe a single multi-mode fiber based fluorescence lifetime photometry system (FLiP) designed to monitor the state of fluorescence reporters of biochemical state in freely moving animals. We demonstrate the utility of FLiP by monitoring the lifetime of FLIM-AKAR, a genetically encoded fluorescent reporter of PKA phosphorylation, in populations of direct and indirect pathway striatal projection neurons in mice receiving food rewards. We find that the activity of PKA in each pathway is transiently regulated by reward acquisition, with PKA phosphorylation being enhanced and repressed in direct and indirect pathway neurons, respectively. This study demonstrates the power of FLiP to detect changes in biochemical state induced by naturalistic experiences in behaving animals.
Collapse
Affiliation(s)
- Suk Joon Lee
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| | - Yao Chen
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, United States
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, United States
| | - Bart Lodder
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, United States
- Master Program Neuroscience and Cognition, Graduate School of Life Sciences, Utrecht University and Department of Translational Neuroscience, Brain Center, University Medical Center, Utrecht, Netherlands
| | - Bernardo L. Sabatini
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
60
|
Kwak S, Jung MW. Distinct roles of striatal direct and indirect pathways in value-based decision making. eLife 2019; 8:46050. [PMID: 31310237 PMCID: PMC6658164 DOI: 10.7554/elife.46050] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/09/2019] [Indexed: 12/12/2022] Open
Abstract
The striatum is critically involved in value-based decision making. However, it is unclear how striatal direct and indirect pathways work together to make optimal choices in a dynamic and uncertain environment. Here, we examined the effects of selectively inactivating D1 receptor (D1R)- or D2 receptor (D2R)-expressing dorsal striatal neurons (corresponding to direct- and indirect-pathway neurons, respectively) on mouse choice behavior in a reversal task with progressively increasing reversal frequency and a dynamic two-armed bandit task. Inactivation of either D1R- or D2R-expressing striatal neurons impaired performance in both tasks, but the pattern of altered choice behavior differed between the two animal groups. A reinforcement learning model-based analysis indicated that inactivation of D1R- and D2R-expressing striatal neurons selectively impairs value-dependent action selection and value learning, respectively. Our results suggest differential contributions of striatal direct and indirect pathways to two distinct steps in value-based decision making.
Collapse
Affiliation(s)
- Shinae Kwak
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea.,Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
61
|
Evaluation of neurotoxicity and hepatotoxicity effects of acute and sub-acute oral administration of unripe ackee ( Blighia sapida) fruit extract. Toxicol Rep 2019; 6:656-665. [PMID: 31338305 PMCID: PMC6626071 DOI: 10.1016/j.toxrep.2019.06.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 06/26/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Acute oral dose of 2000 mg/kg of unripe B. sapida fruit extract (BSE) was toxic to mice. Repeated treatment with BSE impaired locomotor function, memory performance and shortened seizure latency in mice. Repeated treatment with BSE significantly up-regulate acetylcholinesterase enzyme activity in mice. Repeated treatment with BSE elevates oxidative stress in the brain and liver of mice. Repeated treatment with BSE showed histopathological evidences of toxicity in mice brain and liver.
Ackee (Blighia sapida) is a commonly eaten fruit that is indigenous to West Africa and Jamaica. Ackee poisoning in young children have been reported in parts of Nigeria due to consumption of the unripe fruits. This study was designed to identify potential mechanisms of acute and sub-acute toxicity of unripe B. sapida fruit extract (BSE). Acute toxic effect was investigated in mice of either sex administered BSE 2000 mg/kg. The sub-acute toxicity effects were investigated in mice of either sex that received 28 days repeated administration of BSE (100 and 500 mg/kg, p.o.). Locomotor activity and memory performance were measured as well as seizure vulnerability in PTZ-induced model. Liver enzymes were assessed in the serum. Acetylcholinesterase, oxidative stress parameters and histopathological changes were assessed in the brain and liver tissues. Signs and symptoms of toxicity such as urination, tremor, depressed locomotion and death were observed in acute toxicity test. Sub-acute dosing caused significant impairment in locomotor activity and memory performance in mice. Seizure threshold was shortened in BSE-treated compared to control mice. Brain acetylcholinesterase activity was significantly increased. Alkaline phosphatase (ALP) was significantly elevated in mice that received BSE (500 mg/kg). Furthermore, BSE caused significant increase in oxidative stress expressed in nitrite, malondialdehyde, reduced glutathione and catalase in the brain and liver tissues. Histological staining revealed neuronal damage of brain hippocampus and hepatocellular swelling and necrosis. Blighia sapida unripe fruit extract increased susceptibility to seizure and impaired locomotor and memory function. The biochemical and histopathological findings revealed potential toxicity mechanisms related to neurotoxicity and hepatotoxicity.
Collapse
|
62
|
Greenwood BN. The role of dopamine in overcoming aversion with exercise. Brain Res 2019; 1713:102-108. [DOI: 10.1016/j.brainres.2018.08.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/24/2018] [Accepted: 08/28/2018] [Indexed: 12/18/2022]
|
63
|
Chen X, Liu Z, Ma C, Ma L, Liu X. Parvalbumin Interneurons Determine Emotional Valence Through Modulating Accumbal Output Pathways. Front Behav Neurosci 2019; 13:110. [PMID: 31139063 PMCID: PMC6527764 DOI: 10.3389/fnbeh.2019.00110] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/02/2019] [Indexed: 11/13/2022] Open
Abstract
Parvalbumin (PV) expressing GABAergic interneurons provide large source of GABA to spiny projection neurons (SPNs) in the striatum. However, the roles of PV+ interneurons in the regulation of SPNs in the ventral striatum and emotional states are largely unknown. Here, we investigated whether stimulation of ventral striatal (accumbal) PV+ interneurons would drive emotional valence in mice. We found that during conditioned place preference (CPP) training, activation of accumbal PV+ interneurons evoked place preference while suppressing them resulted in conditioned place aversion (CPA). Activation of PV+ interneurons during place conditioning increased Fos expression in SPNs in the direct pathway (dSPNs) and impaired lithium chloride-induced CPA. Activation of dSPNs and SPNs in the indirect pathway (iSPNs) induced CPP and CPA, respectively; conversely, suppression of dSPNs or iSPNs induced CPA or CPP. In addition, activation or suppression of calretinin-expressing (CR) GABAergic interneurons did not induce place preference or aversion. These data suggest that PV+ interneurons can bidirectionally determine the emotional valence through their regulation of accumbal SPN activities and raise the possibility that manipulation of PV+ interneuron activity may have the potential to alter emotional valence and treat related mental disorders.
Collapse
Affiliation(s)
- Xi Chen
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Zhiyuan Liu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Chaonan Ma
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Lan Ma
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xing Liu
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Basic Medical Sciences and the Institutes of Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
64
|
TrkB-dependent disinhibition of the nucleus accumbens is enhanced by ethanol. Neuropsychopharmacology 2019; 44:1114-1122. [PMID: 30758322 PMCID: PMC6461768 DOI: 10.1038/s41386-019-0341-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/03/2019] [Accepted: 02/06/2019] [Indexed: 01/12/2023]
Abstract
The nucleus accumbens is a critical integration center for reward-related circuitry and is comprised primarily of medium spiny projection neurons. The dynamic balance of excitation and inhibition onto medium spiny neurons determines the output of this structure. While nucleus accumbens excitatory synaptic plasticity is well-characterized, inhibitory synaptic plasticity mechanisms and their potential relevance to shaping motivated behaviors is poorly understood. Here we report the discovery of long-term depression of inhibitory synaptic transmission in the mouse nucleus accumbens core. This long-term depression is postsynaptically expressed, tropomyosin kinase B (TrkB) receptor-mediated, and augmented in the presence of ethanol. Our findings support the emerging view that TrkB signaling regulates inhibitory synaptic plasticity and suggest this mechanism in the nucleus accumbens as a target for ethanol modulation of reward.
Collapse
|
65
|
王 伟, 侯 进, 黄 文. [Temporary acceleration of interstitial fluid drainage in excited brain region induced by movement]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2019; 51:206-209. [PMID: 30996355 PMCID: PMC7441198 DOI: 10.19723/j.issn.1671-167x.2019.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Indexed: 06/09/2023]
Abstract
OBJECTIVE To investigate the changes of brain interstitial fluid (ISF) induced by movement. METHODS Twenty mature male Sprague-Dawley rats were randomly divided into two groups: control group and movement group. Electrophysiological neurons in caudate nuclear of additional five rats were recorded and the differences analyzed between under anesthesia and by movement. In the control group, the rats were anesthetized using isoflurane continuously during the experiment process. In the meantime the magnetic tracer was injected into the center of the caudate nucleus and multi-period magnetic resonance scanning was performed at several time points until high signal intensity invisible in the images. In the movement group, the rats were anesthetized for the injection of the tracer, and the first post-injection magnetic resonance scanning was performed. Then the rats were waken and allowed moving voluntarily for 20 minutes. The rats were anesthetized again and multi-period magnetic resonance scanning was performed until the experiment ended. NanoDetect system (Version 1.2, MRI lab, Beijing, China) was used to measure the parameters on ISF, which included the weighed signal intensity (weighed ΔSI) , the term predicting the amount of the tracer, and half-time of the tracer. In movement group, the weighed ΔSI at the time points of pre-movement and 10, 40, 70, 130, and 190 minutes after movement were calculated respectively. In control group, the weighed ΔSI at the same time points also were measured. The weighed ΔSI and half-time were compared between the two groups. RESULTS The electrophysiological recording and data analysis showed significant difference in the local field potential of Caudate Nucleus between under anesthesia and by movement. The weighed ΔSI (unit: ΔSI×mm3) values of the two groups, presented by movement group vs. control group, were as followings, 60 257.1±23 069.2 vs. 61 072.0±19 547.3 at pre-move, 83 624.3±21 475.7 vs. 71 218.1±12 586.5 at 10 min after movement, 57 336.0±36 243.4 vs. 69 756.1±13 306.0 at 40 min after movement, 43 705.9±10 246.3 vs. 55 443.2±20 733.3 at 70 min after movement, 7 734.9±2 645.2 vs. 8 967.6±2 007.3 at 130 min after movement and 2 497.3±987.5 vs. 3 013.2±1 760.8 at 190 min after movement. Moreover, at 40 min after movement, the weighed ΔSI of movement group was significantly reduced compared with control group (P<0.05). The half-time was not significantly different [(104.3±54.1) min vs. (113.4±47.3) min, P>0.05]. CONCLUSION ISF drainage of caudate nuclear can be acclerated temporarily by movement.
Collapse
Affiliation(s)
- 伟 王
- 佛山市第一人民医院影像科, 广东佛山 528000Department of Radiology, The First People’s Hospital of Foshan, Foshan 528000, Guangdong, China;
| | - 进 侯
- 广州医科大学附属第二医院放射科, 广州 510260Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - 文强 黄
- 首都师范大学心理学院, 北京 100048School of Psychology, Capital Normal University, Beijing 100048, China
| |
Collapse
|
66
|
王 伟, 侯 进, 黄 文. [Temporary acceleration of interstitial fluid drainage in excited brain region induced by movement]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2019; 51:206-209. [PMID: 30996355 PMCID: PMC7441198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Indexed: 08/12/2024]
Abstract
OBJECTIVE To investigate the changes of brain interstitial fluid (ISF) induced by movement. METHODS Twenty mature male Sprague-Dawley rats were randomly divided into two groups: control group and movement group. Electrophysiological neurons in caudate nuclear of additional five rats were recorded and the differences analyzed between under anesthesia and by movement. In the control group, the rats were anesthetized using isoflurane continuously during the experiment process. In the meantime the magnetic tracer was injected into the center of the caudate nucleus and multi-period magnetic resonance scanning was performed at several time points until high signal intensity invisible in the images. In the movement group, the rats were anesthetized for the injection of the tracer, and the first post-injection magnetic resonance scanning was performed. Then the rats were waken and allowed moving voluntarily for 20 minutes. The rats were anesthetized again and multi-period magnetic resonance scanning was performed until the experiment ended. NanoDetect system (Version 1.2, MRI lab, Beijing, China) was used to measure the parameters on ISF, which included the weighed signal intensity (weighed ΔSI) , the term predicting the amount of the tracer, and half-time of the tracer. In movement group, the weighed ΔSI at the time points of pre-movement and 10, 40, 70, 130, and 190 minutes after movement were calculated respectively. In control group, the weighed ΔSI at the same time points also were measured. The weighed ΔSI and half-time were compared between the two groups. RESULTS The electrophysiological recording and data analysis showed significant difference in the local field potential of Caudate Nucleus between under anesthesia and by movement. The weighed ΔSI (unit: ΔSI×mm3) values of the two groups, presented by movement group vs. control group, were as followings, 60 257.1±23 069.2 vs. 61 072.0±19 547.3 at pre-move, 83 624.3±21 475.7 vs. 71 218.1±12 586.5 at 10 min after movement, 57 336.0±36 243.4 vs. 69 756.1±13 306.0 at 40 min after movement, 43 705.9±10 246.3 vs. 55 443.2±20 733.3 at 70 min after movement, 7 734.9±2 645.2 vs. 8 967.6±2 007.3 at 130 min after movement and 2 497.3±987.5 vs. 3 013.2±1 760.8 at 190 min after movement. Moreover, at 40 min after movement, the weighed ΔSI of movement group was significantly reduced compared with control group (P<0.05). The half-time was not significantly different [(104.3±54.1) min vs. (113.4±47.3) min, P>0.05]. CONCLUSION ISF drainage of caudate nuclear can be acclerated temporarily by movement.
Collapse
Affiliation(s)
- 伟 王
- 佛山市第一人民医院影像科, 广东佛山 528000Department of Radiology, The First People’s Hospital of Foshan, Foshan 528000, Guangdong, China;
| | - 进 侯
- 广州医科大学附属第二医院放射科, 广州 510260Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, China
| | - 文强 黄
- 首都师范大学心理学院, 北京 100048School of Psychology, Capital Normal University, Beijing 100048, China
| |
Collapse
|
67
|
Gowrishankar R, Bruchas MR. Defining circuit-specific roles for G protein-coupled receptors in aversive learning. Curr Opin Behav Sci 2019; 26:146-156. [PMID: 32855999 DOI: 10.1016/j.cobeha.2019.01.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The encoding of negative valence in response to noxious stimuli/experiences and in turn, the behavioral representation of negative affective states is essential for survival. Recent advances in neuroscience have determined multiple sites of neural plasticity and key circuits of connectivity across these regions in mediating aversive behavior. G protein-coupled receptors (GPCRs), owing to their neuromodulatory role, are especially important to refining our understanding of the molecular substrates involved in these circuits. In this review, we will focus on recent, contemporary findings that explore neural circuit-specific roles for neurotransmitter/peptide GPCRs and the importance of using novel approaches to illuminate the molecular mechanisms central to aversive learning.
Collapse
Affiliation(s)
- Raajaram Gowrishankar
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195
| | - Michael R Bruchas
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195.,Department of Pharmacology, Center for the Neurobiology of Addiction, University of Washington, Seattle, WA 98195.,Pain and Emotion, University of Washington, Seattle, WA 98195
| |
Collapse
|
68
|
Kim W, Won SY, Yoon BJ. CRMP2 mediates GSK3β actions in the striatum on regulating neuronal structure and mania-like behavior. J Affect Disord 2019; 245:1079-1088. [PMID: 30699850 DOI: 10.1016/j.jad.2018.10.371] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/29/2018] [Accepted: 10/05/2018] [Indexed: 11/20/2022]
Abstract
BACKGROUND Genetic and physiological studies have implicated the striatum in bipolar disorder (BD). Although Glycogen synthase kinase 3 beta (GSK3β) has been suggested to play a role in the pathophysiology of BD since it is inhibited by lithium, it remains unknown how GSK3β activity might be involved. Therefore we examined the functional roles of GSK3β and one of its substrates, CRMP2, within the striatum. METHODS Using CRISPR-Cas9 system, we specifically ablated GSK3β in the striatal neurons in vivo and in vitro. Sholl analysis was performed for the structural studies of medium spiny neurons (MSNs) and amphetamine-induced hyperlocomotion was measured to investigate the effects of gene ablations on the mania-like symptom of BD. RESULTS GSK3β deficiency in cultured neurons and in neurons of adult mouse brain caused opposite patterns of neurite changes. Furthermore, specific knockout of GSK3β in the MSNs of the indirect pathway significantly suppressed amphetamine-induced hyperlocomotion. We demonstrated that these phenotypes of GSK3β ablation were mediated by CRMP2, a major substrate of GSK3β. LIMITATIONS Amphetamine-induced hyperlocomotion only partially recapitulate the symptoms of BD. It requires further study to examine whether abnormality in GSK3β or CRMP2 is also involved in depression phase of BD. Additionally, we could not confirm whether the behavioral changes observed in GSK3β-ablated mice were indeed caused by the cellular structural changes observed in the striatal neurons. CONCLUSION Our results demonstrate that GSK3β and its substrate CRMP2 critically regulate the neurite structure of MSNs and their functions specifically within the indirect pathway of the basal ganglia network play a critical role in manifesting mania-like behavior of BD. Moreover, our data also suggest lithium may exert its effect on BD through a GSK3β-independent mechanism, in addition to the GSK3β inhibition-mediated mechanism.
Collapse
Affiliation(s)
- Wonju Kim
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Seong-Yeon Won
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Bong-June Yoon
- Division of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Anam-ro 145, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
69
|
Watkins DS, True JD, Mosley AL, Baucum AJ. Proteomic Analysis of the Spinophilin Interactome in Rodent Striatum Following Psychostimulant Sensitization. Proteomes 2018; 6:proteomes6040053. [PMID: 30562941 PMCID: PMC6313900 DOI: 10.3390/proteomes6040053] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/10/2018] [Accepted: 12/13/2018] [Indexed: 12/13/2022] Open
Abstract
Glutamatergic projections from the cortex and dopaminergic projections from the substantia nigra or ventral tegmental area synapse on dendritic spines of specific GABAergic medium spiny neurons (MSNs) in the striatum. Direct pathway MSNs (dMSNs) are positively coupled to protein kinase A (PKA) signaling and activation of these neurons enhance specific motor programs whereas indirect pathway MSNs (iMSNs) are negatively coupled to PKA and inhibit competing motor programs. An imbalance in the activity of these two programs is observed following increased dopamine signaling associated with exposure to psychostimulant drugs of abuse. Alterations in MSN signaling are mediated by changes in MSN protein post-translational modifications, including phosphorylation. Whereas direct changes in specific kinases, such as PKA, regulate different effects observed in the two MSN populations, alterations in the specific activity of serine/threonine phosphatases, such as protein phosphatase 1 (PP1) are less well known. This lack of knowledge is due, in part, to unknown, cell-specific changes in PP1 targeting proteins. Spinophilin is the major PP1-targeting protein in striatal postsynaptic densities. Using proteomics and immunoblotting approaches along with a novel transgenic mouse expressing hemagglutainin (HA)-tagged spinophilin in dMSNs and iMSNs, we have uncovered cell-specific regulation of the spinophilin interactome following a sensitizing regimen of amphetamine. These data suggest regulation of spinophilin interactions in specific MSN cell types and may give novel insight into putative cell-specific, phosphatase-dependent signaling pathways associated with psychostimulants.
Collapse
Affiliation(s)
- Darryl S Watkins
- Stark Neurosciences Research Institute, Indiana University School of Medicine Medical Neuroscience Graduate Program, Indianapolis, IN 46278, USA.
| | - Jason D True
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46278, USA.
- Department of Biology, Ball State University, Muncie, IN 47306, USA.
| | - Amber L Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46278, USA.
| | - Anthony J Baucum
- Department of Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202, USA.
- Stark Neurosciences Research Institute Indianapolis, Indianapolis, IN 46202, USA.
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
70
|
Lai TKY, Su P, Zhang H, Liu F. Development of a peptide targeting dopamine transporter to improve ADHD-like deficits. Mol Brain 2018; 11:66. [PMID: 30413217 PMCID: PMC6234781 DOI: 10.1186/s13041-018-0409-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 10/22/2018] [Indexed: 11/29/2022] Open
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a neurocognitive disorder characterized by hyperactivity, inattention, working memory deficits and impulsivity. Its worldwide prevalence is estimated to be 3–5% in children and adolescents. The mainstay treatment for ADHD is stimulant medications (e.g. methylphenidate), which increase synaptic dopamine by directly blocking dopamine transporter (DAT). Although these pharmacological agents are effective, they are often associated with various side effects including risks for future substance use disorders in ADHD patients. Here, we investigated an interaction between DAT and dopamine D2 receptor (D2R) as a novel target to develop potential therapeutics for the treatment of ADHD by using an interfering peptide (TAT-DATNT) to dissociate this protein complex. We found that TAT-DATNT promotes locomotor behavior in Sprague-Dawley rats. Furthermore, using in vivo microdialysis and high-performance liquid chromatography, we found that the disruption of D2R-DAT elevates extracellular dopamine level. More importantly, the interfering peptide, TAT-DATNT, attenuates hyperactivity and improves spontaneous alternation behavior in spontaneously hypertensive rats (SHR) ------ a common animal model of ADHD. This work presents a different means (i.e. other than direct blockade by a DAT inhibitor) to regulate the activity of DAT and dopaminergic neurotransmission, and a potential target site for future development of ADHD treatments.
Collapse
Affiliation(s)
- Terence K Y Lai
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada.,Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Ping Su
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Hailong Zhang
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada
| | - Fang Liu
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, M5T 1R8, Canada. .,Department of Physiology, University of Toronto, Toronto, ON, Canada. .,Department of Psychiatry, University of Toronto, Toronto, ON, Canada. .,Institute of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
71
|
Yartsev MM, Hanks TD, Yoon AM, Brody CD. Causal contribution and dynamical encoding in the striatum during evidence accumulation. eLife 2018; 7:e34929. [PMID: 30141773 PMCID: PMC6147735 DOI: 10.7554/elife.34929] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 08/23/2018] [Indexed: 12/12/2022] Open
Abstract
A broad range of decision-making processes involve gradual accumulation of evidence over time, but the neural circuits responsible for this computation are not yet established. Recent data indicate that cortical regions that are prominently associated with accumulating evidence, such as the posterior parietal cortex and the frontal orienting fields, may not be directly involved in this computation. Which, then, are the regions involved? Regions that are directly involved in evidence accumulation should directly influence the accumulation-based decision-making behavior, have a graded neural encoding of accumulated evidence and contribute throughout the accumulation process. Here, we investigated the role of the anterior dorsal striatum (ADS) in a rodent auditory evidence accumulation task using a combination of behavioral, pharmacological, optogenetic, electrophysiological and computational approaches. We find that the ADS is the first brain region known to satisfy the three criteria. Thus, the ADS may be the first identified node in the network responsible for evidence accumulation.
Collapse
Affiliation(s)
- Michael M Yartsev
- Princeton Neuroscience InstitutePrincetonUnited States
- Department of BioengineeringHelen Wills Neuroscience InstituteBerkeleyUnited States
| | - Timothy D Hanks
- Princeton Neuroscience InstitutePrincetonUnited States
- Department of NeurologyUniversity of California, DavisSacramentoUnited States
- Center for NeuroscienceUniversity of California, DavisDavisUnited States
| | | | - Carlos D Brody
- Princeton Neuroscience InstitutePrincetonUnited States
- Howard Hughes Medical InstituteMarylandUnited States
| |
Collapse
|
72
|
Jean-Richard-Dit-Bressel P, Killcross S, McNally GP. Behavioral and neurobiological mechanisms of punishment: implications for psychiatric disorders. Neuropsychopharmacology 2018; 43:1639-1650. [PMID: 29703994 PMCID: PMC6006171 DOI: 10.1038/s41386-018-0047-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/27/2018] [Accepted: 03/05/2018] [Indexed: 02/08/2023]
Abstract
Punishment involves learning about the relationship between behavior and its adverse consequences. Punishment is fundamental to reinforcement learning, decision-making and choice, and is disrupted in psychiatric disorders such as addiction, depression, and psychopathy. However, little is known about the brain mechanisms of punishment and much of what is known is derived from study of superficially similar, but fundamentally distinct, forms of aversive learning such as fear conditioning and avoidance learning. Here we outline the unique conditions that support punishment, the contents of its learning, and its behavioral consequences. We consider evidence implicating GABA and monoamine neurotransmitter systems, as well as corticostriatal, amygdala, and dopamine circuits in punishment. We show how maladaptive punishment processes are implicated in addictions, impulse control disorders, psychopathy, anxiety, and depression and argue that a better understanding of the cellular, circuit, and cognitive mechanisms of punishment will make important contributions to next generation therapeutic approaches.
Collapse
|
73
|
Bridges NR, Meyers M, Garcia J, Shewokis PA, Moxon KA. A rodent brain-machine interface paradigm to study the impact of paraplegia on BMI performance. J Neurosci Methods 2018; 306:103-114. [PMID: 29859878 DOI: 10.1016/j.jneumeth.2018.05.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 05/17/2018] [Accepted: 05/20/2018] [Indexed: 01/07/2023]
Abstract
BACKGROUND Most brain machine interfaces (BMI) focus on upper body function in non-injured animals, not addressing the lower limb functional needs of those with paraplegia. A need exists for a novel BMI task that engages the lower body and takes advantage of well-established rodent spinal cord injury (SCI) models to study methods to improve BMI performance. NEW METHOD A tilt BMI task was designed that randomly applies different types of tilts to a platform, decodes the tilt type applied and rights the platform if the decoder correctly classifies the tilt type. The task was tested on female rats and is relatively natural such that it does not require the animal to learn a new skill. It is self-rewarding such that there is no need for additional rewards, eliminating food or water restriction, which can be especially hard on spinalized rats. Finally, task difficulty can be adjusted by making the tilt parameters. RESULTS This novel BMI task bilaterally engages the cortex without visual feedback regarding limb position in space and animals learn to improve their performance both pre and post-SCI.Comparison with Existing Methods: Most BMI tasks primarily engage one hemisphere, are upper-body, rely heavily on visual feedback, do not perform investigations in animal models of SCI, and require nonnaturalistic extrinsic motivation such as water rewarding for performance improvement. Our task addresses these gaps. CONCLUSIONS The BMI paradigm presented here will enable researchers to investigate the interaction of plasticity after SCI and plasticity during BMI training on performance.
Collapse
Affiliation(s)
- Nathaniel R Bridges
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Michael Meyers
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Jonathan Garcia
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA
| | - Patricia A Shewokis
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA; Drexel University, Nutrition Sciences Department, College of Nursing and Health Professions, 1601 Cherry St., 382 Parkway Building, Philadelphia, PA, 19102, USA
| | - Karen A Moxon
- Drexel University, School of Biomedical Engineering, Science and Health Systems, 3141 Chestnut Street, Philadelphia, PA, 19104, USA; University of California Davis, Department of Biomedical Engineering, 451 E. Health Sciences Drive, GBSF 2303, Davis, CA, 95616, USA.
| |
Collapse
|
74
|
Running from fear: Exercise modulation of fear extinction. Neurobiol Learn Mem 2018; 151:28-34. [PMID: 29614374 DOI: 10.1016/j.nlm.2018.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/22/2018] [Accepted: 03/30/2018] [Indexed: 01/06/2023]
Abstract
Extinction-based exposure therapy is the most common behavioral therapy for anxiety and trauma-related disorders, but fear tends to resurface even after successful extinction. Identification of novel strategies to enhance fear extinction and reduce fear relapse is of paramount importance to mental health. Exercise can enhance cognitive function, but it is not yet well understood whether exercise can be an effective augmentation strategy for fear extinction. In the current review, we present the current state of knowledge on the effects of exercise on fear extinction. Effects of exercise duration, explanations for conflicting results, and potential mechanisms, focusing on a hypothesized role for dopamine, are all discussed. We also provide new data suggesting that the timing in which acute exercise occurs relative to fear extinction, is a crucial variable in determining whether exercise can enhance fear extinction. Clinical implications and ideas to guide future research endeavors in this area are provided.
Collapse
|
75
|
Direct and indirect nigrofugal projections to the nucleus reticularis pontis caudalis mediate in the motor execution of the acoustic startle reflex. Brain Struct Funct 2018; 223:2733-2751. [DOI: 10.1007/s00429-018-1654-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Accepted: 03/17/2018] [Indexed: 11/25/2022]
|
76
|
Abstract
The striatum controls food-related actions and consumption and is linked to feeding disorders, including obesity and anorexia nervosa. Two populations of neurons project from the striatum: direct pathway medium spiny neurons and indirect pathway medium spiny neurons. The selective contribution of direct pathway medium spiny neurons and indirect pathway medium spiny neurons to food-related actions and consumption remains unknown. Here, we used in vivo electrophysiology and fiber photometry in mice (of both sexes) to record both spiking activity and pathway-specific calcium activity of dorsal striatal neurons during approach to and consumption of food pellets. While electrophysiology revealed complex task-related dynamics across neurons, population calcium was enhanced during approach and inhibited during consumption in both pathways. We also observed ramping changes in activity that preceded both pellet-directed actions and spontaneous movements. These signals were heterogeneous in the spiking units, with neurons exhibiting either increasing or decreasing ramps. In contrast, the population calcium signals were homogeneous, with both pathways having increasing ramps of activity for several seconds before actions were initiated. An analysis comparing population firing rates to population calcium signals also revealed stronger ramping dynamics in the calcium signals than in the spiking data. In a second experiment, we trained the mice to perform an action sequence to evaluate when the ramping signals terminated. We found that the ramping signals terminated at the beginning of the action sequence, suggesting they may reflect upcoming actions and not preconsumption activity. Plasticity of such mechanisms may underlie disorders that alter action selection, such as drug addiction or obesity.SIGNIFICANCE STATEMENT Alterations in striatal function have been linked to pathological consumption in disorders, such as obesity and drug addiction. We recorded spiking and population calcium activity from the dorsal striatum during ad libitum feeding and an operant task that resulted in mice obtaining food pellets. Dorsal striatal neurons exhibited long ramps in activity that preceded actions by several seconds, and may reflect upcoming actions. Understanding how the striatum controls the preparation and generation of actions may lead to improved therapies for disorders, such as drug addiction or obesity.
Collapse
|
77
|
Melzer S, Gil M, Koser DE, Michael M, Huang KW, Monyer H. Distinct Corticostriatal GABAergic Neurons Modulate Striatal Output Neurons and Motor Activity. Cell Rep 2018; 19:1045-1055. [PMID: 28467898 PMCID: PMC5437725 DOI: 10.1016/j.celrep.2017.04.024] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 03/21/2017] [Accepted: 04/09/2017] [Indexed: 01/04/2023] Open
Abstract
The motor cortico-basal ganglion loop is critical for motor planning, execution, and learning. Balanced excitation and inhibition in this loop is crucial for proper motor output. Excitatory neurons have been thought to be the only source of motor cortical input to the striatum. Here, we identify long-range projecting GABAergic neurons in the primary (M1) and secondary (M2) motor cortex that target the dorsal striatum. This population of projecting GABAergic neurons comprises both somatostatin-positive (SOM+) and parvalbumin-positive (PV+) neurons that target direct and indirect pathway striatal output neurons as well as cholinergic interneurons differentially. Notably, optogenetic stimulation of M1 PV+ and M2 SOM+ projecting neurons reduced locomotion, whereas stimulation of M1 SOM+ projecting neurons enhanced locomotion. Thus, corticostriatal GABAergic projections modulate striatal output and motor activity. Long-range GABAergic projections from the motor cortex directly innervate the striatum M1 and M2 long-range SOM+ and PV+ neurons differentially innervate striatal neurons Striatal cholinergic neurons are innervated mainly by M1 SOM+ projecting neurons Motor cortex PV+ and SOM+ projecting neurons differentially modulate locomotion
Collapse
Affiliation(s)
- Sarah Melzer
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Mariana Gil
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - David E Koser
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Magdalena Michael
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Kee Wui Huang
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Hannah Monyer
- Department of Clinical Neurobiology at the Medical Faculty of Heidelberg University and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany.
| |
Collapse
|
78
|
Activation of Nigrostriatal Dopamine Neurons during Fear Extinction Prevents the Renewal of Fear. Neuropsychopharmacology 2018; 43:665-672. [PMID: 28976945 PMCID: PMC5770770 DOI: 10.1038/npp.2017.235] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 09/23/2017] [Accepted: 09/25/2017] [Indexed: 12/20/2022]
Abstract
Manipulations that increase dopamine (DA) signaling can enhance fear extinction, but the circuits involved remain unknown. DA neurons originating in the substantia nigra (SN) projecting to the dorsal striatum (DS) are traditionally viewed in the context of motor behavior, but growing data implicate this nigrostriatal circuit in emotion. Here we investigated the role of nigrostriatal DA in fear extinction. Activation of SN DA neurons with designer Gq-coupled receptors exclusively activated by designer drugs (Gq-DREADD) during fear extinction had no effect on fear extinction acquisition, but enhanced fear extinction memory and blocked the renewal of fear in a novel context; a pattern of data paralleled by cFos expression in the central amygdala. D1 receptors in the DS are a likely target mediating the effects of SN DA activation. D1-expressing neurons in the medial DS (DMS) were recruited during fear extinction, and Gq-DREADD-induced DA potentiated activity of D1-expressing neurons in both the DMS and the lateral DS (DLS). Pharmacological activation of D1 receptors in the DS did not impact fear extinction acquisition or memory, but blocked fear renewal in a novel context. These data suggest that activation of SN DA neurons and DS D1 receptors during fear extinction render fear extinction memory resistant to the disrupting effects of changes in contextual contingencies, perhaps by recruiting habitual learning strategies involving the DLS. Nigrostriatal DA thus represents a novel target to enhance long-term efficacy of extinction-based therapies for anxiety and trauma-related disorders.
Collapse
|
79
|
Differential coding of reward and movement information in the dorsomedial striatal direct and indirect pathways. Nat Commun 2018; 9:404. [PMID: 29374173 PMCID: PMC5786099 DOI: 10.1038/s41467-017-02817-1] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 12/31/2017] [Indexed: 11/30/2022] Open
Abstract
The direct and indirect pathways of the basal ganglia have long been thought to mediate behavioral promotion and inhibition, respectively. However, this classic dichotomous model has been recently challenged. To better understand neural processes underlying reward-based learning and movement control, we recorded from direct (dSPNs) and indirect (iSPNs) pathway spiny projection neurons in the dorsomedial striatum of D1-Cre and D2-Cre mice performing a probabilistic Pavlovian conditioning task. dSPNs tend to increase activity while iSPNs decrease activity as a function of reward value, suggesting the striatum represents value in the relative activity levels of dSPNs versus iSPNs. Lick offset-related activity increase is largely dSPN selective, suggesting dSPN involvement in suppressing ongoing licking behavior. Rapid responses to negative outcome and previous reward-related responses are more frequent among iSPNs than dSPNs, suggesting stronger contributions of iSPNs to outcome-dependent behavioral adjustment. These findings provide new insights into striatal neural circuit operations. Classically the direct and indirect pathways of basal ganglia are understood to have opposing roles in movement and reward learning, but recent work suggests a more complicated view. Here the authors further study indirect and direct pathway neurons, in the context of a probabilistic reward task.
Collapse
|
80
|
Muench C, Wiers CE, Cortes CR, Momenan R, Lohoff FW. Dopamine Transporter Gene Methylation is Associated with Nucleus Accumbens Activation During Reward Processing in Healthy but not Alcohol-Dependent Individuals. Alcohol Clin Exp Res 2018; 42:21-31. [PMID: 29030974 PMCID: PMC6010188 DOI: 10.1111/acer.13526] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/09/2017] [Indexed: 12/21/2022]
Abstract
BACKGROUND Alcohol's reinforcement is mediated by dopamine signaling in the ventral striatum, which is modulated by the dopamine transporter (DAT). We hypothesized that methylomic variation in the DAT gene (DAT1/SLC6A3) affects DAT expression, thus contributing to differences in brain reward circuitry in individuals with alcohol dependence (ALC). METHODS Blood from 45 recently detoxified ALC and 45 healthy control (HC) individuals was used to assess DNA methylation across 5 functional regions of SLC6A3. Participants completed the monetary incentive delay task in a 3-Tesla magnetic resonance imaging (MRI) scanner. Employing regression models, we examined effects of SLC6A3 methylation on nucleus accumbens (NAc) blood-oxygen-level dependent (BOLD) responses during anticipation of high/low reward/loss. RESULTS Results showed that decreased methylation of the promoter region of SLC6A3 predicted NAc activation during high loss anticipation (p = 0.028) and low loss anticipation (at trend-level; p = 0.057) in HC but not in individuals with ALC. Specifically, percentage of methylation at 2 CpG sites, located -1,001 and -993 base pairs from the transcription start site, accounted for significant variability in NAc activation in the HC group during high (ps ≤ 0.010) and low (ps ≤ 0.006) loss anticipation. There was no effect on reward anticipation. Furthermore, promoter methylation was positively associated with age, which replicates previous findings. CONCLUSIONS Our data suggest that methylation in the promoter region of SLC6A3 predicts NAc activation during the anticipation of monetary loss in HCs. However, this effect was not present in the ALC group, suggesting that epigenetic regulation of striatal DAT expression might be disrupted in ALC, which may contribute to previously reported differences in sensitivity to reward and punishment in this population. Alternatively, it is possible that a similar relationship in the ALC group remained undetected possibly due to methodological limitations inherent in functional MRI (e.g., poor spatial resolution, low signal-to-noise ratio) that generally restrict interpretations regarding mechanisms of epigenetic factors involved in group differences in BOLD responses. Future neuroimaging studies are needed to further elucidate the relationship between SLC6A3 methylation and NAc activation in ALC.
Collapse
Affiliation(s)
- Christine Muench
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Corinde E. Wiers
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Carlos R. Cortes
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Reza Momenan
- Clinical NeuroImaging Research Core, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - Falk W. Lohoff
- Section on Clinical Genomics and Experimental Therapeutics, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
81
|
Rizzi G, Tan KR. Dopamine and Acetylcholine, a Circuit Point of View in Parkinson's Disease. Front Neural Circuits 2017; 11:110. [PMID: 29311846 PMCID: PMC5744635 DOI: 10.3389/fncir.2017.00110] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/14/2017] [Indexed: 12/30/2022] Open
Abstract
Data from the World Health Organization (National Institute on Aging, 2011) and the National Institutes of Health (He et al., 2016) predicts that while today the worldwide population over 65 years of age is estimated around 8.5%, this number will reach an astounding 17% by 2050. In this framework, solving current neurodegenerative diseases primarily associated with aging becomes more pressing than ever. In 2017, we celebrate a grim 200th anniversary since the very first description of Parkinson’s disease (PD) and its related symptomatology. Two centuries after this debilitating disease was first identified, finding a cure remains a hopeful goal rather than an attainable objective on the horizon. Tireless work has provided insight into the characterization and progression of the disease down to a molecular level. We now know that the main motor deficits associated with PD arise from the almost total loss of dopaminergic cells in the substantia nigra pars compacta. A concomitant loss of cholinergic cells entails a cognitive decline in these patients, and current therapies are only partially effective, often inducing side-effects after a prolonged treatment. This review covers some of the recent developments in the field of Basal Ganglia (BG) function in physiology and pathology, with a particular focus on the two main neuromodulatory systems known to be severely affected in PD, highlighting some of the remaining open question from three main stand points: - Heterogeneity of midbrain dopamine neurons. - Pairing of dopamine (DA) sub-circuits. - Dopamine-Acetylcholine (ACh) interaction. A vast amount of knowledge has been accumulated over the years from experimental conditions, but very little of it is reflected or used at a translational or clinical level. An initiative to implement the knowledge that is emerging from circuit-based approaches to tackle neurodegenerative disorders like PD will certainly be tremendously beneficial.
Collapse
Affiliation(s)
| | - Kelly R Tan
- Biozentrum, University of Basel, Basel, Switzerland
| |
Collapse
|
82
|
Insulin-mediated synaptic plasticity in the CNS: Anatomical, functional and temporal contexts. Neuropharmacology 2017; 136:182-191. [PMID: 29217283 PMCID: PMC5988909 DOI: 10.1016/j.neuropharm.2017.12.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/01/2017] [Accepted: 12/03/2017] [Indexed: 12/17/2022]
Abstract
For decades the brain was erroneously considered an insulin insensitive organ. Although gaps in our knowledge base remain, conceptual frameworks are starting to emerge to provide insight into the mechanisms through which insulin facilitates critical brain functions like metabolism, cognition, and motivated behaviors. These diverse physiological and behavioral activities highlight the region-specific activities of insulin in the CNS; that is, there is an anatomical context to the activities of insulin in the CNS. Similarly, there is also a temporal context to the activities of insulin in the CNS. Indeed, brain insulin receptor activity can be conceptualized as a continuum in which insulin promotes neuroplasticity from development into adulthood where it is an integral part of healthy brain function. Unfortunately, brain insulin resistance likely contributes to neuroplasticity deficits in obesity and type 2 diabetes mellitus (T2DM). This neuroplasticity continuum can be conceptualized by the mechanisms through which insulin promotes cognitive function through its actions in brain regions like the hippocampus, as well as the ability of insulin to modulate motivated behaviors through actions in brain regions like the nucleus accumbens and the ventral tegmental area. Thus, the goals of this review are to highlight these anatomical, temporal, and functional contexts of insulin activity in these brain regions, and to identify potentially critical time points along this continuum where the transition from enhancement of neuroplasticity to impairment may take place.
Collapse
|
83
|
Dopamine D2 Receptor Signaling in the Nucleus Accumbens Comprises a Metabolic-Cognitive Brain Interface Regulating Metabolic Components of Glucose Reinforcement. Neuropsychopharmacology 2017; 42:2365-2376. [PMID: 28580946 PMCID: PMC5645735 DOI: 10.1038/npp.2017.112] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 05/17/2017] [Accepted: 05/19/2017] [Indexed: 12/14/2022]
Abstract
Appetitive drive is influenced by coordinated interactions between brain circuits that regulate reinforcement and homeostatic signals that control metabolism. Glucose modulates striatal dopamine (DA) and regulates appetitive drive and reinforcement learning. Striatal DA D2 receptors (D2Rs) also regulate reinforcement learning and are implicated in glucose-related metabolic disorders. Nevertheless, interactions between striatal D2R and peripheral glucose have not been previously described. Here we show that manipulations involving striatal D2R signaling coincide with perseverative and impulsive-like responding for sucrose, a disaccharide consisting of fructose and glucose. Fructose conveys orosensory (ie, taste) reinforcement but does not convey metabolic (ie, nutrient-derived) reinforcement. Glucose however conveys orosensory reinforcement but unlike fructose, it is a major metabolic energy source, underlies sustained reinforcement, and activates striatal circuitry. We found that mice with deletion of dopamine- and cAMP-regulated neuronal phosphoprotein (DARPP-32) exclusively in D2R-expressing cells exhibited preferential D2R changes in the nucleus accumbens (NAc), a striatal region that critically regulates sucrose reinforcement. These changes coincided with perseverative and impulsive-like responding for sucrose pellets and sustained reinforcement learning of glucose-paired flavors. These mice were also characterized by significant glucose intolerance (ie, impaired glucose utilization). Systemic glucose administration significantly attenuated sucrose operant responding and D2R activation or blockade in the NAc bidirectionally modulated blood glucose levels and glucose tolerance. Collectively, these results implicate NAc D2R in regulating both peripheral glucose levels and glucose-dependent reinforcement learning behaviors and highlight the notion that glucose metabolic impairments arising from disrupted NAc D2R signaling are involved in compulsive and perseverative feeding behaviors.
Collapse
|
84
|
Cordeiro LMS, Rabelo PCR, Moraes MM, Teixeira-Coelho F, Coimbra CC, Wanner SP, Soares DD. Physical exercise-induced fatigue: the role of serotonergic and dopaminergic systems. ACTA ACUST UNITED AC 2017; 50:e6432. [PMID: 29069229 PMCID: PMC5649871 DOI: 10.1590/1414-431x20176432] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Accepted: 08/25/2017] [Indexed: 11/22/2022]
Abstract
Brain serotonin and dopamine are neurotransmitters related to fatigue, a feeling that leads to reduced intensity or interruption of physical exercises, thereby regulating performance. The present review aims to present advances on the understanding of fatigue, which has recently been proposed as a defense mechanism instead of a “physiological failure” in the context of prolonged (aerobic) exercises. We also present recent advances on the association between serotonin, dopamine and fatigue. Experiments with rodents, which allow direct manipulation of brain serotonin and dopamine during exercise, clearly indicate that increased serotoninergic activity reduces performance, while increased dopaminergic activity is associated with increased performance. Nevertheless, experiments with humans, particularly those involving nutritional supplementation or pharmacological manipulations, have yielded conflicting results on the relationship between serotonin, dopamine and fatigue. The only clear and reproducible effect observed in humans is increased performance in hot environments after treatment with inhibitors of dopamine reuptake. Because the serotonergic and dopaminergic systems interact with each other, the serotonin-to-dopamine ratio seems to be more relevant for determining fatigue than analyzing or manipulating only one of the two transmitters. Finally, physical training protocols induce neuroplasticity, thus modulating the action of these neurotransmitters in order to improve physical performance.
Collapse
Affiliation(s)
- L M S Cordeiro
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - P C R Rabelo
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - M M Moraes
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - F Teixeira-Coelho
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil.,Centro de Formação de Professores, Universidade Federal do Recôncavo da Bahia, Amargosa, BA, Brasil
| | - C C Coimbra
- Laboratório de Endocrinologia e Metabolismo, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - S P Wanner
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - D D Soares
- Laboratório de Fisiologia do Exercício, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
85
|
Durani LW, Hamezah HS, Ibrahim NF, Yanagisawa D, Makpol S, Damanhuri HA, Tooyama I. Age-related changes in the metabolic profiles of rat hippocampus, medial prefrontal cortex and striatum. Biochem Biophys Res Commun 2017; 493:1356-1363. [PMID: 28970069 DOI: 10.1016/j.bbrc.2017.09.164] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023]
Abstract
We have recently shown that age-dependent regional brain atrophy and lateral ventricle expansion may be linked with impaired cognitive and locomotor functions. However, metabolic profile transformation in different brain regions during aging is unknown. This study examined metabolic changes in the hippocampus, medial prefrontal cortex (mPFC) and striatum of middle- and late-aged Sprague-Dawley rats using ultrahigh performance liquid chromatography coupled with high-resolution accurate mass-orbitrap tandem mass spectrometry. Thirty-eight potential metabolites were altered in hippocampus, 29 in mPFC, and 14 in striatum. These alterations indicated that regional metabolic mechanisms in lated-aged rats are related to multiple pathways including glutathione, sphingolipid, tyrosine, and purine metabolism. Thus, our findings might be useful for understanding the complexity of metabolic mechanisms in aging and provide insight for aging and health span.
Collapse
Affiliation(s)
- Lina Wati Durani
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Hamizah Shahirah Hamezah
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Nor Faeizah Ibrahim
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Daijiro Yanagisawa
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Suzana Makpol
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Hanafi Ahmad Damanhuri
- Department of Biochemistry, Faculty of Medicine, UKMMC, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, 56000 Cheras, Kuala Lumpur, Malaysia
| | - Ikuo Tooyama
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan.
| |
Collapse
|
86
|
Rabelo PCR, Horta NAC, Cordeiro LMS, Poletini MO, Coimbra CC, Szawka RE, Soares DD. Intrinsic exercise capacity in rats influences dopamine neuroplasticity induced by physical training. J Appl Physiol (1985) 2017; 123:1721-1729. [PMID: 28883047 DOI: 10.1152/japplphysiol.00506.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The study evaluates whether the intrinsic capacity for physical exercise influences dopamine neuroplasticity induced by physical training. Male rats were submitted to three progressive tests until fatigue. Based on the maximal time of exercise (TE), rats were considered as low performance (LP), standard performance (SP) or high performance (HP) to exercise. Eight animals from each group (LP, SP, and HP) were randomly subdivided in sedentary (SED) or trained (TR). Physical training was performed for 6 wk. After that, concentrations of dopamine (DA), serotonin (5-HT), and their metabolites and mRNA levels of D1 receptor ( Drd1), D2 receptor ( Drd2), dopamine transporter ( Dat), tyrosine hydroxylase ( Th), glia cell line neurotrophic factor ( Gdnf), and brain-derived neurotrophic factor ( Bdnf) were determined in the caudate-putamen (CPu). TE was increased with training in all performance groups. However, the relative increase was markedly higher in LP rats, and this was associated with a training-induced increase in dopaminergic activity in the CPu, which was determined by the 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratio. An opposite monoamine response was found in HP-TR rats, in which physical training decreased the DOPAC/DA ratio in the CPu. Moreover, LP-SED rats displayed higher levels of Drd2 in the CPu compared with the other SED groups, and this higher expression was decreased by physical training. Physical training also decreased Dat and increased Gdnf in the CPu of LP rats. Physical training decreased Bdnf in the CPu only in HP rats. Thus, we provide evidence that the intrinsic capacity to exercise affects the neuroplasticity of the dopaminergic system in response to physical training. NEW & NOTEWORTHY The findings reported reveal that dopaminergic neuroplasticity in caudate-putamen induced by physical training is influenced by the intrinsic capacity to exercise in rats. To evaluate the dopaminergic neuroplasticity, we analyzed mRNA levels of D1 receptor, D2 receptor, dopamine transporter, tyrosine hydroxylase, glia cell line neurotrophic factor, and brain-derived neurotrophic factor as well as concentrations of dopamine, serotonin, and their metabolites. These results expand our knowledge about the interrelationship between genetic background, physical training, and dopaminergic neuroplasticity.
Collapse
Affiliation(s)
- Patrícia C R Rabelo
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Nayara A C Horta
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Letícia M S Cordeiro
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil.,Laboratório de Imunometabolismo, Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Maristela O Poletini
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Cândido C Coimbra
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Raphael E Szawka
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| | - Danusa D Soares
- Laboratório de Fisiologia do Exercício, Departamento de Educação Física, Escola de Educação Física, Fisioterapia e Terapia Ocupacional, Universidade Federal de Minas Gerais , Belo Horizonte, Minas Gerais , Brazil
| |
Collapse
|
87
|
Basal Ganglia Output Controls Active Avoidance Behavior. J Neurosci 2017; 36:10274-10284. [PMID: 27707965 DOI: 10.1523/jneurosci.1842-16.2016] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/28/2016] [Indexed: 11/21/2022] Open
Abstract
Engrained avoidance behavior is highly adaptive when it keeps away harmful events and can be highly maladaptive when individuals elude harmless situations in anxiety disorders, but the neural circuits that mediate avoidance are poorly understood. Using DREADDs and optogenetics in mice, we show that the output of the basal ganglia through the substantia nigra pars reticulata (SNr) controls active avoidance. SNr excitation blocks avoidance to a conditioned sensory stimulus while preserving the ability to escape the harmful event. Conversely, SNr inhibition facilitates avoidance to the conditioned stimulus and suffices to drive avoidance without any conditioned sensory stimulus. The results highlight a midbrain circuit that gates avoidance responses, which can be targeted to ameliorate maladaptive avoidance in psychiatric disorders. SIGNIFICANCE STATEMENT In many circumstances, subjects respond to fearful situations with avoidance. This is a useful coping strategy in situations in which there is impending danger. However, avoidance responses can also be maladaptive, as in anxiety disorders such as phobias (e.g., avoiding air transportation) and social anxiety (e.g., avoiding social situations). Despite the obvious clinical relevance, little is known about the neural circuits that mediate active avoidance. Using chemogenetics and optogenetics, we show that the output of the basal ganglia fully controls active avoidance behavior.
Collapse
|
88
|
Bouchet CA, Lloyd BA, Loetz EC, Farmer CE, Ostrovskyy M, Haddad N, Foright RM, Greenwood BN. Acute exercise enhances the consolidation of fear extinction memory and reduces conditioned fear relapse in a sex-dependent manner. ACTA ACUST UNITED AC 2017; 24:358-368. [PMID: 28716955 PMCID: PMC5516683 DOI: 10.1101/lm.045195.117] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Accepted: 05/08/2017] [Indexed: 11/25/2022]
Abstract
Fear extinction-based exposure therapy is the most common behavioral therapy for anxiety and trauma-related disorders, but fear extinction memories are labile and fear tends to return even after successful extinction. The relapse of fear contributes to the poor long-term efficacy of exposure therapy. A single session of voluntary exercise can enhance the acquisition and consolidation of fear extinction in male rats, but the effects of exercise on relapse of fear after extinction are not well understood. Here, we characterized the effects of 2 h of voluntary exercise during the consolidation phase of contextual or auditory fear extinction learning on long-term fear extinction memory and renewal in adult, male and female, Long-Evans rats. Results indicate that exercise enhances consolidation of fear extinction memory and reduces fear relapse after extinction in a sex-dependent manner. These data suggest that brief bouts of exercise could be used as an augmentation strategy for exposure therapy, even in previously sedentary subjects. Fear memories of discrete cues, rather than of contextual ones, may be most susceptible to exercise-augmented extinction, especially in males. Additionally, exercise seems to have the biggest impact on fear relapse phenomena, even if fear extinction memories themselves are only minimally enhanced.
Collapse
Affiliation(s)
- Courtney A Bouchet
- Department of Psychology, University of Colorado Denver, Denver, Colorado 80217, USA
| | - Brian A Lloyd
- Department of Psychology, University of Colorado Denver, Denver, Colorado 80217, USA
| | - Esteban C Loetz
- Department of Psychology, University of Colorado Denver, Denver, Colorado 80217, USA
| | - Caroline E Farmer
- Department of Psychology, University of Colorado Denver, Denver, Colorado 80217, USA
| | - Mykola Ostrovskyy
- Department of Psychology, University of Colorado Denver, Denver, Colorado 80217, USA
| | - Natalie Haddad
- Department of Psychology, University of Colorado Denver, Denver, Colorado 80217, USA
| | - Rebecca M Foright
- Division of Endocrinology, Metabolism, and Diabetes, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Benjamin N Greenwood
- Department of Psychology, University of Colorado Denver, Denver, Colorado 80217, USA
| |
Collapse
|
89
|
Qiu YW, Jiang GH, Ma XF, Su HH, Lv XF, Zhuo FZ. Aberrant interhemispheric functional and structural connectivity in heroin-dependent individuals. Addict Biol 2017; 22:1057-1067. [PMID: 26969418 DOI: 10.1111/adb.12387] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 01/09/2016] [Accepted: 02/16/2016] [Indexed: 02/04/2023]
Abstract
Models of heroin addiction emphasize the role of disrupted frontostriatal circuitry supporting cognitive control processes. However, heroin addiction-related alterations in functional and structural interactions among brain regions, especially between the cerebral hemispheres, are rarely examined directly. Resting-state functional magnetic resonance imaging (fMRI) approaches, which reveal patterns of coherent spontaneous fluctuations in the fMRI signal, offer a means to quantify directly functional interactions between the hemispheres. The corpus callosum (CC), which connects homologous regions of the cortex, is the major conduit for information transfer between the cerebral hemispheres and represents a structural connectivity index between hemispheres. We compared interhemispheric voxel-mirrored homotopic connectivity (VMHC) and CC volume between 45 heroin dependent-individuals (HDIs) and 35 non-addict individuals. We observed significant reduction of VMHC in a number of regions, particularly the striatum/limbic system regions, and significant decrease in splenium and genu sub-regions of CC in HDI. Importantly, within HDI, VMHC in the dorsal lateral prefrontal cortex (DLPFC) correlated with genu CC volume, VMHC in the putamen, VMHC in the DLPFC and genu CC volume and splenium CC volume were negatively correlated with heroin duration and impulsivity traits. Further analyses demonstrated that impairment of VMHC of bilateral DLPFC partially mediated the association between genu CC volumes decreased and increased impulsivity in HDI. Our results reveal a substantial impairment of interhemispheric coordination in the HDI. Further, interhemispheric connectivity correlated with the duration of heroin abuse and higher impulsivity behavior in HDI. Our findings provide insight into a heroin addicts' related pathophysiology and reinforce an integrative view of the interhemispheric cerebral functional and structural organization.
Collapse
Affiliation(s)
- Ying-wei Qiu
- Department of Medical Imaging; Guangdong No.2 Provincial People's Hospital; China
- Center for Cognitive Neuroscience, Neuroscience and Behavioral Disorders Program; Duke-National University of Singapore Graduate Medical School; Singapore
- Department of Medical Imaging, Zhongshan Ophthalmic Center; Sun Yat-sen University; China
| | - Gui-hua Jiang
- Department of Medical Imaging; Guangdong No.2 Provincial People's Hospital; China
| | - Xiao-fen Ma
- Department of Medical Imaging; Guangdong No.2 Provincial People's Hospital; China
| | - Huan-Huan Su
- Department of Medical Imaging; Guangdong No.2 Provincial People's Hospital; China
| | - Xiao-fei Lv
- Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine; China
| | - Fu-zhen Zhuo
- Addiction Medicine Division; Guangdong No.2 Provincial People's Hospital; China
| |
Collapse
|
90
|
Förstera B, Muñoz B, Lobo MK, Chandra R, Lovinger DM, Aguayo LG. Presence of ethanol-sensitive glycine receptors in medium spiny neurons in the mouse nucleus accumbens. J Physiol 2017; 595:5285-5300. [PMID: 28524260 DOI: 10.1113/jp273767] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 05/05/2017] [Indexed: 12/21/2022] Open
Abstract
KEY POINTS The nucleus accumbens (nAc) is involved in addiction-related behaviour caused by several drugs of abuse, including alcohol. Glycine receptors (GlyRs) are potentiated by ethanol and they have been implicated in the regulation of accumbal dopamine levels. We investigated the presence of GlyR subunits in nAc and their modulation by ethanol in medium spiny neurons (MSNs) of the mouse nAc. We found that the GlyR α1 subunit is preferentially expressed in nAc and is potentiated by ethanol. Our study shows that GlyR α1 in nAc is a new target for development of novel pharmacological tools for behavioural intervention in drug abuse. ABSTRACT Alcohol abuse causes major social, economic and health-related problems worldwide. Alcohol, like other drugs of abuse, increases levels of dopamine in the nucleus accumbens (nAc), facilitating behavioural reinforcement and substance abuse. Previous studies suggested that glycine receptors (GlyRs) are involved in the regulation of accumbal dopamine levels. Here, we investigated the presence of GlyRs in accumbal dopamine receptor medium spiny neurons (MSNs) of C57BL/6J mice, analysing mRNA expression levels and immunoreactivity of GlyR subunits, as well as ethanol sensitivity. We found that GlyR α1 subunits are expressed at higher levels than α2, α3 and β in the mouse nAc and were located preferentially in dopamine receptor 1 (DRD1)-positive MSNs. Interestingly, the glycine-evoked currents in dissociated DRD1-positive MSNs were potentiated by ethanol. Also, the potentiation of the GlyR-mediated tonic current by ethanol suggests that they modulate the excitability of DRD1-positive MSNs in nAc. This study should contribute to understanding the role of GlyR α1 in the reward system and might help to develop novel pharmacological therapies to treat alcoholism and other addiction-related and compulsive behaviours.
Collapse
Affiliation(s)
- B Förstera
- Department of Physiology, University of Concepcion, Concepcion, Chile
| | - B Muñoz
- Department of Physiology, University of Concepcion, Concepcion, Chile
| | - M K Lobo
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, HSF II Rm 251, Baltimore, MD, 21201, USA
| | - R Chandra
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, HSF II Rm 251, Baltimore, MD, 21201, USA
| | - D M Lovinger
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, USA
| | - L G Aguayo
- Department of Physiology, University of Concepcion, Concepcion, Chile
| |
Collapse
|
91
|
Xiao C, Cho JR, Zhou C, Treweek JB, Chan K, McKinney SL, Yang B, Gradinaru V. Cholinergic Mesopontine Signals Govern Locomotion and Reward through Dissociable Midbrain Pathways. Neuron 2017; 90:333-47. [PMID: 27100197 DOI: 10.1016/j.neuron.2016.03.028] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/10/2016] [Accepted: 03/18/2016] [Indexed: 01/07/2023]
Abstract
The mesopontine tegmentum, including the pedunculopontine and laterodorsal tegmental nuclei (PPN and LDT), provides major cholinergic inputs to midbrain and regulates locomotion and reward. To delineate the underlying projection-specific circuit mechanisms, we employed optogenetics to control mesopontine cholinergic neurons at somata and at divergent projections within distinct midbrain areas. Bidirectional manipulation of PPN cholinergic cell bodies exerted opposing effects on locomotor behavior and reinforcement learning. These motor and reward effects were separable via limiting photostimulation to PPN cholinergic terminals in the ventral substantia nigra pars compacta (vSNc) or to the ventral tegmental area (VTA), respectively. LDT cholinergic neurons also form connections with vSNc and VTA neurons; however, although photo-excitation of LDT cholinergic terminals in the VTA caused positive reinforcement, LDT-to-vSNc modulation did not alter locomotion or reward. Therefore, the selective targeting of projection-specific mesopontine cholinergic pathways may offer increased benefit in treating movement and addiction disorders.
Collapse
Affiliation(s)
- Cheng Xiao
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jounhong Ryan Cho
- Computation and Neural Systems, California Institute of Technology, Pasadena, CA 91125, USA
| | - Chunyi Zhou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jennifer B Treweek
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ken Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sheri L McKinney
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Bin Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Viviana Gradinaru
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
92
|
Girven KS, Sparta DR. Probing Deep Brain Circuitry: New Advances in in Vivo Calcium Measurement Strategies. ACS Chem Neurosci 2017; 8:243-251. [PMID: 27984692 DOI: 10.1021/acschemneuro.6b00307] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The study of neuronal ensembles in awake and behaving animals is a critical question in contemporary neuroscience research. Through the examination of calcium fluctuations, which are correlated with neuronal activity, we are able to better understand complex neural circuits. Recently, the development of technologies including two-photon microscopy, miniature microscopes, and fiber photometry has allowed us to examine calcium activity in behaving subjects over time. Visualizing changes in intracellular calcium in vivo has been accomplished utilizing GCaMP, a genetically encoded calcium indicator. GCaMP allows researchers to tag cell-type specific neurons with engineered fluorescent proteins that alter their levels of fluorescence in response to changes in intracellular calcium concentration. Even with the evolution of GCaMP, in vivo calcium imaging had yet to overcome the limitation of light scattering, which occurs when imaging from neural tissue in deep brain regions. Currently, researchers have created in vivo methods to bypass this problem; this Review will delve into three of these state of the art techniques: (1) two-photon calcium imaging, (2) single photon calcium imaging, and (3) fiber photometry. Here we discuss the advantages and disadvantages of the three techniques. Continued advances in these imaging techniques will provide researchers with unparalleled access to the inner workings of the brain.
Collapse
Affiliation(s)
- Kasey S. Girven
- Department
of Anatomy and Neurobiology and ‡Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Dennis R. Sparta
- Department
of Anatomy and Neurobiology and ‡Program in Neuroscience, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
93
|
Van Wouwe NC, Claassen DO, Neimat JS, Kanoff KE, Wylie SA. Dopamine Selectively Modulates the Outcome of Learning Unnatural Action-Valence Associations. J Cogn Neurosci 2017; 29:816-826. [PMID: 28129053 DOI: 10.1162/jocn_a_01099] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Learning the contingencies between stimulus, action, and outcomes is disrupted in disorders associated with altered dopamine (DA) function in the BG, such as Parkinson disease (PD). Although the role of DA in learning to act has been extensively investigated in PD, the role of DA in "learning to withhold" (or inhibit) action to influence outcomes is not as well understood. The current study investigated the role of DA in learning to act or to withhold action to receive rewarding, or avoid punishing outcomes, in patients with PD tested "off" and "on" dopaminergic medication (n = 19) versus healthy controls (n = 30). Participants performed a reward-based learning task that orthogonalized action and outcome valence (action-reward, inaction-reward, action-punishment, inaction-punishment). We tested whether DA would bias learning toward action, toward reward, or to particular action-outcome interactions. All participants demonstrated inherent learning biases preferring action with reward and inaction to avoid punishment, and this was unaffected by medication. Instead, DA produced a complex modulation of learning less natural action-outcome associations. "Off" DA medication, patients demonstrated impairments in learning to withhold action to gain reward, suggesting a difficulty to overcome a bias toward associating inaction with punishment avoidance. On DA medication, these patterns changed, and patients showed a reduced ability to learn to act to avoid punishment, indicating a bias toward action and reward. The current findings suggest that DA in PD has a complex influence on the formation of action-outcome associations, particularly those involving less natural linkages between action and outcome valence.
Collapse
|
94
|
Negwer M, Schubert D. Talking Convergence: Growing Evidence Links FOXP2 and Retinoic Acid in Shaping Speech-Related Motor Circuitry. Front Neurosci 2017; 11:19. [PMID: 28179876 PMCID: PMC5263127 DOI: 10.3389/fnins.2017.00019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 01/10/2017] [Indexed: 01/30/2023] Open
Affiliation(s)
- Moritz Negwer
- Max Planck Institute for PsycholinguisticsNijmegen, Netherlands
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and BehaviourNijmegen, Netherlands
| | - Dirk Schubert
- Department of Cognitive Neuroscience, Radboud University Medical Center, Donders Institute for Brain, Cognition, and BehaviourNijmegen, Netherlands
- *Correspondence: Dirk Schubert
| |
Collapse
|
95
|
Liu H, Chaudhury D. Understanding Mood Disorders Using Electrophysiology and Circuit Breaking. DECODING NEURAL CIRCUIT STRUCTURE AND FUNCTION 2017:343-370. [DOI: 10.1007/978-3-319-57363-2_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/19/2023]
|
96
|
Hill JW, Faulkner LD. The Role of the Melanocortin System in Metabolic Disease: New Developments and Advances. Neuroendocrinology 2017; 104:330-346. [PMID: 27728914 PMCID: PMC5724371 DOI: 10.1159/000450649] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 05/01/2016] [Indexed: 12/17/2022]
Abstract
Obesity is increasing in prevalence across all sectors of society, and with it a constellation of associated ailments including hypertension, type 2 diabetes, and eating disorders. The melanocortin system is a critical neural system underlying the control of body weight and other functions. Deficits in the melanocortin system may promote or exacerbate the comorbidities of obesity. This system has therefore generated great interest as a potential target for treatment of obesity. However, drugs targeting melanocortin receptors are plagued by problematic side effects, including undesirable increases in sympathetic nervous system activity, heart rate, and blood pressure. Circumnavigating this roadblock will require a clearer picture of the precise neural circuits that mediate the functions of melanocortins. Recent, novel experimental approaches have significantly advanced our understanding of these pathways. We here review the latest advances in our understanding of the role of melanocortins in food intake, reward pathways, blood pressure, glucose control, and energy expenditure. The evidence suggests that downstream melanocortin-responsive circuits responsible for different physiological actions do diverge. Ultimately, a more complete understanding of melanocortin pathways and their myriad roles should allow treatments tailored to the mix of metabolic disorders in the individual patient.
Collapse
Affiliation(s)
- Jennifer W Hill
- Department of Physiology and Pharmacology, College of Medicine, The University of Toledo, Toledo, OH, USA
| | | |
Collapse
|
97
|
Atherton JF, McIver EL, Mullen MR, Wokosin DL, Surmeier DJ, Bevan MD. Early dysfunction and progressive degeneration of the subthalamic nucleus in mouse models of Huntington's disease. eLife 2016; 5. [PMID: 27995895 PMCID: PMC5199195 DOI: 10.7554/elife.21616] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 12/08/2016] [Indexed: 01/05/2023] Open
Abstract
The subthalamic nucleus (STN) is an element of cortico-basal ganglia-thalamo-cortical circuitry critical for action suppression. In Huntington's disease (HD) action suppression is impaired, resembling the effects of STN lesioning or inactivation. To explore this potential linkage, the STN was studied in BAC transgenic and Q175 knock-in mouse models of HD. At <2 and 6 months of age autonomous STN activity was impaired due to activation of KATP channels. STN neurons exhibited prolonged NMDA receptor-mediated synaptic currents, caused by a deficit in glutamate uptake, and elevated mitochondrial oxidant stress, which was ameliorated by NMDA receptor antagonism. STN activity was rescued by NMDA receptor antagonism or the break down of hydrogen peroxide. At 12 months of age approximately 30% of STN neurons had been lost, as in HD. Together, these data argue that dysfunction within the STN is an early feature of HD that may contribute to its expression and course. DOI:http://dx.doi.org/10.7554/eLife.21616.001
Collapse
Affiliation(s)
- Jeremy F Atherton
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Eileen L McIver
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Matthew Rm Mullen
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - David L Wokosin
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - D James Surmeier
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| | - Mark D Bevan
- Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, United States
| |
Collapse
|
98
|
Puddington MM, Daneri MF, Papini MR, Muzio RN. Telencephalic neural activation following passive avoidance learning in a terrestrial toad. Behav Brain Res 2016; 315:75-82. [PMID: 27498147 DOI: 10.1016/j.bbr.2016.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
Abstract
The present study explores passive avoidance learning and its neural basis in toads (Rhinella arenarum). In Experiment 1, two groups of toads learned to move from a lighted compartment into a dark compartment. After responding, animals in the experimental condition were exposed to an 800-mM strongly hypertonic NaCl solution that leads to weight loss. Control animals received exposure to a 300-mM slightly hypertonic NaCl solution that leads to neither weight gain nor loss. After 10 daily acquisition trials, animals in the experimental group showed significantly longer latency to enter the dark compartment. Additionally, 10 daily trials in which both groups received the 300-mM NaCl solution after responding eliminated this group effect. Thus, experimental animals showed gradual acquisition and extinction of a passive avoidance respond. Experiment 2 replicated the gradual acquisition effect, but, after the last trial, animals were sacrificed and neural activation was assessed in five brain regions using AgNOR staining for nucleoli-an index of brain activity. Higher activation in the experimental animals, relative to controls, was observed in the amygdala and striatum. Group differences in two other regions, lateral pallium and septum, were borderline, but nonsignificant, whereas group differences in the medial pallium were nonsignificant. These preliminary results suggest that a striatal-amygdala activation could be a key component of the brain circuit controlling passive avoidance learning in amphibians. The results are discussed in relation to the results of analogous experiments with other vertebrates.
Collapse
Affiliation(s)
- Martín M Puddington
- Grupo de Aprendizaje y Cognición Comparada, Laboratorio de Biología del Comportamiento, IBYME (CONICET) and Faculty of Psychology, University of Buenos Aires, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - M Florencia Daneri
- Grupo de Aprendizaje y Cognición Comparada, Laboratorio de Biología del Comportamiento, IBYME (CONICET) and Faculty of Psychology, University of Buenos Aires, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina
| | - Mauricio R Papini
- Department of Psychology, Texas Christian University, Fort Worth, TX 76129, USA
| | - Rubén N Muzio
- Grupo de Aprendizaje y Cognición Comparada, Laboratorio de Biología del Comportamiento, IBYME (CONICET) and Faculty of Psychology, University of Buenos Aires, Vuelta de Obligado 2490, 1428, Buenos Aires, Argentina.
| |
Collapse
|
99
|
Shahani N, Swarnkar S, Giovinazzo V, Morgenweck J, Bohn LM, Scharager-Tapia C, Pascal B, Martinez-Acedo P, Khare K, Subramaniam S. RasGRP1 promotes amphetamine-induced motor behavior through a Rhes interaction network ("Rhesactome") in the striatum. Sci Signal 2016; 9:ra111. [PMID: 27902448 PMCID: PMC5142824 DOI: 10.1126/scisignal.aaf6670] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The striatum of the brain coordinates motor function. Dopamine-related drugs may be therapeutic to patients with striatal neurodegeneration, such as Huntington's disease (HD) and Parkinson's disease (PD), but these drugs have unwanted side effects. In addition to stimulating the release of norepinephrine, amphetamines, which are used for narcolepsy and attention-deficit/hyperactivity disorder (ADHD), trigger dopamine release in the striatum. The guanosine triphosphatase Ras homolog enriched in the striatum (Rhes) inhibits dopaminergic signaling in the striatum, is implicated in HD and L-dopa-induced dyskinesia, and has a role in striatal motor control. We found that the guanine nucleotide exchange factor RasGRP1 inhibited Rhes-mediated control of striatal motor activity in mice. RasGRP1 stabilized Rhes, increasing its synaptic accumulation in the striatum. Whereas partially Rhes-deficient (Rhes+/-) mice had an enhanced locomotor response to amphetamine, this phenotype was attenuated by coincident depletion of RasGRP1. By proteomic analysis of striatal lysates from Rhes-heterozygous mice with wild-type or partial or complete knockout of Rasgrp1, we identified a diverse set of Rhes-interacting proteins, the "Rhesactome," and determined that RasGRP1 affected the composition of the amphetamine-induced Rhesactome, which included PDE2A (phosphodiesterase 2A; a protein associated with major depressive disorder), LRRC7 (leucine-rich repeat-containing 7; a protein associated with bipolar disorder and ADHD), and DLG2 (discs large homolog 2; a protein associated with chronic pain). Thus, this Rhes network provides insight into striatal effects of amphetamine and may aid the development of strategies to treat various neurological and psychological disorders associated with the striatal dysfunction.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Vincenzo Giovinazzo
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Jenny Morgenweck
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Laura M Bohn
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Bruce Pascal
- Informatics Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Kshitij Khare
- Department of Statistics, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
100
|
Abstract
GPR88 is an orphan G-protein-coupled receptor highly expressed in striatal dopamine D1 (receptor) R- and D2R-expressing medium spiny neurons. This receptor is involved in activity and motor responses, and we previously showed that this receptor also regulates anxiety-like behaviors. To determine whether GPR88 in D2R-expressing neurons contributes to this emotional phenotype, we generated conditional Gpr88 knock-out mice using adenosine A2AR (A2AR)-Cre-driven recombination, and compared anxiety-related responses in both total and A2AR-Gpr88 KO mice. A2AR-Gpr88 KO mice showed a selective reduction of Gpr88 mRNA in D2R-expressing, but not D1R-expressing, neurons. These mutant mice showed increased locomotor activity and decreased anxiety-like behaviors in light/dark and elevated plus maze tests. These phenotypes were superimposable on those observed in total Gpr88 KO mice, demonstrating that the previously reported anxiogenic activity of GPR88 operates at the level of A2AR-expressing neurons. Further, A2AR-Gpr88 KO mice showed no change in novelty preference and novelty-suppressed feeding, while these responses were increased and decreased, respectively, in the total Gpr88 KO mice. Also, A2AR-Gpr88 KO mice showed intact fear conditioning, while the fear responses were decreased in total Gpr88 KO. We therefore also show for the first time that GPR88 activity regulates approach behaviors and conditional fear; however, these behaviors do not seem mediated by receptors in A2AR neurons. We conclude that Gpr88 expressed in A2AR neurons enhances ethological anxiety-like behaviors without affecting conflict anxiety and fear responses.
Collapse
|