51
|
Molecular cloning and expression analysis of scd1 gene from large yellow croaker Larimichthys crocea under cold stress. Gene 2015; 568:100-8. [PMID: 25979672 DOI: 10.1016/j.gene.2015.05.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/24/2015] [Accepted: 05/11/2015] [Indexed: 01/22/2023]
Abstract
Desaturation of fatty acids is an important adaptation mechanism to maintain membrane fluidity under cold stress. To comprehend the mechanism of adaptation to low temperatures in fish, we investigated stearoyl-CoA desaturase 1 (SCD1) endocrine expression in the process of cold acclimation from 15°C to 7°C in Larimichthys crocea. The cDNA and genomic sequences of scd1 were cloned and characterized and named as Lcscd1. The cDNA encoded an iron-containing protein of 337 amino acids with functional motifs. The full-length genome sequence of Lcscd1 was composed of 2556 nucleotides, including five exons and four introns. Tissue expression profiles by qPCR and western blot analysis revealed that Lcscd1 was highly expressed in the liver, followed by the brain. The expression of Lcscd1 mRNA in the liver was firstly down-regulated from 15°C to 11°C, and then up-regulated until the first day of 7°C, followed by a decline until the last day. In the brain, the expression showed no significant change from 15°C to 9°C, but then significantly increased until the last day of 7°C. SCD1 protein expression in the liver decreased from 15°C to the first day of 7°C, and then gradually recovered to the starting level. In the brain, SCD1 protein expression maintained rising trends in the whole process. Immunoelectron microscopic analysis showed that SCD1 was localized in fat granules, mitochondria and granular endoplasmic reticulum of hepatic cells, but only in mitochondria of encephalic cells. The results above suggested that SCD1 expression was responsive to both cold and starvation stresses in the liver, but only to cold stress in the brain. In conclusion, these findings suggested that SCD1 may be involved in fish adaptation to cold stress.
Collapse
|
52
|
Beaudouin R, Goussen B, Piccini B, Augustine S, Devillers J, Brion F, Péry ARR. An individual-based model of zebrafish population dynamics accounting for energy dynamics. PLoS One 2015; 10:e0125841. [PMID: 25938409 PMCID: PMC4418570 DOI: 10.1371/journal.pone.0125841] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 03/26/2015] [Indexed: 01/29/2023] Open
Abstract
Developing population dynamics models for zebrafish is crucial in order to extrapolate from toxicity data measured at the organism level to biological levels relevant to support and enhance ecological risk assessment. To achieve this, a dynamic energy budget for individual zebrafish (DEB model) was coupled to an individual based model of zebrafish population dynamics (IBM model). Next, we fitted the DEB model to new experimental data on zebrafish growth and reproduction thus improving existing models. We further analysed the DEB-model and DEB-IBM using a sensitivity analysis. Finally, the predictions of the DEB-IBM were compared to existing observations on natural zebrafish populations and the predicted population dynamics are realistic. While our zebrafish DEB-IBM model can still be improved by acquiring new experimental data on the most uncertain processes (e.g. survival or feeding), it can already serve to predict the impact of compounds at the population level.
Collapse
Affiliation(s)
- Rémy Beaudouin
- Unité Modèles pour l’Ecotoxicologie et la Toxicologie (METO), Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France
- * E-mail:
| | - Benoit Goussen
- Unité Modèles pour l’Ecotoxicologie et la Toxicologie (METO), Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France
| | - Benjamin Piccini
- Unité Ecotoxicologie in vitro et in vivo (ECOT), Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France
| | - Starrlight Augustine
- Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Charlottenlund, Denmark
| | | | - François Brion
- Unité Ecotoxicologie in vitro et in vivo (ECOT), Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France
| | - Alexandre R. R. Péry
- Unité Modèles pour l’Ecotoxicologie et la Toxicologie (METO), Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil en Halatte, France
- AgroParisTech, Paris, France
| |
Collapse
|
53
|
Gimbo RY, Fávero GC, Franco Montoya LN, Urbinati EC. Energy deficit does not affect immune responses of experimentally infected pacu (Piaractus mesopotamicus). FISH & SHELLFISH IMMUNOLOGY 2015; 43:295-300. [PMID: 25584872 DOI: 10.1016/j.fsi.2015.01.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2014] [Revised: 01/02/2015] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
We investigated if the energy deficit following a 30-day starvation period could affect the ability of fish to mount immune responses after experimental exposure to Aeromonas hydrophila. Fish were submitted to two feeding strategies during 30 days: starvation and continuously feeding. Fish were then sampled to allow for the assessment of baseline metabolic and immune system indicators, were next intraperitonially inoculated with A. hydrophila, and finally were sampled at 3 and 24 h after the challenge. The respiratory activity of leukocytes was lower in starved fish at baseline, increasing after bacterial inoculation to levels similar to those seen among fed fish. Levels of serum lysozyme were higher in starved fish at baseline. The same response profile was observed 3 h after inoculation, but among fed fish, these levels increased to values similar to those of starved fish 24 h after infection. Among starved fish, lysozyme concentration did not change over the course of the experiment. The serum ACH activity was lower in starved fish at baseline and increased after bacterial inoculation in both fish groups. Baseline levels of blood glucose of starved fish were lower than those of fed fish and increased 3 h after bacterial inoculation in both fish groups, decreasing in both groups at 24 h after inoculation. Baseline liver glycogen levels were similar in both fish groups and higher than at 3 and 24 h after inoculation. Three hours after bacterial inoculation, liver glycogen was less reduced in fed fish. Baseline levels of blood triglycerides were lower in starved fish and the profile remained unchanged 3 h after inoculation. There was a gradual decrease in fed fish, and the levels of starved fish remained unchanged throughout the observation period. Blood glycerol levels at baseline were higher in starved fish than in fed fish and remained unaltered at 3 h after inoculation. However those levels increased at 24 h. In fed fish there was a gradual increase of glycerol levels up to 24 h after bacterial inoculation. Baseline liver lipid levels of starved fish were lower and this difference in the response profile remained unchanged 3 and 24 h after inoculation. The liver lipid levels of starved fish decreased after inoculation, and remained unchanged in fed fish. As observed in liver lipid, muscle lipid levels of starved fish were lower than in fed fish, throughout the experiment. Starved fish levels remained unchanged; however fed fish levels decreased 24 h after bacterial inoculation. Levels of cortisol were higher in starved fish at baseline and increased in both fish groups 3 h after bacterial inoculation, reaching intermediary levels 24 h after inoculation. Our results show that in pacu, although mounting an immune response triggered after bacterial exposure is an energy-expensive process, fish under energetic deficit status were able to display protection against infection.
Collapse
Affiliation(s)
- Rodrigo Y Gimbo
- Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castelane, 14884-900 Jaboticabal, SP, Brazil
| | - Gisele C Fávero
- Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castelane, 14884-900 Jaboticabal, SP, Brazil
| | - Luz N Franco Montoya
- Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castelane, 14884-900 Jaboticabal, SP, Brazil
| | - Elisabeth C Urbinati
- Faculdade de Ciências Agrárias e Veterinárias, UNESP Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castelane, 14884-900 Jaboticabal, SP, Brazil; Centro de Aquicultura, UNESP Univ Estadual Paulista, Via de Acesso Prof. Paulo Donato Castelane, 14884-900 Jaboticabal, SP, Brazil.
| |
Collapse
|
54
|
Hachero-Cruzado I, Rodríguez-Rua A, Román-Padilla J, Ponce M, Fernández-Díaz C, Manchado M. Characterization of the genomic responses in early Senegalese sole larvae fed diets with different dietary triacylglycerol and total lipids levels. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2014; 12:61-73. [DOI: 10.1016/j.cbd.2014.09.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Revised: 09/29/2014] [Accepted: 09/30/2014] [Indexed: 12/16/2022]
|
55
|
Hecht BC, Valle ME, Thrower FP, Nichols KM. Divergence in expression of candidate genes for the smoltification process between juvenile resident rainbow and anadromous steelhead trout. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2014; 16:638-656. [PMID: 24952010 DOI: 10.1007/s10126-014-9579-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
Rainbow and steelhead trout (Oncorhynchus mykiss), among other salmonid fishes, exhibit tremendous life history diversity, foremost of which is variation in migratory propensity. While some individuals possess the ability to undertake an anadromous marine migration, others remain resident in freshwater throughout their life cycle. Those that will migrate undergo tremendous physiological, morphological, and behavioral transformations in a process called smoltification which transitions freshwater-adapted parr to marine-adapted smolts. While the behavior, ecology, and physiology of smoltification are well described, our understanding of the proximate genetic mechanisms that trigger the process are not well known. Quantitative genetic analyses have identified several genomic regions associated with smoltification and migration-related traits within this species. Here we investigate the divergence in gene expression of 18 functional and positional candidate genes for the smoltification process in the brain, gill, and liver tissues of migratory smolts, resident parr, and precocious mature male trout at the developmental stage of out-migration. Our analysis reveals several genes differentially expressed between life history classes and validates the candidate nature of several genes in the parr-smolt transformation including Clock1α, FSHβ, GR, GH2, GHR1, GHR2, NDK7, p53, SC6a7, Taldo1, THRα, THRβ, and Vdac2.
Collapse
Affiliation(s)
- Benjamin C Hecht
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | |
Collapse
|
56
|
Díaz N, Ribas L, Piferrer F. Effects of changes in food supply at the time of sex differentiation on the gonadal transcriptome of juvenile fish. Implications for natural and farmed populations. PLoS One 2014; 9:e111304. [PMID: 25340342 PMCID: PMC4207807 DOI: 10.1371/journal.pone.0111304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/30/2014] [Indexed: 01/18/2023] Open
Abstract
Background Food supply is a major factor influencing growth rates in animals. This has important implications for both natural and farmed fish populations, since food restriction may difficult reproduction. However, a study on the effects of food supply on the development of juvenile gonads has never been transcriptionally described in fish. Methods and Findings This study investigated the consequences of growth on gonadal transcriptome of European sea bass in: 1) 4-month-old sexually undifferentiated fish, comparing the gonads of fish with the highest vs. the lowest growth, to explore a possible link between transcriptome and future sex, and 2) testis from 11-month-old juveniles where growth had been manipulated through changes in food supply. The four groups used were: i) sustained fast growth, ii) sustained slow growth, iii) accelerated growth, iv) decelerated growth. The transcriptome of undifferentiated gonads was not drastically affected by initial natural differences in growth. Further, changes in the expression of genes associated with protein turnover were seen, favoring catabolism in slow-growing fish and anabolism in fast-growing fish. Moreover, while fast-growing fish took energy from glucose, as deduced from the pathways affected and the analysis of protein-protein interactions examined, in slow-growing fish lipid metabolism and gluconeogenesis was favored. Interestingly, the highest transcriptomic differences were found when forcing initially fast-growing fish to decelerate their growth, while accelerating growth of initially slow-growing fish resulted in full transcriptomic convergence with sustained fast-growing fish. Conclusions Food availability during sex differentiation shapes the juvenile testis transcriptome, as evidenced by adaptations to different energy balances. Remarkably, this occurs in absence of major histological changes in the testis. Thus, fish are able to recover transcriptionally their testes if they are provided with enough food supply during sex differentiation; however, an initial fast growth does not represent any advantage in terms of transcriptional fitness if later food becomes scarce.
Collapse
Affiliation(s)
- Noelia Díaz
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Laia Ribas
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Francesc Piferrer
- Institut de Ciències del Mar, Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
- * E-mail:
| |
Collapse
|
57
|
Arslan-Ergul A, Adams MM. Gene expression changes in aging zebrafish (Danio rerio) brains are sexually dimorphic. BMC Neurosci 2014; 15:29. [PMID: 24548546 PMCID: PMC3937001 DOI: 10.1186/1471-2202-15-29] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 02/11/2014] [Indexed: 01/04/2023] Open
Abstract
Background Brain aging is a multi-factorial process due to both genetic and environmental factors. The zebrafish has recently become a popular model organism for examining aging and age-related diseases because as in humans they age gradually and exhibit cognitive decline. Few studies have examined the biological changes in the aging brain that may contribute to these declines and none have examined them within individuals with respect to gender. Our aim was to identify the main genetic pathways associated with zebrafish brain aging across gender. We chose males and females from specific age groups (young, 7.5-8.5 months and old, 31-36 months) based on the progression of cognitive decline in zebrafish. RNA was isolated from individual brains and subjected to microarray and qPCR analysis. Statistical analyses were performed using a two-way ANOVA and the relevant post-hoc tests. Results Our results demonstrated that in the brains of young and old male and female zebrafish there were over 500 differentially expressed genes associated with multiple pathways but most notably were those related to neurogenesis and cell differentiation, as well as brain and nervous system development. Conclusions The gene expression of multiple pathways is altered with age and differentially expressed in males and females. Future studies will be aimed at determining the causal relationships of age-related changes in gene expression in individual male and female brains, as well as possible interventions that counteract these alterations.
Collapse
Affiliation(s)
| | - Michelle M Adams
- BilGen Genetics and Biotechnology Center, Bilkent University, Ankara, Turkey.
| |
Collapse
|
58
|
Molecular cloning of four glutathione peroxidase (GPx) homologs and expression analysis during stress exposure of the marine teleost Sparus aurata. Comp Biochem Physiol B Biochem Mol Biol 2014; 168:53-61. [DOI: 10.1016/j.cbpb.2013.11.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Revised: 11/12/2013] [Accepted: 11/13/2013] [Indexed: 01/05/2023]
|
59
|
Das M, Banerjee B, Choudhury MG, Saha N. Environmental hypertonicity causes induction of gluconeogenesis in the air-breathing singhi catfish, Heteropneustes fossilis. PLoS One 2013; 8:e85535. [PMID: 24376888 PMCID: PMC3869940 DOI: 10.1371/journal.pone.0085535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 11/27/2013] [Indexed: 02/01/2023] Open
Abstract
The air-breathing singhi catfish (Heteropneustes fossilis) is frequently being challenged by different environmental insults such as hyper-ammonia, dehydration and osmotic stresses in their natural habitats throughout the year. The present study investigated the effect of hyperosmotic stress, due to exposure to hypertonic environment (300 mM mannitol) for 14 days, on gluconeogenesis in this catfish. In situ exposure to hypertonic environment led to significant stimulation of gluconeogenic fluxes from the perfused liver after 7 days of exposure, followed by further increase after 14 days in presence of three different potential gluconeogenic substrates (lactate, pyruvate and glutamate). Environmental hypertonicity also caused a significant increase of activities of key gluconeogenic enzymes, namely phosphoenolpyruvate carboxykinase, fructose 1, 6-bisphosphatase and glucose 6-phosphatase by about 2-6 fold in liver, and 3-6 fold in kidney tissues. This was accompanied by more abundance of enzyme proteins by about 1.8–3.7 fold and mRNAs by about 2.2–5.2 fold in both the tissues with a maximum increase after 14 days of exposure. Hence, the increase in activities of key gluconeogenic enzymes under hypertonic stress appeared to be as a result of transcriptional regulation of genes. Immunocytochemical analysis further confirmed the tissue specific localized expression of these enzymes in both the tissues with the possibility of expressing more in the same localized places. The induction of gluconeogenesis during exposure to environmental hypertonicity possibly occurs as a consequence of changes in hydration status/cell volume of different cell types. Thus, these adaptational strategies related to gluconeogenesis that are observed in this catfish under hypertonic stress probably help in maintaining glucose homeostasis and also for a proper energy supply to support metabolic demands mainly for ion transport and other altered metabolic processes under various environmental hypertonic stress-related insults.
Collapse
Affiliation(s)
- Manas Das
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Bodhisattwa Banerjee
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Mahua G. Choudhury
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
| | - Nirmalendu Saha
- Biochemical Adaptation Laboratory, Department of Zoology, North-Eastern Hill University, Shillong, India
- * E-mail:
| |
Collapse
|
60
|
Assessment of gene expression in peripheral blood using RNAseq before and after weight restoration in anorexia nervosa. Psychiatry Res 2013; 210:287-93. [PMID: 23778302 PMCID: PMC3805820 DOI: 10.1016/j.psychres.2013.05.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 05/06/2013] [Accepted: 05/20/2013] [Indexed: 12/30/2022]
Abstract
We examined gene expression in the blood of six females with anorexia nervosa (AN) before and after weight restoration using RNAseq. AN cases (aged 19-39) completed clinical assessments and had blood drawn for RNA at hospital admission (T1,<~75% ideal body weight, IBW) and again at discharge (T2,≥ ~ 85% IBW). To examine the relationship between weight restoration and differential gene expression, normalized gene expression levels were analyzed using a paired design. We found 564 genes whose expression was nominally significantly different following weight restoration (p<0.01, 231 increased and 333 decreased). With a more stringent significance threshold (false discovery rate q<0.05), 67 genes met criteria for differential expression. Of the top 20 genes, CYP11A1, C16orf11, LINC00235, and CPA3 were down-regulated more than two-fold after weight restoration while multiple olfactory receptor genes (OR52J3, OR51L1, OR51A4, and OR51A2) were up-regulated more than two-fold after weight restoration. Pathway analysis revealed up-regulation of two broad pathways with largely overlapping genes, one related to protein secretion and signaling and the other associated with defense response to bacterial regulation. Although results are preliminary secondary to a small sample size, these data provide initial evidence of transcriptional alterations during weight restoration in AN.
Collapse
|
61
|
Liu Z, Xue L, Shen W, Ying J, Zhang Z. Spatio-temporal expression pattern and fasting response of follistatin gene in teleost Larimichthys crocea. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0159-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
62
|
Abstract
The liver performs a large number of essential synthetic and regulatory functions that are acquired during fetal development and persist throughout life. Their disruption underlies a diverse group of heritable and acquired diseases that affect both pediatric and adult patients. Although experimental analyses used to study liver development and disease are typically performed in cell culture models or rodents, the zebrafish is increasingly used to complement discoveries made in these systems. Forward and reverse genetic analyses over the past two decades have shown that the molecular program for liver development is largely conserved between zebrafish and mammals, and that the zebrafish can be used to model heritable human liver disorders. Recent work has demonstrated that zebrafish can also be used to study the mechanistic basis of acquired liver diseases. Here, we provide a comprehensive summary of how the zebrafish has contributed to our understanding of human liver development and disease.
Collapse
Affiliation(s)
- Benjamin J Wilkins
- Department of Pathology and Laboratory Medicine, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
63
|
Dhanasiri AKS, Fernandes JMO, Kiron V. Liver transcriptome changes in zebrafish during acclimation to transport-associated stress. PLoS One 2013; 8:e65028. [PMID: 23762281 PMCID: PMC3677916 DOI: 10.1371/journal.pone.0065028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/19/2013] [Indexed: 11/18/2022] Open
Abstract
Liver plays a key role during the stress acclimation, and liver transcriptome analysis of shipped zebrafish could reveal the molecular adjustments that occur in the organ. Transcriptional changes in liver were analyzed with a 44 K oligo array using total RNA from fish prior to transport and during a mock transport process--immediately after packing (0 h), at 48 and 72 h. Large numbers of genes related to a variety of biological processes and pathways were regulated, mainly during transport (at 48/72 h). Immediately after packing, transcripts of genes related to both gluconeogenesis and glycolysis were induced. During transport, induction of gluconeogenesis-linked genes and reduction of glycolysis-related genes may be supporting the increase in blood glucose levels. Inhibition of genes involved in fatty acid beta-oxidation may be pointing to the poor ability of fish to utilize energy from fatty acids, under transport conditions. Genes involved in some of the mechanisms that regulate body ammonia were also affected. Even though genes associated with certain transaminases were inhibited in liver, sustained glutamate deamination may have led to high ammonia accumulation in liver/body. Enhanced levels of gene transcripts in ubiquitination and MAPK signalling cascade and reduced levels of gene transcripts related to ROS generation via peroxisomal enzymes as well as xenobiotic metabolism may be signifying the importance of such cellular and tissue responses to maintain homeostasis. Furthermore, transcripts connected with stress and thyroid hormones were also regulated. Moreover, suppression of genes related to specific immune components may be denoting the deleterious impact of transport on fish health. Thus, this study has revealed the complex molecular adjustments that occur in zebrafish when they are transported.
Collapse
Affiliation(s)
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| |
Collapse
|
64
|
Benner MJ, Settles ML, Murdoch GK, Hardy RW, Robison BD. Sex-specific transcriptional responses of the zebrafish (Danio rerio) brain selenoproteome to acute sodium selenite supplementation. Physiol Genomics 2013; 45:653-66. [PMID: 23737534 DOI: 10.1152/physiolgenomics.00030.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The potential benefits of selenium (Se) supplementation are currently under investigation for prevention of certain cancers and treatment of neurological disorders. However, little is known concerning the response of the brain to increased dietary Se under conditions of Se sufficiency, despite the majority of Se supplementation trials occurring in healthy, Se sufficient subjects. We evaluated the transcriptional response of Se-dependent genes, selenoproteins and the genes necessary for their synthesis (the selenoproteome), in the zebrafish (Danio rerio) brain to supplementation with nutritionally relevant levels of dietary Se (sodium selenite) during conditions of assumed Se sufficiency. We first used a microarray approach to analyze the response of the brain selenoproteome to dietary Se supplementation for 14 days and then assessed the immediacy and time-scale transcriptional response of the brain selenoproteome to 1, 7, and 14 days of Se supplementation by quantitative real-time PCR (qRT-PCR). The microarray approach did not indicate large-scale influences of Se on the brain transcriptome as a whole or the selenoproteome specifically; only one nonselenoproteome gene (si:ch73-44m9.2) was significantly differentially expressed. Our qRT-PCR results, however, indicate that increases of dietary Se cause small, but significant transcriptional changes within the brain selenoproteome, even after only 1 day of supplementation. These responses were dynamic over a short period of supplementation in a manner highly dependent on sex and the duration of Se supplementation. In nutritional intervention studies, it may be necessary to utilize methods such as qRT-PCR, which allow larger sample sizes, for detecting subtle transcriptional changes in the brain.
Collapse
Affiliation(s)
- Maia J Benner
- Department of Biological Sciences, University of Idaho, Moscow, Idaho83844-3051, USA
| | | | | | | | | |
Collapse
|
65
|
Seiliez I, Médale F, Aguirre P, Larquier M, Lanneretonne L, Alami-Durante H, Panserat S, Skiba-Cassy S. Postprandial regulation of growth- and metabolism-related factors in zebrafish. Zebrafish 2013; 10:237-48. [PMID: 23659367 DOI: 10.1089/zeb.2012.0835] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Zebrafish (Danio rerio) have been proposed as a possible model organism for nutritional physiology. However, this potential has not yet been realized and studies on the field remain scarce. In this work, we investigated in this species the effect of a single meal as well as that of an increase in the ratio of dietary carbohydrates/proteins on the postprandial expression of several hepatic and muscle metabolism-related genes and proteins. Fish were fed once either a commercial diet (experiment 1) or one of two experimental diets (experiment 2) containing different protein and carbohydrate levels after 72 h of starvation. Refeeding induced the postprandial expression of genes of glycolysis (GK, HK1) and lipogenesis (FAS, G6PDH, ACCa) and inhibited those of gluconeogenesis (cPEPCK) and beta-oxidation (CPT1b) in the viscera. In the muscle, refeeding increased transcript levels of myogenesis (Myf5, Myogenin), inhibited those of Ub-proteasomal proteolytic system (Atrogin1, Murf1a, Murf1b), and induced the activation of key signaling factors of protein synthesis (Akt, 4EBP1, S6K1, S6). However, diet composition had a low impact on the studied factors. Together, these results highlight some specificity of the zebrafish metabolism and demonstrate the interest and the limits of this species as a model organism for nutritional physiology studies.
Collapse
Affiliation(s)
- Iban Seiliez
- Institut National de la Recherche Agronomique , UR1067 Nutrition Métabolisme Aquaculture, St-Pée-sur-Nivelle, France.
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Gronquist D, Berges JA. Effects of aquarium-related stressors on the zebrafish: a comparison of behavioral, physiological, and biochemical indicators. JOURNAL OF AQUATIC ANIMAL HEALTH 2013; 25:53-65. [PMID: 23339327 DOI: 10.1080/08997659.2012.747450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fishes in aquaria and aquaculture settings may experience a variety of stressors including crowding, different lighting, periods of food deprivation, and vibrations from sources including pumps and tapping of tank sides. The effects of such low-level chronic stress are poorly explored. We used replicate sets of six Zebrafish Danio rerio in four series of experiments to compare the effects of (1) stocking densities ranging from 0.13 to 1.2 fish/L, (2) cool white (6,500 K), warm white (4,100 K), and ultraviolet-enhanced (420 actinic) fluorescent lighting, (3) food deprivation for up to 9 d, and (4) random mechanical tapping on the tank side sufficient to induce a startle response on specific behaviors (fin display, body fluttering, aggression, mouth gaping, and chattering), dissolved cortisol released into aquarium water (collected on a chromatography column and analyzed with an immunoassay), and heat-shock proteins (HSPs 27, 40, 60, and 70) detected immunochemically in western blots of muscle tissue. Of all the treatments, only food deprivation resulted in significant differences between control and treatment fish; dissolved cortisol declined after 120 h of starvation and HSP40 and HSP60 in muscle tissue increased significantly after 216 h. High variability in behaviors and HSP measurements was noted within all controls and treatments, suggesting that effects of treatments were experienced unequally by individuals within a treatment. Social stressors resulting from dominance hierarchies may play a critical role in modifying the effects of aquarium and aquaculture stressors on captive fish.
Collapse
Affiliation(s)
- David Gronquist
- Department of Biological Sciences, University of Wisconsin, Milwaukee, WI, USA
| | | |
Collapse
|
67
|
Dhanasiri AK, Fernandes JM, Kiron V. Acclimation of Zebrafish to Transport Stress. Zebrafish 2013; 10:87-98. [DOI: 10.1089/zeb.2012.0843] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, University of Nordland, Bodø, Norway
| |
Collapse
|
68
|
Yadetie F, Karlsen OA, Lanzén A, Berg K, Olsvik P, Hogstrand C, Goksøyr A. Global transcriptome analysis of Atlantic cod (Gadus morhua) liver after in vivo methylmercury exposure suggests effects on energy metabolism pathways. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 126:314-325. [PMID: 23103053 DOI: 10.1016/j.aquatox.2012.09.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/17/2012] [Accepted: 09/23/2012] [Indexed: 06/01/2023]
Abstract
Methylmercury (MeHg) is a widely distributed contaminant polluting many aquatic environments, with health risks to humans exposed mainly through consumption of seafood. The mechanisms of toxicity of MeHg are not completely understood. In order to map the range of molecular targets and gain better insights into the mechanisms of toxicity, we prepared Atlantic cod (Gadus morhua) 135k oligonucleotide arrays and performed global analysis of transcriptional changes in the liver of fish treated with MeHg (0.5 and 2 mg/kg of body weight) for 14 days. Inferring from the observed transcriptional changes, the main pathways significantly affected by the treatment were energy metabolism, oxidative stress response, immune response and cytoskeleton remodeling. Consistent with known effects of MeHg, many transcripts for genes in oxidative stress pathways such as glutathione metabolism and Nrf2 regulation of oxidative stress response were differentially regulated. Among the differentially regulated genes, there were disproportionate numbers of genes coding for enzymes involved in metabolism of amino acids, fatty acids and glucose. In particular, many genes coding for enzymes of fatty acid beta-oxidation were up-regulated. The coordinated effects observed on many transcripts coding for enzymes of energy pathways may suggest disruption of nutrient metabolism by MeHg. Many transcripts for genes coding for enzymes in the synthetic pathways of sulphur containing amino acids were also up-regulated, suggesting adaptive responses to MeHg toxicity. By this toxicogenomics approach, we were also able to identify many potential biomarker candidate genes for monitoring environmental MeHg pollution. These results based on changes on transcript levels, however, need to be confirmed by other methods such as proteomics.
Collapse
Affiliation(s)
- Fekadu Yadetie
- Department of Molecular Biology, University of Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
69
|
Cordeiro OD, Silva TS, Alves RN, Costas B, Wulff T, Richard N, de Vareilles M, Conceição LEC, Rodrigues PM. Changes in liver proteome expression of Senegalese sole (Solea senegalensis) in response to repeated handling stress. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:714-729. [PMID: 22327442 DOI: 10.1007/s10126-012-9437-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 01/16/2012] [Indexed: 05/28/2023]
Abstract
The Senegalese sole, a high-value flatfish, is a good candidate for aquaculture production. Nevertheless, there are still issues regarding this species' sensitivity to stress in captivity. We aimed to characterize the hepatic proteome expression for this species in response to repeated handling and identify potential molecular markers that indicate a physiological response to chronic stress. Two groups of fish were reared in duplicate for 28 days, one of them weekly exposed to handling stress (including hypoxia) for 3 min, and the other left undisturbed. Two-dimensional electrophoresis enabled the detection of 287 spots significantly affected by repeated handling stress (Wilcoxon-Mann-Whitney U test, p < 0.05), 33 of which could be reliably identified by peptide mass spectrometry. Chronic exposure to stress seems to have affected protein synthesis, folding and turnover (40S ribosomal protein S12, cathepsin B, disulfide-isomerase A3 precursor, cell-division cycle 48, and five distinct heat shock proteins), amino acid metabolism, urea cycle and methylation/folate pathways (methionine adenosyltransferase I α, phenylalanine hydroxylase, mitochondrial agmatinase, serine hydroxymethyltransferase, 3-hydroxyanthranilate 3,4-dioxygenase, and betaine homocysteine methyltransferase), cytoskeletal (40S ribosomal protein SA, α-actin, β-actin, α-tubulin, and cytokeratin K18), aldehyde detoxification (aldehyde dehydrogenase 4A1 family and aldehyde dehydrogenase 7A1 family), carbohydrate metabolism and energy homeostasis (fatty acid-binding protein, enolase 3, enolase 1, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase, aconitase 1, mitochondrial ATP synthase α-subunit, and electron-transfer flavoprotein α polypeptide), iron and selenium homeostasis (transferrin and selenium binding protein 1), steroid hormone metabolism (3-oxo-5-β-steroid 4-dehydrogenase), and purine salvage (hypoxanthine phosphoribosyltransferase). Further characterization is required to fully assess the potential of these markers for the monitoring of fish stress response to chronic stressors of aquaculture environment.
Collapse
Affiliation(s)
- Odete D Cordeiro
- Centro de Ciências do Mar do Algarve, Universidade do Algarve, Campus de Gambelas, 8005-139, Faro, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Koven W, Schulte P. The effect of fasting and refeeding on mRNA expression of PepT1 and gastrointestinal hormones regulating digestion and food intake in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1565-1575. [PMID: 22565667 DOI: 10.1007/s10695-012-9649-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 04/21/2012] [Indexed: 05/31/2023]
Abstract
In vertebrates, a significant part of ingested protein is absorbed as di- and tripeptides through a brush border membrane proton/oligopeptide transporter protein called PepT1. The aim of the present study was to determine the effect of short-term food deprivation and refeeding in adult zebrafish (Danio rerio) on gastrointestinal mRNA expression of PepT1 as well as on the satiety hormones cholecystokinin (CCK), gastrin-releasing peptide (GRP) and ghrelin (GHR) in order to elucidate a potential mechanism driving compensatory growth. Sixty adult zebrafish were stocked in a 40-L aquarium and fed daily a commercial flake diet to satiation for 10 days where the digestive tracts (DT) of sampled fish (n = 5) were dissected out. Samplings were repeated following 1, 2 and 5 days of food deprivation and after 1, 2 and 5 days of refeeding. The RNA was extracted from all sampled DTs and analyzed by quantitative real-time PCR for the mRNA expression of PepT1, rRNA 18S, CCK, GRP and GHR. PepT1 mRNA expression increased with successive refeedings reaching a level approximately 8 times higher than pre-fast levels. CCK, GRP and GHR mRNA levels also decreased during fasting, but increased only to pre-fasting levels with refeeding. Overall, the results suggest that PepT1 may be a contributing mechanism to compensatory growth that could influence CCK secretion and GRP and GHR activity.
Collapse
Affiliation(s)
- William Koven
- Israel Oceanographic and Limnological Research, The National Center for Mariculture, P.O.B. 1212, 88112, Eilat, Israel.
| | - Patricia Schulte
- Department of Zoology, The University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
71
|
Oswald ME, Drew RE, Racine M, Murdoch GK, Robison BD. Is Behavioral Variation along the Bold-Shy Continuum Associated with Variation in the Stress Axis in Zebrafish? Physiol Biochem Zool 2012; 85:718-28. [DOI: 10.1086/668203] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
72
|
Lamaze FC, Garant D, Bernatchez L. Stocking impacts the expression of candidate genes and physiological condition in introgressed brook charr (Salvelinus fontinalis) populations. Evol Appl 2012; 6:393-407. [PMID: 23467764 PMCID: PMC3586627 DOI: 10.1111/eva.12022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 09/19/2012] [Indexed: 01/09/2023] Open
Abstract
Translocation of plants and animal populations between environments is one of the major forms of anthropogenic perturbation experienced by pristine populations, and consequently, human-mediated hybridization by stocking practices between wild and exogenous conspecifics is of increasing concern. In this study, we compared the expression of seven candidate genes involved in multifactorial traits and regulatory pathways for growth as a function of level of introgressive hybridization between wild and domestic brook charr to test the null hypothesis of no effect of introgression on wild fish. Our analyses revealed that the expression of two of the genes tested, cytochrome c oxidase VIIa and the growth hormone receptor isoform I, was positively correlated with the level of introgression. We also observed a positive relationship between the extent of introgression and physiological status quantified by the Fulton's condition index. The expression of other genes was influenced by other variables, including year of sampling (reflecting different thermal conditions), sampling method and lake of origin. This is the first demonstration in nature that introgression from stocked populations has an impact on the expression of genes playing a role in important biological functions that may be related with fitness in wild introgressed populations.
Collapse
Affiliation(s)
- Fabien C Lamaze
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval Québec, QC, Canada
| | | | | |
Collapse
|
73
|
Sugiyama M, Takenaga F, Kitani Y, Yamamoto G, Okamoto H, Masaoka T, Araki K, Nagoya H, Mori T. Homozygous and heterozygous GH transgenesis alters fatty acid composition and content in the liver of Amago salmon (Oncorhynchus masou ishikawae). Biol Open 2012; 1:1035-42. [PMID: 23213381 PMCID: PMC3507178 DOI: 10.1242/bio.20121263] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/02/2012] [Indexed: 12/20/2022] Open
Abstract
Growth hormone (GH) transgenic Amago (Oncorhynchus masou ishikawae), containing the sockeye GH1 gene fused with metallothionein-B promoter from the same species, were generated and the physiological condition through lipid metabolism compared among homozygous (Tg/Tg) and heterozygous GH transgenic (Tg/+) Amago and the wild type control (+/+). Previously, we have reported that the adipose tissue was generally smaller in GH transgenic fish compared to the control, and that the Δ-6 fatty acyl desaturase gene was down-regulated in the Tg/+ fish. However, fatty acid (FA) compositions have not been measured previously in these fish. In this study we compared the FAs composition and content in the liver using gas chromatography. Eleven kinds of FA were detected. The composition of saturated and monounsaturated fatty acids (SFA and MUFA) such as myristic acid (14:0), palmitoleic acid (16:1n-7), and cis-vaccenic acid (cis-18:1n-7) was significantly (P<0.05) decreased in GH transgenic Amago. On the other hand, the composition of polyunsaturated fatty acids (PUFAs) such as linoleic acid (18:2n-6), arachidonic acid (20:4n-6), and docosapentaenoic acid (22:5n-3) was significantly (P<0.05) increased. Levels of serum glucose and triacylglycerol were significantly (P<0.05) decreased in the GH transgenics compared with +/+ fish. Furthermore, 3′-tag digital gene expression profiling was performed using liver tissues from Tg/Tg and +/+ fish, and showed that Mid1 interacting protein 1 (Mid1ip1), which is an important factor to activate Acetyl-CoA carboxylase (ACC), was down-regulated in Tg/Tg fish, while genes involved in FA catabolism were up-regulated, including long-chain-fatty-acid–CoA ligase 1 (ACSL1) and acyl-coenzyme A oxidase 3 (ACOX3). These data suggest that liver tissue from GH transgenic Amago showed starvation by alteration in glucose and lipid metabolism due to GH overexpression. The decrease of serum glucose suppressed Mid1ip1, and caused a decrease of de novo FA synthesis, resulting in a decrease of SFA and MUFA. This induced expression of ACSL1 and ACOX3 to produce energy through β-oxidation in the GH transgenic Amago.
Collapse
Affiliation(s)
- Manabu Sugiyama
- Nihon University College of Bioresource Sciences , Kameino 1866, Fujisawa 252-0880 , Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Drew RE, Settles ML, Churchill EJ, Williams SM, Balli S, Robison BD. Brain transcriptome variation among behaviorally distinct strains of zebrafish (Danio rerio). BMC Genomics 2012; 13:323. [PMID: 22817472 PMCID: PMC3434030 DOI: 10.1186/1471-2164-13-323] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 06/28/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Domesticated animal populations often show profound reductions in predator avoidance and fear-related behavior compared to wild populations. These reductions are remarkably consistent and have been observed in a diverse array of taxa including fish, birds, and mammals. Experiments conducted in common environments indicate that these behavioral differences have a genetic basis. In this study, we quantified differences in fear-related behavior between wild and domesticated zebrafish strains and used microarray analysis to identify genes that may be associated with this variation. RESULTS Compared to wild zebrafish, domesticated zebrafish spent more time near the water surface and were more likely to occupy the front of the aquarium nearest a human observer. Microarray analysis of the brain transcriptome identified high levels of population variation in gene expression, with 1,749 genes significantly differentially expressed among populations. Genes that varied among populations belonged to functional categories that included DNA repair, DNA photolyase activity, response to light stimulus, neuron development and axon guidance, cell death, iron-binding, chromatin reorganization, and homeobox genes. Comparatively fewer genes (112) differed between domesticated and wild strains with notable genes including gpr177 (wntless), selenoprotein P1a, synaptophysin and synaptoporin, and acyl-CoA binding domain containing proteins (acbd3 and acbd4). CONCLUSIONS Microarray analysis identified a large number of genes that differed among zebrafish populations and may underlie behavioral domestication. Comparisons with similar microarray studies of domestication in rainbow trout and canids identified sixteen evolutionarily or functionally related genes that may represent components of shared molecular mechanisms underlying convergent behavioral evolution during vertebrate domestication. However, this conclusion must be tempered by limitations associated with comparisons among microarray studies and the low level of population-level replication inherent to these studies.
Collapse
Affiliation(s)
- Robert E Drew
- Department of Biological Sciences and Program in Bioinformatics and Computational Biology, University of Idaho, Moscow, ID 83844, USA
| | | | | | | | | | | |
Collapse
|
75
|
Domingos JA, Fromm P, Smith-Keune C, Jerry DR. A robust flow-cytometric protocol for assessing growth rate of hatchery-reared barramundi Lates calcarifer larvae. JOURNAL OF FISH BIOLOGY 2012; 80:2253-2266. [PMID: 22551180 DOI: 10.1111/j.1095-8649.2012.03278.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study, a flow-cytometric cell cycle analysis method to assess instantaneous growth rate of whole larvae of the Australian barramundi Lates calcarifer was developed and validated. High-resolution DNA measurements of either fresh, frozen or RNAlater-preserved larvae (gap0-gap1, G(0) -G(1), coefficient of variation (c.v.) < 3, 4 and 5%, respectively) enabled the deconvolution of the DNA histogram and assignment of the proportion of nuclei into cell cycle compartments G(0) -G(1), S (DNA synthesis) and G(2) -M (Gap2-Mitosis). This technique can be also used for individual fish tissues such as brain, liver, fin and muscle. For the first time, the combined proportion of replicating nuclei (into S and G(2) -M phases) of whole fish larvae and absolute growth rate in length (mm day(-1)) has been correlated in commercial aquaculture conditions. Fast growing L. calcarifer larvae had an overall hyperplasia advantage as indicated by a greater proportion of cells in the S+G(2) -M phase compared with slow growing larvae, which might explain the increasing differences in size during culture. In a fasting trial, larvae ceased growth while maintaining the constant initial rates of cell division throughout a 6 day period. For a highly fed fast growing control group, cell division rates significantly increased after day 4. Flow-cytometric cell cycle analysis of whole fish larvae may provide fish biologists and aquaculturists with a better understanding of how cell division rates influence early growth in natural and artificial environments.
Collapse
Affiliation(s)
- J A Domingos
- Centre for Sustainable Tropical Fisheries and Aquaculture, School of Marine and Tropical Biology, James Cook University, Townsville, Qld 4811, Australia.
| | | | | | | |
Collapse
|
76
|
Sellin Jeffries MK, Mehinto AC, Carter BJ, Denslow ND, Kolok AS. Taking microarrays to the field: differential hepatic gene expression of caged fathead minnows from Nebraska watersheds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1877-1885. [PMID: 22165990 DOI: 10.1021/es2039097] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study aimed to evaluate the utility of microarrays as a biomonitoring tool in field studies. A 15,000-oligonucleotide microarray was used to measure the hepatic gene expression of fathead minnows (Pimephales promelas) caged in four Nebraska, USA watersheds - the Niobrara and Dismal Rivers (low-impact agricultural sites) and the Platte and Elkhorn Rivers (high-impact agricultural sites). Gene expression profiles were site specific and fish from the low- and high-impact sites aggregated into distinct groups. Over 1500 genes were differentially regulated between fish from the low- and high-impact sites. Many gene expression differences (1218) were also noted when the Platte and Elkhorn minnows were compared to one another and Platte fish experienced a higher degree of transcript alterations than Elkhorn fish. These findings indicate that there are differences between the low-impact and high-impact sites, as well as between the two high-impact sites. Historical water quality data support these results as only trace levels of agrichemicals have been detected at the low-impact sites, while substantial levels of agrichemicals have been reported at the high-impact sites with agrichemical loads at the Platte generally exceeding those at the Elkhorn. Overall, this study demonstrates that microarrays can be utilized to discriminate sites with different contaminant loads from one another.
Collapse
Affiliation(s)
- Marlo K Sellin Jeffries
- Department of Environmental, Agricultural and Occupational Health, University of Nebraska - Medical Center, Omaha, Nebraska 68198, United States.
| | | | | | | | | |
Collapse
|
77
|
Ung CY, Lam SH, Zhang X, Li H, Ma J, Zhang L, Li B, Gong Z. Existence of inverted profile in chemically responsive molecular pathways in the zebrafish liver. PLoS One 2011; 6:e27819. [PMID: 22140468 PMCID: PMC3226580 DOI: 10.1371/journal.pone.0027819] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2011] [Accepted: 10/26/2011] [Indexed: 01/09/2023] Open
Abstract
How a living organism maintains its healthy equilibrium in response to endless exposure of potentially harmful chemicals is an important question in current biology. By transcriptomic analysis of zebrafish livers treated by various chemicals, we defined hubs as molecular pathways that are frequently perturbed by chemicals and have high degree of functional connectivity to other pathways. Our network analysis revealed that these hubs were organized into two groups showing inverted functionality with each other. Intriguingly, the inverted activity profiles in these two groups of hubs were observed to associate only with toxicopathological states but not with physiological changes. Furthermore, these inverted profiles were also present in rat, mouse, and human under certain toxicopathological conditions. Thus, toxicopathological-associated anti-correlated profiles in hubs not only indicate their potential use in diagnosis but also development of systems-based therapeutics to modulate gene expression by chemical approach in order to rewire the deregulated activities of hubs back to normal physiology.
Collapse
Affiliation(s)
- Choong Yong Ung
- Department of Biological Sciences, National University of Singapore, Queenstown, Singapore
- Department of Mathematics, National University of Singapore, Queenstown, Singapore
- * E-mail: (CYU); (ZG)
| | - Siew Hong Lam
- Department of Biological Sciences, National University of Singapore, Queenstown, Singapore
| | - Xun Zhang
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Queenstown, Singapore
- Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Queenstown, Singapore
| | - Hu Li
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, United States of America
| | - Jing Ma
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Queenstown, Singapore
- Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Queenstown, Singapore
| | - Louxin Zhang
- Department of Mathematics, National University of Singapore, Queenstown, Singapore
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Queenstown, Singapore
| | - Baowen Li
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Queenstown, Singapore
- Department of Physics and Centre for Computational Science and Engineering, National University of Singapore, Queenstown, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Queenstown, Singapore
- * E-mail: (CYU); (ZG)
| |
Collapse
|
78
|
Zhang F, Xu X, Zhou B, He Z, Zhai Q. Gene expression profile change and associated physiological and pathological effects in mouse liver induced by fasting and refeeding. PLoS One 2011; 6:e27553. [PMID: 22096593 PMCID: PMC3212576 DOI: 10.1371/journal.pone.0027553] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 10/19/2011] [Indexed: 12/31/2022] Open
Abstract
Food availability regulates basal metabolism and progression of many diseases, and liver plays an important role in these processes. The effects of food availability on digital gene expression profile, physiological and pathological functions in liver are yet to be further elucidated. In this study, we applied high-throughput sequencing technology to detect digital gene expression profile of mouse liver in fed, fasted and refed states. Totally 12162 genes were detected, and 2305 genes were significantly regulated by food availability. Biological process and pathway analysis showed that fasting mainly affected lipid and carboxylic acid metabolic processes in liver. Moreover, the genes regulated by fasting and refeeding in liver were mainly enriched in lipid metabolic process or fatty acid metabolism. Network analysis demonstrated that fasting mainly regulated Drug Metabolism, Small Molecule Biochemistry and Endocrine System Development and Function, and the networks including Lipid Metabolism, Small Molecule Biochemistry and Gene Expression were affected by refeeding. In addition, FunDo analysis showed that liver cancer and diabetes mellitus were most likely to be affected by food availability. This study provides the digital gene expression profile of mouse liver regulated by food availability, and demonstrates the main biological processes, pathways, gene networks and potential hepatic diseases regulated by fasting and refeeding. These results show that food availability mainly regulates hepatic lipid metabolism and is highly correlated with liver-related diseases including liver cancer and diabetes.
Collapse
Affiliation(s)
- Fang Zhang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Xu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ben Zhou
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Zhishui He
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qiwei Zhai
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail:
| |
Collapse
|
79
|
Seiliez I, Panserat S, Lansard M, Polakof S, Plagnes-Juan E, Surget A, Dias K, Larquier M, Kaushik S, Skiba-Cassy S. Dietary carbohydrate-to-protein ratio affects TOR signaling and metabolism-related gene expression in the liver and muscle of rainbow trout after a single meal. Am J Physiol Regul Integr Comp Physiol 2011; 300:R733-43. [PMID: 21209382 DOI: 10.1152/ajpregu.00579.2010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Most teleost fish are known to require high levels of dietary proteins. Such high-protein intake could have significant effects, particularly on insulin-regulated gene expression. We therefore analyzed the effects of an increase in the ratio of dietary carbohydrates/proteins on the refeeding activation of the Akt-target of rapamycin (TOR) signaling pathways in rainbow trout and the effects on the expression of several genes related to hepatic and muscle metabolism and known to be regulated by insulin, amino acids, and/or glucose. Fish were fed once one of three experimental diets containing high (H), medium (M), or low (L) protein (P) or carbohydrate (C) levels after 48 h of feed deprivation. Activation of the Akt/TOR signaling pathway by refeeding was severely impaired by decreasing the proteins-to-carbohydrates ratio. Similarly, postprandial regulation of several genes related to glucose (Glut4, glucose-6-phosphatase isoform 1), lipid (fatty acid synthase, ATP-citrate lyase, sterol responsive element binding protein, carnitine palmitoyltransferase 1, and 3-hydroxyacyl-CoA dehydrogenase), and amino acid metabolism (serine dehydratase and branched-chain α-keto acid dehydrogenase E2 subunit) only occurred when fish were fed the high-protein diet. On the other hand, diet composition had a low impact on the expression of genes related to muscle protein degradation. Interestingly, glucokinase was the only gene of those monitored whose expression was significantly upregulated by increased carbohydrate intake. In conclusion, this study demonstrated that macro-nutrient composition of the diet strongly affected the insulin/amino acids signaling pathway and expression pattern of genes related to metabolism.
Collapse
Affiliation(s)
- Iban Seiliez
- INRA, UMR Nutrition Aquaculture et Génomique, Saint-Pée-sur-Nivelle, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
Ibarz A, Costa R, Harrison AP, Power DM. Dietary keto-acid feed-back on pituitary activity in gilthead sea bream: effects of oral doses of AKG. A proteomic approach. Gen Comp Endocrinol 2010; 169:284-92. [PMID: 20851121 DOI: 10.1016/j.ygcen.2010.09.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 08/25/2010] [Accepted: 09/10/2010] [Indexed: 10/19/2022]
Abstract
The influence of a daily oral dose of alpha-ketoglutarate (AKG, 0.1 g/kg body weight), an intermediate metabolite in the Krebs cycle and a dietary additive, on the pituitary proteome of gilthead sea bream was determined by two-dimensional electrophoresis (2-DE). A high-resolution map of the sea bream pituitary proteome was generated. Proteins with a modified expression between Controls and AKG treated fish were further analysed by MALDI-TOF/TOF-MS and liquid chromatography combined with a nanoelectrospray (LC-MS/MS). The main changes in the proteome induced by AKG treatment were grouped. Metabolic proteins up-regulated with AKG supplementation included fructose-bis-phosphate aldolase, glyceraldehyde-phosphate dehydrogenase and malate dehydrogenase, all related to glucose metabolism (p<0.000). Protein folding related up-regulation with AKG supplementation included two isoforms of heat shock proteins as well as cyclophylin and chaperonin (p<0.000). An unexpected form of apolipoprotein-A-1 with lower molecular weight (15-16 kDa) was evidenced as being highly abundant in the pituitary proteome of Controls, yet it was down-regulated by AKG treatment. Finally, proteins found to be associated with regeneration of neural function namely cofilin and Vat-protein were up-regulated after AKG supplementation. The only hormone to be modified by AKG treatment was somatolactin, which was significantly down-regulated cf. Controls. In summary, these results provide evidence of a potential endocrine/metabolic regulatory loop activated by AKG supplementation.
Collapse
Affiliation(s)
- Antoni Ibarz
- Xarxa de Referència i Recerca en Aqüicultura de la Generalitat de Catalunya, Dept. Fisiologia (Biologia), Univ Barcelona, Diagonal 645, E-08028 Barcelona, Spain.
| | | | | | | |
Collapse
|
81
|
Benner MJ, Drew RE, Hardy RW, Robison BD. Zebrafish (Danio rerio) vary by strain and sex in their behavioral and transcriptional responses to selenium supplementation. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:310-8. [PMID: 20659579 PMCID: PMC3047475 DOI: 10.1016/j.cbpa.2010.07.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 12/23/2022]
Abstract
We used the Nadia, Gaighatta, Scientific Hatcheries, and TM1 zebrafish (Danio rerio) strains to test the hypothesis that variation among populations influences the behavioral and transcriptional responses to selenium supplementation. When fed a diet with control levels of selenium, zebrafish strains differed significantly in behavior, characterized as their mean horizontal and vertical swimming positions within the tank. The four strains also differed in brain expression of selenoprotein P1a (sepp1a), glutathione peroxidase 3 (gpx3), thioredoxin reductase 1 (txnrd1), and tRNA selenocysteine associated protein 1 (secp43). Iodothyronine deiodinase 2 (dio2) did not differ among strains but showed a sex-specific expression pattern. When supplemented with selenium, all strains spent a greater proportion of time near the front of the tank, but the response of vertical swimming depth varied by strain. Selenium supplementation also caused changes in selenoprotein expression in the brain that varied by strain for sepp1a, secp43, and dio2, and varied by strain and sex for txnrd1. Expression of gpx3 was unaffected by selenium. Our data indicate that selenium homeostasis in the brain may be a regulator of behavior in zebrafish, and the strain-specific effects of selenium supplementation suggest that genetic heterogeneity among populations can influence the results of selenium supplementation studies.
Collapse
Affiliation(s)
- Maia J. Benner
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA
| | - Robert E. Drew
- Department of Biological Sciences, University of Idaho, Moscow, ID, 83844-3051, USA
| | - Ronald W. Hardy
- Aquaculture Research Institute, Hagerman Fish Culture Experiment Station, University of Idaho, 3059 National Fish Hatchery Road # F, Hagerman, ID 83332-5851, USA
| | - Barrie D. Robison
- Department of Biological Sciences, University of Idaho, Initiative for Bioinformatics in Evolutionary Studies, University of Idaho, Moscow, ID, 83844-3051, USA
| |
Collapse
|
82
|
Martin SAM, Douglas A, Houlihan DF, Secombes CJ. Starvation alters the liver transcriptome of the innate immune response in Atlantic salmon (Salmo salar). BMC Genomics 2010; 11:418. [PMID: 20602791 PMCID: PMC2996946 DOI: 10.1186/1471-2164-11-418] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 07/05/2010] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The immune response is an energy demanding process, which has effects in many physiological pathways in the body including protein and lipid metabolism. During an inflammatory response the liver is required to produce high levels of acute phase response proteins that attempt to neutralise an invading pathogen. Although this has been extensively studied in both mammals and fish, little is known about how high and low energy reserves modulate the response to an infection in fish which are ectothermic vertebrates. Food withdrawal in fish causes a decrease in metabolic rate so as to preserve protein and lipid energy reserves, which occurs naturally during the life cycle of many salmonids. Here we investigated how the feeding or fasting of Atlantic salmon affected the transcriptional response in the liver to an acute bacterial infection. RESULTS Total liver RNA was extracted from four different groups of salmon. Two groups were fed or starved for 28 days. One of each of the fed or starved groups was then exposed to an acute bacterial infection. Twenty four hours later (day 29) the livers were isolated from all fish for RNA extraction. The transcriptional changes were examined by micro array analysis using a 17 K Atlantic salmon cDNA microarray. The expression profiling results showed major changes in gene transcription in each of the groups. Enrichment for particular biological pathways was examined by analysis of gene ontology. Those fish that were starved decreased immune gene transcription and reduced production of plasma protein genes, and upon infection there was a further decrease in genes encoding plasma proteins but a large increase in acute phase response proteins. The latter was greater in magnitude than in the fish that had been fed prior to infection. The expression of several genes that were found altered during microarray analysis was confirmed by real time PCR. CONCLUSIONS We demonstrate that both starvation and infection have profound effects on transcription in the liver of salmon. There was a significant effect on the transcriptional response to infection depending on the prior feeding regime of the fish. It is likely that the energy demands on protein synthesis for acute phase response proteins are relatively high in the starved fish which have reduced energy reserves. This has implications for dietary control of fish if an immune response is anticipated.
Collapse
Affiliation(s)
- Samuel A M Martin
- Scottish Fish Immunology Research Centre, Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK.
| | | | | | | |
Collapse
|
83
|
|