51
|
Liu C, Liu J, Gong H, Liu T, Li X, Fan X. Implication of Hippocampal Neurogenesis in Autism Spectrum Disorder: Pathogenesis and Therapeutic Implications. Curr Neuropharmacol 2023; 21:2266-2282. [PMID: 36545727 PMCID: PMC10556385 DOI: 10.2174/1570159x21666221220155455] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 11/12/2022] [Accepted: 11/14/2022] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a cluster of heterogeneous neurodevelopmental conditions with atypical social communication and repetitive sensory-motor behaviors. The formation of new neurons from neural precursors in the hippocampus has been unequivocally demonstrated in the dentate gyrus of rodents and non-human primates. Accumulating evidence sheds light on how the deficits in the hippocampal neurogenesis may underlie some of the abnormal behavioral phenotypes in ASD. In this review, we describe the current evidence concerning pre-clinical and clinical studies supporting the significant role of hippocampal neurogenesis in ASD pathogenesis, discuss the possibility of improving hippocampal neurogenesis as a new strategy for treating ASD, and highlight the prospect of emerging pro-neurogenic therapies for ASD.
Collapse
Affiliation(s)
- Chuanqi Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jiayin Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Battalion 5 of Cadet Brigade, Third Military Medical University (Army Medical University), Chongqing, China
| | - Hong Gong
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Tianyao Liu
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Li
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
- Army 953 Hospital, Shigatse Branch of Xinqiao Hospital, Third Military Medical University (Army Medical University), Shigatse, China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
52
|
Intrauterine Inflammation Leads to Select Sex- and Age-Specific Behavior and Molecular Differences in Mice. Int J Mol Sci 2022; 24:ijms24010032. [PMID: 36613475 PMCID: PMC9819857 DOI: 10.3390/ijms24010032] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/30/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Sex-specific differences in behavior have been observed in anxiety and learning in children exposed to prenatal inflammation; however, whether these behaviors manifest differently by age is unknown. This study assesses possible behavioral changes due to in utero inflammation as a function of age in neonatal, juvenile, and adult animals and presents potential molecular targets for observed differences. CD-1 timed pregnant dams were injected in utero with lipopolysaccharide (LPS, 50 μg/animal) or saline at embryonic day 15. No differences in stress responses were measured by neonatal ultrasonic vocalizations between LPS- and saline-exposed groups of either sex. By contrast, prenatal inflammation caused a male-specific increase in anxiety in mature but not juvenile animals. Juvenile LPS-exposed females had decreased movement in open field testing that was not present in adult animals. We additionally observed improved memory retrieval after in utero LPS in the juvenile animals of both sexes, which in males may be related to a perseverative phenotype. However, there was an impairment of long-term memory in only adult LPS-exposed females. Finally, gene expression analyses revealed that LPS induced sex-specific changes in genes involved in hippocampal neurogenesis. In conclusion, intrauterine inflammation has age- and sex-specific effects on anxiety and learning that may correlate to sex-specific disruption of gene expression associated with neurogenesis in the hippocampus.
Collapse
|
53
|
Kurowska-Rucińska E, Ruciński J, Myślińska D, Grembecka B, Wrona D, Majkutewicz I. Dimethyl Fumarate Alleviates Adult Neurogenesis Disruption in Hippocampus and Olfactory Bulb and Spatial Cognitive Deficits Induced by Intracerebroventricular Streptozotocin Injection in Young and Aged Rats. Int J Mol Sci 2022; 23:ijms232415449. [PMID: 36555093 PMCID: PMC9779626 DOI: 10.3390/ijms232415449] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022] Open
Abstract
The disorder of adult neurogenesis is considered an important mechanism underlying the learning and memory impairment observed in Alzheimer's disease (AD). The sporadic nonhereditary form of AD (sAD) affects over 95% of AD patients and is related to interactions between genetic and environmental factors. An intracerebroventricular injection of streptozotocin (STZ-ICV) is a representative and well-established method to induce sAD-like pathology. Dimethyl fumarate (DMF) has antioxidant and anti-inflammatory properties and is used for multiple sclerosis treatment. The present study determines whether a 26-day DMF therapy ameliorates the disruption of adult neurogenesis and BDNF-related neuroprotection in the hippocampus and olfactory bulb (OB) in an STZ-ICV rat model of sAD. Considering age as an important risk factor for developing AD, this study was performed using 3-month-old (the young group) and 22-month-old (the aged group) male Wistar rats. Spatial cognitive functions were evaluated with the Morris water maze task. Immunofluorescent labelling was used to assess the parameters of adult neurogenesis and BDNF-related neuroprotection in the hippocampus and OB. Our results showed that the STZ-ICV evoked spatial learning and memory impairment and disturbances in adult neurogenesis and BDNF expression in both examined brain structures. In the aged animals, the deficits were more severe. We found that the DMF treatment significantly alleviated STZ-ICV-induced behavioural and neuronal disorders in both age groups of the rats. Our findings suggest that DMF, due to its beneficial effect on the formation of new neurons and BDNF-related neuroprotection, may be considered as a promising new therapeutic agent in human sAD.
Collapse
|
54
|
McNerlin C, Guan F, Bronk L, Lei K, Grosshans D, Young DW, Gaber MW, Maletic-Savatic M. Targeting hippocampal neurogenesis to protect astronauts' cognition and mood from decline due to space radiation effects. LIFE SCIENCES IN SPACE RESEARCH 2022; 35:170-179. [PMID: 36336363 DOI: 10.1016/j.lssr.2022.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 06/16/2023]
Abstract
Neurogenesis is an essential, lifelong process during which neural stem cells generate new neurons within the hippocampus, a center for learning, memory, and mood control. Neural stem cells are vulnerable to environmental insults spanning from chronic stress to radiation. These insults reduce their numbers and diminish neurogenesis, leading to memory decline, anxiety, and depression. Preserving neural stem cells could thus help prevent these neurogenesis-associated pathologies, an outcome particularly important for long-term space missions where environmental exposure to radiation is significantly higher than on Earth. Multiple developments, from mechanistic discoveries of radiation injury on hippocampal neurogenesis to new platforms for the development of selective, specific, effective, and safe small molecules as neurogenesis-protective agents hold great promise to minimize radiation damage on neurogenesis. In this review, we summarize the effects of space-like radiation on hippocampal neurogenesis. We then focus on current advances in drug discovery and development and discuss the nuclear receptor TLX/NR2E1 (oleic acid receptor) as an example of a neurogenic target that might rescue neurogenesis following radiation.
Collapse
Affiliation(s)
- Clare McNerlin
- Georgetown University School of Medicine, 3900 Reservoir Rd NW, Washington D.C. 20007, United States of America
| | - Fada Guan
- Department of Therapeutic Radiology, Yale University School of Medicine, New Haven, CT, 06510, United States of America
| | - Lawrence Bronk
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Kevin Lei
- Graduate School for Biomedical Sciences, Baylor College of Medicine, Houston, Texas, 77030, United States of America; Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America
| | - David Grosshans
- Department of Radiation Oncology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, United States of America
| | - Damian W Young
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Center for Drug Discovery, Department of Pathology and Immunology Baylor College of Medicine, Houston, Texas, 77030, United States of America; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, Texas 77030, United States of America
| | - M Waleed Gaber
- Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Mirjana Maletic-Savatic
- Jan and Dan Duncan Neurological Research Institute, 1250 Moursund St. Houston, TX 77030, United States of America; Department of Pediatrics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America; Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| |
Collapse
|
55
|
Pinson A, Sevrin E, Chatzi C, Le Gac B, Thiry M, Westbrook GL, Parent AS. Induction of Oxidative Stress and Alteration of Synaptic Gene Expression in Newborn Hippocampal Granule Cells after Developmental Exposure to Aroclor 1254. Neuroendocrinology 2022; 113:1248-1261. [PMID: 36257292 PMCID: PMC10110769 DOI: 10.1159/000527576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Hippocampal newborn neurons integrate into functional circuits where they play an important role in learning and memory. We previously showed that perinatal exposure to Aroclor 1254, a commercial mixture of polychlorinated biphenyls (PCBs) associated with alterations of cognitive function in children, disrupted the normal maturation of excitatory synapses in the dentate gyrus. We hypothesized that hippocampal immature neurons underlie some of the cognitive effects of PCBs. METHODS We used newly generated neurons to examine the effects of PCBs in mice following maternal exposure. Newborn dentate granule cells were tagged with enhanced green fluorescent protein using a transgenic mouse line. The transcriptome of the newly generated granule cells was assessed using RNA sequencing. RESULTS Gestational and lactational exposure to 6 mg/kg/day of Aroclor 1254 disrupted the mRNA expression of 1,308 genes in newborn granule cells. Genes involved in mitochondrial functions were highly enriched with 154 genes significantly increased in exposed compared to control mice. The upregulation of genes involved in oxidative phosphorylation was accompanied by signs of endoplasmic reticulum stress and an increase in lipid peroxidation, a marker of oxidative stress, in the subgranular zone of the dentate gyrus but not in mature granule cells in the granular zone. Aroclor 1254 exposure also disrupted the expression of synaptic genes. Using laser-captured subgranular and granular zones, this effect was restricted to the subgranular zone, where newborn neurons are located. CONCLUSION Our data suggest that gene expression in newborn granule cells is disrupted by Aroclor 1254 and provide clues to the effects of endocrine-disrupting chemicals on the brain.
Collapse
Affiliation(s)
- Anneline Pinson
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Elena Sevrin
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Christina Chatzi
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Benjamin Le Gac
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Marc Thiry
- Cellular and tissular biology, GIGA-Neurosciences, University of Liège, Liège, Belgium
| | - Gary L Westbrook
- Vollum Institute, Oregon Health and Science University, Portland, OR, USA
| | - Anne-Simone Parent
- Neuroendocrinology Unit, GIGA-Neurosciences, University of Liège, Liège, Belgium
| |
Collapse
|
56
|
Coradduzza D, Garroni G, Congiargiu A, Balzano F, Cruciani S, Sedda S, Nivoli A, Maioli M. MicroRNAs, Stem Cells in Bipolar Disorder, and Lithium Therapeutic Approach. Int J Mol Sci 2022; 23:ijms231810489. [PMID: 36142403 PMCID: PMC9502703 DOI: 10.3390/ijms231810489] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/06/2022] [Accepted: 09/08/2022] [Indexed: 11/22/2022] Open
Abstract
Bipolar disorder (BD) is a severe, chronic, and disabling neuropsychiatric disorder characterized by recurrent mood disturbances (mania/hypomania and depression, with or without mixed features) and a constellation of cognitive, psychomotor, autonomic, and endocrine abnormalities. The etiology of BD is multifactorial, including both biological and epigenetic factors. Recently, microRNAs (miRNAs), a class of epigenetic regulators of gene expression playing a central role in brain development and plasticity, have been related to several neuropsychiatric disorders, including BD. Moreover, an alteration in the number/distribution and differentiation potential of neural stem cells has also been described, significantly affecting brain homeostasis and neuroplasticity. This review aimed to evaluate the most reliable scientific evidence on miRNAs as biomarkers for the diagnosis of BD and assess their implications in response to mood stabilizers, such as lithium. Neural stem cell distribution, regulation, and dysfunction in the etiology of BD are also dissected.
Collapse
Affiliation(s)
| | - Giuseppe Garroni
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | | | - Francesca Balzano
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Sara Cruciani
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Stefania Sedda
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Alessandra Nivoli
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, 07100 Sassari, Italy
- Correspondence: (A.N.); (M.M.); Tel.: +39-079-228-277 (A.N.); +39-079-255-406-228350 (M.M.)
| | - Margherita Maioli
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
- Center for Developmental Biology and Reprogramming (CEDEBIOR), Department of Biomedical Sciences, University of Sassari, Viale San Pietro 43/B, 07100 Sassari, Italy
- Correspondence: (A.N.); (M.M.); Tel.: +39-079-228-277 (A.N.); +39-079-255-406-228350 (M.M.)
| |
Collapse
|
57
|
Hass-Cohen N, Bokoch R, Julia M. A year later: The pain protocol study findings and memory reconsolidation factors. ARTS IN PSYCHOTHERAPY 2022. [DOI: 10.1016/j.aip.2022.101949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
58
|
Frederico B, Martins I, Chapela D, Gasparrini F, Chakravarty P, Ackels T, Piot C, Almeida B, Carvalho J, Ciccarelli A, Peddie CJ, Rogers N, Briscoe J, Guillemot F, Schaefer AT, Saúde L, Reis e Sousa C. DNGR-1-tracing marks an ependymal cell subset with damage-responsive neural stem cell potential. Dev Cell 2022; 57:1957-1975.e9. [PMID: 35998585 PMCID: PMC9616800 DOI: 10.1016/j.devcel.2022.07.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/16/2022] [Accepted: 07/20/2022] [Indexed: 01/19/2023]
Abstract
Cells with latent stem ability can contribute to mammalian tissue regeneration after damage. Whether the central nervous system (CNS) harbors such cells remains controversial. Here, we report that DNGR-1 lineage tracing in mice identifies an ependymal cell subset, wherein resides latent regenerative potential. We demonstrate that DNGR-1-lineage-traced ependymal cells arise early in embryogenesis (E11.5) and subsequently spread across the lining of cerebrospinal fluid (CSF)-filled compartments to form a contiguous sheet from the brain to the end of the spinal cord. In the steady state, these DNGR-1-traced cells are quiescent, committed to their ependymal cell fate, and do not contribute to neuronal or glial lineages. However, trans-differentiation can be induced in adult mice by CNS injury or in vitro by culture with suitable factors. Our findings highlight previously unappreciated ependymal cell heterogeneity and identify across the entire CNS an ependymal cell subset wherein resides damage-responsive neural stem cell potential.
Collapse
Affiliation(s)
- Bruno Frederico
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| | - Isaura Martins
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Diana Chapela
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; TechnoPhage, SA, Av. Prof. Egas Moniz, 1649-028 Lisboa, Portugal
| | - Francesca Gasparrini
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Tobias Ackels
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Cécile Piot
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Bruna Almeida
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Joana Carvalho
- Experimental Histopathology, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alessandro Ciccarelli
- Advanced Light Microscopy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Christopher J Peddie
- Electron Microscopy, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Neil Rogers
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - James Briscoe
- Developmental Dynamic Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - François Guillemot
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andreas T Schaefer
- Sensory Circuits and Neurotechnology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Department of Neuroscience, Physiology &Pharmacology, University College London, London, UK
| | - Leonor Saúde
- Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal; Instituto de Medicina Molecular e Instituto de Histologia e Biologia do Desenvolvimento, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
59
|
Lõhelaid H, Anttila JE, Liew HK, Tseng KY, Teppo J, Stratoulias V, Airavaara M. UPR Responsive Genes Manf and Xbp1 in Stroke. Front Cell Neurosci 2022; 16:900725. [PMID: 35783104 PMCID: PMC9240287 DOI: 10.3389/fncel.2022.900725] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Stroke is a devastating medical condition with no treatment to hasten recovery. Its abrupt nature results in cataclysmic changes in the affected tissues. Resident cells fail to cope with the cellular stress resulting in massive cell death, which cannot be endogenously repaired. A potential strategy to improve stroke outcomes is to boost endogenous pro-survival pathways. The unfolded protein response (UPR), an evolutionarily conserved stress response, provides a promising opportunity to ameliorate the survival of stressed cells. Recent studies from us and others have pointed toward mesencephalic astrocyte-derived neurotrophic factor (MANF) being a UPR responsive gene with an active role in maintaining proteostasis. Its pro-survival effects have been demonstrated in several disease models such as diabetes, neurodegeneration, and stroke. MANF has an ER-signal peptide and an ER-retention signal; it is secreted by ER calcium depletion and exits cells upon cell death. Although its functions remain elusive, conducted experiments suggest that the endogenous MANF in the ER lumen and exogenously administered MANF protein have different mechanisms of action. Here, we will revisit recent and older bodies of literature aiming to delineate the expression profile of MANF. We will focus on its neuroprotective roles in regulating neurogenesis and inflammation upon post-stroke administration. At the same time, we will investigate commonalities and differences with another UPR responsive gene, X-box binding protein 1 (XBP1), which has recently been associated with MANF’s function. This will be the first systematic comparison of these two UPR responsive genes aiming at revealing previously uncovered associations between them. Overall, understanding the mode of action of these UPR responsive genes could provide novel approaches to promote cell survival.
Collapse
Affiliation(s)
- Helike Lõhelaid
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
- *Correspondence: Helike Lõhelaid,
| | - Jenni E. Anttila
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hock-Kean Liew
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien City, Taiwan
| | - Kuan-Yin Tseng
- Department of Neurological Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Jaakko Teppo
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Mikko Airavaara
- HiLIFE – Neuroscience Center, University of Helsinki, Helsinki, Finland
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
- Mikko Airavaara,
| |
Collapse
|
60
|
Zhou GJ, Tang YY, Zuo JX, Yi T, Tang JP, Zhang P, Zou W, Tang XQ. Itaconate alleviates β 2-microglobulin-induced cognitive impairment by enhancing the hippocampal amino-β-carboxymuconate-semialdehyde-decarboxylase/picolinic acid pathway. Biochem Pharmacol 2022; 202:115137. [PMID: 35700758 DOI: 10.1016/j.bcp.2022.115137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/20/2022]
Abstract
β2-microglobulin (B2M) has been established to impair cognitive function. However, no treatment is currently available for B2M-induced cognitive dysfunction. Itaconate is a tricarboxylic acid (TCA) cycle intermediate that exerts neuroprotective effects in several neurological diseases. The amino-β-carboxymuconate-semialdehyde-decarboxylase (ACMSD)/picolinic acid (PIC) pathway is a crucial neuroprotective branch in the kynurenine pathway (KP). The present study sought to investigate whether Itaconate attenuates B2M-induced cognitive impairment and examine the mediatory role of the hippocampal ACMSD/PIC pathway. We demonstrated that 4-Octyl Itaconate (OI, an itaconate derivative) significantly alleviated B2M-induced cognitive dysfunction and hippocampal neurogenesis impairment. OI treatment also increased the expression of ACMSD, elevated the concentration of PIC, and decreased the level of 3-HAA in the hippocampus of B2M-exposed rats. Furthermore, inhibition of ACMSD by TES-991 significantly abolished the protections of Itaconate against B2M-induced cognitive impairment and neurogenesis deficits. Exogenous PIC supplementation in hippocampus also improved cognitive performance and hippocampal neurogenesis in B2M-exposed rats. These findings demonstrated that Itaconate alleviates B2M-induced cognitive impairment by upregulation of the hippocampal ACMSD/PIC pathway. This is the first study to document Itaconate as a promising therapeutic agent to ameliorate cognitive impairment. Moreover, the mechanistic insights into the ACMSD/PIC pathway improve our understanding of it as a potential therapeutic target for neurological diseases beyond B2M-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Gui-Juan Zhou
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang 42100, Hunan, PR China; Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 42100, Hunan, PR China
| | - Yi-Yun Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 42100, Hunan, PR China
| | - Jin-Xi Zuo
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 42100, Hunan, PR China; The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Tao Yi
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 42100, Hunan, PR China; The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Jun-Peng Tang
- Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 42100, Hunan, PR China; The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Ping Zhang
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China
| | - Wei Zou
- The Affiliated Nanhua Hospital, Department of Neurology, Hengyang Medical School, University of South China, Hengyang 421001, Hunan, PR China.
| | - Xiao-Qing Tang
- The First Affiliated Hospital, Institute of Neurology, Hengyang Medical School, University of South China, Hengyang 42100, Hunan, PR China; Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, Institute of Neuroscience, Hengyang Medical School, University of South China, Hengyang 42100, Hunan, PR China.
| |
Collapse
|
61
|
Ghibaudi M, Bonfanti L. How Widespread Are the “Young” Neurons of the Mammalian Brain? Front Neurosci 2022; 16:918616. [PMID: 35733930 PMCID: PMC9207312 DOI: 10.3389/fnins.2022.918616] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/17/2022] [Indexed: 12/14/2022] Open
Abstract
After the discovery of adult neurogenesis (stem cell-driven production of new neuronal elements), it is conceivable to find young, undifferentiated neurons mixed with mature neurons in the neural networks of the adult mammalian brain. This “canonical” neurogenesis is restricted to small stem cell niches persisting from embryonic germinal layers, yet, the genesis of new neurons has also been reported in various parenchymal brain regions. Whichever the process involved, several populations of “young” neurons can be found at different locations of the brain. Across the years, further complexity emerged: (i) molecules of immaturity can also be expressed by non-dividing cells born during embryogenesis, then maintaining immature features later on; (ii) remarkable interspecies differences exist concerning the types, location, amount of undifferentiated neurons; (iii) re-expression of immaturity can occur in aging (dematuration). These twists are introducing a somewhat different definition of neurogenesis than normally assumed, in which our knowledge of the “young” neurons is less sharp. In this emerging complexity, there is a need for complete mapping of the different “types” of young neurons, considering their role in postnatal development, plasticity, functioning, and interspecies differences. Several important aspects are at stake: the possible role(s) that the young neurons may play in maintaining brain efficiency and in prevention/repair of neurological disorders; nonetheless, the correct translation of results obtained from laboratory rodents. Hence, the open question is: how many types of undifferentiated neurons do exist in the brain, and how widespread are they?
Collapse
Affiliation(s)
- Marco Ghibaudi
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Luca Bonfanti
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Orbassano, Italy
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
- *Correspondence: Luca Bonfanti,
| |
Collapse
|
62
|
K v1.1 preserves the neural stem cell pool and facilitates neuron maturation during adult hippocampal neurogenesis. Proc Natl Acad Sci U S A 2022; 119:e2118240119. [PMID: 35613055 PMCID: PMC9295736 DOI: 10.1073/pnas.2118240119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Despite decades of research on adult neurogenesis, little is known about the role of bioelectric signaling in this process. In this study, we describe how a voltage-gated potassium channel, Kv1.1, supports adult neurogenesis by maintaining the neural stem cell niche and facilitating newborn neuron development. Additionally, we show that deletion of Kv1.1 from adult neural stem cells contributes to modest impairments in hippocampus-dependent contextual fear learning and memory. Dysfunctional adult neurogenesis has been implicated in cognitive decline associated with aging and neurological disease. Therefore, understanding the role of Kv1.1 in adult neurogenesis represents an opportunity to identify new therapeutic targets to promote healthy neurogenesis and cognition. Adult hippocampal neurogenesis is critical for learning and memory, and aberrant adult neurogenesis has been implicated in cognitive decline associated with aging and neurological diseases [J. T. Gonçalves, S. T. Schafer, F. H. Gage, Cell 167, 897–914 (2016)]. In previous studies, we observed that the delayed-rectifier voltage-gated potassium channel Kv1.1 controls the membrane potential of neural stem and progenitor cells and acts as a brake on neurogenesis during neonatal hippocampal development [S. M. Chou et al., eLife 10, e58779 (2021)]. To assess the role of Kv1.1 in adult hippocampal neurogenesis, we developed an inducible conditional knockout mouse to specifically remove Kv1.1 from adult neural stem cells via tamoxifen administration. We determined that Kv1.1 deletion in adult neural stem cells causes overproliferation and depletion of radial glia-like neural stem cells, prevents proper adult-born granule cell maturation and integration into the dentate gyrus, and moderately impairs hippocampus-dependent contextual fear learning and memory. Taken together, these findings support a critical role for this voltage-gated ion channel in adult neurogenesis.
Collapse
|
63
|
Kim TA, Syty MD, Wu K, Ge S. Adult hippocampal neurogenesis and its impairment in Alzheimer's disease. Zool Res 2022; 43:481-496. [PMID: 35503338 PMCID: PMC9113964 DOI: 10.24272/j.issn.2095-8137.2021.479] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 04/25/2022] [Indexed: 11/07/2022] Open
Abstract
Adult neurogenesis is the creation of new neurons which integrate into the existing neural circuit of the adult brain. Recent evidence suggests that adult hippocampal neurogenesis (AHN) persists throughout life in mammals, including humans. These newborn neurons have been implicated to have a crucial role in brain functions such as learning and memory. Importantly, studies have also found that hippocampal neurogenesis is impaired in neurodegenerative and neuropsychiatric diseases. Alzheimer's disease (AD) is one of the most common forms of dementia affecting millions of people. Cognitive dysfunction is a common symptom of AD patients and progressive memory loss has been attributed to the degeneration of the hippocampus. Therefore, there has been growing interest in identifying how hippocampal neurogenesis is affected in AD. However, the link between cognitive decline and changes in hippocampal neurogenesis in AD is poorly understood. In this review, we summarized the recent literature on AHN and its impairments in AD.
Collapse
Affiliation(s)
- Thomas A Kim
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
- Medical Scientist Training Program (MSTP), Renaissance School of Medicine at SUNY, Stony Brook, Stony Brook, NY 11794, USA
| | - Michelle D Syty
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Kaitlyn Wu
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA
| | - Shaoyu Ge
- Department of Neurobiology & Behavior, SUNY at Stony Brook, Stony Brook, NY 11794, USA. E-mail:
| |
Collapse
|
64
|
BMP4 Exerts Anti-Neurogenic Effect via Inducing Id3 during Aging. Biomedicines 2022; 10:biomedicines10051147. [PMID: 35625884 PMCID: PMC9138880 DOI: 10.3390/biomedicines10051147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 04/29/2022] [Accepted: 05/07/2022] [Indexed: 02/04/2023] Open
Abstract
Bone morphogenetic protein (BMP) signaling has been shown to be intimately associated with adult neurogenesis in the subventricular zone (SVZ) and subgranular zone (SGZ). Adult neurogenesis declines in aging rodents and primates. However, the role of BMP signaling in the age-related neurogenesis decline remains elusive and the effect of BMP4 on adult SVZ neurogenesis remains controversial. Here, the expression of BMP4 and its canonical effector phosphorylated-Smad1/5/8 (p-Smad1/5/8) in the murine SVZ and SGZ were found to be increased markedly with age. We identified Id3 as a major target of BMP4 in neuronal stem cells (NSCs) of both neurogenic regions, which exhibited a similar increase during aging. Intracerebroventricular infusion of BMP4 activated Smad1/5/8 phosphorylation and upregulated Id3 expression, which further restrained NeuroD1, leading to attenuated neurogenesis in both neurogenic regions and defective differentiation in the SGZ. Conversely, noggin, a potent inhibitor of BMP4, demonstrated opposing effects. In support of this, BMP4 treatment or lentiviral overexpression of Id3 resulted in decreased NeuroD1 protein levels in NSCs of both neurogenic regions and significantly inhibited neurogenesis. Thus, our findings revealed that the increased BMP4 signaling with age inhibited adult neurogenesis in both SVZ and SGZ, which may be attributed at least in part, to the changes in the Id3-NeuroD1 axis.
Collapse
|
65
|
Abdi S, Javanmehr N, Ghasemi-Kasman M, Bali HY, Pirzadeh M. Stem Cell-based Therapeutic and Diagnostic Approaches in Alzheimer's Disease. Curr Neuropharmacol 2022; 20:1093-1115. [PMID: 34970956 PMCID: PMC9886816 DOI: 10.2174/1570159x20666211231090659] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/24/2021] [Accepted: 09/21/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative impairment mainly recognized by memory loss and cognitive deficits. However, the current therapies against AD are mostly limited to palliative medications, prompting researchers to investigate more efficient therapeutic approaches for AD, such as stem cell therapy. Recent evidence has proposed that extensive neuronal and synaptic loss and altered adult neurogenesis, which is perceived pivotal in terms of plasticity and network maintenance, occurs early in the course of AD, which exacerbates neuronal vulnerability to AD. Thus, regeneration and replenishing the depleted neuronal networks by strengthening the endogenous repair mechanisms or exogenous stem cells and their cargoes is a rational therapeutic approach. Currently, several stem cell-based therapies as well as stem cell products like exosomes, have shown promising results in the early diagnosis of AD. OBJECTIVE This review begins with a comparison between AD and normal aging pathophysiology and a discussion on open questions in the field. Next, summarizing the current stem cell-based therapeutic and diagnostic approaches, we declare the advantages and disadvantages of each method. Also, we comprehensively evaluate the human clinical trials of stem cell therapies for AD. METHODOLOGY Peer-reviewed reports were extracted through Embase, PubMed, and Google Scholar until 2021. RESULTS With several ongoing clinical trials, stem cells and their derivatives (e.g., exosomes) are an emerging and encouraging field in diagnosing and treating neurodegenerative diseases. Although stem cell therapies have been successful in animal models, numerous clinical trials in AD patients have yielded unpromising results, which we will further discuss.
Collapse
Affiliation(s)
- Sadaf Abdi
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Nima Javanmehr
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Maryam Ghasemi-Kasman
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran;,Neuroscience Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran,Address correspondence to this author at the Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, P.O. Box 4136747176, Babol, Iran; Tel/Fax: +98-11-32190557; E-mail:
| | | | - Marzieh Pirzadeh
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
66
|
Shridhar S, Mishra P, Narayanan R. Dominant role of adult neurogenesis-induced structural heterogeneities in driving plasticity heterogeneity in dentate gyrus granule cells. Hippocampus 2022; 32:488-516. [PMID: 35561083 PMCID: PMC9322436 DOI: 10.1002/hipo.23422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/21/2022] [Accepted: 04/28/2022] [Indexed: 02/02/2023]
Abstract
Neurons and synapses manifest pronounced variability in the amount of plasticity induced by identical activity patterns. The mechanisms underlying such plasticity heterogeneity, which have been implicated in context‐specific resource allocation during encoding, have remained unexplored. Here, we employed a systematic physiologically constrained parametric search to identify the cellular mechanisms behind plasticity heterogeneity in dentate gyrus granule cells. We used heterogeneous model populations to ensure that our conclusions were not biased by parametric choices in a single hand‐tuned model. We found that each of intrinsic, synaptic, and structural heterogeneities independently yielded heterogeneities in synaptic plasticity profiles obtained with two different induction protocols. However, among the disparate forms of neural‐circuit heterogeneities, our analyses demonstrated the dominance of neurogenesis‐induced structural heterogeneities in driving plasticity heterogeneity in granule cells. We found that strong relationships between neuronal intrinsic excitability and plasticity emerged only when adult neurogenesis‐induced heterogeneities in neural structure were accounted for. Importantly, our analyses showed that it was not imperative that the manifestation of neural‐circuit heterogeneities must translate to heterogeneities in plasticity profiles. Specifically, despite the expression of heterogeneities in structural, synaptic, and intrinsic neuronal properties, similar plasticity profiles were attainable across all models through synergistic interactions among these heterogeneities. We assessed the parametric combinations required for the manifestation of such degeneracy in the expression of plasticity profiles. We found that immature cells showed physiological plasticity profiles despite receiving afferent inputs with weak synaptic strengths. Thus, the high intrinsic excitability of immature granule cells was sufficient to counterbalance their low excitatory drive in the expression of plasticity profile degeneracy. Together, our analyses demonstrate that disparate forms of neural‐circuit heterogeneities could mechanistically drive plasticity heterogeneity, but also caution against treating neural‐circuit heterogeneities as proxies for plasticity heterogeneity. Our study emphasizes the need for quantitatively characterizing the relationship between neural‐circuit and plasticity heterogeneities across brain regions.
Collapse
Affiliation(s)
- Sameera Shridhar
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Poonam Mishra
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore, Karnataka, India
| |
Collapse
|
67
|
Ma W, Xu D, Zhao L, Yuan M, Cui YL, Li Y. Therapeutic role of curcumin in adult neurogenesis for management of psychiatric and neurological disorders: a scientometric study to an in-depth review. Crit Rev Food Sci Nutr 2022; 63:9379-9391. [PMID: 35482938 DOI: 10.1080/10408398.2022.2067827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Aberrant neurogenesis is a major factor in psychiatric and neurological disorders that have significantly attracted the attention of neuroscientists. Curcumin is a primary constituent of curcuminoid that exerts several positive pharmacological effects on aberrant neurogenesis. First, it is important to understand the different processes of neurogenesis, and whether their dysfunction promotes etiology as well as the development of many psychiatric and neurological disorders; then investigate mechanisms by which curcumin affects neurogenesis as an active participant in pathophysiological events. Based on scientometric studies and additional extensive research, we explore the mechanisms by which curcumin regulates adult neurogenesis and in turn affects psychiatric diseases, i.e., depression and neurological disorders among them traumatic brain injury (TBI), stroke, Alzheimer's disease (AD), Gulf War Illness (GWI) and Fragile X syndrome (FXS). This review aims to elucidate the therapeutic effects and mechanisms of curcumin on adult neurogenesis in various psychiatric and neurological disorders. Specifically, we discuss the regulatory role of curcumin in different activities of neural stem cells (NSCs), including proliferation, differentiation, and migration of NSCs. This is geared toward providing novel application prospects of curcumin in treating psychiatric and neurological disorders by regulating adult neurogenesis.
Collapse
Affiliation(s)
- Wenxin Ma
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Dong Xu
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Lucy Zhao
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Mengmeng Yuan
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan-Lu Cui
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue Li
- State Key Laboratory of Component-Based Chinese Medicine, Ministry of Education Key Laboratory of Pharmacology of Traditional Chinese Medicine Formulae, Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
68
|
Arredondo SB, Valenzuela-Bezanilla D, Santibanez SH, Varela-Nallar L. Wnt signaling in the adult hippocampal neurogenic niche. Stem Cells 2022; 40:630-640. [PMID: 35446432 DOI: 10.1093/stmcls/sxac027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 03/29/2022] [Indexed: 11/14/2022]
Abstract
The subgranular zone (SGZ) of the hippocampal dentate gyrus (DG) is a neurogenic niche of the adult brain that contains neural stem cells (NSCs) able to generate excitatory glutamatergic granule neurons, which integrate into the DG circuit and contribute to hippocampal plasticity, learning, and memory. Thus, endogenous NSCs could be harnessed for therapeutic purposes. In this context, it is critical to characterize the molecular mechanisms controlling the generation and functional integration of adult-born neurons. Adult hippocampal neurogenesis is tightly controlled by both cell-autonomous mechanisms and the interaction with the complex niche microenvironment, which harbors the NSCs and provides the signals to support their maintenance, activation, and differentiation. Among niche-derived factors, Wnt ligands play diverse roles. Wnts are secreted glycoproteins that bind to Frizzled receptors and co-receptors to trigger the Wnt signaling pathway. Here, we summarize the current knowledge about the roles of Wnts in the regulation of adult hippocampal neurogenesis. We discuss the possible contribution of the different niche cells to the regulation of local Wnt signaling activity, and how Wnts derived from different cell types could induce differential effects. Finally, we discuss how the effects of Wnt signaling on hippocampal network activity might contribute to neurogenesis regulation. Although the evidence supports relevant roles for Wnt signaling in adult hippocampal neurogenesis, defining the cellular source and the mechanisms controlling secretion and diffusion of Wnts will be crucial to further understand Wnt signaling regulation of adult NSCs, and eventually, to propose this pathway as a therapeutic target to promote neurogenesis.
Collapse
Affiliation(s)
- Sebastian B Arredondo
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Daniela Valenzuela-Bezanilla
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Sebastian H Santibanez
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| | - Lorena Varela-Nallar
- Institute of Biomedical Sciences, Faculty of Medicine and Faculty of Life Sciences, Universidad Andres Bello, Echaurren 183, 8370071, Santiago, Chile
| |
Collapse
|
69
|
Early Life Events and Maturation of the Dentate Gyrus: Implications for Neurons and Glial Cells. Int J Mol Sci 2022; 23:ijms23084261. [PMID: 35457079 PMCID: PMC9031216 DOI: 10.3390/ijms23084261] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
The dentate gyrus (DG), an important part of the hippocampus, plays a significant role in learning, memory, and emotional behavior. Factors potentially influencing normal development of neurons and glial cells in the DG during its maturation can exert long-lasting effects on brain functions. Early life stress may modify maturation of the DG and induce lifelong alterations in its structure and functioning, underlying brain pathologies in adults. In this paper, maturation of neurons and glial cells (microglia and astrocytes) and the effects of early life events on maturation processes in the DG have been comprehensively reviewed. Early postnatal interventions affecting the DG eventually result in an altered number of granule neurons in the DG, ectopic location of neurons and changes in adult neurogenesis. Adverse events in early life provoke proinflammatory changes in hippocampal glia at cellular and molecular levels immediately after stress exposure. Later, the cellular changes may disappear, though alterations in gene expression pattern persist. Additional stressful events later in life contribute to manifestation of glial changes and behavioral deficits. Alterations in the maturation of neuronal and glial cells induced by early life stress are interdependent and influence the development of neural nets, thus predisposing the brain to the development of cognitive and psychiatric disorders.
Collapse
|
70
|
Aronson JP, Katnani HA, Huguenard A, Mulvaney G, Bader ER, Yang JC, Eskandar EN. Phasic stimulation in the nucleus accumbens enhances learning after traumatic brain injury. Cereb Cortex Commun 2022; 3:tgac016. [PMID: 35529519 PMCID: PMC9070350 DOI: 10.1093/texcom/tgac016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) is a significant cause of morbidity and mortality worldwide. Despite improvements in survival, treatments that improve functional outcome remain lacking. There is, therefore, a pressing need to develop novel treatments to improve functional recovery. Here, we investigated task-matched deep-brain stimulation of the nucleus accumbens (NAc) to augment reinforcement learning in a rodent model of TBI. We demonstrate that task-matched deep brain stimulation (DBS) of the NAc can enhance learning following TBI. We further demonstrate that animals receiving DBS exhibited greater behavioral improvement and enhanced neural proliferation. Treated animals recovered to an uninjured behavioral baseline and showed retention of improved performance even after stimulation was stopped. These results provide encouraging early evidence for the potential of NAc DBS to improve functional outcomes following TBI and that its effects may be broad, with alterations in neurogenesis and synaptogenesis.
Collapse
Affiliation(s)
- Joshua P Aronson
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Section of Neurosurgery, Department of Surgery, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Husam A Katnani
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anna Huguenard
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Graham Mulvaney
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward R Bader
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jimmy C Yang
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emad N Eskandar
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, NY, USA
| |
Collapse
|
71
|
Bierman-Duquette RD, Safarians G, Huang J, Rajput B, Chen JY, Wang ZZ, Seidlits SK. Engineering Tissues of the Central Nervous System: Interfacing Conductive Biomaterials with Neural Stem/Progenitor Cells. Adv Healthc Mater 2022; 11:e2101577. [PMID: 34808031 PMCID: PMC8986557 DOI: 10.1002/adhm.202101577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/31/2021] [Indexed: 12/19/2022]
Abstract
Conductive biomaterials provide an important control for engineering neural tissues, where electrical stimulation can potentially direct neural stem/progenitor cell (NS/PC) maturation into functional neuronal networks. It is anticipated that stem cell-based therapies to repair damaged central nervous system (CNS) tissues and ex vivo, "tissue chip" models of the CNS and its pathologies will each benefit from the development of biocompatible, biodegradable, and conductive biomaterials. Here, technological advances in conductive biomaterials are reviewed over the past two decades that may facilitate the development of engineered tissues with integrated physiological and electrical functionalities. First, one briefly introduces NS/PCs of the CNS. Then, the significance of incorporating microenvironmental cues, to which NS/PCs are naturally programmed to respond, into biomaterial scaffolds is discussed with a focus on electrical cues. Next, practical design considerations for conductive biomaterials are discussed followed by a review of studies evaluating how conductive biomaterials can be engineered to control NS/PC behavior by mimicking specific functionalities in the CNS microenvironment. Finally, steps researchers can take to move NS/PC-interfacing, conductive materials closer to clinical translation are discussed.
Collapse
Affiliation(s)
| | - Gevick Safarians
- Department of Bioengineering, University of California Los Angeles, USA
| | - Joyce Huang
- Department of Bioengineering, University of California Los Angeles, USA
| | - Bushra Rajput
- Department of Bioengineering, University of California Los Angeles, USA
| | - Jessica Y. Chen
- Department of Bioengineering, University of California Los Angeles, USA
- David Geffen School of Medicine, University of California Los Angeles, USA
| | - Ze Zhong Wang
- Department of Bioengineering, University of California Los Angeles, USA
| | | |
Collapse
|
72
|
Ozgen S, Krigman J, Zhang R, Sun N. Significance of mitochondrial activity in neurogenesis and neurodegenerative diseases. Neural Regen Res 2022; 17:741-747. [PMID: 34472459 PMCID: PMC8530128 DOI: 10.4103/1673-5374.322429] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/13/2021] [Accepted: 03/13/2021] [Indexed: 12/11/2022] Open
Abstract
Mitochondria play a multidimensional role in the function and the vitality of the neurological system. From the generation of neural stem cells to the maintenance of neurons and their ultimate demise, mitochondria play a critical role in regulating our neural pathways' homeostasis, a task that is critical to our cognitive health and neurological well-being. Mitochondria provide energy via oxidative phosphorylation for the neurotransmission and generation of an action potential along the neuron's axon. This paper will first review and examine the molecular subtleties of the mitochondria's role in neurogenesis and neuron vitality, as well as outlining the impact of defective mitochondria in neural aging. The authors will then summarize neurodegenerative diseases related to either neurogenesis or homeostatic dysfunction. Because of the significant detriment neurodegenerative diseases have on the quality of life, it is essential to understand their etiology and ongoing molecular mechanics. The mitochondrial role in neurogenesis and neuron vitality is essential. Dissecting and understanding this organelle's role in the genesis and homeostasis of neurons should assist in finding pharmaceutical targets for neurodegenerative diseases.
Collapse
Affiliation(s)
- Serra Ozgen
- Departments of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- College of Medicine, Graduate Research in the Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Judith Krigman
- Departments of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Ruohan Zhang
- Departments of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- College of Pharmacy, Department of Graduate Research, The Ohio State University, Columbus, OH, USA
| | - Nuo Sun
- Departments of Physiology and Cell Biology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
- Dorothy M. Davis Heart and Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| |
Collapse
|
73
|
Mishra P, Narayanan R. Conjunctive changes in multiple ion channels mediate activity-dependent intrinsic plasticity in hippocampal granule cells. iScience 2022; 25:103922. [PMID: 35252816 PMCID: PMC8894279 DOI: 10.1016/j.isci.2022.103922] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 02/05/2023] Open
Abstract
Plasticity in the brain is ubiquitous. How do neurons and networks encode new information and simultaneously maintain homeostasis in the face of such ubiquitous plasticity? Here, we unveil a form of neuronal plasticity in rat hippocampal granule cells, which is mediated by conjunctive changes in HCN, inward-rectifier potassium, and persistent sodium channels induced by theta-modulated burst firing, a behaviorally relevant activity pattern. Cooperation and competition among these simultaneous changes resulted in a unique physiological signature: sub-threshold excitability and temporal summation were reduced without significant changes in action potential firing, together indicating a concurrent enhancement of supra-threshold excitability. This form of intrinsic plasticity was dependent on calcium influx through L-type calcium channels and inositol trisphosphate receptors. These observations demonstrate that although brain plasticity is ubiquitous, strong systemic constraints govern simultaneous plasticity in multiple components-referred here as plasticity manifolds-thereby providing a cellular substrate for concomitant encoding and homeostasis in engram cells.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| | - Rishikesh Narayanan
- Cellular Neurophysiology Laboratory, Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
74
|
Roll L, Lessmann K, Brüstle O, Faissner A. Cerebral Organoids Maintain the Expression of Neural Stem Cell-Associated Glycoepitopes and Extracellular Matrix. Cells 2022; 11:cells11050760. [PMID: 35269382 PMCID: PMC8909158 DOI: 10.3390/cells11050760] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 02/04/2023] Open
Abstract
During development, the nervous system with its highly specialized cell types forms from a pool of relatively uniform stem cells. This orchestrated process requires tight regulation. The extracellular matrix (ECM) is a complex network rich in signaling molecules, and therefore, of interest in this context. Distinct carbohydrate structures, bound to ECM molecules like Tenascin C (TNC), are associated with neural stem/progenitor cells. We have analyzed the expression patterns of the LewisX (LeX) trisaccharide motif and of the sulfation-dependent DSD-1 chondroitin sulfate glycosaminoglycan epitope in human cerebral organoids, a 3D model for early central nervous system (CNS) development, immunohistochemically. In early organoids we observed distinct expression patterns of the glycoepitopes, associated with rosette-like structures that resemble the neural tube in vitro: Terminal LeX motifs, recognized by the monoclonal antibody (mAb) 487LeX, were enriched in the lumen and at the outer border of neural rosettes. In contrast, internal LeX motif repeats detected with mAb 5750LeX were concentrated near the lumen. The DSD-1 epitope, labeled with mAb 473HD, was detectable at rosette borders and in adjacent cells. The epitope expression was maintained in older organoids but appeared more diffuse. The differential glycoepitope expression suggests a specific function in the developing human CNS.
Collapse
Affiliation(s)
- Lars Roll
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Katrin Lessmann
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
| | - Oliver Brüstle
- Institute of Reconstructive Neurobiology, Medical Faculty & University Hospital Bonn, University of Bonn, 53127 Bonn, Germany;
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, 44780 Bochum, Germany
- Correspondence: ; Tel.: +49-(0)234-32-28851
| |
Collapse
|
75
|
Jennen L, Mazereel V, Lecei A, Samaey C, Vancampfort D, van Winkel R. Exercise to spot the differences: a framework for the effect of exercise on hippocampal pattern separation in humans. Rev Neurosci 2022; 33:555-582. [PMID: 35172422 DOI: 10.1515/revneuro-2021-0156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 01/16/2022] [Indexed: 12/12/2022]
Abstract
Exercise has a beneficial effect on mental health and cognitive functioning, but the exact underlying mechanisms remain largely unknown. In this review, we focus on the effect of exercise on hippocampal pattern separation, which is a key component of episodic memory. Research has associated exercise with improvements in pattern separation. We propose an integrated framework mechanistically explaining this relationship. The framework is divided into three pathways, describing the pro-neuroplastic, anti-inflammatory and hormonal effects of exercise. The pathways are heavily intertwined and may result in functional and structural changes in the hippocampus. These changes can ultimately affect pattern separation through direct and indirect connections. The proposed framework might guide future research on the effect of exercise on pattern separation in the hippocampus.
Collapse
Affiliation(s)
- Lise Jennen
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Victor Mazereel
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium.,University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium
| | - Aleksandra Lecei
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Celine Samaey
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium
| | - Davy Vancampfort
- University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium.,KU Leuven Department of Rehabilitation Sciences, ON IV Herestraat 49, bus 1510, 3000, Leuven, Belgium
| | - Ruud van Winkel
- KU Leuven, Department of Neurosciences, Center for Clinical Psychiatry, ON V Herestraat 49, bus 1029, 3000 Leuven, Belgium.,University Psychiatric Center KU Leuven, Leuvensesteenweg 517, 3070 Leuven-Kortenberg, Belgium
| |
Collapse
|
76
|
Borroto-Escuela DO, Fores R, Pita M, Barbancho MA, Zamorano‐Gonzalez P, Casares NG, Fuxe K, Narváez M. Intranasal Delivery of Galanin 2 and Neuropeptide Y1 Agonists Enhanced Spatial Memory Performance and Neuronal Precursor Cells Proliferation in the Dorsal Hippocampus in Rats. Front Pharmacol 2022; 13:820210. [PMID: 35250569 PMCID: PMC8893223 DOI: 10.3389/fphar.2022.820210] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/14/2022] [Indexed: 11/25/2022] Open
Abstract
A need for new therapeutic approaches are necessary for dementia conditions and memory deficits of different origins, such as Alzheimer's disease. There is complex pathophysiological mechanisms involved, affecting adult hippocampal neurogenesis, in which neuropeptides and its neurogenesis regulation seem to participate. Neuropeptide Y(NPY) Y1 receptor (Y1R) and galanin (GAL) receptor 2 (GALR2) interact in brain regions responsible for learning and memory processes, emphasizing the hippocampus. Moreover, a significant challenge for treatments involving peptide drugs is bypassing the blood-brain barrier. The current study assesses the sustained memory performance induced by GALR2 and NPYY1R agonists intranasal coadministration and their neurochemical hippocampal correlates. Memory retrieval was conducted in the object-in-place task together with in situ proximity ligation assay (PLA) to manifest the formation of GALR2/Y1R heteroreceptor complexes and their dynamics under the different treatments. We evaluated cell proliferation through a 5-Bromo-2’-deoxyuridine (BrdU) expression study within the dentate gyrus of the dorsal hippocampus. The GalR2 agonist M1145 was demonstrated to act with the Y1R agonist to improve memory retrieval at 24 hours in the object-in-place task. Our data show that the intranasal administration is a feasible technique for directly delivering Galanin or Neuropeptide Y compounds into CNS. Moreover, we observed the ability of the co-agonist treatment to enhance the cell proliferation in the DG of the dorsal hippocampus through 5- Bromo-2’-deoxyuridine (BrdU) expression analysis at 24 hours. The understanding of the cellular mechanisms was achieved by analyzing the GALR2/Y1R heteroreceptor complexes upon agonist coactivation of their two types of receptor protomers in Doublecortin-expressing neuroblasts. Our results may provide the basis for developing heterobivalent agonist pharmacophores, targeting GALR2-Y1R heterocomplexes. It involves especially the neuronal precursor cells of the dentate gyrus in the dorsal hippocampus for the novel treatment of neurodegenerative pathologies as in the Alzheimer’s disease.
Collapse
Affiliation(s)
- Dasiel O. Borroto-Escuela
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Department of Biomolecular Science, Section of Physiology, University of Urbino, Urbino, Italy
- Grupo Bohío-Estudio, Observatorio Cubano de Neurociencias, Yaguajay, Cuba
| | - Ramón Fores
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Mariana Pita
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- Departamento de Neurogenética, Instituto de Neurología y Neurocirugía, La Habana, Cuba
| | - Miguel A. Barbancho
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Pablo Zamorano‐Gonzalez
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Natalia García Casares
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
| | - Kjell Fuxe
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Manuel Narváez
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
- Instituto de Investigación Biomédica de Málaga, Facultad de Medicina, Universidad de Málaga, Málaga, Spain
- *Correspondence: Manuel Narváez,
| |
Collapse
|
77
|
Hamdi H, Graiet I, Abid-Essefi S, Eyer J. Epoxiconazole profoundly alters rat brain and properties of neural stem cells. CHEMOSPHERE 2022; 288:132640. [PMID: 34695486 DOI: 10.1016/j.chemosphere.2021.132640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/09/2021] [Accepted: 10/19/2021] [Indexed: 06/13/2023]
Abstract
Epoxiconazole (EPX), a widely used fungicide for domestic, medical, and industrial applications, could cause neurodegenerative diseases. However, the underling mechanism of neurotoxicity is not well understood. This study aimed to investigate the possible toxic outcomes of Epoxiconzole, a triazole fungicide, on the brain of adult rats in vivo, and in vitro on neural stem cells derived from the subventricular zone of newborn Wistar rats. Our results revealed that oral exposure to EPX at these concentrations (8, 24, 40, 56 mg/kg bw representing respectively NOEL (no observed effect level), NOEL × 3, NOEL × 5, and NOEL × 7) for 28 days caused a considerable generation of oxidative stress in adult rat brain tissue. Furthermore, a significant augmentation in lipid peroxidation and protein oxidation has been found. Moreover, it induced an elevation of DNA fragmentation as assessed by the Comet assay. Indeed, EPX administration impaired activities of antioxidant enzymes and inhibited AChE activity. Concomitantly, this pesticide produced histological alterations in the brain of adult rats. Regarding the embryonic neural stem cells, we demonstrated that the treatment by EPX reduced the viability of cells with an IC50 of 10 μM. It also provoked the reduction of cell proliferation, and EPX triggered arrest in G1/S phase. The neurosphere formation and self-renewal capacity was reduced and associated with decreased differentiation. Moreover, EPX induced cytoskeleton disruption as evidenced by immunocytochemical analysis. Our findings also showed that EPX induced apoptosis as evidenced by a loss of mitochondrial transmembrane potential (ΔΨm) and an activation of caspase-3. In addition, EPX promoted ROS production in neural stem cells. Interestingly, the pretreatment of neural stem cells with the N-acetylcysteine (ROS scavenger) attenuated EPX-induced cell death, disruption of neural stem cells properties, ROS generation and apoptosis. Thus, the use of this hazardous material should be restricted and carefully regulated.
Collapse
Affiliation(s)
- Hiba Hamdi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia; Higher Institute of Biotechnology, University of Monastir, Tunisia
| | - Imen Graiet
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Salwa Abid-Essefi
- Laboratory for Research on Biologically Compatible Compounds, Faculty of Dental Medicine, University of Monastir, Avicenne Street, 5019, Monastir, Tunisia
| | - Joel Eyer
- Laboratoire Micro et Nanomédecines Translationnelles (MINT), Inserm 1066, CNRS 6021, Institut de Biologie de La Santé, Centre Hospitalier Universitaire, 49033, Angers, France.
| |
Collapse
|
78
|
Chauhan G, Kumar G, Roy K, Kumari P, Thondala B, Kishore K, Panjwani U, Ray K. Hypobaric Hypoxia Induces Deficits in Adult Neurogenesis and Social Interaction via Cyclooxygenase-1/ EP1 Receptor Pathway Activating NLRP3 Inflammasome. Mol Neurobiol 2022; 59:2497-2519. [PMID: 35089581 DOI: 10.1007/s12035-022-02750-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022]
Abstract
Low oxygen environments, like hypobaric hypoxia (HH), are common nodes in a number of diseases characterized by neuroinflammation, which is detrimental to the structural and functional aspects of hippocampal circuitry. Hypoxic conditions lead to elevation of inflammasome-mediated inflammation that may contribute to cognitive deficits. However, a systematic investigation of the impact of inflammasome-mediated neuroinflammation on the components of neurogenic niche during HH remains to be elusive. Cerebral hypoxia was induced in adult male Sprague Dawley rats via decreasing partial pressure of oxygen. The effect of HH (1, 3, and 7 days at 25,000 ft) on social memory, anxiety, adult neurogenesis, and NLRP3- (NLR family pyrin domain containing 3) mediated neuroinflammation in the dentate gyrus (DG) was explored in detail. Furthermore, we explored the therapeutic efficacy of cyclooxygenase-1 inhibitor (valeryl salicylate, 5 mg/kg/day, i.p.) and EP1 receptor (EP1R) antagonist (SC19220, 1 mg/kg/day, i.p.) on HH-induced deficits. Seven days of HH exposure induced alteration in social and anxiety-like behavior along with perturbation in adult neurogenesis. Elevation in NLRP3, caspase-1, and IL-1β levels was observed during HH from day 1. A notable increase in the COX-1/EP1R pathway in activated glial cells in DG was evident during HH. COX-1 inhibitor and EP1R antagonist mitigated the detrimental effects of HH on social memory, adult neurogenesis via blunting NLRP3-mediated inflammation. Our data showed induction of the COX-1/EP1R pathway in the glial cells, which is detrimental to neurogenesis and social memory, opening up the possibility that the COX-1/EP1R pathway is a plausible target for inflammasome-related neurogenesis impairments.
Collapse
Affiliation(s)
- Garima Chauhan
- Neurophysiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Gaurav Kumar
- Neurophysiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Koustav Roy
- Neurophysiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Punita Kumari
- Neurophysiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Bhanuteja Thondala
- Neurophysiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Krishna Kishore
- Neurophysiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Usha Panjwani
- Neurophysiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India
| | - Koushik Ray
- Neurophysiology Division, Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Lucknow Road, Timarpur, Delhi, 110054, India.
| |
Collapse
|
79
|
The Effect of Prosopis farcta and Its Bioactive Luteolin on the Hippocampus of Mice after Induced Ischemia Reperfusion. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:8157948. [PMID: 35111230 PMCID: PMC8803438 DOI: 10.1155/2022/8157948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/26/2021] [Accepted: 01/03/2022] [Indexed: 11/29/2022]
Abstract
Background Ischemia plays an important role in increasing damage to the nervous system. This study aimed to evaluate the effect of Prosopis farcta (PFE) and its bioactive luteolin (Lu) and forced swimming exercise on the hippocampus of mice after induced ischemia reperfusion. Methods The bioactive component of PFE (Lu) was identified by HPLC. Fifty-six male mice were divided into different groups. Ischemia was induced by ligation of the common carotid artery. After mice training (swimming exercise, 8 weeks) and consuming PFE and Lu, the mice's memory ability was evaluated in the shuttle box. Histological examination was performed by Nissel staining and immunohistochemistry. Results Results showed that the ischemic mice exercised and treated with PFE and Lu had higher step-through latency (STL) compared with the nonexercised mice, and this was confirmed with time spent in the dark compartment (TDC). The number of dark cells in the ischemic group exercising and receiving PFE and Lu decreased compared to that of the other groups in the hippocampus. DCX protein expression was increased in nonexercised groups compared to that of the exercised groups and those treated with PFE and Lu, while NeuN decreased. Conclusions Forced swimming exercise following ischemia, as well as consumption of PFE and Lu, has reduced cell death and increased neurogenesis in the hippocampus and thus may help improve memory in ischemia.
Collapse
|
80
|
Strettoi E, Di Marco B, Orsini N, Napoli D. Retinal Plasticity. Int J Mol Sci 2022; 23:ijms23031138. [PMID: 35163059 PMCID: PMC8835074 DOI: 10.3390/ijms23031138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 12/28/2022] Open
Abstract
Brain plasticity is a well-established concept designating the ability of central nervous system (CNS) neurons to rearrange as a result of learning, when adapting to changeable environmental conditions or else while reacting to injurious factors. As a part of the CNS, the retina has been repeatedly probed for its possible ability to respond plastically to a variably altered environment or to pathological insults. However, numerous studies support the conclusion that the retina, outside the developmental stage, is endowed with only limited plasticity, exhibiting, instead, a remarkable ability to maintain a stable architectural and functional organization. Reviewed here are representative examples of hippocampal and cortical paradigms of plasticity and of retinal structural rearrangements found in organization and circuitry following altered developmental conditions or occurrence of genetic diseases leading to neuronal degeneration. The variable rate of plastic changes found in mammalian retinal neurons in different circumstances is discussed, focusing on structural plasticity. The likely adaptive value of maintaining a low level of plasticity in an organ subserving a sensory modality that is dominant for the human species and that requires elevated fidelity is discussed.
Collapse
Affiliation(s)
- Enrica Strettoi
- CNR Neuroscience Institute, 56124 Pisa, Italy; (B.D.M.); (N.O.); (D.N.)
- Correspondence: ; Tel.: +39-0503153213
| | - Beatrice Di Marco
- CNR Neuroscience Institute, 56124 Pisa, Italy; (B.D.M.); (N.O.); (D.N.)
- Regional Doctorate School in Neuroscience, Universities of Florence, Pisa and Siena, 50134 Florence, Italy
| | - Noemi Orsini
- CNR Neuroscience Institute, 56124 Pisa, Italy; (B.D.M.); (N.O.); (D.N.)
- Regional Doctorate School in Neuroscience, Universities of Florence, Pisa and Siena, 50134 Florence, Italy
| | - Debora Napoli
- CNR Neuroscience Institute, 56124 Pisa, Italy; (B.D.M.); (N.O.); (D.N.)
- Regional Doctorate School in Neuroscience, Universities of Florence, Pisa and Siena, 50134 Florence, Italy
| |
Collapse
|
81
|
Penning A, Tosoni G, Abiega O, Bielefeld P, Gasperini C, De Pietri Tonelli D, Fitzsimons CP, Salta E. Adult Neural Stem Cell Regulation by Small Non-coding RNAs: Physiological Significance and Pathological Implications. Front Cell Neurosci 2022; 15:781434. [PMID: 35058752 PMCID: PMC8764185 DOI: 10.3389/fncel.2021.781434] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/09/2021] [Indexed: 01/11/2023] Open
Abstract
The adult neurogenic niches are complex multicellular systems, receiving regulatory input from a multitude of intracellular, juxtacrine, and paracrine signals and biological pathways. Within the niches, adult neural stem cells (aNSCs) generate astrocytic and neuronal progeny, with the latter predominating in physiological conditions. The new neurons generated from this neurogenic process are functionally linked to memory, cognition, and mood regulation, while much less is known about the functional contribution of aNSC-derived newborn astrocytes and adult-born oligodendrocytes. Accumulating evidence suggests that the deregulation of aNSCs and their progeny can impact, or can be impacted by, aging and several brain pathologies, including neurodevelopmental and mood disorders, neurodegenerative diseases, and also by insults, such as epileptic seizures, stroke, or traumatic brain injury. Hence, understanding the regulatory underpinnings of aNSC activation, differentiation, and fate commitment could help identify novel therapeutic avenues for a series of pathological conditions. Over the last two decades, small non-coding RNAs (sncRNAs) have emerged as key regulators of NSC fate determination in the adult neurogenic niches. In this review, we synthesize prior knowledge on how sncRNAs, such as microRNAs (miRNAs) and piwi-interacting RNAs (piRNAs), may impact NSC fate determination in the adult brain and we critically assess the functional significance of these events. We discuss the concepts that emerge from these examples and how they could be used to provide a framework for considering aNSC (de)regulation in the pathogenesis and treatment of neurological diseases.
Collapse
Affiliation(s)
- Amber Penning
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Giorgia Tosoni
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Oihane Abiega
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Pascal Bielefeld
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Caterina Gasperini
- Neurobiology of miRNAs Lab, Istituto Italiano di Tecnologia, Genova, Italy
| | | | - Carlos P. Fitzsimons
- Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Amsterdam, Netherlands
| | - Evgenia Salta
- Laboratory of Neurogenesis and Neurodegeneration, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| |
Collapse
|
82
|
Wu G, Zhou J, Yang M, Xu C, Pang H, Qin X, Lin S, Yang J, Hu J. The Regulatory Effects of Taurine on Neurogenesis and Apoptosis of Neural Stem Cells in the Hippocampus of Rats. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1370:351-367. [DOI: 10.1007/978-3-030-93337-1_34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
83
|
Radhakrishnan RK, Kandasamy M. SARS-CoV-2-Mediated Neuropathogenesis, Deterioration of Hippocampal Neurogenesis and Dementia. Am J Alzheimers Dis Other Demen 2022; 37:15333175221078418. [PMID: 35133907 PMCID: PMC10581113 DOI: 10.1177/15333175221078418] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A significant portion of COVID-19 patients and survivors display marked clinical signs of neurocognitive impairments. SARS-CoV-2-mediated peripheral cytokine storm and its neurotropism appear to elicit the activation of glial cells in the brain proceeding to neuroinflammation. While adult neurogenesis has been identified as a key cellular basis of cognitive functions, neuroinflammation-induced aberrant neuroregenerative plasticity in the hippocampus has been implicated in progressive memory loss in ageing and brain disorders. Notably, recent histological studies of post-mortem human and experimental animal brains indicate that SARS-CoV-2 infection impairs neurogenic process in the hippocampus of the brain due to neuroinflammation. Considering the facts, this article describes the prominent neuropathogenic characteristics and neurocognitive impairments in COVID-19 and emphasizes a viewpoint that neuroinflammation-mediated deterioration of hippocampal neurogenesis could contribute to the onset and progression of dementia in COVID-19. Thus, it necessitates the unmet need for regenerative medicine for the effective management of neurocognitive deficits in COVID-19.
Collapse
Affiliation(s)
- Risna K. Radhakrishnan
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
| | - Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India
| |
Collapse
|
84
|
Phosphatidylcholine restores neuronal plasticity of neural stem cells under inflammatory stress. Sci Rep 2021; 11:22891. [PMID: 34819604 PMCID: PMC8613233 DOI: 10.1038/s41598-021-02361-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
The balances between NSCs growth and differentiation, and between glial and neuronal differentiation play a key role in brain regeneration after any pathological conditions. It is well known that the nervous tissue shows a poor recovery after injury due to the factors present in the wounded microenvironment, particularly inflammatory factors, that prevent neuronal differentiation. Thus, it is essential to generate a favourable condition for NSCs and conduct them to differentiate towards functional neurons. Here, we show that neuroinflammation has no effect on NSCs proliferation but induces an aberrant neuronal differentiation that gives rise to dystrophic, non-functional neurons. This is perhaps the initial step of brain failure associated to many neurological disorders. Interestingly, we demonstrate that phosphatidylcholine (PtdCho)-enriched media enhances neuronal differentiation even under inflammatory stress by modifying the commitment of post-mitotic cells. The pro-neurogenic effect of PtdCho increases the population of healthy normal neurons. In addition, we provide evidences that this phospholipid ameliorates the damage of neurons and, in consequence, modulates neuronal plasticity. These results contribute to our understanding of NSCs behaviour under inflammatory conditions, opening up new venues to improve neurogenic capacity in the brain.
Collapse
|
85
|
Zhang Z, Fu Y, Shen F, Zhang Z, Guo H, Zhang X. Barren environment damages cognitive abilities in fish: Behavioral and transcriptome mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148805. [PMID: 34323774 DOI: 10.1016/j.scitotenv.2021.148805] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/12/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
The surrounding environments that animals inhabit shape their behavioral phenotypes, physiological status and molecular processes. As one of the driving forces for the adaptation and evolution of marine animals, environmental complexity has been shown to affect several behavioral characteristics in fish. However, little is known about the effects of environmental complexity on fish spatial cognition and about the relevant regulatory mechanisms. To address this theoretical gap, black rockfish Sebastes schlegelii, which is a typical rock fish species, were exposed to laboratory-based small-scale contrasting environments (i.e., spatially complex environment vs. spatially barren environment) for seven weeks. Subsequently, the spatial cognitive abilities and behavioral performance during captive period were determined, and transcriptome sequencing and analyses for fish telencephalon were conducted. In general, the fish from barren environment had significantly lower spatial learning and memory abilities compared with the fish from complex environment (i.e., the complex fish exited the maze faster). During the whole captive period, the frequency of aggressive behavior among barren fish was significantly higher than complex fish. And meanwhile, the group dispersion index of barren group was also significantly higher than complex group, which indicated that complex fish tended to distribute in a more homogeneous pattern than barren fish. Through transcriptomic analyses, a series of differentially expressed genes and pathways which may underpin the damaged effects of barren environment on fish spatial cognition were identified, and these genes mainly related to stress response, metabolism, organism systems and neural plasticity. However, no significant differences in growth performance, locomotor activity (indicated by swimming behavior and rotatory behavior) between treatments were detected. Based on these results, mechanisms in the levels of behavior and molecule were proposed to explain the environmental effects on fish cognition. This study may provide fundamental information for deeply understanding the environmental effects on marine animals.
Collapse
Affiliation(s)
- Zonghang Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Yiqiu Fu
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Fengyuan Shen
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Zhen Zhang
- The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao 266003, China
| | - Haoyu Guo
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China
| | - Xiumei Zhang
- Fisheries College, Zhejiang Ocean University, Zhoushan 316022, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| |
Collapse
|
86
|
Hayes TL, Krishnan GP, Bazhenov M, Siegelmann HT, Sejnowski TJ, Kanan C. Replay in Deep Learning: Current Approaches and Missing Biological Elements. Neural Comput 2021; 33:2908-2950. [PMID: 34474476 PMCID: PMC9074752 DOI: 10.1162/neco_a_01433] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/28/2021] [Indexed: 11/04/2022]
Abstract
Replay is the reactivation of one or more neural patterns that are similar to the activation patterns experienced during past waking experiences. Replay was first observed in biological neural networks during sleep, and it is now thought to play a critical role in memory formation, retrieval, and consolidation. Replay-like mechanisms have been incorporated in deep artificial neural networks that learn over time to avoid catastrophic forgetting of previous knowledge. Replay algorithms have been successfully used in a wide range of deep learning methods within supervised, unsupervised, and reinforcement learning paradigms. In this letter, we provide the first comprehensive comparison between replay in the mammalian brain and replay in artificial neural networks. We identify multiple aspects of biological replay that are missing in deep learning systems and hypothesize how they could be used to improve artificial neural networks.
Collapse
Affiliation(s)
- Tyler L Hayes
- Rochester Institute of Technology, Rochester, NY 14623, U.S.A.
| | - Giri P Krishnan
- University of California at San Diego, La Jolla, CA 92093, U.S.A.
| | - Maxim Bazhenov
- University of California at San Diego, La Jolla, CA 92093, U.S.A.
| | | | - Terrence J Sejnowski
- University of California at San Diego, La Jolla, CA 92093, U.S.A., and Salk Institute for Biological Studies, La Jolla, CA 92037, U.S.A.
| | - Christopher Kanan
- Rochester Institute of Technology, Rochester, NY 14623, U.S.A.; Paige, New York, NY 10036, U.S.A.; and Cornell Tech, New York, NY 10044, U.S.A.
| |
Collapse
|
87
|
Jiménez S, Moreno N. Analysis of the Expression Pattern of Cajal-Retzius Cell Markers in the Xenopus laevis Forebrain. BRAIN, BEHAVIOR AND EVOLUTION 2021; 96:263-282. [PMID: 34614492 DOI: 10.1159/000519025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 08/09/2021] [Indexed: 01/26/2023]
Abstract
Cajal-Retzius cells are essential for cortical development in mammals, and their involvement in the evolution of this structure has been widely postulated, but very little is known about their progenitor domains in non-mammalian vertebrates. Using in situhybridization and immunofluorescence techniques we analyzed the expression of some of the main Cajal-Retzius cell markers such as Dbx1, Ebf3, ER81, Lhx1, Lhx5, p73, Reelin, Wnt3a, Zic1, and Zic2 in the forebrain of the anuran Xenopus laevis, because amphibians are the only class of anamniote tetrapods and show a tetrapartite evaginated pallium, but no layered or nuclear organization. Our results suggested that the Cajal-Retzius cell progenitor domains were comparable to those previously described in amniotes. Thus, at dorsomedial telencephalic portions a region comparable to the cortical hem was defined in Xenopus based on the expression of Wnt3a, p73, Reelin, Zic1, and Zic2. In the septum, two different domains were observed: a periventricular dorsal septum, at the limit between the pallium and the subpallium, expressing Reelin, Zic1, and Zic2, and a related septal domain, expressing Ebf3, Zic1, and Zic2. In the lateral telencephalon, the ventral pallium next to the pallio-subpallial boundary, the lack of Dbx1 and the unique expression of Reelin during development defined this territory as the most divergent with respect to mammals. Finally, we also analyzed the expression of these markers at the prethalamic eminence region, suggested as Cajal-Retzius progenitor domain in amniotes, observing there Zic1, Zic2, ER81, and Lhx1 expression. Our data show that in anurans there are different subtypes and progenitor domains of Cajal-Retzius cells, which probably contribute to the cortical regional specification and territory-specific properties. This supports the notion that the basic organization of pallial derivatives in vertebrates follows a comparable fundamental arrangement, even in those that do not have a sophisticated stratified cortical structure like the mammalian cerebral cortex.
Collapse
Affiliation(s)
- Sara Jiménez
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| | - Nerea Moreno
- Department of Cell Biology, Faculty of Biology, University Complutense, Madrid, Spain
| |
Collapse
|
88
|
Zhang H, Xiang L, Yang L, Wu S, Liu S, Zhao J, Song D, Ma C, Ni J, Quan Z, Liang J, Qing H. WS6 Induces Adult Hippocampal Neurogenesis in Correlation to its Antidepressant Effect on the Alleviation of Depressive-like Behaviors of Rats. Neuroscience 2021; 473:119-129. [PMID: 34455011 DOI: 10.1016/j.neuroscience.2021.08.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/28/2022]
Abstract
Major depressive disorder (MDD) is one of the most common psychiatric disorders. However, the effective drugs for MDD have not yet been developed. WS6 is originally designed with a similar structure as Resveratrol and Pterostilbene. The present study aims to investigate the neuroprotective and ameliorating effects of WS6 treatment in a rat model of chronic unpredictable mild stress (CUMS) induced depression. The results show that CUMS is effective in producing depressive-like behavior in rats as indicated by decreased responses in the locomotor activity, sucrose preference test and increased immobility time. However, WS6 treatment significantly ameliorated these behavioral alterations associated with CUMS-induced depression. Moreover, the reduction in neurogenesis, GABAergic neurons, dendrite complexity, spine density and synaptic plasticity-associate protein 95 (PSD95) by CUMS can be reversed by treatment with WS6. Taken together, this study highlights the neuroprotective and antidepressant-like effects of WS6 against CUMS-induced depression, and suggest a possible mechanism for this protection via changes in neurogenesis within the hippocampus. These finding reveal the therapeutic protection of WS6 for use in clinical trials in the treatment of neuronal deterioration in MDD.
Collapse
Affiliation(s)
- Heao Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Lin Xiang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Liang Yang
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Si Wu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Sisi Liu
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Da Song
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Congxuan Ma
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhenzhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Jianhua Liang
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China.
| |
Collapse
|
89
|
Doi H, Matsuda T, Sakai A, Matsubara S, Hoka S, Yamaura K, Nakashima K. Early-life midazolam exposure persistently changes chromatin accessibility to impair adult hippocampal neurogenesis and cognition. Proc Natl Acad Sci U S A 2021; 118:e2107596118. [PMID: 34526402 PMCID: PMC8463898 DOI: 10.1073/pnas.2107596118] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2021] [Indexed: 01/02/2023] Open
Abstract
Linkage between early-life exposure to anesthesia and subsequent learning disabilities is of great concern to children and their families. Here we show that early-life exposure to midazolam (MDZ), a widely used drug in pediatric anesthesia, persistently alters chromatin accessibility and the expression of quiescence-associated genes in neural stem cells (NSCs) in the mouse hippocampus. The alterations led to a sustained restriction of NSC proliferation toward adulthood, resulting in a reduction of neurogenesis that was associated with the impairment of hippocampal-dependent memory functions. Moreover, we found that voluntary exercise restored hippocampal neurogenesis, normalized the MDZ-perturbed transcriptome, and ameliorated cognitive ability in MDZ-exposed mice. Our findings thus explain how pediatric anesthesia provokes long-term adverse effects on brain function and provide a possible therapeutic strategy for countering them.
Collapse
Affiliation(s)
- Hiroyoshi Doi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Taito Matsuda
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan;
| | - Atsuhiko Sakai
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Shuzo Matsubara
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Sumio Hoka
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
- Department of Pharmaceutical Sciences, International University of Health and Welfare, 831-8501 Fukuoka, Japan
| | - Ken Yamaura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, 812-8582 Fukuoka, Japan;
| |
Collapse
|
90
|
Low striatal T3 is implicated in inattention and memory impairment in an ADHD mouse model overexpressing thyroid hormone-responsive protein. Commun Biol 2021; 4:1101. [PMID: 34545202 PMCID: PMC8452653 DOI: 10.1038/s42003-021-02633-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023] Open
Abstract
Attention-deficit/hyperactivity disorder (ADHD) is a neurodevelopmental disorder, potentially with a biological basis; however, its exact cause remains unknown. Thyroid hormone (TH) abnormalities are more prevalent in patients with ADHD than in the general population, indicating a shared pathogenetic mechanism for these conditions. Previously, we identified that overexpression of thyroid hormone-responsive protein (THRSP), a gene highly responsive to TH status, induced inattention in male mice. Herein, we sought to explore whether TH function in THRSP-overexpressing (THRSP OE) mice influences ADHD-like (inattention) behavior. We now confirm that THRSP overexpression in male mice reproduces behavioral features of ADHD, including sustained inattention and memory impairment, accompanied by excessive theta waves that were found normal in both the THRSP-knockout and hetero groups. Physiological characterization revealed low striatal T3 levels in the THRSP OE mice due to reduced striatal T3-specific monocarboxylate transporter 8 (MCT8), indicating brain-specific hypothyroidism in this transgenic mouse strain. TH replacement for seven days rescued inattention and memory impairment and the normalization of theta waves. This study further supports the involvement of the upregulated THRSP gene in ADHD pathology and indicates that THRSP OE mice can serve as an animal model for the predominantly inattentive subtype of ADHD.
Collapse
|
91
|
Wan L, Huang RJ, Luo ZH, Gong JE, Pan A, Manavis J, Yan XX, Xiao B. Reproduction-Associated Hormones and Adult Hippocampal Neurogenesis. Neural Plast 2021; 2021:3651735. [PMID: 34539776 PMCID: PMC8448607 DOI: 10.1155/2021/3651735] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 08/17/2021] [Indexed: 11/18/2022] Open
Abstract
The levels of reproduction-associated hormones in females, such as estrogen, progesterone, prolactin, and oxytocin, change dramatically during pregnancy and postpartum. Reproduction-associated hormones can affect adult hippocampal neurogenesis (AHN), thereby regulating mothers' behavior after delivery. In this review, we first briefly introduce the overall functional significance of AHN and the methods commonly used to explore this front. Then, we attempt to reconcile the changes of reproduction-associated hormones during pregnancy. We further update the findings on how reproduction-related hormones influence adult hippocampal neurogenesis. This review is aimed at emphasizing a potential role of AHN in reproduction-related brain plasticity and its neurobiological relevance to motherhood behavior.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Rou-Jie Huang
- Medical Doctor Program, Xiangya School of Medicine, Central South University, Changsha, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Jiao-e Gong
- Department of Neurology, Hunan Children's Hospital, Changsha 410007, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia 5000
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, Hunan 410013, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
92
|
Rodrigues RS, Paulo SL, Moreira JB, Tanqueiro SR, Sebastião AM, Diógenes MJ, Xapelli S. Adult Neural Stem Cells as Promising Targets in Psychiatric Disorders. Stem Cells Dev 2021; 29:1099-1117. [PMID: 32723008 DOI: 10.1089/scd.2020.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The development of new therapies for psychiatric disorders is of utmost importance, given the enormous toll these disorders pose to society nowadays. This should be based on the identification of neural substrates and mechanisms that underlie disease etiopathophysiology. Adult neural stem cells (NSCs) have been emerging as a promising platform to counteract brain damage. In this perspective article, we put forth a detailed view of how NSCs operate in the adult brain and influence brain homeostasis, having profound implications at both behavioral and functional levels. We appraise evidence suggesting that adult NSCs play important roles in regulating several forms of brain plasticity, particularly emotional and cognitive flexibility, and that NSC dynamics are altered upon brain pathology. Furthermore, we discuss the potential therapeutic value of utilizing adult endogenous NSCs as vessels for regeneration, highlighting their importance as targets for the treatment of multiple mental illnesses, such as affective disorders, schizophrenia, and addiction. Finally, we speculate on strategies to surpass current challenges in neuropsychiatric disease modeling and brain repair.
Collapse
Affiliation(s)
- Rui S Rodrigues
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara L Paulo
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - João B Moreira
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara R Tanqueiro
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Ana M Sebastião
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Maria J Diógenes
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sara Xapelli
- Instituto de Farmacologia e Neurociências, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal.,Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
93
|
Zhang H, Li J, Ren J, Sun S, Ma S, Zhang W, Yu Y, Cai Y, Yan K, Li W, Hu B, Chan P, Zhao GG, Belmonte JCI, Zhou Q, Qu J, Wang S, Liu GH. Single-nucleus transcriptomic landscape of primate hippocampal aging. Protein Cell 2021; 12:695-716. [PMID: 34052996 PMCID: PMC8403220 DOI: 10.1007/s13238-021-00852-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 04/24/2021] [Indexed: 12/12/2022] Open
Abstract
The hippocampus plays a crucial role in learning and memory, and its progressive deterioration with age is functionally linked to a variety of human neurodegenerative diseases. Yet a systematic profiling of the aging effects on various hippocampal cell types in primates is still missing. Here, we reported a variety of new aging-associated phenotypic changes of the primate hippocampus. These include, in particular, increased DNA damage and heterochromatin erosion with time, alongside loss of proteostasis and elevated inflammation. To understand their cellular and molecular causes, we established the first single-nucleus transcriptomic atlas of primate hippocampal aging. Among the 12 identified cell types, neural transiently amplifying progenitor cell (TAPC) and microglia were most affected by aging. In-depth dissection of gene-expression dynamics revealed impaired TAPC division and compromised neuronal function along the neurogenesis trajectory; additionally elevated pro-inflammatory responses in the aged microglia and oligodendrocyte, as well as dysregulated coagulation pathways in the aged endothelial cells may contribute to a hostile microenvironment for neurogenesis. This rich resource for understanding primate hippocampal aging may provide potential diagnostic biomarkers and therapeutic interventions against age-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Center for Bioinformation, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
- Sino-Danish Center for Education and Research, Beijing, 101408, China
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Center for Bioinformation, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Shuhui Sun
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Shuai Ma
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- China National Center for Bioinformation, Beijing, 100101, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yang Yu
- Department of Obstetrics and Gynecology, Center for Reproductive Medicine, Peking University Third Hospital, Beijing, 100191, China
- Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China
| | - Yusheng Cai
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Kaowen Yan
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Wei Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Piu Chan
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Guo-Guang Zhao
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | | | - Qi Zhou
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Si Wang
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| |
Collapse
|
94
|
Bonfanti L, Charvet CJ. Brain Plasticity in Humans and Model Systems: Advances, Challenges, and Future Directions. Int J Mol Sci 2021; 22:9358. [PMID: 34502267 PMCID: PMC8431131 DOI: 10.3390/ijms22179358] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/26/2021] [Accepted: 08/26/2021] [Indexed: 12/20/2022] Open
Abstract
Plasticity, and in particular, neurogenesis, is a promising target to treat and prevent a wide variety of diseases (e.g., epilepsy, stroke, dementia). There are different types of plasticity, which vary with age, brain region, and species. These observations stress the importance of defining plasticity along temporal and spatial dimensions. We review recent studies focused on brain plasticity across the lifespan and in different species. One main theme to emerge from this work is that plasticity declines with age but that we have yet to map these different forms of plasticity across species. As part of this effort, we discuss our recent progress aimed to identify corresponding ages across species, and how this information can be used to map temporal variation in plasticity from model systems to humans.
Collapse
Affiliation(s)
- Luca Bonfanti
- Department of Veterinary Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, TO, Italy
- Neuroscience Institute Cavalieri Ottolenghi (NICO), Regione Gonzole 10, 10043 Orbassano, TO, Italy
| | | |
Collapse
|
95
|
Castillon C, Gonzalez L, Domenichini F, Guyon S, Da Silva K, Durand C, Lestaevel P, Vaillend C, Laroche S, Barnier JV, Poirier R. The intellectual disability PAK3 R67C mutation impacts cognitive functions and adult hippocampal neurogenesis. Hum Mol Genet 2021; 29:1950-1968. [PMID: 31943058 DOI: 10.1093/hmg/ddz296] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 11/29/2019] [Accepted: 12/02/2019] [Indexed: 12/11/2022] Open
Abstract
The link between mutations associated with intellectual disability (ID) and the mechanisms underlying cognitive dysfunctions remains largely unknown. Here, we focused on PAK3, a serine/threonine kinase whose gene mutations cause X-linked ID. We generated a new mutant mouse model bearing the missense R67C mutation of the Pak3 gene (Pak3-R67C), known to cause moderate to severe ID in humans without other clinical signs and investigated hippocampal-dependent memory and adult hippocampal neurogenesis. Adult male Pak3-R67C mice exhibited selective impairments in long-term spatial memory and pattern separation function, suggestive of altered hippocampal neurogenesis. A delayed non-matching to place paradigm testing memory flexibility and proactive interference, reported here as being adult neurogenesis-dependent, revealed a hypersensitivity to high interference in Pak3-R67C mice. Analyzing adult hippocampal neurogenesis in Pak3-R67C mice reveals no alteration in the first steps of adult neurogenesis, but an accelerated death of a population of adult-born neurons during the critical period of 18-28 days after their birth. We then investigated the recruitment of hippocampal adult-born neurons after spatial memory recall. Post-recall activation of mature dentate granule cells in Pak3-R67C mice was unaffected, but a complete failure of activation of young DCX + newborn neurons was found, suggesting they were not recruited during the memory task. Decreased expression of the KCC2b chloride cotransporter and altered dendritic development indicate that young adult-born neurons are not fully functional in Pak3-R67C mice. We suggest that these defects in the dynamics and learning-associated recruitment of newborn hippocampal neurons may contribute to the selective cognitive deficits observed in this mouse model of ID.
Collapse
Affiliation(s)
- Charlotte Castillon
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Laurine Gonzalez
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Florence Domenichini
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Sandrine Guyon
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Kevin Da Silva
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Christelle Durand
- Institute for Radiological Protection and Nuclear Safety (IRSN), Research department on the Biological and Health Effects of Ionizing Radiation (SESANE), Laboratory of experimental Radiotoxicology and Radiobiology (LRTOX), 92260 Fontenay-aux-Roses, France
| | - Philippe Lestaevel
- Institute for Radiological Protection and Nuclear Safety (IRSN), Research department on the Biological and Health Effects of Ionizing Radiation (SESANE), Laboratory of experimental Radiotoxicology and Radiobiology (LRTOX), 92260 Fontenay-aux-Roses, France
| | - Cyrille Vaillend
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Serge Laroche
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Jean-Vianney Barnier
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| | - Roseline Poirier
- Paris-Saclay Neuroscience Institute (Neuro-PSI), UMR 9197, CNRS, University of Paris-Sud, University of Paris-Saclay, F-91405 Orsay, France
| |
Collapse
|
96
|
Wei R, Zhang L, Hu W, Shang X, He Y, Zhang W. Zeb2/Axin2-Enriched BMSC-Derived Exosomes Promote Post-Stroke Functional Recovery by Enhancing Neurogenesis and Neural Plasticity. J Mol Neurosci 2021; 72:69-81. [PMID: 34401997 DOI: 10.1007/s12031-021-01887-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/05/2021] [Indexed: 01/04/2023]
Abstract
Exosomes harvested from bone marrow-derived mesenchymal stromal cells (BMSCs) have shown treatment potential in many diseases. In vitro, Zeb2/Axin2 stimulated endogenous neurogenesis, which induced functional recovery after stroke. Here, we investigated whether the Zeb2/Axin2-enriched exosomes harvested from BMSCs transfected with a Zeb2/Axin2 overexpression plasmid would enhance neurological recovery. Compared with the control, both exosome treatments significantly improved functional recovery, and Zeb2/Axin2-enriched exosomes had significantly more improved effects on neurological function, neurogenesis, and neurite remodeling/neuronal dendrite plasticity than the control BMSC exosome treatment in a middle cerebral artery occlusion MCAO rat model. After stimulation with Zeb2/Axin2-enriched BMSC exosomes, the spatial memory and nerve function of MCAO rats showed marked recovery. The number of neurons was increased in the subventricular zone (SVZ), hippocampus, and cortex area, while the expression of nerve growth factors (NGF, BDNF, etc.) was upregulated. In the ischemic boundary zone, Zeb2/Axin2-enriched exosomes promoted synaptic remodeling by increasing the number of synapses and reversed the axonal loss of phosphorylated neurofilament (SMI-31) and synaptophysin (SYN) caused by ischemic injury, thus alleviating axonal demise and promoting synaptic proliferation. In vitro, Zeb2/Axin2-enriched exosomes significantly increased neurite branching and elongation of cultured cortical embryonic rat neurons under oxygen- and glucose-deprived (OGD) conditions. Moreover, Ex-Zeb2/Axin2-enriched exosomes downregulated the protein level of SOX10, endothelin-3/EDNRB, and Wnt/β-catenin expression. In conclusion, exosomes harvested from Ex-Zeb2/Axin2 BMSC could improve post-stroke neuroplasticity and functional recovery in MCAO rats by promoting proliferation and differentiation of neural stem cells. The mechanism may be related to the SOX10, Wnt/β-catenin, and endothelin-3/EDNRB pathways.
Collapse
Affiliation(s)
- Rui Wei
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Lin Zhang
- Department of Rehabilitation, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Wei Hu
- Department of Cardiology, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Xinying Shang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China
| | - Yuyan He
- Kunming Medical University, No. 1168 West Chunrong Road, Kunming, 650504, Yunnan, China
| | - Wei Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, No. 295 Xichang Rd, Kunming, 650032, Yunnan, China.
| |
Collapse
|
97
|
Li X, Lin G, Liu T, Zhao N, Xu H, Wang H, Zheng W. Postnatal development of BAG3 expression in mouse cerebral cortex and hippocampus. Brain Struct Funct 2021; 226:2629-2650. [PMID: 34357438 DOI: 10.1007/s00429-021-02356-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 07/26/2021] [Indexed: 10/20/2022]
Abstract
The decreased efficiency of autophagic processing in the central nervous system during aging may be a contributing factor in neurodegenerative diseases. BAG3 (Bcl2 associated athanogene 3) is a major member of the BAG family of co-molecular chaperones that mediate selective macroautophagy. Therefore, we analyzed the expression and distribution of BAG3 in the brain at postnatal 0 day (P0), P15, 1-, 2-, 9-, 12-, and 18 month-old C57BL/6 mice, thus covering almost all ages. Except for a significant steep drop in mRNA and protein levels in the cortex and hippocampus soon after birth, there were minimal differences in the expression and distribution of BAG3 among P15, M1, M2, M9, and M12 mice; however, at 18 months, BAG3 expression was significantly higher. Immunohistochemical analyses showed that BAG3 is mainly located in the neuronal cytoplasm and processes in C57BL/6 the cerebral cortex and hippocampus from P0 to M18 postnatal development. These findings indicate that BAG3 might be stable in young and middle-aged mice, but unstable in aged mice.
Collapse
Affiliation(s)
- Xinlu Li
- Department of Histology and Embryology, China Medical University, Shenyang, 110122, China
| | - Geng Lin
- Department of Histology and Embryology, China Medical University, Shenyang, 110122, China
| | - Tongtong Liu
- Department of Histology and Embryology, China Medical University, Shenyang, 110122, China.,Department of Neurology, The People's Hospital of Liaoning Province, Shenyang, 110016, China
| | - Ning Zhao
- Department of Infectious Diseases, Shengjing Hospital, Affiliated Hospital of China Medical University, Shenyang, 110022, China
| | - He Xu
- Department of Histology and Embryology, School of Medicine, Shenzhen University, Shenzhen, 518052, China
| | - Huaqin Wang
- Department of Biochemistry and Molecular Biology, China Medical University, Shenyang, 110122, China
| | - Wei Zheng
- Department of Histology and Embryology, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
98
|
Augusto-Oliveira M, Verkhratsky A. Lifestyle-dependent microglial plasticity: training the brain guardians. Biol Direct 2021; 16:12. [PMID: 34353376 PMCID: PMC8340437 DOI: 10.1186/s13062-021-00297-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
Lifestyle is one of the most powerful instruments shaping mankind; the lifestyle includes many aspects of interactions with the environment, from nourishment and education to physical activity and quality of sleep. All these factors taken in complex affect neuroplasticity and define brain performance and cognitive longevity. In particular, physical exercise, exposure to enriched environment and dieting act through complex modifications of microglial cells, which change their phenotype and modulate their functional activity thus translating lifestyle events into remodelling of brain homoeostasis and reshaping neural networks ultimately enhancing neuroprotection and cognitive longevity.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratório de Farmacologia Molecular, Instituto de Ciências Biológicas, Universidade Federal Do Pará, Belém, 66075-110, Brazil.
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK. .,Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania. .,Achucarro Center for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain. .,Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Spain.
| |
Collapse
|
99
|
Zocher S, Overall RW, Berdugo-Vega G, Rund N, Karasinsky A, Adusumilli VS, Steinhauer C, Scheibenstock S, Händler K, Schultze JL, Calegari F, Kempermann G. De novo DNA methylation controls neuronal maturation during adult hippocampal neurogenesis. EMBO J 2021; 40:e107100. [PMID: 34337766 PMCID: PMC8441477 DOI: 10.15252/embj.2020107100] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 06/28/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
Adult neurogenesis enables the life‐long addition of functional neurons to the hippocampus and is regulated by both cell‐intrinsic molecular programs and behavioral activity. De novo DNA methylation is crucial for embryonic brain development, but its role during adult hippocampal neurogenesis has remained unknown. Here, we show that de novo DNA methylation is critical for maturation and functional integration of adult‐born neurons in the mouse hippocampus. Bisulfite sequencing revealed that de novo DNA methyltransferases target neuronal enhancers and gene bodies during adult hippocampal neural stem cell differentiation, to establish neuronal methylomes and facilitate transcriptional up‐regulation of neuronal genes. Inducible deletion of both de novo DNA methyltransferases Dnmt3a and Dnmt3b in adult neural stem cells did not affect proliferation or fate specification, but specifically impaired dendritic outgrowth and synaptogenesis of newborn neurons, thereby hampering their functional maturation. Consequently, abolishing de novo DNA methylation modulated activation patterns in the hippocampal circuitry and caused specific deficits in hippocampus‐dependent learning and memory. Our results demonstrate that proper establishment of neuronal methylomes during adult neurogenesis is fundamental for hippocampal function.
Collapse
Affiliation(s)
- Sara Zocher
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Rupert W Overall
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Gabriel Berdugo-Vega
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Nicole Rund
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Anne Karasinsky
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Vijay S Adusumilli
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Christina Steinhauer
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Sina Scheibenstock
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Kristian Händler
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Joachim L Schultze
- PRECISE Platform for Single Cell Genomics and Epigenomics, German Center for Neurodegenerative Diseases, University of Bonn, Bonn, Germany
| | - Federico Calegari
- Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany.,Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
100
|
Mishra P, Narayanan R. Ion-channel degeneracy: Multiple ion channels heterogeneously regulate intrinsic physiology of rat hippocampal granule cells. Physiol Rep 2021; 9:e14963. [PMID: 34342171 PMCID: PMC8329439 DOI: 10.14814/phy2.14963] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 01/09/2023] Open
Abstract
Degeneracy, the ability of multiple structural components to elicit the same characteristic functional properties, constitutes an elegant mechanism for achieving biological robustness. In this study, we sought electrophysiological signatures for the expression of ion-channel degeneracy in the emergence of intrinsic properties of rat hippocampal granule cells. We measured the impact of four different ion-channel subtypes-hyperpolarization-activated cyclic-nucleotide-gated (HCN), barium-sensitive inward rectifier potassium (Kir ), tertiapin-Q-sensitive inward rectifier potassium, and persistent sodium (NaP) channels-on 21 functional measurements employing pharmacological agents, and report electrophysiological data on two characteristic signatures for the expression of ion-channel degeneracy in granule cells. First, the blockade of a specific ion-channel subtype altered several, but not all, functional measurements. Furthermore, any given functional measurement was altered by the blockade of many, but not all, ion-channel subtypes. Second, the impact of blocking each ion-channel subtype manifested neuron-to-neuron variability in the quantum of changes in the electrophysiological measurements. Specifically, we found that blocking HCN or Ba-sensitive Kir channels enhanced action potential firing rate, but blockade of NaP channels reduced firing rate of granule cells. Subthreshold measures of granule cell intrinsic excitability (input resistance, temporal summation, and impedance amplitude) were enhanced by blockade of HCN or Ba-sensitive Kir channels, but were not significantly altered by NaP channel blockade. We confirmed that the HCN and Ba-sensitive Kir channels independently altered sub- and suprathreshold properties of granule cells through sequential application of pharmacological agents that blocked these channels. Finally, we found that none of the sub- or suprathreshold measurements of granule cells were significantly altered upon treatment with tertiapin-Q. Together, the heterogeneous many-to-many mapping between ion channels and single-neuron intrinsic properties emphasizes the need to account for ion-channel degeneracy in cellular- and network-scale physiology.
Collapse
Affiliation(s)
- Poonam Mishra
- Cellular Neurophysiology LaboratoryMolecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| | - Rishikesh Narayanan
- Cellular Neurophysiology LaboratoryMolecular Biophysics UnitIndian Institute of ScienceBangaloreIndia
| |
Collapse
|