51
|
Melatonin as a Therapy for Traumatic Brain Injury: A Review of Published Evidence. Int J Mol Sci 2018; 19:ijms19051539. [PMID: 29786658 PMCID: PMC5983792 DOI: 10.3390/ijms19051539] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 05/04/2018] [Accepted: 05/07/2018] [Indexed: 12/15/2022] Open
Abstract
Melatonin (MEL) is a hormone that is produced in the brain and is known to bind to MEL-specific receptors on neuronal membranes in several brain regions. MEL’s documented neuroprotective properties, low toxicity, and ability to cross the blood-brain-barrier have led to its evaluation for patients with traumatic brain injury (TBI), a condition for which there are currently no Food and Drug Administration (FDA)-approved therapies. The purpose of this manuscript is to summarize the evidence surrounding the use of melatonin after TBI, as well as identify existing gaps and future directions. To address this aim, a search of the literature was conducted using Pubmed, Google Scholar, and the Cochrane Database. In total, 239 unique articles were screened, and the 22 preclinical studies that met the a priori inclusion/exclusion criteria were summarized, including the study aims, sample (size, groups, species, strain, sex, age/weight), TBI model, therapeutic details (preparation, dose, route, duration), key findings, and conclusions. The evidence from these 22 studies was analyzed to draw comparisons across studies, identify remaining gaps, and suggest future directions. Taken together, the published evidence suggests that MEL has neuroprotective properties via a number of mechanisms with few toxic effects reported. Notably, available evidence is largely based on data from adult male rats and, to a lesser extent, mice. Few studies collected data beyond a few days of the initial injury, necessitating additional longer-term studies. Other future directions include diversification of samples to include female animals, pediatric and geriatric animals, and transgenic strains.
Collapse
|
52
|
Oliveira-Abreu K, Ferreira-da-Silva FW, Silva-Alves KSD, Silva-Dos-Santos NM, Cardoso-Teixeira AC, Amaral FGD, Cipolla-Neto J, Leal-Cardoso JH. Melatonin decreases neuronal excitability in a sub-population of dorsal root ganglion neurons. Brain Res 2018; 1692:1-8. [PMID: 29702086 DOI: 10.1016/j.brainres.2018.04.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 04/10/2018] [Accepted: 04/23/2018] [Indexed: 12/29/2022]
Abstract
Melatonin, a powerful antioxidant, participates in the regulation of important physiological and pathological processes. We investigated the actions of melatonin on neuronal excitability of intact dorsal root ganglions (DRG) from rats using intracellular recording techniques in current clamps. Melatonin blocked the generation of action potentials in a concentration-dependent manner. Bath applied melatonin (1.0-1000.0 nM) hyperpolarized the resting membrane potential, and increased the input resistance and rheobase. Melatonin also altered the active electrophysiological properties of the action potential, amplitude and maximum descendant inclination, in a statistically significant way. In order to provide evidence on the mechanism of action of melatonin in the DRG, quantitative PCR (qPCR) was performed. Analyses were performed for melatonin membrane receptors, MT1 and MT2, and it was observed that the DRG expresses MT1 receptors. In addition, we noted that the melatonin-induced effects were blocked in the presence of luzindole, a melatonin receptor antagonist. The minimal effective concentrations of melatonin (10.0 nM) and the blockade of effects caused by luzindole suggest that the effects of melatonin are hormonal, and are induced when it binds to MT1 receptors.
Collapse
Affiliation(s)
- Klausen Oliveira-Abreu
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | | | - Kerly Shamyra da Silva-Alves
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Nathalia Maria Silva-Dos-Santos
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Ana Carolina Cardoso-Teixeira
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil
| | - Fernanda Gaspar do Amaral
- Laboratório de Neurobiologia, Instituto de Ciências Biomédicas 1, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Cipolla-Neto
- Laboratório de Neurobiologia, Instituto de Ciências Biomédicas 1, Universidade de São Paulo, São Paulo, SP, Brazil
| | - José Henrique Leal-Cardoso
- Laboratório de Eletrofisiologia, Instituto Superior de Ciências Biomédicas, Universidade Estadual do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
53
|
Jin Y, Choi J, Won J, Hong Y. The Relationship between Autism Spectrum Disorder and Melatonin during Fetal Development. Molecules 2018; 23:E198. [PMID: 29346266 PMCID: PMC6017261 DOI: 10.3390/molecules23010198] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 02/08/2023] Open
Abstract
The aim of this review is to clarify the interrelationship between melatonin and autism spectrum disorder (ASD) during fetal development. ASD refers to a diverse range of neurodevelopmental disorders characterized by social deficits, impaired communication, and stereotyped or repetitive behaviors. Melatonin, which is secreted by the pineal gland, has well-established neuroprotective and circadian entraining effects. During pregnancy, the hormone crosses the placenta into the fetal circulation and transmits photoperiodic information to the fetus allowing the establishment of normal sleep patterns and circadian rhythms that are essential for normal neurodevelopment. Melatonin synthesis is frequently impaired in patients with ASD. The hormone reduces oxidative stress, which is harmful to the central nervous system. Therefore, the neuroprotective and circadian entraining roles of melatonin may reduce the risk of neurodevelopmental disorders such as ASD.
Collapse
Affiliation(s)
- Yunho Jin
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
| | - Jeonghyun Choi
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
| | - Jinyoung Won
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Korea.
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae 50834, Korea.
- Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae 50834, Korea.
- Biohealth Products Research Center (BPRC), Inje University, Gimhae 50834, Korea.
- Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae 50834, Korea.
| |
Collapse
|
54
|
Melatonin: A New-Generation Therapy for Reducing Chronic Pain and Improving Sleep Disorder-Related Pain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:229-251. [DOI: 10.1007/978-981-13-1756-9_19] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
55
|
Zhang Y, Zhang WX, Zhang YJ, Liu YD, Liu ZJ, Wu QC, Guan Y, Chen XM. Melatonin for the treatment of spinal cord injury. Neural Regen Res 2018; 13:1685-1692. [PMID: 30136678 PMCID: PMC6128058 DOI: 10.4103/1673-5374.238603] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Spinal cord injury (SCI) from trauma or disease severely impairs sensory and motor function. Neurorehabilitation after SCI is a complex medical process that focuses on improving neurologic function and repairing damaged connections in the central nervous system. An increasing number of preclinical studies suggest that melatonin may be useful for the treatment of SCI. Melatonin is an indolamine that is primarily secreted by the pineal gland and known to be regulated by photoperiodicity. However, it is also a versatile hormone with antioxidative, antiapoptotic, neuroprotective, and anti-inflammatory properties. Here, we review the neuroprotective properties of melatonin and the potential mechanisms by which it might be beneficial in the treatment of SCI. We also describe therapies that combine melatonin with exercise, oxytetracycline, and dexamethasone to attenuate the secondary injury after SCI and limit potential side effects. Finally, we discuss how injury at different spinal levels may differentially affect the secretion of melatonin.
Collapse
Affiliation(s)
- Yan Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Wen-Xiu Zhang
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yan-Jun Zhang
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Ya-Dong Liu
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Zong-Jian Liu
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Qi-Chao Wu
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Yun Guan
- Central Laboratory, Beijing Luhe Hospital, Capital Medical University, Beijing, China; Department of Anesthesiology and Critical Care Medicine; Department of Neurological Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Xue-Ming Chen
- Central Laboratory; Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
56
|
Dehghan F, Shahrokhi N, Khaksari M, Soltani Z, Asadikorom G, Najafi A, Shahrokhi N. Does the administration of melatonin during post-traumatic brain injury affect cytokine levels? Inflammopharmacology 2017; 26:1017-1023. [PMID: 29159715 DOI: 10.1007/s10787-017-0417-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/08/2017] [Indexed: 01/11/2023]
Abstract
Increased levels of inflammatory cytokines after traumatic brain injury (TBI) can lead to brain edema and neuronal death. In this study, the effect of melatonin on pro-inflammatory (IL-1ß, IL-6, and TNF-α) and anti-inflammatory (IL-10) cytokines following TBI was investigated considering anti-inflammatory effect of melatonin. Male Wistar rats were divided into five groups: Sham, TBI, TBI + VEH (vehicle), TBI + 5 mg dose of melatonin (MEL5), TBI + 20 mg dose of melatonin (MEL20). Diffuse TBI was induced by Marmarou method. Melatonin was administered 1, 24, 48 and 72 h after TBI through i.p. Brain water content and brain levels of pro-inflammatory (IL-1ß, IL-6 and TNF-α) and anti-inflammatory (IL-10) cytokines were measured 72 h after TBI. The IL-1ß levels decreased in the TBI + MEL5 and TBI + MEL20 groups in comparison to TBI + VEH group (p < 0.001). The levels of IL-6 and TNF-α also decreased in melatonin-treated groups compared to control group (p < 0.001). The amount of IL-10 decreased after TBI. But melatonin administration increased the IL-10 levels in comparison with TBI + VEH group (p < 0.001). The results showed that melatonin administration affected the brain levels of pro-inflammatory and anti-inflammatory cytokines involving in brain edema led to neuronal protection after TBI.
Collapse
Affiliation(s)
- Fatemeh Dehghan
- Afzalipour Faculty of Medical, Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Nader Shahrokhi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran.
| | - Mohammad Khaksari
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Soltani
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Gholamreza Asadikorom
- Endocrinology and Metabolism Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran
| | - Ali Najafi
- Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Nava Shahrokhi
- Medical School, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
57
|
Cordaro M, Casili G, Paterniti I, Cuzzocrea S, Esposito E. Fumaric Acid Esters Attenuate Secondary Degeneration after Spinal Cord Injury. J Neurotrauma 2017; 34:3027-3040. [DOI: 10.1089/neu.2016.4678] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Affiliation(s)
- Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, Missouri
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
58
|
Lorente L. Biomarkers Associated with the Outcome of Traumatic Brain Injury Patients. Brain Sci 2017; 7:brainsci7110142. [PMID: 29076989 PMCID: PMC5704149 DOI: 10.3390/brainsci7110142] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 09/24/2017] [Accepted: 10/20/2017] [Indexed: 12/16/2022] Open
Abstract
This review focuses on biomarkers associated with the outcome of traumatic brain injury (TBI) patients, such as caspase-3; total antioxidant capacity; melatonin; S100B protein; glial fibrillary acidic protein (GFAP); glutamate; lactate; brain-derived neurotrophic factor (BDNF); substance P; neuron-specific enolase (NSE); ubiquitin carboxy-terminal hydrolase L-1 (UCH-L1); tau; decanoic acid; and octanoic acid.
Collapse
Affiliation(s)
- Leonardo Lorente
- Intensive Care Unit, Hospital Universitario de Canarias, La Laguna, Santa Cruz de Tenerife 38320, Spain.
| |
Collapse
|
59
|
Optimization of brain metabolism using metabolic-targeted therapeutic hypothermia can reduce mortality from traumatic brain injury. J Trauma Acute Care Surg 2017; 83:296-304. [PMID: 28452885 DOI: 10.1097/ta.0000000000001522] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Therapeutic hypothermia is widely used to treat traumatic brain injuries (TBIs). However, determining the best hypothermia therapy strategy remains a challenge. We hypothesized that reducing the metabolic rate, rather than reaching a fixed body temperature, would be an appropriate target because optimizing metabolic conditions especially the brain metabolic environment may enhance neurologic protection. A pilot single-blind randomized controlled trial was designed to test this hypothesis, and a nested metabolomics study was conducted to explore the mechanics thereof. METHODS Severe TBI patients (Glasgow Coma Scale score, 3-8) were randomly divided into the metabolic-targeted hypothermia treatment (MTHT) group, 50% to 60% rest metabolic ratio as the hypothermia therapy target, and the body temperature-targeted hypothermia treatment (BTHT) control group, hypothermia therapy target of 32°C to 35°C body temperature. Brain and circulatory metabolic pool blood samples were collected at baseline and on days 1, 3, and 7 during the hypothermia treatment, which were selected randomly from a subgroup of MTHT and BTHT groups. The primary outcome was mortality. Using H nuclear magnetic resonance technology, we tracked and located the disturbances of metabolic networks. RESULTS Eighty-eight severe TBI patients were recruited and analyzed from December 2013 to December 2014, 44 each were assigned in the MTHT and BTHT groups (median age, 42 years; 69.32% men; mean Glasgow Coma Scale score, 6.17 ± 1.02). The mortality was significantly lower in the MTHT than the BTHT group (15.91% vs. 34.09%; p = 0.049). From these, eight cases of MTHT and six cases from BTHT group were enrolled for metabolomics analysis, which showed a significant difference between the brain and circulatory metabolic patterns in MTHT group on day 7 based on the model parameters and scores plots. Finally, metabolites representing potential neuroprotective monitoring parameters for hypothermia treatment were identified through H nuclear magnetic resonance metabolomics. CONCLUSION MTHT can significantly reduce the mortality of severe TBI patients. Metabolomics research showed that this strategy could effectively improve brain metabolism, suggesting that reducing the metabolic rate to 50% to 60% should be set as the hypothermia therapy target. LEVEL OF EVIDENCE Therapeutic study, Level I.
Collapse
|
60
|
Jin Y, Hur TY, Hong Y. Circadian Rhythm Disruption and Subsequent Neurological Disorders in Night-Shift Workers. J Lifestyle Med 2017; 7:45-50. [PMID: 29026723 PMCID: PMC5618733 DOI: 10.15280/jlm.2017.7.2.45] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/13/2017] [Indexed: 11/22/2022] Open
Abstract
A large number of people in highly industrialized society are employed in night-shift work. Night-shift work interrupts the 24-hour daily cycle known as the circadian rhythm, as well as melatonin synthesis. These disruptions can make the body susceptible to oxidative stress and neural damage. In this regard, it is recommended that employees avoid long-term exposure to night-shift work.
Collapse
Affiliation(s)
- Yunho Jin
- Department of Rehabilitation Science, Graduate School, Inje University, Gimhae, Korea.,Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea
| | | | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School, Inje University, Gimhae, Korea.,Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, Korea.,Biohealth Products Research Center (BPRC), Inje University, Gimhae, Korea.,Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Inje University, Gimhae, Korea
| |
Collapse
|
61
|
Melatonin pre-treatment mitigates SHSY-5Y cells against oxaliplatin induced mitochondrial stress and apoptotic cell death. PLoS One 2017; 12:e0180953. [PMID: 28732061 PMCID: PMC5521772 DOI: 10.1371/journal.pone.0180953] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 06/23/2017] [Indexed: 01/14/2023] Open
Abstract
Oxaliplatin (Oxa) treatment to SH-SY5Y human neuroblastoma cells has been shown by previous studies to induce oxidative stress, which in turn modulates intracellular signaling cascades resulting in cell death. While this phenomenon of Oxa-induced neurotoxicity is known, the underlying mechanisms involved in this cell death cascade must be clarified. Moreover, there is still little known regarding the roles of neuronal mitochondria and cytosolic compartments in mediating Oxa-induced neurotoxicity. With a better grasp of the mechanisms driving neurotoxicity in Oxa-treated SH-SY5Y cells, we can then identify certain pathways to target in protecting against neurotoxic cell damage. Therefore, the purpose of this study was to determine whether one such agent, melatonin (Mel), could confer protection against Oxa-induced neurotoxicity in SH-SY5Y cells. Results from the present study found Oxa to significantly reduce SH-SY5Y cell viability in a dose-dependent manner. Alternatively, we found Mel pre-treatment to SH-SY5Y cells to attenuate Oxa-induced toxicity, resulting in a markedly increased cell viability. Mel exerted its protective effects by regulating reactive oxygen species (ROS) production and reducing superoxide radicals inside Oxa-exposed. In addition, we observed pre-treatment with Mel to rescue Oxa-treated cells by protecting mitochondria. As Oxa-treatment alone decreases mitochondrial membrane potential (Δψm), resulting in an altered Bcl-2/Bax ratio and release of sequestered cytochrome c, so Mel was shown to inhibit these pathways. Mel was also found to inhibit proteolytic activation of caspase 3, inactivation of Poly (ADP Ribose) polymerase, and DNA damage, thereby allowing SH-SY5Y cells to resist apoptotic cell death. Collectively, our results suggest a role for melatonin in reducing Oxa induced neurotoxicity. Further studies exploring melatonin’s protective effects may prove successful in eliciting pathways to further alter the neurotoxic pathways of platinum compounds in cancer treatment.
Collapse
|
62
|
Serum melatonin levels in survivor and non-survivor patients with traumatic brain injury. BMC Neurol 2017; 17:138. [PMID: 28724361 PMCID: PMC5518120 DOI: 10.1186/s12883-017-0922-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Accepted: 07/13/2017] [Indexed: 12/23/2022] Open
Abstract
Background Circulating levels of melatonin in patients with traumatic brain injury (TBI) have been determined in a little number of studies with small sample size (highest sample size of 37 patients) and only were reported the comparison of serum melatonin levels between TBI patients and healthy controls. As to we know, the possible association between circulating levels of melatonin levels and mortality of patients with TBI have not been explored; thus, the objective of our current study was to determine whether this association actually exists. Methods This multicenter study included 118 severe TBI (Glasgow Coma Scale <9) patients. We measured serum levels of melatonin, malondialdehyde (to assess lipid peroxidation) and total antioxidant capacity (TAC) at day 1 of severe TBI. We used mortality at 30 days as endpoint. Results We found that non-survivor (n = 33) compared to survivor (n = 85) TBI patients showed higher circulating levels of melatonin (p < 0.001), TAC (p < 0.001) and MDA (p < 0.001). We found that serum melatonin levels predicted 30-day mortality (Odds ratio = 1.334; 95% confidence interval = 1.094–1.627; p = 0.004), after to control for GCS, CT findings and age. We found a correlation between serum levels of melatonin levels and serum levels of TAC (rho = 0.37; p < 0.001) and serum levels of MDA (rho = 0.24; p = 0.008). Conclusions As to we know, our study is the largest series providing circulating melatonin levels in patients with severe TBI. The main findings were that non-survivors had higher serum melatonin levels than survivors, and the association between serum levels of melatonin levels and mortality, peroxidation state and antioxidant state.
Collapse
|
63
|
Lv R, Du L, Lu C, Wu J, Ding M, Wang C, Mao N, Shi Z. Allicin protects against H 2O 2-induced apoptosis of PC12 cells via the mitochondrial pathway. Exp Ther Med 2017; 14:2053-2059. [PMID: 28962124 PMCID: PMC5609123 DOI: 10.3892/etm.2017.4725] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 01/26/2017] [Indexed: 12/24/2022] Open
Abstract
Allicin is a major bioactive ingredient of garlic and has a broad range of biological activities. Allicin has been reported to protect against cell apoptosis induced by H2O2 in human umbilical vein endothelial cells. The present study evaluated the neuroprotective effect of allicin on the H2O2-induced apoptosis of rat pheochromocytoma PC12 cells in vitro and explored the underlying mechanism involved. PC12 cells were incubated with increasing concentrations of allicin and the toxic effect of allicin was measured by MTT assay. The cells were pretreated for 24 h with low dose (L-), medium dose (M-) and high dose (H-) of allicin, followed by exposure to 200 µM H2O2 for 2 h, and the cell viability was examined by MTT assay. In addition, cell apoptosis rate was analyzed by Annexin V-FITC/PI assay, while intracellular reactive oxygen species (ROS) and mitochondrial transmembrane potential (∆ψm) were measured by flow cytometry. Bcl-2, Bax, cleaved-caspase-3 and cytochrome c (Cyt C) in the mitochondria were also examined by western blotting. The results demonstrated that 0.01 µg/ml (L-allicin), 0.1 µg/ml (M-allicin) and 1 µg/ml (H-allicin) were non-toxic doses of allicin. Furthermore, H2O2 reduced cell viability, promoted cell apoptosis, induced ROS production and decreased ∆ψm. However, allicin treatment reversed the effect of H2O2 in a dose-dependent manner. It was also observed that H2O2 exposure significantly decreased Bcl-2 and mitochondrial Cyt C, while it increased Bax and cleaved-caspase-3, which were attenuated by allicin pretreatment. The results revealed that allicin protected PC12 cells from H2O2-induced cell apoptosis via the mitochondrial pathway, suggesting the potential neuroprotective effect of allicin against neurological diseases.
Collapse
Affiliation(s)
- Runxiao Lv
- Department of Rehabilitation Medicine, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lili Du
- Department of Pathophysiology, College of Basic Medical Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Chunwen Lu
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China.,Graduate Management Unit, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Jinhui Wu
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China.,Graduate Management Unit, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Muchen Ding
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China.,Graduate Management Unit, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Chao Wang
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China.,Graduate Management Unit, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Ningfang Mao
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Zhicai Shi
- Department of Orthopedics, Changhai Hospital, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
64
|
Preclinical Studies and Translational Applications of Intracerebral Hemorrhage. BIOMED RESEARCH INTERNATIONAL 2017; 2017:5135429. [PMID: 28698874 PMCID: PMC5494071 DOI: 10.1155/2017/5135429] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/16/2017] [Accepted: 05/02/2017] [Indexed: 02/08/2023]
Abstract
Intracerebral hemorrhage (ICH) which refers to bleeding in the brain is a very deleterious condition with high mortality and disability rate. Surgery or conservative therapy remains the treatment option. Various studies have divided the disease process of ICH into primary and secondary injury, for which knowledge into these processes has yielded many preclinical and clinical treatment options. The aim of this review is to highlight some of the new experimental drugs as well as other treatment options like stem cell therapy, rehabilitation, and nanomedicine and mention some translational clinical applications that have been done with these treatment options.
Collapse
|
65
|
Sandsmark DK, Elliott JE, Lim MM. Sleep-Wake Disturbances After Traumatic Brain Injury: Synthesis of Human and Animal Studies. Sleep 2017; 40:3074241. [PMID: 28329120 PMCID: PMC6251652 DOI: 10.1093/sleep/zsx044] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2017] [Indexed: 12/23/2022] Open
Abstract
Sleep-wake disturbances following traumatic brain injury (TBI) are increasingly recognized as a serious consequence following injury and as a barrier to recovery. Injury-induced sleep-wake disturbances can persist for years, often impairing quality of life. Recently, there has been a nearly exponential increase in the number of primary research articles published on the pathophysiology and mechanisms underlying sleep-wake disturbances after TBI, both in animal models and in humans, including in the pediatric population. In this review, we summarize over 200 articles on the topic, most of which were identified objectively using reproducible online search terms in PubMed. Although these studies differ in terms of methodology and detailed outcomes; overall, recent research describes a common phenotype of excessive daytime sleepiness, nighttime sleep fragmentation, insomnia, and electroencephalography spectral changes after TBI. Given the heterogeneity of the human disease phenotype, rigorous translation of animal models to the human condition is critical to our understanding of the mechanisms and of the temporal course of sleep-wake disturbances after injury. Arguably, this is most effectively accomplished when animal and human studies are performed by the same or collaborating research programs. Given the number of symptoms associated with TBI that are intimately related to, or directly stem from sleep dysfunction, sleep-wake disorders represent an important area in which mechanistic-based therapies may substantially impact recovery after TBI.
Collapse
Affiliation(s)
| | - Jonathan E Elliott
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
| | - Miranda M Lim
- VA Portland Health Care System, Portland, OR
- Department of Neurology, Oregon Health & Science University, Portland, OR
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR; Department of Behavioral Neuroscience, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR
| |
Collapse
|
66
|
Shen Z, Zhou Z, Gao S, Guo Y, Gao K, Wang H, Dang X. Melatonin Inhibits Neural Cell Apoptosis and Promotes Locomotor Recovery via Activation of the Wnt/β-Catenin Signaling Pathway After Spinal Cord Injury. Neurochem Res 2017; 42:2336-2343. [PMID: 28417262 DOI: 10.1007/s11064-017-2251-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/26/2017] [Accepted: 03/28/2017] [Indexed: 12/13/2022]
Abstract
The spinal cord is highly sensitive to spinal cord injury (SCI) by external mechanical damage, resulting in irreversible neurological damage. Activation of the Wnt/β-catenin signaling pathway can effectively reduce apoptosis and protect against SCI. Melatonin, an indoleamine originally isolated from bovine pineal tissue, exerts neuroprotective effects after SCI through activation of the Wnt/β-catenin signaling pathway. In this study, we demonstrated that melatonin exhibited neuroprotective effects on neuronal apoptosis and supported functional recovery in a rat SCI model by activating the Wnt/β-catenin signaling pathway. We found that melatonin administration after SCI significantly upregulated the expression of low-density lipoprotein receptor related protein 6 phosphorylation (p-LRP-6), lymphoid enhancer factor-1 (LEF-1) and β-catenin protein in the spinal cord. Melatonin enhanced motor neuronal survival in the spinal cord ventral horn and improved the locomotor functions of rats after SCI. Melatonin administration after SCI also reduced the expression levels of Bax and cleaved caspase-3 in the spinal cord and the proportion of terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling (TUNEL) positive cells, but increased the expression level of Bcl-2. These results suggest that melatonin attenuated SCI by activating the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Zhaoliang Shen
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, China.,Department of Orthopedics, Second Hospital of Jinzhou, Jinzhou, China.,Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Zipeng Zhou
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Shuang Gao
- Jinzhou Medical University, Jinzhou, China
| | - Yue Guo
- Department of Orthopedics, First Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| | - Kai Gao
- Department of Orthopedics, Jining NO.1 People's Hospital, Jining, China
| | - Haoyu Wang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, China
| | - Xiaoqian Dang
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University (Xibei Hospital), Xi'an, China.
| |
Collapse
|
67
|
Hu Y, Wang Z, Liu Y, Pan S, Zhang H, Fang M, Jiang H, Yin J, Zou S, Li Z, Zhang H, Lin Z, Xiao J. Melatonin reduces hypoxic-ischaemic (HI) induced autophagy and apoptosis: An in vivo and in vitro investigation in experimental models of neonatal HI brain injury. Neurosci Lett 2017; 653:105-112. [PMID: 28341477 DOI: 10.1016/j.neulet.2016.11.050] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 11/14/2016] [Accepted: 11/23/2016] [Indexed: 12/25/2022]
Abstract
Melatonin has neuroprotective effects in many diseases, including neonatal hypoxic-ischaemic (HI) brain injury. The purpose of this study was to evaluate the neuroprotective effects of melatonin both in vivo and in vitro and associated molecular mechanisms behind these effects. Postnatal day 7 male and female rat pups were subjected to unilateral HI, melatonin was injected intraperitoneally 1h before HI and an additional six doses were administered at 24h intervals. The pups were sacrificed at 24h and 7 d after HI. Pre-treatment with melatonin significantly reduced brain damage at 7 d after HI, with 15mg/kg melatonin achieving over 30% recovery in tissue loss compared to vehicle-treated animals. Autophagy and apoptotic cell death as indicated by autophagy associated proteins, cleaved caspase 3 and Tunel staining, was significantly inhibited after melatonin treatment in vivo as well as in PC12 cells. Melatonin treatment also significantly increased the GAP43 in the cortex. In conclusion, melatonin treatment reduced neonatal rat brain injury after HI, and this appeared to be related to inhibiting autophagy as well as reducing apoptotic cell death.
Collapse
Affiliation(s)
- Yingying Hu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhouguang Wang
- Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yanlong Liu
- Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shulin Pan
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Hao Zhang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Mingchu Fang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Huai Jiang
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Jiayu Yin
- Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shuangshuang Zou
- Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhenmao Li
- Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Hongyu Zhang
- Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhenlang Lin
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Jian Xiao
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; Molecular Pharmacology Research Center, School of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
68
|
Targeting the NF-E2-Related Factor 2 Pathway: a Novel Strategy for Traumatic Brain Injury. Mol Neurobiol 2017; 55:1773-1785. [PMID: 28224478 DOI: 10.1007/s12035-017-0456-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/13/2017] [Indexed: 12/30/2022]
Abstract
As an essential component of cellular defense against a variety of endogenous and exogenous stresses, nuclear factor erythroid 2-related factor 2 (Nrf2) has received increased attention in the past decades. Multiple studies indicate that Nrf2 acts not only as an important protective factor in injury models but also as a downstream target of therapeutic agents. Activation of Nrf2 has increasingly been linked to many human diseases, especially in central nervous system (CNS) injury such as traumatic brain injury (TBI). Several researches have deciphered that activation of Nrf2 exerts antioxidative stress, antiapoptosis, and antiinflammation influence in TBI via different molecules and pathways including heme oxygenase-1 (HO-1), NADPH:quinine oxidoreductase-1 (NQO-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), and nicotinamide adenine dinucleotide phosphate oxidase 2 (NOX2). Hence, Nrf2 shows great promise as a molecular target in TBI. In the present article, we provide an updated review of the current state of our knowledge about relationship between Nrf2 and TBI, highlighting the specific roles of Nrf2 in TBI.
Collapse
|
69
|
Trojian TH, Wang DH, Leddy JJ. Nutritional Supplements for the Treatment and Prevention of Sports-Related Concussion—Evidence Still Lacking. Curr Sports Med Rep 2017; 16:247-255. [DOI: 10.1249/jsr.0000000000000387] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
70
|
Natural products against Alzheimer's disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2016; 35:178-216. [PMID: 28043897 DOI: 10.1016/j.biotechadv.2016.12.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a severe, chronic and progressive neurodegenerative disease associated with memory and cognition impairment ultimately leading to death. It is the commonest reason of dementia in elderly populations mostly affecting beyond the age of 65. The pathogenesis is indicated by accumulation of the amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) in brain tissues and hyperphosphorylation of tau protein in neurons. The main cause is considered to be the formation of reactive oxygen species (ROS) due to oxidative stress. The current treatment provides only symptomatic relief by offering temporary palliative therapy which declines the rate of cognitive impairment associated with AD. Inhibition of the enzyme acetylcholinesterase (AChE) is considered as one of the major therapeutic strategies offering only symptomatic relief and moderate disease-modifying effect. Other non-cholinergic therapeutic approaches include antioxidant and vitamin therapy, stem cell therapy, hormonal therapy, use of antihypertensive or lipid-lowering medications and selective phosphodiesterase (PDE) inhibitors, inhibition of β-secretase and γ-secretase and Aβ aggregation, inhibition of tau hyperphosphorylation and intracellular NFT, use of nonsteroidal anti-inflammatory drugs (NSAIDs), transition metal chelators, insulin resistance drugs, etanercept, brain-derived neurotrophic factor (BDNF) etc. Medicinal plants have been reported for possible anti-AD activity in a number of preclinical and clinical trials. Ethnobotany, being popular in China and in the Far East and possibly less emphasized in Europe, plays a substantial role in the discovery of anti-AD agents from botanicals. Chinese Material Medica (CMM) involving Chinese medicinal plants has been used traditionally in China in the treatment of AD. Ayurveda has already provided numerous lead compounds in drug discovery and many of these are also undergoing clinical investigations. A number of medicinal plants either in their crude forms or as isolated compounds have exhibited to reduce the pathological features associated with AD. In this present review, an attempt has been made to elucidate the molecular mode of action of various plant extracts, phytochemicals and traditional herbal formulations investigated against AD as reported in various preclinical and clinical tests. Herbal synergism often found in polyherbal formulations were found effective to combat disease heterogeneity as found in complex pathogenesis of AD. Finally a note has been added to describe biotechnological improvement, genetic and genomic resources and mathematical and statistical techniques for empirical model building associated with anti-AD plant secondary metabolites and their source botanicals.
Collapse
|
71
|
Liu J, Wu W, Hao J, Yu M, Liu J, Chen X, Qian R, Zhang F. PRDM5 Expression and Essential Role After Acute Spinal Cord Injury in Adult Rat. Neurochem Res 2016; 41:3333-3343. [DOI: 10.1007/s11064-016-2066-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 08/29/2016] [Accepted: 09/15/2016] [Indexed: 01/08/2023]
|
72
|
Waseem M, Tabassum H, Parvez S. Melatonin modulates permeability transition pore and 5-hydroxydecanoate induced KATP channel inhibition in isolated brain mitochondria. Mitochondrion 2016; 31:1-8. [DOI: 10.1016/j.mito.2016.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2015] [Revised: 06/16/2016] [Accepted: 08/11/2016] [Indexed: 12/22/2022]
|
73
|
Tweedie D, Rachmany L, Kim DS, Rubovitch V, Lehrmann E, Zhang Y, Becker KG, Perez E, Pick CG, Greig NH. Mild traumatic brain injury-induced hippocampal gene expressions: The identification of target cellular processes for drug development. J Neurosci Methods 2016; 272:4-18. [PMID: 26868732 PMCID: PMC4977213 DOI: 10.1016/j.jneumeth.2016.02.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
BACKGROUND Neurological dysfunction after traumatic brain injury (TBI) poses short-term or long-lasting health issues for family members and health care providers. Presently there are no approved medicines to treat TBI. Epidemiological evidence suggests that TBI may cause neurodegenerative disease later in life. In an effort to illuminate target cellular processes for drug development, we examined the effects of a mild TBI on hippocampal gene expression in mouse. METHODS mTBI was induced in a closed head, weight drop-system in mice (ICR). Animals were anesthetized and subjected to mTBI (30g). Fourteen days after injury the ipsilateral hippocampus was utilized for cDNA gene array studies. mTBI animals were compared with sham-operated animals. Genes regulated by TBI were identified to define TBI-induced physiological/pathological processes. mTBI regulated genes were divided into functional groupings to provide gene ontologies. Genes were further divided to identify molecular/cellular pathways regulated by mTBI. RESULTS Numerous genes were regulated after a single mTBI event that mapped to many ontologies and molecular pathways related to inflammation and neurological physiology/pathology, including neurodegenerative disease. CONCLUSIONS These data illustrate diverse transcriptional changes in hippocampal tissues triggered by a single mild injury. The systematic analysis of individual genes that lead to the identification of functional categories, such as gene ontologies and then molecular pathways, illustrate target processes of relevance to TBI pathology. These processes may be further dissected to identify key factors that can be evaluated at the protein level to highlight possible treatments for TBI in human disease and potential biomarkers of neurodegenerative processes.
Collapse
Affiliation(s)
- David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Lital Rachmany
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Dong Seok Kim
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA; Peptron Inc., 37-24, Yuseong-daero 1628 beon-gil, Yuseong-gu, Daejeon 305-811, Republic of Korea
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Elin Lehrmann
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Yongqing Zhang
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kevin G Becker
- Laboratory of Genetics, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Evelyn Perez
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chaim G Pick
- Department of Anatomy and Anthropology, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv 69978, Israel; Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv 69978, Israel
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
74
|
Lin C, Chao H, Li Z, Xu X, Liu Y, Hou L, Liu N, Ji J. Melatonin attenuates traumatic brain injury-induced inflammation: a possible role for mitophagy. J Pineal Res 2016; 61:177-86. [PMID: 27117839 DOI: 10.1111/jpi.12337] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/21/2016] [Indexed: 12/16/2022]
Abstract
Melatonin functions as a crucial mediator of sterile neuroinflammation; however, the underlying mechanisms remain poorly understood. Dysfunctional mitochondria, a main source of reactive oxygen species, are impacted in inflammation activation. This study aimed to examine the effect of melatonin on inflammation via elimination of damaged mitochondria after controlled cortical impact, an in vivo model of traumatic brain injury (TBI). Here, we demonstrated that inhibition of mitophagy, the selective degradation of damaged mitochondria by autophagy, markedly enhanced inflammation induced by TBI. Melatonin treatment activated mitophagy through the mTOR pathway, then to attenuate TBI-induced inflammation. Furthermore, treatment with melatonin significantly ameliorated neuronal death and behavioral deficits after TBI, while 3-methyladenine reversed this effect by inhibiting mitophagy. Taken together, these results highlight a role for melatonin in protecting against TBI-triggered immunopathology, which is accomplished by negatively regulating inflammation activation and IL-1β secretion via the autophagy of damaged mitochondria.
Collapse
Affiliation(s)
- Chao Lin
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Honglu Chao
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Li
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiupeng Xu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yinlong Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Ning Liu
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Ji
- Department of Neurosurgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
75
|
Gao S, Zhang ZM, Shen ZL, Gao K, Chang L, Guo Y, Li Z, Wang W, Wang AM. Atorvastatin activates autophagy and promotes neurological function recovery after spinal cord injury. Neural Regen Res 2016; 11:977-82. [PMID: 27482228 PMCID: PMC4962597 DOI: 10.4103/1673-5374.184498] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Atorvastatin, a lipid-lowering medication, provides neuroprotective effects, although the precise mechanisms of action remain unclear. Our previous studies confirmed activated autophagy following spinal cord injury, which was conducive to recovery of neurological functions. We hypothesized that atorvastatin could also activate autophagy after spinal cord injury, and subsequently improve recovery of neurological functions. A rat model of spinal cord injury was established based on the Allen method. Atorvastatin (5 mg/kg) was intraperitoneally injected at 1 and 2 days after spinal cord injury. At 7 days post-injury, western blot assay, reverse transcription-polymerase chain reaction, and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining results showed increased Beclin-1 and light chain 3B gene and protein expressions in the spinal cord injury + atorvastatin group. Additionally, caspase-9 and caspase-3 expression was decreased, and the number of TUNEL-positive cells was reduced. Compared with the spinal cord injury + saline group, Basso, Beattie, and Bresnahan locomotor rating scale scores significantly increased in the spinal cord injury + atorvastatin group at 14-42 days post-injury. These findings suggest that atorvastatin activated autophagy after spinal cord injury, inhibited apoptosis, and promoted recovery of neurological function.
Collapse
Affiliation(s)
- Shuang Gao
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhong-Ming Zhang
- Department of Orthopedics, Jinzhou Municipal Second Hospital, Jinzhou, Liaoning Province, China
| | - Zhao-Liang Shen
- Department of Orthopedics, Jinzhou Municipal Second Hospital, Jinzhou, Liaoning Province, China
| | - Kai Gao
- Department of Orthopedics, Jining No. 1 People's Hospital, Jining, Shandong Province, China
| | - Liang Chang
- Jinzhou Central Hospital, Jinzhou, Liaoning Province, China
| | - Yue Guo
- Department of Orthopedics, Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zhuo Li
- Department of Orthopedics, Jinzhou Municipal Second Hospital, Jinzhou, Liaoning Province, China
| | - Wei Wang
- Department of Orthopedics, First Hospital of Qinhuangdao City, Qinhuangdao, Hebei Province, China
| | - Ai-Mei Wang
- Department of Physiology, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| |
Collapse
|
76
|
Agorastos A, Linthorst ACE. Potential pleiotropic beneficial effects of adjuvant melatonergic treatment in posttraumatic stress disorder. J Pineal Res 2016; 61:3-26. [PMID: 27061919 DOI: 10.1111/jpi.12330] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 04/05/2016] [Indexed: 12/21/2022]
Abstract
Loss of circadian rhythmicity fundamentally affects the neuroendocrine, immune, and autonomic system, similar to chronic stress and may play a central role in the development of stress-related disorders. Recent articles have focused on the role of sleep and circadian disruption in the pathophysiology of posttraumatic stress disorder (PTSD), suggesting that chronodisruption plays a causal role in PTSD development. Direct and indirect human and animal PTSD research suggests circadian system-linked neuroendocrine, immune, metabolic and autonomic dysregulation, linking circadian misalignment to PTSD pathophysiology. Recent experimental findings also support a specific role of the fundamental synchronizing pineal hormone melatonin in mechanisms of sleep, cognition and memory, metabolism, pain, neuroimmunomodulation, stress endocrinology and physiology, circadian gene expression, oxidative stress and epigenetics, all processes affected in PTSD. In the current paper, we review available literature underpinning a potentially beneficiary role of an add-on melatonergic treatment in PTSD pathophysiology and PTSD-related symptoms. The literature is presented as a narrative review, providing an overview on the most important and clinically relevant publications. We conclude that adjuvant melatonergic treatment could provide a potentially promising treatment strategy in the management of PTSD and especially PTSD-related syndromes and comorbidities. Rigorous preclinical and clinical studies are needed to validate this hypothesis.
Collapse
Affiliation(s)
- Agorastos Agorastos
- Department of Psychiatry and Psychotherapy, Center for Psychosocial Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Astrid C E Linthorst
- Faculty of Health Sciences, Neurobiology of Stress and Behaviour Research Group, School of Clinical Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
77
|
Fatima G, Sharma VP, Verma NS. Circadian variations in melatonin and cortisol in patients with cervical spinal cord injury. Spinal Cord 2015; 54:364-7. [DOI: 10.1038/sc.2015.176] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Revised: 08/19/2015] [Accepted: 09/01/2015] [Indexed: 11/09/2022]
|
78
|
Targeting the 18-kDa translocator protein: recent perspectives for neuroprotection. Biochem Soc Trans 2015; 43:559-65. [DOI: 10.1042/bst20150028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Indexed: 12/14/2022]
Abstract
The translocator protein (TSPO, 18 kDa), mainly localized in the outer mitochondrial membrane of steroidogenic tissues, is involved in several cellular functions. TSPO level alterations have been reported in a number of human disorders, particularly in cancer, psychiatric and neurological diseases. In the central nervous system (CNS), TSPO is usually expressed in glial cells, but also in some neuronal cell types. Interestingly, the expression of TSPO on glial cells rises after brain injury and increased TSPO expression is often observed in neurological disorders, gliomas, encephalitis and traumatic injury. Since TSPO is up-regulated in brain diseases, several structurally different classes of ligands targeting TSPO have been described as potential diagnostic or therapeutic agents. Recent researches have reported that TSPO ligands might be valuable in the treatment of brain diseases. This review focuses on currently available TSPO ligands, as useful tools for the treatment of neurodegeneration, neuro-inflammation and neurotrauma.
Collapse
|
79
|
Lucke-Wold BP, Smith KE, Nguyen L, Turner RC, Logsdon AF, Jackson GJ, Huber JD, Rosen CL, Miller DB. Sleep disruption and the sequelae associated with traumatic brain injury. Neurosci Biobehav Rev 2015; 55:68-77. [PMID: 25956251 PMCID: PMC4721255 DOI: 10.1016/j.neubiorev.2015.04.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 04/17/2015] [Accepted: 04/25/2015] [Indexed: 02/08/2023]
Abstract
Sleep disruption, which includes a loss of sleep as well as poor quality fragmented sleep, frequently follows traumatic brain injury (TBI) impacting a large number of patients each year in the United States. Fragmented and/or disrupted sleep can worsen neuropsychiatric, behavioral, and physical symptoms of TBI. Additionally, sleep disruption impairs recovery and can lead to cognitive decline. The most common sleep disruption following TBI is insomnia, which is difficulty staying asleep. The consequences of disrupted sleep following injury range from deranged metabolomics and blood brain barrier compromise to altered neuroplasticity and degeneration. There are several theories for why sleep is necessary (e.g., glymphatic clearance and metabolic regulation) and these may help explain how sleep disruption contributes to degeneration within the brain. Experimental data indicate disrupted sleep allows hyperphosphorylated tau and amyloid β plaques to accumulate. As sleep disruption may act as a cellular stressor, target areas warranting further scientific investigation include the increase in endoplasmic reticulum and oxidative stress following acute periods of sleep deprivation. Potential treatment options for restoring the normal sleep cycle include melatonin derivatives and cognitive behavioral therapy.
Collapse
Affiliation(s)
- Brandon P Lucke-Wold
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Kelly E Smith
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Linda Nguyen
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Ryan C Turner
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Aric F Logsdon
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Garrett J Jackson
- Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Jason D Huber
- Department of Basic Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, WV 26506, USA; The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Charles L Rosen
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; Department of Neurosurgery, West Virginia University School of Medicine, Morgantown, WV 26506, USA
| | - Diane B Miller
- The Center for Neuroscience, West Virginia University School of Medicine, Morgantown, WV 26506, USA; Centers for Disease Control and Prevention-National Institute for Occupational Safety and Health, Morgantown, WV, USA.
| |
Collapse
|