51
|
Efrain Molotla-Torres D, Mario Hernández-Soto L, Guzmán-Mejía F, Godínez-Victoria M, Elisa Drago-Serrano M, Félix Aguirre-Garrido J. Oral bovine lactoferrin modulation on fecal microbiota of mice underwent immobilization stress. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
52
|
Elucidating the Role of Innate and Adaptive Immune Responses in the Pathogenesis of Canine Chronic Inflammatory Enteropathy-A Search for Potential Biomarkers. Animals (Basel) 2022; 12:ani12131645. [PMID: 35804545 PMCID: PMC9264988 DOI: 10.3390/ani12131645] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Canine chronic inflammatory enteropathy (CIE) is a chronic disease affecting the small or large intestine and, in some cases, the stomach of dogs. This gastrointestinal disorder is common and is characterized by recurrent vomiting, diarrhea, and weight loss in affected dogs. The pathogenesis of IBD is not completely understood. Similar to human IBD, potential disease factors include genetics, environmental exposures, and dysregulation of the microbiota and the immune response. Some important components of the innate and adaptive immune response involved in CIE pathogenesis have been described. However, the immunopathogenesis of the disease has not been fully elucidated. In this review, we summarized the literature associated with the different cell types and molecules involved in the immunopathogenesis of CIE, with the aim of advancing the search for biomarkers with possible diagnostic, prognostic, or therapeutic utility. Abstract Canine chronic inflammatory enteropathy (CIE) is one of the most common chronic gastrointestinal diseases affecting dogs worldwide. Genetic and environmental factors, as well as intestinal microbiota and dysregulated host immune responses, participate in this multifactorial disease. Despite advances explaining the immunological and molecular mechanisms involved in CIE development, the exact pathogenesis is still unknown. This review compiles the latest reports and advances that describe the main molecular and cellular mechanisms of both the innate and adaptive immune responses involved in canine CIE pathogenesis. Future studies should focus research on the characterization of the immunopathogenesis of canine CIE in order to advance the establishment of biomarkers and molecular targets of diagnostic, prognostic, or therapeutic utility.
Collapse
|
53
|
Recent Discoveries on Marine Organism Immunomodulatory Activities. Mar Drugs 2022; 20:md20070422. [PMID: 35877715 PMCID: PMC9324980 DOI: 10.3390/md20070422] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Marine organisms have been shown to be a valuable source for biologically active compounds for the prevention and treatment of cancer, inflammation, immune system diseases, and other pathologies. The advantage of studying organisms collected in the marine environment lies in their great biodiversity and in the variety of chemical structures of marine natural products. Various studies have focused on marine organism compounds with potential pharmaceutical applications, for instance, as immunomodulators, to treat cancer and immune-mediated diseases. Modulation of the immune system is defined as any change in the immune response that can result in the induction, expression, amplification, or inhibition of any phase of the immune response. Studies very often focus on the effects of marine-derived compounds on macrophages, as well as lymphocytes, by analyzing the release of mediators (cytokines) by using the immunological assay enzyme-linked immunosorbent assay (ELISA), Western blot, immunofluorescence, and real-time PCR. The main sources are fungi, bacteria, microalgae, macroalgae, sponges, mollusks, corals, and fishes. This review is focused on the marine-derived molecules discovered in the last three years as potential immunomodulatory drugs.
Collapse
|
54
|
Saini A, Dalal P, Sharma D. Deciphering the Interdependent Labyrinth between Gut Microbiota and the Immune System. Lett Appl Microbiol 2022; 75:1122-1135. [PMID: 35730958 DOI: 10.1111/lam.13775] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/18/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
The human gut microbiome interacts with each other and the host, which has significant effects on health and disease development. Intestinal homeostasis and inflammation are maintained by the dynamic interactions between gut microbiota and the innate and adaptive immune systems. Numerous metabolic products produced by the gut microbiota play a role in mediating cross-talk between gut epithelial and immune cells. In the event of an imbalance between the immune system and microbiota, the body becomes susceptible to infections, and homeostasis is compromised. This review mainly focuses on the interplay between microbes and the immune system, such as, T-cell and B-cell mediated adaptive responses to microbiota and signaling pathways for effective communication between the two. We have also highlighted the role of microbes in the activation of the immune response, the development of memory cells, and how the immune system determines the diversity of human gut microbiota. The review also explains the relationship of commensal microbiota and their relation in the production of immunoglobulins.
Collapse
Affiliation(s)
- Anamika Saini
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, -140306, India.,Amity Institute of Biotechnology, Amity University Jaipur, Rajasthan, 302006
| | - Priyanka Dalal
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, -140306, India
| | - Deepika Sharma
- Institute of Nano Science and Technology, Knowledge City, Sector 81, Mohali, Punjab, -140306, India
| |
Collapse
|
55
|
Wang J, Zhang H, He J, Xiong X. The Role of the Gut Microbiota in the Development of Ischemic Stroke. Front Immunol 2022; 13:845243. [PMID: 35418976 PMCID: PMC8995494 DOI: 10.3389/fimmu.2022.845243] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/02/2022] [Indexed: 11/13/2022] Open
Abstract
An increasing number of studies have focused on the gut microbiota and its relationship with various neurological diseases. The gut microbiota can affect the metabolic status of the body, in addition to having an important impact on blood pressure, blood glucose, and atherosclerosis, all of which are risk factors for ischemic stroke. In this review, we summarized studies that included the physiological function of the gut microbiota and gut microbiota disorders related to the central nervous system, thus providing novel ideas for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Jinchen Wang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongfei Zhang
- Department of Anesthesiology, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Jianying He
- Department of Orthopedic, JiangXi Provinvcial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Xiaoxing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
56
|
Petakh P, Kamyshna I, Nykyforuk A, Yao R, Imbery JF, Oksenych V, Korda M, Kamyshnyi A. Immunoregulatory Intestinal Microbiota and COVID-19 in Patients with Type Two Diabetes: A Double-Edged Sword. Viruses 2022; 14:477. [PMID: 35336884 PMCID: PMC8955861 DOI: 10.3390/v14030477] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/06/2022] [Accepted: 02/24/2022] [Indexed: 01/09/2023] Open
Abstract
Coronavirus disease 2019, or COVID-19, is a major challenge facing scientists worldwide. Alongside the lungs, the system of organs comprising the GI tract is commonly targeted by COVID-19. The dysbiotic modulations in the intestine influence the disease severity, potentially due to the ability of the intestinal microbiota to modulate T lymphocyte functions, i.e., to suppress or activate T cell subpopulations. The interplay between the lungs and intestinal microbiota is named the gut-lung axis. One of the most usual comorbidities in COVID-19 patients is type 2 diabetes, which induces changes in intestinal microbiota, resulting in a pro-inflammatory immune response, and consequently, a more severe course of COVID-19. However, changes in the microbiota in this comorbid pathology remain unclear. Metformin is used as a medication to treat type 2 diabetes. The use of the type 2 diabetes drug metformin is a promising treatment for this comorbidity because, in addition to its hypoglycemic action, it can increase amount of intestinal bacteria that induce regulatory T cell response. This dual activity of metformin can reduce lung damage and improve the course of the COVID-19 disease.
Collapse
Affiliation(s)
- Pavlo Petakh
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine; (P.P.); (A.N.)
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| | - Iryna Kamyshna
- Department of Medical Rehabilitation, I. Horbachevsky Ternopil National Medical University, Majdan Voli 1, 46001 Ternopil, Ukraine;
| | - Andriy Nykyforuk
- Department of Biochemistry and Pharmacology, Uzhhorod National University, 88000 Uzhhorod, Ukraine; (P.P.); (A.N.)
| | - Rouan Yao
- Center of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, 7491 Trondheim, Norway;
| | - John F. Imbery
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway;
| | - Valentyn Oksenych
- Institute of Clinical Medicine, University of Oslo, 0318 Oslo, Norway;
| | - Mykhaylo Korda
- Department of Medical Biochemistry, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine;
| | - Aleksandr Kamyshnyi
- Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine
| |
Collapse
|
57
|
Wang X, Liu Y, Wu Z, Zhang P, Zhang X. Tea Polyphenols: A Natural Antioxidant Regulates Gut Flora to Protect the Intestinal Mucosa and Prevent Chronic Diseases. Antioxidants (Basel) 2022; 11:253. [PMID: 35204136 PMCID: PMC8868443 DOI: 10.3390/antiox11020253] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 02/07/2023] Open
Abstract
The intestinal tract of a healthy human body hosts many microorganisms that are closely linked to all aspects of people's lives. The impact of intestinal flora on host health is no longer limited to the gut but can also affect every organ in the body through various pathways. Studies have found that intestinal flora can be altered by external factors, which provides new ideas for treating some diseases. Tea polyphenols (TP), a general term for polyphenols in tea, are widely used as a natural antioxidant in various bioactive foods. In recent years, with the progress of research, there have been many experiments that provide strong evidence for the ability of TP to regulate intestinal flora. However, there are very few studies on the use of TP to modify the composition of intestinal microorganisms to maintain health or treat related diseases, and this area has not received sufficient attention. In this review, we outline the mechanisms by which TP regulates intestinal flora and the essential role in maintaining suitable health. In addition, we highlighted the protective effects of TP on intestinal mucosa by regulating intestinal flora and the preventive and therapeutic effects on certain chronic diseases, which will help further explore measures to prevent related chronic diseases.
Collapse
Affiliation(s)
- Xinzhou Wang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| | - Peng Zhang
- Department of Student Affairs, Xinyang Normal University, Xinyang 464000, China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (X.W.); (Y.L.); (Z.W.)
| |
Collapse
|
58
|
Hu J, Zhang R, Zou H, Xie L, Zhou Z, Xiao Y. Latent Autoimmune Diabetes in Adults (LADA): From Immunopathogenesis to Immunotherapy. Front Endocrinol (Lausanne) 2022; 13:917169. [PMID: 35937817 PMCID: PMC9350734 DOI: 10.3389/fendo.2022.917169] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 05/26/2022] [Indexed: 11/26/2022] Open
Abstract
Latent autoimmune diabetes in adults (LADA) is a type of diabetes characterized by slow autoimmune damage of pancreatic β cells without insulin treatment in the early clinical stage. There are differences between LADA and classical type 1 diabetes (T1D) and type 2 diabetes (T2D) in genetic background, autoimmune response, rate of islet function decline, clinical metabolic characteristics, and so on. The disease progression and drug response of patients with LADA are closely related to the level of islet autoimmunity, thus exploring the pathogenesis of LADA is of great significance for its prevention and treatment. Previous studies reported that adaptive immunity and innate immunity play a critical role in the etiology of LADA. Recent studies have shown that the intestinal microbiota which impacts host immunity hugely, participates in the pathogenesis of LADA. In addition, the progression of autoimmune pancreatic β cell destruction in LADA is slower than in classical T1D, providing a wider window of opportunities for intervention. Therefore, therapies including antidiabetic drugs with immune-regulation effects and immunomodulators could contribute to promising interventions for LADA. We also shed light on potential interventions targeting the gut microbiota and gut-associated immunity, which may be envisaged to halt or delay the process of autoimmunity in LADA.
Collapse
|
59
|
Jalodia R, Kolli U, Braniff RG, Tao J, Abu YF, Chupikova I, Moidunny S, Ramakrishnan S, Roy S. Morphine mediated neutrophil infiltration in intestinal tissue play essential role in histological damage and microbial dysbiosis. Gut Microbes 2022; 14:2143225. [PMID: 36409161 PMCID: PMC9683065 DOI: 10.1080/19490976.2022.2143225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 09/01/2022] [Accepted: 10/17/2022] [Indexed: 11/23/2022] Open
Abstract
The gut microbial ecosystem exhibits a complex bidirectional communication with the host and is one of the key contributing factors in determining mucosal immune homeostasis or an inflammatory state. Opioid use has been established to induce gut microbial dysbiosis consistent with increased intestinal tissue inflammation. In this study, we investigated the role of infiltrated immune cells in morphine-induced intestinal tissue damage and gut microbial dysbiosis in mice. Results reveal a significant increase in chemokine expression in intestinal tissues followed by increased neutrophil infiltration post morphine treatment which is direct consequence of a dysbiotic microbiome since the effect is attenuated in antibiotics treated animals and in germ-free mice. Neutrophil neutralization using anti-Ly6G monoclonal antibody showed a significant decrease in tissue damage and an increase in tight junction protein organization. 16S rRNA sequencing on intestinal samples highlighted the role of infiltrated neutrophils in modulating microbial community structure by providing a growth benefit for pathogenic bacteria, such as Enterococcus, and simultaneously causing a significant depletion of commensal bacteria, such as Lactobacillus. Taken together, we provide the first direct evidence that neutrophil infiltration contributes to morphine-induced intestinal tissue damage and gut microbial dysbiosis. Our findings implicate that inhibition of neutrophil infiltration may provide therapeutic benefits against gastrointestinal dysfunctions associated with opioid use.
Collapse
Affiliation(s)
- Richa Jalodia
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Udhghatri Kolli
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | | | - Junyi Tao
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Yaa Fosuah Abu
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irina Chupikova
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Shamsudheen Moidunny
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sundaram Ramakrishnan
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Sabita Roy
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
60
|
Wang Y, Xie Z. Exploring the role of gut microbiome in male reproduction. Andrology 2021; 10:441-450. [PMID: 34918486 DOI: 10.1111/andr.13143] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/02/2021] [Accepted: 12/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND The impact of the gut microbiome on the organism has become a growing research focus with the development of 16S rRNA sequencing. However, the effect of the gut microbiome in male reproduction has yet to be investigated. OBJECTIVE To overview on possible mechanisms by which gut microbiome could affect male reproduction and therapeutic opportunities related to the gut microbiome METHODS: Authors searched PubMed/MEDLINE, EMBASE, Web of Science, Cochrane Library for medical subject headings terms and free text words referred to "male infertility" "testis" "gut microbiome" "insulin resistance" "erectile dysfunction" "therapy" "sex hormones" "Genital Diseases." until Dec 2nd 2021. RESULTS Evidence suggests that immune system activation caused by the gut microbiome translocation not only leads to testicular and epididymal inflammation but can also induce insulin resistance together with gastrointestinal hormones such as leptin and ghrelin, which in turn affects the secretion of various sex hormones such as LH, FSH, and T to regulate spermatogenesis. In addition, the gut microbiome can influence spermatogenesis by controlling and metabolizing androgens as well as affecting the blood-testis barrier. It also promotes vascular inflammation by raising trimethylamine-N-oxide (TMAO) levels in the blood, which causes erectile dysfunction. Testicular microbiome and gut microbiome can interact to influence male reproductive function. This study discusses therapeutic options such as probiotics, prebiotics, and fecal microbiota transplantation, as well as the challenges and opportunities behind ongoing research, and emphasizes the need for additional research in the future to demonstrate the links and underlying mechanisms between gut microbiome and male reproduction. Therapeutic options such as probiotic, prebiotics and fecal microbiota transplantation are potential treatments for male infertility. DISCUSSION AND CONCLUSION Gut microbiota may have a causal role in male reproduction health, therapeutic strategies such as supplementation with appropriate probiotics could be undertaken as a complementary treatment. In the future, additional research is needed to demonstrate the links and underlying mechanisms between gut microbiome and male reproduction. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yan Wang
- Zhejiang Chinese Medical University, Second Clinical Medical School, Zhejiang, 310053, China
| | - Zuogang Xie
- Wenzhou Hospital of Integrated Chinese and Western Medicine Affiliated to Zhejiang, University of Traditional Chinese Medicine, Andrology, Zhejiang, 325000, China
| |
Collapse
|
61
|
Shi S, Liu J, Dong J, Hu J, Liu Y, Feng J, Zhou D. Research progress on the regulation mechanism of probiotics on the microecological flora of infected intestines in livestock and poultry. Lett Appl Microbiol 2021; 74:647-655. [PMID: 34882816 DOI: 10.1111/lam.13629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 12/05/2021] [Accepted: 12/06/2021] [Indexed: 12/12/2022]
Abstract
The animal intestine is a complex ecosystem composed of host cells, gut microbiota and available nutrients. Gut microbiota can prevent the occurrence of intestinal diseases in animals by regulating the homeostasis of the intestinal environment. The intestinal microbiota is a complex and stable microbial community, and the homeostasis of the intestinal environment is closely related to the invasion of intestinal pathogens, which plays an important role in protecting the host from pathogen infections. Probiotics are strains of microorganisms that are beneficial to health, and their potential has recently led to a significant increase in studies on the regulation of intestinal flora. Various potential mechanisms of action have been proposed on probiotics, especially mediating the regulation mechanism of the intestinal flora on the host, mainly including competitive inhibition of pathogens, stimulation of the host's adaptive immune system and regulation of the intestinal flora. The advent of high-throughput sequencing technology has given us a clearer understanding and has facilitated the development of research methods to investigate the intestinal microecological flora. This review will focus on the regulation of probiotics on the microbial flora of intestinal infections in livestock and poultry and will depict future research directions.
Collapse
Affiliation(s)
- S Shi
- College of Life Sciences, Anqing Normal University and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui Province, Anqing, P. R. China
| | | | - J Dong
- College of Life Sciences, Anqing Normal University and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui Province, Anqing, P. R. China
| | - J Hu
- College of Life Sciences, Anqing Normal University and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui Province, Anqing, P. R. China
| | - Y Liu
- College of Life Sciences, Anqing Normal University and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui Province, Anqing, P. R. China
| | - J Feng
- Susong Chunrun Food Co., Ltd, Anqing, P. R. China
| | - D Zhou
- College of Life Sciences, Anqing Normal University and Anhui Key Laboratory of Biodiversity Research and Ecological Protection in Southwest Anhui Province, Anqing, P. R. China
| |
Collapse
|
62
|
Willers M, Viemann D. Role of the gut microbiota in airway immunity and host defense against respiratory infections. Biol Chem 2021; 402:1481-1491. [PMID: 34599869 DOI: 10.1515/hsz-2021-0281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/27/2021] [Indexed: 12/14/2022]
Abstract
Colonization of the intestine with commensal bacteria is known to play a major role in the maintenance of human health. An altered gut microbiome is associated with various ensuing diseases including respiratory diseases. Here, we summarize current knowledge on the impact of the gut microbiota on airway immunity with a focus on consequences for the host defense against respiratory infections. Specific gut commensal microbiota compositions and functions are depicted that mediate protection against respiratory infections with bacterial and viral pathogens. Lastly, we highlight factors that have imprinting effects on the establishment of the gut microbiota early in life and are potentially relevant in the context of respiratory infections. Deepening our understanding of these relationships will allow to exploit the knowledge on how gut microbiome maturation needs to be modulated to ensure lifelong enhanced resistance towards respiratory infections.
Collapse
Affiliation(s)
- Maike Willers
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany
| | - Dorothee Viemann
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, D-30625 Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, D-30625 Hannover, Germany
- Department of Pediatrics, Translational Pediatrics, University Hospital Würzburg, Zinklesweg 10, D-97078 Würzburg, Germany
| |
Collapse
|
63
|
Coquant G, Aguanno D, Pham S, Grellier N, Thenet S, Carrière V, Grill JP, Seksik P. Gossip in the gut: Quorum sensing, a new player in the host-microbiota interactions. World J Gastroenterol 2021; 27:7247-7270. [PMID: 34876787 PMCID: PMC8611211 DOI: 10.3748/wjg.v27.i42.7247] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/17/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Bacteria are known to communicate with each other and regulate their activities in social networks by secreting and sensing signaling molecules called autoinducers, a process known as quorum sensing (QS). This is a growing area of research in which we are expanding our understanding of how bacteria collectively modify their behavior but are also involved in the crosstalk between the host and gut microbiome. This is particularly relevant in the case of pathologies associated with dysbiosis or disorders of the intestinal ecosystem. This review will examine the different QS systems and the evidence for their presence in the intestinal ecosystem. We will also provide clues on the role of QS molecules that may exert, directly or indirectly through their bacterial gossip, an influence on intestinal epithelial barrier function, intestinal inflammation, and intestinal carcinogenesis. This review aims to provide evidence on the role of QS molecules in gut physiology and the potential shared by this new player. Better understanding the impact of intestinal bacterial social networks and ultimately developing new therapeutic strategies to control intestinal disorders remains a challenge that needs to be addressed in the future.
Collapse
Affiliation(s)
- Garance Coquant
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Doriane Aguanno
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Sandrine Pham
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Nathan Grellier
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Sophie Thenet
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- EPHE, PSL University, Paris 75014, France
| | - Véronique Carrière
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Jean-Pierre Grill
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
| | - Philippe Seksik
- Centre de Recherche Saint-Antoine, INSERM, Sorbonne Université, Paris 75012, France
- Department of Gastroenterology and Nutrition, Saint-Antoine Hospital, APHP, Paris 75012, France
| |
Collapse
|
64
|
Han L, Fu Q, Deng C, Luo L, Xiang T, Zhao H. Immunomodulatory potential of flavonoids for the treatment of autoimmune diseases and tumour. Scand J Immunol 2021. [DOI: 10.1111/sji.13106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Limin Han
- Department of Pathophysiology Zunyi Medical University Zunyi China
- Department of Endocrinology People’s Hospital of Changshou Chongqing Chongqing China
| | - Qiang Fu
- Organ Transplantation Center Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital School of Medicine University of Electronic Science and Technology of China Chengdu China
| | - Chuan Deng
- Department of Neurology People’s Hospital of Changshou Chongqing Chongqing China
| | - Li Luo
- Department of Forensic Medicine Zunyi Medical University Zunyi China
| | - Tengxiao Xiang
- Department of Endocrinology People’s Hospital of Changshou Chongqing Chongqing China
| | - Hailong Zhao
- Department of Pathophysiology Zunyi Medical University Zunyi China
| |
Collapse
|
65
|
Lécuyer E, Le Roy T, Gestin A, Lacombe A, Philippe C, Ponnaiah M, Huré JB, Fradet M, Ichou F, Boudebbouze S, Huby T, Gautier E, Rhimi M, Maguin E, Kapel N, Gérard P, Venteclef N, Garlatti M, Chassaing B, Lesnik P. Tolerogenic Dendritic Cells Shape a Transmissible Gut Microbiota That Protects From Metabolic Diseases. Diabetes 2021; 70:2067-2080. [PMID: 34078628 PMCID: PMC8576430 DOI: 10.2337/db20-1177] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/26/2021] [Indexed: 11/13/2022]
Abstract
Excess chronic contact between microbial motifs and intestinal immune cells is known to trigger a low-grade inflammation involved in many pathologies such as obesity and diabetes. The important skewing of intestinal adaptive immunity in the context of diet-induced obesity (DIO) is well described, but how dendritic cells (DCs) participate in these changes is still poorly documented. To address this question, we challenged transgenic mice with enhanced DC life span and immunogenicity (DChBcl-2 mice) with a high-fat diet. Those mice display resistance to DIO and metabolic alterations. The DIO-resistant phenotype is associated with healthier parameters of intestinal barrier function and lower intestinal inflammation. DChBcl-2 DIO-resistant mice demonstrate a particular increase in tolerogenic DC numbers and function, which is associated with strong intestinal IgA, T helper 17, and regulatory T-cell immune responses. Microbiota composition and function analyses reveal that the DChBcl-2 mice microbiota is characterized by lower immunogenicity and an enhanced butyrate production. Cohousing experiments and fecal microbial transplantations are sufficient to transfer the DIO resistance status to wild-type mice, demonstrating that maintenance of DCs' tolerogenic ability sustains a microbiota able to drive DIO resistance. The tolerogenic function of DCs is revealed as a new potent target in metabolic disease management.
Collapse
Affiliation(s)
- Emelyne Lécuyer
- INSERM, UMRS 1166 Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
| | - Tiphaine Le Roy
- INSERM, UMRS 1166 Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
- Sorbonne/INSERM, Nutrition et obésités: approches systémiques (nutriOmics), Hôpital Pitié- Salpêtrière, Paris, France
| | - Aurélie Gestin
- INSERM, UMRS 1166 Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Amélie Lacombe
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Catherine Philippe
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Maharajah Ponnaiah
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Jean-Baptiste Huré
- INSERM, UMRS 1166 Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
| | - Magali Fradet
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Farid Ichou
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Samira Boudebbouze
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Thierry Huby
- INSERM, UMRS 1166 Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Emmanuel Gautier
- INSERM, UMRS 1166 Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| | - Moez Rhimi
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Emmanuelle Maguin
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nathalie Kapel
- Laboratoire de Coprologie Fonctionnelle, Hôpital Pitié-Salpêtrière, Paris, France
- INSERM UMRS 1139, Université de Paris, Paris, France
| | - Philippe Gérard
- Micalis Institute, INRAE, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Nicolas Venteclef
- INSERM, Cordeliers Research Centre, Immunity and Metabolism of Diabetes (IMMEDIAB), Université de Paris, Paris, France
| | - Michèle Garlatti
- INSERM, UMRS 1166 Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
| | - Benoit Chassaing
- Neuroscience Institute and Institute for Biomedical Sciences, Georgia State University, Atlanta, GA
- INSERM, U1016, Team "Mucosal microbiota in chronic inflammatory diseases," Paris, France
| | - Philippe Lesnik
- INSERM, UMRS 1166 Institute of Cardiometabolism and Nutrition, Sorbonne Université, Paris, France
- Institute of Cardiometabolism and Nutrition, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
66
|
Yang C, Qiao Z, Xu Z, Wang X, Deng Q, Chen W, Huang F. Algal Oil Rich in Docosahexaenoic Acid Alleviates Intestinal Inflammation Induced by Antibiotics Associated with the Modulation of the Gut Microbiome and Metabolome. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9124-9136. [PMID: 33900083 DOI: 10.1021/acs.jafc.0c07323] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, the effect of algal oil rich in docosahexaenoic acid on the mucosal injury with gut microbiota disorders caused by ceftriaxone sodium (CS) was evaluated. The results showed that algal oil treatment (500 mg kg-1 day-1) significantly reduced the levels of pro-inflammatory cytokines, including interleukin 6 , interleukin 1β, and tumor necrosis factor α, in the colon. Algal oil restored the CS-induced gut microbiota dysbiosis by elevating some short-chain-fatty-acid-producing bacteria, e.g., Ruminococcus and Blautia. The CS-induced metabolic disorder was also regulated by algal oil, which was characterized by the modulations of tryptophan metabolism, phospholipid metabolism, and bile acid metabolism. Our results suggested that supplementation of algal oil could alleviate inflammation and promote mucosal healing, which could be a functional food ingredient to protect aganist antibiotic-induced alteration of gut microbiota and metabolic dysbiosis.
Collapse
Affiliation(s)
- Chen Yang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, 2 Xudong Second Road, Wuhan, Hubei 430062, People's Republic of China
| | - Zhixian Qiao
- Institute of Hydrobiology, Chinese Academy of Sciences, 7 Donghu South Road, Wuhan, Hubei 430060, People's Republic of China
| | - Zhenxia Xu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, 2 Xudong Second Road, Wuhan, Hubei 430062, People's Republic of China
| | - Xu Wang
- Huazhong Agricultural University, 1 Shizishan Street, Wuhan, Hubei 430070, People's Republic of China
| | - Qianchun Deng
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, 2 Xudong Second Road, Wuhan, Hubei 430062, People's Republic of China
| | - Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, 2 Xudong Second Road, Wuhan, Hubei 430062, People's Republic of China
| | - Fenghong Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Oil Crops and Lipids Process Technology National & Local Joint Engineering Laboratory, Hubei Key Laboratory of Lipid Chemistry and Nutrition, Key Laboratory of Oilseeds Processing, Ministry of Agriculture and Rural Affairs, 2 Xudong Second Road, Wuhan, Hubei 430062, People's Republic of China
| |
Collapse
|
67
|
Xiang XW, Zheng HZ, Wang R, Chen H, Xiao JX, Zheng B, Liu SL, Ding YT. Ameliorative Effects of Peptides Derived from Oyster ( Crassostrea gigas) on Immunomodulatory Function and Gut Microbiota Structure in Cyclophosphamide-Treated Mice. Mar Drugs 2021; 19:md19080456. [PMID: 34436295 PMCID: PMC8401037 DOI: 10.3390/md19080456] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 12/22/2022] Open
Abstract
The intestinal flora is recognized as a significant contributor to the immune system. In this research, the protective effects of oyster peptides on immune regulation and intestinal microbiota were investigated in mice treated with cyclophosphamide. The results showed that oyster peptides restored the indexes of thymus, spleen and liver, stimulated cytokines secretion and promoted the relative mRNA levels of Th1/Th2 cytokines (IL-2, IFN-γ, IL-4 and IL-10). The mRNA levels of Occludin, Claudin-1, ZO-1, and Mucin-2 were up-regulated, and the NF-κB signaling pathway was also activated after oyster peptides administration. Furthermore, oyster peptides treatment reduced the proportion of Firmicutes/Bacteroidetes, increased the relative abundance of Alistipes, Lactobacillus, Rikenell and the content of short-chain fatty acids, and reversed the composition of intestinal microflora similar to that of normal mice. In conclusion, oyster peptides effectively ameliorated cyclophosphamide-induced intestinal damage and modified gut microbiota structure in mice, and might be utilized as a beneficial ingredient in functional foods for immune regulation.
Collapse
Affiliation(s)
- Xing-Wei Xiang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Hui-Zhen Zheng
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Rui Wang
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Hui Chen
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Jin-Xing Xiao
- Ocean Research Center of Zhoushan, Zhejiang University, Zhoushan 316000, China
- Correspondence: (J.-X.X.); (Y.-T.D.); Tel.: +86-159-0680-1306 (J.-X.X.); +86-139-0650-1671 (Y.-T.D.)
| | - Bin Zheng
- Food and Pharmacy College, Zhejiang Ocean University, Zhoushan 316000, China;
| | - Shu-Lai Liu
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
| | - Yu-Ting Ding
- College of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China; (X.-W.X.); (H.-Z.Z.); (R.W.); (H.C.); (S.-L.L.)
- Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Hangzhou 310014, China
- Correspondence: (J.-X.X.); (Y.-T.D.); Tel.: +86-159-0680-1306 (J.-X.X.); +86-139-0650-1671 (Y.-T.D.)
| |
Collapse
|
68
|
Kurian SJ, Unnikrishnan MK, Miraj SS, Bagchi D, Banerjee M, Reddy BS, Rodrigues GS, Manu MK, Saravu K, Mukhopadhyay C, Rao M. Probiotics in Prevention and Treatment of COVID-19: Current Perspective and Future Prospects. Arch Med Res 2021; 52:582-594. [PMID: 33785208 PMCID: PMC7972717 DOI: 10.1016/j.arcmed.2021.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/02/2021] [Accepted: 03/12/2021] [Indexed: 02/06/2023]
Abstract
Saving lives and flattening the curve are the foremost priorities during the ongoing pandemic spread of SARS-CoV-2. Developing cutting-edge technology and collating available evidence would support frontline health teams. Nutritional adequacy improves general health and immunity to prevent and assuage infections. This review aims to outline the potential role of probiotics in fighting the COVID-19 by covering recent evidence on the association between microbiota, probiotics, and COVID-19, the role of probiotics as an immune-modulator and antiviral agent. The high basic reproduction number (R0) of SARS-CoV-2, absence of conclusive remedies, and the pleiotropic effect of probiotics in fighting influenza and other coronaviruses together favour probiotics supplements. However, further support from preclinical and clinical studies and reviews outlining the role of probiotics in COVID-19 are critical. Results are awaited from many ongoing clinical trials investigating the benefits of probiotics in COVID-19.
Collapse
Affiliation(s)
- Shilia Jacob Kurian
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India; Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | | | - Sonal Sekhar Miraj
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India; Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| | - Debasis Bagchi
- College of Pharmacy and Health Sciences, Texas Southern University, Houston, USA
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences,Jodhpur, Rajasthan, India
| | - B Shrikar Reddy
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gabriel Sunil Rodrigues
- Department of Surgery, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mohan K Manu
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India; Department of Respiratory Medicine, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kavitha Saravu
- Manipal Center for Infectious Diseases, Prasanna School of Public Health, Manipal Academy of Higher Education, Manipal, Karnataka, India; Department of Infectious Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Chiranjay Mukhopadhyay
- Department of Microbiology and Center for Emerging and Tropical Diseases, Kasturba Medical College, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Mahadev Rao
- Department of Pharmacy Practice, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
69
|
Liu Y, Huang W, Wang J, Ma J, Zhang M, Lu X, Liu J, Kou Y. Multifaceted Impacts of Periodontal Pathogens in Disorders of the Intestinal Barrier. Front Immunol 2021; 12:693479. [PMID: 34386004 PMCID: PMC8353228 DOI: 10.3389/fimmu.2021.693479] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Periodontal disease, a common inflammatory disease, is considered a hazardous factor that contributes to the development of diseases of the digestive system as well as other systems. The bridge between periodontitis and systemic diseases is believed to be periodontal pathogens. The intestine, as part of the lower gastrointestinal tract, has a close connection with the oral cavity. Within the intestine, the intestinal barrier acts as a multifunctional system including microbial, mucous, physical and immune barrier. The intestinal barrier forms the body's first line of defense against external pathogens; its breakdown can lead to pathological changes in the gut and other organs or systems. Reports in the literature have described how oral periodontal pathogens and pathobiont-reactive immune cells can transmigrate to the intestinal mucosa, causing the destruction of intestinal barrier homeostasis. Such findings might lead to novel ideas for investigating the relationship between periodontal disease and other systemic diseases. This review summarizes studies on the effects of periodontal pathogens on the intestinal barrier, which might contribute to understanding the link between periodontitis and gastrointestinal diseases.
Collapse
Affiliation(s)
- Yingman Liu
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wenxuan Huang
- School of Stomatology, Shenyang Medical College, Shenyang, China
| | - Jiaqi Wang
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jiaojiao Ma
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Manman Zhang
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Xiaoying Lu
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jie Liu
- Science Experiment Center, China Medical University, Shenyang, China
| | - Yurong Kou
- Department of Periodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
- Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
70
|
Guillamón E, Andreo-Martínez P, Mut-Salud N, Fonollá J, Baños A. Beneficial Effects of Organosulfur Compounds from Allium cepa on Gut Health: A Systematic Review. Foods 2021; 10:foods10081680. [PMID: 34441457 PMCID: PMC8392556 DOI: 10.3390/foods10081680] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/13/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Dietary changes affect the composition and structure of gut microbiota (GM) in animals and humans. One of the beneficial effects of consuming products derived from plants is the positive influence on immunity and gastrointestinal health. Species belonging to the genus Allium contain many organosulfur compounds (OSCs) that have been widely studied showing their biological properties and beneficial effects on intestinal health and GM. This is the first systematic review of OSCs from Allium performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines, and it is based on the evidence that we found in literature about the benefits on the GM and intestinal health demonstrated by OSCs from Allium, and specifically from onion. OSCs from Allium cepa have shown a significant antibacterial activity against a broad spectrum of antibiotic-resistant Gram-positive and Gram-negative bacteria. In addition, the intake of OSCs from onion was able to modulate the composition of GM, increasing the beneficial bacterial populations in animal models. Moreover, the beneficial effects observed in murine models of colitis suggest that these compounds could be suitable candidates for the treatment of inflammatory bowel disease (IBD) or reverse the dysbiosis caused by a high-fat diet (HFD). Despite the evidence found both in vitro and in vivo, we have not found any article that tested OSCs different from allicin in clinical trials or dietary intervention studies in humans. In this sense, it would be interesting to conduct new research that tests the benefits of these compounds in human GM.
Collapse
Affiliation(s)
- Enrique Guillamón
- DMC Research Center, Camino de Jayena, 82, 18620 Granada, Spain; (E.G.); (N.M.-S.); (J.F.)
| | - Pedro Andreo-Martínez
- Department of Agricultural Chemistry, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain;
- Department of Chemical Engineering, Faculty of Chemistry, Campus of Espinardo, University of Murcia, 30100 Murcia, Spain
| | - Nuria Mut-Salud
- DMC Research Center, Camino de Jayena, 82, 18620 Granada, Spain; (E.G.); (N.M.-S.); (J.F.)
| | - Juristo Fonollá
- DMC Research Center, Camino de Jayena, 82, 18620 Granada, Spain; (E.G.); (N.M.-S.); (J.F.)
- Department of Nutrition and Bromatology, Campus of Cartuja, University of Granada, 18071 Granada, Spain
| | - Alberto Baños
- DMC Research Center, Camino de Jayena, 82, 18620 Granada, Spain; (E.G.); (N.M.-S.); (J.F.)
- Correspondence: ; Tel.: +34-958-576-486
| |
Collapse
|
71
|
Phillips M, Dunlap BF, Baldridge MT, Karst SM. Enteric Viruses and the Intestinal Microbiota. Virology 2021. [DOI: 10.1002/9781119818526.ch6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
72
|
Nutrition-Based Management of Inflammaging in CKD and Renal Replacement Therapies. Nutrients 2021; 13:nu13010267. [PMID: 33477671 PMCID: PMC7831904 DOI: 10.3390/nu13010267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/15/2021] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
Access to renal transplantation guarantees a substantial improvement in the clinical condition and quality of life (QoL) for end-stage renal disease (ESRD) patients. In recent years, a greater number of older patients starting renal replacement therapies (RRT) have shown the long-term impact of conservative therapies for advanced CKD and the consequences of the uremic milieu, with a frail clinical condition that impacts not only their survival but also limits their access to transplantation. This process, referred to as “inflammaging,” might be reversible with a tailored approach, such as RRT accompanied by specific nutritional support. In this review, we summarize the evidence demonstrating the presence of several proinflammatory substances in the Western diet (WD) and the positive effect of unprocessed food consumption and increased fruit and vegetable intake, suggesting a new approach to reduce inflammaging with the improvement of ESRD clinical status. We conclude that the Mediterranean diet (MD), because of its modulative effects on microbiota and its anti-inflammaging properties, may be a cornerstone in a more precise nutritional support for patients on the waiting list for kidney transplantation.
Collapse
|
73
|
Cosola C, Rocchetti MT, Gesualdo L. Gut Microbiota, the Immune System, and Cytotoxic T Lymphocytes. Methods Mol Biol 2021; 2325:229-241. [PMID: 34053062 DOI: 10.1007/978-1-0716-1507-2_16] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gut microbiota, the largest microbial community living in the human body, exerts a variety of metabolic, structural, and functional actions. In particular, it is essential for the full immune system development and maturation, as demonstrated by studies on germ-free animals, showing immune impairment at different levels. Gut microbiota shapes the immune responses by promoting immune tolerance toward food antigens and commensals in the steady state. This process is orchestrated by a complex network of both microbial and human cells and molecular mediators. Microbiota eubiosis is fundamental in establishing a correct balance between tolerance and immunity. Contrarily, microbiota dysbiosis is correlated with alterations in the immune balance, as evidenced in intestinal pathologies characterized by aberrant immune responses, such as inflammatory bowel disease and celiac disease, in which either break of tolerance against commensals or microbial dysbiosis is reported. On the other hand, a role for gut microbiota in stimulating the cytotoxic immune response in contexts of immunosuppression, like the ones featuring tumors and vaccinations, is emerging. The bifaceted role of gut microbiota in the delicate balance between tolerance and immunity could be exploited in order to develop pioneering therapeutic strategies, complementary to the pharmacological ones, thus representing a field worthy of further studies specifically focused on this topic.
Collapse
Affiliation(s)
- Carmela Cosola
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy.
| | - Maria Teresa Rocchetti
- Molecular Medicine Center, Clinical Pathology, University of Foggia - Azienda Ospedaliera Universitaria Foggia, Foggia, Italy
| | - Loreto Gesualdo
- Department of Emergency and Organ Transplantation, Nephrology, Dialysis and Transplantation Unit, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
74
|
Scassellati C, Marizzoni M, Cattane N, Lopizzo N, Mombelli E, Riva MA, Cattaneo A. The Complex Molecular Picture of Gut and Oral Microbiota-Brain-Depression System: What We Know and What We Need to Know. Front Psychiatry 2021; 12:722335. [PMID: 34819883 PMCID: PMC8607517 DOI: 10.3389/fpsyt.2021.722335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/30/2021] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is a complex mental disorder where the neurochemical, neuroendocrine, immune, and metabolic systems are impaired. The microbiota-gut-brain axis is a bidirectional network where the central and enteric nervous systems are linked through the same endocrine, immune, neural, and metabolic routes dysregulated in MDD. Thus, gut-brain axis abnormalities in MDD patients may, at least in part, account for the symptomatic features associated with MDD. Recent investigations have suggested that the oral microbiome also plays a key role in this complex molecular picture of relationships. As on one hand there is a lot of what we know and on the other hand little of what we still need to know, we structured this review focusing, in the first place, on putting all pieces of this complex puzzle together, underlying the endocrine, immune, oxidative stress, neural, microbial neurotransmitters, and metabolites molecular interactions and systems lying at the base of gut microbiota (GM)-brain-depression interphase. Then, we focused on promising but still under-explored areas of research strictly linked to the GM and potentially involved in MDD development: (i) the interconnection of GM with oral microbiome that can influence the neuroinflammation-related processes and (ii) gut phageome (bacteria-infecting viruses). As conclusions and future directions, we discussed potentiality but also pitfalls, roadblocks, and the gaps to be bridged in this exciting field of research. By the development of a broader knowledge of the biology associated with MDD, with the inclusion of the gut/oral microbiome, we can accelerate the growth toward a better global health based on precision medicine.
Collapse
Affiliation(s)
- Catia Scassellati
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Moira Marizzoni
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Laboratory of Alzheimer's Neuroimaging and Epidemiology, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nadia Cattane
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Nicola Lopizzo
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Elisa Mombelli
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Marco Andrea Riva
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Annamaria Cattaneo
- Biological Psychiatry Unit, Istituto di Recupero e Cura a Carattere Scientifico (IRCCS) Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
75
|
The lung-gut axis during viral respiratory infections: the impact of gut dysbiosis on secondary disease outcomes. Mucosal Immunol 2021; 14:296-304. [PMID: 33500564 PMCID: PMC7835650 DOI: 10.1038/s41385-020-00361-8] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 02/08/2023]
Abstract
Bacteria that colonize the human gastrointestinal tract are essential for good health. The gut microbiota has a critical role in pulmonary immunity and host's defense against viral respiratory infections. The gut microbiota's composition and function can be profoundly affected in many disease settings, including acute infections, and these changes can aggravate the severity of the disease. Here, we discuss mechanisms by which the gut microbiota arms the lung to control viral respiratory infections. We summarize the impact of viral respiratory infections on the gut microbiota and discuss the potential mechanisms leading to alterations of gut microbiota's composition and functions. We also discuss the effects of gut microbial imbalance on disease outcomes, including gastrointestinal disorders and secondary bacterial infections. Lastly, we discuss the potential role of the lung-gut axis in coronavirus disease 2019.
Collapse
|
76
|
Sun X, Huang Y, Zhang YL, Qiao D, Dai YC. Research advances of vasoactive intestinal peptide in the pathogenesis of ulcerative colitis by regulating interleukin-10 expression in regulatory B cells. World J Gastroenterol 2020; 26:7593-7602. [PMID: 33505138 PMCID: PMC7789055 DOI: 10.3748/wjg.v26.i48.7593] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/14/2020] [Accepted: 11/29/2020] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic relapsed intestinal disease with an increasing incidence around the world. The pathophysiology of UC remains unclear. However, the role of the interaction between the enteric nervous system and the immune system in the pathogenesis of UC has been the focus of attention and has become a research hotspot. Vasoactive intestinal peptide (VIP) is a kind of endogenous neuropeptide with regulatory activity on intestinal immunity. It has been shown to regulate immune disorders in animal and human experiments and has become an effective anti-inflammatory and immune modulator that affects the innate immune system and adaptive immune system. Regulatory B cells (Bregs) are a new group of B cells that negatively regulate the immunity and have received extensive attention in immune circles. Bregs can regulate immune tolerance by producing interleukin (IL)-10, IL-35, and transforming growth factor-β, suppressing autoimmune diseases or excessive inflammatory responses. The secretion of IL-10 by Bregs induces the development of T helper (Th) 0 and Th2 cells. It also induces Th2 cytokines and inhibits Th1 cytokines, thereby inhibiting Th1 cells and the Th1/Th2 balance. With further clarity on the mechanism of the regulation of IL-10 expression by VIP in Bregs in colitis patients, we believe that Bregs can provide a novel strategy for the clinical treatment of UC. Thus, we aim to review the current literature on this evolving topic.
Collapse
Affiliation(s)
- Xiong Sun
- Department of Gastroenterology, Shanghai PuTuo District People's Hospital Affiliated to Tongji University, Tongji University School of Medicine, Shanghai 200060, China
| | - Yao Huang
- Department of Digestive Diseases, Jing'an District Central Hospital, Fudan University, Shanghai 200040, China
| | - Ya-Li Zhang
- Institute of Digestive Diseases, LongHua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Dan Qiao
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
77
|
Mishima Y, Ishihara S. Molecular Mechanisms of Microbiota-Mediated Pathology in Irritable Bowel Syndrome. Int J Mol Sci 2020; 21:ijms21228664. [PMID: 33212919 PMCID: PMC7698457 DOI: 10.3390/ijms21228664] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/07/2023] Open
Abstract
Irritable bowel syndrome (IBS) is one of the most prevalent functional gastrointestinal disorders, and accumulating evidence gained in both preclinical and clinical studies indicate the involvement of enteric microbiota in its pathogenesis. Gut resident microbiota appear to influence brain activity through the enteric nervous system, while their composition and function are affected by the central nervous system. Based on these results, the term “brain–gut–microbiome axis” has been proposed and enteric microbiota have become a potential therapeutic target in IBS cases. However, details regarding the microbe-related pathophysiology of IBS remain elusive. This review summarizes the existing knowledge of molecular mechanisms in the pathogenesis of IBS as well as recent progress related to microbiome-derived neurotransmitters, compounds, metabolites, neuroendocrine factors, and enzymes.
Collapse
|
78
|
Moon J, Yoon CH, Choi SH, Kim MK. Can Gut Microbiota Affect Dry Eye Syndrome? Int J Mol Sci 2020; 21:E8443. [PMID: 33182758 PMCID: PMC7697210 DOI: 10.3390/ijms21228443] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Using metagenomics, continuing evidence has elicited how intestinal microbiota trigger distant autoimmunity. Sjögren's syndrome (SS) is an autoimmune disease that affects the ocular surface, with frequently unmet therapeutic needs requiring new interventions for dry eye management. Current studies also suggest the possible relation of autoimmune dry eye with gut microbiota. Herein, we review the current knowledge of how the gut microbiota interact with the immune system in homeostasis as well as its influence on rheumatic and ocular autoimmune diseases, and compare their characteristics with SS. Both rodent and human studies regarding gut microbiota in SS and environmental dry eye are explored, and the effects of prebiotics and probiotics on dry eye are discussed. Recent clinical studies have commonly observed a correlation between gut dysbiosis and clinical manifestations of SS, while environmental dry eye portrays characteristics in between normal and autoimmune. Moreover, a decrease in both the Firmicutes/Bacteroidetes ratio and genus Faecalibacterium have most commonly been observed in SS subjects. The presumable pathways forming the "gut dysbiosis-ocular surface-lacrimal gland axis" are introduced. This review may provide perspectives into the link between the gut microbiome and dry eye, enhance our understanding of the pathogenesis in autoimmune dry eye, and be useful in the development of future interventions.
Collapse
Affiliation(s)
- Jayoon Moon
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| | - Chang Ho Yoon
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| | - Se Hyun Choi
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
- Department of Ophthalmology, Hallym University Sacred Heart Hospital, Anyang-si 14068, Korea
| | - Mee Kum Kim
- Department of Ophthalmology, College of Medicine, Seoul National University, Seoul 03080, Korea; (J.M.); (C.H.Y.)
- Seoul Artificial Eye Center, Laboratory of Ocular Regenerative Medicine and Immunology, Seoul National University Hospital Biomedical Research Institute, Seoul 03082, Korea;
| |
Collapse
|
79
|
Vitamin D and Metabolic Dysfunction-Associated Fatty Liver Disease (MAFLD): An Update. Nutrients 2020; 12:nu12113302. [PMID: 33126575 PMCID: PMC7693133 DOI: 10.3390/nu12113302] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the first cause of chronic liver disease worldwide; it ranges from simple steatosis to steatohepatitis (NASH) and, potentially, cirrhosis and hepatocarcinoma. NAFLD is also an independent risk factor for type 2 diabetes, cardiovascular diseases, and mortality. As it is largely associated with insulin resistance and related disorders, NAFLD has been recently re-named as Metabolic dysfunction-Associated Fatty Liver Disease (MAFLD). At present, there are no approved pharmacological treatments for this condition. Vitamin D is a molecule with extensive anti-fibrotic, anti-inflammatory, and insulin-sensitizing properties, which have been proven also in hepatic cells and is involved in immune-metabolic pathways within the gut–adipose tissue–liver axis. Epidemiological data support a relationship hypovitaminosis D and the presence of NAFLD and steatohepatitis (NASH); however, results from vitamin D supplementation trials on liver outcomes are controversial. This narrative review provides an overview of the latest evidence on pathophysiological pathways connecting vitamin D to NAFLD, with emphasis on the effects of vitamin D treatment in MAFLD by a nonsystematic literature review of PubMed published clinical trials. This article conforms to the Scale for Assessment of Narrative Review Articles (SANRA) guidelines. Evidence so far available supports the hypothesis of potential benefits of vitamin D supplementation in selected populations of NAFLD patients, as those with shorter disease duration and mild to moderate liver damage.
Collapse
|
80
|
Millet N, Solis NV, Swidergall M. Mucosal IgA Prevents Commensal Candida albicans Dysbiosis in the Oral Cavity. Front Immunol 2020; 11:555363. [PMID: 33193324 PMCID: PMC7642201 DOI: 10.3389/fimmu.2020.555363] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 09/03/2020] [Indexed: 12/15/2022] Open
Abstract
The fungus Candida albicans colonizes the oral mucosal surface of 30–70% of healthy individuals. Due to local or systemic immunosuppression, this commensal fungus is able to proliferate resulting in oral disease, called oropharyngeal candidiasis (OPC). However, in healthy individuals C. albicans causes no harm. Unlike humans mice do not host C. albicans in their mycobiome. Thus, oral fungal challenge generates an acute immune response in a naive host. Therefore, we utilized C. albicans clinical isolates which are able to persist in the oral cavity without causing disease to analyze adaptive responses to oral fungal commensalism. We performed RNA sequencing to determine the transcriptional host response landscape during C. albicans colonization. Pathway analysis revealed an upregulation of adaptive host responses due to C. albicans oral persistence, including the upregulation of the immune network for IgA production. Fungal colonization increased cross-specific IgA levels in the saliva and the tongue, and IgA+ cells migrated to foci of fungal colonization. Binding of IgA prevented fungal epithelial adhesion and invasion resulting in a dampened proinflammatory epithelial response. Besides CD19+ CD138− B cells, plasmablasts, and plasma cells were enriched in the tongue of mice colonized with C. albicans suggesting a potential role of B lymphocytes during oral fungal colonization. B cell deficiency increased the oral fungal load without causing severe OPC. Thus, in the oral cavity B lymphocytes contribute to control commensal C. albicans carriage by secreting IgA at foci of colonization thereby preventing fungal dysbiosis.
Collapse
Affiliation(s)
- Nicolas Millet
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States.,Institute for Infection and Immunity, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Norma V Solis
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States.,Institute for Infection and Immunity, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, United States
| | - Marc Swidergall
- Division of Infectious Diseases, Harbor-UCLA Medical Center, Torrance, CA, United States.,Institute for Infection and Immunity, The Lundquist Institute at Harbor-UCLA Medical Center, Torrance, CA, United States.,David Geffen School of Medicine at UCLA, Los Angeles, CA, United States
| |
Collapse
|
81
|
Valeri V, Tonon S, Vibhushan S, Gulino A, Belmonte B, Adori M, Karlsson Hedestam GB, Gautier G, Tripodo C, Blank U, Mion F, Pucillo CEM. Mast cells crosstalk with B cells in the gut and sustain IgA response in the inflamed intestine. Eur J Immunol 2020; 51:445-458. [PMID: 32920851 DOI: 10.1002/eji.202048668] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/20/2020] [Accepted: 09/11/2020] [Indexed: 12/11/2022]
Abstract
B lymphocytes are among the cell types whose effector functions are modulated by mast cells (MCs). The B/MC crosstalk emerged in several pathological settings, notably the colon of inflammatory bowel disease (IBD) patients is a privileged site in which MCs and IgA+ cells physically interact. Herein, by inducing conditional depletion of MCs in red MC and basophil (RMB) mice, we show that MCs control B cell distribution in the gut and IgA serum levels. Moreover, in dextran sulfate sodium (DSS)-treated RMB mice, the presence of MCs is fundamental for the enlargement of the IgA+ population in the bowel and the increase of systemic IgA production. Since both conventional B-2 and peritoneal-derived B cells populate the intestine and communicate with MCs in physiological conditions and during inflammation, we further explored this interplay through the use of co-cultures. We show that MCs finely regulate different aspects of splenic B cell biology while peritoneal B cells are unresponsive to the supporting effects provided by MCs. Interestingly, peritoneal B cells induce a pro-inflammatory skewing in MCs, characterized by increased ST2 and TNF-α expression. Altogether, this study uncovers the versatility of the B/MC liaison and highlights key aspects for the resolution of intestinal inflammation.
Collapse
Affiliation(s)
- Viviana Valeri
- Department of Medicine, University of Udine, Udine, Italy
| | - Silvia Tonon
- Department of Medicine, University of Udine, Udine, Italy
| | - Shamila Vibhushan
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Alessandro Gulino
- Department of Health Science, Tumor Immunology Unit, Human Pathology Section, Palermo University School of Medicine, Palermo, Italy
| | - Beatrice Belmonte
- Department of Health Science, Tumor Immunology Unit, Human Pathology Section, Palermo University School of Medicine, Palermo, Italy
| | - Monika Adori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | | - Gregory Gautier
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Claudio Tripodo
- Department of Health Science, Tumor Immunology Unit, Human Pathology Section, Palermo University School of Medicine, Palermo, Italy
| | - Ulrich Blank
- Université de Paris, Centre de Recherche sur l'Inflammation, INSERM UMR1149, CNRS ERL8252, Faculté de Médecine site Bichat, Paris, France.,Université de Paris, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Francesca Mion
- Department of Medicine, University of Udine, Udine, Italy
| | | |
Collapse
|
82
|
Hernández Del Pino RE, Barbero AM, Español LÁ, Morro LS, Pasquinelli V. The adaptive immune response to Clostridioides difficile: A tricky balance between immunoprotection and immunopathogenesis. J Leukoc Biol 2020; 109:195-210. [PMID: 32829520 DOI: 10.1002/jlb.4vmr0720-201r] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Clostridioides difficile (C. difficile) is the major cause of hospital-acquired gastrointestinal infections in individuals following antibiotics treatment. The pathogenesis of C. difficile infection (CDI) is mediated mainly by the production of toxins that induce tissue damage and host inflammatory responses. While innate immunity is well characterized in human and animal models of CDI, adaptive immune responses remain poorly understood. In this review, the current understanding of adaptive immunity is summarized and its influence on pathogenesis and disease outcome is discussed. The perspectives on what we believe to be the main pending questions and the focus of future research are also provided. There is no doubt that the innate immune response provides a first line of defense to CDI. But, is the adaptive immune response a friend or a foe? Probably it depends on the course of the disease. Adaptive immunity is essential for pathogen eradication, but may also trigger uncontrolled or pathological inflammation. Most of the understanding of the role of T cells is based on findings from experimental models. While they are a very valuable tool for research studies, more studies in human are needed to translate these findings into human disease. Another main challenge is to unravel the role of the different T cell populations on protection or induction of immunopathogenesis.
Collapse
Affiliation(s)
- Rodrigo Emanuel Hernández Del Pino
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Angela María Barbero
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laureano Ángel Español
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
| | - Lorenzo Sebastián Morro
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina
| | - Virginia Pasquinelli
- Centro de Investigaciones Básicas y Aplicadas (CIBA), Universidad Nacional del Noroeste de la Provincia de Buenos Aires (UNNOBA), Buenos Aires, Argentina.,Centro de Investigaciones y Transferencias del Noroeste de la Provincia de Buenos Aires (CIT NOBA), UNNOBA-Universidad Nacional de San Antonio de Areco (UNSAdA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
83
|
Cross-talk between airway and gut microbiome links to IgE responses to house dust mites in childhood airway allergies. Sci Rep 2020; 10:13449. [PMID: 32778700 PMCID: PMC7417544 DOI: 10.1038/s41598-020-70528-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/27/2020] [Indexed: 12/18/2022] Open
Abstract
A connection between airway and gut microbiota related to allergen exposure in childhood allergies was not well addressed. We aimed to identify the microbiota alterations in the airway and gut related to mite-specific IgE responses in young children with airway allergies. This study enrolled 60 children, including 38 mite-sensitized children (20 rhinitis and 18 asthma), and 22 non-mite-sensitized healthy controls. Microbiome composition analysis of the throat swab and stool samples was performed using bacterial 16S rRNA sequencing. An integrative analysis of the airway and stool microbial profiling associated with IgE reactions in childhood allergic rhinitis and asthma was examined. The Chao1 and Shannon indices in the airway were significantly lower than those in the stool. Additionally, an inverse association of the airway microbial diversity with house dust mite (HDM) sensitization and allergic airway diseases was noted. Fecal IgE levels were positively correlated with the serum Dermatophagoides pteronyssinus- and Dermatophagoides farinae-specific IgE levels. Airway Leptotrichia spp. related to asthma were strongly correlated with fecal Dorea and Ruminococcus spp., which were inversely associated with fecal IgE levels and risk of allergic rhinitis. Moreover, four airway genera, Campylobacter, Selenomonas, Tannerella, and Atopobium, were negatively correlated with both serum mite-specific and fecal IgE levels. Among them, the airway Selenomonas and Atopobium spp. were positively correlated with stool Blautia and Dorea spp. related to asthma and allergic rhinitis, respectively. In conclusion, airway microbial dysbiosis in response to HDM and its cross-talk with the gut microbial community is related to allergic airway diseases in early childhood.
Collapse
|
84
|
Influence of the Fermented Feed and Vaccination and Their Interaction on Parameters of Large White/Norwegian Landrace Piglets. Animals (Basel) 2020; 10:ani10071201. [PMID: 32679752 PMCID: PMC7401620 DOI: 10.3390/ani10071201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/09/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to evaluate the influence of fermented with a newly isolated lactic acid bacteria (LAB) strains combination (Lactobacillus plantarum LUHS122, Lactobacillus casei LUHS210, Lactobacillus farraginis LUHS206, Pediococcus acidilactici LUHS29, Lactobacillus plantarum LUHS135 and Lactobacillus uvarum LUHS245) feed on non-vaccinated (NV) and vaccinated with Circovac porcine circovirus type 2 vaccine (QI09AA07, CEVA-PHYLAXIA Co. Ltd. Szállás u. 5. 1107 Budapest, Hungary) piglets' blood parameters, gut microbial composition, growth performance and ammonia emission. The 36-day experiment was conducted using 25-day-old Large White/Norwegian Landrace (LW/NL) piglets, which were randomly divided into four groups with 100 piglets each: SnonV-non-vaccinated piglets fed with control group compound feed; SV-vaccinated piglets fed with control group compound feed; RFnonV-non-vaccinated piglets fed with fermented compound feed; RFV-vaccinated piglets fed with fermented compound feed. Samples from 10 animals per group were collected at the beginning and end of the experiment. Metagenomic analysis showed that fermentation had a positive impact on the Lactobacillus prevalence during the post-weaning period of pigs, and vaccination had no negative impact on microbial communities. Although a higher amount of Lactobacillus was detected in vaccinated, compared with non-vaccinated groups. At the end of experiment, there was a significantly higher LAB count in the faeces of both vaccinated compared to non-vaccinated groups (26.6% for SV and 17.2% for RFV), with the highest LAB count in the SV group. At the end of experiment, the SV faeces also had the highest total bacteria count (TBC). The RFV group had a 13.2% increase in total enterobacteria count (TEC) at the end of experiment, and the SV group showed a 31.2% higher yeast/mould (Y/M) count. There were no significant differences in the average daily gain (ADG) among the groups; however, there were significant differences in the feed conversion ratios (FCR) between several groups: SV vs. SnonV (11.5% lower in the SV group), RFV vs. RFnonV (10.2% lower in the RFnonV group) and SV vs. RFV (21.6% lower in the SV group). Furthermore, there was a significant, very strong positive correlation between FCR and TEC in piglets' faeces (R = 0.919, p = 0.041). The lowest ammonia emission was in RFV group section (58.2, 23.8, and 47.33% lower compared with the SnonV, SV and RFnonV groups, respectively). Notably, there was lower ammonia emission in vaccinated groups (45.2% lower in SV vs. SnonV and 47.33% lower in RFV vs. RFnonV). There was also a significant, very strong positive correlation between ammonia emission and Y/M count in piglets' faeces at the end of the experiment (R = 0.974; p = 0.013). Vaccination as a separate factor did not significantly influence piglets' blood parameters. Overall, by changing from an extruded soya to cheaper rapeseed meal and applying the fermentation model with the selected LAB combination, it is possible to feed piglets without any undesirable changes in health and growth performance in a more sustainable manner. However, to evaluate the influence of vaccination and its interaction with other parameters (feed, piglets' age, breed, etc.) on piglets' parameters, additional studies should be performed and methods should be standardised to ensure the results may be compared.
Collapse
|
85
|
Yang X, Lu D, Zhuo J, Lin Z, Yang M, Xu X. The Gut-liver Axis in Immune Remodeling: New insight into Liver Diseases. Int J Biol Sci 2020; 16:2357-2366. [PMID: 32760203 PMCID: PMC7378637 DOI: 10.7150/ijbs.46405] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/12/2020] [Indexed: 02/07/2023] Open
Abstract
The gut microbiota consists of a dynamic multispecies community of bacteria, fungi, archaea, and protozoans, playing a fundamental role in the induction, training, and function of the host immune system. The liver is anatomically and physiologically linked to the gut microbiota via enterohepatic circulation, specifically receiving intestine-derived blood through the portal vein. The gut microbiota is crucial for maintaining immune homeostasis of the gut-liver axis. A shift in gut microbiota composition can result in activation of the mucosal immune response causing homeostasis imbalance. This imbalance results in translocation of bacteria and migration of immune cells to the liver, which is related to inflammation-mediated liver injury and tumor progression. In this review, we outline the role of the gut microbiota in modulating host immunity and summarize novel findings and recent advances in immune-based therapeutics associated with the gut-liver axis. Moving forward, a deep understanding of the microbiome-immune-liver axis will provide insight into the basic mechanisms of gut microbiota dysbiosis affecting liver diseases.
Collapse
Affiliation(s)
- Xinyu Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Di Lu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Jianyong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Zuyuan Lin
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Modan Yang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| | - Xiao Xu
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China.,NHFPC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
| |
Collapse
|
86
|
Wiarda JE, Trachsel JM, Bond ZF, Byrne KA, Gabler NK, Loving CL. Intraepithelial T Cells Diverge by Intestinal Location as Pigs Age. Front Immunol 2020; 11:1139. [PMID: 32612605 PMCID: PMC7308531 DOI: 10.3389/fimmu.2020.01139] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 05/11/2020] [Indexed: 12/13/2022] Open
Abstract
T cells resident within the intestinal epithelium play a central role in barrier integrity and provide a first line of immune defense. Intraepithelial T cells (IETs) are among the earliest immune cells to populate and protect intestinal tissues, thereby giving them an important role in shaping gut health early in life. In pigs, IETs are poorly defined, and their maturation in young pigs has not been well-studied. Given the importance of IETs in contributing to early life and long-term intestinal health through interactions with epithelial cells, the microbiota, and additional environmental factors, a deeper characterization of IETs in pigs is warranted. The objective of this study was to analyze age- and intestinal location-dependent changes in IETs across multiple sites of the small and large intestine in pigs between 4- and 8-weeks of age. IETs increased in abundance over time and belonged to both γδ and αβ T cell lineages. Similar compositions of IETs were identified across intestinal sites in 4-week-old pigs, but compositions diverged between intestinal sites as pigs aged. CD2+CD8α+ γδ T cells and CD4-CD8α+ αβ T cells comprised >78% of total IETs at all intestinal locations and ages examined. Greater percentages of γδ IETs were present in large intestine compared to small intestine in older pigs. Small intestinal tissues had greater percentages of CD2+CD8α- γδ IETs, while CD2+CD8α+ γδ IET percentages were greater in the large intestine. Percentages of CD4-CD8α+ αβ IETs increased over time across all intestinal sites. Moreover, percentages of CD27+ cells decreased in ileum and large intestine over time, indicating increased IET activation as pigs aged. Percentages of CD27+ cells were also higher in small intestine compared to large intestine at later timepoints. Results herein emphasize 4- to 8-weeks of age as a critical window of IET maturation and suggest strong associations between intestinal location and age with IET heterogeneity in pigs.
Collapse
Affiliation(s)
- Jayne E Wiarda
- Food Safety and Enteric Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, Ames, IA, United States.,Immunobiology Graduate Program, Iowa State University, Ames, IA, United States.,Oak Ridge Institute for Science and Education, Agricultural Research Service Participation Program, Oak Ridge, TN, United States
| | - Julian M Trachsel
- Food Safety and Enteric Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, Ames, IA, United States
| | - Zahra F Bond
- Food Safety and Enteric Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, Ames, IA, United States
| | - Kristen A Byrne
- Food Safety and Enteric Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, Ames, IA, United States
| | - Nicholas K Gabler
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Crystal L Loving
- Food Safety and Enteric Pathogens Research Unit, Agricultural Research Service, United States Department of Agriculture, National Animal Disease Center, Ames, IA, United States
| |
Collapse
|
87
|
Catalkaya G, Venema K, Lucini L, Rocchetti G, Delmas D, Daglia M, De Filippis A, Xiao H, Quiles JL, Xiao J, Capanoglu E. Interaction of dietary polyphenols and gut microbiota: Microbial metabolism of polyphenols, influence on the gut microbiota, and implications on host health. FOOD FRONTIERS 2020; 1:109-133. [DOI: 10.1002/fft2.25] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
AbstractThe human gastrointestinal tract is inhabited by a vast number of microorganisms that are called as the microbiota. Each individual harbors a unique gut microbial composition, this composition evolves throughout the host's lifetime and it is easily affected by internal or external changes. It has been shown that gut microbiota plays a crucial role in host's health and as this complex community has the ability to interact with each other and with the host's immune system, the presence or absence of some major species can affect the homeostasis. Diet can be considered as one of the pivotal factors in modulating the functionality, integrity, and composition of the gut microbiota as the gastrointestinal tract is the first organ exposed to components of the diet. In this review, we have focused on the effects of polyphenols, key compounds of a healthy diet with several biological activities, on the gut microbial composition, their biotransformation by the gut microbiota, and the effect of their reciprocal interactions in human health and disease.
Collapse
Affiliation(s)
- Gizem Catalkaya
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation Faculty of Science and Engineering Maastricht University ‐ Campus Venlo Venlo The Netherlands
- School of Nutrition and Translational Research in Metabolism (NUTRIM) Maastricht University Maastricht The Netherlands
| | - Luigi Lucini
- Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process Università Cattolica del Sacro Cuore Piacenza Italy
| | - Dominique Delmas
- INSERM Research Center U1231 Université de Bourgogne Franche‐Comté Centre anticancéreux Georges François Leclerc Université de Bourgogne Franche‐Comté Dijon 21000 France
| | - Maria Daglia
- Department of Pharmacy University of Naples Federico II Naples Italy
- International Research Center for Food Nutrition and Safety Jiangsu University Zhenjiang China
| | - Anna De Filippis
- Department of Pharmacy University of Naples Federico II Naples Italy
| | - Hang Xiao
- Department of Food Science University of Massachusetts Amherst MA USA
| | - José L. Quiles
- Department of Physiology Institute of Nutrition and Food Technology ‘‘José Mataix” Biomedical Research Centre University of Granada Granada Spain
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences, State Key Laboratory of Quality Research in Chinese Medicine University of Macau Taipa Macau
| | - Esra Capanoglu
- Department of Food Engineering Faculty of Chemical and Metallurgical Engineering Istanbul Technical University Istanbul Turkey
| |
Collapse
|